Science.gov

Sample records for 3t 3d dynamic

  1. Static & Dynamic Response of 3D Solids

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  2. 3D dynamic roadmapping for abdominal catheterizations.

    PubMed

    Bender, Frederik; Groher, Martin; Khamene, Ali; Wein, Wolfgang; Heibel, Tim Hauke; Navab, Nassir

    2008-01-01

    Despite rapid advances in interventional imaging, the navigation of a guide wire through abdominal vasculature remains, not only for novice radiologists, a difficult task. Since this navigation is mostly based on 2D fluoroscopic image sequences from one view, the process is slowed down significantly due to missing depth information and patient motion. We propose a novel approach for 3D dynamic roadmapping in deformable regions by predicting the location of the guide wire tip in a 3D vessel model from the tip's 2D location, respiratory motion analysis, and view geometry. In a first step, the method compensates for the apparent respiratory motion in 2D space before backprojecting the 2D guide wire tip into three dimensional space, using a given projection matrix. To countervail the error connected to the projection parameters and the motion compensation, as well as the ambiguity caused by vessel deformation, we establish a statistical framework, which computes a reliable estimate of the guide wire tip location within the 3D vessel model. With this 2D-to-3D transfer, the navigation can be performed from arbitrary viewing angles, disconnected from the static perspective view of the fluoroscopic sequence. Tests on a realistic breathing phantom and on synthetic data with a known ground truth clearly reveal the superiority of our approach compared to naive methods for 3D roadmapping. The concepts and information presented in this paper are based on research and are not commercially available. PMID:18982662

  3. Evaluation of segmented 3D acquisition schemes for whole-brain high-resolution arterial spin labeling at 3 T.

    PubMed

    Vidorreta, Marta; Balteau, Evelyne; Wang, Ze; De Vita, Enrico; Pastor, María A; Thomas, David L; Detre, John A; Fernández-Seara, María A

    2014-11-01

    Recent technical developments have significantly increased the signal-to-noise ratio (SNR) of arterial spin labeled (ASL) perfusion MRI. Despite this, typical ASL acquisitions still employ large voxel sizes. The purpose of this work was to implement and evaluate two ASL sequences optimized for whole-brain high-resolution perfusion imaging, combining pseudo-continuous ASL (pCASL), background suppression (BS) and 3D segmented readouts, with different in-plane k-space trajectories. Identical labeling and BS pulses were implemented for both sequences. Two segmented 3D readout schemes with different in-plane trajectories were compared: Cartesian (3D GRASE) and spiral (3D RARE Stack-Of-Spirals). High-resolution perfusion images (2 × 2 × 4 mm(3) ) were acquired in 15 young healthy volunteers with the two ASL sequences at 3 T. The quality of the perfusion maps was evaluated in terms of SNR and gray-to-white matter contrast. Point-spread-function simulations were carried out to assess the impact of readout differences on the effective resolution. The combination of pCASL, in-plane segmented 3D readouts and BS provided high-SNR high-resolution ASL perfusion images of the whole brain. Although both sequences produced excellent image quality, the 3D RARE Stack-Of-Spirals readout yielded higher temporal and spatial SNR than 3D GRASE (spatial SNR = 8.5 ± 2.8 and 3.7 ± 1.4; temporal SNR = 27.4 ± 12.5 and 15.6 ± 7.6, respectively) and decreased through-plane blurring due to its inherent oversampling of the central k-space region, its reduced effective TE and shorter total readout time, at the expense of a slight increase in the effective in-plane voxel size. PMID:25263944

  4. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    SciTech Connect

    Steven R Prescott; Curtis Smith

    2011-07-01

    provide superior results and insights. We also couple the state model with the dynamic 3D simulation analysis representing events (such as flooding) to determine which (if any) components fail. Not only does the simulation take into account any failed items from the state model, but any failures caused by the simulation are incorporated back into the state model and factored into the overall results. Using this method we incorporate accurate 3D simulation results, eliminate static-based PRA issues, and have time ordered failure information.

  5. A dynamic 3D foot reconstruction system.

    PubMed

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2011-01-01

    Foot problems are varied and range from simple disorders through to complex diseases and joint deformities. Wherever possible, the use of insoles, or orthoses, is preferred over surgery. Current insole design techniques are based on static measurements of the foot, despite the fact that orthoses are prevalently used in dynamic conditions while walking or running. This paper presents the design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion, and its use to show that foot measurements in dynamic conditions differ significantly from their static counterparts. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out for the validation of the system. The accuracy of the system was found to be 0.34 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.44 mm (static case) and 2.81 mm (dynamic case). Furthermore, a study was performed to compare the effective length of the foot between static and dynamic reconstructions using the 4D system. Results showed an average increase of 9 mm for the dynamic case. This increase is substantial for orthotics design, cannot be captured by a static system, and its subject-specific measurement is crucial for the design of effective foot orthoses.

  6. Dynamics of 3D isolated thermal filaments

    NASA Astrophysics Data System (ADS)

    Walkden, N. R.; Easy, L.; Militello, F.; Omotani, J. T.

    2016-11-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the pressure perturbation within the filament is supported primarily through a temperature increase as opposed to density: they lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  7. Dynamic phototuning of 3D hydrogel stiffness

    PubMed Central

    Stowers, Ryan S.; Allen, Shane C.; Suggs, Laura J.

    2015-01-01

    Hydrogels are widely used as in vitro culture models to mimic 3D cellular microenvironments. The stiffness of the extracellular matrix is known to influence cell phenotype, inspiring work toward unraveling the role of stiffness on cell behavior using hydrogels. However, in many biological processes such as embryonic development, wound healing, and tumorigenesis, the microenvironment is highly dynamic, leading to changes in matrix stiffness over a broad range of timescales. To recapitulate dynamic microenvironments, a hydrogel with temporally tunable stiffness is needed. Here, we present a system in which alginate gel stiffness can be temporally modulated by light-triggered release of calcium or a chelator from liposomes. Others have shown softening via photodegradation or stiffening via secondary cross-linking; however, our system is capable of both dynamic stiffening and softening. Dynamic modulation of stiffness can be induced at least 14 d after gelation and can be spatially controlled to produce gradients and patterns. We use this system to investigate the regulation of fibroblast morphology by stiffness in both nondegradable gels and gels with degradable elements. Interestingly, stiffening inhibits fibroblast spreading through either mesenchymal or amoeboid migration modes. We demonstrate this technology can be translated in vivo by using deeply penetrating near-infrared light for transdermal stiffness modulation, enabling external control of gel stiffness. Temporal modulation of hydrogel stiffness is a powerful tool that will enable investigation of the role that dynamic microenvironments play in biological processes both in vitro and in well-controlled in vivo experiments. PMID:25646417

  8. In vivo FID-based 3D Multivoxel Longitudinal Hadamard Spectroscopic Imaging In the Human Brain at 3 T

    PubMed Central

    Tal, Assaf; Goelman, Gadi; Gonen, Oded

    2012-01-01

    We propose and demonstrate a full 3D longitudinal Hadamard Spectroscopic Imaging (L-HSI) scheme for obtaining chemical shift maps, by employing adiabatic inversion pulses to encode the spins’ positions. The approach offers several advantages over conventional Fourier-based encoding methods, including a localized point spread function; no aliasing, allowing for VOIs smaller than the object being imaged; an option for acquiring non-contiguous voxels; and inherent outer volume rejection. The latter allows for doing away with conventional outer volume suppression schemes, such as PRESS or STEAM, and acquiring non spin-echo spectra with short acquisition delay times, limited only by the excitation pulse’s duration. This, in turn, minimizes T2 decay, maximizes the signal to noise ratio, and reduces J-coupling induced signal decay. Results are presented for both a phantom and an in-vivo healthy volunteer at 3T. PMID:22576419

  9. Time Efficient 3D Radial UTE Sampling with Fully Automatic Delay Compensation on a Clinical 3T MR Scanner

    PubMed Central

    Reichenbach, Jürgen R.

    2016-01-01

    This work’s aim was to minimize the acquisition time of a radial 3D ultra-short echo-time (UTE) sequence and to provide fully automated, gradient delay compensated, and therefore artifact free, reconstruction. The radial 3D UTE sequence (echo time 60 μs) was implemented as single echo acquisition with center-out readouts and improved time efficient spoiling on a clinical 3T scanner without hardware modifications. To assess the sequence parameter dependent gradient delays each acquisition contained a quick calibration scan and utilized the phase of the readouts to detect the actual k-space center. This calibration scan does not require any user interaction. To evaluate the robustness of this automatic delay estimation phantom experiments were performed and 19 in vivo imaging data of the head, tibial cortical bone, feet and lung were acquired from 6 volunteers. As clinical application of this fast 3D UTE acquisition single breath-hold lung imaging is demonstrated. The proposed sequence allowed very short repetition times (TR~1ms), thus reducing total acquisition time. The proposed, fully automated k-phase based gradient delay calibration resulted in accurate delay estimations (difference to manually determined optimal delay −0.13 ± 0.45 μs) and allowed unsupervised reconstruction of high quality images for both phantom and in vivo data. The employed fast spoiling scheme efficiently suppressed artifacts caused by incorrectly refocused echoes. The sequence proved to be quite insensitive to motion, flow and susceptibility artifacts and provides oversampling protection against aliasing foldovers in all directions. Due to the short TR, acquisition times are attractive for a wide range of clinical applications. For short T2* mapping this sequence provides free choice of the second TE, usually within less scan time as a comparable dual echo UTE sequence. PMID:26975051

  10. 3D-dynamic representation of DNA sequences.

    PubMed

    Wąż, Piotr; Bielińska-Wąż, Dorota

    2014-03-01

    A new 3D graphical representation of DNA sequences is introduced. This representation is called 3D-dynamic representation. It is a generalization of the 2D-dynamic dynamic representation. The sequences are represented by sets of "material points" in the 3D space. The resulting 3D-dynamic graphs are treated as rigid bodies. The descriptors characterizing the graphs are analogous to the ones used in the classical dynamics. The classification diagrams derived from this representation are presented and discussed. Due to the third dimension, "the history of the graph" can be recognized graphically because the 3D-dynamic graph does not overlap with itself. Specific parts of the graphs correspond to specific parts of the sequence. This feature is essential for graphical comparisons of the sequences. Numerically, both 2D and 3D approaches are of high quality. In particular, a difference in a single base between two sequences can be identified and correctly described (one can identify which base) by both 2D and 3D methods. PMID:24567158

  11. 3D joint dynamics analysis of healthy children's gait.

    PubMed

    Samson, William; Desroches, Guillaume; Cheze, Laurence; Dumas, Raphaël

    2009-11-13

    The 3D joint moments and 2D joint powers have been largely explored in the literature of healthy children's gait, in particular to compare them with pathologic subjects' gait. However, no study reported on 3D joint power in children which could be due to the difficulties in interpreting the results. Recently, the analysis of the 3D angle between the joint moment and the joint angular velocity vectors has been proposed in order to help 3D joint power interpretation. Our hypothesis is that this 3D angle may help in characterizing the level of gait maturation. The present study explores 3D joint moments, 3D joint power and the proposed 3D angle for both children's and adults' gaits to highlight differences in the strategies used. The results seem to confirm that children have an alternative strategy of mainly ankle stabilization and hip propulsion compared to the adults' strategy of mainly ankle resistance and propulsion and hip stabilization. In the future, the same 3D angle analysis should be applied to different age groups for better describing the evolution of the 3D joint dynamic strategies during the growth.

  12. Dynamic 3D Visualization of Vocal Tract Shaping During Speech

    PubMed Central

    Zhu, Yinghua; Kim, Yoon-Chul; Proctor, Michael I.; Narayanan, Shrikanth S.; Nayak, Krishna S.

    2014-01-01

    Noninvasive imaging is widely used in speech research as a means to investigate the shaping and dynamics of the vocal tract during speech production. 3D dynamic MRI would be a major advance, as it would provide 3D dynamic visualization of the entire vocal tract. We present a novel method for the creation of 3D dynamic movies of vocal tract shaping based on the acquisition of 2D dynamic data from parallel slices and temporal alignment of the image sequences using audio information. Multiple sagittal 2D real-time movies with synchronized audio recordings are acquired for English vowel-consonant-vowel stimuli /ala/, /aɹa/, /asa/ and /aʃa/. Audio data are aligned using mel-frequency cepstral coefficients (MFCC) extracted from windowed intervals of the speech signal. Sagittal image sequences acquired from all slices are then aligned using dynamic time warping (DTW). The aligned image sequences enable dynamic 3D visualization by creating synthesized movies of the moving airway in the coronal planes, visualizing desired tissue surfaces and tube-shaped vocal tract airway after manual segmentation of targeted articulators and smoothing. The resulting volumes allow for dynamic 3D visualization of salient aspects of lingual articulation, including the formation of tongue grooves and sublingual cavities, with a temporal resolution of 78 ms. PMID:23204279

  13. Dynamic contrast-enhanced 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wong, Philip; Kosik, Ivan; Carson, Jeffrey J. L.

    2013-03-01

    Photoacoustic imaging (PAI) is a hybrid imaging modality that integrates the strengths from both optical imaging and acoustic imaging while simultaneously overcoming many of their respective weaknesses. In previous work, we reported on a real-time 3D PAI system comprised of a 32-element hemispherical array of transducers. Using the system, we demonstrated the ability to capture photoacoustic data, reconstruct a 3D photoacoustic image, and display select slices of the 3D image every 1.4 s, where each 3D image resulted from a single laser pulse. The present study aimed to exploit the rapid imaging speed of an upgraded 3D PAI system by evaluating its ability to perform dynamic contrast-enhanced imaging. The contrast dynamics can provide rich datasets that contain insight into perfusion, pharmacokinetics and physiology. We captured a series of 3D PA images of a flow phantom before and during injection of piglet and rabbit blood. Principal component analysis was utilized to classify the data according to its spatiotemporal information. The results suggested that this technique can be used to separate a sequence of 3D PA images into a series of images representative of main features according to spatiotemporal flow dynamics.

  14. An Evaluative Review of Simulated Dynamic Smart 3d Objects

    NASA Astrophysics Data System (ADS)

    Romeijn, H.; Sheth, F.; Pettit, C. J.

    2012-07-01

    Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.

  15. Multitasking the code ARC3D. [for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  16. Metal artifacts from titanium and steel screws in CT, 1.5T and 3T MR images of the tibial Pilon: a quantitative assessment in 3D

    PubMed Central

    Radzi, Shairah; Cowin, Gary; Robinson, Mark; Pratap, Jit; Volp, Andrew; Schuetz, Michael A.

    2014-01-01

    Radiographs are commonly used to assess articular reduction of the distal tibia (pilon) fractures postoperatively, but may reveal malreductions inaccurately. While magnetic resonance imaging (MRI) and computed tomography (CT) are potential three-dimensional (3D) alternatives they generate metal-related artifacts. This study aims to quantify the artifact size from orthopaedic screws using CT, 1.5T and 3T MRI data. Three screws were inserted into one intact human cadaver ankle specimen proximal to and along the distal articular surface, then CT, 1.5T and 3T MRI scanned. Four types of screws were investigated: titanium alloy (TA), stainless steel (SS) (Ø =3.5 mm), cannulated TA (CTA) and cannulated SS (CSS) (Ø =4.0 mm, Ø empty core =2.6 mm). 3D artifact models were reconstructed using adaptive thresholding. The artifact size was measured by calculating the perpendicular distance from the central screw axis to the boundary of the artifact in four anatomical directions with respect to the distal tibia. The artifact sizes (in the order of TA, SS, CTA and CSS) from CT were 2.0, 2.6, 1.6 and 2.0 mm; from 1.5T MRI they were 3.7, 10.9, 2.9, and 9 mm; and 3T MRI they were 4.4, 15.3, 3.8, and 11.6 mm respectively. Therefore, CT can be used as long as the screws are at a safe distance of about 2 mm from the articular surface. MRI can be used if the screws are at least 3 mm away from the articular surface except for SS and CSS. Artifacts from steel screws were too large thus obstructed the pilon from being visualised in MRI. Significant differences (P<0.05) were found in the size of artifacts between all imaging modalities, screw types and material types, except 1.5T versus 3T MRI for the SS screws (P=0.063). CTA screws near the joint surface can improve postoperative assessment in CT and MRI. MRI presents a favourable non-ionising alternative when using titanium hardware. Since these factors may influence the quality of postoperative assessment, potential improvements in

  17. Metal artifacts from titanium and steel screws in CT, 1.5T and 3T MR images of the tibial Pilon: a quantitative assessment in 3D.

    PubMed

    Radzi, Shairah; Cowin, Gary; Robinson, Mark; Pratap, Jit; Volp, Andrew; Schuetz, Michael A; Schmutz, Beat

    2014-06-01

    Radiographs are commonly used to assess articular reduction of the distal tibia (pilon) fractures postoperatively, but may reveal malreductions inaccurately. While magnetic resonance imaging (MRI) and computed tomography (CT) are potential three-dimensional (3D) alternatives they generate metal-related artifacts. This study aims to quantify the artifact size from orthopaedic screws using CT, 1.5T and 3T MRI data. Three screws were inserted into one intact human cadaver ankle specimen proximal to and along the distal articular surface, then CT, 1.5T and 3T MRI scanned. Four types of screws were investigated: titanium alloy (TA), stainless steel (SS) (Ø =3.5 mm), cannulated TA (CTA) and cannulated SS (CSS) (Ø =4.0 mm, Ø empty core =2.6 mm). 3D artifact models were reconstructed using adaptive thresholding. The artifact size was measured by calculating the perpendicular distance from the central screw axis to the boundary of the artifact in four anatomical directions with respect to the distal tibia. The artifact sizes (in the order of TA, SS, CTA and CSS) from CT were 2.0, 2.6, 1.6 and 2.0 mm; from 1.5T MRI they were 3.7, 10.9, 2.9, and 9 mm; and 3T MRI they were 4.4, 15.3, 3.8, and 11.6 mm respectively. Therefore, CT can be used as long as the screws are at a safe distance of about 2 mm from the articular surface. MRI can be used if the screws are at least 3 mm away from the articular surface except for SS and CSS. Artifacts from steel screws were too large thus obstructed the pilon from being visualised in MRI. Significant differences (P<0.05) were found in the size of artifacts between all imaging modalities, screw types and material types, except 1.5T versus 3T MRI for the SS screws (P=0.063). CTA screws near the joint surface can improve postoperative assessment in CT and MRI. MRI presents a favourable non-ionising alternative when using titanium hardware. Since these factors may influence the quality of postoperative assessment, potential improvements in

  18. ToF-SIMS depth profiling of cells: z-correction, 3D imaging, and sputter rate of individual NIH/3T3 fibroblasts.

    PubMed

    Robinson, Michael A; Graham, Daniel J; Castner, David G

    2012-06-01

    Proper display of three-dimensional time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging data of complex, nonflat samples requires a correction of the data in the z-direction. Inaccuracies in displaying three-dimensional ToF-SIMS data arise from projecting data from a nonflat surface onto a 2D image plane, as well as possible variations in the sputter rate of the sample being probed. The current study builds on previous studies by creating software written in Matlab, the ZCorrectorGUI (available at http://mvsa.nb.uw.edu/), to apply the z-correction to entire 3D data sets. Three-dimensional image data sets were acquired from NIH/3T3 fibroblasts by collecting ToF-SIMS images, using a dual beam approach (25 keV Bi(3)(+) for analysis cycles and 20 keV C(60)(2+) for sputter cycles). The entire data cube was then corrected by using the new ZCorrectorGUI software, producing accurate chemical information from single cells in 3D. For the first time, a three-dimensional corrected view of a lipid-rich subcellular region, possibly the nuclear membrane, is presented. Additionally, the key assumption of a constant sputter rate throughout the data acquisition was tested by using ToF-SIMS and atomic force microscopy (AFM) analysis of the same cells. For the dried NIH/3T3 fibroblasts examined in this study, the sputter rate was found to not change appreciably in x, y, or z, and the cellular material was sputtered at a rate of approximately 10 nm per 1.25 × 10(13) ions C(60)(2+)/cm(2). PMID:22530745

  19. 3-D structure and dynamics of microtubule self-organization

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Ou-Yang, H. Daniel

    2008-03-01

    Laser scanning confocal microscopy was used to study the dynamics of 3D assemblies spontaneously formed in microtubule (MT) solutions. Microtubule solutions prepared by mixing and incubating tubulin in the presence of GTP and Oregon Green conjugated taxol in PM buffer were placed in long, sub-millimeter thin glass cells by the capillary action. Within 24 hours, starting with a uniform distribution, microtubules were found to be gradually separated into a few large ``buckled'' bundles along the long direction, and in the middle plane, of the sample cell. A well-defined wavelength of the buckling sinusoids was around 510 μm. The cross section of these round bundles was approximately 40 μm in diameter and the lengths were several centimeters. Detailed analysis of the 3-D image within the bundles revealed that each bundle seemed to consist of loosely packed MTs. It appeared that MTs were phase separated resulting from attractive interactions between charged MT fibers. The ``buckling'' behavior could be the result of geometrical constraints of the repulsive cell walls and the repulsive interaction between bundles. Detailed 3-D observations of the dynamic evolution of MT assembly could provide insight to the mechanisms of cellular MT organization and phase separation of charged colloidal rods.

  20. Complex flow dynamics around 3D microbot prototypes.

    PubMed

    Martínez-Aranda, Sergio; Galindo-Rosales, Francisco J; Campo-Deaño, Laura

    2016-02-28

    A new experimental setup for the study of the complex flow dynamics around 3D microbot prototypes in a straight microchannel has been developed and assessed. The ultimate aim of this work is focused on the analysis of the morphology of different microbot prototypes to get a better insight into their efficiency when they swim through the main conduits of the human circulatory system. The setup consists of a fused silica straight microchannel with a 3D microbot prototype fastened in the center of the channel cross-section by an extremely thin support. Four different prototypes were considered: a cube, a sphere and two ellipsoids with aspect ratios of 1 : 2 and 1 : 4, respectively. Flow visualization and micro-particle image velocimetry (μPIV) measurements were performed using Newtonian and viscoelastic blood analogue fluids. An efficiency parameter, ℑ, to discriminate the prototypes in terms of flow disturbance has been proposed.

  1. Dynamic 3D computed tomography scanner for vascular imaging

    NASA Astrophysics Data System (ADS)

    Lee, Mark K.; Holdsworth, David W.; Fenster, Aaron

    2000-04-01

    A 3D dynamic computed-tomography (CT) scanner was developed for imaging objects undergoing periodic motion. The scanner system has high spatial and sufficient temporal resolution to produce quantitative tomographic/volume images of objects such as excised arterial samples perfused under physiological pressure conditions and enables the measurements of the local dynamic elastic modulus (Edyn) of the arteries in the axial and longitudinal directions. The system was comprised of a high resolution modified x-ray image intensifier (XRII) based computed tomographic system and a computer-controlled cardiac flow simulator. A standard NTSC CCD camera with a macro lens was coupled to the electro-optically zoomed XRII to acquire dynamic volumetric images. Through prospective cardiac gating and computer synchronized control, a time-resolved sequence of 20 mm thick high resolution volume images of porcine aortic specimens during one simulated cardiac cycle were obtained. Performance evaluation of the scanners illustrated that tomographic images can be obtained with resolution as high as 3.2 mm-1 with only a 9% decrease in the resolution for objects moving at velocities of 1 cm/s in 2D mode and static spatial resolution of 3.55 mm-1 with only a 14% decrease in the resolution in 3D mode for objects moving at a velocity of 10 cm/s. Application of the system for imaging of intact excised arterial specimens under simulated physiological flow/pressure conditions enabled measurements of the Edyn of the arteries with a precision of +/- kPa for the 3D scanner. Evaluation of the Edyn in the axial and longitudinal direction produced values of 428 +/- 35 kPa and 728 +/- 71 kPa, demonstrating the isotropic and homogeneous viscoelastic nature of the vascular specimens. These values obtained from the Dynamic CT systems were not statistically different (p less than 0.05) from the values obtained by standard uniaxial tensile testing and volumetric measurements.

  2. Dynamical Systems Analysis of Fully 3D Ocean Features

    NASA Astrophysics Data System (ADS)

    Pratt, L. J.

    2011-12-01

    Dynamical systems analysis of transport and stirring processes has been developed most thoroughly for 2D flow fields. The calculation of manifolds, turnstile lobes, transport barriers, etc. based on observations of the ocean is most often conducted near the sea surface, whereas analyses at depth, usually carried out with model output, is normally confined to constant-z surfaces. At the meoscale and larger, ocean flows are quasi 2D, but smaller scale (submesoscale) motions, including mixed layer phenomena with significant vertical velocity, may be predominantly 3D. The zoology of hyperbolic trajectories becomes richer in such cases and their attendant manifolds are much more difficult to calculate. I will describe some of the basic geometrical features and corresponding Lagrangian Coherent Features expected to arise in upper ocean fronts, eddies, and Langmuir circulations. Traditional GFD models such as the rotating can flow may capture the important generic features. The dynamical systems approach is most helpful when these features are coherent and persistent and the implications and difficulties for this requirement in fully 3D flows will also be discussed.

  3. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  4. Distributed 3D Information Visualization - Towards Integration of the Dynamic 3D Graphics and Web Services

    NASA Astrophysics Data System (ADS)

    Vucinic, Dean; Deen, Danny; Oanta, Emil; Batarilo, Zvonimir; Lacor, Chris

    This paper focuses on visualization and manipulation of graphical content in distributed network environments. The developed graphical middleware and 3D desktop prototypes were specialized for situational awareness. This research was done in the LArge Scale COllaborative decision support Technology (LASCOT) project, which explored and combined software technologies to support human-centred decision support system for crisis management (earthquake, tsunami, flooding, airplane or oil-tanker incidents, chemical, radio-active or other pollutants spreading, etc.). The performed state-of-the-art review did not identify any publicly available large scale distributed application of this kind. Existing proprietary solutions rely on the conventional technologies and 2D representations. Our challenge was to apply the "latest" available technologies, such Java3D, X3D and SOAP, compatible with average computer graphics hardware. The selected technologies are integrated and we demonstrate: the flow of data, which originates from heterogeneous data sources; interoperability across different operating systems and 3D visual representations to enhance the end-users interactions.

  5. 3D Dynamic Earthquake Fracture Simulation (Test Case)

    NASA Astrophysics Data System (ADS)

    Korkusuz Öztürk, Yasemin; Meral Özel, Nurcan; Ando, Ryosuke

    2016-04-01

    A 3D dynamic earthquake fracture simulation is being developed for the fault structures which are non-planar to understand heterogeneous stress states in the Marmara Sea. Locating in a seismic gap, a large earthquake is expected in the center of the Sea of Marmara. Concerning the fact that more than 14 million inhabitants of İstanbul, located very closely to the Marmara Sea, the importance of the analysis of the Central Marmara Sea is extremely high. A few 3D dynamic earthquake fracture studies have been already done in the Sea of Marmara for pure right lateral strike-slip stress regimes (Oglesby and Mai, 2012; Aochi and Ulrich, 2015). In this study, a 3D dynamic earthquake fracture model with heterogeneous stress patches from the TPV5, a SCEC code validation case, is adapted. In this test model, the fault and the ground surfaces are gridded by a scalene triangulation technique using GMSH program. For a grid size changing between 0.616 km and 1.050 km the number of elements for the fault surface is 1984 and for the ground surface is 1216. When these results are compared with Kaneko's results for TPV5 from SPECFEM3D, reliable findings could be observed for the first 6.5 seconds (stations on the fault) although a stability problem is encountered after this time threshold. To solve this problem grid sizes are made smaller, so the number of elements increase 7986 for the fault surface and 4867 for the ground surface. On the other hand, computational problems arise in that case, since the computation time is directly proportional to the number of total elements and the required memory also increases with the square of that. Therefore, it is expected that this method can be adapted for less coarse grid cases, regarding the main difficulty coming from the necessity of an effective supercomputer and run time limitations. The main objective of this research is to obtain 3D dynamic earthquake rupture scenarios, concerning not only planar and non-planar faults but also

  6. Modeling tree crown dynamics with 3D partial differential equations.

    PubMed

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications. PMID:25101095

  7. Modeling tree crown dynamics with 3D partial differential equations.

    PubMed

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  8. Effects of in-pulse transverse relaxation in 3D ultrashort echo time sequences: Analytical derivation, comparison to numerical simulation and experimental application at 3 T

    NASA Astrophysics Data System (ADS)

    Springer, Fabian; Steidle, Günter; Martirosian, Petros; Claussen, Claus D.; Schick, Fritz

    2010-09-01

    The introduction of ultrashort-echo-time-(UTE)-sequences to clinical whole-body MR scanners has opened up the field of MR characterization of materials or tissues with extremely fast signal decay. If the transverse relaxation time is in the range of the RF-pulse duration, approximation of the RF-pulse by an instantaneous rotation applied at the middle of the RF-pulse and immediately followed by free relaxation will lead to a distinctly underestimated echo signal. Thus, the regular Ernst equation is not adequate to correctly describe steady state signal under those conditions. The paper presents an analytically derived modified Ernst equation, which correctly describes in-pulse relaxation of transverse magnetization under typical conditions: The equation is valid for rectangular excitation pulses, usually applied in 3D UTE sequences. Longitudinal relaxation time of the specimen must be clearly longer than RF-pulse duration, which is fulfilled for tendons and bony structures as well as many solid materials. Under these conditions, the proposed modified Ernst equation enables adequate and relatively simple calculation of the magnetization of materials or tissues. Analytically derived data are compared to numerical results obtained by using an established Runge-Kutta-algorithm based on the Bloch equations. Validity of the new approach was also tested by systematical measurements of a solid polymeric material on a 3 T whole-body MR scanner. Thus, the presented modified Ernst equation provides a suitable basis for T1 measurements, even in tissues with T2 values as short as the RF-pulse duration: independent of RF-pulse duration, the 'variable flip angle method' led to consistent results of longitudinal relaxation time T1, if the T2 relaxation time of the material of interest is known as well.

  9. Analysis and dynamic 3D visualization of cerebral blood flow combining 3D and 4D MR image sequences

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Säring, Dennis; Fiehler, Jens; Illies, Till; Möller, Dietmar; Handels, Heinz

    2009-02-01

    In this paper we present a method for the dynamic visualization of cerebral blood flow. Spatio-temporal 4D magnetic resonance angiography (MRA) image datasets and 3D MRA datasets with high spatial resolution were acquired for the analysis of arteriovenous malformations (AVMs). One of the main tasks is the combination of the information of the 3D and 4D MRA image sequences. Initially, in the 3D MRA dataset the vessel system is segmented and a 3D surface model is generated. Then, temporal intensity curves are analyzed voxelwise in the 4D MRA image sequences. A curve fitting of the temporal intensity curves to a patient individual reference curve is used to extract the bolus arrival times in the 4D MRA sequences. After non-linear registration of both MRA datasets the extracted hemodynamic information is transferred to the surface model where the time points of inflow can be visualized color coded dynamically over time. The dynamic visualizations computed using the curve fitting method for the estimation of the bolus arrival times were rated superior compared to those computed using conventional approaches for bolus arrival time estimation. In summary the procedure suggested allows a dynamic visualization of the individual hemodynamic situation and better understanding during the visual evaluation of cerebral vascular diseases.

  10. A parallel algorithm for 3D dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Ghoniem, Nasr; Swaminarayan, Sriram; LeSar, Richard

    2006-12-01

    Dislocation dynamics (DD), a discrete dynamic simulation method in which dislocations are the fundamental entities, is a powerful tool for investigation of plasticity, deformation and fracture of materials at the micron length scale. However, severe computational difficulties arising from complex, long-range interactions between these curvilinear line defects limit the application of DD in the study of large-scale plastic deformation. We present here the development of a parallel algorithm for accelerated computer simulations of DD. By representing dislocations as a 3D set of dislocation particles, we show here that the problem of an interacting ensemble of dislocations can be converted to a problem of a particle ensemble, interacting with a long-range force field. A grid using binary space partitioning is constructed to keep track of node connectivity across domains. We demonstrate the computational efficiency of the parallel micro-plasticity code and discuss how O(N) methods map naturally onto the parallel data structure. Finally, we present results from applications of the parallel code to deformation in single crystal fcc metals.

  11. A new 3D dynamical biomechanical tongue model

    NASA Astrophysics Data System (ADS)

    Gerard, Jean-Michel; Perrier, Pascal; Payan, Yohan; Wilhelms-Tricarico, Reiner

    2001-05-01

    A new dynamical biomechanical tongue model is being developed to study speech motor control. In spite of its computational complexity, a 3D representation was chosen in order to account for various contacts between tongue and external structures such as teeth, palate, and vocal tract walls. A fair representation of tongue muscle anatomy is provided, by designing the finite element mesh from the visible human data set (female subject). Model geometry was then matched to a human speaker, so that simulations can be quantitatively compared to experimental MRI data. A set of 11 muscles is modeled, whose role in speech gestures is well established. Each muscle is defined by a set of elements whose elastic properties change with muscle activation. Muscles forces are applied to the tongue model via macrofibers defined within the mesh by muscle specific sets of nodes. These forces are currently specified as step functions. Boundary conditions are set using zero-displacement nodes simulating attachments of tongue on bony structures. The nonlinear mechanical properties of tongue soft tissues are modeled using a hyperelastic material. Three-dimensional tongue deformations generated by each muscle, using FEM software ANSYS for computation, will be presented. Implications for speech motor control will be proposed.

  12. DREAM3D simulations of inner-belt dynamics

    SciTech Connect

    Cunningham, Gregory Scott

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of the problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.

  13. TRACE3D. Interactive Beam-Dynamics Program

    SciTech Connect

    Singleton, L.; Yao, C.Y.

    1993-12-01

    TRACE3D is an interactive program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined system. The transport system may consist of the following elements: drift, thin lens, quadrupole, permanent magnet quadrupole, solenoid, doublet, triplet, bending magnet, edge angle (for bend), RF gap, radio-frequency-quadrupole cell, RF cavity, coupled-cavity tank, user-desired element, coordinate rotation, and identical element. The beam is represented by a 6X6 matrix defining a hyper-ellipsoid in six-dimensional phase space. The projection of this hyperellipsoid on any two-dimensional plane is an ellipse that defines the boundary of the beam in that plane.

  14. TRACE3D. Interactive Beam-Dynamics Program

    SciTech Connect

    Crandall, K.R.; Rusthoi, D.P.

    1991-06-01

    TRACE3D is an interactive program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined system. The transport system may consist of the following elements: drift, thin lens, quadrupole, permanent magnet quadrupole, solenoid, doublet, triplet, bending magnet, edge angle (for bend), RF gap, radio-frequency-quadrupole cell, RF cavity, coupled-cavity tank, user-desired element, coordinate rotation, and identical element. The beam is represented by a 6X6 matrix defining a hyper-ellipsoid in six-dimensional phase space. The projection of this hyperellipsoid on any two-dimensional plane is an ellipse that defines the boundary of the beam in that plane.

  15. The vibrational dynamics of 3D HOCl above dissociation

    SciTech Connect

    Lin, Yi-Der; Reichl, L. E.; Jung, Christof

    2015-03-28

    We explore the classical vibrational dynamics of the HOCl molecule for energies above the dissociation energy of the molecule. Above dissociation, we find that the classical dynamics is dominated by an invariant manifold which appears to stabilize two periodic orbits at energies significantly above the dissociation energy. These stable periodic orbits can hold a large number of quantum states and likely can support a significant quasibound state of the molecule, well above the dissociation energy. The classical dynamics and the lifetime of quantum states on the invariant manifold are determined.

  16. 3D RECONNECTION AND FLOW DYNAMICS IN THE SSX EXPERIMENT

    SciTech Connect

    Brown, M. R.; Cothran, C. D.; Cohen, D. H.; Horwitz, J.; Chaplin, V.

    2009-07-26

    Several new experimental results are reported from plasma merging studies at the Swarthmore Spheromak Experiment (SSX) with relevance to collisionless three-dimensional magnetic reconnection in laboratory and space plasmas. First, recent high-resolution velocity measurements of impurity ions using ion Doppler spectroscopy (IDS) show bi-directional outflow jets at 40 km/s (nearly the Alfven speed). The SSX IDS instrument measures with 1 mus or better time resolution the width and Doppler shift of the C{sub III} impurity (H plasma) 229.7 nm line to determine the temperature and line-averaged flow velocity during spheromak merging events. High flow speeds are corroborated using an in situ Mach probe. Second, ion heating to nearly 10{sup 6} K is observed after reconnection events in a low-density kinetic regime. Transient electron heating is inferred from bursts on a 4-channel soft x-ray array as well as vacuum ultraviolet spectroscopy. Third, the out-of-plane magnetic field and the in-plane Lorentz force in a reconnection volume both show a quadrupolar structure at the ion inertial scale (c/omega{sub pi}). Time resolved vector magnetic field measurements on a 3D lattice B(r, t)) enables this measurement. Earlier work at SSX has shown that formation of three-dimensional structure at the ion inertial scale is temporally and spatially correlated with the observation of superthermal, super-Alfvenic ions accelerated along the X-line normal to the local 2D plane of reconnection. Each of these measurements will be related to and compared with similar observations in a solar or space context. Keywords: spheromak, flow, heating.

  17. ORPHEE 3D: Static and dynamic tridimensional BHA computer models

    SciTech Connect

    Birades, M.

    1986-01-01

    Elf Aquitaine, within an ARTEP research project granted by EEC, has developed two three-dimensional mathematical models to predict the directional behavior of bottom hole assemblies (BHAs). Both models simulate BHAs by finite element methods. The first model describes dynamically their transient behavior step by step during short time intervals which are continuously adjusted to attain the required precision. Displacements and lateral forces, computed for each step, integrate friction against the borehole wall through a sophisticated shock algorithm. The second model computes a static equilibrium of the BHA while assuming simplified friction forces at the contact points between the wellbore and the BHA. The lateral forces and displacements are found to be an average of the highly varying ones computed by the dynamic model and the static computer run is much faster.

  18. Dynamics of 3D view invariance in monkey inferotemporal cortex.

    PubMed

    Ratan Murty, N Apurva; Arun, Sripati P

    2015-04-01

    Rotations in depth are challenging for object vision because features can appear, disappear, be stretched or compressed. Yet we easily recognize objects across views. Are the underlying representations view invariant or dependent? This question has been intensely debated in human vision, but the neuronal representations remain poorly understood. Here, we show that for naturalistic objects, neurons in the monkey inferotemporal (IT) cortex undergo a dynamic transition in time, whereby they are initially sensitive to viewpoint and later encode view-invariant object identity. This transition depended on two aspects of object structure: it was strongest when objects foreshortened strongly across views and were similar to each other. View invariance in IT neurons was present even when objects were reduced to silhouettes, suggesting that it can arise through similarity between external contours of objects across views. Our results elucidate the viewpoint debate by showing that view invariance arises dynamically in IT neurons out of a representation that is initially view dependent.

  19. Introducing a New 3D Dynamical Model for Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Jung, Christof; Zotos, Euaggelos E.

    2015-11-01

    The regular or chaotic dynamics of an analytical realistic three dimensional model composed of a spherically symmetric central nucleus, a bar and a flat disk is investigated. For describing the properties of the bar, we introduce a new simple dynamical model and we explore the influence on the character of orbits of all the involved parameters of it, such as the mass and the scale length of the bar, the major semi-axis and the angular velocity of the bar, as well as the energy. Regions of phase space with ordered and chaotic motion are identified in dependence on these parameters and for breaking the rotational symmetry. First, we study in detail the dynamics in the invariant plane z = pz = 0 using the Poincaré map as a basic tool and then study the full three-dimensional case using the Smaller Alignment index method as principal tool for distinguishing between order and chaos. We also present strong evidence obtained through the numerical simulations that our new bar model can realistically describe the formation and the evolution of the observed twin spiral structure in barred galaxies.

  20. 3-D consistency dynamic constitutive model of concrete

    NASA Astrophysics Data System (ADS)

    Xiao, Shiyun; Li, Hongnan; Lin, Gao

    2010-06-01

    Based on the consistency-viscoplastic constitutive model, the static William-Warnke model with threeparameters is modified and a consistency-viscoplastic William-Warnke model with three-parameters is developed that considers the effect of strain rates. Then, the tangent modulus of the consistency viscoplastic model is introduced and an implicit backward Elure iterative algorithm is developed. Comparisons between the numerical simulations and experimental data show that the consistency model properly provides the uniaxial and biaxial dynamic behaviors of concrete. To study the effect of strain rates on the dynamic response of concrete structures, the proposed model is used in the analysis of the dynamic response of a simply-supported beam and the results show that the strain rate has a significant effect on the displacement and stress magnitudes and distributions. Finally, the seismic responses of a 278 m high arch dam are obtained and compared by using the linear elastic model, as well as rate-independent and rate-dependent William-Warnke three-parameter models. The results indicate that the strain rate affects the first principal stresses, and the maximal equivalent viscoplastic strain rate of the arch dam. Numerical calculations and analyses reveal that considering the strain rate is important in the safety assessments of arch dams located in seismically active areas.

  1. Dynamic Concrete Beam Deformation Measuremnet with 3d Range Cameras

    NASA Astrophysics Data System (ADS)

    Qi, X.; Lichti, D.

    2012-07-01

    Concrete beams are used to construct bridges and other structures. Due to the traffic overloading or the decaying state of structures, deformation of bridges or other structures occurs frequently. Therefore, the requirement to measure concrete beam deformation, as integral components of structures, is well recognized. Many imaging techniques such as digital cameras, laser scanners and range cameras have been proven to be accurate and cost-effective methods for large-area measurement of deformation under static loading conditions. However, for obtaining useful information about the behaviour of the beams or monitoring real-time bridge deformation, the ability to measurement deformation under dynamic loading conditions is also necessary. This paper presents a relatively low-cost and high accuracy imaging technique to measure the deformation of concrete beams in response to dynamic loading with range cameras. However, due to the range camera measurement principle, target movement could lead to motion artefacts that degrade range measurement accuracy. The results of simulated and real-data investigation into the motion artefacts show that the lower sampling frequency leads to the more significant motion artefact. The results from real data experiments have indicated that periodic deformation can be recovered with sub-millimetre accuracy when the 3 Hz and 4 mm amplitude target motion is sampled at a rate of least 20 Hz and with 31 MHz range camera modulation frequency. When the modulation frequency is 29 MHz, the best sampling frequency is 20 Hz to keep the error under sub-millimetre.

  2. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  3. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.

    PubMed

    Doyle, Andrew D; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  4. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    PubMed Central

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  5. Dynamic Mitochondrial Localisation of STAT3 in the Cellular Adipogenesis Model 3T3-L1.

    PubMed

    Kramer, Adam H; Edkins, Adrienne L; Hoppe, Heinrich C; Prinsloo, Earl

    2015-07-01

    A mechanistic relationship exists between protein localisation, activity and cellular differentiation. Understanding the contribution of these molecular mechanisms is required for elucidation of conditions that drive development. Literature suggests non-canonical translocation of the Signal Transducer and Activator of Transcription 3 (STAT3) to the mitochondria contributes to the regulation of the electron transport chain, cellular respiration and reactive oxygen species production. Based on this we investigated the role of mitochondrial STAT3, specifically the serine 727 phosphorylated form, in cellular differentiation using the well-defined mouse adipogenic model 3T3-L1. Relative levels of reactive oxygen species (ROS) and the levels and dynamic localization of pSTAT3S727 were investigated during the initiation of adipogenesis. As a signalling entity, ROS is known to regulate the activation of C/EBPβ to stimulate a critical cascade of events prior to differentiation of 3T3-L1. Results indicate that upon induction of the differentiation programme, relative levels of mitochondrial pSTAT3S727 dramatically decrease in the mitochondria; in contrast the total cellular pSTAT3S727 levels increase. A positive correlation between increasing levels of ROS and dynamic changes in C/EBPβ indicate that mitochondrial STAT3 plays a potential critical role as an initiator of the process. Based on these findings we propose a model for mitochondrial STAT3 as a regulator of ROS in adipogenesis.

  6. Investigation of Dynamic Crack Coalescence Using a Gypsum-Like 3D Printing Material

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Zhao, Gao-Feng; Zhu, Jianbo; Zhao, Yi-Xin; Shen, Luming

    2016-10-01

    Dynamic crack coalescence attracts great attention in rock mechanics. However, specimen preparation in experimental study is a time-consuming and difficult procedure. In this work, a gypsum-like material by powder bed and inkjet 3D printing technique was applied to produce specimens with preset cracks for split Hopkinson pressure bar (SHPB) test. From micro X-ray CT test, it was found that the 3D printing technique could successfully prepare specimens that contain preset cracks with width of 0.2 mm. Basic mechanical properties of the 3D printing material, i.e., the elastic modulus, the Poisson's ratio, the density, the compressive strength, the indirect tensile strength, and the fracture toughness, were obtained and reported. Unlike 3D printed specimens using polylactic acid, these gypsum-like specimens can produce failure patterns much closer to those observed in classical rock mechanical tests. Finally, the dynamic crack coalescence of the 3D printed specimens with preset cracks were captured using a high-speed camera during SHPB tests. Failure patterns of these 3D printed specimens are similar to the specimens made by Portland cement concrete. Our results indicate that sample preparation by 3D printing is highly competitive due to its quickness in prototyping, precision and flexibility on the geometry, and high material homogeneity.

  7. Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Ghafourian, Pegah; Sharma, Puneet; Salman, Khalil; Martin, Diego; Fei, Baowei

    2012-02-01

    We have applied image analysis methods in the assessment of human kidney perfusion based on 3D dynamic contrast-enhanced (DCE) MRI data. This approach consists of 3D non-rigid image registration of the kidneys and fuzzy C-mean classification of kidney tissues. The proposed registration method reduced motion artifacts in the dynamic images and improved the analysis of kidney compartments (cortex, medulla, and cavities). The dynamic intensity curves show the successive transition of the contrast agent through kidney compartments. The proposed method for motion correction and kidney compartment classification may be used to improve the validity and usefulness of further model-based pharmacokinetic analysis of kidney function.

  8. Parallel contact detection algorithm for transient solid dynamics simulations using PRONTO3D

    SciTech Connect

    Attaway, S.W.; Hendrickson, B.A.; Plimpton, S.J.

    1996-09-01

    An efficient, scalable, parallel algorithm for treating material surface contacts in solid mechanics finite element programs has been implemented in a modular way for MIMD parallel computers. The serial contact detection algorithm that was developed previously for the transient dynamics finite element code PRONTO3D has been extended for use in parallel computation by devising a dynamic (adaptive) processor load balancing scheme.

  9. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect

    Chen, Qian

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  10. Numerical simulations and vorticity dynamics of self-propelled swimming of 3D bionic fish

    NASA Astrophysics Data System (ADS)

    Xin, ZhiQiang; Wu, ChuiJie

    2012-02-01

    Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study, with a 3D computational fluid dynamics package, which includes the immersed boundary method and the volume of fluid method, the adaptive multi-grid finite volume method, and the control strategy of fish swimming. Firstly, the mechanism of 3D fish swimming was studied and the vorticity dynamics root was traced to the moving body surface by using the boundary vorticity-flux theory. With the change of swimming speed, the contributions of the fish body and caudal fin to thrust are analyzed quantitatively. The relationship between vortex structures of fish swimming and the forces exerted on the fish body are also given in this paper. Finally, the 3D wake structure of self-propelled swimming of 3D bionic fish is presented. The in-depth analysis of the 3D vortex structure in the role of 3D biomimetic fish swimming is also performed.

  11. Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography.

    PubMed

    Kim, Kyoohyun; Kim, Kyung Sang; Park, Hyunjoo; Ye, Jong Chul; Park, Yongkeun

    2013-12-30

    3-D refractive index (RI) distribution is an intrinsic bio-marker for the chemical and structural information about biological cells. Here we develop an optical diffraction tomography technique for the real-time reconstruction of 3-D RI distribution, employing sparse angle illumination and a graphic processing unit (GPU) implementation. The execution time for the tomographic reconstruction is 0.21 s for 96(3) voxels, which is 17 times faster than that of a conventional approach. We demonstrated the real-time visualization capability with imaging the dynamics of Brownian motion of an anisotropic colloidal dimer and the dynamic shape change in a red blood cell upon shear flow.

  12. XML-based 3D model visualization and simulation framework for dynamic models

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Fishwick, Paul A.

    2002-07-01

    Relatively recent advances in computer technology enable us to create three-dimensional (3D) dynamic models and simulate them within a 3D web environment. The use of such models is especially valuable when teaching simulation, and the concepts behind dynamic models, since the models are made more accessible to the students. Students tend to enjoy a construction process in which they are able to employ their own cultural and aesthetic forms. The challenge is to create a language that allows for a grammar for modeling, while simultaneously permitting arbitrary presentation styles. For further flexibility, we need an effective way to represent and simulate dynamic models that can be shared by modelers over the Internet. We present an Extensible Markup Language (XML)-based framework that will guide a modeler in creating personalized 3D models, visualizing its dynamic behaviors, and simulating the created models. A model author will use XML files to represent geometries and topology of a dynamic model. Model Fusion Engine, written in Extensible Stylesheet Language Transformation (XSLT), expedites the modeling process by automating the creation of dynamic models with the user-defined XML files. Modelers can also link simulation programs with a created model to analyze the characteristics of the model. The advantages of this system lie in the education of modeling and simulating dynamic models, and in the exploitation of visualizing the dynamic model behaviors.

  13. 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji

    2010-06-01

    Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.

  14. Trans3D: a free tool for dynamical visualization of EEG activity transmission in the brain.

    PubMed

    Blinowski, Grzegorz; Kamiński, Maciej; Wawer, Dariusz

    2014-08-01

    The problem of functional connectivity in the brain is in the focus of attention nowadays, since it is crucial for understanding information processing in the brain. A large repertoire of measures of connectivity have been devised, some of them being capable of estimating time-varying directed connectivity. Hence, there is a need for a dedicated software tool for visualizing the propagation of electrical activity in the brain. To this aim, the Trans3D application was developed. It is an open access tool based on widely available libraries and supporting both Windows XP/Vista/7(™), Linux and Mac environments. Trans3D can create animations of activity propagation between electrodes/sensors, which can be placed by the user on the scalp/cortex of a 3D model of the head. Various interactive graphic functions for manipulating and visualizing components of the 3D model and input data are available. An application of the Trans3D tool has helped to elucidate the dynamics of the phenomena of information processing in motor and cognitive tasks, which otherwise would have been very difficult to observe. Trans3D is available at: http://www.eeg.pl/.

  15. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-07-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  16. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  17. 3D-dynamic graphs as a classification tool of DNA sequences

    NASA Astrophysics Data System (ADS)

    Wa̧Ż, P.; Bielińska-Wa̧Ż, D.

    2016-10-01

    A method, called 3D-dynamic representation of DNA sequences, and its application to the classification of the DNA sequences is briefly reviewed. Some new classification diagrams obtained using this method are also shown. The method constitutes an alignment free tool of the comparison of the DNA sequences. It allows for both graphical and numerical similarity/dissimilarity analysis of the sequences.

  18. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-10-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  19. Sketch on dynamic gesture tracking and analysis exploiting vision-based 3D interface

    NASA Astrophysics Data System (ADS)

    Woo, Woontack; Kim, Namgyu; Wong, Karen; Tadenuma, Makoto

    2000-12-01

    In this paper, we propose a vision-based 3D interface exploiting invisible 3D boxes, arranged in the personal space (i.e. reachable space by the body without traveling), which allows robust yet simple dynamic gesture tracking and analysis, without exploiting complicated sensor-based motion tracking systems. Vision-based gesture tracking and analysis is still a challenging problem, even though we have witnessed rapid advances in computer vision over the last few decades. The proposed framework consists of three main parts, i.e. (1) object segmentation without bluescreen and 3D box initialization with depth information, (2) movement tracking by observing how the body passes through the 3D boxes in the personal space and (3) movement feature extraction based on Laban's Effort theory and movement analysis by mapping features to meaningful symbols using time-delay neural networks. Obviously, exploiting depth information using multiview images improves the performance of gesture analysis by reducing the errors introduced by simple 2D interfaces In addition, the proposed box-based 3D interface lessens the difficulties in both tracking movement in 3D space and in extracting low-level features of the movement. Furthermore, the time-delay neural networks lessens the difficulties in movement analysis by training. Due to its simplicity and robustness, the framework will provide interactive systems, such as ATR I-cubed Tangible Music System or ATR Interactive Dance system, with improved quality of the 3D interface. The proposed simple framework also can be extended to other applications requiring dynamic gesture tracking and analysis on the fly.

  20. Improving Bladder Cancer Imaging Using 3T Functional Dynamic Contrast-Enhanced MRI

    PubMed Central

    Nguyen, Huyen T.; Pohar, Kamal S.; Jia, Guang; Shah, Zarine K.; Mortazavi, Amir; Zynger, Debra L.; Wei, Lai; Clark, Daniel; Yang, Xiangyu; Knopp, Michael V.

    2015-01-01

    Objectives To assess the capability of T2-weighted MRI (T2W-MRI) and the additional diagnostic value of Dynamic Contrast-Enhanced MRI (DCE-MRI) using multi-transmit 3T in the localization of bladder cancer. Materials and Methods This prospective study was approved by the local Institutional Review Board. Thirty–six patients were included in the study and provided informed consent. MRI scans were performed with T2W-MRI and DCE-MRI on a 3T multi-transmit system. Two observers (with 12 and 25 years of experience) independently interpreted T2W-MRI prior to DCE-MRI data (maps of pharmacokinetic parameters) to localize bladder tumors. The pathological examination of cystectomy bladder specimens was used as a reference gold standard. The McNemar test was performed to evaluate the differences in sensitivity, specificity, and accuracy. Kappa scores were calculated to assess interobserver agreement. Results The sensitivity, specificity, and accuracy of the localization with T2W-MRI alone were 81% (29/36), 63% (5/8) and 77% (34/44) for observer 1, and 72% (26/36), 63% (5/8), and 70% (31/44) for observer 2. With additional DCE-MRI available, these values were 92% (33/36), 75% (6/8), and 89% (39/44) for observer 1, and 92% (33/36), 63% (5/8), and 86% (38/44) for observer 2. DCE-MRI significantly (P < 0.01) improved the sensitivity and accuracy for observer 2. For the twenty-three patients treated with chemotherapy, DCE-MRI also significantly (P < 0.02) improved the sensitivity and accuracy of bladder cancer localization with T2W-MRI alone for observer 2. Kappa scores were 0.63 for T2W-MRI alone, and 0.78 for additional DCE-MRI. Out of seven sub-centimeter malignant tumors, four (57%) were identified on T2W images and six (86%) on DCE maps. Out of eleven malignant tumors within the bladder wall thickening, six (55%) were found on T2W images and ten (91%) on DCE maps. Conclusions Compared to conventional T2W-MRI alone, the addition of DCE-MRI improved interobserver agreement as

  1. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography.

    PubMed

    Zhang, A Ping; Qu, Xin; Soman, Pranav; Hribar, Kolin C; Lee, Jin W; Chen, Shaochen; He, Sailing

    2012-08-16

    The topographic features of the extracelluar matrix (ECM) lay the foundation for cellular behavior. A novel biofabrication method using a digital-mirror device (DMD), called dynamic optical projection stereolithography (DOPsL) is demonstrated. This robust and versatile platform can generate complex biomimetic scaffolds within seconds. Such 3D scaffolds have promising potentials for studying cell interactions with microenvironments in vitro and in vivo.

  2. From 2D Mesoscale Surface Expressions to 3D Upper Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.; Chapron, B.; Kudryavtsev, V.; Collard, F.

    2013-03-01

    This paper discusses the establishment of a new framework for synergetic use of satellite data. The motivation is to advance the understanding and ability to more consistently transfer the 2-dimensional (2D) satellite observations of the surface expressions of mesoscale to submesoscale features in the upper ocean to 3D upper ocean dynamics. This will strongly capitalize on both existing and approved high resolution and coarser resolution satellite data in synergy with high quality in-situ data and reliable ocean models.

  3. Real-Time Modeling and 3D Visualization of Source Dynamics and Connectivity Using Wearable EEG

    PubMed Central

    Mullen, Tim; Kothe, Christian; Chi, Yu Mike; Ojeda, Alejandro; Kerth, Trevor; Makeig, Scott; Cauwenberghs, Gert; Jung, Tzyy-Ping

    2014-01-01

    This report summarizes our recent efforts to deliver real-time data extraction, preprocessing, artifact rejection, source reconstruction, multivariate dynamical system analysis (including spectral Granger causality) and 3D visualization as well as classification within the open-source SIFT and BCILAB toolboxes. We report the application of such a pipeline to simulated data and real EEG data obtained from a novel wearable high-density (64-channel) dry EEG system. PMID:24110155

  4. RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations.

    PubMed

    Pasipoularides, Ares D; Shu, Ming; Womack, Michael S; Shah, Ashish; Von Ramm, Olaf; Glower, Donald D

    2003-01-01

    We describe a novel functional imaging approach for quantitative analysis of right ventricular (RV) blood flow patterns in specific experimental animals (or humans) using real-time, three-dimensional (3-D) echocardiography (RT3D). The method is independent of the digital imaging modality used. It comprises three parts. First, a semiautomated segmentation aided by intraluminal contrast medium locates the RV endocardial surface. Second, a geometric scheme for dynamic RV chamber reconstruction applies a time interpolation procedure to the RT3D data to quantify wall geometry and motion at 400 Hz. A volumetric prism method validated the dynamic geometric reconstruction against simultaneous sonomicrometric canine measurements. Finally, the RV endocardial border motion information is used for mesh generation on a computational fluid dynamics solver to simulate development of the early RV diastolic inflow field. Boundary conditions (tessellated endocardial surface nodal velocities) for the solver are directly derived from the endocardial geometry and motion information. The new functional imaging approach may yield important kinematic information on the distribution of instantaneous velocities in the RV diastolic flow field of specific normal or diseased hearts. PMID:12388220

  5. A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations

    NASA Astrophysics Data System (ADS)

    Georges, Gabriel; Breil, Jérôme; Maire, Pierre-Henri

    2016-01-01

    Solving the gas dynamics equations under the Lagrangian formalism enables to simulate complex flows with strong shock waves. This formulation is well suited to the simulation of multi-material compressible fluid flows such as those encountered in the domain of High Energy Density Physics (HEDP). These types of flows are characterized by complex 3D structures such as hydrodynamic instabilities (Richtmyer-Meshkov, Rayleigh-Taylor, etc.). Recently, the 3D extension of different Lagrangian schemes has been proposed and appears to be challenging. More precisely, the definition of the cell geometry in the 3D space through the treatment of its non-planar faces and the limiting of a reconstructed field in 3D in the case of a second-order extension are of great interest. This paper proposes two new methods to solve these problems. A systematic and symmetric geometrical decomposition of polyhedral cells is presented. This method enables to define a discrete divergence operator leading to the respect of the Geometric Conservation Law (GCL). Moreover, a multi-dimensional minmod limiter is proposed. This new limiter constructs, from nodal gradients, a cell gradient which enables to ensure the monotonicity of the numerical solution even in presence of strong discontinuity. These new ingredients are employed into a cell-centered Lagrangian scheme. Robustness and accuracy are assessed against various representative test cases.

  6. PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis

    SciTech Connect

    Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A.; Zadoks, R.I.

    1998-06-01

    This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.

  7. Stereoscopic 3D display with dynamic optical correction for recovering from asthenopia

    NASA Astrophysics Data System (ADS)

    Shibata, Takashi; Kawai, Takashi; Otsuki, Masaki; Miyake, Nobuyuki; Yoshihara, Yoshihiro; Iwasaki, Tsuneto

    2005-03-01

    The purpose of this study was to consider a practical application of a newly developed stereoscopic 3-D display that solves the problem of discrepancy between accommodation and convergence. The display uses dynamic optical correction to reduce the discrepancy, and can present images as if they are actually remote objects. The authors thought the display may assist in recovery from asthenopia, which is often caused when the eyes focus on a nearby object for a long time, such as in VDT (Visual Display Terminal) work. In general, recovery from asthenopia, and especially accommodative asthenopia, is achieved by focusing on distant objects. In order to verify this hypothesis, the authors performed visual acuity tests using Landolt rings before and after presenting stereoscopic 3-D images, and evaluated the degree of recovery from asthenopia. The experiment led to three main conclusions: (1) Visual acuity rose after viewing stereoscopic 3-D images on the developed display. (2) Recovery from asthenopia was particularly effective for the dominant eye in comparison with the other eye. (3) Interviews with the subjects indicated that the Landolt rings were particularly clear after viewing the stereoscopic 3-D images.

  8. Examination of asthenopia recovery using stereoscopic 3D display with dynamic optical correction

    NASA Astrophysics Data System (ADS)

    Shibata, Takashi; Kawai, Takashi; Ohta, Keiji; Lee, JaeLin; Otsuki, Masaki; Miyake, Nobuyuki; Yoshihara, Yoshihiro; Iwasaki, Tsuneto

    2006-02-01

    A common cause of asthenopia is viewing objects from a short distance, as is the case when working at a VDT (Visual Display Terminal). In general, recovery from asthenopia, especially accommodative asthenopia, is aided by looking into the distance. The authors have developed a stereoscopic 3-D display with dynamic optical correction that may reduce asthenopia. The display does this by reducing the discrepancy between accommodation and convergence, thereby presenting images as if they were actually in the distance. The results of visual acuity tests given before and after presenting stereoscopic 3-D images with this display show a tendency towards less asthenopia. In this study, the authors developed a refraction feedback function that makes the viewer's distance vision more effective when viewing stereoscopic 3-D images on the this display. Using this function, refraction is fed back during viewing and the viewer gradually acquires distance vision. The results of the study suggest that stereoscopic 3-D images are more effective than 2-D images for recovery from asthenopia.

  9. Dynamic WIFI-Based Indoor Positioning in 3D Virtual World

    NASA Astrophysics Data System (ADS)

    Chan, S.; Sohn, G.; Wang, L.; Lee, W.

    2013-11-01

    A web-based system based on the 3DTown project was proposed using Google Earth plug-in that brings information from indoor positioning devices and real-time sensors into an integrated 3D indoor and outdoor virtual world to visualize the dynamics of urban life within the 3D context of a city. We addressed limitation of the 3DTown project with particular emphasis on video surveillance camera used for indoor tracking purposes. The proposed solution was to utilize wireless local area network (WLAN) WiFi as a replacement technology for localizing objects of interest due to the wide spread availability and large coverage area of WiFi in indoor building spaces. Indoor positioning was performed using WiFi without modifying existing building infrastructure or introducing additional access points (AP)s. A hybrid probabilistic approach was used for indoor positioning based on previously recorded WiFi fingerprint database in the Petrie Science and Engineering building at York University. In addition, we have developed a 3D building modeling module that allows for efficient reconstruction of outdoor building models to be integrated with indoor building models; a sensor module for receiving, distributing, and visualizing real-time sensor data; and a web-based visualization module for users to explore the dynamic urban life in a virtual world. In order to solve the problems in the implementation of the proposed system, we introduce approaches for integration of indoor building models with indoor positioning data, as well as real-time sensor information and visualization on the web-based system. In this paper we report the preliminary results of our prototype system, demonstrating the system's capability for implementing a dynamic 3D indoor and outdoor virtual world that is composed of discrete modules connected through pre-determined communication protocols.

  10. How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models.

    PubMed

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material presentation formats, spatial abilities, and anatomical tasks. First, to understand the cognitive challenges a novice learner would be faced with when first exposed to 3D anatomical content, a six-step cognitive task analysis was developed. Following this, an experimental study was conducted to explore how presentation formats (dynamic vs. static visualizations) support learning of functional anatomy, and affect subsequent anatomical tasks derived from the cognitive task analysis. A second aim was to investigate the interplay between spatial abilities (spatial visualization and spatial relation) and presentation formats when the functional anatomy of a 3D scapula and the associated shoulder flexion movement are learned. Findings showed no main effect of the presentation formats on performances, but revealed the predictive influence of spatial visualization and spatial relation abilities on performance. However, an interesting interaction between presentation formats and spatial relation ability for a specific anatomical task was found. This result highlighted the influence of presentation formats when spatial abilities are involved as well as the differentiated influence of spatial abilities on anatomical tasks.

  11. Dynamics of tokamak plasma surface current in 3D ideal MHD model

    NASA Astrophysics Data System (ADS)

    Galkin, Sergei A.; Svidzinski, V. A.; Zakharov, L. E.

    2013-10-01

    Interest in the surface current which can arise on perturbed sharp plasma vacuum interface in tokamaks was recently generated by a few papers (see and references therein). In dangerous disruption events with plasma-touching-wall scenarios, the surface current can be shared with the wall leading to the strong, damaging forces acting on the wall A relatively simple analytic definition of δ-function surface current proportional to a jump of tangential component of magnetic field nevertheless leads to a complex computational problem on the moving plasma-vacuum interface, requiring the incorporation of non-linear 3D plasma dynamics even in one-fluid ideal MHD. The Disruption Simulation Code (DSC), which had recently been developed in a fully 3D toroidal geometry with adaptation to the moving plasma boundary, is an appropriate tool for accurate self-consistent δfunction surface current calculation. Progress on the DSC-3D development will be presented. Self-consistent surface current calculation under non-linear dynamics of low m kink mode and VDE will be discussed. Work is supported by the US DOE SBIR grant #DE-SC0004487.

  12. Using articulated scene models for dynamic 3d scene analysis in vista spaces

    NASA Astrophysics Data System (ADS)

    Beuter, Niklas; Swadzba, Agnes; Kummert, Franz; Wachsmuth, Sven

    2010-09-01

    In this paper we describe an efficient but detailed new approach to analyze complex dynamic scenes directly in 3D. The arising information is important for mobile robots to solve tasks in the area of household robotics. In our work a mobile robot builds an articulated scene model by observing the environment in the visual field or rather in the so-called vista space. The articulated scene model consists of essential knowledge about the static background, about autonomously moving entities like humans or robots and finally, in contrast to existing approaches, information about articulated parts. These parts describe movable objects like chairs, doors or other tangible entities, which could be moved by an agent. The combination of the static scene, the self-moving entities and the movable objects in one articulated scene model enhances the calculation of each single part. The reconstruction process for parts of the static scene benefits from removal of the dynamic parts and in turn, the moving parts can be extracted more easily through the knowledge about the background. In our experiments we show, that the system delivers simultaneously an accurate static background model, moving persons and movable objects. This information of the articulated scene model enables a mobile robot to detect and keep track of interaction partners, to navigate safely through the environment and finally, to strengthen the interaction with the user through the knowledge about the 3D articulated objects and 3D scene analysis. [Figure not available: see fulltext.

  13. Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    PubMed Central

    Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias

    2014-01-01

    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports

  14. Parallel implementation of 3D FFT with volumetric decomposition schemes for efficient molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Jaewoon; Kobayashi, Chigusa; Imamura, Toshiyuki; Sugita, Yuji

    2016-03-01

    Three-dimensional Fast Fourier Transform (3D FFT) plays an important role in a wide variety of computer simulations and data analyses, including molecular dynamics (MD) simulations. In this study, we develop hybrid (MPI+OpenMP) parallelization schemes of 3D FFT based on two new volumetric decompositions, mainly for the particle mesh Ewald (PME) calculation in MD simulations. In one scheme, (1d_Alltoall), five all-to-all communications in one dimension are carried out, and in the other, (2d_Alltoall), one two-dimensional all-to-all communication is combined with two all-to-all communications in one dimension. 2d_Alltoall is similar to the conventional volumetric decomposition scheme. We performed benchmark tests of 3D FFT for the systems with different grid sizes using a large number of processors on the K computer in RIKEN AICS. The two schemes show comparable performances, and are better than existing 3D FFTs. The performances of 1d_Alltoall and 2d_Alltoall depend on the supercomputer network system and number of processors in each dimension. There is enough leeway for users to optimize performance for their conditions. In the PME method, short-range real-space interactions as well as long-range reciprocal-space interactions are calculated. Our volumetric decomposition schemes are particularly useful when used in conjunction with the recently developed midpoint cell method for short-range interactions, due to the same decompositions of real and reciprocal spaces. The 1d_Alltoall scheme of 3D FFT takes 4.7 ms to simulate one MD cycle for a virus system containing more than 1 million atoms using 32,768 cores on the K computer.

  15. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    SciTech Connect

    Mock, Raymond Cecil

    2007-06-01

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  16. Blob Dynamics in 3D BOUT Simulations of Tokamak Edge Turbulence

    SciTech Connect

    Russell, D; D'Ippolito, D; Myra, J; Nevins, W; Xu, X

    2004-08-23

    Propagating filaments of enhanced plasma density, or blobs, observed in 3D numerical simulations of a diverted, neutral-fueled tokamak are studied. Fluctuations of vorticity, electrical potential {phi}, temperature T{sub e} and current density J{sub {parallel}} associated with the blobs have a dipole structure perpendicular to the magnetic field and propagate radially with large E {center_dot} B drift velocities (> 1 km/s). The simulation results are consistent with a 3D blob dynamics model that incorporates increased parallel plasma resistivity (from neutral cooling of the X-point region), blob disconnection from the divertor sheath, X-point closure of the current loops, and collisional physics to sustain the {phi}, T{sub e}, J{sub {parallel}} dipoles.

  17. The computer simulation of 3d gas dynamics in a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  18. Hand Gesture Spotting Based on 3D Dynamic Features Using Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Elmezain, Mahmoud; Al-Hamadi, Ayoub; Michaelis, Bernd

    In this paper, we propose an automatic system that handles hand gesture spotting and recognition simultaneously in stereo color image sequences without any time delay based on Hidden Markov Models (HMMs). Color and 3D depth map are used to segment hand regions. The hand trajectory will determine in further step using Mean-shift algorithm and Kalman filter to generate 3D dynamic features. Furthermore, k-means clustering algorithm is employed for the HMMs codewords. To spot meaningful gestures accurately, a non-gesture model is proposed, which provides confidence limit for the calculated likelihood by other gesture models. The confidence measures are used as an adaptive threshold for spotting meaningful gestures. Experimental results show that the proposed system can successfully recognize isolated gestures with 98.33% and meaningful gestures with 94.35% reliability for numbers (0-9).

  19. Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.

    PubMed

    Driben, Rodislav; Meier, Torsten

    2014-10-01

    The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse.

  20. User's manuals for DYNA3D and DYNAP: nonlinear dynamic analysis of solids in three dimensions

    SciTech Connect

    Hallquist, J.O.

    1981-07-01

    This report provides a user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, and the equations-of-motion are integrated by the central difference method. Post-processors for DYNA3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories. A user's manual for DYNAP is also provided in this report.

  1. EB1-recruited microtubule +TIP complexes coordinate protrusion dynamics during 3D epithelial remodeling

    PubMed Central

    Gierke, Sarah; Wittmann, Torsten

    2012-01-01

    SUMMARY Background Epithelial remodeling, in which apical-basal polarized cells switch to a migratory phenotype, plays a central role in development and disease of multicellular organisms. Although dynamic microtubules (MTs) are required for directed migration on flat surfaces, how MT dynamics are controlled or contribute to epithelial remodeling in a more physiological three-dimensional (3D) environment is not understood. We use confocal live cell imaging to analyze MT function and dynamics during 3D epithelial morphogenesis and remodeling of polarized Madin-Darby canine kidney (MDCK) epithelial cells that undergo partial epithelial-to-mesenchymal transition (EMT) in response to hepatocyte growth factor (HGF). Results We find that HGF treatment increases MT growth rate before morphological changes are evident, and that large numbers of MTs grow into HGF-induced cell extensions independent of centrosome reorientation. Using lentivirus-mediated shRNA, we demonstrate that EB1, an adaptor protein that mediates recruitment of numerous other +TIP proteins to growing MT plus ends, is required for this HGF-induced MT reorganization. We further show that protrusion and adhesion dynamics are disorganized, and that vesicular trafficking to the tip of HGF-induced cell extensions is disrupted in EB1-depleted cells. Conclusions We conclude that EB1-mediated interactions with growing MTs are important to coordinate cell shape changes and directed migration into the surrounding extracellular matrix during epithelial remodeling in a physiological 3D environment. In contrast, EB1 is not required for the establishment or maintenance of apical-basal cell polarity, suggesting different functions of +TIPs and MTs in different types of cell polarity. PMID:22483942

  2. Quantification of Diaphragm Mechanics in Pompe Disease Using Dynamic 3D MRI

    PubMed Central

    Mogalle, Katja; Perez-Rovira, Adria; Ciet, Pierluigi; Wens, Stephan C. A.; van Doorn, Pieter A.; Tiddens, Harm A. W. M.; van der Ploeg, Ans T.; de Bruijne, Marleen

    2016-01-01

    Background Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respiratory muscle involvement is necessary to initiate treatment in time and possibly prevent irreversible damage. In this paper we investigate the suitability of dynamic MR imaging in combination with state-of-the-art image analysis methods to assess respiratory muscle weakness. Methods The proposed methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle. Results Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls) of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function tests. Pompe patients with severely reduced pulmonary function showed severe diaphragm weakness presented by minimal motion of the diaphragm. In patients with moderately reduced pulmonary function, cranial displacement of posterior diaphragm parts was reduced and the diaphragm dome was oriented more horizontally at full inspiration compared to healthy controls. Conclusion Dynamic 3D MRI provides data for analyzing the contribution of both diaphragm and thoracic muscles independently. The proposed image analysis method has the potential to detect less severe diaphragm weakness and could thus be used to determine the optimal start of treatment in adult patients with Pompe disease in prospect of increased treatment response. PMID:27391236

  3. Obstacle avoidance using predictive vision based on a dynamic 3D world model

    NASA Astrophysics Data System (ADS)

    Benjamin, D. Paul; Lyons, Damian; Achtemichuk, Tom

    2006-10-01

    We have designed and implemented a fast predictive vision system for a mobile robot based on the principles of active vision. This vision system is part of a larger project to design a comprehensive cognitive architecture for mobile robotics. The vision system represents the robot's environment with a dynamic 3D world model based on a 3D gaming platform (Ogre3D). This world model contains a virtual copy of the robot and its environment, and outputs graphics showing what the virtual robot "sees" in the virtual world; this is what the real robot expects to see in the real world. The vision system compares this output in real time with the visual data. Any large discrepancies are flagged and sent to the robot's cognitive system, which constructs a plan for focusing on the discrepancies and resolving them, e.g. by updating the position of an object or by recognizing a new object. An object is recognized only once; thereafter its observed data are monitored for consistency with the predictions, greatly reducing the cost of scene understanding. We describe the implementation of this vision system and how the robot uses it to locate and avoid obstacles.

  4. The 3-D alignment of objects in dynamic PET scans using filtered sinusoidal trajectories of sinogram

    NASA Astrophysics Data System (ADS)

    Kostopoulos, Aristotelis E.; Happonen, Antti P.; Ruotsalainen, Ulla

    2006-12-01

    In this study, our goal is to employ a novel 3-D alignment method for dynamic positron emission tomography (PET) scans. Because the acquired data (i.e. sinograms) often contain noise considerably, filtering of the data prior to the alignment presumably improves the final results. In this study, we utilized a novel 3-D stackgram domain approach. In the stackgram domain, the signals along the sinusoidal trajectory signals of the sinogram can be processed separately. In this work, we performed angular stackgram domain filtering by employing well known 1-D filters: the Gaussian low-pass filter and the median filter. In addition, we employed two wavelet de-noising techniques. After filtering we performed alignment of objects in the stackgram domain. The local alignment technique we used is based on similarity comparisons between locus vectors (i.e. the signals along the sinusoidal trajectories of the sinogram) in a 3-D neighborhood of sequences of the stackgrams. Aligned stackgrams can be transformed back to sinograms (Method 1), or alternatively directly to filtered back-projected images (Method 2). In order to evaluate the alignment process, simulated data with different kinds of additive noises were used. The results indicated that the filtering prior to the alignment can be important concerning the accuracy.

  5. Signatures of topological phase transition in 3 d topological insulators from dynamical axion response

    NASA Astrophysics Data System (ADS)

    Makhfudz, Imam

    2016-04-01

    Axion electrodynamics, first proposed in the context of particle physics, manifests itself in condensed matter physics in the topological field theory description of 3 d topological insulators and gives rise to magnetoelectric effect, where applying magnetic (electric) field B (E ) induces polarization (magnetization) p (m ) . We use linear response theory to study the associated topological current using the Fu-Kane-Mele model of 3 d topological insulators in the presence of time-dependent uniform weak magnetic field. By computing the dynamical current susceptibility χij jpjp(ω ) , we discover from its static limit an `order parameter' of the topological phase transition between weak topological (or ordinary) insulator and strong topological insulator, found to be continuous. The χij jpjp(ω ) shows a sign-changing singularity at a critical frequency with suppressed strength in the topological insulating state. Our results can be verified in current noise experiment on 3 d TI candidate materials for the detection of such topological phase transition.

  6. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations. PMID:25155697

  7. Dynamics of gecko locomotion: a force-measuring array to measure 3D reaction forces.

    PubMed

    Dai, Zhendong; Wang, Zhouyi; Ji, Aihong

    2011-03-01

    Measuring the interaction between each foot of an animal and the substrate is one of the most effective ways to understand the dynamics of legged locomotion. Here, a new facility - the force-measuring array (FMA) - was developed and applied to measure 3D reaction forces of geckos on different slope surfaces. The FMA consists of 16 3D sensors with resolution to the mN level. At the same time the locomotion behaviour of geckos freely moving on the FMA was recorded by high speed camera. The reaction forces acting on the gecko's individual feet measured by the FMA and correlated with locomotion behaviour provided enough information to reveal the mechanical and dynamic secrets of gecko locomotion. Moreover, dynamic forces were also measured by a force platform and correlated with locomotion behaviour. The difference between the forces measured by the two methods is discussed. From the results we conclude that FMA is the best way to obtain true reaction forces acting on the gecko's individual feet.

  8. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations.

  9. Simulating 3-D lung dynamics using a programmable graphics processing unit.

    PubMed

    Santhanam, Anand P; Hamza-Lup, Felix G; Rolland, Jannick P

    2007-09-01

    Medical simulations of lung dynamics promise to be effective tools for teaching and training clinical and surgical procedures related to lungs. Their effectiveness may be greatly enhanced when visualized in an augmented reality (AR) environment. However, the computational requirements of AR environments limit the availability of the central processing unit (CPU) for the lung dynamics simulation for different breathing conditions. In this paper, we present a method for computing lung deformations in real time by taking advantage of the programmable graphics processing unit (GPU). This will save the CPU time for other AR-associated tasks such as tracking, communication, and interaction management. An approach for the simulations of the three-dimensional (3-D) lung dynamics using Green's formulation in the case of upright position is taken into consideration. We extend this approach to other orientations as well as the subsequent changes in breathing. Specifically, the proposed extension presents a computational optimization and its implementation in a GPU. Results show that the computational requirements for simulating the deformation of a 3-D lung model are significantly reduced for point-based rendering.

  10. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI

    PubMed Central

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2014-01-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations. PMID:25155697

  11. Dynamic Characteristics of a Model and Prototype for 3D-RC Structure

    NASA Astrophysics Data System (ADS)

    Moniuddin, Md. Khaja; Vasanthalakshmi, G.; Chethan, K.; Babu, R. Ramesh

    2016-06-01

    Infill walls provide durable and economical partitions that have relatively excellent thermal and sound insulation with high fire resistance. Monolithic infilled walls are provided within RC structures without being analyzed as a combination of concrete and brick elements, although in reality they act as a single unit during earthquakes. The performance of such structures during earthquakes has proved to be superior in comparison to bare frames in terms of stiffness, strength and energy dissipation. To know the dynamic characteristics of monolithic infill wall panels and masonry infill, modal, response spectrum and time history analyses have been carried out on a model and prototype of a 3D RC structure for a comparative study.

  12. Development and validation of a 3-D model to predict knee joint loading during dynamic movement.

    PubMed

    McLean, S G; Su, A; van den Bogert, A J

    2003-12-01

    The purpose of this study was to develop a subject-specific 3-D model of the lower extremity to predict neuromuscular control effects on 3-D knee joint loading during movements that can potentially cause injury to the anterior cruciate ligament (ACL) in the knee. The simulation consisted of a forward dynamic 3-D musculoskeletal model of the lower extremity, scaled to represent a specific subject. Inputs of the model were the initial position and velocity of the skeletal elements, and the muscle stimulation patterns. Outputs of the model were movement and ground reaction forces, as well as resultant 3-D forces and moments acting across the knee joint. An optimization method was established to find muscle stimulation patterns that best reproduced the subject's movement and ground reaction forces during a sidestepping task. The optimized model produced movements and forces that were generally within one standard deviation of the measured subject data. Resultant knee joint loading variables extracted from the optimized model were comparable to those reported in the literature. The ability of the model to successfully predict the subject's response to altered initial conditions was quantified and found acceptable for use of the model to investigate the effect of altered neuromuscular control on knee joint loading during sidestepping. Monte Carlo simulations (N = 100,000) using randomly perturbed initial kinematic conditions, based on the subject's variability, resulted in peak anterior force, valgus torque and internal torque values of 378 N, 94 Nm and 71 Nm, respectively, large enough to cause ACL rupture. We conclude that the procedures described in this paper were successful in creating valid simulations of normal movement, and in simulating injuries that are caused by perturbed neuromuscular control.

  13. Dynamic lens and monovision 3D displays to improve viewer comfort.

    PubMed

    Johnson, Paul V; Parnell, Jared Aq; Kim, Joohwan; Saunter, Christopher D; Love, Gordon D; Banks, Martin S

    2016-05-30

    Stereoscopic 3D (S3D) displays provide an additional sense of depth compared to non-stereoscopic displays by sending slightly different images to the two eyes. But conventional S3D displays do not reproduce all natural depth cues. In particular, focus cues are incorrect causing mismatches between accommodation and vergence: The eyes must accommodate to the display screen to create sharp retinal images even when binocular disparity drives the eyes to converge to other distances. This mismatch causes visual discomfort and reduces visual performance. We propose and assess two new techniques that are designed to reduce the vergence-accommodation conflict and thereby decrease discomfort and increase visual performance. These techniques are much simpler to implement than previous conflict-reducing techniques. The first proposed technique uses variable-focus lenses between the display and the viewer's eyes. The power of the lenses is yoked to the expected vergence distance thereby reducing the mismatch between vergence and accommodation. The second proposed technique uses a fixed lens in front of one eye and relies on the binocularly fused percept being determined by one eye and then the other, depending on simulated distance. We conducted performance tests and discomfort assessments with both techniques and compared the results to those of a conventional S3D display. The first proposed technique, but not the second, yielded clear improvements in performance and reductions in discomfort. This dynamic-lens technique therefore offers an easily implemented technique for reducing the vergence-accommodation conflict and thereby improving viewer experience. PMID:27410105

  14. Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone

    NASA Astrophysics Data System (ADS)

    Pusok, A. E.; Kaus, B.; Popov, A.

    2013-12-01

    The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and

  15. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.

    PubMed

    Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H

    2015-11-01

    Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness.

  16. 3D quantitative visualization of altered LV wall thickening dynamics caused by coronary microembolization

    NASA Astrophysics Data System (ADS)

    Eusemann, Christian D.; Mohlenkamp, Stefan; Ritman, Erik L.; Robb, Richard A.

    2001-05-01

    Regional heart wall dynamics has been shown to be a sensitive indicator of LV wall ischemia. Rates of local LV wall thickening during a cardiac cycle can be measured and illustrated using functional parametric mappings. This display conveys the spatial distribution of dynamic strain in the myocardium and thereby provides a rapid qualitative appreciation of the severity and extent of the ischemic region. 3D reconstructions were obtained in an anesthetized pig from 8 adjacent, shortaxis, slices of the left ventricle imaged with an Electron Beam Computer Tomograph at 11 time points through one complete cardiac cycle. The 3D reconstructions were obtained before and after injection of 100 micrometer microspheres into the Left Anterior Descending (LAD) coronary artery. This injection causes microembolization of LAD artery branches within the heart wall. The image processing involved radially dividing the tomographic images of the myocardium into small subdivisions with color encoding of the local magnitude of regional thickness or regional velocities of LV wall thickening throughout the cardiac cycle. We compared the effectiveness of animation of wall thickness encoded in color versus a static image of computed rate of wall thickness change in color. The location, extent and severity of regional wall akinesis or dyskinesis, as determined from these displays, can then be compared to the region of embolization as indicated by the distribution of altered LV wall perfusion.

  17. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    PubMed

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.

  18. Dynamic 3-D virtual fixtures for minimally invasive beating heart procedures.

    PubMed

    Ren, Jing; Patel, Rajni V; McIsaac, Kenneth A; Guiraudon, Gerard; Peters, Terry M

    2008-08-01

    Two-dimensional or 3-D visual guidance is often used for minimally invasive cardiac surgery and diagnosis. This visual guidance suffers from several drawbacks such as limited field of view, loss of signal from time to time, and in some cases, difficulty of interpretation. These limitations become more evident in beating-heart procedures when the surgeon has to perform a surgical procedure in the presence of heart motion. In this paper, we propose dynamic 3-D virtual fixtures (DVFs) to augment the visual guidance system with haptic feedback, to provide the surgeon with more helpful guidance by constraining the surgeon's hand motions thereby protecting sensitive structures. DVFs can be generated from preoperative dynamic magnetic resonance (MR) or computed tomograph (CT) images and then mapped to the patient during surgery. We have validated the feasibility of the proposed method on several simulated surgical tasks using a volunteer's cardiac image dataset. Validation results show that the integration of visual and haptic guidance can permit a user to perform surgical tasks more easily and with reduced error rate. We believe this is the first work presented in the field of virtual fixtures that explicitly considers heart motion.

  19. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    PubMed

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing. PMID:22163926

  20. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    2016-01-01

    This paper presents results from an exploratory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected and the resulting steady-state analyses using NASA's FUN3D CFD software.

  1. Population and Evolutionary Dynamics based on Predator-Prey Relationships in a 3D Physical Simulation.

    PubMed

    Ito, Takashi; Pilat, Marcin L; Suzuki, Reiji; Arita, Takaya

    2016-01-01

    Recent studies have reported that population dynamics and evolutionary dynamics, occurring at different time scales, can be affected by each other. Our purpose is to explore the interaction between population and evolutionary dynamics using an artificial life approach based on a 3D physically simulated environment in the context of predator-prey and morphology-behavior coevolution. The morphologies and behaviors of virtual prey creatures are evolved using a genetic algorithm based on the predation interactions between predators and prey. Both population sizes are also changed, depending on the fitness. We observe two types of cyclic behaviors, corresponding to short-term and long-term dynamics. The former can be interpreted as a simple population dynamics of Lotka-Volterra type. It is shown that the latter cycle is based on the interaction between the changes in the prey strategy against predators and the long-term change in both population sizes, resulting partly from a tradeoff between their defensive success and the cost of defense.

  2. 3D microscale laser dynamic forming: Multiscale modeling and experimental validation

    SciTech Connect

    Gao Huang; Cheng, Gary J.

    2011-05-15

    Microscale laser dynamic forming ({mu}LDF) shows great potential in fabricating robust and high-aspect-ratio metallic microcomponents. Experiments revealed that strain rate and sample size play important roles in determining the dynamic plasticity and final results of {mu}LDF. To further understand these effects, a multiscale modeling methodology is adopted to characterize the microscale dynamic plasticity considering the evolutions of nano-to-submicron dislocations avalanches under shock loading. In this methodology, 3D discrete dislocation dynamics simulations are implemented to derive the yield strength and the initial strain hardening dependence on size and strain rate. It is observed that there exist three dynamic stages during deformation process. The initial strain hardening rate in Stage II increases with strain rate. The mechanical threshold stress model, intrinsically equipped with strain-rate-dependent flow stress and initial hardening, is chosen and modified to incorporate size effect quantitatively. This scale-dependent model, implemented in abaqus/explicit, provides deformation depths and thickness variations in good agreement with experimental results in {mu}LDF.

  3. Population and Evolutionary Dynamics based on Predator-Prey Relationships in a 3D Physical Simulation.

    PubMed

    Ito, Takashi; Pilat, Marcin L; Suzuki, Reiji; Arita, Takaya

    2016-01-01

    Recent studies have reported that population dynamics and evolutionary dynamics, occurring at different time scales, can be affected by each other. Our purpose is to explore the interaction between population and evolutionary dynamics using an artificial life approach based on a 3D physically simulated environment in the context of predator-prey and morphology-behavior coevolution. The morphologies and behaviors of virtual prey creatures are evolved using a genetic algorithm based on the predation interactions between predators and prey. Both population sizes are also changed, depending on the fitness. We observe two types of cyclic behaviors, corresponding to short-term and long-term dynamics. The former can be interpreted as a simple population dynamics of Lotka-Volterra type. It is shown that the latter cycle is based on the interaction between the changes in the prey strategy against predators and the long-term change in both population sizes, resulting partly from a tradeoff between their defensive success and the cost of defense. PMID:26934093

  4. Surface 3D nanostructuring by tightly focused laser pulse: simulations by Lagrangian code and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.

    2016-02-01

    There are many important applications in which the ultrashort diffraction-limited and therefore tightly focused laser pulses irradiates metal films mounted on dielectric substrate. Here we present the detailed picture of laser peeling and 3D structure formation of the thin (relative to a depth of a heat affected zone in the bulk targets) gold films on glass substrate. The underlying physics of such diffraction-limited laser peeling was not well understood previously. Our approach is based on a physical model which takes into consideration the new calculations of the two-temperature (2T) equation of state (2T EoS) and the two-temperature transport coefficients together with the coupling parameter between electron and ion subsystems. The usage of the 2T EoS and the kinetic coefficients is required because absorption of an ultrashort pulse with duration of 10-1000 fs excites electron subsystem of metal and transfers substance into the 2T state with hot electrons (typical electron temperatures 1-3 eV) and much colder ions. It is shown that formation of submicrometer-sized 3D structures is a result of the electron-ion energy transfer, melting, and delamination of film from substrate under combined action of electron and ion pressures, capillary deceleration of the delaminated liquid metal or semiconductor, and ultrafast freezing of molten material. We found that the freezing is going in non-equilibrium regime with strongly overcooled liquid phase. In this case the Stefan approximation is non-applicable because the solidification front speed is limited by the diffusion rate of atoms in the molten material. To solve the problem we have developed the 2T Lagrangian code including all this reach physics in. We also used the high-performance combined Monte- Carlo and molecular dynamics code for simulation of surface 3D nanostructuring at later times after completion of electron-ion relaxation.

  5. Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT

    PubMed Central

    Gambra, Enrique; Ortiz, Sergio; Perez-Merino, Pablo; Gora, Michalina; Wojtkowski, Maciej; Marcos, Susana

    2013-01-01

    Custom high-resolution high-speed anterior segment spectral domain Optical Coherence Tomography (OCT) provided with automatic quantification and distortion correction algorithms was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo in four subjects, for accommodative demands between 0 to 6 D in 1 D steps. Anterior and posterior lens radii of curvature decreased with accommodative demand at rates of 0.73 and 0.20 mm/D, resulting in an increase of the estimated optical power of the eye of 0.62 D per diopter of accommodative demand. Dynamic fluctuations in crystalline lens radii of curvature, anterior chamber depth and lens thickness were also estimated from dynamic 2-D OCT images (14 Hz), acquired during 5-s of steady fixation, for different accommodative demands. Estimates of the eye power from dynamical geometrical measurements revealed an increase of the fluctuations of the accommodative response from 0.07 D to 0.47 D between 0 and 6 D (0.044 D per D of accommodative demand). A sensitivity analysis showed that the fluctuations of accommodation were driven by dynamic changes in the lens surfaces, particularly in the posterior lens surface. PMID:24049680

  6. Observing molecular dynamics with time-resolved 3D momentum imaging

    NASA Astrophysics Data System (ADS)

    Sturm, F. P.; Wright, T.; Bocharova, I.; Ray, D.; Shivaram, N.; Cryan, J.; Belkacem, A.; Weber, T.; Dörner, R.

    2014-05-01

    Photo-excitation and ionization trigger rich dynamics in molecular systems which play a key role in many important processes in nature such as vision, photosynthesis or photoprotection. Observing those reactions in real-time without significantly disturbing the molecules by a strong electric field has been a great challenge. Recent experiments using Time-of-Flight and Velocity Map Imaging techniques have revealed important information on the dynamics of small molecular systems upon photo-excitation. We have developed an apparatus for time-resolved momentum imaging of electrons and ions in all three spatial dimensions that employs two-color femtosecond laser pulses in the vacuum and extreme ultraviolet (VUV, XUV) for probing molecular dynamics. Our COLTRIMS style reaction microscope can measure electrons and ions in coincidence and reconstruct the momenta of the reaction fragments in 3D. We use a high power 800 nm laser in a loose focusing geometry gas cell to efficinetly drive High Harmonic Generation. The resulting photon flux is sufficient to perform 2-photon pump-probe experiments using VUV and XUV pulses for both pump and probe. With this setup we investigate non-Born-Oppenheimer dynamics in small molecules such as C2H4 and CO2 on a femtosecond time scale. Supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  7. Defragmented image based autostereoscopic 3D displays with dynamic eye tracking

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Kyu; Yoon, Ki-Hyuk; Yoon, Seon Kyu; Ju, Heongkyu

    2015-12-01

    We studied defragmented image based autostereoscopic 3D displays with dynamic eye tracking. Specifically, we examined the impact of parallax barrier (PB) angular orientation on their image quality. The 3D display system required fine adjustment of PB angular orientation with respect to a display panel. This was critical for both image color balancing and minimizing image resolution mismatch between horizontal and vertical directions. For evaluating uniformity of image brightness, we applied optical ray tracing simulations. The simulations took effects of PB orientation misalignment into account. The simulation results were then compared with recorded experimental data. Our optimal simulated system produced significantly enhanced image uniformity at around sweet spots in viewing zones. However this was contradicted by real experimental results. We offer quantitative treatment of illuminance uniformity of view images to estimate misalignment of PB orientation, which could account for brightness non-uniformity observed experimentally. Our study also shows that slight imperfection in the adjustment of PB orientation due to practical restrictions of adjustment accuracy can induce substantial non-uniformity of view images' brightness. We find that image brightness non-uniformity critically depends on misalignment of PB angular orientation, for example, as slight as ≤ 0.01 ° in our system. This reveals that reducing misalignment of PB angular orientation from the order of 10-2 to 10-3 degrees can greatly improve the brightness uniformity.

  8. Segmentation of whole cells and cell nuclei from 3-D optical microscope images using dynamic programming.

    PubMed

    McCullough, D P; Gudla, P R; Harris, B S; Collins, J A; Meaburn, K J; Nakaya, M A; Yamaguchi, T P; Misteli, T; Lockett, S J

    2008-05-01

    Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection.

  9. Description of patellar movement by 3D parameters obtained from dynamic CT acquisition

    NASA Astrophysics Data System (ADS)

    de Sá Rebelo, Marina; Moreno, Ramon Alfredo; Gobbi, Riccardo Gomes; Camanho, Gilberto Luis; de Ávila, Luiz Francisco Rodrigues; Demange, Marco Kawamura; Pecora, Jose Ricardo; Gutierrez, Marco Antonio

    2014-03-01

    The patellofemoral joint is critical in the biomechanics of the knee. The patellofemoral instability is one condition that generates pain, functional impairment and often requires surgery as part of orthopedic treatment. The analysis of the patellofemoral dynamics has been performed by several medical image modalities. The clinical parameters assessed are mainly based on 2D measurements, such as the patellar tilt angle and the lateral shift among others. Besides, the acquisition protocols are mostly performed with the leg laid static at fixed angles. The use of helical multi slice CT scanner can allow the capture and display of the joint's movement performed actively by the patient. However, the orthopedic applications of this scanner have not yet been standardized or widespread. In this work we present a method to evaluate the biomechanics of the patellofemoral joint during active contraction using multi slice CT images. This approach can greatly improve the analysis of patellar instability by displaying the physiology during muscle contraction. The movement was evaluated by computing its 3D displacements and rotations from different knee angles. The first processing step registered the images in both angles based on the femuŕs position. The transformation matrix of the patella from the images was then calculated, which provided the rotations and translations performed by the patella from its position in the first image to its position in the second image. Analysis of these parameters for all frames provided real 3D information about the patellar displacement.

  10. Brownian nanoimaging of interface dynamics and ligand-receptor binding at cell surfaces in 3-D.

    PubMed

    Kuznetsov, Igor R; Evans, Evan A

    2013-04-01

    We describe a method for nanoimaging interfacial dynamics and ligand-receptor binding at surfaces of live cells in 3-D. The imaging probe is a 1-μm diameter glass bead confined by a soft laser trap to create a "cloud" of fluctuating states. Using a facile on-line method of video image analysis, the probe displacements are reported at ~10 ms intervals with bare precisions (±SD) of 4-6 nm along the optical axis (elevation) and 2 nm in the transverse directions. We demonstrate how the Brownian distributions are analyzed to characterize the free energy potential of each small probe in 3-D taking into account the blur effect of its motions during CCD image capture. Then, using the approach to image interactions of a labeled probe with lamellae of leukocytic cells spreading on cover-glass substrates, we show that deformations of the soft distribution in probe elevations provide both a sensitive long-range sensor for defining the steric topography of a cell lamella and a fast telemetry for reporting rare events of probe binding with its surface receptors. Invoking established principles of Brownian physics and statistical thermodynamics, we describe an off-line method of super resolution that improves precision of probe separations from a non-reactive steric boundary to ~1 nm.

  11. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT

    PubMed Central

    Crabb, M G; Davidson, J L; Little, R; Wright, P; Morgan, A R; Miller, C A; Naish, J H; Parker, G J M; Kikinis, R; McCann, H; Lionheart, W R B

    2014-01-01

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second (fps) were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction. PMID:24710978

  12. 3D Dynamic Finite Element Analysis of the Nonuniform Residual Stress in Ultrasonic Impact Treatment Process

    NASA Astrophysics Data System (ADS)

    Hu, Shengsun; Guo, Chaobo; Wang, Dongpo; Wang, Zhijiang

    2016-09-01

    The nonuniform distributions of the residual stress were simulated by a 3D finite element model to analyze the elastic-plastic dynamic ultrasonic impact treatment (UIT) process of multiple impacts on the 2024 aluminum alloy. The evolution of the stress during the impact process was discussed. The successive impacts during the UIT process improve the uniformity of the plastic deformation and decrease the maximum compressive residual stress beneath the former impact indentations. The influences of different controlled parameters, including the initial impact velocity, pin diameter, pin tip, device moving, and offset distances, on the residual stress distributions were analyzed. The influences of the controlled parameters on the residual stress distributions are apparent in the offset direction due to the different surface coverage in different directions. The influences can be used to understand the UIT process and to obtain the desired residual stress by optimizing the controlled parameters.

  13. Dynamic Implicit 3D Adaptive Mesh Refinement for Non-Equilibrium Radiation Diffusion

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael

    2014-01-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multiphysics systems: implicit time integration for efficient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent linear solver convergence.

  14. 3D Myocardial Contraction Imaging Based on Dynamic Grid Interpolation: Theory and Simulation Analysis

    NASA Astrophysics Data System (ADS)

    Bu, Shuhui; Shiina, Tsuyoshi; Yamakawa, Makoto; Takizawa, Hotaka

    Accurate assessment of local myocardial contraction is important for diagnosis of ischemic heart disease, because decreases of myocardial motion often appear in the early stages of the disease. Three-dimensional (3-D) assessment of the stiffness distribution is required for accurate diagnosis of ischemic heart disease. Since myocardium motion occurs radially within the left ventricle wall and the ultrasound beam propagates axially, conventional approaches, such as tissue Doppler imaging and strain-rate imaging techniques, cannot provide us with enough quantitative information about local myocardial contraction. In order to resolve this problem, we propose a novel myocardial contraction imaging system which utilizes the weighted phase gradient method, the extended combined autocorrelation method, and the dynamic grid interpolation (DGI) method. From the simulation results, we conclude that the strain image's accuracy and contrast have been improved by the proposed method.

  15. 3D Plasma Clusters: Analysis of dynamical evolution and individual particle interaction

    SciTech Connect

    Antonova, T.; Thomas, H. M.; Morfill, G. E.; Annaratone, B. M.

    2008-09-07

    3D plasma clusters (up to 100 particles) have been built inside small (32 mm{sup 3}) plasma volume in gravity. It has been estimated that the external confinement has a negligible influence on the processes inside the clusters. At such conditions the analysis of dynamical evolution and individual particle interactions have shown that the binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part. The tendency of the systems to approach the state with minimum energy by rearranging particles inside has been detected. The measured 63 particles' cluster vibrations are in close agreement with vibrations of a drop with surface tension. This indicates that even a 63 particle cluster already exhibits properties normally associated with the cooperative regime.

  16. 3D Plasma Clusters: Analysis of dynamical evolution and individual particle interaction

    NASA Astrophysics Data System (ADS)

    Antonova, T.; Annaratone, B. M.; Thomas, H. M.; Morfill, G. E.

    2008-09-01

    3D plasma clusters (up to 100 particles) have been built inside small (32 mm3) plasma volume in gravity. It has been estimated that the external confinement has a negligible influence on the processes inside the clusters. At such conditions the analysis of dynamical evolution and individual particle interactions have shown that the binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part. The tendency of the systems to approach the state with minimum energy by rearranging particles inside has been detected. The measured 63 particles' cluster vibrations are in close agreement with vibrations of a drop with surface tension. This indicates that even a 63 particle cluster already exhibits properties normally associated with the cooperative regime.

  17. A fully 3-D molecular dynamics study of the initiation of the Kelvin-Helmholtz instability

    NASA Astrophysics Data System (ADS)

    Rudd, Robert E.; Caspersen, K. J.; Richards, D. F.; Glosli, J. N.; Gunnels, J. A.; Streitz, F. H.

    2008-03-01

    The modeling of hydrodynamic phenomena has almost exclusively been the purview of continuum mechanics, specifically, through the use of the Navier-Stokes equation and closely related variants. Nevertheless, at the smallest length scales, where atomistic effects become important, it is not clear that this continuum approach provides a complete description of fluid behavior. To understand the effects of atomistics, we have performed a 62.5-billion-atom, fully 3-D molecular dynamics simulation of a cubic micron of molten copper and aluminum. The shear flow at 2 km/s exhibits complex phenomena associated with a Kelvin-Helmholtz (KH) instability. In this presentation we will discuss the initiation and early evolution of the KH instability, focusing specifically on the effects of full atomistic resolution.

  18. Self-Consistent 3D Modeling of Electron Cloud Dynamics and Beam Response

    SciTech Connect

    Furman, Miguel; Furman, M.A.; Celata, C.M.; Kireeff-Covo, M.; Sonnad, K.G.; Vay, J.-L.; Venturini, M.; Cohen, R.; Friedman, A.; Grote, D.; Molvik, A.; Stoltz, P.

    2007-04-02

    We present recent advances in the modeling of beam electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation.

  19. 3D time dependent thermo-fluid dynamic model of ground deformation at Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Castaldo, R.; Tizzani, P.; Manconi, A.; Manzo, M.; Pepe, S.; Pepe, A.; Lanari, R.

    2012-04-01

    In active volcanic areas deformation signals are generally characterized by non-linear spatial and temporal variations [Tizzani P. et al., 2007]. This behaviour has been revealed in the last two decades by the so-called advanced DInSAR processing algorithms, developed to analyze surface deformation phenomena [Berardino P. et al., 2002; Ferretti C. et al., 2001]. Notwithstanding, most of the inverse modelling attempts to characterize the evolution of the volcanic sources are based on the assumption that the Earth's crust behaves as a homogeneous linear elastic material. However, the behaviour of the upper lithosphere in thermally anomalous regions (as active volcanoes are) might be well described as a non-Newtonian fluid, where some of the material proprieties of the rocks (i.e., apparent viscosities) can change over time [Pinkerton H. et al., 1995]. In this context, we considered the thermal proprieties and mechanical heterogeneities of the upper crust in order to develop a new 3D time dependent thermo-fluid dynamic model of Campi Flegrei (CF) caldera, Southern Italy. More specifically, according to Tizzani P. et al. (2010), we integrated in a FEM environment geophysical information (gravimetric, seismic, and borehole data) available for the considered area and performed two FEM optimization procedures to constrain the 3D distribution of unknown physical parameters (temperature and viscosity distributions) that might help explaining the data observed at surface (geothermal wells and DInSAR measurements). First, we searched for the heat production, the volume source distribution and surface emissivity parameters providing the best-fit of the geothermal profiles data measured at six boreholes [Agip ESGE, 1986], by solving the Fourier heat equation over time (about 40 kys). The 3D thermal field resulting from this optimization was used to calculate the 3D brittle-ductile transition. This analysis revealed the presence of a ductile region, located beneath the centre of

  20. 3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings.

    PubMed

    Semmler, Marion; Kniesburges, Stefan; Birk, Veronika; Ziethe, Anke; Patel, Rita; Dollinger, Michael

    2016-07-01

    Standard laryngoscopic imaging techniques provide only limited two-dimensional insights into the vocal fold vibrations not taking the vertical component into account. However, previous experiments have shown a significant vertical component in the vibration of the vocal folds. We present a 3D reconstruction of the entire superior vocal fold surface from 2D high-speed videoendoscopy via stereo triangulation. In a typical camera-laser set-up the structured laser light pattern is projected on the vocal folds and captured at 4000 fps. The measuring device is suitable for in vivo application since the external dimensions of the miniaturized set-up barely exceed the size of a standard rigid laryngoscope. We provide a conservative estimate on the resulting resolution based on the hardware components and point out the possibilities and limitations of the miniaturized camera-laser set-up. In addition to the 3D vocal fold surface, we extended previous approaches with a G2-continuous model of the vocal fold edge. The clinical applicability was successfully established by the reconstruction of visual data acquired from 2D in vivo high-speed recordings of a female and a male subject. We present extracted dynamic parameters like maximum amplitude and velocity in the vertical direction. The additional vertical component reveals deeper insights into the vibratory dynamics of the vocal folds by means of a non-invasive method. The successful miniaturization allows for in vivo application giving access to the most realistic model available and hence enables a comprehensive understanding of the human phonation process. PMID:26829782

  1. Transforming 2d Cadastral Data Into a Dynamic Smart 3d Model

    NASA Astrophysics Data System (ADS)

    Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.

    2013-08-01

    3D property registration has become an imperative need in order to optimally reflect all complex cases of the multilayer reality of property rights and restrictions, revealing their vertical component. This paper refers to the potentials and multiple applications of 3D cadastral systems and explores the current state-of-the art, especially the available software with which 3D visualization can be achieved. Within this context, the Hellenic Cadastre's current state is investigated, in particular its data modeling frame. Presenting the methodologies and specifications addressing the registration of 3D properties, the operating cadastral system's shortcomings and merits are pointed out. Nonetheless, current technological advances as well as the availability of sophisticated software packages (proprietary or open source) call for 3D modeling. In order to register and visualize the complex reality in 3D, Esri's CityEngine modeling software has been used, which is specialized in the generation of 3D urban environments, transforming 2D GIS Data into Smart 3D City Models. The application of the 3D model concerns the Campus of the National Technical University of Athens, in which a complex ownership status is established along with approved special zoning regulations. The 3D model was built using different parameters based on input data, derived from cadastral and urban planning datasets, as well as legal documents and architectural plans. The process resulted in a final 3D model, optimally describing the cadastral situation and built environment and proved to be a good practice example of 3D visualization.

  2. Dynamic 3D-visualization of merged geophysical and geological data sets from the Arctic

    NASA Astrophysics Data System (ADS)

    Jakobsson, M. E.

    2002-12-01

    Bringing together geophysical and geological data sets in a dynamic 3D-environment can greatly enhance our ability to comprehend earth processes. The relationship between, for example, seafloor topography and measured gravity anomalies can easily be visualized as well as the distribution of magnetic anomalies in oceanic crust and their varying offset due to seafloor spreading. In this presentation the gravity derived from ERS-1 satellite altimetry by Laxon and McAdoo (1994) and the magnetic compilation by Verhoef et al. (1996) of the Arctic Ocean is co-registered with the International Bathymetric Chart of the Arctic Ocean (IBCAO) bathymetry and brought into a dynamic 3D-environment for visualization and analysis. This exercise provides information of great value when we address the geologic origin of the Arctic Ocean physiographic provinces. Furthermore, since the ERS-1 gravity and IBCAO bathymetry are two entirely unrelated datasets the gravity may also be used for validating seafloor features seen in the IBCAO compilation that are based on sparse data. For instance, at the eastern most end of the Gakkel Ridge Axial Valley the IBCAO bathymetry is based on digitized contour information from a Russian bathymetric map published in 1999 by the Russian Federation's Head Department of Navigation and Oceanography (HDNO) with no available trackline sources. In the bathymetry, the Axial Valley is clearly seen to continue towards the continental slope of the Laptev Sea and this continuation is supported by the ERS-1 gravity. Another example of bringing together geological and geophysical data sets is from northern Russia, where huge ice lakes were dammed by the Early Weichselian ice sheet at about 90 000 years ago (Mangerud et al., 2001). The damming resulted from blocking the Russian north flowing rivers, supplying most of the fresh water to the Arctic Ocean, by the Ice Sheet margin. These proglacial lakes are reconstructed in our dynamic 3D-environment based on field

  3. A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; CGG Persoon, Lucas; Verhaegen, Frank

    2014-10-01

    Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors. The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation

  4. A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions.

    PubMed

    Podesta, Mark; Persoon, Lucas C G G; Verhaegen, Frank

    2014-10-21

    Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors.The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation fields

  5. A Real-time, 3D Musculoskeletal Model for Dynamic Simulation of Arm Movements

    PubMed Central

    Chadwick, Edward K.; Blana, Dimitra; van den Bogert, Antonie J.; Kirsch, Robert F.

    2010-01-01

    Neuroprostheses can be used to restore movement of the upper limb in individuals with high-level spinal cord injury. Development and evaluation of command and control schemes for such devices typically requires real-time, “patient-in-the-loop” experimentation. A real-time, three-dimensional, musculoskeletal model of the upper limb has been developed for use in a simulation environment to allow such testing to be carried out non-invasively. The model provides real-time feedback of human arm dynamics that can be displayed to the user in a virtual reality environment. The model has a three degree-of-freedom gleno-humeral joint as well as elbow flexion/extension and pronation/supination, and contains 22 muscles of the shoulder and elbow divided into multiple elements. The model is able to run in real time on modest desktop hardware and demonstrates that a large-scale, 3D model can be made to run in real time. This is a prerequisite for a real-time, whole arm model that will form part of a dynamic arm simulator for use in the development, testing and user training of neural prosthesis systems. PMID:19272926

  6. Analysis of Wnt signalling dynamics during colon crypt development in 3D culture

    PubMed Central

    Tan, Chin Wee; Hirokawa, Yumiko; Burgess, Antony W.

    2015-01-01

    Many systems biology studies lack context-relevant data and as a consequence the predictive capabilities can be limited in developing targeted cancer therapeutics. Production of colon crypt in vitro is ideal for studying colon systems biology. This report presents the first production of, to our knowledge, physiologically-shaped, functional colon crypts in vitro (i.e. single crypts with cells expressing Mucin 2 and Chromogranin A). Time-lapsed monitoring of crypt formation revealed an increased frequency of single-crypt formation in the absence of noggin. Using quantitative 3D immunofluorescence of β-catenin and E-cadherin, spatial-temporal dynamics of these proteins in normal colon crypt cells stimulated with Wnt3A or inhibited by cycloheximide has been measured. Colon adenoma cultures established from APCmin/+ mouse have developmental differences and β-catenin spatial localization compared to normal crypts. Quantitative data describing the effects of signalling pathways and proteins dynamics for both normal and adenomatous colon crypts is now within reach to inform a systems approach to colon crypt biology. PMID:26087250

  7. Earthquake Source Parameters Relationships from 3D Rough Fault Dynamic Rupture

    NASA Astrophysics Data System (ADS)

    Yao, Q.; Day, S. M.; Shi, Z.

    2015-12-01

    Fault surface roughness has a strong influence on the distribution of stress around the fault, and affects the dynamics of the earthquake process. In particular, roughness influences the distribution of the parameters conventionally used to describe fault slip in, for example, kinematic modeling of strong ground motion. We explore the effect of the fault roughness on earthquake source parameters through the statistical analysis of a large suite of 3D rupture simulations. We have built a database of more than 1000 simulated dynamic ruptures based on different rough fault profiles and relative-strength (S) ratios, and have quantitatively analyzed the correlation between earthquake source parameter pairs.. In the subshear propagation-speed regime, we find the following relationships: (1) Rise time, total slip and peak slip rate each decrease with increasing roughness. (2) Rupture velocity is weakly positively related to slip, and the relationship is stronger with increasing roughness. We also explore how peak slip rate, rise time and different pairs of source parameters correlations are affected by fault roughness. This work may give useful guidance for use in kinematic rupture-source generators and help improve methods for ground strong motion prediction.

  8. Fibrillogenesis from nanosurfaces: multiphoton imaging and stereological analysis of collagen 3D self-assembly dynamics.

    PubMed

    Bancelin, Stéphane; Decencière, Etienne; Machairas, Vaïa; Albert, Claire; Coradin, Thibaud; Schanne-Klein, Marie-Claire; Aimé, Carole

    2014-09-21

    The assembly of proteins into fibrillar structures is an important process that concerns different biological contexts, including molecular medicine and functional biomaterials. Engineering of hybrid biomaterials can advantageously provide synergetic interactions of the biopolymers with an inorganic component to ensure specific supramolecular organization and dynamics. To this aim, we designed hybrid systems associating collagen and surface-functionalized silica particles and we built a new strategy to investigate fibrillogenesis processes in such multicomponents systems, working at the crossroads of chemistry, physics and mathematics. The self-assembly process was investigated by bimodal multiphoton imaging coupling second harmonic generation (SHG) and 2 photon excited fluorescence (2PEF). The in-depth spatial characterization of the system was further achieved using the three-dimensional analysis of the SHG/2PEF data via mathematical morphology processing. Quantitation of collagen distribution around particles offers strong evidence that the chemically induced confinement of the protein on the silica nanosurfaces has a key influence on the spatial extension of fibrillogenesis. This new approach is unique in the information it can provide on 3D dynamic hybrid systems and may be extended to other associations of fibrillar molecules with optically responsive nano-objects. PMID:25058449

  9. Holographic display system for dynamic synthesis of 3D light fields with increased space bandwidth product.

    PubMed

    Agour, Mostafa; Falldorf, Claas; Bergmann, Ralf B

    2016-06-27

    We present a new method for the generation of a dynamic wave field with high space bandwidth product (SBP). The dynamic wave field is generated from several wave fields diffracted by a display which comprises multiple spatial light modulators (SLMs) each having a comparably low SBP. In contrast to similar approaches in stereoscopy, we describe how the independently generated wave fields can be coherently superposed. A major benefit of the scheme is that the display system may be extended to provide an even larger display. A compact experimental configuration which is composed of four phase-only SLMs to realize the coherent combination of independent wave fields is presented. Effects of important technical parameters of the display system on the wave field generated across the observation plane are investigated. These effects include, e.g., the tilt of the individual SLM and the gap between the active areas of multiple SLMs. As an example of application, holographic reconstruction of a 3D object with parallax effects is demonstrated. PMID:27410593

  10. Bone grafts engineered from human adipose-derived stem cells in dynamic 3D-environments.

    PubMed

    Declercq, Heidi A; De Caluwé, Tamara; Krysko, Olga; Bachert, Claus; Cornelissen, Maria J

    2013-01-01

    Modular tissue engineering (TE) is a promising alternative to overcome the limits in traditional TE. In the present study, adipose tissue derived stem cells (ADSC)-laden microcarriers are used as building blocks (microtissues) that self-assemble into macrotissues in a bottom-up approach. These bone grafts were compared with a classical top-down approach (scaffolds). This concept was compared with bone marrow derived stem cells (BMSC) as cell source. Cells were immunophenotypically analyzed, followed by 2D/3D osteogenic differentiation in static/dynamic conditions. The bone graft quality was evaluated by (immuno)histochemistry and gene expression. After 6 weeks of dynamic culturing, scaffolds were highly colonized although not in the center and the osteogenic gene expression was higher in contrast to static cultures. A cell-to-microcarrier ratio of 5 × 10(6) cells-0.09 g microcarriers leaded to aggregate formation resulting in microtissues with subsequent macrotissue formation. ADSC/BMSC on scaffolds showed a downregulation of Runx2 and collagen I, demonstrating the end-stage, in contrary to microcarriers, where an upregulation of Runx2, collagen I together with BSP and osteocalcin was observed. This paper showed that high quality bone grafts (2 cm³) can be engineered in a bottom-up approach with cell-laden microcarriers.

  11. A digital holography set-up for 3D vortex flow dynamics

    NASA Astrophysics Data System (ADS)

    Lebon, Benoît; Perret, Gaële; Coëtmellec, Sébastien; Godard, Gilles; Gréhan, Gérard; Lebrun, Denis; Brossard, Jérôme

    2016-06-01

    In the present paper, a digital in-line holography (DIH) set-up, with a converging beam, is used to take three-dimensional (3D) velocity measurements of vortices. The vortices are formed periodically at the edges of a submerged horizontal plate submitted to regular waves. They take the form of vortex filaments that extend from side to side of the channel. They undergo strongly three-dimensional instability mechanisms that remain very complicated to characterize experimentally. The experiments are performed in a 10 × 0.3 × 0.3 m3 wave flume. The DIH set-up is performed using a modulated laser diode emitting at the wavelength of 640 nm and a lensless CCD camera. The beam crosses the channel side to side. To reveal the flow dynamics, 30-μm hydrogen bubbles are generated at the edge of the plate to serve as tracers. Their locations are recorded on the holograms multiple times to access the dynamics of the flow. This method leads to an accuracy in the order of 100 μm on the axial location. Those measurements have been validated with stereo-PIV measurements. A very good agreement is found on time-averaged velocity fields between the two techniques.

  12. Dynamic stress-strain states for metal foams using a 3D cellular model

    NASA Astrophysics Data System (ADS)

    Zheng, Zhijun; Wang, Changfeng; Yu, Jilin; Reid, Stephen R.; Harrigan, John J.

    2014-12-01

    Dynamic uniaxial impact behaviour of metal foams using a 3D cell-based finite element model is examined. At sufficiently high loading rates, these materials respond by forming ‘shock or consolidation waves' (Tan et al., 2005a, 2005b). However, the existing dynamic experimental methods have limitations in fully informing this behaviour, particularly for solving boundary/initial value problems. Recently, the problem of the shock-like response of an open-cell foam has been examined by Barnes et al. (2014) using the Hugoniot-curve representations. The present study is somewhat complementary to that approach and additionally aims to provide insight into the ‘rate sensitivity' mechanism applicable to cellular materials. To assist our understanding of the ‘loading rate sensitivity' behaviour of cellular materials, a virtual ‘test' method based on the direct impact technique is explored. Following a continuum representation of the response, the strain field calculation method is employed to determine the local strains ahead of and behind the resulting ‘shock front'. The dynamic stress-strain states in the densification stage are found to be different from the quasi-static ones. It is evident that the constitutive behaviour of the cellular material is deformation-mode dependent. The nature of the ‘rate sensitivity' revealed for cellular materials in this paper is different from the strain-rate sensitivity of dense metals. It is shown that the dynamic stress-strain states behind a shock front of the cellular material lie on a unique curve and each point on the curve corresponds to a particular ‘impact velocity', referred as the velocity upstream of the shock in this study. The dynamic stress-strain curve is related to a layer-wise collapse mode, whilst the equivalent quasi-static curve is related to a random shear band collapse mode. The findings herein are aimed at improving the experimental test techniques used to characterise the rate-sensitivity behaviour

  13. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    NASA Astrophysics Data System (ADS)

    Duru, Kenneth; Dunham, Eric M.

    2016-01-01

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics

  14. 3D Dynamics of Freshwater Lenses in the Near-Surface Layer of the Tropical Ocean

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Dean, Cayla

    2015-04-01

    Convective rains in the Intertropical Convergence Zone (ITCZ) produce lenses of freshened water on the ocean surface. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. As a type of organized structure, gravity currents in the upper layer of the ocean may also interact with, and be shaped by, the ambient oceanic environment and atmospheric conditions. Among the important factors are the background stratification, wind stress, wind/wave mixing and spatially coherent organized motions in the near-surface layer of the ocean. Under certain conditions, a resonant interaction between a propagating freshwater lens and internal waves in the underlying pycnocline (e.g., barrier layer) may develop, whereas interaction with wind stress may produce an asymmetry in the freshwater lens and associated mixing. These two types of interactions working in concert may explain the series of sharp frontal interfaces, which have been observed in association with freshwater lenses during TOGA COARE. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the Aquarius and SMOS satellite image formation. Available near-surface data from field experiments served as a guidance for numerical simulations. The results of this study indicate that 3D dynamics of freshwater lenses are essential within a certain range of wind/wave conditions and the freshwater influx in the surface layer of the ocean.

  15. 3D airflow dynamics over transverse ridges Mpekweni, South Africa: implications for dune field migration behaviour

    NASA Astrophysics Data System (ADS)

    Jackson, Derek; Cooper, Andrew; Green, Andrew; Beyers, Meiring; Wiles, Errol; Benallack, Keegan

    2016-04-01

    Un-vegetated dune fields provide excellent opportunities to examine airflow dynamics over various types and scales of dune landforms. The three dimensional surface over which lower boundary layers travel, help adjust surface airflow and consequently the aeolian response of the dunes themselves. The use of computational fluid dynamic (CFD) modelling in recent studies now enables investigation of the 3D behaviour of airflow over complex terrain, providing new insights into heterogeneous surface flow and aeolian response of dune surfaces on a large (dunefield) scale. Using a largely un-vegetated coastal dune field site at Mpekweni, Eastern Cape, South Africa, a detailed (0.1m gridded) terrestrial laser scanning survey was conducted to create a high resolution topographical surface. Using local wind flow measurements and local met station records as input, CFD modelling was performed for a number of scenarios involving variable direction and magnitude to examine surface flow patterns across multiple dune forms. Near surface acceleration, expansion and separation of airflow inducing convergence and divergence (steering) of flow velocity streamlines are investigated. Flow acceleration over dune crests/brink lines is a key parameter in driving dune migration and slip face dynamics. Dune aspect ratio (height to length) is also important in determining the degree of crestal flow acceleration, with an increase in flow associated with increasing aspect ratios. Variations in dune height appear to be the most important parameter in driving general flow acceleration. The results from the study provide new insights into dune migration behaviour at this site as well as surface flow behaviour across multiple dune configurations and length scales within un-vegetated dune fields.

  16. Dynamic earthquake rupture simulation on nonplanar faults embedded in 3D geometrically complex, heterogeneous Earth models

    NASA Astrophysics Data System (ADS)

    Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.

    2014-12-01

    Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.

  17. Toward a 3D dynamic model of a faulty duplex ball bearing

    NASA Astrophysics Data System (ADS)

    Kogan, Gideon; Klein, Renata; Kushnirsky, Alex; Bortman, Jacob

    2015-03-01

    Bearings are vital components for safe and proper operation of machinery. Increasing efficiency of bearing diagnostics usually requires training of health and usage monitoring systems via expensive and time-consuming ground calibration tests. The main goal of this research, therefore, is to improve bearing dynamics modeling tools in order to reduce the time and budget needed to implement the health and usage monitoring approach. The proposed three-dimensional ball bearing dynamic model is based on the classic dynamic and kinematic equations. Interactions between the bodies are simulated using non-linear springs combined with dampers described by Hertz-type contact relation. The force friction is simulated using the hyperbolic-tangent function. The model allows simulation of a wide range of mechanical faults. It is validated by comparison to known bearing behavior and to experimental results. The model results are verified by demonstrating numerical convergence. The model results for the two cases of single and duplex angular ball bearings with axial deformation in the outer ring are presented. The qualitative investigation provides insight into bearing dynamics, the sensitivity study generalizes the qualitative findings for similar cases, and the comparison to the test results validates model reliability. The article demonstrates the variety of the cases that the 3D bearing model can simulate and the findings to which it may lead. The research allowed the identification of new patterns generated by single and duplex bearings with axially deformed outer race. It also enlightened the difference between single and duplex bearing manifestation. In the current research the dynamic model enabled better understanding of the physical behavior of the faulted bearings. Therefore, it is expected that the modeling approach has the potential to simplify and improve the development process of diagnostic algorithms. • A deformed outer race of a single axially loaded bearing is

  18. Additively Manufactured Device for Dynamic Culture of Large Arrays of 3D Tissue Engineered Constructs.

    PubMed

    Costa, Pedro F; Hutmacher, Dietmar W; Theodoropoulos, Christina; Gomes, Manuela E; Reis, Rui L; Vaquette, Cédryck

    2015-04-22

    The ability to test large arrays of cell and biomaterial combinations in 3D environments is still rather limited in the context of tissue engineering and regenerative medicine. This limitation can be generally addressed by employing highly automated and reproducible methodologies. This study reports on the development of a highly versatile and upscalable method based on additive manufacturing for the fabrication of arrays of scaffolds, which are enclosed into individualized perfusion chambers. Devices containing eight scaffolds and their corresponding bioreactor chambers are simultaneously fabricated utilizing a dual extrusion additive manufacturing system. To demonstrate the versatility of the concept, the scaffolds, while enclosed into the device, are subsequently surface-coated with a biomimetic calcium phosphate layer by perfusion with simulated body fluid solution. 96 scaffolds are simultaneously seeded and cultured with human osteoblasts under highly controlled bidirectional perfusion dynamic conditions over 4 weeks. Both coated and noncoated resulting scaffolds show homogeneous cell distribution and high cell viability throughout the 4 weeks culture period and CaP-coated scaffolds result in a significantly increased cell number. The methodology developed in this work exemplifies the applicability of additive manufacturing as a tool for further automation of studies in the field of tissue engineering and regenerative medicine.

  19. 3D Orbital Stability and Dynamic Environment of Asteroid 216 Kleopatra

    NASA Astrophysics Data System (ADS)

    Winter, Othon; Chanut, Thierry

    A peculiar asteroid that might be the target of future space mission explorations is 216 Kleopatra, which has two small satellites and a peculiar dog-bone shape. Recent data processing showed the existence of a difference that can reach 25% for the dimensions of 216 Kleopatra between the radar observations and the light curves. We rebuild the shape of the asteroid 216 Kleopatra from these new data and estimate certain physical features by using the polyhedral model method. In our computations we use a code that avoids singularities from the line integrals of a homogeneous arbitrary shaped polyhedral source. This code evaluates the gravitational potential function and its first and second order derivatives. Then, we find the location of the and zero velocity curves. Finally, taking the rotation of asteroid 216 Kleopatra into consideration, the aims of this work is to analyze the stability against impact and the dynamics of numerical simulations of 3D initially equatorial and polar orbits near the body.

  20. Monitoring an eruption fissure in 3D: video recording, particle image velocimetry and dynamics

    NASA Astrophysics Data System (ADS)

    Witt, Tanja; Walter, Thomas R.

    2015-04-01

    The processes during an eruption are very complex. To get a better understanding several parameters are measured. One of the measured parameters is the velocity of particles and patterns, as ash and emitted magma, and of the volcano itself. The resulting velocity field provides insights into the dynamics of a vent. Here we test our algorithm for 3 dimensional velocity fields on videos of the second fissure eruption of Bárdarbunga 2014. There we acquired videos from lava fountains of the main fissure with 2 high speed cameras with small angles between the cameras. Additionally we test the algorithm on videos from the geyser Strokkur, where we had 3 cameras and larger angles between the cameras. The velocity is calculated by a correlation in the Fourier space of contiguous images. Considering that we only have the velocity field of the surface smaller angles result in a better resolution of the existing velocity field in the near field. For general movements also larger angles can be useful, e.g. to get the direction, height and velocity of eruption clouds. In summary, it can be stated that 3D velocimetry can be used for several application and with different setup due to the application.

  1. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    SciTech Connect

    B. Philip; Z. Wang; M.A. Berrill; M. Birke; M. Pernice

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  2. An extensive 3D dislocation dynamics investigation of stage-I fatigue crack propagation

    NASA Astrophysics Data System (ADS)

    Déprés, C.; Prasad Reddy, G. V.; Robertson, C.; Fivel, M.

    2014-12-01

    Stage-I fatigue crack propagation is investigated using 3D discrete dislocation dynamics (DD) simulations. Slip-based propagation mechanisms and the role of the pre-existing slip band on the crack path are emphasized. Stage-I crack growth is found to be compatible with successive decohesion of the persistent slip band/matrix interface rather than a mere effect of plastic irreversibility. Corresponding crack tip slip displacement magnitude and the associated crack growth rate are evaluated quantitatively at various tip distances from the grain boundary. This shows that grain boundaries systematically amplify slip dispersion ahead of the crack tip and consequently, slow down the stage-I crack growth rate. The results help in developing an original crack propagation model, accounting for the boundary effects relevant to polycrystals. The crack growth trend is then evaluated from calculations of the energy changes due to crack length increments. It is shown that the crack necessarily propagates by increments smaller than 10 nm.

  3. Integration of Libration Point Orbit Dynamics into a Universal 3-D Autonomous Formation Flying Algorithm

    NASA Technical Reports Server (NTRS)

    Folta, David; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The autonomous formation flying control algorithm developed by the Goddard Space Flight Center (GSFC) for the New Millennium Program (NMP) Earth Observing-1 (EO-1) mission is investigated for applicability to libration point orbit formations. In the EO-1 formation-flying algorithm, control is accomplished via linearization about a reference transfer orbit with a state transition matrix (STM) computed from state inputs. The effect of libration point orbit dynamics on this algorithm architecture is explored via computation of STMs using the flight proven code, a monodromy matrix developed from a N-body model of a libration orbit, and a standard STM developed from the gravitational and coriolis effects as measured at the libration point. A comparison of formation flying Delta-Vs calculated from these methods is made to a standard linear quadratic regulator (LQR) method. The universal 3-D approach is optimal in the sense that it can be accommodated as an open-loop or closed-loop control using only state information.

  4. Interaction of 3d transition metal atoms with charged ion projectiles from Electron Nuclear Dynamics computation

    NASA Astrophysics Data System (ADS)

    Hagelberg, Frank

    2003-03-01

    Computational results on atomic scattering between charged projectiles and transition metal target atoms are presented. This work aims at obtaining detailed information about charge, spin and energy transfer processes that occur between the interacting particles. An in-depth understanding of these phenomena is expected to provide a theoretical basis for the interpretation of various types of ion beam experiments, ranging from gas phase chromatography to spectroscopic observations of fast ions in ferromagnetic media. This contribution focuses on the scattering of light projectiles ranging from He to O, that are prepared in various initial charge states, by 3d transition metal atoms. The presented computations are performed in the framework of Electron Nuclear Dynamics (END)^1 theory which incorporates the coupling between electronic and nuclear degrees of freedom without reliance on the computationally cumbersome and frequently intractable determination of potential energy surfaces. In the present application of END theory to ion - transition metal atom scattering, a supermolecule approach is utilized in conjunction with a spin-unrestricted single determinantal wave function describing the electronic system. Integral scattering, charge and spin exchange cross sections are discussed as functions of the elementary parameters of the problem, such as projectile and target atomic numbers as well as projectile charge and initial kinetic energy. ^1 E.Deumens, A.Diz, R.Longo, Y.Oehrn, Rev.Mod.Phys. 66, 917 (1994)

  5. A 3D Parallel Beam Dynamics Code for Modeling High Brightness Beams in Photoinjectors

    SciTech Connect

    Qiang, Ji; Lidia, S.; Ryne, R.D.; Limborg, C.; /SLAC

    2006-02-13

    In this paper we report on IMPACT-T, a 3D beam dynamics code for modeling high brightness beams in photoinjectors and rf linacs. IMPACT-T is one of the few codes used in the photoinjector community that has a parallel implementation, making it very useful for high statistics simulations of beam halos and beam diagnostics. It has a comprehensive set of beamline elements, and furthermore allows arbitrary overlap of their fields. It is unique in its use of space-charge solvers based on an integrated Green function to efficiently and accurately treat beams with large aspect ratio, and a shifted Green function to efficiently treat image charge effects of a cathode. It is also unique in its inclusion of energy binning in the space-charge calculation to model beams with large energy spread. Together, all these features make IMPACT-T a powerful and versatile tool for modeling beams in photoinjectors and other systems. In this paper we describe the code features and present results of IMPACT-T simulations of the LCLS photoinjectors. We also include a comparison of IMPACT-T and PARMELA results.

  6. A 3d Parallel Beam Dynamics Code for Modeling High BrightnessBeams in Photoinjectors

    SciTech Connect

    Qiang, J.; Lidia, S.; Ryne, R.; Limborg, C.

    2005-05-16

    In this paper we report on IMPACT-T, a 3D beam dynamics code for modeling high brightness beams in photoinjectors and rf linacs. IMPACT-T is one of the few codes used in the photoinjector community that has a parallel implementation, making it very useful for high statistics simulations of beam halos and beam diagnostics. It has a comprehensive set of beamline elements, and furthermore allows arbitrary overlap of their fields. It is unique in its use of space-charge solvers based on an integrated Green function to efficiently and accurately treat beams with large aspect ratio, and a shifted Green function to efficiently treat image charge effects of a cathode. It is also unique in its inclusion of energy binning in the space-charge calculation to model beams with large energy spread. Together, all these features make IMPACT-T a powerful and versatile tool for modeling beams in photoinjectors and other systems. In this paper we describe the code features and present results of IMPACT-T simulations of the LCLS photoinjectors. We also include a comparison of IMPACT-T and PARMELA results.

  7. Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Schwarz, J.-O.; Enzmann, F.

    2012-04-01

    Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of

  8. 3D deformation and dynamics of the human cadaver abdomen under seatbelt loading.

    PubMed

    Lamielle, Sophie; Vezin, Philippe; Verriest, Jean-Pierre; Petit, Philippe; Trosseille, Xavier; Vallancien, Guy

    2008-11-01

    to be able to compare the load penetration characteristics to the results reported in the literature. The injury outcomes are provided and compared to all the published data. The PMHS sustained MAIS2-3 abdominal injuries in the low speed tests and MAIS2-4 injuries in the high speed tests. Finally, the dynamic 3D deformation of the abdominal wall was reconstructed and is provided for further validation of finite element models of the human abdomen.

  9. Validation of computational fluid dynamics methods with anatomically exact, 3D printed MRI phantoms and 4D pcMRI.

    PubMed

    Anderson, Jeff R; Diaz, Orlando; Klucznik, Richard; Zhang, Y Jonathan; Britz, Gavin W; Grossman, Robert G; Lv, Nan; Huang, Qinghai; Karmonik, Christof

    2014-01-01

    A new concept of rapid 3D prototyping was implemented using cost-effective 3D printing for creating anatomically correct replica of cerebral aneurysms. With a dedicated flow loop set-up in a full body human MRI scanner, flow measurements were performed using 4D phase contrast magnetic resonance imaging to visualize and quantify intra-aneurysmal flow patterns. Ultrashort TE sequences were employed to obtain high-resolution 3D image data to visualize the lumen inside the plastic replica. In-vitro results were compared with retrospectively obtained in-vivo data and results from computational fluid dynamics simulations (CFD). Rapid prototyping of anatomically realistic 3D models may have future impact in treatment planning, design of image acquisition methods for MRI and angiographic systems and for the design and testing of advanced image post-processing technologies.

  10. 3D model based visualisation using dynamic models: problems with standard software and extensive strategies

    NASA Astrophysics Data System (ADS)

    Appelt, Veit; Shvetsov, Vladimir

    2006-04-01

    For projects concerning modification of urban structures or landscape, it is essential to have a visualisation before, during and after the planning. It conveys an impression of existing city structures or newly planned buildings roads, railways in 3D reality it helps to gain public acceptance. The design of such constructions makes high demands on geometry and planning technology. The construction project, as a 3D object, must therefore be assessed in whole and only this leads to a comprehensive evaluation of alignment, design and following up safety. On the basis of surveying and planning data, a 3D model fitted together of several information levels.

  11. Laminar cortical dynamics of 3D surface perception: stratification, transparency, and neon color spreading.

    PubMed

    Grossberg, Stephen; Yazdanbakhsh, Arash

    2005-06-01

    The 3D LAMINART neural model is developed to explain how the visual cortex gives rise to 3D percepts of stratification, transparency, and neon color spreading in response to 2D pictures and 3D scenes. Such percepts are sensitive to whether contiguous image regions have the same contrast polarity and ocularity. The model predicts how like-polarity competition at V1 simple cells in layer 4 may cause these percepts when it interacts with other boundary and surface processes in V1, V2, and V4. The model also explains how: the Metelli Rules cause transparent percepts, bistable transparency percepts arise, and attention influences transparency reversal.

  12. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei

    2016-04-01

    We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.

  13. How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision.

    PubMed

    Cao, Yongqiang; Grossberg, Stephen

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. Interactions between layers 4, 3B, and 2/3 in V1 and V2 carry out stereopsis and 3D boundary formation. Both binocular and monocular information combine to form 3D boundary and surface representations. Surface contour surface-to-boundary feedback from V2 thin stripes to V2 pale stripes combines computationally complementary boundary and surface formation properties, leading to a single consistent percept, while also eliminating redundant 3D boundaries, and triggering figure-ground perception. False binocular boundary matches are eliminated by Gestalt grouping properties during boundary formation. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. These model mechanisms have also simulated properties of 3D neon

  14. How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision.

    PubMed

    Cao, Yongqiang; Grossberg, Stephen

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. Interactions between layers 4, 3B, and 2/3 in V1 and V2 carry out stereopsis and 3D boundary formation. Both binocular and monocular information combine to form 3D boundary and surface representations. Surface contour surface-to-boundary feedback from V2 thin stripes to V2 pale stripes combines computationally complementary boundary and surface formation properties, leading to a single consistent percept, while also eliminating redundant 3D boundaries, and triggering figure-ground perception. False binocular boundary matches are eliminated by Gestalt grouping properties during boundary formation. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. These model mechanisms have also simulated properties of 3D neon

  15. How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision

    PubMed Central

    Cao, Yongqiang; Grossberg, Stephen

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. Interactions between layers 4, 3B, and 2/3 in V1 and V2 carry out stereopsis and 3D boundary formation. Both binocular and monocular information combine to form 3D boundary and surface representations. Surface contour surface-to-boundary feedback from V2 thin stripes to V2 pale stripes combines computationally complementary boundary and surface formation properties, leading to a single consistent percept, while also eliminating redundant 3D boundaries, and triggering figure-ground perception. False binocular boundary matches are eliminated by Gestalt grouping properties during boundary formation. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. These model mechanisms have also simulated properties of 3D neon

  16. 3D Visualization of "Frozen" Dynamic Magma Chambers in the Duluth Complex, Northeastern Minnesota

    NASA Astrophysics Data System (ADS)

    Peterson, D. M.; Hauck, S. A.

    2005-12-01

    The Mesoproterozoic Duluth Complex and associated intrusions of the Midcontinent Rift in northeastern Minnesota constitute one of the largest, semi-continuous, mafic intrusive complexes in the world, second only to the Bushveld Complex of South Africa. These rocks cover an arcuate area of over 5,000 square kilometers and give rise to two strong gravity anomalies (+50 & +70 mgal) that imply intrusive roots to more than 13 km depth. The geometry of three large mafic intrusions within the Duluth Complex have been modeled by the integration of field mapping and drill hole data with maps of gravity and magnetic anomalies. The igneous bodies include the South Kawishiwi, Partridge River, and Bald Eagle intrusions that collectively outcrop over an area of > 800 square kilometers. The South Kawishiwi and Partridge River intrusions host several billion tons of low-grade Cu-Ni-PGE mineralization near their base, while the geophysical expressions of the Bald Eagle intrusion have the same shape and dimensions as the "bulls eye" pattern of low velocity seismic reflection anomalies along the East Pacific Rise. These anomalies are interpreted to define regions of melt concentrations, i.e., active magma chambers. This suggests that the funnel-shaped Bald Eagle intrusion could be an example of a "frozen" dynamic magma chamber. In support of this analogy we note that the magmatic systems of intracontinental rifts, mid-ocean ridges, extensional regimes in back-arc environments, and ophiolites have a common characteristic: the emplacement of magma in extensional environments, and the common products in all four are varieties of layered intrusions, dikes and sills, and overlying volcanic rocks. 3D visualization of these intrusions is integral to the understanding of the Duluth Complex magmatic system and associated mineralization, and can be used as a proxy for study of similar systems, such as the Antarctic Ferrar dolerites, worldwide.

  17. The 3-D dynamics of slab break-off and implications for continental collision zones

    NASA Astrophysics Data System (ADS)

    van Hunen, Jeroen; Allen, Mark

    2010-05-01

    Some of the world best studied mountain ranges are a result of continental collision, such as the Himalayas, Zagros mountains, and the Alps. Continental collision forms the last stage of the closure of an oceanic basin, and leads to the slow-down or complete cessation of the subduction process. Previously subducted slab material will experience a period of thermal warming (Gerya et al., 2004) and/or a larger tensile stress, and will eventually weaken, yield and sink into the mantle. This process has potentially important implications for the thermal and stress regime of the overlying convergence zone, and has been held responsible for various phenomena such as late-stage magmatism (Davies and von Blanckenburg, 1995) and surface uplift or depression (van der Meulen et al., 1998, Buiter et al., 2002). Even though the collision process itself is relatively short-lived compared to the preceding oceanic subduction, its remnants are often preserved, and probably provide a valuable window into the plate tectonic process during the Proterozoic and perhaps the Archaean (e.g. Calvert et al., 1995). The three-dimensional nature of this break-off process has previously been discussed with conceptual models. E.g. slab break-off has been suggested to propagate laterally through an advancing tear (Wortel and Spakman, 2000). In this study we present 3D numerical results of the evolution of slab break-off. We focus on the development and evolution of a laterally migrating slab tear, and present results on the sensitivity of this process to the geometry of the closing oceanic basin, the tensile stresses in and the rheological properties of the slab, and the thermal state of the surrounding mantle. By comparing our numerical results to previously published analogue results (Regard et al., 2004) and various tomographic, structural, and magmatic observations of well-studied subduction collision systems, we are able to extract valuable insights in to the dynamics and strength of

  18. Compressible Magma/Mantle Dynamics: 3d, Adaptive Simulations in ASPECT

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Heister, Timo

    2016-09-01

    Melt generation and migration are an important link between surface processes and the thermal and chemical evolution of the Earth's interior. However, their vastly different time scales make it difficult to study mantle convection and melt migration in a unified framework, especially for three-dimensional, global models. And although experiments suggest an increase in melt volume of up to 20% from the depth of melt generation to the surface, previous computations have neglected the individual compressibilities of the solid and the fluid phase. Here, we describe our extension of the finite element mantle convection code ASPECT that adds melt generation and migration. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in areas where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. Together with a high-performance, massively parallel implementation, this allows for high resolution, 3d, compressible, global mantle convection simulations coupled with melt migration. We evaluate the functionality and potential of this method using a series of benchmarks and model setups, compare results of the compressible and incompressible formulation, and show the effectiveness of adaptive mesh refinement when applied to melt migration. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. This approach could prove particularly useful applied to modelling the generation of komatiites or other melts originating in greater depths. The implementation is available in the Open Source ASPECT repository.

  19. Dynamic diffusion tensor measurements in muscle tissue using Single Line Multiple Echo Diffusion Tensor Acquisition Technique at 3T

    PubMed Central

    Baete, Steven H.; Cho, Gene; Sigmund, Eric E.

    2015-01-01

    When diffusion biomarkers display transient changes, i.e. in muscle following exercise, traditional diffusion tensor imaging (DTI) methods lack temporal resolution to resolve the dynamics. This paper presents an MRI method for dynamic diffusion tensor acquisitions on a clinical 3T scanner. This method, SL-MEDITATE (Single Line Multiple Echo Diffusion Tensor Acquisition Technique) achieves a high temporal resolution (4s) (1) by rapid diffusion encoding through the acquisition of multiple echoes with unique diffusion sensitization and (2) by limiting the readout to a single line volume. The method is demonstrated in a rotating anisotropic phantom, in a flow phantom with adjustable flow speed, and in in vivo skeletal calf muscle of healthy volunteers following a plantar flexion exercise. The rotating and flow-varying phantom experiments show that SL-MEDITATE correctly identifies the rotation of the first diffusion eigenvector and the changes in diffusion tensor parameter magnitudes, respectively. Immediately following exercise, the in vivo mean diffusivity (MD) time-courses show, before the well-known increase, an initial decrease which is not typically observed in traditional DTI. In conclusion, SL-MEDITATE can be used to capture transient changes in tissue anisotropy in a single line. Future progress might allow for dynamic DTI when combined with appropriate k-space trajectories and compressed sensing reconstruction. PMID:25900166

  20. 3D-seismic observations of Late Pleistocene glacial dynamics on the central West Greenland margin

    NASA Astrophysics Data System (ADS)

    Hofmann, Julia; Knutz, Paul; Cofaigh, Colm Ó.

    2016-04-01

    Fast-flowing ice streams and outlet glaciers exert a major control on glacial discharge from contemporary and palaeo ice sheets. Improving our understanding of the extent and dynamic behaviour of these palaeo-ice streams is therefore crucial for predictions of the response of ice sheets to present and future climate warming and the associated implications for global sea level. This poster presents results from two 3D-seismic surveys located on the shelf adjoining the Disko Bay trough-mouth fan (TMF), one of the largest glacial outlet systems in Greenland. Located at the seaward terminus of the c. 370 km long cross-shelf Disko Trough, the Disko Bay TMF was generated by highly efficient subglacial sediment delivery onto the continental slopes during repeated ice-stream advances. A variety of submarine glacial landform assemblages are recognised on the seabed reflecting past ice-stream activity presumably related to glacial-interglacial cycles. The 3D-seismic volumes cover the shallow banks located north and south of the Disko Trough. The focus of this study is the seabed and the uppermost stratigraphic interval associated with the Late Stage of TMF development, presumably covering the late Pleistocene (Hofmann et al., submitted). Seabed morphologies include multiple sets of ridges up to 20 m high that extend in NW-SE direction for c. 30 km, and cross-cutting curvilinear furrows with maximum lengths of c. 9 km and average depths of c. 4.5 m. Back-stepping, arcuate scarps facing NW define the shelf break on the northern survey, comprising average widths of c. 4.5 km and incision depths of c. 27.5 m. The large transverse ridge features on the southern survey are likely ice-marginal and are interpreted as terminal moraine ridges recording the existence of a shelf-edge terminating, grounded Late Weichselian ice sheet. The furrows, most prominent on the outer shelf adjoining the shallow banks and partly incising the moraine ridges, are interpreted as iceberg ploughmarks

  1. Multiplexing encoding method for full-color dynamic 3D holographic display.

    PubMed

    Xue, Gaolei; Liu, Juan; Li, Xin; Jia, Jia; Zhang, Zhao; Hu, Bin; Wang, Yongtian

    2014-07-28

    The multiplexing encoding method is proposed and demonstrated for reconstructing colorful images accurately by using single phase-only spatial light modulator (SLM). It will encode the light waves at different wavelengths into one pure-phase hologram at the same time based on the analytic formulas. The three-dimensional (3D) images can be reconstructed clearly when the light waves at different wavelengths are incident into the encoding hologram. Numerical simulations and optical experiments for 2D and 3D colorful images are performed. The results show that the colorful reconstructed images with high quality are achieved successfully. The proposed multiplexing method is a simple and fast encoding approach and the size of the system is small and compact. It is expected to be used for realizing full-color 3D holographic display in future.

  2. 3D time-lapse analysis of Rab11/FIP5 complex: spatiotemporal dynamics during apical lumen formation.

    PubMed

    Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    Fluorescent imaging of fixed cells grown in two-dimensional (2D) cultures is one of the most widely used techniques for observing protein localization and distribution within cells. Although this technique can also be applied to polarized epithelial cells that form three-dimensional (3D) cysts when grown in a Matrigel matrix suspension, there are still significant limitations in imaging cells fixed at a particular point in time. Here, we describe the use of 3D time-lapse imaging of live cells to observe the dynamics of apical membrane initiation site (AMIS) formation and lumen expansion in polarized epithelial cells. PMID:25800842

  3. Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and computational fluid dynamics.

    PubMed

    Gallo, Diego; Gülan, Utku; Di Stefano, Antonietta; Ponzini, Raffaele; Lüthi, Beat; Holzner, Markus; Morbiducci, Umberto

    2014-09-22

    Parallel to the massive use of image-based computational hemodynamics to study the complex flow establishing in the human aorta, the need for suitable experimental techniques and ad hoc cases for the validation and benchmarking of numerical codes has grown more and more. Here we present a study where the 3D pulsatile flow in an anatomically realistic phantom of human ascending aorta is investigated both experimentally and computationally. The experimental study uses 3D particle tracking velocimetry (PTV) to characterize the flow field in vitro, while finite volume method is applied to numerically solve the governing equations of motion in the same domain, under the same conditions. Our findings show that there is an excellent agreement between computational and measured flow fields during the forward flow phase, while the agreement is poorer during the reverse flow phase. In conclusion, here we demonstrate that 3D PTV is very suitable for a detailed study of complex unsteady flows as in aorta and for validating computational models of aortic hemodynamics. In a future step, it will be possible to take advantage from the ability of 3D PTV to evaluate velocity fluctuations and, for this reason, to gain further knowledge on the process of transition to turbulence occurring in the thoracic aorta.

  4. Dynamics of electron emission in double photoionization processes near the krypton 3d threshold

    NASA Astrophysics Data System (ADS)

    Penent, F.; Sheinerman, S.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Becker, U.; Braune, M.; Viefhaus, J.; Eland, J. H. D.

    2008-02-01

    Two-electron emission following photoabsorption near the Kr 3d threshold is investigated both experimentally and theoretically. On the experimental side, electron/electron coincidences using a magnetic bottle time-of-flight spectrometer allow us to observe the complete double photo ionization (DPI) continua of selected Kr2+ final states, and to see how these continua are affected by resonant processes in the vicinity of the Kr 3d threshold. The analysis is based on a quantum mechanical approach that takes into account the contribution of three different processes: (A) Auger decay of the inner 3d vacancy with the associated post-collision interaction (PCI) effects, (B) capture of slow photoelectrons into discrete states followed by valence multiplet decay (VMD) of the excited ionic states and (C) valence shell DPI. The dominant process for each Kr2+(4p-2) final state is the photoionization of the inner shell followed by Auger decay of the 3d vacancies. Moreover, for the 4p-2(3P) and 4p-2(1D) final ionic states an important contribution comes from the processes of slow photoelectron capture followed by VMD as well as from double ionization of the outer shell involving also VMD.

  5. Graph-Based Compression of Dynamic 3D Point Cloud Sequences.

    PubMed

    Thanou, Dorina; Chou, Philip A; Frossard, Pascal

    2016-04-01

    This paper addresses the problem of compression of 3D point cloud sequences that are characterized by moving 3D positions and color attributes. As temporally successive point cloud frames share some similarities, motion estimation is key to effective compression of these sequences. It, however, remains a challenging problem as the point cloud frames have varying numbers of points without explicit correspondence information. We represent the time-varying geometry of these sequences with a set of graphs, and consider 3D positions and color attributes of the point clouds as signals on the vertices of the graphs. We then cast motion estimation as a feature-matching problem between successive graphs. The motion is estimated on a sparse set of representative vertices using new spectral graph wavelet descriptors. A dense motion field is eventually interpolated by solving a graph-based regularization problem. The estimated motion is finally used for removing the temporal redundancy in the predictive coding of the 3D positions and the color characteristics of the point cloud sequences. Experimental results demonstrate that our method is able to accurately estimate the motion between consecutive frames. Moreover, motion estimation is shown to bring a significant improvement in terms of the overall compression performance of the sequence. To the best of our knowledge, this is the first paper that exploits both the spatial correlation inside each frame (through the graph) and the temporal correlation between the frames (through the motion estimation) to compress the color and the geometry of 3D point cloud sequences in an efficient way.

  6. User's manual for PELE3D: a computer code for three-dimensional incompressible fluid dynamics

    SciTech Connect

    McMaster, W H

    1982-05-07

    The PELE3D code is a three-dimensional semi-implicit Eulerian hydrodynamics computer program for the solution of incompressible fluid flow coupled to a structure. The fluid and coupling algorithms have been adapted from the previously developed two-dimensional code PELE-IC. The PELE3D code is written in both plane and cylindrical coordinates. The coupling algorithm is general enough to handle a variety of structural shapes. The free surface algorithm is able to accommodate a top surface and several independent bubbles. The code is in a developmental status since all the intended options have not been fully implemented and tested. Development of this code ended in 1980 upon termination of the contract with the Nuclear Regulatory Commission.

  7. Versatile, Immersive, Creative and Dynamic Virtual 3-D Healthcare Learning Environments: A Review of the Literature

    PubMed Central

    2008-01-01

    The author provides a critical overview of three-dimensional (3-D) virtual worlds and “serious gaming” that are currently being developed and used in healthcare professional education and medicine. The relevance of this e-learning innovation for teaching students and professionals is debatable and variables influencing adoption, such as increased knowledge, self-directed learning, and peer collaboration, by academics, healthcare professionals, and business executives are examined while looking at various Web 2.0/3.0 applications. There is a need for more empirical research in order to unearth the pedagogical outcomes and advantages associated with this e-learning technology. A brief description of Roger’s Diffusion of Innovations Theory and Siemens’ Connectivism Theory for today’s learners is presented as potential underlying pedagogical tenets to support the use of virtual 3-D learning environments in higher education and healthcare. PMID:18762473

  8. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  9. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  10. Nitrogen dynamics in the Hyporheic zones of complex 3-D bedforms

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Cardenas, M. B.; Chen, X.

    2015-12-01

    The hyporheic zone (HZ) is a biogeochemically active zone that hosts the coupled reactions of organic carbon oxidation, nitrification, and denitrification. These N transformations could either produce or consume NO3- and thus the HZ could serve as a NO3-sink or source in the fluvial system. The reactants within the hyporheic zone are transported through advection by flow induced by bedform topography. However, most previous studies have focused on two-dimensional (2-D) and simple bedforms. Recent studies showed that even a simple 3-D bedform would have a higher hyporheic flux and a slightly larger volume or exchange zone depth, and thus a different residence time compared to its equivalent 2-D bedform. This implies that the competition between reactant supply and demand for the 3-D bedforms might be different from 2-D bedforms. In this study we will investigate the ecological role of HZ with much more complex and more natural 3-D bedforms through numerical simulations. We are investigating synthetic but realistic complex bedforms considering the superimposition of smaller dunes upon larger dunes. The goal of the study is improve our understanding and the prediction of the ecological function of HZ as a nitrate sink or source for a natural system.

  11. Dynamic Assessment of Fibroblast Mechanical Activity during Rac-induced Cell Spreading in 3-D Culture

    PubMed Central

    Petroll, W. Matthew; Ma, Lisha; Kim, Areum; Ly, Linda; Vishwanath, Mridula

    2009-01-01

    The goal of this study was to determine the morphological and sub-cellular mechanical effects of Rac activation on fibroblasts within 3-D collagen matrices. Corneal fibroblasts were plated at low density inside 100 μm thick fibrillar collagen matrices and cultured for 1 to 2 days in serum-free media. Time-lapse imaging was then performed using Nomarski DIC. After an acclimation period, perfusion was switched to media containing PDGF. In some experiments, Y-27632 or blebbistatin were used to inhibit Rho-kinase (ROCK) or myosin II, respectively. PDGF activated Rac and induced cell spreading, which resulted in an increase in cell length, cell area, and the number of pseudopodial processes. Tractional forces were generated by extending pseudopodia, as indicated by centripetal displacement and realignment of collagen fibrils. Interestingly, the pattern of pseudopodial extension and local collagen fibril realignment was highly dependent upon the initial orientation of fibrils at the leading edge. Following ROCK or myosin II inhibition, significant ECM relaxation was observed, but small displacements of collagen fibrils continued to be detected at the tips of pseudopodia. Taken together, the data suggests that during Rac-induced cell spreading within 3-D matrices, there is a shift in the distribution of forces from the center to the periphery of corneal fibroblasts. ROCK mediates the generation of large myosin II-based tractional forces during cell spreading within 3-D collagen matrices, however residual forces can be generated at the tips of extending pseudopodia that are both ROCK and myosin II-independent. PMID:18452153

  12. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology

    PubMed Central

    Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio

    2014-01-01

    Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems. PMID:24976386

  13. Heart wall motion analysis by dynamic 3D strain rate imaging from tissue Doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Hastenteufel, Mark; Wolf, Ivo; de Simone, Raffaele; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2002-04-01

    The knowledge about the complex three-dimensional (3D) heart wall motion pattern, particular in the left ventricle, provides valuable information about potential malfunctions, e.g., myocardial ischemia. Nowadays, echocardiography (cardiac ultrasound) is the predominant technique for evaluation of cardiac function. Beside morphology, tissue velocities can be obtained by Doppler techniques (tissue Doppler imaging, TDI). Strain rate imaging (SRI) is a new technique to diagnose heart vitality. It provides information about the contraction ability of the myocardium. Two-dimensional color Doppler echocardiography is still the most important clinical method for estimation of morphology and function. Two-dimensional methods leads to a lack of information due to the three-dimensional overall nature of the heart movement. Due to this complex three-dimensional motion pattern of the heart, the knowledge about velocity and strain rate distribution over the whole ventricle can provide more valuable diagnostic information about motion disorders. For the assessment of intracardiac blood flow three-dimensional color Doppler has already shown its clinical utility. We have developed methods to produce strain rate images by means of 3D tissue Doppler echocardiography. The tissue Doppler and strain rate images can be visualized and quantified by different methods. The methods are integrated into an interactively usable software environment, making them available in clinical everyday life. Our software provides the physician with a valuable tool for diagnosis of heart wall motion.

  14. The PLUNC 3D treatment planning system: a dynamic alternative to commercially available systems.

    PubMed

    Tewell, Marshall A; Adams, Robert

    2004-01-01

    Three-dimensional (3D) treatment planning is an integral step in the treatment of various cancers when radiation is prescribed as either the primary or adjunctive modality, especially when the gross tumor volume lies in a difficult to reach area or is proximal to critical bodily structures. Today, 3D systems have made it possible to more precisely localize tumors in order to treat a higher ratio of cancer cells to normal tissue. Over the past 15 years, these systems have evolved into complex tools that utilize powerful computational algorithms that offer diverse functional capabilities, while simultaneously attempting to maintain a user-friendly quality. A major disadvantage of commercial systems is that users do not have access to the programming source code, resulting in significantly limited clinical and technological flexibility. As an alternative, in-house systems such as Plan-UNC (PLUNC) offer optimal flexibility that is vital to research institutions and important to treatment facilities. Despite this weakness, commercially available systems have become the norm because their commissioning time is significantly less and because many facilities do not have computer experts on-site.

  15. High-speed dynamic 3D photoacoustic imaging of sentinel lymph node in a murine model using an ultrasound array.

    PubMed

    Song, Liang; Kim, Chulhong; Maslov, Konstantin; Shung, K Kirk; Wang, Lihong V

    2009-08-01

    Noninvasive photoacoustic sentinel lymph node (SLN) mapping with high spatial resolution has the potential to improve the false negative rate and eliminate the use of radioactive tracers in SLN identification. In addition, the demonstrated high spatial resolution may enable physicians to replace SLN biopsy with fine needle aspiration biopsy, and thus reduce the risk of associated morbidity. The primary goal of this study is to demonstrate the feasibility of high-speed 3D photoacoustic imaging of the uptake and clearance dynamics of Evans blue dye in SLNs. The photoacoustic imaging system was developed with a 30 MHz ultrasound array and a kHz repetition rate laser system. It acquires one 3D photoacoustic image of 166 B-scan frames in 1 s, with axial, lateral, and elevational resolutions of 25, 70, and 200 microm, respectively. With optic-fiber based light delivery, the entire system is compact and is convenient to use. Upon injection of Evans blue, a blue dye currently used in clinical SLN biopsy, SLNs in mice and rats were accurately and noninvasively mapped in vivo using our imaging system. In our experiments, the SLNs were found to be located at approximately 0.65 mm below the skin surface in mice and approximately 1.2 mm in rats. In some cases, lymph vessels and lymphatic valves were also imaged. The dye dynamics--accumulation and clearance--in SLNs were quantitatively monitored by sequential 3D imaging with temporal resolution of as high as approximately 6 s. The demonstrated capability suggests that high-speed 3D photoacoustic imaging should facilitate the understanding of the dynamics of various dyes in SLNs and potentially help identify SLNs with high accuracy. PMID:19746805

  16. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features.

    PubMed

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer's disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may be

  17. WARP3D-Release 10.8: Dynamic Nonlinear Analysis of Solids using a Preconditioned Conjugate Gradient Software Architecture

    NASA Technical Reports Server (NTRS)

    Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.

    1998-01-01

    This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves

  18. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features.

    PubMed

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer's disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may be

  19. Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope

    PubMed Central

    Kumar, Ankur N.; Miga, Michael I.; Pheiffer, Thomas S.; Chambless, Lola B.; Thompson, Reid C.; Dawant, Benoit M.

    2014-01-01

    One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient’s preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (~1 hour) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square

  20. Fully 3D Multiple Beam Dynamics Processes Simulation for the Fermilab Tevatron

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P; Valishev, A.; /Fermilab

    2010-06-01

    The Fermilab Tevatron has been, until 2010, the premier high-energy physics collider in the world. The data collected over the last decade by high-energy physics experiments running at the Tevatron have been analyzed to make important measurements in fundamental areas such as B meson masses and flavor oscillation, searches for the Higgs boson, and supersymmetry. Collecting these data at the limits of detectability has required the Tevatron to operate reliably at high beam intensities to maximize the number of collisions to analyze. This impressive achievement has been assisted by the use of HPC resources and software provided through the SciDAC program. This paper describes the enhancements to the BeamBeam3d code to realistically simulate the Tevatron, the validation of these simulations, and the improvement in equipment reliability and personal safety achieved with the aid of simulations.

  1. Dynamic complex optical fields for optical manipulation, 3D microscopy, and photostimulation of neurotransmitters

    NASA Astrophysics Data System (ADS)

    Daria, Vincent R.; Stricker, Christian; Bekkers, John; Redman, Steve; Bachor, Hans

    2010-08-01

    We demonstrate a multi-functional system capable of multiple-site two-photon excitation of photo-sensitive compounds as well as transfer of optical mechanical properties on an array of mesoscopic particles. We use holographic projection of a single Ti:Sapphire laser operating in femtosecond pulse mode to show that the projected three-dimensional light patterns have sufficient spatiotemporal photon density for multi-site two-photon excitation of biological fluorescent markers and caged neurotransmitters. Using the same laser operating in continuous-wave mode, we can use the same light patterns for non-invasive transfer of both linear and orbital angular momentum on a variety of mesoscopic particles. The system also incorporates high-speed scanning using acousto-optic modulators to rapidly render 3D images of neuron samples via two-photon microscopy.

  2. Tidal dynamics of the Terminos Lagoon, Mexico: observations and 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Contreras Ruiz Esparza, Adolfo; Douillet, Pascal; Zavala-Hidalgo, Jorge

    2014-09-01

    The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure-temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal ( K 1, O 1, P 1, Q 1) and four semi-diurnal ( M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s-1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.

  3. Measurement of particle trajectories, dynamics, surface adhesion and detachment in near-wall shear flows using 3D velocimetry

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Schmidt, Brian; Lawrence, Michael; Breuer, Kenneth

    2007-11-01

    Three-dimensional total internal reflection velocimetry (3D-TIRV) is used to measure the trajectories of fluorescent tracer particles within 200 nm of a wall. Diffusion and shear-induced motion can result in mean velocity measurement errors, and by taking measurements using different particle sizes and sampling times, we quantify these effects and compare with theory. We also use 3D-TIRV to observe and characterize the adhesion, surface rolling and release dynamics of particles that can adhere to the surface through the action of biological binding proteins. Particles coated with P-Selectin are allowed to adhere to and detach from a PSGL-1-coated microchannel surface, modeling the interaction between leukocytes (white blood cells) and blood vessels, respectively. Binding affinities, bond strengths and hydrodynamic interactions are inferred from the trajectory data.

  4. Integrating Dynamic Data and Sensors with Semantic 3D City Models in the Context of Smart Cities

    NASA Astrophysics Data System (ADS)

    Chaturvedi, K.; Kolbe, T. H.

    2016-10-01

    Smart cities provide effective integration of human, physical and digital systems operating in the built environment. The advancements in city and landscape models, sensor web technologies, and simulation methods play a significant role in city analyses and improving quality of life of citizens and governance of cities. Semantic 3D city models can provide substantial benefits and can become a central information backbone for smart city infrastructures. However, current generation semantic 3D city models are static in nature and do not support dynamic properties and sensor observations. In this paper, we propose a new concept called Dynamizer allowing to represent highly dynamic data and providing a method for injecting dynamic variations of city object properties into the static representation. The approach also provides direct capability to model complex patterns based on statistics and general rules and also, real-time sensor observations. The concept is implemented as an Application Domain Extension for the CityGML standard. However, it could also be applied to other GML-based application schemas including the European INSPIRE data themes and national standards for topography and cadasters like the British Ordnance Survey Mastermap or the German cadaster standard ALKIS.

  5. A 3-D adaptive mesh refinement algorithm for multimaterial gas dynamics

    SciTech Connect

    Puckett, E.G. ); Saltzman, J.S. )

    1991-08-12

    Adaptive Mesh Refinement (AMR) in conjunction with high order upwind finite difference methods has been used effectively on a variety of problems. In this paper we discuss an implementation of an AMR finite difference method that solves the equations of gas dynamics with two material species in three dimensions. An equation for the evolution of volume fractions augments the gas dynamics system. The material interface is preserved and tracked from the volume fractions using a piecewise linear reconstruction technique. 14 refs., 4 figs.

  6. Dynamical system of scalar field from 2-dimension to 3-D and its cosmological implications

    NASA Astrophysics Data System (ADS)

    Fang, Wei; Tu, Hong; Huang, Jiasheng; Shu, Chenggang

    2016-09-01

    We give the three-dimensional dynamical autonomous systems for most of the popular scalar field dark energy models including (phantom) quintessence, (phantom) tachyon, K-essence, and general non-canonical scalar field models, change the dynamical variables from variables (x, y, λ ) to observable related variables (w_{φ }, Ω _{φ }, λ ), and show the intimate relationships between those scalar fields that the three-dimensional system of K-essence can reduce to (phantom) tachyon, general non-canonical scalar field can reduce to (phantom) quintessence and K-essence can also reduce to (phantom) quintessence for some special cases. For the applications of the three-dimensional dynamical systems, we investigate several special cases and give the exactly dynamical solutions in detail. In the end of this paper, we argue that it is more convenient and also has more physical meaning to express the differential equations of dynamical systems in (w_{φ }, Ω _{φ }, λ ) instead of variables (x, y, λ ) and to investigate the dynamical system in three dimensions instead of two dimensions. We also raise a question about the possibility of the chaotic behavior in the spatially flat single scalar field FRW cosmological models in the presence of ordinary matter.

  7. Dynamic 2D ultrasound and 3D CT image registration of the beating heart.

    PubMed

    Huang, Xishi; Moore, John; Guiraudon, Gerard; Jones, Douglas L; Bainbridge, Daniel; Ren, Jing; Peters, Terry M

    2009-08-01

    Two-dimensional ultrasound (US) is widely used in minimally invasive cardiac procedures due to its convenience of use and noninvasive nature. However, the low quality of US images often limits their utility as a means for guiding procedures, since it is often difficult to relate the images to their anatomical context. To improve the interpretability of the US images while maintaining US as a flexible anatomical and functional real-time imaging modality, we describe a multimodality image navigation system that integrates 2D US images with their 3D context by registering them to high quality preoperative models based on magnetic resonance imaging (MRI) or computed tomography (CT) images. The mapping from such a model to the patient is completed using spatial and temporal registrations. Spatial registration is performed by a two-step rapid registration method that first approximately aligns the two images as a starting point to an automatic registration procedure. Temporal alignment is performed with the aid of electrocardiograph (ECG) signals and a latency compensation method. Registration accuracy is measured by calculating the TRE. Results show that the error between the US and preoperative images of a beating heart phantom is 1.7 +/-0.4 mm, with a similar performance being observed in in vivo animal experiments.

  8. Intersegmental dynamics of 3D upper arm and forearm longitudinal axis rotations during baseball pitching.

    PubMed

    Naito, Kozo; Takagi, Hiroyasu; Yamada, Norimasa; Hashimoto, Shinichi; Maruyama, Takeo

    2014-12-01

    The shoulder internal rotation (IR) and forearm pronation (PR) are important elements for baseball pitching, however, how rapid rotations of IR and PR are produced by muscular torques and inter-segmental forces is not clear. The aim of this study is to clarify how IR and PR angular velocities are maximized, depending on muscular torque and interactive torque effects, and gain a detailed knowledge about inter-segmental interaction within a multi-joint linked chain. The throwing movements of eight collegiate baseball pitchers were recorded by a motion capture system, and induced-acceleration analysis was used to assess the respective contributions of the muscular (MUS) and interactive torques associated with gyroscopic moment (GYR), and Coriolis (COR) and centrifugal forces (CEN) to maximum angular velocities of IR (MIRV) and PR (MPRV). The results showed that the contribution of MUS account for 98.0% of MIRV, while that contribution to MPRV was indicated as negative (-48.1%). It was shown that MPRV depends primarily on the interactive torques associated with GYR and CEN, but the effects of GYR, COR and CEN on MIRV are negligible. In conclusion, rapid PR motion during pitching is created by passive-effect, and is likely a natural movement which arises from 3D throwing movement. Applying the current analysis to IR and PR motions is helpful in providing the implications for improving performance and considering conditioning methods for pitchers.

  9. Intersegmental dynamics of 3D upper arm and forearm longitudinal axis rotations during baseball pitching.

    PubMed

    Naito, Kozo; Takagi, Hiroyasu; Yamada, Norimasa; Hashimoto, Shinichi; Maruyama, Takeo

    2014-12-01

    The shoulder internal rotation (IR) and forearm pronation (PR) are important elements for baseball pitching, however, how rapid rotations of IR and PR are produced by muscular torques and inter-segmental forces is not clear. The aim of this study is to clarify how IR and PR angular velocities are maximized, depending on muscular torque and interactive torque effects, and gain a detailed knowledge about inter-segmental interaction within a multi-joint linked chain. The throwing movements of eight collegiate baseball pitchers were recorded by a motion capture system, and induced-acceleration analysis was used to assess the respective contributions of the muscular (MUS) and interactive torques associated with gyroscopic moment (GYR), and Coriolis (COR) and centrifugal forces (CEN) to maximum angular velocities of IR (MIRV) and PR (MPRV). The results showed that the contribution of MUS account for 98.0% of MIRV, while that contribution to MPRV was indicated as negative (-48.1%). It was shown that MPRV depends primarily on the interactive torques associated with GYR and CEN, but the effects of GYR, COR and CEN on MIRV are negligible. In conclusion, rapid PR motion during pitching is created by passive-effect, and is likely a natural movement which arises from 3D throwing movement. Applying the current analysis to IR and PR motions is helpful in providing the implications for improving performance and considering conditioning methods for pitchers. PMID:25303496

  10. Dynamic 3-D chemical agent cloud mapping using a sensor constellation deployed on mobile platforms

    NASA Astrophysics Data System (ADS)

    Cosofret, Bogdan R.; Konno, Daisei; Rossi, David; Marinelli, William J.; Seem, Pete

    2014-05-01

    The need for standoff detection technology to provide early Chem-Bio (CB) threat warning is well documented. Much of the information obtained by a single passive sensor is limited to bearing and angular extent of the threat cloud. In order to obtain absolute geo-location, range to threat, 3-D extent and detailed composition of the chemical threat, fusion of information from multiple passive sensors is needed. A capability that provides on-the-move chemical cloud characterization is key to the development of real-time Battlespace Awareness. We have developed, implemented and tested algorithms and hardware to perform the fusion of information obtained from two mobile LWIR passive hyperspectral sensors. The implementation of the capability is driven by current Nuclear, Biological and Chemical Reconnaissance Vehicle operational tactics and represents a mission focused alternative of the already demonstrated 5-sensor static Range Test Validation System (RTVS).1 The new capability consists of hardware for sensor pointing and attitude information which is made available for streaming and aggregation as part of the data fusion process for threat characterization. Cloud information is generated using 2-sensor data ingested into a suite of triangulation and tomographic reconstruction algorithms. The approaches are amenable to using a limited number of viewing projections and unfavorable sensor geometries resulting from mobile operation. In this paper we describe the system architecture and present an analysis of results obtained during the initial testing of the system at Dugway Proving Ground during BioWeek 2013.

  11. Ultrasensitive detection of 3D cerebral microvascular network dynamics in vivo

    PubMed Central

    Pan, Yingtian; You, Jiang; Volkow, Nora D.; Park, Ki; Du, Congwu

    2014-01-01

    Despite widespread applications of multiphoton microscopy in microcirculation, its small field of view and inability to instantaneously quantify cerebral blood flow velocity (CBFv) in vascular networks limit its utility in investigating the heterogeneous responses to brain stimulations. Optical Doppler tomography (ODT) provides 3D images of CBFv networks, but it suffers poor sensitivity for measuring capillary flows. Here we report a new method, contrast-enhanced ODT with intralipid that significantly improves quantitative CBFv imaging of capillary networks by obviating the errors from long latency between flowing red blood cells (low hematocrit ~20% in capillaries). This enhanced sensitivity allowed us to measure the ultraslow microcirculation surrounding a brain tumor and the abnormal ingrowth of capillary flows in the tumor as well as in ischemia triggered by chronic cocaine in the mouse brain that could not be detected by regular ODT. It also enabled significantly enhanced sensitivity for quantifying the heterogeneous CBFv responses of vascular networks to acute cocaine. Inasmuch as intralipids are widely used for parenteral nutrition the intralipid contrast method has translational potential for clinical applications. PMID:25192654

  12. Quantitative 3D analysis of shape dynamics of the left ventricle

    NASA Astrophysics Data System (ADS)

    Scowen, Barry C.; Smith, Stephen L.; Vannan, Mani A.; Arsenault, Marie

    1998-07-01

    There is an established link between Left Ventricular (LV) geometry and its performance. As a consequence of ischemic heart disease and the attempt to relieve myocardial tissue stress, ventricle shape begins to distort from a conical to spherical geometry with a reduction in pumping efficiency of the chamber. If untreated, premature heart failure will result. To increase the changes of successful treatment it is obviously important for the benefit of the patient to detect these abnormalities as soon as possible. It is the development of a technique to characterize and quantify the shape of the left ventricle that is described here. The system described in this paper uses a novel helix model which combines the advantages of current two dimensional (2D) quantitative measures which provide limited information, with 3D qualitative methods which provide accurate reconstructions of the LV using computationally expensive rendering schemes. A phantom object and dog ventricle (normal/abnormal) were imaged and helical models constructed. The result are encouraging with differences between normal and abnormal ventricles in both diastole and systole able to be determined. Further work entails building a library of subjects in order to determine the relationship between ventricle geometry and quantitative measurements.

  13. Cation Exchange in Dynamic 3D Porous Magnets: Improvement of the Physical Properties.

    PubMed

    Grancha, Thais; Acosta, Alvaro; Cano, Joan; Ferrando-Soria, Jesús; Seoane, Beatriz; Gascon, Jorge; Pasán, Jorge; Armentano, Donatella; Pardo, Emilio

    2015-11-16

    We report two novel three-dimensional porous coordination polymers (PCPs) of formulas Li4{Mn4[Cu2(Me3mpba)2]3}·68H2O (2) and K4{Mn4[Cu2(Me3mpba)2]3}·69H2O (3) obtained-via alkali cation exchange in a single-crystal to single-crystal process-from the earlier reported anionic manganese(II)-copper(II) PCP of formula Na4{Mn4[Cu2(Me3mpba)2]3}·60H2O (1) [Me3mpba(4-) = N,N'-2,4,6-trimethyl-1,3-phenylenebis(oxamate)]. This postsynthetic process succeeds where the direct synthesis in solution from the corresponding building blocks fails and affords significantly more robust PCPs with enhanced magnetic properties [long-range 3D magnetic ordering temperatures for the dehydrated phases (1'-3') of 2.0 (1'), 12.0 (2'), and 20.0 K (3')]. Changes in the adsorptive properties upon postsynthetic exchange suggest that the nature, electrostatic properties, mobility, and location of the cations within the framework are crucial for the enhanced structural stability. Overall, these results further confirm the potential of postsynthetic methods (including cation exchange) to obtain PCPs with novel or enhanced physical properties while maintaining unaltered their open-framework structures. PMID:26492551

  14. The 1999 Izmit, Turkey, earthquake: A 3D dynamic stress transfer model of intraearthquake triggering

    USGS Publications Warehouse

    Harris, R.A.; Dolan, J.F.; Hartleb, R.; Day, S.M.

    2002-01-01

    Before the August 1999 Izmit (Kocaeli), Turkey, earthquake, theoretical studies of earthquake ruptures and geological observations had provided estimates of how far an earthquake might jump to get to a neighboring fault. Both numerical simulations and geological observations suggested that 5 km might be the upper limit if there were no transfer faults. The Izmit earthquake appears to have followed these expectations. It did not jump across any step-over wider than 5 km and was instead stopped by a narrower step-over at its eastern end and possibly by a stress shadow caused by a historic large earthquake at its western end. Our 3D spontaneous rupture simulations of the 1999 Izmit earthquake provide two new insights: (1) the west- to east-striking fault segments of this part of the North Anatolian fault are oriented so as to be low-stress faults and (2) the easternmost segment involved in the August 1999 rupture may be dipping. An interesting feature of the Izmit earthquake is that a 5-km-long gap in surface rupture and an adjacent 25° restraining bend in the fault zone did not stop the earthquake. The latter observation is a warning that significant fault bends in strike-slip faults may not arrest future earthquakes.

  15. Cation Exchange in Dynamic 3D Porous Magnets: Improvement of the Physical Properties.

    PubMed

    Grancha, Thais; Acosta, Alvaro; Cano, Joan; Ferrando-Soria, Jesús; Seoane, Beatriz; Gascon, Jorge; Pasán, Jorge; Armentano, Donatella; Pardo, Emilio

    2015-11-16

    We report two novel three-dimensional porous coordination polymers (PCPs) of formulas Li4{Mn4[Cu2(Me3mpba)2]3}·68H2O (2) and K4{Mn4[Cu2(Me3mpba)2]3}·69H2O (3) obtained-via alkali cation exchange in a single-crystal to single-crystal process-from the earlier reported anionic manganese(II)-copper(II) PCP of formula Na4{Mn4[Cu2(Me3mpba)2]3}·60H2O (1) [Me3mpba(4-) = N,N'-2,4,6-trimethyl-1,3-phenylenebis(oxamate)]. This postsynthetic process succeeds where the direct synthesis in solution from the corresponding building blocks fails and affords significantly more robust PCPs with enhanced magnetic properties [long-range 3D magnetic ordering temperatures for the dehydrated phases (1'-3') of 2.0 (1'), 12.0 (2'), and 20.0 K (3')]. Changes in the adsorptive properties upon postsynthetic exchange suggest that the nature, electrostatic properties, mobility, and location of the cations within the framework are crucial for the enhanced structural stability. Overall, these results further confirm the potential of postsynthetic methods (including cation exchange) to obtain PCPs with novel or enhanced physical properties while maintaining unaltered their open-framework structures.

  16. A Dynamic 3D Graphical Representation for RNA Structure Analysis and Its Application in Non-Coding RNA Classification

    PubMed Central

    Dong, Xiaoqing; Fang, Yiliang; Wang, Kejing; Zhu, Lijuan; Wang, Ke; Huang, Tao

    2016-01-01

    With the development of new technologies in transcriptome and epigenetics, RNAs have been identified to play more and more important roles in life processes. Consequently, various methods have been proposed to assess the biological functions of RNAs and thus classify them functionally, among which comparative study of RNA structures is perhaps the most important one. To measure the structural similarity of RNAs and classify them, we propose a novel three dimensional (3D) graphical representation of RNA secondary structure, in which an RNA secondary structure is first transformed into a characteristic sequence based on chemical property of nucleic acids; a dynamic 3D graph is then constructed for the characteristic sequence; and lastly a numerical characterization of the 3D graph is used to represent the RNA secondary structure. We tested our algorithm on three datasets: (1) Dataset I consisting of nine RNA secondary structures of viruses, (2) Dataset II consisting of complex RNA secondary structures including pseudo-knots, and (3) Dataset III consisting of 18 non-coding RNA families. We also compare our method with other nine existing methods using Dataset II and III. The results demonstrate that our method is better than other methods in similarity measurement and classification of RNA secondary structures. PMID:27213271

  17. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    SciTech Connect

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  18. An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation.

    PubMed

    Wang, Lichun; Cardenas, M Bayani

    2015-08-01

    The quantitative study of transport through fractured media has continued for many decades, but has often been constrained by observational and computational challenges. Here, we developed an efficient quasi-3D random walk particle tracking (RWPT) algorithm to simulate solute transport through natural fractures based on a 2D flow field generated from the modified local cubic law (MLCL). As a reference, we also modeled the actual breakthrough curves (BTCs) through direct simulations with the 3D advection-diffusion equation (ADE) and Navier-Stokes equations. The RWPT algorithm along with the MLCL accurately reproduced the actual BTCs calculated with the 3D ADE. The BTCs exhibited non-Fickian behavior, including early arrival and long tails. Using the spatial information of particle trajectories, we further analyzed the dynamic dispersion process through moment analysis. From this, asymptotic time scales were determined for solute dispersion to distinguish non-Fickian from Fickian regimes. This analysis illustrates the advantage and benefit of using an efficient combination of flow modeling and RWPT. PMID:26042625

  19. Dynamic tracking of a deformable tissue based on 3D-2D MR-US image registration

    NASA Astrophysics Data System (ADS)

    Marami, Bahram; Sirouspour, Shahin; Fenster, Aaron; Capson, David W.

    2014-03-01

    Real-time registration of pre-operative magnetic resonance (MR) or computed tomography (CT) images with intra-operative Ultrasound (US) images can be a valuable tool in image-guided therapies and interventions. This paper presents an automatic method for dynamically tracking the deformation of a soft tissue based on registering pre-operative three-dimensional (3D) MR images to intra-operative two-dimensional (2D) US images. The registration algorithm is based on concepts in state estimation where a dynamic finite element (FE)- based linear elastic deformation model correlates the imaging data in the spatial and temporal domains. A Kalman-like filtering process estimates the unknown deformation states of the soft tissue using the deformation model and a measure of error between the predicted and the observed intra-operative imaging data. The error is computed based on an intensity-based distance metric, namely, modality independent neighborhood descriptor (MIND), and no segmentation or feature extraction from images is required. The performance of the proposed method is evaluated by dynamically deforming 3D pre-operative MR images of a breast phantom tissue based on real-time 2D images obtained from an US probe. Experimental results on different registration scenarios showed that deformation tracking converges in a few iterations. The average target registration error on the plane of 2D US images for manually selected fiducial points was between 0.3 and 1.5 mm depending on the size of deformation.

  20. 3D Dynamics of Oblique Rift Systems: Fault Evolution from Rift to Break-up

    NASA Astrophysics Data System (ADS)

    Brune, S.

    2014-12-01

    Rift evolution and passive margin formation has been thoroughly investigated using conceptual and numerical models in two dimensions. However, the 2D assumption that the extension direction is perpendicular to the rift trend is often invalid. In fact, the majority of rift systems that lead to continental break-up during the last 150 My involved moderate to high rift obliquity. Yet, the degree to which oblique lithospheric extension affects first-order rift and passive margin properties like surface stress pattern, fault azimuths, and basin geometry, is still not entirely clear. This contribution provides insight in crustal stress patterns and fault orientations by applying a 3D numerical rift model to oblique extensional settings. The presented forward experiments cover the whole spectrum of oblique extension (i.e. rift-orthogonal extension, low obliquity, high obliquity, strike-slip deformation) from initial deformation to breakup. They are conducted using an elasto-visco-plastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Even though the model setup is very simple (horizontally layered, no inherited faults), its evolution exhibits a variety of fault orientations that are solely caused by the interaction of far-field stresses with rift-intrinsic buoyancy and strength. Depending on rift obliquity, these orientations involve rift-parallel, extension-orthogonal, and intermediate normal fault directions as well as strike-slip faults. Allowing new insights on fault patterns of the proximal and distal margins, the model shows that individual fault populations are activated in a characteristic multi-phase evolution driven by lateral density variations of the evolving rift system. Model results are in very good agreement with inferences from the well-studied Gulf of Aden and provide testable predictions for other rifts and passive margins worldwide.

  1. 3D Case Studies of Monitoring Dynamic Structural Tests using Long Exposure Imagery

    NASA Astrophysics Data System (ADS)

    McCarthy, D. M. J.; Chandler, J. H.; Palmeri, A.

    2014-06-01

    Structural health monitoring uses non-destructive testing programmes to detect long-term degradation phenomena in civil engineering structures. Structural testing may also be carried out to assess a structure's integrity following a potentially damaging event. Such investigations are increasingly carried out with vibration techniques, in which the structural response to artificial or natural excitations is recorded and analysed from a number of monitoring locations. Photogrammetry is of particular interest here since a very high number of monitoring locations can be measured using just a few images. To achieve the necessary imaging frequency to capture the vibration, it has been necessary to reduce the image resolution at the cost of spatial measurement accuracy. Even specialist sensors are limited by a compromise between sensor resolution and imaging frequency. To alleviate this compromise, a different approach has been developed and is described in this paper. Instead of using high-speed imaging to capture the instantaneous position at each epoch, long-exposure images are instead used, in which the localised image of the object becomes blurred. The approach has been extended to create 3D displacement vectors for each target point via multiple camera locations, which allows the simultaneous detection of transverse and torsional mode shapes. The proposed approach is frequency invariant allowing monitoring of higher modal frequencies irrespective of a sampling frequency. Since there is no requirement for imaging frequency, a higher image resolution is possible for the most accurate spatial measurement. The results of a small scale laboratory test using off-the-shelf consumer cameras are demonstrated. A larger experiment also demonstrates the scalability of the approach.

  2. Constraining the Absolute Orientation of eta Carinae's Binary Orbit: A 3-D Dynamical Model for the Broad [Fe III] Emission

    NASA Technical Reports Server (NTRS)

    Madura, T. I.; Gull, T. R.; Owocki, S. P.; Groh, J. H.; Okazaki, A. T.; Russell, C. M. P.

    2011-01-01

    We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA(theta) that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38deg, and the temporal variations in emission seen at negative slit PAs, the binary needs to have an i approx. = 130deg to 145deg, Theta approx. = -15deg to +30deg, and an orbital axis projected on the sky at a P A approx. = 302deg to 327deg east of north. This represents a system with an orbital axis that is closely aligned with the inferred polar axis of the Homunculus nebula, in 3-D. The companion star, Eta(sub B), thus orbits clockwise on the sky and is on the observer's side of the system at apastron. This orientation has important implications for theories for the formation of the Homunculus and helps lay the groundwork for orbital modeling to determine the stellar masses.

  3. 3D shoulder kinematics for static vs dynamic and passive vs active testing conditions.

    PubMed

    Robert-Lachaine, Xavier; Allard, Paul; Godbout, Véronique; Begon, Mickael

    2015-09-18

    Shoulder motion analysis provides clinicians with references of normal joint rotations. Shoulder joints orientations assessment is often based on series of static positions, while clinicians perform either passive or active tests and exercises mostly in dynamic. These conditions of motion could modify joint coordination and lead to discrepancies with the established references. Hence, the objective was to evaluate the influence of static vs dynamic and passive vs active testing conditions on shoulder joints orientations. Twenty asymptomatic subjects setup with 45 markers on the upper limb and trunk were tracked by an optoelectronic system. Static positions (30°, 60°, 90° and 120° of thoracohumeral elevation) and dynamic motion both in active condition and passively mobilised by an examiner were executed. Three-dimensional sternoclavicular, acromioclavicular, scapulothoracic and glenohumeral joint angles (12 in total) representing the distal segment orientation relative to the proximal segment orientation were estimated using a shoulder kinematical chain model. Separate four-way repeated measures ANOVA were applied on the 12 joint angles with factors of static vs dynamic, passive vs active, thoracohumeral elevation angle (30°, 60°, 90° and 120°) and plane of elevation (frontal and sagittal). Scapulothoracic lateral rotation progressed more during arm elevation in static than in dynamic gaining 4.2° more, and also in passive than in active by 6.6°. Glenohumeral elevation increased more during arm elevation in active than in passive by 4.4°. Shoulder joints orientations are affected by the testing conditions, which should be taken into consideration for data acquisition, inter-study comparison or clinical applications.

  4. Foot deformation during walking: differences between static and dynamic 3D foot morphology in developing feet.

    PubMed

    Barisch-Fritz, Bettina; Schmeltzpfenning, Timo; Plank, Clemens; Grau, Stefan

    2014-01-01

    The complex functions of feet require a specific composition, which is progressively achieved by developmental processes. This development should take place without being affected by footwear. The aim of this study is to evaluate differences between static and dynamic foot morphology in developing feet. Feet of 2554 participants (6-16 years) were recorded using a new scanner system (DynaScan4D). Each foot was recorded in static half and full weight-bearing and during walking. Several foot measures corresponding to those used in last construction were calculated. The differences were identified by one-way ANOVA and paired Student's t-test. Static and dynamic values of each foot measure must be considered to improve the fit of footwear. In particular, footwear must account for the increase of forefoot width and the decrease of midfoot girth. Furthermore, the toe box should have a more rounded shape. The findings are important for the construction of footwear for developing feet.

  5. A method of improving the dynamic response of 3D force/torque sensors

    NASA Astrophysics Data System (ADS)

    Osypiuk, Rafał; Piskorowski, Jacek; Kubus, Daniel

    2016-02-01

    In the paper attention is drawn to adverse dynamic properties of filters implemented in commercial measurement systems, force/torque sensors, which are increasingly used in industrial robotics. To remedy the problem, it has been proposed to employ a time-variant filter with appropriately modulated parameters, owing to which it is possible to suppress the amplitude of the transient response and, at the same time, to increase the pulsation of damped oscillations; this results in the improvement of dynamic properties in terms of reducing the duration of transients. This property plays a key role in force control and in the fundamental problem of the robot establishing contact with rigid environment. The parametric filters have been verified experimentally and compared with filters available for force/torque sensors manufactured by JR3. The obtained results clearly indicate the advantages of the proposed solution, which may be an interesting alternative to the classic methods of filtration.

  6. 3D Dynamics of Magnetopause Reconnection Using Hall-MHD Global Simulations

    NASA Astrophysics Data System (ADS)

    Maynard, K.; Germaschewski, K.; Raeder, J.; Bhattacharjee, A.

    2011-12-01

    Magnetic reconnection at Earth's magnetopause and in the magnetotail is of crucial importance for the dynamics of the global magnetosphere and space weather. Even though the plasma conditions in the magnetosphere are largely in the collisionless regime, most of the existing research using global computational models employ single-fluid magnetohydrodynamics (MHD) with artificial resistivity. Studies of reconnection in simplified, two-dimensional geometries have established that two-fluid and kinetic effects can dramatically alter dynamics and reconnection rates when compared with single-fluid models. These enhanced models also introduce particular signatures, for example a quadrupolar out-of-plane magnetic field component that has already been observed in space by satellite measurements. However, results from simplified geometries cannot be translated directly to the dynamics of three-dimensional magnetospheric reconnection. For instance, magnetic flux originating from the solar wind and arriving at the magnetopause can either reconnect or be advected around the magnetosphere. In this study, we use a new version of the OpenGGCM code that incorporates the Hall term in a Generalized Ohm's Law to study magnetopause reconnection under synthetic solar wind conditions and investigate how reconnection rates and dynamics of flux transfer events depend on the strength of the Hall term. The OpenGGCM, a global model of Earth's magnetosphere, has recently been ported to exploit modern computing architectures like the Cell processor and SIMD capabilities of conventional processors using an automatic code generator. These enhancements provide us with the performance needed to include the computationally expensive Hall physics.

  7. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features

    PubMed Central

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T.

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer’s disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may

  8. Haptic perception of force magnitude and its relation to postural arm dynamics in 3D.

    PubMed

    van Beek, Femke E; Bergmann Tiest, Wouter M; Mugge, Winfred; Kappers, Astrid M L

    2015-12-08

    In a previous study, we found the perception of force magnitude to be anisotropic in the horizontal plane. In the current study, we investigated this anisotropy in three dimensional space. In addition, we tested our previous hypothesis that the perceptual anisotropy was directly related to anisotropies in arm dynamics. In experiment 1, static force magnitude perception was studied using a free magnitude estimation paradigm. This experiment revealed a significant and consistent anisotropy in force magnitude perception, with forces exerted perpendicular to the line between hand and shoulder being perceived as 50% larger than forces exerted along this line. In experiment 2, postural arm dynamics were measured using stochastic position perturbations exerted by a haptic device and quantified through system identification. By fitting a mass-damper-spring model to the data, the stiffness, damping and inertia parameters could be characterized in all the directions in which perception was also measured. These results show that none of the arm dynamics parameters were oriented either exactly perpendicular or parallel to the perceptual anisotropy. This means that endpoint stiffness, damping or inertia alone cannot explain the consistent anisotropy in force magnitude perception.

  9. Measuring dynamic cell–material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels

    PubMed Central

    Schultz, Kelly M.; Kyburz, Kyle A.; Anseth, Kristi S.

    2015-01-01

    Biomaterials that mimic aspects of the extracellular matrix by presenting a 3D microenvironment that cells can locally degrade and remodel are finding increased applications as wound-healing matrices, tissue engineering scaffolds, and even substrates for stem cell expansion. In vivo, cells do not simply reside in a static microenvironment, but instead, they dynamically reengineer their surroundings. For example, cells secrete proteases that degrade extracellular components, attach to the matrix through adhesive sites, and can exert traction forces on the local matrix, causing its spatial reorganization. Although biomaterials scaffolds provide initially well-defined microenvironments for 3D culture of cells, less is known about the changes that occur over time, especially local matrix remodeling that can play an integral role in directing cell behavior. Here, we use microrheology as a quantitative tool to characterize dynamic cellular remodeling of peptide-functionalized poly(ethylene glycol) (PEG) hydrogels that degrade in response to cell-secreted matrix metalloproteinases (MMPs). This technique allows measurement of spatial changes in material properties during migration of encapsulated cells and has a sensitivity that identifies regions where cells simply adhere to the matrix, as well as the extent of local cell remodeling of the material through MMP-mediated degradation. Collectively, these microrheological measurements provide insight into microscopic, cellular manipulation of the pericellular region that gives rise to macroscopic tracks created in scaffolds by migrating cells. This quantitative and predictable information should benefit the design of improved biomaterial scaffolds for medically relevant applications. PMID:26150508

  10. Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players.

    PubMed

    Hirashima, Masaya; Kudo, Kazutoshi; Watarai, Koji; Ohtsuki, Tatsuyuki

    2007-01-01

    This study investigated how the human CNS organizes complex three-dimensional (3D) ball-throwing movements that require both speed and accuracy. Skilled baseball players threw a baseball to a target at three different speeds. Kinematic analysis revealed that the fingertip speed at ball release was mainly produced by trunk leftward rotation, shoulder internal rotation, elbow extension, and wrist flexion in all speed conditions. The study participants adjusted the angular velocities of these four motions to throw the balls at three different speeds. We also analyzed the dynamics of the 3D multijoint movements using a recently developed method called "nonorthogonal torque decomposition" that can clarify how angular acceleration about a joint coordinate axis (e.g., shoulder internal rotation) is generated by the muscle, gravity, and interaction torques. We found that the study participants utilized the interaction torque to generate larger angular velocities of the shoulder internal rotation, elbow extension, and wrist flexion. To increase the interaction torque acting at these joints, the ball throwers increased muscle torque at the shoulder and trunk but not at the elbow and wrist. These results indicates that skilled ball throwers adopted a hierarchical control in which the proximal muscle torques created a dynamic foundation for the entire limb motion and beneficial interaction torques for distal joint rotations.

  11. Seasonal dynamics and stoichiometry of the planktonic community in the NW Mediterranean Sea: a 3D modeling approach

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Raybaud, Virginie; Espinasse, Boris; Carlotti, François; Queguiner, Bernard; Thouvenin, Bénédicte; Garreau, Pierre; Baklouti, Melika

    2014-01-01

    The 3D hydrodynamic Model for Applications at Regional Scale (MARS3D) was coupled with a biogeochemical model developed with the Ecological Modular Mechanistic Modelling (Eco3M) numerical tool. The three-dimensional coupled model was applied to the NW Mediterranean Sea to study the dynamics of the key biogeochemical processes in the area in relation with hydrodynamic constraints. In particular, we focused on the temporal and spatial variability of intracellular contents of living and non-living compartments. The conceptual scheme of the biogeochemical model accounts for the complex food web of the NW Mediterranean Sea (34 state variables), using flexible plankton stoichiometry. We used mechanistic formulations to describe most of the biogeochemical processes involved in the dynamics of marine pelagic ecosystems. Simulations covered the period from September 1, 2009 to January 31, 2011 (17 months), which enabled comparison of model outputs with situ measurements made during two oceanographic cruises in the region (Costeau-4: April 27-May 2, 2010 and Costeau-6: January 23-January 27, 2011).

  12. KMOS3D: Dynamical Constraints on the Mass Budget in Early Star-forming Disks

    NASA Astrophysics Data System (ADS)

    Wuyts, Stijn; Förster Schreiber, Natascha M.; Wisnioski, Emily; Genzel, Reinhard; Burkert, Andreas; Bandara, Kaushala; Beifiori, Alessandra; Belli, Sirio; Bender, Ralf; Brammer, Gabriel B.; Chan, Jeffrey; Davies, Ric; Fossati, Matteo; Galametz, Audrey; Kulkarni, Sandesh K.; Lang, Philipp; Lutz, Dieter; Mendel, J. Trevor; Momcheva, Ivelina G.; Naab, Thorsten; Nelson, Erica J.; Saglia, Roberto P.; Seitz, Stella; Tacconi, Linda J.; Tadaki, Ken-ichi; Übler, Hannah; van Dokkum, Pieter G.; Wilman, David J.; Wuyts, Eva

    2016-11-01

    We exploit deep integral-field spectroscopic observations with KMOS/Very Large Telescope of 240 star-forming disks at 0.6\\lt z\\lt 2.6 to dynamically constrain their mass budget. Our sample consists of massive (≳ {10}9.8 {M}ȯ ) galaxies with sizes {R}e≳ 2 {kpc}. By contrasting the observed velocity and dispersion profiles with dynamical models, we find that on average the stellar content contributes {32}-7+8 % of the total dynamical mass, with a significant spread among galaxies (68th percentile range {f}{star}∼ 18 % {--}62 % ). Including molecular gas as inferred from CO- and dust-based scaling relations, the estimated baryonic mass adds up to {56}-12+17 % of the total for the typical galaxy in our sample, reaching ∼ 90 % at z\\gt 2. We conclude that baryons make up most of the mass within the disk regions of high-redshift star-forming disk galaxies, with typical disks at z\\gt 2 being strongly baryon-dominated within R e . Substantial object-to-object variations in both stellar and baryonic mass fractions are observed among the galaxies in our sample, larger than what can be accounted for by the formal uncertainties in their respective measurements. In both cases, the mass fractions correlate most strongly with measures of surface density. High-{{{Σ }}}{star} galaxies feature stellar mass fractions closer to unity, and systems with high inferred gas or baryonic surface densities leave less room for additional mass components other than stars and molecular gas. Our findings can be interpreted as more extended disks probing further (and more compact disks probing less far) into the dark matter halos that host them. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, and 096.A-0025.

  13. Progress in the Peeling-Ballooning Model of ELMs: Numerical Studies of 3D Nonlinear ELM Dynamics

    SciTech Connect

    Snyder, P B; Wilson, H R; Xu, X Q

    2004-12-13

    Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the non-linear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outer wall. Similarities to non-linear linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.

  14. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: NUMERICAL STUDIES OF 3D NONLINEAR ELM DYNAMICS

    SciTech Connect

    SNYDER,P.B; WILSON,H.R; XU,X.Q

    2004-11-01

    Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outboard wall. Similarities to non-linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.

  15. 3D mapping of buried underworld infrastructure using dynamic Bayesian network based multi-sensory image data fusion

    NASA Astrophysics Data System (ADS)

    Dutta, Ritaban; Cohn, Anthony G.; Muggleton, Jen M.

    2013-05-01

    The successful operation of buried infrastructure within urban environments is fundamental to the conservation of modern living standards. In this paper a novel multi-sensor image fusion framework has been proposed and investigated using dynamic Bayesian network for automatic detection of buried underworld infrastructure. Experimental multi-sensors images were acquired for a known buried plastic water pipe using Vibro-acoustic sensor based location methods and Ground Penetrating Radar imaging system. Computationally intelligent conventional image processing techniques were used to process three types of sensory images. Independently extracted depth and location information from different images regarding the target pipe were fused together using dynamic Bayesian network to predict the maximum probable location and depth of the pipe. The outcome from this study was very encouraging as it was able to detect the target pipe with high accuracy compared with the currently existing pipe survey map. The approach was also applied successfully to produce a best probable 3D buried asset map.

  16. MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION

    SciTech Connect

    Passos, Dário; Charbonneau, Paul; Miesch, Mark

    2015-02-10

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.

  17. 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in FCC and BCC metals

    SciTech Connect

    Hirth, J P; Rhee, M; Zhib, H M; de la Rubia, T D

    1999-02-19

    A dislocation dynamics (DD) model for plastic deformation, connecting the macroscopic mechanical properties to basic physical laws governing dislocation mobility and related interaction mechanisms, has been under development. In this model there is a set of critical reactions that determine the overall results of the simulations, such as the stress-strain curve. These reactions are, annihilation, formation of jogs, junctions, and dipoles, and cross-slip. In this paper we discuss these reactions and the manner in which they influence the simulated stress- strain behavior in fcc and bcc metals. In particular, we examine the formation (zipping) and strength of dipoles and junctions, and effect of jogs, using the dislocation dynamics model. We show that the strengths (unzipping) of these reactions for various configurations can be determined by direct evaluation of the elastic interactions. Next, we investigate the phenomenon of hardening in metals subjected to cascade damage dislocations. The microstructure investigated consists of small dislocation loops decorating the mobile dislocations. Preliminary results reveal that these loops act as hardening agents, trapping the dislocations and resulting in increased hardening.

  18. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report

    PubMed Central

    2014-01-01

    Background The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Methods Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. Results The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). Conclusion The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments. PMID:24456711

  19. Solvent-modified dynamic porosity in chiral 3D kagome frameworks.

    PubMed

    Keene, Tony D; Rankine, Damien; Evans, Jack D; Southon, Peter D; Kepert, Cameron J; Aitken, Jade B; Sumby, Christopher J; Doonan, Christian J

    2013-06-14

    Dynamically porous metal-organic frameworks (MOFs) with a chiral quartz-based structure have been synthesized from the multidentate ligand 2,2'-dihydroxybiphenyl-4,4'-dicarboxylate (H2diol). Compounds [Ni(II)(H2diol)(S)2]·xS (where S = DMF or DEF) show marked changes in 77 K N2 uptake between partially desolvated [Ni(II)(H2diol)(S)2] (only the pore solvent is removed) and fully desolvated [Ni(II)(H2diol)] forms. Furthermore, [Ni(II)(H2diol)(DMF)2] displays additional solvent-dependent porosity through the rotation of DMF molecules attached to the axial coordination sites of the Ni(II) centre. A unique feature of the four coordinate Ni(II) centre in [Ni(II)(H2diol)] is the dynamic response to its chemical environment. Exposure of [Ni(II)(H2diol)] to H2O and MeOH vapour leads to coordination of both axial sites of the Ni centres and to the generation of a solvated framework, whereas exposure to EtOH, DMF, acetone, and MeCN does not lead to any change in metal coordination or structure metrics. MeOH vapour adsorption was able to be tracked by time-dependent magnetometry as the solvated and desolvated structures have different magnetic moments. Solvated and desolvated forms of the MOF show remarkable differences in their thermal expansivities; [Ni(II)(H2diol)(DMF)2]·DMF displays marked positive thermal expansion (PTE) in the c-axis, yet near to zero thermal expansion, between 90 and 450 K, is observed for [Ni(II)(H2diol)]. These new MOF architectures demonstrate a dynamic structural and colourimetric response to selected adsorbates via a unique mechanism that involves a reversible change in the coordination environment of the metal centre. These coordination changes are mediated throughout the MOF by rotational mobility about the biaryl bond of the ligand.

  20. Dynamic mineral clouds on HD 189733b. I. 3D RHD with kinetic, non-equilibrium cloud formation

    NASA Astrophysics Data System (ADS)

    Lee, G.; Dobbs-Dixon, I.; Helling, Ch.; Bognar, K.; Woitke, P.

    2016-10-01

    Context. Observations of exoplanet atmospheres have revealed the presence of cloud particles in their atmospheres. 3D modelling of cloud formation in atmospheres of extrasolar planets coupled to the atmospheric dynamics has long been a challenge. Aims: We investigate the thermo-hydrodynamic properties of cloud formation processes in the atmospheres of hot Jupiter exoplanets. Methods: We simulate the dynamic atmosphere of HD 189733b with a 3D model that couples 3D radiative-hydrodynamics with a kinetic, microphysical mineral cloud formation module designed for RHD/GCM exoplanet atmosphere simulations. Our simulation includes the feedback effects of cloud advection and settling, gas phase element advection and depletion/replenishment and the radiative effects of cloud opacity. We model the cloud particles as a mix of mineral materials which change in size and composition as they travel through atmospheric thermo-chemical environments. All local cloud properties such as number density, grain size and material composition are time-dependently calculated. Gas phase element depletion as a result of cloud formation is included in the model. In situ effective medium theory and Mie theory is applied to calculate the wavelength dependent opacity of the cloud component. Results: We present a 3D cloud structure of a chemically complex, gaseous atmosphere of the hot Jupiter HD 189733b. Mean cloud particle sizes are typically sub-micron (0.01-0.5 μm) at pressures less than 1 bar with hotter equatorial regions containing the smallest grains. Denser cloud structures occur near terminator regions and deeper (~1 bar) atmospheric layers. Silicate materials such as MgSiO3[s] are found to be abundant at mid-high latitudes, while TiO2[s] and SiO2[s] dominate the equatorial regions. Elements involved in the cloud formation can be depleted by several orders of magnitude. Conclusions: The interplay between radiative-hydrodynamics and cloud kinetics leads to an inhomogeneous, wavelength

  1. Dynamic force measurements for a high bar using 3D motion capturing.

    PubMed

    Cagran, C; Huber, P; Müller, W

    2010-03-01

    The displacement of a calibrated horizontal bar is used as a measure for forces acting on the bar itself during dynamic performances in artistic gymnastics. The high bar is loaded with known forces and the displacement is monitored by means of a Vicon motion capturing system. The calibration results are fitted according to the Euler-Bernoulli beam theory. After calibration, forces can straightforwardly be measured by multiplication of the bar displacement with the determined fit parameter. This approach is also able to account for non-central force application (two hands on the bar) and the effect of the bar's inertia. Uncertainties in measured forces are assessed to be +/-25 N plus an additional 1% for the unknown weight distribution between the two hands. PMID:19906379

  2. Base and salt 3D forms of Emeraldine II polymers by Car-Parrinello molecular dynamics

    NASA Astrophysics Data System (ADS)

    Cavazzoni, Carlo; Colle, Renato; Farchioni, Riccardo; Grosso, Giuseppe

    2005-07-01

    We have studied structural and electronic properties of the three-dimensional crystalline regions of Emeraldine II polymers, in the base (EB-II) and salt (ES-II) forms, by means of first principle Car-Parrinello molecular dynamics. We compare the geometrical structures of the polymer chains in the primitive cells of EB-II and ES-II, pointing out the structural effects due to the protonation with HCl of the iminic nitrogens in the EB-II chains, and the effect of the counterions between neighboring chains. We also analyze the HOMO electron density distribution, band structure and density of states of the resulting bipolaronic structure of ES-II, which is energetically stable and maintains semiconductor character.

  3. Dynamical electron compressibility in the 3D topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Inhofer, Andreas; Assaf, Badih; Wilmart, Quentin; Veyrat, Louis; Nowka, Christian; Dufouleur, Joseph; Giraud, Romain; Hampel, Silke; Buechner, Bernd; Fève, Gwendal; Berroir, Jean-Marc; Placais, Bernard

    Measurements of the quantum capacitance cq, related to the electron compressibility χ =cq /e2 is a sensitive tool to probe the density of states. In a topological insulator (TI) the situation is enriched by the coexistence and the interplay of topologically protected surface states and massive bulk carriers. We investigate top-gate metal-oxyde-TI capacitors using Bi2Se3 thin crystals at GHz frequencies. These measurements provide insight into the compressibillity of such a two electron-fluid system. Furthermore, the dynamical response yields information about electron scattering properties in TIs. More specifically, in our measurements we track simultaneously the conductivity σ and the compressibility as a function of a DC-gate voltage. Using the Einstein relation σ =cq D , we have access to the gate dependence of the electron diffusion constant D (Vg) , a signature of the peculiar scattering mechanisms in TIs.

  4. A 3D model for α Gem AB: orbits and dynamics

    NASA Astrophysics Data System (ADS)

    Docobo, José A.; Andrade, Manuel; Campo, Pedro P.; Ling, Josefina F.

    2016-01-01

    The well-known multiple star system, Castor, and particularly, the [(Aa, Ab), (Ba, Bb)] subsystem, was studied in detail. After a rigorous analysis of the quality controls, a new solution for the visual orbit yielded new values for the different physical and orbital parameters of the system. In addition, a comprehensive investigation of the orbital configuration of the quadruple system allowed us to provide both accurate individual masses and orbital inclinations of the spectroscopic subcomponents, as well as a new value of its orbital parallax. Finally, by means of a numerical analysis of the long-term dynamics, we obtained the most probable values of the nodal angles of the two spectroscopic subsystems for the first time.

  5. Micronozzles: 3D numerical structural and gas dynamics modeling, fabrication, and preliminary experimental results

    NASA Astrophysics Data System (ADS)

    Borovkov, Alexei I.; Pyatishev, Evgenij N.; Lurie, Mihail S.; Korshunov, Andrey V.; Akulshin, Y. D.; Dolganov, A. G.; Sabadash, V. O.

    2000-02-01

    The tiny engines, founded on the principle of reactive thrust, are one of most perspective actuators developed by modern micromechanics. These engines can be applied for such apparent problems, as orientation and stabilization of small space objects, but also as local or distributed reactive thrust of new phylum of aerospace objects, for control of boundary layer of flying objects and in series of converting power devices of different purposes. Distinctive features of jet tiny engines are profitability (very large thrust-to-weight ratio) and high (milliseconds) response, which makes them to irreplaceable elements in control systems and, specially, in distributed power generations. These features are provided the minimum sizes, high pressure in working chambers and hypersonic velocity of propulsive jet. Topologically micronozzles are designed as the flat batch devices (3 layers as minimum). The lower and upper layers make flat walls of the nozzle and mainly influence on strength properties of the device. The mean layer reshapes geometry and determines gas dynamic characteristic of the nozzle. A special problem is the opening-up of the combustion-mixture, which is not esteemed in this work. It is necessary to allow for effect of considerable local stresses arising at the expense of static and dynamic loading at design of the jet tiny engines. Thermal gas dynamic processes in the chamber and nozzle determine the values and nature of these stresses, which are hardly studied for the microdevices. The priority is mathematical and experimental simulation of these processes. The most suitable object for initial phase of experimental simulation is the 'cold' engine. The demanded chamber static pressure is formed by external compressed air. In Laboratory of Microtechnology and MicroElectroMechanical Systems a number of such tiny engines with different shapes of the chamber's and the nozzles' surfaces were designed, made and tested. The engines were produced from photosensing

  6. Micronozzles: 3D numerical structural and gas dynamics modeling, fabrication, and preliminary experimental results

    NASA Astrophysics Data System (ADS)

    Borovkov, Alexei I.; Pyatishev, Evgenij N.; Lurie, Mihail S.; Korshunov, Andrey V.; Akulshin, Y. D.; Dolganov, A. G.; Sabadash, V. O.

    2001-02-01

    The tiny engines, founded on the principle of reactive thrust, are one of most perspective actuators developed by modern micromechanics. These engines can be applied for such apparent problems, as orientation and stabilization of small space objects, but also as local or distributed reactive thrust of new phylum of aerospace objects, for control of boundary layer of flying objects and in series of converting power devices of different purposes. Distinctive features of jet tiny engines are profitability (very large thrust-to-weight ratio) and high (milliseconds) response, which makes them to irreplaceable elements in control systems and, specially, in distributed power generations. These features are provided the minimum sizes, high pressure in working chambers and hypersonic velocity of propulsive jet. Topologically micronozzles are designed as the flat batch devices (3 layers as minimum). The lower and upper layers make flat walls of the nozzle and mainly influence on strength properties of the device. The mean layer reshapes geometry and determines gas dynamic characteristic of the nozzle. A special problem is the opening-up of the combustion-mixture, which is not esteemed in this work. It is necessary to allow for effect of considerable local stresses arising at the expense of static and dynamic loading at design of the jet tiny engines. Thermal gas dynamic processes in the chamber and nozzle determine the values and nature of these stresses, which are hardly studied for the microdevices. The priority is mathematical and experimental simulation of these processes. The most suitable object for initial phase of experimental simulation is the 'cold' engine. The demanded chamber static pressure is formed by external compressed air. In Laboratory of Microtechnology and MicroElectroMechanical Systems a number of such tiny engines with different shapes of the chamber's and the nozzles' surfaces were designed, made and tested. The engines were produced from photosensing

  7. 3-D Reconstruction of Structure and Dynamics of Coronal Twistors From STEREO and SDO Imagery

    NASA Astrophysics Data System (ADS)

    Slater, G. L.; Freeland, S. L.

    2014-12-01

    Although observed anecdotally for decades in H-alpha and EUV, so-called coronal 'tornadoes' have only recently become the focus of systematic and quantitative study and modeling. This increased focus has primarily been driven by data from the SDO observatory and more recently the IRIS observatory and ground-based telescopes. These ubiquitous magnetic structures differ in appearance and apparent dynamics depending upon position on the sun relative to the observer and upon observational wavelength. One of the key outstanding questions is whether they are actually rotating structures. Progress has been made using spectroscopic observations (IRIS, etc.) but the question is still not settled. We will present true stereographic movies of a set of these structures at various locations on the sun, using combinations of simultaneous STEREO and SDO imagery, in order to address the question of the actual motion of the structures.

  8. Morphology and Dynamics of Solar Prominences from 3D MHD Simulations

    NASA Astrophysics Data System (ADS)

    Terradas, J.; Soler, R.; Luna, M.; Oliver, R.; Ballester, J. L.

    2015-01-01

    In this paper we present a numerical study of the time evolution of solar prominences embedded in sheared magnetic arcades. The prominence is represented by a density enhancement in a background-stratified atmosphere and is connected to the photosphere through the magnetic field. By solving the ideal magnetohydrodynamic equations in three dimensions, we study the dynamics for a range of parameters representative of real prominences. Depending on the parameters considered, we find prominences that are suspended above the photosphere, i.e., detached prominences, but also configurations resembling curtain or hedgerow prominences whose material continuously connects to the photosphere. The plasma-β is an important parameter that determines the shape of the structure. In many cases magnetic Rayleigh-Taylor instabilities and oscillatory phenomena develop. Fingers and plumes are generated, affecting the whole prominence body and producing vertical structures in an essentially horizontal magnetic field. However, magnetic shear is able to reduce or even to suppress this instability.

  9. A parallel dynamic load balancing algorithm for 3-D adaptive unstructured grids

    NASA Technical Reports Server (NTRS)

    Vidwans, A.; Kallinderis, Y.; Venkatakrishnan, V.

    1993-01-01

    Adaptive local grid refinement and coarsening results in unequal distribution of workload among the processors of a parallel system. A novel method for balancing the load in cases of dynamically changing tetrahedral grids is developed. The approach employs local exchange of cells among processors in order to redistribute the load equally. An important part of the load balancing algorithm is the method employed by a processor to determine which cells within its subdomain are to be exchanged. Two such methods are presented and compared. The strategy for load balancing is based on the Divide-and-Conquer approach which leads to an efficient parallel algorithm. This method is implemented on a distributed-memory MIMD system.

  10. A molecular dynamics implementation of the 3D Mercedes-Benz water model

    NASA Astrophysics Data System (ADS)

    Hynninen, T.; Dias, C. L.; Mkrtchyan, A.; Heinonen, V.; Karttunen, M.; Foster, A. S.; Ala-Nissila, T.

    2012-02-01

    The three-dimensional Mercedes-Benz model was recently introduced to account for the structural and thermodynamic properties of water. It treats water molecules as point-like particles with four dangling bonds in tetrahedral coordination, representing H-bonds of water. Its conceptual simplicity renders the model attractive in studies where complex behaviors emerge from H-bond interactions in water, e.g., the hydrophobic effect. A molecular dynamics (MD) implementation of the model is non-trivial and we outline here the mathematical framework of its force-field. Useful routines written in modern Fortran are also provided. This open source code is free and can easily be modified to account for different physical context. The provided code allows both serial and MPI-parallelized execution. Program summaryProgram title: CASHEW (Coarse Approach Simulator for Hydrogen-bonding Effects in Water) Catalogue identifier: AEKM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 20 501 No. of bytes in distributed program, including test data, etc.: 551 044 Distribution format: tar.gz Programming language: Fortran 90 Computer: Program has been tested on desktop workstations and a Cray XT4/XT5 supercomputer. Operating system: Linux, Unix, OS X Has the code been vectorized or parallelized?: The code has been parallelized using MPI. RAM: Depends on size of system, about 5 MB for 1500 molecules. Classification: 7.7 External routines: A random number generator, Mersenne Twister ( http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/VERSIONS/FORTRAN/mt95.f90), is used. A copy of the code is included in the distribution. Nature of problem: Molecular dynamics simulation of a new geometric water model. Solution method: New force-field for

  11. Dynamics of Mantle Circulation Associated with Slab Window Formation: Insights from 3D Laboratory Models

    NASA Astrophysics Data System (ADS)

    Guillaume, B.; Funiciello, F.; Moroni, M.; Faccenna, C.; Martinod, J.

    2009-12-01

    Slab window can form either by the intersection of a spreading ridge with a subduction zone or because of internal deformation of the slab that leads to its disruption. The main consequences of this phenomenon are the modifications of the physical, chemical and thermal conditions in the backarc mantle that in turn affect the tectonic and magmatic evolution of the overriding plate. We performed laboratory models of a two-layer linear viscous slab (silicone putty)-upper mantle (glucose syrup) system to quantitatively investigate the pattern of mantle circulation within the slab window (using Feature Tracking image analysis technique) and its influence on the kinematics of the system. Two different geometries have been tested considering a window located (a) at slab edges or (b) within the slab. Kinematic consequences of slab window have been explored to understand the dynamics of the mantle-slab interaction. Configuration (a) implies a reduction of the slab width (W) during subduction and is characterized by toroidal fluxes around the slab edges. The abrupt opening of lateral slab windows produces an acceleration of the trench retreat and subduction velocity, such as 40% for a three-fold width reduction. We interpret this behavior as mostly due to the decrease in the toroidal flow inside subduction windows, scaling with W2. Configuration (b) has been designed to explore the pattern of mantle flow within the window in the case of a laterally constrained subduction system. Slab window, which had a width (Ww) fixed to 15 % of the slab width, opened in the trench-perpendicular direction. It produced the formation of two toroidal mantle cells, centered on the slab midpoint and laterally growing as the slab window enlarged. Particles extruded through the slab window did not mix with particles located in the mantle wedge, the boundary between both reaching distances from the trench up to 3×Ww in the trench-perpendicular direction, and up to 1.5×Ww from the window edge in

  12. Separation efficiency of a hydrodynamic separator using a 3D computational fluid dynamics multiscale approach.

    PubMed

    Schmitt, Vivien; Dufresne, Matthieu; Vazquez, Jose; Fischer, Martin; Morin, Antoine

    2014-01-01

    The aim of this study is to investigate the use of computational fluid dynamics (CFD) to predict the solid separation efficiency of a hydrodynamic separator. The numerical difficulty concerns the discretization of the geometry to simulate both the global behavior and the local phenomena that occur near the screen. In this context, a CFD multiscale approach was used: a global model (at the scale of the device) is used to observe the hydrodynamic behavior within the device; a local model (portion of the screen) is used to determine the local phenomena that occur near the screen. The Eulerian-Lagrangian approach was used to model the particle trajectories in both models. The global model shows the influence of the particles' characteristics on the trapping efficiency. A high density favors the sedimentation. In contrast, particles with small densities (1,040 kg/m(3)) are steered by the hydrodynamic behavior and can potentially be trapped by the separator. The use of the local model allows us to observe the particle trajectories near the screen. A comparison between two types of screens (perforated plate vs expanded metal) highlights the turbulent effects created by the shape of the screen.

  13. Parallel phase-shifting digital holography and its application to high-speed 3D imaging of dynamic object

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Xia, Peng; Wang, Yexin; Matoba, Osamu

    2016-03-01

    Digital holography is a technique of 3D measurement of object. The technique uses an image sensor to record the interference fringe image containing the complex amplitude of object, and numerically reconstructs the complex amplitude by computer. Parallel phase-shifting digital holography is capable of accurate 3D measurement of dynamic object. This is because this technique can reconstruct the complex amplitude of object, on which the undesired images are not superimposed, form a single hologram. The undesired images are the non-diffraction wave and the conjugate image which are associated with holography. In parallel phase-shifting digital holography, a hologram, whose phase of the reference wave is spatially and periodically shifted every other pixel, is recorded to obtain complex amplitude of object by single-shot exposure. The recorded hologram is decomposed into multiple holograms required for phase-shifting digital holography. The complex amplitude of the object is free from the undesired images is reconstructed from the multiple holograms. To validate parallel phase-shifting digital holography, a high-speed parallel phase-shifting digital holography system was constructed. The system consists of a Mach-Zehnder interferometer, a continuous-wave laser, and a high-speed polarization imaging camera. Phase motion picture of dynamic air flow sprayed from a nozzle was recorded at 180,000 frames per second (FPS) have been recorded by the system. Also phase motion picture of dynamic air induced by discharge between two electrodes has been recorded at 1,000,000 FPS, when high voltage was applied between the electrodes.

  14. 3D Dynamic Rupture Simulations Across Interacting Faults: the Mw7.0, 2010, Haiti Earthquake

    NASA Astrophysics Data System (ADS)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.; Aagaard, B.

    2014-12-01

    The mechanisms controlling rupture propagation between fault segments during an earthquake are key to the hazard posed by fault systems. Rupture initiation on a fault segment sometimes transfers to a larger fault, resulting in a significant event (e.g.i, 2002 M7.9Denali and 2010 M7.1 Darfield earthquakes). In other cases rupture is constrained to the initial segment and does not transfer to nearby faults, resulting in events of moderate magnitude. This is the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigatethe rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacenent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a Finite Element Model to simulate the nucleation and propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence. The best-fit simulation is in remarkable agreement with several finite fault inversions and predicts ground displacement in very good agreement with geodetic and geological observations. The two slip patches inferred from finite-fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure. Although our simulation results replicate well the ground deformation consistent with the geodetic surface observation but convolving the ground motion with the soil amplification from the microzonation study will correctly account for the heterogeneity of the PGA throughout the rupture area.

  15. Approximating the trajectory attractor of the 3D Navier-Stokes system using various \\alpha-models of fluid dynamics

    NASA Astrophysics Data System (ADS)

    Chepyzhov, V. V.

    2016-04-01

    We study the limit as α\\to 0{+} of the long-time dynamics for various approximate α-models of a viscous incompressible fluid and their connection with the trajectory attractor of the exact 3D Navier-Stokes system. The α-models under consideration are divided into two classes depending on the orthogonality properties of the nonlinear terms of the equations generating every particular α-model. We show that the attractors of α-models of class I have stronger properties of attraction for their trajectories than the attractors of α-models of class II. We prove that for both classes the bounded families of trajectories of the α-models considered here converge in the corresponding weak topology to the trajectory attractor A_0 of the exact 3D Navier-Stokes system as time t tends to infinity. Furthermore, we establish that the trajectory attractor A_α of every α-model converges in the same topology to the attractor A_0 as α\\to 0{+}. We construct the minimal limits A\\min\\subseteqA_0 of the trajectory attractors A_α for all α-models as α\\to 0{+}. We prove that every such set A\\min is a compact connected component of the trajectory attractor A_0, and all the A\\min are strictly invariant under the action of the translation semigroup.Bibliography: 39 titles.

  16. Guided wave-based J-integral estimation for dynamic stress intensity factors using 3D scanning laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Ayers, J.; Owens, C. T.; Liu, K. C.; Swenson, E.; Ghoshal, A.; Weiss, V.

    2013-01-01

    The application of guided waves to interrogate remote areas of structural components has been researched extensively in characterizing damage. However, there exists a sparsity of work in using piezoelectric transducer-generated guided waves as a method of assessing stress intensity factors (SIF). This quantitative information enables accurate estimation of the remaining life of metallic structures exhibiting cracks, such as military and commercial transport vehicles. The proposed full wavefield approach, based on 3D laser vibrometry and piezoelectric transducer-generated guided waves, provides a practical means for estimation of dynamic stress intensity factors (DSIF) through local strain energy mapping via the J-integral. Strain energies and traction vectors can be conveniently estimated from wavefield data recorded using 3D laser vibrometry, through interpolation and subsequent spatial differentiation of the response field. Upon estimation of the Jintegral, it is possible to obtain the corresponding DSIF terms. For this study, the experimental test matrix consists of aluminum plates with manufactured defects representing canonical elliptical crack geometries under uniaxial tension that are excited by surface mounted piezoelectric actuators. The defects' major to minor axes ratios vary from unity to approximately 133. Finite element simulations are compared to experimental results and the relative magnitudes of the J-integrals are examined.

  17. Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices.

    PubMed

    Knutsen, Ashleen R; Borkowski, Sean L; Ebramzadeh, Edward; Flanagan, Colleen L; Hollister, Scott J; Sangiorgio, Sophia N

    2015-09-01

    Recently, as an alternative to metal spinal fusion cages, 3D printed bioresorbable materials have been explored; however, the static and fatigue properties of these novel cages are not well known. Unfortunately, current ASTM testing standards used to determine these properties were designed prior to the advent of bioresorbable materials for cages. Therefore, the applicability of these standards for bioresorbable materials is unknown. In this study, an image-based topology and a conventional 3D printed bioresorbable poly(ε)-caprolactone (PCL) cervical cage design were tested in compression, compression-shear, and torsion, to establish their static and fatigue properties. Difficulties were in fact identified in establishing failure criteria and in particular determining compressive failure load. Given these limitations, under static loads, both designs withstood loads of over 650 N in compression, 395 N in compression-shear, and 0.25 Nm in torsion, prior to yielding. Under dynamic testing, both designs withstood 5 million (5M) cycles of compression at 125% of their respective yield forces. Geometry significantly affected both the static and fatigue properties of the cages. The measured compressive yield loads fall within the reported physiological ranges; consequently, these PCL bioresorbable cages would likely require supplemental fixation. Most importantly, supplemental testing methods may be necessary beyond the current ASTM standards, to provide more accurate and reliable results, ultimately improving preclinical evaluation of these devices. PMID:26072198

  18. Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices.

    PubMed

    Knutsen, Ashleen R; Borkowski, Sean L; Ebramzadeh, Edward; Flanagan, Colleen L; Hollister, Scott J; Sangiorgio, Sophia N

    2015-09-01

    Recently, as an alternative to metal spinal fusion cages, 3D printed bioresorbable materials have been explored; however, the static and fatigue properties of these novel cages are not well known. Unfortunately, current ASTM testing standards used to determine these properties were designed prior to the advent of bioresorbable materials for cages. Therefore, the applicability of these standards for bioresorbable materials is unknown. In this study, an image-based topology and a conventional 3D printed bioresorbable poly(ε)-caprolactone (PCL) cervical cage design were tested in compression, compression-shear, and torsion, to establish their static and fatigue properties. Difficulties were in fact identified in establishing failure criteria and in particular determining compressive failure load. Given these limitations, under static loads, both designs withstood loads of over 650 N in compression, 395 N in compression-shear, and 0.25 Nm in torsion, prior to yielding. Under dynamic testing, both designs withstood 5 million (5M) cycles of compression at 125% of their respective yield forces. Geometry significantly affected both the static and fatigue properties of the cages. The measured compressive yield loads fall within the reported physiological ranges; consequently, these PCL bioresorbable cages would likely require supplemental fixation. Most importantly, supplemental testing methods may be necessary beyond the current ASTM standards, to provide more accurate and reliable results, ultimately improving preclinical evaluation of these devices.

  19. Static and Dynamic Fatigue Behavior of Topology Designed and Conventional 3D Printed Bioresorbable PCL Cervical Interbody Fusion Devices

    PubMed Central

    Knutsen, Ashleen R.; Borkowski, Sean L.; Ebramzadeh, Edward; Flanagan, Colleen L.; Hollister, Scott J.; Sangiorgio, Sophia N.

    2015-01-01

    Recently, as an alternative to metal spinal fusion cages, 3D printed bioresorbable materials have been explored; however, the static and fatigue properties of these novel cages are not well known. Unfortunately, current ASTM testing standards used to determine these properties were designed prior to the advent of bioresorbable materials for cages. Therefore, the applicability of these standards for bioresorbable materials is unknown. In this study, an image-based topology and a conventional 3D printed bioresorbable poly(ε)-caprolactone (PCL) cervical cage design were tested in compression, compression-shear, and torsion, to establish their static and fatigue properties. Difficulties were in fact identified in establishing failure criteria and in particular determining compressive failure load. Given these limitations, under static loads, both designs withstood loads of over 650N in compression, 395N in compression-shear, and 0.25Nm in torsion, prior to yielding. Under dynamic testing, both designs withstood 5 million (5M) cycles of compression at 125% of their respective yield forces. Geometry significantly affected both the static and fatigue properties of the cages. The measured compressive yield loads fall within the reported physiological ranges; consequently, these PCL bioresorbable cages would likely require supplemental fixation. Most importantly, supplemental testing methods may be necessary beyond the current ASTM standards, to provide more accurate and reliable results, ultimately improving preclinical evaluation of these devices. PMID:26072198

  20. Characterization of 3D filament dynamics in a MAST SOL flux tube geometry

    NASA Astrophysics Data System (ADS)

    Walkden, N. R.; Dudson, B. D.; Fishpool, G.

    2013-10-01

    Non-linear simulations of filament propagation in a realistic MAST SOL flux tube geometry using the BOUT++ fluid modelling framework show an isolation of the dynamics of the filament in the divertor region from the midplane region due to three features of the magnetic geometry; the variation of magnetic curvature along the field line, the expansion of the flux tube and strong magnetic shear. Of the three effects, the latter two lead to a midplane ballooning feature of the filament, whilst the former leads to a ballooning around the X-points. In simulations containing all three effects the filament is observed to balloon at the midplane, suggesting that the role of curvature variation is sub-dominant to the flux expansion and magnetic shear. The magnitudes of these effects are all strongest near the X-point which leads to the formation of parallel density gradients. The filaments simulated, which represent filaments in MAST, are identified as resistive ballooning, meaning that their motion is inertially limited, not sheath limited. Parallel density gradients can drive the filament towards a Boltzmann response when the collisionalityof the plasma is low. The results here show that the formation of parallel density gradients is a natural and inevitable consequence of a realistic magnetic geometry and therefore the transition to the Boltzmann response is a consequence of the use of realistic magnetic geometry and does not require initializing specifically varying background profiles as in slab simulations. The filaments studied here are stable to the linear resistive drift-wave instability but are subject to the non-linear effects associated with the Boltzmann response, particularly Boltzmann spinning. The Boltzmann response causes the filament to spin on an axis. In later stages of its evolution a non-linear turbulent state develops where the vorticity evolves into a turbulent eddy field on the same length scale as the parallel current. The transition from interchange

  1. Dynamics of CD3+ T-cell Distribution Throughout the Estrous Cycle and Gestation in the Bovine Endometrium

    PubMed Central

    OHTA, Tomokazu; KOSHI, Katsuo; USHIZAWA, Koichi; HOSOE, Misa; TAKAHASHI, Toru; YAMAGUCHI, Takahiro; KIZAKI, Keiichiro; HASHIZUME, Kazuyoshi

    2013-01-01

    T cells are the dominant lymphocytes in the endometrium and are considered to play a crucial role in implantation and in the maintenance of gestation through cytokine production and immune regulation. The mechanisms underlying immunoregulation at the feto-maternal interface are still obscure for this complex system. Understanding the role of T cells is a key factor in understanding the endometrial immune system. In this study, the distribution of endometrial CD3+ T cells in bovines was examined by immunohistochemical analysis. The estrous cycle and gestation was divided into 4 stages, and the number of CD3+-positive T cells was counted in each stage. CD3+ cells were found in the endometrium in significant numbers throughout the estrous cycle and were mostly located in the subepithelial area. The number of CD3+ cells significantly increased in the early and mid-luteal phases but decreased after implantation with the progression of gestation. No T cells were found in the placentome or specifically in the tissues near the fetus, including the trophoblastic area. In addition, very few T cells were found in stromal regions close to the myometrium of the endometrium. These findings suggest that downregulation of bovine endometrial CD3+ T-cell functions is closely related to the successful maintenance of gestation in a spatiotemporal manner. PMID:23955235

  2. Using Parameters of Dynamic Pulse Function for 3d Modeling in LOD3 Based on Random Textures

    NASA Astrophysics Data System (ADS)

    Alizadehashrafi, B.

    2015-12-01

    The pulse function (PF) is a technique based on procedural preprocessing system to generate a computerized virtual photo of the façade with in a fixed size square(Alizadehashrafi et al., 2009, Musliman et al., 2010). Dynamic Pulse Function (DPF) is an enhanced version of PF which can create the final photo, proportional to real geometry. This can avoid distortion while projecting the computerized photo on the generated 3D model(Alizadehashrafi and Rahman, 2013). The challenging issue that might be handled for having 3D model in LoD3 rather than LOD2, is the final aim that have been achieved in this paper. In the technique based DPF the geometries of the windows and doors are saved in an XML file schema which does not have any connections with the 3D model in LoD2 and CityGML format. In this research the parameters of Dynamic Pulse Functions are utilized via Ruby programming language in SketchUp Trimble to generate (exact position and deepness) the windows and doors automatically in LoD3 based on the same concept of DPF. The advantage of this technique is automatic generation of huge number of similar geometries e.g. windows by utilizing parameters of DPF along with defining entities and window layers. In case of converting the SKP file to CityGML via FME software or CityGML plugins the 3D model contains the semantic database about the entities and window layers which can connect the CityGML to MySQL(Alizadehashrafi and Baig, 2014). The concept behind DPF, is to use logical operations to project the texture on the background image which is dynamically proportional to real geometry. The process of projection is based on two vertical and horizontal dynamic pulses starting from upper-left corner of the background wall in down and right directions respectively based on image coordinate system. The logical one/zero on the intersections of two vertical and horizontal dynamic pulses projects/does not project the texture on the background image. It is possible to define

  3. Using Parameters of Dynamic Pulse Function for 3d Modeling in LOD3 Based on Random Textures

    NASA Astrophysics Data System (ADS)

    Alizadehashrafi, B.

    2015-12-01

    The pulse function (PF) is a technique based on procedural preprocessing system to generate a computerized virtual photo of the façade with in a fixed size square(Alizadehashrafi et al., 2009, Musliman et al., 2010). Dynamic Pulse Function (DPF) is an enhanced version of PF which can create the final photo, proportional to real geometry. This can avoid distortion while projecting the computerized photo on the generated 3D model(Alizadehashrafi and Rahman, 2013). The challenging issue that might be handled for having 3D model in LoD3 rather than LOD2, is the final aim that have been achieved in this paper. In the technique based DPF the geometries of the windows and doors are saved in an XML file schema which does not have any connections with the 3D model in LoD2 and CityGML format. In this research the parameters of Dynamic Pulse Functions are utilized via Ruby programming language in SketchUp Trimble to generate (exact position and deepness) the windows and doors automatically in LoD3 based on the same concept of DPF. The advantage of this technique is automatic generation of huge number of similar geometries e.g. windows by utilizing parameters of DPF along with defining entities and window layers. In case of converting the SKP file to CityGML via FME software or CityGML plugins the 3D model contains the semantic database about the entities and window layers which can connect the CityGML to MySQL(Alizadehashrafi and Baig, 2014). The concept behind DPF, is to use logical operations to project the texture on the background image which is dynamically proportional to real geometry. The process of projection is based on two vertical and horizontal dynamic pulses starting from upper-left corner of the background wall in down and right directions respectively based on image coordinate system. The logical one/zero on the intersections of two vertical and horizontal dynamic pulses projects/does not project the texture on the background image. It is possible to define

  4. The effect of rheological approximations on the dynamics and topography in 3D subduction-collision models

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.

    2016-04-01

    Most of the major mountain belts and orogenic plateaus are found within the overlying plate of active or fossil subduction and/or collision zones. Moreover, they evolve differently from one another as the result of specific combinations of surface and mantle processes. These differences arise for several reasons, such as different rheological properties, different amounts of regional isostatic compensation, and different mechanisms by which forces are applied to the convergent plates. Previous 3D geodynamic models of subduction/collision processes have used various rheological approximations, making numerical results difficult to compare, since there is no clear image on the extent of these approximations on the dynamics. Here, we employ the code LaMEM to perform high-resolution long-term 3D simulations of subduction/continental collision in an integrated lithospheric and upper-mantle scale model. We test the effect of rheological approximations on mantle and lithosphere dynamics in a geometrically simplified model setup that resembles a tectonic map of the India-Asia collision zone. We use the "sticky-air" approach to allow for the development of topography and the dynamics of subduction and collision is entirely driven by slab-pull (i.e. "free subduction"). The models exhibit a wide range of behaviours depending on the rheological law employed: from linear to temperature-dependent visco-elasto-plastic rheology that takes into account both diffusion and dislocation creep. For example, we find that slab dynamics varies drastically between end member models: in viscous approximations, slab detachment is slow following a viscous thinning, while for a non-linear visco-elasto-plastic rheology, slab detachment is relatively fast, inducing strong mantle flow in the slab window. We also examine the stress states in the subducting and overriding plates and topography evolution in the upper plate, and we discuss the implications on lithosphere dynamics at convergent margins

  5. Comparing the effects of rheology on the dynamics and topography of 3D subduction-collision models

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2015-04-01

    Most of the major mountain belts and orogenic plateaus are found within the overlying plate of active or fossil subduction and/or collision zones. It is well known that they evolve differently from one another as the result of specific combinations of surface and mantle processes. The differences among the structures and evolutions of mountain belts arise for several reasons, such as different strengths of materials, different amounts of regional isostatic compensation, and different mechanisms by which forces are applied to the convergence plates. All these possible controlling factors can change with space and time. Of all the mountain belts and orogenic plateaus, the most striking example is the India-Asia collision zone, which gave rise to the Himalayas and the Tibetan Plateau, the largest region of elevated topography and anomalously thick crust on Earth. Understanding the formation and evolution of such a highly elevated region has been the focus of many tectonic and numerical models. While some of these models (i.e. thin sheet model) have successfully illustrated some of the basic physics of continental collision, none can simultaneously represent active processes such as subduction, underthrusting, channel flow or extrusion, for which fully 3D models are required. Here, we employed the 3D code LaMEM to investigate the role that subduction, continental collision and indentation play on lithosphere dynamics at convergent margins, and the implications they have for the Asian tectonics. Our model setup resembles a simplified tectonic map of the India-Asia collision zone and we performed long-term 3D simulations to analyse the dynamics and the conditions under which large topographic plateaus, such as the Tibetan Plateau can form in an integrated lithospheric and upper-mantle scale model. Results of models with linear viscous rheologies show different modes between the oceanic subduction side (continuous subduction, trench retreat and slab roll-back) and the

  6. 3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx

    NASA Astrophysics Data System (ADS)

    Dean, C.; Soloviev, A.

    2015-12-01

    Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.

  7. 3D nuclear architecture reveals coupled cell cycle dynamics of chromatin and nuclear pores in the malaria parasite Plasmodium falciparum.

    PubMed

    Weiner, Allon; Dahan-Pasternak, Noa; Shimoni, Eyal; Shinder, Vera; von Huth, Palle; Elbaum, Michael; Dzikowski, Ron

    2011-07-01

    The deadliest form of human malaria is caused by the protozoan parasite Plasmodium falciparum. The complex life cycle of this parasite is associated with tight transcriptional regulation of gene expression. Nuclear positioning and chromatin dynamics may play an important role in regulating P. falciparum virulence genes. We have applied an emerging technique of electron microscopy to construct a 3D model of the parasite nucleus at distinct stages of development within the infected red blood cell. We have followed the distribution of nuclear pores and chromatin throughout the intra-erythrocytic cycle, and have found a striking coupling between the distributions of nuclear pores and chromatin organization. Pore dynamics involve clustering, biogenesis, and division among daughter cells, while chromatin undergoes stage-dependent changes in packaging. Dramatic changes in heterochromatin distribution coincide with a previously identified transition in gene expression and nucleosome positioning during the mid-to-late schizont phase. We also found a correlation between euchromatin positioning at the nuclear envelope and the local distribution of nuclear pores, as well as a dynamic nuclear polarity during schizogony. These results suggest that cyclic patterns in gene expression during parasite development correlate with gross changes in cellular and nuclear architecture.

  8. Single Molecule 3D Orientation in Time and Space: A 6D Dynamic Study on Fluorescently Labeled Lipid Membranes.

    PubMed

    Börner, Richard; Ehrlich, Nicky; Hohlbein, Johannes; Hübner, Christian G

    2016-05-01

    Interactions between single molecules profoundly depend on their mutual three-dimensional orientation. Recently, we demonstrated a technique that allows for orientation determination of single dipole emitters using a polarization-resolved distribution of fluorescence into several detection channels. As the method is based on the detection of single photons, it additionally allows for performing fluorescence correlation spectroscopy (FCS) as well as dynamical anisotropy measurements thereby providing access to fast orientational dynamics down to the nanosecond time scale. The 3D orientation is particularly interesting in non-isotropic environments such as lipid membranes, which are of great importance in biology. We used giant unilamellar vesicles (GUVs) labeled with fluorescent dyes down to a single molecule concentration as a model system for both, assessing the robustness of the orientation determination at different timescales and quantifying the associated errors. The vesicles provide a well-defined spherical surface, such that the use of fluorescent lipid dyes (DiO) allows to establish a a wide range of dipole orientations experimentally. To complement our experimental data, we performed Monte Carlo simulations of the rotational dynamics of dipoles incorporated into lipid membranes. Our study offers a comprehensive view on the dye orientation behavior in a lipid membrane with high spatiotemporal resolution representing a six-dimensional fluorescence detection approach. PMID:26972111

  9. Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies.

    PubMed

    Larson, Peder E Z; Hu, Simon; Lustig, Michael; Kerr, Adam B; Nelson, Sarah J; Kurhanewicz, John; Pauly, John M; Vigneron, Daniel B

    2011-03-01

    Hyperpolarized 13C MR spectroscopic imaging can detect not only the uptake of the pre-polarized molecule but also its metabolic products in vivo, thus providing a powerful new method to study cellular metabolism. Imaging the dynamic perfusion and conversion of these metabolites provides additional tissue information but requires methods for efficient hyperpolarization usage and rapid acquisitions. In this work, we have developed a time-resolved 3D MR spectroscopic imaging method for acquiring hyperpolarized 13C data by combining compressed sensing methods for acceleration and multiband excitation pulses to efficiently use the magnetization. This method achieved a 2 sec temporal resolution with full volumetric coverage of a mouse, and metabolites were observed for up to 60 sec following injection of hyperpolarized [1-(13)C]-pyruvate. The compressed sensing acquisition used random phase encode gradient blips to create a novel random undersampling pattern tailored to dynamic MR spectroscopic imaging with sampling incoherency in four (time, frequency, and two spatial) dimensions. The reconstruction was also tailored to dynamic MR spectroscopic imaging by applying a temporal wavelet sparsifying transform to exploit the inherent temporal sparsity. Customized multiband excitation pulses were designed with a lower flip angle for the [1-(13)C]-pyruvate substrate given its higher concentration than its metabolic products ([1-(13)C]-lactate and [1-(13)C]-alanine), thus using less hyperpolarization per excitation. This approach has enabled the monitoring of perfusion and uptake of the pyruvate, and the conversion dynamics to lactate and alanine throughout a volume with high spatial and temporal resolution. PMID:20939089

  10. Fast Dynamic 3D MRSI with Compressed Sensing and Multiband Excitation Pulses for Hyperpolarized 13C Studies

    PubMed Central

    Larson, Peder E. Z.; Hu, Simon; Lustig, Michael; Kerr, Adam B.; Nelson, Sarah J.; Kurhanewicz, John; Pauly, John M.; Vigneron, Daniel B.

    2010-01-01

    Hyperpolarized 13C MRSI can detect not only the uptake of the pre-polarized molecule but also its metabolic products in vivo, thus providing a powerful new method to study cellular metabolism. Imaging the dynamic perfusion and conversion of these metabolites provides additional tissue information but requires methods for efficient hyperpolarization usage and rapid acquisitions. In this work, we have developed a time-resolved 3D MRSI method for acquiring hyperpolarized 13C data by combining compressed sensing methods for acceleration and multiband excitation pulses to efficiently use the magnetization. This method achieved a 2 sec temporal resolution with full volumetric coverage of a mouse, and metabolites were observed for up to 60 sec following injection of hyperpolarized [1-13C]-pyruvate. The compressed sensing acquisition used random phase encode gradient blips to create a novel random undersampling pattern tailored to dynamic MRSI with sampling incoherency in four (time, frequency and two spatial) dimensions. The reconstruction was also tailored to dynamic MRSI by applying a temporal wavelet sparsifying transform in order to exploit the inherent temporal sparsity. Customized multiband excitation pulses were designed with a lower flip angle for the [1-13C]-pyruvate substrate given its higher concentration than its metabolic products ([1-13C]-lactate and [1-13C]-alanine), thus using less hyperpolarization per excitation. This approach has enabled the monitoring of perfusion and uptake of the pyruvate, and the conversion dynamics to lactate and alanine throughout a volume with high spatial and temporal resolution. PMID:20939089

  11. Revealing plot scale heterogeneity in soil moisture dynamics under contrasting vegetation assemblages using 3D electrical resistivity tomography (ERT) surveys

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2016-04-01

    Soil moisture is a fundamental component of the water cycle that influences many hydrological processes, such as flooding, solute transport, biogeochemical processes, and land-atmosphere interactions. The relationship between vegetation and soil moisture is complex and reciprocal. Soil moisture may affect vegetation distribution due to its function as the primary source of water, in turn the structure of vegetation canopies regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in inputs, together with complex patterns of water uptake from distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Traditional methods of monitoring soil moisture have revolved around limited point measurements, but improved geophysical techniques have facilitated a trend towards more spatially distributed measurements to help understand this heterogeneity. Here, we present a study using 3D ERT surveys in a 3.2km upland catchment in the Scottish Highlands where increasing afforestation (for climate change adaptation, biofuels and conservation) has the potential to increase interception losses and reduce soil moisture storage. The study combined 3D surveys, traditional point measurements and laboratory analysis of soil cores to assess the plot scale soil moisture dynamics in podzolic soils under forest stands of 15m high Scots pine (Pinus sylvestris) and adjacent non-forest plots dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the

  12. Exploration of Novel Inhibitors for Bruton’s Tyrosine Kinase by 3D QSAR Modeling and Molecular Dynamics Simulation

    PubMed Central

    Choi, Light; Woo Lee, Keun

    2016-01-01

    Bruton’s tyrosine kinase (BTK) is a cytoplasmic, non-receptor tyrosine kinase which is expressed in most of the hematopoietic cells and plays an important role in many cellular signaling pathways. B cell malignancies are dependent on BCR signaling, thus making BTK an efficient therapeutic target. Over the last few years, significant efforts have been made in order to develop BTK inhibitors to treat B-cell malignancies, and autoimmunity or allergy/hypersensitivity but limited success has been achieved. Here in this study, 3D QSAR pharmacophore models were generated for Btk based on known IC50 values and experimental energy scores with extensive validations. The five features pharmacophore model, Hypo1, includes one hydrogen bond acceptor lipid, one hydrogen bond donor, and three hydrophobic features, which has the highest correlation coefficient (0.98), cost difference (112.87), and low RMS (1.68). It was further validated by the Fisher’s randomization method and test set. The well validated Hypo1 was used as a 3D query to search novel Btk inhibitors with different chemical scaffold using high throughput virtual screening technique. The screened compounds were further sorted by applying ADMET properties, Lipinski’s rule of five and molecular docking studies to refine the retrieved hits. Furthermore, molecular dynamic simulation was employed to study the stability of docked conformation and to investigate the binding interactions in detail. Several important hydrogen bonds with Btk were revealed, which includes the gatekeeper residues Glu475 and Met 477 at the hinge region. Overall, this study suggests that the proposed hits may be more effective inhibitors for cancer and autoimmune therapy. PMID:26784025

  13. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait.

    PubMed

    Guan, Shanyuanye; Gray, Hans A; Keynejad, Farzad; Pandy, Marcus G

    2016-01-01

    Most X-ray fluoroscopy systems are stationary and impose restrictions on the measurement of dynamic joint motion; for example, knee-joint kinematics during gait is usually measured with the subject ambulating on a treadmill. We developed a computer-controlled, mobile, biplane, X-ray fluoroscopy system to track human body movement for high-speed imaging of 3D joint motion during overground gait. A robotic gantry mechanism translates the two X-ray units alongside the subject, tracking and imaging the joint of interest as the subject moves. The main aim of the present study was to determine the accuracy with which the mobile imaging system measures 3D knee-joint kinematics during walking. In vitro experiments were performed to measure the relative positions of the tibia and femur in an intact human cadaver knee and of the tibial and femoral components of a total knee arthroplasty (TKA) implant during simulated overground gait. Accuracy was determined by calculating mean, standard deviation and root-mean-squared errors from differences between kinematic measurements obtained using volumetric models of the bones and TKA components and reference measurements obtained from metal beads embedded in the bones. Measurement accuracy was enhanced by the ability to track and image the joint concurrently. Maximum root-mean-squared errors were 0.33 mm and 0.65° for translations and rotations of the TKA knee and 0.78 mm and 0.77° for translations and rotations of the intact knee, which are comparable to results reported for treadmill walking using stationary biplane systems. System capability for in vivo joint motion measurement was also demonstrated for overground gait.

  14. Vertical Scan (V-SCAN) for 3-D Grid Adaptive Mesh Refinement for an atmospheric Model Dynamical Core

    NASA Astrophysics Data System (ADS)

    Andronova, N. G.; Vandenberg, D.; Oehmke, R.; Stout, Q. F.; Penner, J. E.

    2009-12-01

    One of the major building blocks of a rigorous representation of cloud evolution in global atmospheric models is a parallel adaptive grid MPI-based communication library (an Adaptive Blocks for Locally Cartesian Topologies library -- ABLCarT), which manages the block-structured data layout, handles ghost cell updates among neighboring blocks and splits a block as refinements occur. The library has several modules that provide a layer of abstraction for adaptive refinement: blocks, which contain individual cells of user data; shells - the global geometry for the problem, including a sphere, reduced sphere, and now a 3D sphere; a load balancer for placement of blocks onto processors; and a communication support layer which encapsulates all data movement. A major performance concern with adaptive mesh refinement is how to represent calculations that have need to be sequenced in a particular order in a direction, such as calculating integrals along a specific path (e.g. atmospheric pressure or geopotential in the vertical dimension). This concern is compounded if the blocks have varying levels of refinement, or are scattered across different processors, as can be the case in parallel computing. In this paper we describe an implementation in ABLCarT of a vertical scan operation, which allows computing along vertical paths in the correct order across blocks transparent to their resolution and processor location. We test this functionality on a 2D and a 3D advection problem, which tests the performance of the model’s dynamics (transport) and physics (sources and sinks) for different model resolutions needed for inclusion of cloud formation.

  15. RIMBAY - a multi-approximation 3D ice-dynamics model for comprehensive applications: model description and examples

    NASA Astrophysics Data System (ADS)

    Thoma, M.; Grosfeld, K.; Barbi, D.; Determann, J.; Goeller, S.; Mayer, C.; Pattyn, F.

    2014-01-01

    Glaciers and ice caps exhibit currently the largest cryospheric contributions to sea level rise. Modelling the dynamics and mass balance of the major ice sheets is therefore an important issue to investigate the current state and the future response of the cryosphere in response to changing environmental conditions, namely global warming. This requires a powerful, easy-to-use, versatile multi-approximation ice dynamics model. Based on the well-known and established ice sheet model of Pattyn (2003) we develop the modular multi-approximation thermomechanic ice model RIMBAY, in which we improve the original version in several aspects like a shallow ice-shallow shelf coupler and a full 3D-grounding-line migration scheme based on Schoof's (2007) heuristic analytical approach. We summarise the full Stokes equations and several approximations implemented within this model and we describe the different numerical discretisations. The results are cross-validated against previous publications dealing with ice modelling, and some additional artificial set-ups demonstrate the robustness of the different solvers and their internal coupling. RIMBAY is designed for an easy adaption to new scientific issues. Hence, we demonstrate in very different set-ups the applicability and functionality of RIMBAY in Earth system science in general and ice modelling in particular.

  16. Dynamic analysis of radial force density in brushless DC motor using 3-D equivalent magnetic circuit network method

    SciTech Connect

    Hur, J.; Chun, Y.D.; Lee, J.; Hyun, D.S.

    1998-09-01

    The distribution of radial force density in brushless permanent magnet DC motor is not uniform in axial direction. The analysis of radial force density has to consider the 3-D shape of teeth and overhand, because the radial force density causes vibration and acts on the surface of teeth inconstantly. For the analysis, a new 3-D equivalent magnetic circuit network method is used to account the rotor movement without remesh. The radial force density is calculated and analyzed by Maxwell stress tensor and discrete Fourier transform (DFT) respectively. The results of 3-D equivalent magnetic circuit method have been compared with the results of 3-D FEM.

  17. Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs.

    PubMed

    Allain, Ariane; Chauvot de Beauchêne, Isaure; Langenfeld, Florent; Guarracino, Yann; Laine, Elodie; Tchertanov, Luba

    2014-01-01

    Allostery is a universal phenomenon that couples the information induced by a local perturbation (effector) in a protein to spatially distant regulated sites. Such an event can be described in terms of a large scale transmission of information (communication) through a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. To elaborate a rational description of allosteric coupling, we propose an original approach - MOdular NETwork Analysis (MONETA) - based on the analysis of inter-residue dynamical correlations to localize the propagation of both structural and dynamical effects of a perturbation throughout a protein structure. MONETA uses inter-residue cross-correlations and commute times computed from molecular dynamics simulations and a topological description of a protein to build a modular network representation composed of clusters of residues (dynamic segments) linked together by chains of residues (communication pathways). MONETA provides a brand new direct and simple visualization of protein allosteric communication. A GEPHI module implemented in the MONETA package allows the generation of 2D graphs of the communication network. An interactive PyMOL plugin permits drawing of the communication pathways between chosen protein fragments or residues on a 3D representation. MONETA is a powerful tool for on-the-fly display of communication networks in proteins. We applied MONETA for the analysis of communication pathways (i) between the main regulatory fragments of receptors tyrosine kinases (RTKs), KIT and CSF-1R, in the native and mutated states and (ii) in proteins STAT5 (STAT5a and STAT5b) in the phosphorylated and the unphosphorylated forms. The description of the physical support for allosteric coupling by MONETA allowed a comparison of the mechanisms of (a) constitutive activation induced by equivalent mutations in two RTKs and (b) allosteric regulation in the activated and non

  18. Characterization of water content dynamics and tracer breakthrough by 3-D electrical resistivity tomography (ERT) under transient unsaturated conditions

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee D.

    2015-01-01

    Characterization of preferential flow and transport is still a major challenge but may be improved employing noninvasive, tomographic methods. In this study, 3-D time lapse electrical resistivity tomography (ERT) was employed during infiltration on an undisturbed, unsaturated soil core in a laboratory lysimeter. A tracer breakthrough was conducted during transient conditions by applying a series of short-term infiltrations, simulating natural precipitation events. The electrical response was quantitatively validated using data from a multicompartment suction sampler. Water content probes were also installed for ground-truthing of ERT responses. Water content variations associated with an infiltration front dominated the electrical response observed during individual short-term infiltration events, permitting analysis of water content dynamics from ERT data. We found that, instead of the application of an uncertain petrophysical function, shape measures of the electrical conductivity response might be used for constraining hydrological models. Considering tracer breakthroughs, the ERT observed voxel responses from time lapse tomograms at constant water contents in between infiltration events were used to quantitatively characterize the breakthrough curve. Shape parameters of the breakthrough derived from ERT, such as average velocity, were highly correlated with the shape parameters derived from local tracer breakthrough curves observed in the compartments of the suction plate. The study demonstrates that ERT can provide reliable quantitative information on both, tracer breakthroughs and water content variations under the challenging conditions of variable background electrical conductivity of the pore solution and non steady-state infiltration.

  19. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart

    PubMed Central

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H.

    2009-01-01

    Background Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. Methods We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and paediatric cardiology. This has permitted the preparation of three-dimensional (3-D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. Results We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. Conclusion We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning. PMID:19363807

  20. 3D-QSAR, molecular docking and molecular dynamics studies of a series of RORγt inhibitors.

    PubMed

    Wang, Fangfang; Yang, Wei; Shi, Yonghui; Le, Guowei

    2015-09-01

    The discovery of clinically relevant inhibitors of retinoic acid receptor-related orphan receptor-gamma-t (RORγt) for autoimmune diseases therapy has proven to be a challenging task. In the present work, to find out the structural features required for the inhibitory activity, we show for the first time a three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for a series of novel thiazole/thiophene ketone amides with inhibitory activity at the RORγt receptor. The optimum CoMFA and CoMSIA models, derived from ligand-based superimposition I, exhibit leave-one-out cross-validated correlation coefficient (R(2)cv) of .859 and .805, respectively. Furthermore, the external predictive abilities of the models were evaluated by a test set, producing the predicted correlation coefficient (R(2)pred) of .7317 and .7097, respectively. In addition, molecular docking analysis was applied to explore the binding modes between the inhibitors and the receptor. MD simulation and MM/PBSA method were also employed to study the stability and rationality of the derived conformations, and the binding free energies in detail. The QSAR models and the results of molecular docking, MD simulation, binding free energies corroborate well with each other and further provide insights regarding the development of novel RORγt inhibitors with better activity.

  1. Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics.

    PubMed

    Chi, Albert; Curi, Sebastian; Clayton, Kevin; Luciano, David; Klauber, Kameron; Alexander-Katz, Alfredo; D'hers, Sebastian; Elman, Noel M

    2014-08-01

    Rapid Reconstitution Packages (RRPs) are portable platforms that integrate microfluidics for rapid reconstitution of lyophilized drugs. Rapid reconstitution of lyophilized drugs using standard vials and syringes is an error-prone process. RRPs were designed using computational fluid dynamics (CFD) techniques to optimize fluidic structures for rapid mixing and integrating physical properties of targeted drugs and diluents. Devices were manufactured using stereo lithography 3D printing for micrometer structural precision and rapid prototyping. Tissue plasminogen activator (tPA) was selected as the initial model drug to test the RRPs as it is unstable in solution. tPA is a thrombolytic drug, stored in lyophilized form, required in emergency settings for which rapid reconstitution is of critical importance. RRP performance and drug stability were evaluated by high-performance liquid chromatography (HPLC) to characterize release kinetics. In addition, enzyme-linked immunosorbent assays (ELISAs) were performed to test for drug activity after the RRPs were exposed to various controlled temperature conditions. Experimental results showed that RRPs provided effective reconstitution of tPA that strongly correlated with CFD results. Simulation and experimental results show that release kinetics can be adjusted by tuning the device structural dimensions and diluent drug physical parameters. The design of RRPs can be tailored for a number of applications by taking into account physical parameters of the active pharmaceutical ingredients (APIs), excipients, and diluents. RRPs are portable platforms that can be utilized for reconstitution of emergency drugs in time-critical therapies.

  2. Comparative study of diverse model building strategies for 3D-ASM segmentation of dynamic gated SPECT data

    NASA Astrophysics Data System (ADS)

    Tobon-Gomez, C.; Butakoff, C.; Ordas, S.; Aguade, S.; Frangi, A. F.

    2007-03-01

    Over the course of the last two decades, myocardial perfusion with Single Photon Emission Computed Tomography (SPECT) has emerged as an established and well-validated method for assessing myocardial ischemia, viability, and function. Gated-SPECT imaging integrates traditional perfusion information along with global left ventricular function. Despite of these advantages, inherent limitations of SPECT imaging yield a challenging segmentation problem, since an error of only one voxel along the chamber surface may generate a huge difference in volume calculation. In previous works we implemented a 3-D statistical model-based algorithm for Left Ventricle (LV) segmentation of in dynamic perfusion SPECT studies. The present work evaluates the relevance of training a different Active Shape Model (ASM) for each frame of the gated SPECT imaging acquisition in terms of their subsequent segmentation accuracy. Models are subsequently employed to segment the LV cavity of gated SPECT studies of a virtual population. The evaluation is accomplished by comparing point-to-surface (P2S) and volume errors, both against a proper Gold Standard. The dataset comprised 40 voxel phantoms (NCAT, Johns Hopkins, University of of North Carolina). Monte-Carlo simulations were generated with SIMIND (Lund University) and reconstructed to tomographic slices with ASPIRE (University of Michigan).

  3. Use of magnetic micro-cantilevers to study the dynamics of 3D engineered smooth muscle constructs

    NASA Astrophysics Data System (ADS)

    Liu, Alan; Zhao, Ruogang; Copeland, Craig; Chen, Christopher; Reich, Daniel

    2013-03-01

    The normal and pathological response of arterial tissue to mechanical stimulus sheds important light on such conditions as atherosclerosis and hypertension. While most previous methods of determining the biomechanical properties of arteries have relied on excised tissue, we have devised a system that enables the growth and in situ application of forces to arrays of stable suspended microtissues consisting of arterial smooth muscle cells (SMCs). Briefly, this magnetic microtissue tester system consists of arrays of pairs of elastomeric magnetically actuated micro-cantilevers between which SMC-infused 3D collagen gels self-assemble and remodel into aligned microtissue constructs. These devices allow us to simultaneously apply force and track stress-strain relationships of multiple microtissues per substrate. We have studied the dilatory capacity and subsequent response of the tissues and find that the resulting stress-strain curves show viscoelastic behavior as well as a linear dynamic recovery. These results provide a foundation for elucidating the mechanical behavior of this novel model system as well as further experiments that simulate pathological conditions. Supported in part by NIH grant HL090747.

  4. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart.

    PubMed

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H

    2009-01-01

    Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and pediatric cardiology. This has permitted the preparation of three-dimensional (3D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning. PMID:19363807

  5. A 3D hp-Discontinuous Galerkin Method: Revisiting the M7.3 Landers Earthquake Dynamics

    NASA Astrophysics Data System (ADS)

    Tago, J.; Cruz-Atienza, V. M.; Virieux, J.; Etienne, V.; Sanchez-Sesma, F. J.

    2011-12-01

    Reliable dynamic source models should account of both fault geometry and heterogeneities in the surrounding medium. In this work we introduce a novel numerical method for modeling the dynamic rupture based on a 3D hp-Discontinuous Galerkin (DG) scheme. Our method is derived from the scheme proposed by Benjemaa et al. (2009), which is based on a Finite Volume (FV) approach. Migrating from such approach to the hp-Discontinuous Galerkin philosophy is somehow straightforward since the FV method can be seen as the DG method with its lowest order or approximation (i.e. P0 element). We present a novel approach for treating dynamic rupture boundary conditions using an hp-Discontinuous Galerkin method for unstructured tetrahedral meshes. Although the theory we have developed holds for fault elements with arbitrary order, we show that second order (P2) elements yield a very good convergence. Since the DG method does not impose continuity between elements, our strategy consists in the way we compute the fluxes across the fault elements. During rupture propagation, the fluxes in the elements where the shear traction overcomes the fault strength are such that continuity of every wavefield is imposed except for the tangential fault velocities, while in the unbroken elements tangential continuity is also imposed. Because the fault nodes of a given element are coupled through the Mass and Flux matrices, when a fault node breaks we impose the shear traction on that node and need to recompute the values throughout the rest, to avoid any violation of the friction law throughout the element. This procedure repeats itself iteratively following a predictor-corrector scheme for a given time step until the element solutions stabilize. We point out that our scheme for the fault fluxes in the case of P0 elements is exactly the same as the one proposed by Benjemaa et al. who compute them through energy balance considerations. To verify our mathematical and computational model we have solved

  6. Modelling of river plume dynamics in Öre estuary (Baltic Sea) with Telemac-3D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexander

    2016-04-01

    The main property of river plumes is their buoyancy, fresh water discharged by rivers is less dense than the receiving, saline waters. To study the processes of plume formation in case of river discharge into a brackish estuary where salinity is low (3.5 - 5 psu) a three dimensional hydrodynamic model was applied to the Öre estuary in the Baltic Sea. This estuary is a small fjord-like bay in the north part of the Baltic Sea. Size of the bay is about 8 by 8 km with maximum depth of 35 metres. River Öre has a small average freshwater discharge of 35 m3/s. But in spring during snowmelt the discharge can be many times higher. For example, in April 2015 the discharge increased from 8 m3/s to 160 m3/s in 18 days. To study river plume dynamics a finite element based three dimensional baroclinic model TELEMAC - 3D is used. The TELEMAC modelling suite is developed by the National Laboratory of Hydraulics and Environment (LNHE) of Electricité de France (EDF). Modelling domain was approximated by an unstructured mesh with element size varies from 50 to 500 m. In vertical direction a sigma-coordinate with 20 layers was used. Open sea boundary conditions were obtained from the Baltic Sea model HIROMB-BOOS using COPERNICUS marine environment monitoring service. Comparison of modelling results with observations obtained by BONUS COCOA project's field campaign in Öre estuary in 2015 shows that the model plausible simulate river plume dynamics. Modelling of age of freshwater is also discussed. This work resulted from the BONUS COCOA project was supported by BONUS (Art 185), funded jointly by the EU and the Swedish Research Council Formas.

  7. Efficient Numerical Modeling of 3D, Half-Space, Slow-Slip and Quasi-Dynamic Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Bradley, A. M.; Segall, P.

    2011-12-01

    Motivated by the hypothesis that dilatancy plays a critical role in faulting in subduction zones, we are developing FDRA2 (Fault Dynamics with the Radiation-damping Approximation), a software package to simulate three-dimensional quasi-dynamic faulting that includes rate-state friction, thermal pressurization, and dilatancy (following Segall and Rice [1995]) in a finite-width shear zone. This work builds on the two-dimensional simulations performed by FDRA1 (Bradley and Segall [AGU 2010], Segall and Bradley [submitted]). These simulations show that at lower background effective normal stress (\\bar σ), slow slip events occur spontaneously, whereas at higher \\bar σ , slip is inertially limited. At intermediate \\bar σ , dynamic events are followed by quiescent periods and then long durations of repeating slow slip events. Models with depth-dependent properties produce sequences similar to those observed in Cascadia. Like FDRA1, FDRA2 solves partial differential equations in pressure and temperature on profiles normal to the fault. The diffusion equations are discretized in space using finite differences on a nonuniform mesh having greater density near the fault. The full system of equations is a semiexplicit index-1 differential algebraic equation (DAE) in slip, slip rate, state, fault zone porosity, pressure, and temperature. We integrate state, porosity, and slip explicitly; solve the momentum balance equation on the fault for slip rate; and integrate pressure and temperature implicitly. Adaptive time steps are limited by accuracy and the stability criterion governing explicit integration of hyperbolic, but not the more stringent one governing parabolic, PDE. To compute elasticity in a 3D half-space, FDRA2 compresses the large, dense matrix arising from the boundary element method using an H-matrix. The work to perform a matrix-vector product scales almost linearly, rather than quadratically, in the number of fault cells. A new technique to relate the error

  8. 3D numerical modeling of subduction dynamics: plate stagnation and segmentation, and crustal advection in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Tajima, F.

    2012-04-01

    Water content in the mantle transition zone (MTZ) has been broadly debated in the Earth science community as a key issue for plate dynamics [e.g., Bercovici and Karato, 2003]. In this study, a systematic series of three-dimensional (3D) numerical simulation are performed in an attempt to verify two hypotheses for plate subduction with effects of deep water transport: (1) the small-scale behavior of subducted oceanic plate in the MTZ; and (2) the role of subducted crust in the MTZ. These hypotheses are postulated based on the seismic observations characterized by large-scale flattened high velocity anomalies (i.e., stagnant slabs) in the MTZ and discontinuity depth variations. The proposed model states that under wet conditions the subducted plate main body of peridotite (olivine rich) is abutted by subducted crustal materials (majorite rich) at the base of the MTZ. The computational domain of mantle convection is confined to 3D regional spherical-shell geometry with a thickness of 1000 km and a lateral extent of 10° × 30° in the latitudinal and longitudinal directions. A semi-dynamic model of subduction zone [Morishige et al., 2010] is applied to let the highly viscous, cold oceanic plate subduct. Weak (low-viscosity) fault zones (WFZs), which presumably correspond to the fault boundaries of large subduction earthquakes, are imposed on the top part of subducting plates. The phase transitions of olivine to wadsleyite and ringwoodite to perovskite+magnesiowüstite with Clapeyron slopes under both "dry" and "wet" conditions are considered based on recent high pressure experiments [e.g., Ohtani and Litasov, 2006]. Another recent experiment provides new evidence for lower-viscosity (weaker strength) of garnet-rich zones than the olivine dominant mantle under wet conditions [Katayama and Karato, 2008]. According to this, the effect of viscosity reduction of oceanic crust is considered under wet condition in the MTZ. Results show that there is a substantial difference

  9. A Diffusion-Based and Dynamic 3D-Printed Device That Enables Parallel in Vitro Pharmacokinetic Profiling of Molecules.

    PubMed

    Lockwood, Sarah Y; Meisel, Jayda E; Monsma, Frederick J; Spence, Dana M

    2016-02-01

    The process of bringing a drug to market involves many steps, including the preclinical stage, where various properties of the drug candidate molecule are determined. These properties, which include drug absorption, distribution, metabolism, and excretion, are often displayed in a pharmacokinetic (PK) profile. While PK profiles are determined in animal models, in vitro systems that model in vivo processes are available, although each possesses shortcomings. Here, we present a 3D-printed, diffusion-based, and dynamic in vitro PK device. The device contains six flow channels, each with integrated porous membrane-based insert wells. The pores of these membranes enable drugs to freely diffuse back and forth between the flow channels and the inserts, thus enabling both loading and clearance portions of a standard PK curve to be generated. The device is designed to work with 96-well plate technology and consumes single-digit milliliter volumes to generate multiple PK profiles, simultaneously. Generation of PK profiles by use of the device was initially performed with fluorescein as a test molecule. Effects of such parameters as flow rate, loading time, volume in the insert well, and initial concentration of the test molecule were investigated. A prediction model was generated from this data, enabling the user to predict the concentration of the test molecule at any point along the PK profile within a coefficient of variation of ∼ 5%. Depletion of the analyte from the well was characterized and was determined to follow first-order rate kinetics, indicated by statistically equivalent (p > 0.05) depletion half-lives that were independent of the starting concentration. A PK curve for an approved antibiotic, levofloxacin, was generated to show utility beyond the fluorescein test molecule.

  10. Optimal relaxation parameters of DRAMA (dynamic RAMLA) aiming at one-pass image reconstruction for 3D-PET

    NASA Astrophysics Data System (ADS)

    Tanaka, Eiichi; Kudo, Hiroyuki

    2010-05-01

    We have reported a block-iterative algorithm named DRAMA for image reconstruction for emission tomography (Tanaka and Kudo 2003 Phys. Med. Biol. 48 1405-22). DRAMA is a modified version of the row-action maximum likelihood algorithm (RAMLA), in which the relaxation parameter is subset dependent and is changed in such a way that the noise propagation from subsets to the reconstructed image is substantially independent of the access order of the subsets. The algorithm provides fast convergence with a reasonable signal-to-noise ratio. The optimal relaxation parameter has been derived assuming a two-dimensional (2D)-PET model, and detailed performance in three-dimensional (3D) reconstruction has not been clear enough. We have developed the new version 'DRAMA-3D', based on the 3D-PET model. The optimal relaxation parameter is a function of the access order of the subsets and the ring difference, and its value is determined by simple formulas from the design parameters of the PET scanner, the operating conditions and the post-smoothing resolution. In this paper, we present the theory of DRAMA-3D, the results of simulation studies on the performance of DRAMA-3D and the comparative studies of the related algorithms. It is shown that DRAMA-3D is robust for various access orders of subsets and is suitable to realize one-pass (single-iteration) reconstruction.

  11. Event-related dynamics of glutamate and BOLD effects measured using functional magnetic resonance spectroscopy (fMRS) at 3T in a repetition suppression paradigm.

    PubMed

    Apšvalka, Dace; Gadie, Andrew; Clemence, Matthew; Mullins, Paul G

    2015-09-01

    Proton MR spectroscopy ((1)H-MRS) complements other brain research methods by providing measures of neurometabolites noninvasively in a localized brain area. Improvements in MR scanner technologies, and data acquisition and analysis methods should allow functional (1)H-MRS (fMRS) to measure neurometabolite concentration changes during task-induced brain activation. The aim of the current study was to further develop event-related fMRS at 3T to investigate glutamate dynamics in response to repetition suppression. A secondary aim was to investigate the relationship between blood-oxygen-level-dependent (BOLD) responses and glutamate dynamics in the same paradigm at the same time. A novel approach of interleaved water-suppressed (metabolite) and unsuppressed (water) fMRS was used to simultaneously detect the event-related dynamics of glutamate and BOLD signal to repetition suppression in the lateral occipital cortex of thirteen (N=13) volunteers. On average, (1)H-MRS-visible glutamate increased after novel visual stimuli presentations by 12% and decreased by 11-13% on repeated compared to novel presentations. The BOLD signal, as measured by water peak amplitude changes, showed significant difference between Task and Rest trials, and, on a GLM based analysis of the time series, demonstrated a significant difference between the novel and repeated trials, however appeared to be decoupled from the glutamate response as no correlation was found between the two. These results are the first demonstration that reductions in neuronal activity typical of repetition suppression effects are reflected by reduced glutamatergic and BOLD measures, that glutamate and BOLD responses may not be coupled as previously thought, and that these changes and relationships can be measured simultaneously using event-related fMRS at 3T.

  12. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  13. EPR detected polarization transfer between Gd3+ and protons at low temperature and 3.3 T: the first step of dynamic nuclear polarization.

    PubMed

    Nagarajan, Vijayasarathi; Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon; Goldfarb, Daniella

    2010-06-01

    Electron-electron double resonance pulsed electron paramagnetic resonance (EPR) at 95 GHz (3.3 T) is used to follow the dynamics of the electron spin polarization during the first stages of dynamic nuclear polarization in solids. The experiments were performed on a frozen solution of Gd(+3) (S=7/2) in water/glycerol. Focusing on the central vector -1/2 --> vector +1/2 transition we measured the polarization transfer from the Gd(3+) electron spin to the adjacent (1)H protons. The dependence of the echo detected EPR signal on the length of the microwave irradiation at the EPR "forbidden" transition corresponding to an electron and a proton spin flip is measured for different powers, showing dynamics on the microsecond to millisecond time scales. A theoretical model based on the spin density matrix formalism is suggested to account for this dynamics. The central transition of the Gd(3+) ion is considered as an effective S = 1/2 system and is coupled to (1)H (I = 1/2) nuclei. Simulations based on a single electron-single nucleus four level system are shown to deviate from the experimental results and an alternative approach taking into account the more realistic multinuclei picture is shown to agree qualitatively with the experiments.

  14. Development, Verification and Use of Gust Modeling in the NASA Computational Fluid Dynamics Code FUN3D

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2012-01-01

    This paper presents the implementation of gust modeling capability in the CFD code FUN3D. The gust capability is verified by computing the response of an airfoil to a sharp edged gust. This result is compared with the theoretical result. The present simulations will be compared with other CFD gust simulations. This paper also serves as a users manual for FUN3D gust analyses using a variety of gust profiles. Finally, the development of an Auto-Regressive Moving-Average (ARMA) reduced order gust model using a gust with a Gaussian profile in the FUN3D code is presented. ARMA simulated results of a sequence of one-minus-cosine gusts is shown to compare well with the same gust profile computed with FUN3D. Proper Orthogonal Decomposition (POD) is combined with the ARMA modeling technique to predict the time varying pressure coefficient increment distribution due to a novel gust profile. The aeroelastic response of a pitch/plunge airfoil to a gust environment is computed with a reduced order model, and compared with a direct simulation of the system in the FUN3D code. The two results are found to agree very well.

  15. NIKE3D: an implicit, finite-deformation, finite element code for analyzing the static and dynamic response of three-dimensional solids

    SciTech Connect

    Hallquist, J.O.

    1981-01-01

    A user's manual is provided for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the large deformation static and dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node constant pressure solid elements. Bandwidth minimization is optional. Post-processors for NIKE3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories.

  16. Gas Accretion by Giant Planets: 3D Simulations of Gap Opening and Dynamics of the Circumplanetary Disk

    NASA Astrophysics Data System (ADS)

    Morbidelli, Alessandro; Szulagyi, J.; Crida, A.; Tanigawa, T.; Lega, E.; Masset, F.; Bitsch, B.

    2013-10-01

    What sets the terminal mass of a giant planet once the latter enters into a runaway gas-accretion phase? The formation of a gap around the planet's orbit may be an answer, provided that the gap is wide and deep enough. A wide-spread idea is that this happens if the viscosity in the circumstellar disk is small, i.e. if planets form in the "dead zone". With 3D hydrodynamical simulations we study the formation of a gap in details. We find an interesting 4-step meridional loop in the gas dynamics: (1) the gas flows into the gap at the top layer of the disk; (2) then it falls towards the disk's midplane; (3) the planet keeps the gap open by pushing this infalling gas back into the disk; (4) the gas rises back to the disk's surface, which closes the loop. The gas flow in this loop is governed by the viscous timescale at the surface of the disk. It is generally accepted that the surface layer of the disk is MRI-active and viscous, even if a dead zone is present near the midplane. Thus, there should always be enough gas flowing into the gap for a Jupiter-mass planet to accrete at a fast rate, in absence of other regulation mechanisms. However, only a very small portion of the gas flowing into the gap is directly accreted by the planet. Most of the gas falling towards the planet forms a circumplanetary disk (CPD), due to angular momentum conservation. If the CPD is MRI-inactive, as suggested by Turner et al. (2010) and Fujii et al. (2011), it can act as a bottle-neck for planet accretion. We find that the main mechanism that allows the CPD to lose angular momentum is the torque exerted by the star via a spiral density wave. We compute that this promotes the accretion of 0.025% of the mass of the CPD per year, for a Jupiter mass planet at 5.2 AU, independent of viscosity. By balancing the pressure of the vertical inflow with that internal to the CPD, we estimate that the CPD should contain less than 1% of the planet's mass. This leads to a mass-doubling timescale for Jupiter

  17. 3D multidisciplinary numerical model of polychlorinated biphenyl dynamics on the Black Sea north-western shelf

    NASA Astrophysics Data System (ADS)

    Bagaiev, Andrii; Ivanov, Vitaliy

    2014-05-01

    The Black Sea north-western shelf plays a key role in economics of the developing countries such as Ukraine due to food supply, invaluable recreational potential and variety of the relevant maritime shipping routes. On the other hand, a shallow flat shelf is mostly affected by anthropogenic pollution, eutrophication, hypoxia and harmful algae blooms. The research is focused on modeling the transport and transformation of PCBs (PolyChlorinated Biphenyls) because they are exceedingly toxic and highly resistant to degradation, hence cumulatively affect marine ecosystems. Being lipophilic compounds, PCBs demonstrate the distinguishing sorption/desorption activity taking part in the biogeochemical fluxes via the organic matter particles and sediments. In the framework of the research, the coastal in-situ data on PCB concentration in the water column and sediments are processed, visualized and analyzed. It is concluded that the main sources of PCBs are related to the Danube discharge and resuspension from the shallow-water sediments. Developed 3D numerical model is aimed at simulation of PCB contamination of the water column and sediment. The model integrates the full physics hydrodynamic block as well as modules, which describe detritus transport and transformation and PCB dynamics. Three state variables are simulated in PCB transport module: concentration in solute, on the settling particles of detritus and in the top layer of sediments. PCB adsorption/desorption on detritus; the reversible PCB fluxes at the water-sediment boundary; destruction of detritus are taken into consideration. Formalization of PCB deposition/resuspension in the sediments is adapted from Van Rijn's model of the suspended sediment transport. The model was spun up to reconstruct the short term scenario of the instantaneous PCB release from the St. George Arm of Danube. It has been shown that PCB transport on sinking detritus represents the natural buffer mechanism damping the spreading PCB

  18. Quantification of Single- and Multi-Phase Hydrodynamic Dispersion in Rocks Using Dynamic 3D PET Imaging

    NASA Astrophysics Data System (ADS)

    Pini, R.; Vandehey, N. T.; O'Neil, J.; Benson, S. M.

    2015-12-01

    We report results of an experimental investigation into the effects of small-scale (mm-cm) heterogeneities and hydrodynamic dispersion on miscible and immiscible displacements in a Berea Sandstone core. Pulse-radiotracer tests were carried out by measuring breakthrough curves at distinct flow rates and gas/water saturation ratios, while simultaneously imaging the internal displacement of the radioactive solution by [11C]PET. Dynamic multidimensional maps of the tracer concentration in the rock sample have been obtained with a spatial resolution of about 10 mm3 and provide evidence for significant macrodispersion effects caused by the presence of heterogeneities at the same scale. The numerical solution of the classic Advection-Dispersion Equation (ADE) applied in 1D form fails to describe the measured breakthrough curves and significantly overestimates longitudinal dispersivity. An excellent agreement with the experiments is attained by explicitly accounting for permeability heterogeneity, while reducing the contribution of "Fickian" dispersivity. Heterogeneity was introduced in the model by discretising the rock sample into independent parallel streamlines, which were generated based on a previously determined 3D permeability map, and by solving the 1D ADE for each of them. The use of streamlines is supported by direct quantitative observations from the PET scans; remarkably, this approach leads to an accurate representation of both the temporal behaviour and spatial distribution of the tracer concentration in the sample. It is shown that when the length-scale of permeability variations is similar in order as the size of the sample, the effect of the former can be as significant as hydrodynamic dispersion. The presence of a second immiscible fluid phase further complicates the flow field and, accordingly, the interpretation of the experiments. The ability to decouple these effects leads to the estimation of dispersion coefficients that aren't sample specific and

  19. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.

    PubMed

    Sinlapabodin, Salita; Amornsudthiwat, Phakdee; Damrongsakkul, Siriporn; Kanokpanont, Sorada

    2016-01-01

    In cell culture, a perfusion bioreactor provides effective transportation of nutrients, oxygen, and waste removal to and from the core of the scaffold. In addition, it provides mechanical stimuli for enhancing osteogenic differentiation. In this study, we used an axial distribution of cell numbers, alkaline phosphatase (ALP) enzyme activity, and calcium content across 4 cross-sections of 10mm thick scaffold, made of Thai silk fibroin (SF)/gelatin (G)/hydroxyapatite (HA), as a tool to evaluate the suitable perfusion flow rate. These evaluations cover all cellular developmental phases starting from seeding, to proliferation, and later osteogenic differentiation. Mouse pre-osteoblastic MC3T3-E1 cell lines were used as a cell model during seeding and proliferation. The bioreactor seeded scaffold provided more uniform cell distribution across the scaffold compared to centrifugal and agitation seeding, while the overall number of adhered cells from bioreactor seeding was slightly lower than agitation seeding. The dynamic culture using 1 ml/min perfusion flow rate (initial shear stress of 0.1 dyn/cm(2)) enabled statistically higher MC3T3-E1 proliferation, ALP activity, and calcium deposition than those observed in the static-culturing condition. However, the perfusion flow rate of 1 ml/min seemed not to be enough for enhancing ALP expression across all sections of the scaffold. Rat bone marrow derived stromal cells (rMSC) were used in the detachment test and osteogenic differentiation. It was found that perfusion flow rate of 5 ml/min caused statistically higher cell detachment than that of 1 and 3 ml/min. The perfusion flow rate of 3 ml/min gave the highest rMSC osteogenic differentiation on a SF/G/HA scaffold than other flow rates, as observed from the significantly highest number of ALP enzyme activity and the calcium content without any significant cell growth. In addition, all of these parameters were evenly distributed across all scaffold sections. PMID:26478392

  20. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.

    PubMed

    Sinlapabodin, Salita; Amornsudthiwat, Phakdee; Damrongsakkul, Siriporn; Kanokpanont, Sorada

    2016-01-01

    In cell culture, a perfusion bioreactor provides effective transportation of nutrients, oxygen, and waste removal to and from the core of the scaffold. In addition, it provides mechanical stimuli for enhancing osteogenic differentiation. In this study, we used an axial distribution of cell numbers, alkaline phosphatase (ALP) enzyme activity, and calcium content across 4 cross-sections of 10mm thick scaffold, made of Thai silk fibroin (SF)/gelatin (G)/hydroxyapatite (HA), as a tool to evaluate the suitable perfusion flow rate. These evaluations cover all cellular developmental phases starting from seeding, to proliferation, and later osteogenic differentiation. Mouse pre-osteoblastic MC3T3-E1 cell lines were used as a cell model during seeding and proliferation. The bioreactor seeded scaffold provided more uniform cell distribution across the scaffold compared to centrifugal and agitation seeding, while the overall number of adhered cells from bioreactor seeding was slightly lower than agitation seeding. The dynamic culture using 1 ml/min perfusion flow rate (initial shear stress of 0.1 dyn/cm(2)) enabled statistically higher MC3T3-E1 proliferation, ALP activity, and calcium deposition than those observed in the static-culturing condition. However, the perfusion flow rate of 1 ml/min seemed not to be enough for enhancing ALP expression across all sections of the scaffold. Rat bone marrow derived stromal cells (rMSC) were used in the detachment test and osteogenic differentiation. It was found that perfusion flow rate of 5 ml/min caused statistically higher cell detachment than that of 1 and 3 ml/min. The perfusion flow rate of 3 ml/min gave the highest rMSC osteogenic differentiation on a SF/G/HA scaffold than other flow rates, as observed from the significantly highest number of ALP enzyme activity and the calcium content without any significant cell growth. In addition, all of these parameters were evenly distributed across all scaffold sections.

  1. Multi-Camera and Structured-Light Vision System (MSVS) for Dynamic High-Accuracy 3D Measurements of Railway Tunnels

    PubMed Central

    Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong

    2015-01-01

    Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results. PMID:25875190

  2. Multi-camera and structured-light vision system (MSVS) for dynamic high-accuracy 3D measurements of railway tunnels.

    PubMed

    Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong

    2015-04-14

    Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.

  3. Multi-camera and structured-light vision system (MSVS) for dynamic high-accuracy 3D measurements of railway tunnels.

    PubMed

    Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong

    2015-01-01

    Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results. PMID:25875190

  4. Significance of Additional Non-Mass Enhancement in Patients with Breast Cancer on Preoperative 3T Dynamic Contrast Enhanced MRI of the Breast

    PubMed Central

    Cho, Yun Hee; Cho, Kyu Ran; Park, Eun Kyung; Seo, Bo Kyoung; Woo, Ok Hee; Cho, Sung Bum; Bae, Jeoung Won

    2016-01-01

    Background In preoperative assessment of breast cancer, MRI has been shown to identify more additional breast lesions than are detectable using conventional imaging techniques. The characterization of additional lesions is more important than detection for optimal surgical treatment. Additional breast lesions can be included in focus, mass, and non-mass enhancement (NME) on MRI. According to the fifth edition of the breast imaging reporting and data system (BI-RADS®), which includes several changes in the NME descriptors, few studies to date have evaluated NME in preoperative assessment of breast cancer. Objectives We investigated the diagnostic accuracy of BI-RADS descriptors in predicting malignancy for additional NME lesions detected on preoperative 3T dynamic contrast enhanced MRI (DCE-MRI) in patients with newly diagnosed breast cancer. Patients and Methods Between January 2008 and December 2012, 88 patients were enrolled in our study, all with NME lesions other than the index cancer on preoperative 3T DCE-MRI and all with accompanying histopathologic examination. The MRI findings were analyzed according to the BI-RADS MRI lexicon. We evaluated the size, distribution, internal enhancement pattern, and location of NME lesions relative to the index cancer (i.e., same quadrant, different quadrant, or contralateral breast). Results On histopathologic analysis of the 88 NME lesions, 73 (83%) were malignant and 15 (17%) were benign. Lesion size did not differ significantly between malignant and benign lesions (P = 0.410). Malignancy was more frequent in linear (P = 0.005) and segmental (P = 0.011) distributions, and benignancy was more frequent in focal (P = 0.004) and regional (P < 0.001) NME lesions. The highest positive predictive value (PPV) for malignancy occurred in segmental (96.8%), linear (95.1%), clustered ring (100%), and clumped (92.0%) enhancement. Asymmetry demonstrated a high positive predictive value of 85.9%. The frequency of malignancy was higher

  5. Linear and nonlinear instability and ligament dynamics in 3D laminar two-layer liquid/liquid flows

    NASA Astrophysics Data System (ADS)

    Ó Náraigh, Lennon; Valluri, Prashant; Scott, David; Bethune, Iain; Spelt, Peter

    2013-11-01

    We consider the linear and nonlinear stability of two-phase density-matched but viscosity contrasted fluids subject to laminar Poiseuille flow in a channel, paying particular attention to the formation of three-dimensional waves. The Orr-Sommerfeld-Squire analysis is used along with DNS of the 3D two-phase Navier-Stokes equations using our newly launched TPLS Solver (http://edin.ac/10cRKzS). For the parameter regimes considered, we demonstrate the existence of two distinct mechanisms whereby 3D waves enter the system, and dominate at late time. There exists a direct route, whereby 3D waves are amplified by the standard linear mechanism; for certain parameter classes, such waves grow at a rate less than but comparable to that of most-dangerous two-dimensional mode. Additionally, there is a weakly nonlinear route, whereby a purely spanwise wave couples to a streamwise mode and grows exponentially. We demonstrate these mechanisms in isolation and in concert. Consideration is also given to the ultimate state of these waves: persistent three-dimensional nonlinear waves are stretched and distorted by the base flow, thereby producing regimes of ligaments, ``sheets,'' or ``interfacial turbulence.'' HECToR RAP/dCSE Project e174, HPC-Europa 2.

  6. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  7. High-dose radiotherapy in inoperable nonsmall cell lung cancer: comparison of volumetric modulated arc therapy, dynamic IMRT and 3D conformal radiotherapy.

    PubMed

    Bree, Ingrid de; van Hinsberg, Mariëlle G E; van Veelen, Lieneke R

    2012-01-01

    Conformal 3D radiotherapy (3D-CRT) combined with chemotherapy for inoperable non-small cell lung cancer (NSCLC) to the preferable high dose is often not achievable because of dose-limiting organs. This reduces the probability of regional tumor control. Therefore, the surplus value of using intensity-modulated radiation therapy (IMRT) techniques, specifically volumetric modulated arc therapy (RapidArc [RA]) and dynamic IMRT (d-IMRT) has been investigated. RA and d-IMRT plans were compared with 3D-CRT treatment plans for 20 patients eligible for concurrent high-dose chemoradiotherapy, in whom a dose of 60 Gy was not achievable. Comparison of dose delivery in the target volume and organs at risk was carried out by evaluating 3D dose distributions and dose-volume histograms. Quality of the dose distribution was assessed using the inhomogeneity and conformity index. For most patients, a higher dose to the target volume can be delivered using RA or d-IMRT; in 15% of the patients a dose ≥60 Gy was possible. Both IMRT techniques result in a better conformity of the dose (p < 0.001). There are no significant differences in homogeneity of dose in the target volume. IMRT techniques for NSCLC patients allow higher dose to the target volume, thus improving regional tumor control. PMID:22459649

  8. Clinical examples of 3D dose distribution reconstruction, based on the actual MLC leaves movement, for dynamic treatment techniques

    PubMed Central

    Osewski, Wojciech; Dolla, Łukasz; Radwan, Michał; Szlag, Marta; Rutkowski, Roman; Smolińska, Barbara; Ślosarek, Krzysztof

    2014-01-01

    Aim To present practical examples of our new algorithm for reconstruction of 3D dose distribution, based on the actual MLC leaf movement. Background DynaLog and RTplan files were used by DDcon software to prepare a new RTplan file for dose distribution reconstruction. Materials and methods Four different clinically relevant scenarios were used to assess the feasibility of the proposed new approach: (1) Reconstruction of whole treatment sessions for prostate cancer; (2) Reconstruction of IMRT verification treatment plan; (3) Dose reconstruction in breast cancer; (4) Reconstruction of interrupted arc and complementary plan for an interrupted VMAT treatment session of prostate cancer. The applied reconstruction method was validated by comparing reconstructed and measured fluence maps. For all statistical analysis, the U Mann–Whitney test was used. Results In the first two and the fourth cases, there were no statistically significant differences between the planned and reconstructed dose distribution (p = 0.910, p = 0.975, p = 0.893, respectively). In the third case the differences were statistically significant (p = 0.015). Treatment plan had to be reconstructed. Conclusion Developed dose distribution reconstruction algorithm presents a very useful QA tool. It provides means for 3D dose distribution verification in patient volume and allows to evaluate the influence of actual MLC leaf motion on the dose distribution. PMID:25337416

  9. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures.

    PubMed

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-01-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells. PMID:26153550

  10. CQL3D-Hybrid-FOW modeling of the temporal dynamics of NSTX NBI+HHFW discharges

    SciTech Connect

    Harvey, R. W.; Petrov, Yu. V.; Liu, D.; Heidbrink, W. W.; Taylor, G.; Bonoli, P. T.

    2014-02-12

    The CQL3D Fokker-Planck code[1] has been upgraded to include physics of finite-orbit-width (FOW) guiding-center orbits[2,3], as compared with the previous zero-orbit-width (ZOW) model, and a recent first-order orbit calculation[2]. The Fast Ion Diagnostic FIDA[4,5] signal resulting from neutral beam (NBI) and high harmonic fast wave (HHFW) RF power injected into the NSTX spherical tokamak can now be modeled quite accurately, using ion distributions from the CQL3D-Hybrid-FOW code, a rapidly executing variant that includes FOW+gyro-orbit losses to the plasma edge, FOW effects on NBI injection and HHFW diffusion, but does not include neoclassical radial diffusion. Accurate simulation of prompt fast ion (FI) losses is a key feature of the marked modeling improvement relative to previous ZOW results. By comparing NBI-only and NBI+HHFW shots, independent confirmation of the usual 35% edge loss of HHFW in NSTX is obtained. Further, HHFW prompt losses from the plasma core are shown to be 3X as large (>25%) as the NBI-only case. The modulated NBI and time-dependent background plasma variations and charge exchange losses of fast ions are accounted for, and the temporal neutron variation is in approximate agreement with NSTX observations.

  11. CQL3D-Hybrid-FOW modeling of the temporal dynamics of NSTX NBI+HHFW discharges

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Petrov, Yu. V.; Liu, D.; Heidbrink, W. W.; Taylor, G.; Bonoli, P. T.

    2014-02-01

    The CQL3D Fokker-Planck code[1] has been upgraded to include physics of finite-orbit-width (FOW) guiding-center orbits[2,3], as compared with the previous zero-orbit-width (ZOW) model, and a recent first-order orbit calculation[2]. The Fast Ion Diagnostic FIDA[4,5] signal resulting from neutral beam (NBI) and high harmonic fast wave (HHFW) RF power injected into the NSTX spherical tokamak can now be modeled quite accurately, using ion distributions from the CQL3D-Hybrid-FOW code, a rapidly executing variant that includes FOW+gyro-orbit losses to the plasma edge, FOW effects on NBI injection and HHFW diffusion, but does not include neoclassical radial diffusion. Accurate simulation of prompt fast ion (FI) losses is a key feature of the marked modeling improvement relative to previous ZOW results. By comparing NBI-only and NBI+HHFW shots, independent confirmation of the usual 35% edge loss of HHFW in NSTX is obtained. Further, HHFW prompt losses from the plasma core are shown to be 3X as large (>25%) as the NBI-only case. The modulated NBI and time-dependent background plasma variations and charge exchange losses of fast ions are accounted for, and the temporal neutron variation is in approximate agreement with NSTX observations.

  12. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-07-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells.

  13. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    PubMed Central

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-01-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells. PMID:26153550

  14. Development of the dynamic motion simulator of 3D micro-gravity with a combined passive/active suspension system

    NASA Technical Reports Server (NTRS)

    Yoshida, Kazuya; Hirose, Shigeo; Ogawa, Tadashi

    1994-01-01

    The establishment of those in-orbit operations like 'Rendez-Vous/Docking' and 'Manipulator Berthing' with the assistance of robotics or autonomous control technology, is essential for the near future space programs. In order to study the control methods, develop the flight models, and verify how the system works, we need a tool or a testbed which enables us to simulate mechanically the micro-gravity environment. There have been many attempts to develop the micro-gravity testbeds, but once the simulation goes into the docking and berthing operation that involves mechanical contacts among multi bodies, the requirement becomes critical. A group at the Tokyo Institute of Technology has proposed a method that can simulate the 3D micro-gravity producing a smooth response to the impact phenomena with relatively simple apparatus. Recently the group carried out basic experiments successfully using a prototype hardware model of the testbed. This paper will present our idea of the 3D micro-gravity simulator and report the results of our initial experiments.

  15. 3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Sternai, Pietro; Jolivet, Laurent; Guillou-Frottier, Laurent; Gerya, Taras

    2016-05-01

    Interactions between subduction dynamics and magma genesis have been intensely investigated, resulting in several conceptual models derived from geological, geochemical and geophysical data. To provide physico-chemical constraints on these conceptual models, self-consistent numerical simulations containing testable thermo-mechanical parameters are required, especially considering the three-dimensional (3D) natural complexity of subduction systems. Here, we use a 3D high-resolution petrological and thermo-mechanical numerical model to quantify the relative contribution of oceanic and continental subduction/collision, slab roll-back and tearing to magma genesis and transport processes. Our modeling results suggest that the space and time distribution and composition of magmas in the overriding plate is controlled by the 3D slab dynamics and related asthenospheric flow. Moreover, the decrease of the bulk lithospheric strength induced by mantle- and crust-derived magmas promotes the propagation of strike-slip and extensional fault zones through the overriding crust as response to slab roll-back and continental collision. Reduction of the lithosphere/asthenosphere rheological contrast by lithospheric weakening also favors the transmission of velocities from the flowing mantle to the crust. Similarities between our modeling results and the late Cenozoic tectonic and magmatic evolution across the eastern Mediterranean region suggest an efficient control of mantle flow on the magmatic activity in this region, which in turn promotes lithospheric deformation by mantle drag via melt-induced weakening effects.

  16. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions.

    PubMed

    Rath, Subha N; Strobel, Leonie A; Arkudas, Andreas; Beier, Justus P; Maier, Anne-Kathrin; Greil, Peter; Horch, Raymund E; Kneser, Ulrich

    2012-10-01

    In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three-dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long-term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform-sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live-dead assay, and real-time RT-PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell-seeded scaffold product for applications in regenerative medicine.

  17. Parallel tree code for large N-body simulation: Dynamic load balance and data distribution on a CRAY T3D system

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Ansaloni, R.; Antonuccio-Delogu, V.; Erbacci, G.; Gambera, M.; Pagliaro, A.

    1997-10-01

    N-body algorithms for long-range unscreened interactions like gravity belong to a class of highly irregular problems whose optimal solution is a challenging task for present-day massively parallel computers. In this paper we describe a strategy for optimal memory and work distribution which we have applied to our parallel implementation of the Barnes & Hut (1986) recursive tree scheme on a Cray T3D using the CRAFT programming environment. We have performed a series of tests to find an optimal data distribution in the T3D memory, and to identify a strategy for the Dynamic Load Balance in order to obtain good performances when running large simulations (more than 10 million particles). The results of tests show that the step duration depends on two main factors: the data locality and the T3D network contention. Increasing data locality we are able to minimize the step duration if the closest bodies (direct interaction) tend to be located in the same PE local memory (contiguous block subdivision, high granularity), whereas the tree properties have a fine grain distribution. In a very large simulation, due to network contention, an unbalanced load arises. To remedy this we have devised an automatic work redistribution mechanism which provided a good Dynamic Load Balance at the price of an insignificant overhead.

  18. Computational fluid dynamics modeling and analysis of the effect of 3-D distortion of the human aortic arch.

    PubMed

    Mori, Daisuke; Yamaguchi, Takami

    2002-06-01

    An idealized CFD model and a realistic one were used to investigate the effect of the 3-D distortion of the aortic arch on the blood flow and its pathophysiological significance with respect to the pathogenesis of the aortic aneurysm. From the results of the flow simulations, the distortion of the centerline of the pipe was shown to affect significantly the flow structure. A right-handed vortex at the descending arch, and a left-handed one at the end of the arch tended to develop in the realistic model. But the secondary flow did not become a single helix. The top of the arch was the region where complex spatial and temporal WSS distributed. It was also observed that the direction of WSS had a significant circumferential component at the top of the arch.

  19. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components.

    PubMed

    Gerling, Thomas; Wagenbauer, Klaus F; Neuner, Andrea M; Dietz, Hendrik

    2015-03-27

    We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions. PMID:25814577

  20. Dynamic analysis of angiogenesis in transgenic zebrafish embryos using a 3D multilayer chip-based technology

    NASA Astrophysics Data System (ADS)

    Akagi, Jin; Zhu, Feng; Hall, Chris J.; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh; Mitchell, Arnan; Crosier, Kathryn E.; Crosier, Philip S.; Wlodkowic, Donald

    2013-03-01

    Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micro-mechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo trapping suction manifold, drug delivery manifold and optically transparent indium tin oxide (ITO) heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves and miniaturized fluorescent USB microscope. Our results show that the innovative device has 100% embryo trapping efficiency while supporting normal embryo development for up to 72 hours in a confined microfluidic environment. We also present data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational anti-angiogenic agents in transgenic zebrafish Tg(fli1a:EGFP) line. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the Lab-on-a-Chip systems a step closer to realization of complete analytical automation.

  1. Extension of the Optimized Virtual Fields Method to estimate viscoelastic material parameters from 3D dynamic displacement fields

    PubMed Central

    Connesson, N.; Clayton, E.H.; Bayly, P.V.; Pierron, F.

    2015-01-01

    In-vivo measurement of the mechanical properties of soft tissues is essential to provide necessary data in biomechanics and medicine (early cancer diagnosis, study of traumatic brain injuries, etc.). Imaging techniques such as Magnetic Resonance Elastography (MRE) can provide 3D displacement maps in the bulk and in vivo, from which, using inverse methods, it is then possible to identify some mechanical parameters of the tissues (stiffness, damping etc.). The main difficulties in these inverse identification procedures consist in dealing with the pressure waves contained in the data and with the experimental noise perturbing the spatial derivatives required during the processing. The Optimized Virtual Fields Method (OVFM) [1], designed to be robust to noise, present natural and rigorous solution to deal with these problems. The OVFM has been adapted to identify material parameter maps from Magnetic Resonance Elastography (MRE) data consisting of 3-dimensional displacement fields in harmonically loaded soft materials. In this work, the method has been developed to identify elastic and viscoelastic models. The OVFM sensitivity to spatial resolution and to noise has been studied by analyzing 3D analytically simulated displacement data. This study evaluates and describes the OVFM identification performances: different biases on the identified parameters are induced by the spatial resolution and experimental noise. The well-known identification problems in the case of quasi-incompressible materials also find a natural solution in the OVFM. Moreover, an a posteriori criterion to estimate the local identification quality is proposed. The identification results obtained on actual experiments are briefly presented. PMID:26146416

  2. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  3. Combined 3D-QSAR, molecular docking and molecular dynamics study on thyroid hormone activity of hydroxylated polybrominated diphenyl ethers to thyroid receptors β

    SciTech Connect

    Li, Xiaolin; Ye, Li; Wang, Xiaoxiang; Wang, Xinzhou; Liu, Hongling; Zhu, Yongliang; Yu, Hongxia

    2012-12-15

    Several recent reports suggested that hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disturb thyroid hormone homeostasis. To illuminate the structural features for thyroid hormone activity of HO-PBDEs and the binding mode between HO-PBDEs and thyroid hormone receptor (TR), the hormone activity of a series of HO-PBDEs to thyroid receptors β was studied based on the combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) methods. The ligand- and receptor-based 3D-QSAR models were obtained using Comparative Molecular Similarity Index Analysis (CoMSIA) method. The optimum CoMSIA model with region focusing yielded satisfactory statistical results: leave-one-out cross-validation correlation coefficient (q{sup 2}) was 0.571 and non-cross-validation correlation coefficient (r{sup 2}) was 0.951. Furthermore, the results of internal validation such as bootstrapping, leave-many-out cross-validation, and progressive scrambling as well as external validation indicated the rationality and good predictive ability of the best model. In addition, molecular docking elucidated the conformations of compounds and key amino acid residues at the docking pocket, MD simulation further determined the binding process and validated the rationality of docking results. -- Highlights: ► The thyroid hormone activities of HO-PBDEs were studied by 3D-QSAR. ► The binding modes between HO-PBDEs and TRβ were explored. ► 3D-QSAR, molecular docking, and molecular dynamics (MD) methods were performed.

  4. Use of the 3-D scanner in mapping and monitoring the dynamic degradation of soils: case study of the Cucuteni-Baiceni Gully on the Moldavian Plateau (Romania)

    NASA Astrophysics Data System (ADS)

    Romanescu, G.; Cotiuga, V.; Asandulesei, A.; Stoleriu, C.

    2012-03-01

    The 3-D scanner, a rapid and precise means of monitoring the dynamics of erosive processes, was first used nationally (Romania) as a new technique of cartography and monitoring the dynamics of soil degradation processes in the Moldavian Plateau. Three sets of measurements took place: in 2008, in 2009 and in 2010, at intervals of exactly one year for the first and six months for the second part. Qualitative and quantitative differences were highlighted. The data obtained were corroborated with precipitation in the area studied. The 3-D scanner has a measurement accuracy of 6 mm. The map highlights the dynamics of gullies developed and may form the basis for the prediction of soil degradation phenomena. The dynamics of the gully and the type of land use show that the phenomenon of erosion of the Moldova Plateau will continue to accelerate. In this case, the gully attacked and destroyed an archaeological site of national importance. The rate of advance of the Cucuteni-Baiceni gully is extremely high (10 m/1.6 years). There are no measures at all to reduce or fight the process of the gully advance. Maximum erosion occurred at the beginning of spring after a winter rich in rainfall, which made the terrain subject to the process of subsidence.

  5. Use of the 3-D scanner in mapping and monitoring the dynamic degradation of soils. Case study of the Cucuteni-Baiceni Gully on the Moldavian Plateau (Romania).

    NASA Astrophysics Data System (ADS)

    Romanescu, G.; Venedict, B.; Cotiuga, V.; Asandulesei, A.

    2011-07-01

    The 3-D Scanner, a rapid and precise means of monitoring the dynamics of erosive processes, was used, first of all nationally (Romania), as a new technique of cartography and monitoring the dynamics of soil degradation processes in the Moldavian Plateau. Three sets of measurements took place: in 2008, in 2009 and in 2010, at intervals of exactly one year for the first and six months for the second part. Qualitative and quantitative differences were highlighted. The data obtained were corroborated with precipitation in the area studied. The 3-D scanner has a measurement accuracy of 6 mm. The map highlights the dynamics of gullies developed and may form the basis for the prediction of soil degradation phenomena. The dynamics of the gully and the type of land use show that the phenomenon of erosion of the Moldova Plateau will continue to accelerate. In this case the gully attacked and destroyed an archaeological site of national importance. The rate of advance of the Cucuteni-Baiceni gully is extremely high (10 m/1.6 yr). There are no measures at all to reduce or fight the process of the gully advance. Maximum erosion occurred at the beginning of spring after a winter rich in rainfall, which made the terrain subject to the process of subsidence.

  6. A multiscale 0-D/3-D approach to patient-specific adaptation of a cerebral autoregulation model for computational fluid dynamics studies of cardiopulmonary bypass.

    PubMed

    Neidlin, Michael; Steinseifer, Ulrich; Kaufmann, Tim A S

    2014-06-01

    Neurological complication often occurs during cardiopulmonary bypass (CPB). One of the main causes is hypoperfusion of the cerebral tissue affected by the position of the cannula tip and diminished cerebral autoregulation (CA). Recently, a lumped parameter approach could describe the baroreflex, one of the main mechanisms of cerebral autoregulation, in a computational fluid dynamics (CFD) study of CPB. However, the cerebral blood flow (CBF) was overestimated and the physiological meaning of the variables and their impact on the model was unknown. In this study, we use a 0-D control circuit representation of the Baroreflex mechanism, to assess the parameters with respect to their physiological meaning and their influence on CBF. Afterwards the parameters are transferred to 3D-CFD and the static and dynamic behavior of cerebral autoregulation is investigated. The parameters of the baroreflex mechanism can reproduce normotensive, hypertensive and impaired autoregulation behavior. Further on, the proposed model can mimic the effects of anesthetic agents and other factors controlling dynamic CA. The CFD simulations deliver similar results of static and dynamic CBF as the 0-D control circuit. This study shows the feasibility of a multiscale 0-D/3-D approach to include patient-specific cerebral autoregulation into CFD studies. PMID:24746017

  7. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  8. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  9. Near-infrared spectro-interferometry of Mira variables and comparisons to 1D dynamic model atmospheres and 3D convection simulations

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Chiavassa, A.; Freytag, B.; Scholz, M.; Höfner, S.; Karovicova, I.; Whitelock, P. A.

    2016-03-01

    Aims: We aim at comparing spectro-interferometric observations of Mira variable asymptotic giant branch (AGB) stars with the latest 1D dynamic model atmospheres based on self-excited pulsation models (CODEX models) and with 3D dynamic model atmospheres including pulsation and convection (CO5BOLD models) to better understand the processes that extend the molecular atmosphere to radii where dust can form. Methods: We obtained a total of 20 near-infrared K-band spectro-interferometric snapshot observations of the Mira variables o Cet, R Leo, R Aqr, X Hya, W Vel, and R Cnc with a spectral resolution of about 1500. We compared observed flux and visibility spectra with predictions by CODEX 1D dynamic model atmospheres and with azimuthally averaged intensities based on CO5BOLD 3D dynamic model atmospheres. Results: Our visibility data confirm the presence of spatially extended molecular atmospheres located above the continuum radii with large-scale inhomogeneities or clumps that contribute a few percent of the total flux. The detailed structure of the inhomogeneities or clumps show a variability on time scales of 3 months and above. Both modeling attempts provided satisfactory fits to our data. In particular, they are both consistent with the observed decrease in the visibility function at molecular bands of water vapor and CO, indicating a spatially extended molecular atmosphere. Observational variability phases are mostly consistent with those of the best-fit CODEX models, except for near-maximum phases, where data are better described by near-minimum models. Rosseland angular diameters derived from the model fits are broadly consistent between those based on the 1D and the 3D models and with earlier observations. We derived fundamental parameters including absolute radii, effective temperatures, and luminosities for our sources. Conclusions: Our results provide a first observational support for theoretical results that shocks induced by convection and pulsation in the

  10. Scaling and super-universality in the coarsening dynamics of the 3D random field Ising model

    NASA Astrophysics Data System (ADS)

    Aron, Camille; Chamon, Claudio; Cugliandolo, Leticia F.; Picco, Marco

    2008-05-01

    We study the coarsening dynamics of the three-dimensional random field Ising model using Monte Carlo numerical simulations. We test the dynamic scaling and super-scaling properties of global and local two-time observables. We treat in parallel the three-dimensional Edward-Anderson spin glass and we recall results on Lennard-Jones mixtures and colloidal suspensions to highlight the common and different out of equilibrium properties of these glassy systems.

  11. An autonomous multisensor in situ metrology system for enabling high dynamic range measurement of 3D surfaces on precision machine tools

    NASA Astrophysics Data System (ADS)

    Liu, Samuel M. Y.; Cheung, Benny C. F.; Whitehouse, David; Cheng, Ching-Hsiang

    2016-11-01

    An in situ measurement is of prime importance when trying to maintain the position of the workpiece for further compensation processes in order to improve the accuracy and efficiency of the precision machining of three dimensional (3D) surfaces. However, the coordinates of most of the machine tools with closed machine interfaces and control system are not accessible for users, which make it difficult to use the motion axes of the machine tool for in situ measurements. This paper presents an autonomous multisensor in situ metrology system for enabling high dynamic range measurement of 3D surfaces on precision machine tools. It makes use of a designed tool path and an additional motion sensor to assist the registration of time-space data for the position estimation of a 2D laser scanner which measures the surface with a high lateral resolution and large area without the need to interface with the machine tool system. A prototype system was built and integrated into an ultra-precision polishing machine. Experimental results show that it measures the 3D surfaces with high resolution, high repeatability, and large measurement range. The system not only improves the efficiency and accuracy of the precision machining process but also extends the capability of machine tools.

  12. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions

    NASA Astrophysics Data System (ADS)

    Kamerlin, Natasha; Elvingson, Christer

    2016-11-01

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution.

  13. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions.

    PubMed

    Kamerlin, Natasha; Elvingson, Christer

    2016-11-30

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution. PMID:27662260

  14. Spatial Pattern Dynamics of 3D Stem Cell Loss of Pluripotency via Rules-Based Computational Modeling

    PubMed Central

    White, Douglas E.; Kinney, Melissa A.; McDevitt, Todd C.; Kemp, Melissa L.

    2013-01-01

    powerful tool to predict stem cell behavior under a number of culture conditions that emulate characteristics of 3D stem cell niches. PMID:23516345

  15. Dimensional dependence of the dynamics of the Mn3d5 luminescence in (Zn, Mn)S nanowires and nanobelts

    NASA Astrophysics Data System (ADS)

    Chen, L.; Niebling, T.; Heimbrodt, W.; Stichtenoth, D.; Ronning, C.; Klar, P. J.

    2007-09-01

    ZnS nanostructures of different morphologies, i.e., nanowires and nanobelts, have been ion implanted with Mn and subsequently annealed to obtain Zn1-xMnxS nanostructures. The Mn content x was adjusted to lie in the range from 4×10-6% to 4% corresponding to a variation of the mean Mn-Mn distance between about 200 and 2nm , respectively. The Zn1-xMnxS nanowires have been studied by photoluminescence spectroscopy. The yellow Mn luminescence band indicates that the Mn2+ ions are incorporated on cation lattice sites replacing Zn. The temporal evolution of this internal Mn2+(3d5) luminescence is measured over 4 orders of magnitude in intensity. The decay behavior shows a clear dependence on the morphology of the nanostructure, in particular, on the ratio between the average Mn ion-killer center distance and the characteristic lateral size of the nanostructure. If the mean Mn-Mn distance is comparable to or smaller than the average Mn ion-killer center distance in the nanostructures, then concentration quenching of the Mn luminescence occurs similar to bulk. The nonexponential transients observed can be well described in the framework of a modified Förster model at reduced dimensionality. The photoluminescence (PL) behavior of the nanowires loses its one-dimensional character when the mean Mn ion-killer center distance becomes much smaller than the wire diameter. In contrast, the temporal PL behavior of the nanobelts is only purely two dimensional in this case and is of intermediate character between one dimensional and two dimensional otherwise.

  16. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  17. 3d-3d correspondence revisited

    DOE PAGESBeta

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  18. Caring in the Dynamics of Design and Languaging: Exploring Second Language Learning in 3D Virtual Spaces

    ERIC Educational Resources Information Center

    Zheng, Dongping

    2012-01-01

    This study provides concrete evidence of ecological, dialogical views of languaging within the dynamics of coordination and cooperation in a virtual world. Beginning level second language learners of Chinese engaged in cooperative activities designed to provide them opportunities to refine linguistic actions by way of caring for others, for the…

  19. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  20. Second-Order Inelastic Dynamic Analysis of 3D Semi-Rigid Steel Frames Under Earthquake Loads with Three Components

    SciTech Connect

    Ozakgul, Kadir

    2008-07-08

    In this study, it has been presented an algorithm for second-order elastoplastic dynamic time-history analysis of three dimensional frames that have steel members with semirigid joints. The proposed analysis accounts for material, geometric and connection nonlinearities. Material nonlinearity have been modeled by the Ramberg-Osgood relation. While the geometric nonlinearity caused by axial force has been described by the use of the geometric stiffness matrix, the nonlinearity caused by the interaction between the axial force and bending moment has been also described by the use of the stability functions. The independent hardening model has been used to describe the nonlinear behaviour of semi-rigid connections. Dynamic equation of motion has been solved by Newmark's constant acceleration method in time history domain.

  1. 3D Dynamic Culture of Rabbit Articular Chondrocytes Encapsulated in Alginate Gel Beads Using Spinner Flasks for Cartilage Tissue Regeneration

    PubMed Central

    Xu, Feiyue; Xu, Lei; Wang, Qi; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song

    2014-01-01

    Cell-based therapy using chondrocytes for cartilage repair suffers from chondrocyte dedifferentiation. In the present study, the effects of an integrated three-dimensional and dynamic culture on rabbit articular chondrocytes were investigated. Cells (passages 1 and 4) were encapsulated in alginate gel beads and cultured in spinner flasks in chondrogenic and chondrocyte growth media. Subcutaneous implantation of the cell-laden beads was performed to evaluate the ectopic chondrogenesis. It was found that cells remained viable after 35 days in the three-dimensional dynamic culture. Passage 1 cells demonstrated a proliferative growth in both media. Passage 4 cells showed a gradual reduction in DNA content in growth medium, which was attenuated in chondrogenic medium. Deposition of glycosaminoglycans (GAG) was found in all cultures. While passage 1 cells generally produced higher amounts of GAG than passage 4 cells, GAG/DNA became similar on day 35 for both cells in growth media. Interestingly, GAG/DNA in growth medium was greater than that in chondrogenic medium for both cells. Based on GAG quantification and gene expression analysis, encapsulated passage 1 cells cultured in growth medium displayed the best ectopic chondrogenesis. Taken together, the three-dimensional and dynamic culture for chondrocytes holds great potential in cartilage regeneration. PMID:25506593

  2. Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer's disease.

    PubMed

    Zhou, An; Hu, Jianping; Wang, Lirong; Zhong, Guochen; Pan, Jian; Wu, Zeyu; Hui, Ailing

    2015-10-01

    Acetylcholinesterase (AChE) is one of the key targets of drugs for treating Alzheimer's disease (AD). Tacrine is an approved drug with AChE-inhibitory activity. In this paper, 3D-QSAR, molecular docking, and molecular dynamics were carried out in order to study 60 tacrine derivatives and their AChE-inhibitory activities. 3D-QSAR modeling resulted in an optimal CoMFA model with q(2) = 0.552 and r(2) = 0.983 and an optimal CoMSIA model with q(2) = 0.581 and r(2) = 0.989. These QSAR models also showed that the steric and H-bond fields of these compounds are important influences on their activities. The interactions between these inhibitors and AChE were further explored through molecular docking and molecular dynamics simulation. A few key residues (Tyr70, Trp84, Tyr121, Trp279, and Phe330) at the binding site of AChE were identified. The results of this study improve our understanding of the mechanisms of AChE inhibitors and afford valuable information that should aid the design of novel potential AChE inhibitors. Graphical Abstract Superposition of backbone atoms of the lowest-energy structure obtained from MD simulation (magenta) onto those of the structure of the initial molecular docking model (green).

  3. Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method

    NASA Astrophysics Data System (ADS)

    Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.

    2015-02-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet

  4. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  5. Duality between the dynamics of line-like brushes of point defects in 2D and strings in 3D in liquid crystals

    NASA Astrophysics Data System (ADS)

    Digal, Sanatan; Ray, Rajarshi; Saumia, P. S.; Srivastava, Ajit M.

    2013-10-01

    We analyze the dynamics of dark brushes connecting point vortices of strength ±1 formed in the isotropic-nematic phase transition of a thin layer of nematic liquid crystals, using a crossed polarizer set up. The evolution of the brushes is seen to be remarkably similar to the evolution of line defects in a three-dimensional nematic liquid crystal system. Even phenomena like the intercommutativity of strings are routinely observed in the dynamics of brushes. We test the hypothesis of a duality between the two systems by determining exponents for the coarsening of total brush length with time as well as shrinking of the size of an isolated loop. Our results show scaling behavior for the brush length as well as the loop size with corresponding exponents in good agreement with the 3D case of string defects.

  6. 3-D localization of non-radioactive strontium in osteoarthritic bone: Role in the dynamic labeling of bone pathological changes.

    PubMed

    Panahifar, Arash; Cooper, David M L; Doschak, Michael R

    2015-11-01

    The study objective was to visualize regions of bone that undergo pathological mineralization and/or remodeling during pathogenesis of osteoarthritis, by employing non-radioactive strontium as a dynamic tracer of bone turnover. Post traumatic osteoarthritis was surgically induced in skeletally mature rats, followed by in vivo micro-CT imaging for 12 weeks to assess bone micro-structural changes. Rats either received strontium ranelate daily for the entire course of study or only last 10 days before euthanization. Distribution of strontium in bone was assessed in two and three dimensions, using electron probe micro-analysis (EPMA) and synchrotron dual energy K-edge subtraction micro-CT (SRμCT), respectively. Considerable early formation of osteophytes around the collateral ligament attachments and margins of articulating surfaces were observed, followed by subchondral sclerosis at the later stages. Accordingly, strontium was heavily incorporated by mineralizing osteophytes at 4, 8, and 12 weeks post-surgery, whereas subchondral bone only incorporated strontium between weeks 8-12.This study showed low dose stable strontium can effectively serve as a dynamic tracer of bone turnover to study pathological bone micro-structural changes, at resolution higher than nuclear medicine. Co-administration of strontium during therapeutic drug intervention may show enormous utility in assessing the efficacy of those compounds upon adaptive bone physiology. PMID:25939329

  7. 3-D localization of non-radioactive strontium in osteoarthritic bone: Role in the dynamic labeling of bone pathological changes.

    PubMed

    Panahifar, Arash; Cooper, David M L; Doschak, Michael R

    2015-11-01

    The study objective was to visualize regions of bone that undergo pathological mineralization and/or remodeling during pathogenesis of osteoarthritis, by employing non-radioactive strontium as a dynamic tracer of bone turnover. Post traumatic osteoarthritis was surgically induced in skeletally mature rats, followed by in vivo micro-CT imaging for 12 weeks to assess bone micro-structural changes. Rats either received strontium ranelate daily for the entire course of study or only last 10 days before euthanization. Distribution of strontium in bone was assessed in two and three dimensions, using electron probe micro-analysis (EPMA) and synchrotron dual energy K-edge subtraction micro-CT (SRμCT), respectively. Considerable early formation of osteophytes around the collateral ligament attachments and margins of articulating surfaces were observed, followed by subchondral sclerosis at the later stages. Accordingly, strontium was heavily incorporated by mineralizing osteophytes at 4, 8, and 12 weeks post-surgery, whereas subchondral bone only incorporated strontium between weeks 8-12.This study showed low dose stable strontium can effectively serve as a dynamic tracer of bone turnover to study pathological bone micro-structural changes, at resolution higher than nuclear medicine. Co-administration of strontium during therapeutic drug intervention may show enormous utility in assessing the efficacy of those compounds upon adaptive bone physiology.

  8. Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets

    SciTech Connect

    Wyper, P. F. Pontin, D. I.

    2014-10-15

    In this work, the dynamic magnetic field within a tearing-unstable three-dimensional current sheet about a magnetic null point is described in detail. We focus on the evolution of the magnetic null points and flux ropes that are formed during the tearing process. Generally, we find that both magnetic structures are created prolifically within the layer and are non-trivially related. We examine how nulls are created and annihilated during bifurcation processes, and describe how they evolve within the current layer. The type of null bifurcation first observed is associated with the formation of pairs of flux ropes within the current layer. We also find that new nulls form within these flux ropes, both following internal reconnection and as adjacent flux ropes interact. The flux ropes exhibit a complex evolution, driven by a combination of ideal kinking and their interaction with the outflow jets from the main layer. The finite size of the unstable layer also allows us to consider the wider effects of flux rope generation. We find that the unstable current layer acts as a source of torsional magnetohydrodynamic waves and dynamic braiding of magnetic fields. The implications of these results to several areas of heliophysics are discussed.

  9. Study of 3-D Dynamic Roughness Effects on Flow Over a NACA 0012 Airfoil Using Large Eddy Simulations at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Guda, Venkata Subba Sai Satish

    There have been several advancements in the aerospace industry in areas of design such as aerodynamics, designs, controls and propulsion; all aimed at one common goal i.e. increasing efficiency --range and scope of operation with lesser fuel consumption. Several methods of flow control have been tried. Some were successful, some failed and many were termed as impractical. The low Reynolds number regime of 104 - 105 is a very interesting range. Flow physics in this range are quite different than those of higher Reynolds number range. Mid and high altitude UAV's, MAV's, sailplanes, jet engine fan blades, inboard helicopter rotor blades and wind turbine rotors are some of the aerodynamic applications that fall in this range. The current study deals with using dynamic roughness as a means of flow control over a NACA 0012 airfoil at low Reynolds numbers. Dynamic 3-D surface roughness elements on an airfoil placed near the leading edge aim at increasing the efficiency by suppressing the effects of leading edge separation like leading edge stall by delaying or totally eliminating flow separation. A numerical study of the above method has been carried out by means of a Large Eddy Simulation, a mathematical model for turbulence in Computational Fluid Dynamics, owing to the highly unsteady nature of the flow. A user defined function has been developed for the 3-D dynamic roughness element motion. Results from simulations have been compared to those from experimental PIV data. Large eddy simulations have relatively well captured the leading edge stall. For the clean cases, i.e. with the DR not actuated, the LES was able to reproduce experimental results in a reasonable fashion. However DR simulation results show that it fails to reattach the flow and suppress flow separation compared to experiments. Several novel techniques of grid design and hump creation are introduced through this study.

  10. Distinct 3D Architecture and Dynamics of the Human HtrA2(Omi) Protease and Its Mutated Variants.

    PubMed

    Gieldon, Artur; Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Wenta, Tomasz; Golik, Przemyslaw; Dubin, Grzegorz; Lipinska, Barbara; Ciarkowski, Jerzy

    2016-01-01

    HtrA2(Omi) protease controls protein quality in mitochondria and plays a major role in apoptosis. Its HtrA2S306A mutant (with the catalytic serine routinely disabled for an X-ray study to avoid self-degradation) is a homotrimer whose subunits contain the serine protease domain (PD) and the regulatory PDZ domain. In the inactive state, a tight interdomain interface limits penetration of both PDZ-activating ligands and PD substrates into their respective target sites. We successfully crystalized HtrA2V226K/S306A, whose active counterpart HtrA2V226K has had higher proteolytic activity, suggesting higher propensity to opening the PD-PDZ interface than that of the wild type HtrA2. Yet, the crystal structure revealed the HtrA2V226K/S306A architecture typical of the inactive protein. To get a consistent interpretation of crystallographic data in the light of kinetic results, we employed molecular dynamics (MD). V325D inactivating mutant was used as a reference. Our simulations demonstrated that upon binding of a specific peptide ligand NH2-GWTMFWV-COOH, the PDZ domains open more dynamically in the wild type protease compared to the V226K mutant, whereas the movement is not observed in the V325D mutant. The movement relies on a PDZ vs. PD rotation which opens the PD-PDZ interface in a lid-like (budding flower-like in trimer) fashion. The noncovalent hinges A and B are provided by two clusters of interfacing residues, harboring V325D and V226K in the C- and N-terminal PD barrels, respectively. The opening of the subunit interfaces progresses in a sequential manner during the 50 ns MD simulation. In the systems without the ligand only minor PDZ shifts relative to PD are observed, but the interface does not open. Further activation-associated events, e.g. PDZ-L3 positional swap seen in any active HtrA protein (vs. HtrA2), were not observed. In summary, this study provides hints on the mechanism of activation of wtHtrA2, the dynamics of the inactive HtrA2V325D, but does not

  11. Distinct 3D Architecture and Dynamics of the Human HtrA2(Omi) Protease and Its Mutated Variants.

    PubMed

    Gieldon, Artur; Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Wenta, Tomasz; Golik, Przemyslaw; Dubin, Grzegorz; Lipinska, Barbara; Ciarkowski, Jerzy

    2016-01-01

    HtrA2(Omi) protease controls protein quality in mitochondria and plays a major role in apoptosis. Its HtrA2S306A mutant (with the catalytic serine routinely disabled for an X-ray study to avoid self-degradation) is a homotrimer whose subunits contain the serine protease domain (PD) and the regulatory PDZ domain. In the inactive state, a tight interdomain interface limits penetration of both PDZ-activating ligands and PD substrates into their respective target sites. We successfully crystalized HtrA2V226K/S306A, whose active counterpart HtrA2V226K has had higher proteolytic activity, suggesting higher propensity to opening the PD-PDZ interface than that of the wild type HtrA2. Yet, the crystal structure revealed the HtrA2V226K/S306A architecture typical of the inactive protein. To get a consistent interpretation of crystallographic data in the light of kinetic results, we employed molecular dynamics (MD). V325D inactivating mutant was used as a reference. Our simulations demonstrated that upon binding of a specific peptide ligand NH2-GWTMFWV-COOH, the PDZ domains open more dynamically in the wild type protease compared to the V226K mutant, whereas the movement is not observed in the V325D mutant. The movement relies on a PDZ vs. PD rotation which opens the PD-PDZ interface in a lid-like (budding flower-like in trimer) fashion. The noncovalent hinges A and B are provided by two clusters of interfacing residues, harboring V325D and V226K in the C- and N-terminal PD barrels, respectively. The opening of the subunit interfaces progresses in a sequential manner during the 50 ns MD simulation. In the systems without the ligand only minor PDZ shifts relative to PD are observed, but the interface does not open. Further activation-associated events, e.g. PDZ-L3 positional swap seen in any active HtrA protein (vs. HtrA2), were not observed. In summary, this study provides hints on the mechanism of activation of wtHtrA2, the dynamics of the inactive HtrA2V325D, but does not

  12. Distinct 3D Architecture and Dynamics of the Human HtrA2(Omi) Protease and Its Mutated Variants

    PubMed Central

    Gieldon, Artur; Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Wenta, Tomasz; Golik, Przemyslaw; Dubin, Grzegorz; Lipinska, Barbara; Ciarkowski, Jerzy

    2016-01-01

    HtrA2(Omi) protease controls protein quality in mitochondria and plays a major role in apoptosis. Its HtrA2S306A mutant (with the catalytic serine routinely disabled for an X-ray study to avoid self-degradation) is a homotrimer whose subunits contain the serine protease domain (PD) and the regulatory PDZ domain. In the inactive state, a tight interdomain interface limits penetration of both PDZ-activating ligands and PD substrates into their respective target sites. We successfully crystalized HtrA2V226K/S306A, whose active counterpart HtrA2V226K has had higher proteolytic activity, suggesting higher propensity to opening the PD-PDZ interface than that of the wild type HtrA2. Yet, the crystal structure revealed the HtrA2V226K/S306A architecture typical of the inactive protein. To get a consistent interpretation of crystallographic data in the light of kinetic results, we employed molecular dynamics (MD). V325D inactivating mutant was used as a reference. Our simulations demonstrated that upon binding of a specific peptide ligand NH2-GWTMFWV-COOH, the PDZ domains open more dynamically in the wild type protease compared to the V226K mutant, whereas the movement is not observed in the V325D mutant. The movement relies on a PDZ vs. PD rotation which opens the PD-PDZ interface in a lid-like (budding flower-like in trimer) fashion. The noncovalent hinges A and B are provided by two clusters of interfacing residues, harboring V325D and V226K in the C- and N-terminal PD barrels, respectively. The opening of the subunit interfaces progresses in a sequential manner during the 50 ns MD simulation. In the systems without the ligand only minor PDZ shifts relative to PD are observed, but the interface does not open. Further activation-associated events, e.g. PDZ-L3 positional swap seen in any active HtrA protein (vs. HtrA2), were not observed. In summary, this study provides hints on the mechanism of activation of wtHtrA2, the dynamics of the inactive HtrA2V325D, but does not

  13. Unwrapped wavefront evaluation in phase-shifting interferometry based on 3D dynamic fringe processing in state space.

    PubMed

    Garifullin, Azat; Gurov, Igor; Volynsky, Maxim

    2016-08-01

    Recovery of an unwrapped wavefront in phase-shifting interferometry is considered when the wavefront phase increments are determined between previous and subsequent fringe patterns as well as between adjacent pixels of the current fringe pattern. A parametric model of a three-dimensional interferometric signal and the recurrence processing algorithm in state space are utilized, providing an evaluation of an unwrapped wavefront phase at each phase shift step in dynamic mode. Estimates of the achievable accuracy and experimental results of the wavefront recovery are presented. Comparison with the conventional seven-frame phase-shifting algorithm, which is one of the most accurate, confirmed the high accuracy and noise immunity of the proposed method. PMID:27505660

  14. Highly accelerated 3D dynamic contrast enhanced MRI from sparse spiral sampling using integrated partial separability model and JSENSE

    NASA Astrophysics Data System (ADS)

    Lyu, Jingyuan; Spincemaille, Pascal; Wang, Yi; Zhou, Yihang; Ren, Fuquan; Ying, Leslie

    2014-05-01

    Dynamic contrast enhanced MRI requires high spatial resolution for morphological information and high temporal resolution for contrast pharmacokinetics. The current techniques usually have to compromise the spatial information for the required temporal resolution. This paper presents a novel method that effectively integrates sparse sampling, parallel imaging, partial separable (PS) model, and sparsity constraints for highly accelerated DCE-MRI. Phased array coils were used to continuously acquire data from a stack of variable-density spiral trajectory with a golden angle. In reconstruction, the sparsity constraints, the coil sensitivities, spatial and temporal bases of the PS model are jointly estimated through alternating optimization. Experimental results from in vivo DCE liver imaging data show that the proposed method is able to achieve high spatial and temporal resolutions at the same time.

  15. Hall Effect Controlled Gas Dynamics in Protoplanetary Disks. II. Full 3D Simulations toward the Outer Disk

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    2015-01-01

    We perform three-dimensional stratified shearing-box magnetohydrodynamic (MHD) simulations on the gas dynamics of protoplanetary disks with a net vertical magnetic flux of B z0. All three nonideal MHD effects, Ohmic resistivity, the Hall effect, and ambipolar diffusion, are included in a self-consistent manner based on equilibrium chemistry. We focus on regions toward outer disk radii, from 5 to 60 AU, where Ohmic resistivity tends to become negligible, ambipolar diffusion dominates over an extended region across the disk height, and the Hall effect largely controls the dynamics near the disk midplane. We find that at around R = 5 AU the system launches a laminar or weakly turbulent magnetocentrifugal wind when the net vertical field B z0 is not too weak. Moreover, the wind is able to achieve and maintain a configuration with reflection symmetry at the disk midplane. The case with anti-aligned field polarity ({\\boldsymbol{Ω }}\\cdot {\\boldsymbol{B}}z0<0) is more susceptible to the magnetorotational instability (MRI) when B z0 decreases, leading to an outflow oscillating in radial directions and very inefficient angular momentum transport. At the outer disk around and beyond R = 30 AU, the system shows vigorous MRI turbulence in the surface layer due to far-UV ionization, which efficiently drives disk accretion. The Hall effect affects the stability of the midplane region to the MRI, leading to strong/weak Maxwell stress for aligned/anti-aligned field polarities. Nevertheless, the midplane region is only very weakly turbulent in both cases. Overall, the basic picture is analogous to the conventional layered accretion scenario applied to the outer disk. In addition, we find that the vertical magnetic flux is strongly concentrated into thin, azimuthally extended shells in most of our simulations beyond 15 AU, leading to enhanced radial density variations know as zonal flows. Theoretical implications and observational consequences are briefly discussed.

  16. From 1D to 2D via 3D: dynamics of surface motion segmentation for ocular tracking in primates.

    PubMed

    Masson, Guillaume S

    2004-01-01

    In primates, tracking eye movements help vision by stabilising onto the retinas the images of a moving object of interest. This sensorimotor transformation involves several stages of motion processing, from the local measurement of one-dimensional luminance changes up to the integration of first and higher-order local motion cues into a global two-dimensional motion immune to antagonistic motions arising from the surrounding. The dynamics of this surface motion segmentation is reflected into the various components of the tracking responses and its underlying neural mechanisms can be correlated with behaviour at both single-cell and population levels. I review a series of behavioural studies which demonstrate that the neural representation driving eye movements evolves over time from a fast vector average of the outputs of linear and non-linear spatio-temporal filtering to a progressive and slower accurate solution for global motion. Because of the sensitivity of earliest ocular following to binocular disparity, antagonistic visual motion from surfaces located at different depths are filtered out. Thus, global motion integration is restricted within the depth plane of the object to be tracked. Similar dynamics were found at the level of monkey extra-striate areas MT and MST and I suggest that several parallel pathways along the motion stream are involved albeit with different latencies to build-up this accurate surface motion representation. After 200-300 ms, most of the computational problems of early motion processing (aperture problem, motion integration, motion segmentation) are solved and the eye velocity matches the global object velocity to maintain a clear and steady retinal image. PMID:15477021

  17. HALL EFFECT CONTROLLED GAS DYNAMICS IN PROTOPLANETARY DISKS. II. FULL 3D SIMULATIONS TOWARD THE OUTER DISK

    SciTech Connect

    Bai, Xue-Ning

    2015-01-10

    We perform three-dimensional stratified shearing-box magnetohydrodynamic (MHD) simulations on the gas dynamics of protoplanetary disks with a net vertical magnetic flux of B {sub z0}. All three nonideal MHD effects, Ohmic resistivity, the Hall effect, and ambipolar diffusion, are included in a self-consistent manner based on equilibrium chemistry. We focus on regions toward outer disk radii, from 5 to 60 AU, where Ohmic resistivity tends to become negligible, ambipolar diffusion dominates over an extended region across the disk height, and the Hall effect largely controls the dynamics near the disk midplane. We find that at around R = 5 AU the system launches a laminar or weakly turbulent magnetocentrifugal wind when the net vertical field B {sub z0} is not too weak. Moreover, the wind is able to achieve and maintain a configuration with reflection symmetry at the disk midplane. The case with anti-aligned field polarity (Ω⋅B{sub z0}<0) is more susceptible to the magnetorotational instability (MRI) when B {sub z0} decreases, leading to an outflow oscillating in radial directions and very inefficient angular momentum transport. At the outer disk around and beyond R = 30 AU, the system shows vigorous MRI turbulence in the surface layer due to far-UV ionization, which efficiently drives disk accretion. The Hall effect affects the stability of the midplane region to the MRI, leading to strong/weak Maxwell stress for aligned/anti-aligned field polarities. Nevertheless, the midplane region is only very weakly turbulent in both cases. Overall, the basic picture is analogous to the conventional layered accretion scenario applied to the outer disk. In addition, we find that the vertical magnetic flux is strongly concentrated into thin, azimuthally extended shells in most of our simulations beyond 15 AU, leading to enhanced radial density variations know as zonal flows. Theoretical implications and observational consequences are briefly discussed.

  18. Influence of center of pressure estimation errors on 3D inverse dynamics solutions during gait at different velocities.

    PubMed

    Camargo-Junior, Franklin; Ackermann, Marko; Loss, Jefferson F; Sacco, Isabel C N

    2013-12-01

    The aim of this study was to investigate the effect of errors in the location of the center of pressure (5 and 10 mm) on lower limb joint moment uncertainties at different gait velocities (1.0, 1.5, and 2.0 m/s). Our hypotheses were that the absolute joint moment uncertainties would be gradually reduced from distal to proximal joints and from higher to lower velocities. Joint moments of five healthy young adults were calculated by inverse dynamics using the bottom-up approach, depending on which estimate the uncertainty propagated. Results indicated that there is a linear relationship between errors in center of pressure and joint moment uncertainties. The absolute moment peak uncertainties expressed on the anatomic reference frames decreased from distal to proximal joints, confirming our first hypothesis, except for the abduction moments. There was an increase in moment uncertainty (up to 0.04 N m/kg for the 10 mm error in the center of pressure) from the lower to higher gait velocity, confirming our second hypothesis, although, once again, not for hip or knee abduction. Finally, depending on the plane of movement and the joint, relative uncertainties experienced variation (between 5 and 31%), and the knee joint moments were the most affected.

  19. A 3D Hybrid Model for Tissue Growth: The Interplay between Cell Population and Mass Transport Dynamics

    PubMed Central

    Cheng, Gang; Markenscoff, Pauline; Zygourakis, Kyriacos

    2009-01-01

    Abstract To provide theoretical guidance for the design and in vitro cultivation of bioartificial tissues, we have developed a multiscale computational model that can describe the complex interplay between cell population and mass transport dynamics that governs the growth of tissues in three-dimensional scaffolds. The model has three components: a transient partial differential equation for the simultaneous diffusion and consumption of a limiting nutrient; a cellular automaton describing cell migration, proliferation, and collision; and equations that quantify how the varying nutrient concentration modulates cell division and migration. The hybrid discrete-continuous model was parallelized and solved on a distributed-memory multicomputer to study how transport limitations affect tissue regeneration rates under conditions encountered in typical bioreactors. Simulation results show that the severity of transport limitations can be estimated by the magnitude of two dimensionless groups: the Thiele modulus and the Biot number. Key parameters including the initial seeding mode, cell migration speed, and the hydrodynamic conditions in the bioreactor are shown to affect not only the overall rate, but also the pattern of tissue growth. This study lays the groundwork for more comprehensive models that can handle mixed cell cultures, multiple nutrients and growth factors, and other cellular processes, such as cell death. PMID:19619455

  20. Impact of the IMF rotation on the cusp dynamics on the dayside: Global 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Cai, D.; Lembege, B.; Nishikawa, K.-I.

    The dynamics of the cusp region is analyzed with a new version of a global three-dimensional full particle simulation with changing the interplanetary magnetic field IMF direction progressively from northward to duskward then duskward to southward With the initial northward IMF bands of weak magnetic field sash form poleward of the cusp at high latitudes in each hemisphere and at high altitudes these sashes are located approximately around the pole axis As the IMF rotates duskward these sashes move toward the equator within opposite quadrants Then as the duskward-oriented IMF continue to rotate toward southward these sashes move further and reach the dayside magnetopause at the equator During the progressive rotation of the IMF from northward to duskward i the sash region widens towards lower latitudes banana-shape and with the duskward IMF ii the size of the banana-shape region becomes minimum and its location stops around a maximum deviation of 45degree from the polar axis It should be noted that the sashes are extended from the dayside to the nightside tailward The motion of the sashes is also analyzed during the IMF rotation form duskward to southward

  1. Impact of the IMF rotation on the cusp dynamics on the dayside: Global 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Tao, W.; Cai, D.; Lembege, B.; Nishikawa, K.

    2005-12-01

    The dynamics of the cusp region as the interplanetary magnetic field (IMF) progressively changes its direction from northward to duskward is analysed with a new version of a global three-dimensional full particle simulation. For northward IMF, bands of weak magnetic field (sash) form poleward of the cusp at high latitudes in each hemisphere (and at high altitudes); these sashs are centered approximately around the pole axis. However, as the newly duskward-oriented IMF approaches and interacts with the magnetosphere, these sashs move to the equator (within opposite quadrants). During the progressive rotation of the IMF, this motion is decomposed in the plane perpendicular to the solar wind as follows: (i) the "sash" region widens towards lower latitudes ("banana-shape"), and (ii) the size of the "banana-shape" region strongly shrinks and its location stabilizes around a maximum deviation of 45?. In addition, this motion is observed both on the day and the night sides where sashs are simultaneously observed. Characteristic time and space scales of the cusp motion are indicated, in order to be compare with results deduced from previous MHD simulations. Changes of local reconnection in the cusp region are analysed.

  2. Data-driven techniques for detecting dynamical state changes in noisily measured 3D single-molecule trajectories.

    PubMed

    Calderon, Christopher P

    2014-01-01

    Optical microscopes and nanoscale probes (AFM, optical tweezers, etc.) afford researchers tools capable of quantitatively exploring how molecules interact with one another in live cells. The analysis of in vivo single-molecule experimental data faces numerous challenges due to the complex, crowded, and time changing environments associated with live cells. Fluctuations and spatially varying systematic forces experienced by molecules change over time; these changes are obscured by "measurement noise" introduced by the experimental probe monitoring the system. In this article, we demonstrate how the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS) of Fox et al. [IEEE Transactions on Signal Processing 59] can be used to detect both subtle and abrupt state changes in time series containing "thermal" and "measurement" noise. The approach accounts for temporal dependencies induced by random and "systematic overdamped" forces. The technique does not require one to subjectively select the number of "hidden states" underlying a trajectory in an a priori fashion. The number of hidden states is simultaneously inferred along with change points and parameters characterizing molecular motion in a data-driven fashion. We use large scale simulations to study and compare the new approach to state-of-the-art Hidden Markov Modeling techniques. Simulations mimicking single particle tracking (SPT) experiments are the focus of this study. PMID:25397733

  3. Post-irradiation plastic deformation in bcc Fe grains investigated by means of 3D dislocation dynamics simulations

    NASA Astrophysics Data System (ADS)

    Gururaj, K.; Robertson, C.; Fivel, M.

    2015-04-01

    Post-irradiation tensile straining is investigated by means of three-dimensional dislocation dynamics simulations adapted to body centred cubic Fe. Namely, 1 μm Fe grains are strained at various temperatures in the 100-300 K range, in absence and in presence of radiation-induced defect dispersions. The defect-induced hardening is consistent with the disperse barrier effect up to 5 ×1021m-3 loops and is weakly dependent on the straining temperature. The dislocation-loops interaction rate augments with the accumulated plastic strain, loop density and strength; while it is mainly independent of the number of active slip systems and thermally activated screw dislocation mobility. An additional, radiation-induced hardening mechanism known as dislocation "decoration" is also implemented and tested for comparison. Those results show that the plastic flow localisation transition depends on the total yield point rise rather than on the lone, dispersed loop density. The simulation results are then rationalized through an original micro-mechanical model relating the grain-scale stress-strain behaviour to dislocation sub-structure formation and spreading. That model combines strain dependent and strain independent hardening mechanisms, which both contribute to the associated stress-strain response and plastic flow spreading.

  4. Molecular dynamics studies on 3D structures of the hydrophobic region PrP(109-136).

    PubMed

    Zhang, Jiapu; Zhang, Yuanli

    2013-06-01

    Prion diseases, traditionally referred to as transmissible spongiform encephalopathies, are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species, manifesting as scrapie in sheep, bovine spongiform encephalopathy (or 'mad-cow' disease) in cattle, and Creutzfeldt-Jakob disease, Gerstmann-Strussler-Scheinker syndrome, fatal familial insomnia (FFI), and Kulu in humans, etc. These neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)) into insoluble abnormally folded infectious prions (PrP(Sc)). The hydrophobic region PrP(109-136) controls the formation of diseased prions: the normal PrP(113-120) AGAAAAGA palindrome is an inhibitor/blocker of prion diseases and the highly conserved glycine-xxx-glycine motif PrP(119-131) can inhibit the formation of infectious prion proteins in cells. This article gives detailed reviews on the PrP(109-136) region and presents the studies of its three-dimensional structures and structural dynamics. PMID:23563221

  5. Data-driven techniques for detecting dynamical state changes in noisily measured 3D single-molecule trajectories.

    PubMed

    Calderon, Christopher P

    2014-01-01

    Optical microscopes and nanoscale probes (AFM, optical tweezers, etc.) afford researchers tools capable of quantitatively exploring how molecules interact with one another in live cells. The analysis of in vivo single-molecule experimental data faces numerous challenges due to the complex, crowded, and time changing environments associated with live cells. Fluctuations and spatially varying systematic forces experienced by molecules change over time; these changes are obscured by "measurement noise" introduced by the experimental probe monitoring the system. In this article, we demonstrate how the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS) of Fox et al. [IEEE Transactions on Signal Processing 59] can be used to detect both subtle and abrupt state changes in time series containing "thermal" and "measurement" noise. The approach accounts for temporal dependencies induced by random and "systematic overdamped" forces. The technique does not require one to subjectively select the number of "hidden states" underlying a trajectory in an a priori fashion. The number of hidden states is simultaneously inferred along with change points and parameters characterizing molecular motion in a data-driven fashion. We use large scale simulations to study and compare the new approach to state-of-the-art Hidden Markov Modeling techniques. Simulations mimicking single particle tracking (SPT) experiments are the focus of this study.

  6. Construction of semi-dynamic model of subduction zone with given plate kinematics in 3D sphere

    NASA Astrophysics Data System (ADS)

    Morishige, M.; Honda, S.; Tackley, P. J.

    2010-09-01

    We present a semi-dynamic subduction zone model in a three-dimensional spherical shell. In this model, velocity is imposed on the top surface and in a small three-dimensional region around the shallow plate boundary while below this region, the slab is able to subduct under its own weight. Surface plate velocities are given by Euler's theorem of rigid plate rotation on a sphere. The velocity imposed in the region around the plate boundary is determined so that mass conservation inside the region is satisfied. A kinematic trench migration can be easily incorporated in this model. As an application of this model, mantle flow around slab edges is considered, and we find that the effect of Earth curvature is small by comparing our model with a similar one in a rectangular box, at least for the parameters used in this study. As a second application of the model, mantle flow around a plate junction is studied, and we find the existence of mantle return flow perpendicular to the plate boundary. Since this model can naturally incorporate the spherical geometry and plate movement on the sphere, it is useful for studying a specific subduction zone where the plate kinematics is well constrained.

  7. Quantifying the impact of mechanical layering and underthrusting on the dynamics of the modern India-Asia collisional system with 3-D numerical models

    NASA Astrophysics Data System (ADS)

    Lechmann, S. M.; Schmalholz, S. M.; Hetényi, G.; May, D. A.; Kaus, B. J. P.

    2014-01-01

    The impact of mechanical layering and the strength of the Indian lower crust on the dynamics of the modern India-Asia collisional system are studied using 3-D thermomechanical modeling. The model includes an Indian oceanic domain, Indian continental domain, and an Asian continental domain. Each domain consists of four layers: upper/lower crust, and upper/lower lithospheric mantle. The Tarim and Sichuan Basins are modeled as effectively rigid blocks and the Quetta-Chaman and Sagaing strike-slip faults as vertical weak zones. The geometry, densities, and viscosities are constrained by geophysical data sets (CRUST2.0, gravity, and seismology). Both static (no horizontal movement of model boundaries) and dynamic scenarios (indentation) are modeled. It is demonstrated that 3-D viscosity distributions resulting from typical creep flow laws and temperature fields generate realistic surface velocities. Lateral variations in the gravitational potential energy cause locally significant tectonic overpressure (i.e., difference between pressure and lithostatic pressure) in a mechanically strong Indian lower crust (up to ~500 MPa for the static scenario and ~800 MPa for the dynamic scenario). Different density distributions in the lithosphere as well as different viscosities (3 orders of magnitude) in the Indian lower crust cause only minor differences in the surface velocity field. This result suggests that surface velocities alone are insufficient to infer the state of mechanical coupling of the lithosphere. Model results are in agreement with GPS velocities for Indian lower crustal viscosities of 1021-1024 Pa s, for a strong Quetta-Chaman Fault (1022 Pa s) and a weak Sagaing Fault (1020 Pa s).

  8. 3D simulation of boreal forests: structure and dynamics in complex terrain and in a changing climate

    NASA Astrophysics Data System (ADS)

    Brazhnik, Ksenia; Shugart, Herman H.

    2015-10-01

    To understand how the Siberian boreal forests may respond to near-future climate change, we employed a modeling approach and examined thresholds for significant and irreversible changes in forest structure and composition that are likely to be reached by mid-21st century. We applied the new spatially-explicit gap-dynamics model SIBBORK toward the understanding of how transition zones, namely treelines, which are notoriously undersampled and difficult to model, may change in the near future. We found that a 2 °C change in annual average air temperature significantly altered the structure, composition, and productivity of boreal forests stands both in the northern and the southern treeline ecotones. Treeline migration occurs at smaller temperature changes. Based on the current (1990-2014) observed warming trends, a 2 °C increase in annual average temperature compared to historical climate (1961-1990) is likely to be experienced at the northern treeline by 2040 and at the southern treeline by 2050. With regards to the forest biome, the most significant warming to date has been predicted and observed in Siberia. A 2 °C increase in annual average temperature compared to the second half of the 19th century is smaller than the predictions of even the most conservative RCP2.6 climate change scenario (IPCC 2013), and has previously been assumed to not likely result in dramatic changes to ecosystems or biome shifts. We show that at a +2 °C change, biome shifts from forest to steppe are likely to occur across a large area in southern Siberia. These changes in land cover will inevitably result in changes in the biodiversity, carbon storage, and the ecosystem services provided by the boreal forests of southern Siberia.

  9. Gender Dimorphic ACL Strain In Response to Combined Dynamic 3D Knee Joint Loading: Implications for ACL Injury Risk

    PubMed Central

    Mizuno, Kiyonori; Andrish, Jack T.; van den Bogert, Antonie J.; McLean, Scott G.

    2009-01-01

    While gender-based differences in knee joint anatomies/laxities are well documented, the potential for them to precipitate gender-dimorphic ACL loading and resultant injury risk has not been considered. To this end, we generated gender-specific models of ACL strain as a function of any six degrees of freedom (6DOF) knee joint load state via a combined cadaveric and analytical approach. Continuously varying joint forces and torques were applied to five male and five female cadaveric specimens and recorded along with synchronous knee flexion and ACL strain data. All data (~10,000 samples) were submitted to specimen-specific regression analyses, affording ACL strain predictions as a function of the combined 6 DOF knee loads. Following individual model verifications, generalized gender-specific models were generated and subjected to 6 DOF external load scenarios consistent with both a clinical examination and a dynamic sports maneuver. The ensuing model-based strain predictions were subsequently examined for gender-based discrepancies. Male and female specimen specific models predicted ACL strain within 0.51% ± 0.10% and 0.52% ± 0.07% of the measured data respectively, and explained more than 75% of the associated variance in each case. Predicted female ACL strains were also significantly larger than respective male values for both of simulated 6 DOF load scenarios. Outcomes suggest that the female ACL will rupture in response to comparatively smaller external load applications. Future work must address the underlying anatomical/laxity contributions to knee joint mechanical and resultant ACL loading, ultimately affording prevention strategies that may cater to individual joint vulnerabilities. PMID:19464897

  10. Dynamic 3D visual analytic tools: a method for maintaining situational awareness during high tempo warfare or mass casualty operations

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2010-04-01

    Maintaining Situational Awareness (SA) is crucial to the success of high tempo operations, such as war fighting and mass casualty events (bioterrorism, natural disasters). Modern computer and software applications attempt to provide command and control manager's situational awareness via the collection, integration, interrogation and display of vast amounts of analytic data in real-time from a multitude of data sources and formats [1]. At what point does the data volume and displays begin to erode the hierarchical distributive intelligence, command and control structure of the operation taking place? In many cases, people tasked with making decisions, have insufficient experience in SA of high tempo operations and become overwhelmed easily as vast amounts of data begin to be displayed in real-time as an operation unfolds. In these situations, where data is plentiful and the relevance of the data changes rapidly, there is a chance for individuals to target fixate on those data sources they are most familiar. If these individuals fall into this type of pitfall, they will exclude other data that might be just as important to the success of the operation. To counter these issues, it is important that the computer and software applications provide a means for prompting its users to take notice of adverse conditions or trends that are critical to the operation. This paper will discuss a new method of displaying data called a Crisis ViewTM, that monitors critical variables that are dynamically changing and allows preset thresholds to be created to prompt the user when decisions need to be made and when adverse or positive trends are detected. The new method will be explained in basic terms, with examples of its attributes and how it can be implemented.

  11. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  12. Effects of rheology on the dynamics and development of topography in 3D numerical simulations of continental collision, with an application to the India-Asia collision zone

    NASA Astrophysics Data System (ADS)

    Pusok, A. E.; Kaus, B.; Popov, A.

    2014-12-01

    The Himalayas and the adjacent Tibetan Plateau represent the largest region of elevated topography and anomalously thick crust on Earth. Understanding the formation and evolution of the region has been the focus of many tectonic and numerical models. While some of these models (i.e. thin sheet model) have successfully illustrated some of the basic physics of continental collision, none can simultaneously represent active processes such as subduction, underthrusting, channel flow or extrusion, for which fully 3D models are required. Here, we employed the 3D code LaMEM to investigate the role that subduction, continental collision and indentation play on lithosphere dynamics at convergent margins, and the implications they have for the Asian tectonics. Our model setup resembles a simplified tectonic map of the India-Asia collision zone and we performed a large number of 3D simulations to analyse the dynamics and the conditions under which large topographic plateaus, such as the Tibetan Plateau can form in an integrated lithospheric and upper-mantle scale model. Results of models with linear viscous rheologies show different modes between the oceanic subduction side (continuous subduction, trench retreat and slab roll-back) and the continental collision side (trench advance, slab detachment, topographic uplift and lateral extrusion of material). Despite the complex dynamics and the great variation in slab shape across the subduction-collision zone, which are consistent with tomographic observations, we note that slab-pull alone is insufficient to generate high topography in the upper plate. Several studies suggested that external forces (i.e. ridge push, plume push or slab suction) must be important in order to sustain the on-going convergence of India towards Eurasia. We show that external forcing and the presence of strong blocks such as the Tarim Basin within the Asian lithosphere are necessary to create and shape anomalously high topographic fronts and plateaus

  13. The dynamic coupling of a third-generation wave model and a 3D hydrodynamic model through boundary layers

    NASA Astrophysics Data System (ADS)

    Zhang, M. Y.; Li, Y. S.

    1997-08-01

    A third-generation wind wave model based on the energy balance equation taking into account the effects of time-varying currents and coupled dynamically with a semi-implicit three-dimensional hydrodynamic model incorporating the influences of time- and space-varying vertical eddy viscosity, bottom topography and wave-current interactions is presented in this paper. The wave model is synchronously coupled with the three-dimensional hydrodynamic model through the surface atmospheric turbulent boundary layer and the bottom boundary layer. The theory of Janssen (1991) (in Journal of Physical Oceanography21, 1631-1642) is used to incorporate the effects of waves on the surface boundary layer, while the theory of Grant and Maddsen (1979) [in Journal of Geophysical Research (Oceans)84, 1797-1808], which was used by Signell et al. (1990) (in Journal of Geophysical Research95, 9671-9678) on the bottom boundary layer for constant waves, is modified for the inclusion of time-varying waves. The mutual influences between waves and currents are investigated through an idealized continental shelf case and hindcastings of storm events in the sea area adjacent to Hong Kong in the northern South China Sea. Calculations are compared with other computed results and observations. Calculations show that the wave-dependent surface stress incorporated in the three-dimensional hydrodynamic model has significant impact on water surface velocities and surface elevations (over 10% higher). The inclusion of wave-dependent bottom stress also shows some effects; however, in the presence of the wave-dependent surface stress, its effect on surge levels becomes negligible. The effect of currents on waves amounts to the reduction of the significant wave height by about 8% and less for wave mean periods. However, the inclusion of the wave-dependent bottom stress in the three-dimensional hydrodynamic model has little effect on wave characteristics whether or not the wave-dependent surface stress is

  14. 3D Dynamic Rupture Simulation Across a Complex Fault System: the Mw7.0, 2010, Haiti Earthquake

    NASA Astrophysics Data System (ADS)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.

    2013-12-01

    Earthquakes ruptures sometimes take place on a secondary fault and surprisingly do not activate an adjacent major one. The 1989 Loma Prieta earthquake is a classic case where rupture occurred on a blind thrust while the adjacent San Andreas Fault was not triggered during the process. Similar to Loma Prieta, the Mw7.0, January 12 2010, Haiti earthquake also ruptured a secondary blind thrust, the Léogâne fault, adjacent to the main plate boundary, the Enriquillo Plantain Garden Fault, which did not rupture during this event. Aftershock relocalizations delineate the Léogâne rupture with two north dipping segments with slightly different dip, where the easternmost segment had mostly dip-slip motion and the westernmost one had mostly strike-slip motion. In addition, an offshore south dipping structure inferred from the aftershocks to the west of the rupture zone coincides with the offshore Trois Baies reverse fault, a region of increase in Coulomb stress increase. In this study, we investigate the rupture dynamics of the Haiti earthquake in a complex fault system of multiple segments identified by the aftershock relocations. We suppose a background stress regime that is consistent with the type of motion of each fault and with the regional tectonic regime. We initiate a nucleation on the east segment of the Léogâne fault by defining a circular region with a 2 km radius where shear stress is slightly greater than the yield stress. By varying friction on faults and background stress, we find a range of plausible scenarios. In the absence of near-field seismic records of the event, we score the different models against the static deformation field derived from GPS and InSAR at the surface. All the plausible simulations show that the rupture propagates from the eastern to the western segment along the Léogâne fault, but not on the Enriquillo fault nor on the Trois Baies fault. The best-fit simulation shows a significant increase of shear stresses on the Trois Baies

  15. Confirmatory analysis of the AP1000 passive residual heat removal heat exchanger with 3-D computational fluid dynamic analysis

    SciTech Connect

    Schwall, James R.; Karim, Naeem U.; Thakkar, Jivan G.; Taylor, Creed; Schulz, Terry; Wright, Richard F.

    2006-07-01

    The AP1000 is an 1100 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 received final design approval from the US-NRC in 2004. The AP1000 design is based on the AP600 design that received final design approval in 1999. Wherever possible, the AP1000 plant configuration and layout was kept the same as AP600 to take advantage of the maturity of the design and to minimize new design efforts. As a result, the two-loop configuration was maintained for AP1000, and the containment vessel diameter was kept the same. It was determined that this significant power up-rate was well within the capability of the passive safety features, and that the safety margins for AP1000 were greater than those of operating PWRs. A key feature of the passive core cooling system is the passive residual heat removal heat exchanger (PRHR HX) that provides decay heat removal for postulated LOCA and non-LOCA events. The PRHR HX is a C-tube heat exchanger located in the in-containment refueling water storage tank (IRWST) above the core promoting natural circulation heat removal between the reactor cooling system and the tank. Component testing was performed for the AP600 PRHR HX to determine the heat transfer characteristics and to develop correlations to be used for the AP1000 safety analysis codes. The data from these tests were confirmed by subsequent integral tests at three separate facilities including the ROSA facility in Japan. Owing to the importance of this component, an independent analysis has been performed using the ATHOS-based computational fluid dynamics computer code PRHRCFD. Two separate models of the PRHR HX and IRWST have been developed representing the ROSA test geometry and the AP1000 plant geometry. Confirmation of the ROSA test results were used to validate PRHRCFD, and the AP1000 plant model

  16. A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors.

    PubMed

    Tripuraneni, Naga Srinivas; Azam, Mohammed Afzal

    2016-11-01

    Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R(2 )= .9949), cross validation coefficient (Q(2 )= .7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R(2) value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU-ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity.

  17. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997

    SciTech Connect

    Parra, J.O.; Collier, H.A.; Owen, T.E.

    1997-06-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

  18. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on the aryl hydrocarbon receptor agonistic activity of hydroxylated polychlorinated biphenyls.

    PubMed

    Cao, Fu; Li, Xiaolin; Ye, Li; Xie, Yuwei; Wang, Xiaoxiang; Shi, Wei; Qian, Xiangping; Zhu, Yongliang; Yu, Hongxia

    2013-09-01

    The binding interactions between hydroxylated polychlorinated biphenyls (HO-PCBs) and the aryl hydrocarbon receptor (AhR) are suspected of causing toxic effects. To understand the binding mode between HO-PCBs and AhR, and to explore the structural characteristics that influence the AhR agonistic activities of HO-PCBs, the combination of molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR), and molecular dynamics (MD) simulations was performed. Using molecular docking, the HO-PCBs were docked into the binding pocket of AhR, which was generated by homology modeling. Comparative molecular similarity index analysis (CoMSIA) models were subsequently developed from three different alignment rules. The optimum 3D-QSAR model showed good predictive ability (q(2)=0.583, R(2)=0.913) and good mechanism interpretability. The statistical reliability of the CoMSIA model was also validated. In addition, molecular docking and MD simulations were applied to explore the binding modes between the ligands and AhR. The results obtained from this study may lead to a better understanding of the interaction mechanism between HO-PCBs and AhR.

  19. Vertical temperature dynamics in the Northern Baltic Sea based on 3D modelling and data from shallow-water Argo floats

    NASA Astrophysics Data System (ADS)

    Westerlund, Antti; Tuomi, Laura

    2016-06-01

    3D hydrodynamic models often produce errors in the depth of the mixed layer and the vertical density structure. We used the 3D hydrodynamic model NEMO to investigate the effect of vertical turbulence parameterisations on seasonal temperature dynamics in the Bothnian Sea, Baltic Sea for the years 2012 and 2013. We used vertical profiles from new shallow-water Argo floats, operational in the area since 2012, to validate our model. We found that NEMO was able to reproduce the general features of the seasonal temperature variations in the study area, when meteorological forcing was accurate. The k-ε and k-ω schemes were selected for a more detailed analysis. Both schemes showed clear differences, but neither proved superior. While sea surface temperature was better simulated with the k-ω scheme, thermocline depth was clearly better with the k-ε scheme. We investigated the effect of wave-breaking on the mixing of the surface layer. The Craig and Banner parameterisation clearly improved the representation of thermocline depth. However, further tuning of the mixing parameterisations for the Baltic Sea is needed to better simulate the vertical temperature structure. We found the autonomous Baltic Sea Argo floats valuable for model validation and performance evaluation.

  20. Insights into mechanism of pyrido[2,3-d]pyrimidines as DYRK1A inhibitors based on molecular dynamic simulations.

    PubMed

    Li, Jiao Jiao; Tian, Yue Li; Zhai, Hong Lin; Lv, Min; Zhang, Xiao Yun

    2016-08-01

    DYRK1A is characterized by the early development and regulation of neuronal proliferation, and its over expression gives rise to neurological abnormalities. As the promising DYRK1A inhibitors, the binding mechanism between DYRK1A and pyrido[2,3-d]pyrimidines derivatives at molecular level are still veiled. In this article, it was achieved to get the structural insights into pyrido[2,3-d]pyrimidines derivatives as DYRK1A inhibitors by means of comprehensive computational approaches involving molecular docking, molecular dynamics simulation, free energy calculation, and energy decomposition analysis. The calculated energy values were highly consistent with the experimental activities. Based on the individual energy terms analysis, the van der Waals interaction was the major leading force in the DYRK1A-ligand interaction. Lys188 was the important residue that formed the hydrogen bond, which improved the inhibitory activity. Furthermore, four novel inhibitors with higher predicted activity were designed based on the obtained findings and confirmed by molecular simulations. Our study is expected to provide significant drug design strategy for the development of more promising DYRK1A inhibitors. Proteins 2016; 84:1108-1123. © 2016 Wiley Periodicals, Inc. PMID:27119584

  1. In situ UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait

    NASA Astrophysics Data System (ADS)

    Zeb Gul, Jahan; Yang, Bong-Su; Yang, Young Jin; Chang, Dong Eui; Choi, Kyung Hyun

    2016-11-01

    Soft bots have the expedient ability of adopting intricate postures and fitting in complex shapes compared to mechanical robots. This paper presents a unique in situ UV curing three-dimensional (3D) printed multi-material tri-legged soft bot with spider mimicked multi-step dynamic forward gait using commercial bio metal filament (BMF) as an actuator. The printed soft bot can produce controllable forward motion in response to external signals. The fundamental properties of BMF, including output force, contractions at different frequencies, initial loading rate, and displacement-rate are verified. The tri-pedal soft bot CAD model is designed inspired by spider’s legged structure and its locomotion is assessed by simulating strain and displacement using finite element analysis. A customized rotational multi-head 3D printing system assisted with multiple wavelength’s curing lasers is used for in situ fabrication of tri-pedal soft-bot using two flexible materials (epoxy and polyurethane) in three layered steps. The size of tri-pedal soft-bot is 80 mm in diameter and each pedal’s width and depth is 5 mm × 5 mm respectively. The maximum forward speed achieved is 2.7 mm s‑1 @ 5 Hz with input voltage of 3 V and 250 mA on a smooth surface. The fabricated tri-pedal soft bot proved its power efficiency and controllable locomotion at three input signal frequencies (1, 2, 5 Hz).

  2. Integrated computational tools for identification of CCR5 antagonists as potential HIV-1 entry inhibitors: homology modeling, virtual screening, molecular dynamics simulations and 3D QSAR analysis.

    PubMed

    Moonsamy, Suri; Dash, Radha Charan; Soliman, Mahmoud E S

    2014-04-23

    Using integrated in-silico computational techniques, including homology modeling, structure-based and pharmacophore-based virtual screening, molecular dynamic simulations, per-residue energy decomposition analysis and atom-based 3D-QSAR analysis, we proposed ten novel compounds as potential CCR5-dependent HIV-1 entry inhibitors. Via validated docking calculations, binding free energies revealed that novel leads demonstrated better binding affinities with CCR5 compared to maraviroc, an FDA-approved HIV-1 entry inhibitor and in clinical use. Per-residue interaction energy decomposition analysis on the averaged MD structure showed that hydrophobic active residues Trp86, Tyr89 and Tyr108 contributed the most to inhibitor binding. The validated 3D-QSAR model showed a high cross-validated rcv2 value of 0.84 using three principal components and non-cross-validated r2 value of 0.941. It was also revealed that almost all compounds in the test set and training set yielded a good predicted value. Information gained from this study could shed light on the activity of a new series of lead compounds as potential HIV entry inhibitors and serve as a powerful tool in the drug design and development machinery.

  3. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    SciTech Connect

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.

    2011-09-15

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF{sub 6}.

  4. Dynamical microstructure formation in 3D directional solidification of transparent model alloys: in situ characterization in DECLIC Directional Solidification Insert under diffusion transport in microgravity

    NASA Astrophysics Data System (ADS)

    Bergeon, N.; Mota, F. L.; Chen, L.; Tourret, D.; Debierre, J. M.; Guérin, R.; Karma, A.; Billia, B.; Trivedi, R.

    2015-06-01

    To clarify and characterize the fundamental physical mechanisms active in the dynamical formation of three-dimensional (3D) arrays of cells and dendrites under diffusive growth conditions, in situ monitoring of series of experiments on transparent model alloy succinonitrile - 0.24 wt% camphor was carried out under low gravity in the DECLIC Directional Solidification Insert on-board the International Space Station. These experiments offered the very unique opportunity to in situ observe and characterize the whole development of the microstructure in extended 3D patterns. The experimental methods will be first briefly described, including in particular the observation modes and the image analysis procedures developed to quantitatively characterize the patterns. Microgravity environment provided the conditions to get quantitative benchmark data: homogeneous patterns corresponding to homogeneous values of control parameters along the whole interface were obtained. The sequence of microstructure formation will be presented as well as the evolution of the primary spacing which is one of the most important pattern characteristic. Time evolution of this primary spacing during the microstructure development will be analysed to identify the mechanisms of spacing selection and adjustment; the importance of the macroscopic interfacial curvature will be pointed out.

  5. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  6. Comparison of Galunggung1982-83 and Eyjafjalla-2010 Eruptions: definition of eruption dynamics from 3D Ash Surface Morphology

    NASA Astrophysics Data System (ADS)

    Aydar, E.; Höskuldsson, A.; Ersoy, O.; Gourgaud, A.

    2012-04-01

    We consider that all works, concepts on aviation safety, security codes, establishment of warning systems etc begin in 1982, when two commercial jumbo jets en route to Australia across Indonesia suffered loss of engine thrust from ingesting volcanic ash from the erupting Galunggung Volcano, Java, and descended more than 20,000 ft before the engines could be restarted (Casadevall, 1991). It is not the only incident of this kind but this Galunggung eruption had a pionner character attracting attention on aviation safety against volcanic eruptions in international community. As the needs for precautions on aviation safety against volcanic ash encounters began with Galunggung 1982 eruption and as we all concerned by the measures taken by ICAO due to Eyjafjallajökull-2010 eruption, we aimed to investigate this last huge airspace perturbing eruption and compare the volcanic ashes produced by those two eruptions. Volcanic ash characterization should be most important parameter to understand how the eruption concerned unrolled. Galunggung 1982-83 eruption was exceptionally long, lasting about nine months between 5 April 1982-8 January 1983). During this well known eruption, the composition of the erupted magma evolved from andesite (58% SiO2) to Mg-rich basalt (47% SiO2), while the style of the eruption changed drastically through time (Katili and Sudrdajat, 1984; Sudrajat and Tilling, 1984; Gourgaud et al., 1989 gourgaud etal 2000). Paralel to chemical changes and water consumption, eruption dynamic was also changed and occured in three eruption phases with different eruptive styles as an initial Vulcanian phase (5 April-13 May), a phreatomagmatic phase (17 May-28 October) and a Strombolian phase (3 November-8 January), have been recognized (Katili and Sudradjat,1984). We examined the surficial morphological features of proximal tephra collected from Galunggung and Eyjafjalla volcanoes. Surface texture and morphology of volcanic ash particles change according to various

  7. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  8. Dynamic pulse buckling of cylindrical shells under axial impact: A comparison of 2D and 3D finite element calculations with experimental data

    SciTech Connect

    Hoffman, E.L.; Ammerman, D.J.

    1995-04-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement.

  9. 3D Reconstruction of Chick Embryo Vascular Geometries Using Non-invasive High-Frequency Ultrasound for Computational Fluid Dynamics Studies.

    PubMed

    Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai

    2015-11-01

    Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.

  10. Evaluation of the scale dependent dynamic SGS model in the open source code caffa3d.MBRi in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Draper, Martin; Usera, Gabriel

    2015-04-01

    The Scale Dependent Dynamic Model (SDDM) has been widely validated in large-eddy simulations using pseudo-spectral codes [1][2][3]. The scale dependency, particularly the potential law, has been proved also in a priori studies [4][5]. To the authors' knowledge there have been only few attempts to use the SDDM in finite difference (FD) and finite volume (FV) codes [6][7], finding some improvements with the dynamic procedures (scale independent or scale dependent approach), but not showing the behavior of the scale-dependence parameter when using the SDDM. The aim of the present paper is to evaluate the SDDM in the open source code caffa3d.MBRi, an updated version of the code presented in [8]. caffa3d.MBRi is a FV code, second-order accurate, parallelized with MPI, in which the domain is divided in unstructured blocks of structured grids. To accomplish this, 2 cases are considered: flow between flat plates and flow over a rough surface with the presence of a model wind turbine, taking for this case the experimental data presented in [9]. In both cases the standard Smagorinsky Model (SM), the Scale Independent Dynamic Model (SIDM) and the SDDM are tested. As presented in [6][7] slight improvements are obtained with the SDDM. Nevertheless, the behavior of the scale-dependence parameter supports the generalization of the dynamic procedure proposed in the SDDM, particularly taking into account that no explicit filter is used (the implicit filter is unknown). [1] F. Porté-Agel, C. Meneveau, M.B. Parlange. "A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer". Journal of Fluid Mechanics, 2000, 415, 261-284. [2] E. Bou-Zeid, C. Meneveau, M. Parlante. "A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows". Physics of Fluids, 2005, 17, 025105 (18p). [3] R. Stoll, F. Porté-Agel. "Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of

  11. XML3D and Xflow: combining declarative 3D for the Web with generic data flows.

    PubMed

    Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp

    2013-01-01

    Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing. PMID:24808080

  12. Tracking the dynamic seroma cavity using fiducial markers in patients treated with accelerated partial breast irradiation using 3D conformal radiotherapy

    SciTech Connect

    Yue, Ning J.; Haffty, Bruce G.; Goyal, Sharad

    2013-02-15

    Purpose: The purpose of the present study was to perform an analysis of the changes in the dynamic seroma cavity based on fiducial markers in early stage breast cancer patients treated with accelerated partial breast irradiation (APBI) using three-dimensional conformal external beam radiotherapy (3D-CRT). Methods: A prospective, single arm trial was designed to investigate the utility of gold fiducial markers in image guided APBI using 3D-CRT. At the time of lumpectomy, four to six suture-type gold fiducial markers were sutured to the walls of the cavity. Patients were treated with a fractionation scheme consisting of 15 fractions with a fractional dose of 333 cGy. Treatment design and planning followed NSABP/RTOG B-39 guidelines. During radiation treatment, daily kV imaging was performed and the markers were localized and tracked. The change in distance between fiducial markers was analyzed based on the planning CT and daily kV images. Results: Thirty-four patients were simulated at an average of 28 days after surgery, and started the treatment on an average of 39 days after surgery. The average intermarker distance (AiMD) between fiducial markers was strongly correlated to seroma volume. The average reduction in AiMD was 19.1% (range 0.0%-41.4%) and 10.8% (range 0.0%-35.6%) for all the patients between simulation and completion of radiotherapy, and between simulation and beginning of radiotherapy, respectively. The change of AiMD fits an exponential function with a half-life of seroma shrinkage. The average half-life for seroma shrinkage was 15 days. After accounting for the reduction which started to occur after surgery through CT simulation and treatment, radiation was found to have minimal impact on the distance change over the treatment course. Conclusions: Using the marker distance change as a surrogate for seroma volume, it appears that the seroma cavity experiences an exponential reduction in size. The change in seroma size has implications in the size of

  13. Spatial and temporal distribution of Cu-Au-Mo ore deposits along the western Tethyan convergent margin: a link with the 3D subduction dynamics

    NASA Astrophysics Data System (ADS)

    Menant, A.; Bertrand, G.; Loiselet, C.; Guillou-Frottier, L.; Jolivet, L.

    2012-12-01

    numerous mineralized systems within the upper crust. The Au-rich Oligocene - Neogene metallogenic episode in the eastern Mediterranean region is also correlated with an increase of mantle-derived and/or subduction-modified lithospheric mantle components in magmas. This feature may be a consequence of the emplacement of hot asthenosphere at shallow depth related to (1) the development of a wide back-arc region due to slab retreat such as in the Aegean domain and (2) a slab tear and/or a lithospheric delamination, suspected notably in the Carpathians and western Turkey where alkaline to shoshonitic volcanism occurs. As the behavior of the slab and asthenosphere below the upper plate seems to play a key-role in controlling the distribution of ore deposits, it is worth studying the dynamics of the 3D mantle flow related to slab retreat. Thus, 3D numerical models of subduction dynamics with realistic rheologies have been developed. Around the slab edges, the poloidal (i.e. in a vertical plane) and toroidal (i.e. in a horizontal plane) components of the mantle flow in subduction zone appear to depend on the slab rollback to plate velocity ratio. Heat and mass transfers induced by such 3D mantle flow, promote thermal anomalies in back-arc domain, observed on seismic tomographic models and necessary to produce fertile magmatism.

  14. Counter-intuitive features of the dynamic topography unveiled by tectonically realistic 3D numerical models of mantle-lithosphere interactions

    NASA Astrophysics Data System (ADS)

    Burov, Evgueni; Gerya, Taras

    2013-04-01

    It has been long assumed that the dynamic topography associated with mantle-lithosphere interactions should be characterized by long-wavelength features (> 1000 km) correlating with morphology of mantle flow and expanding beyond the scale of tectonic processes. For example, debates on the existence of mantle plumes largely originate from interpretations of expected signatures of plume-induced topography that are compared to the predictions of analytical and numerical models of plume- or mantle-lithosphere interactions (MLI). Yet, most of the large-scale models treat the lithosphere as a homogeneous stagnant layer. We show that in continents, the dynamic topography is strongly affected by rheological properties and layered structure of the lithosphere. For that we reconcile mantle- and tectonic-scale models by introducing a tectonically realistic continental plate model in 3D large-scale plume-mantle-lithosphere interaction context. This model accounts for stratified structure of continental lithosphere, ductile and frictional (Mohr-Coulomb) plastic properties and thermodynamically consistent density variations. The experiments reveal a number of important differences from the predictions of the conventional models. In particular, plate bending, mechanical decoupling of crustal and mantle layers and intra-plate tension-compression instabilities result in transient topographic signatures such as alternating small-scale surface features that could be misinterpreted in terms of regional tectonics. Actually thick ductile lower crustal layer absorbs most of the "direct" dynamic topography and the features produced at surface are mostly controlled by the mechanical instabilities in the upper and intermediate crustal layers produced by MLI-induced shear and bending at Moho and LAB. Moreover, the 3D models predict anisotropic response of the lithosphere even in case of isotropic solicitations by axisymmetric mantle upwellings such as plumes. In particular, in presence of

  15. Dynamics of pickup ion velocity distribution function in Titan's plasma environment (TA encounter): 3D hybrid kinetic modeling and comparison with CAPS observations

    NASA Astrophysics Data System (ADS)

    Simpson, D. G.; Lipatov, A. S.; Sittler, E. C.; Hartle, R. E.; Cooper, J. F.

    2013-12-01

    Wave-particle interactions play a very important role in the plasma dynamics near Titan: mass loading, excitation of the low-frequency waves and the formation of the particle velocity distribution function, e.g. ring/shell-like distributions, etc. The kinetic approach is important for estimation of the collision processes e.g. a charge exchange. The particle velocity distribution function also plays a key role for understanding the observed particle fluxes. In this report we discuss the ion velocity distribution function dynamics from 3D hybrid modeling. The modeling is based on recent analysis of the Cassini Plasma Spectrometer (CAPS) ion measurements during the TA flyby. In our model the background ions, all pickup ions, and ionospheric ions are considered as particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. The temperatures of the background electrons and pickup electrons were also included into the generalized Ohm's law. We also take into account the collisions between the ions and neutrals. We use Chamberlain profiles for the exosphere's components and include a simple ionosphere model with M=28 ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Our modeling shows that interaction between background plasma and pickup ions H+, H2+, CH4+ and N2+ has a more complicated structure than was observed in the T9 flyby and modeling due to the large gyroradius of the background O+ ions [1,2,3,4]. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS TA observations. We also compare our kinetic modeling with other hybrid and MHD modeling of Titan's environment. References [1] Sittler, E.C., et al., Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere. In: Titan from Cassini-Huygens, Brown, R.H., Lebreton J.P., Waite, J.H., Eds

  16. 3D discrete angiogenesis dynamic model and stochastic simulation for the assessment of blood perfusion coefficient and impact on heat transfer between nanoparticles and malignant tumors.

    PubMed

    Yifat, Jonathan; Gannot, Israel

    2015-03-01

    Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method.

  17. A new back-and-forth iterative method for time-reversed convection modeling: Implications for the Cenozoic evolution of 3-D structure and dynamics of the mantle

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro M.

    2016-06-01

    The 3-D distribution of buoyancy in the convecting mantle drives a suite of convection-related manifestations. Although seismic tomography is providing increasingly resolved images of the present-day mantle heterogeneity, the distribution of mantle density variations in the geological past is unknown, and, by implication, this is true for the convection-related observables. The one major exception is tectonic plate motions, since geologic data are available to estimate their history and they currently provide the only available constraints on the evolution of 3-D mantle buoyancy in the past. We developed a new back-and-forth iterative method for time-reversed convection modeling with a procedure for matching plate velocity data at different instants in the past. The crucial aspect of this reconstruction methodology is to ensure that at all times plates are driven by buoyancy forces in the mantle and not vice versa. Employing tomography-based retrodictions over the Cenozoic, we estimate the global amplitude of the following observables: dynamic surface topography, the core-mantle boundary ellipticity, the free-air gravity anomalies, and the global divergence rates of tectonic plates. One of the major benefits of the new data assimilation method is the stable recovery of much shorter wavelength changes in heterogeneity than was possible in our previous work. We now resolve what appears to be two-stage subduction of the Farallon plate under the western U.S. and a deeply rooted East African Plume that is active under the Ethiopian volcanic fields during the Early Eocene.

  18. Robust patella motion tracking using intensity-based 2D-3D registration on dynamic bi-plane fluoroscopy: towards quantitative assessment in MPFL reconstruction surgery

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Esnault, Matthieu; Grupp, Robert; Kosugi, Shinichi; Sato, Yoshinobu

    2016-03-01

    The determination of in vivo motion of multiple-bones using dynamic fluoroscopic images and computed tomography (CT) is useful for post-operative assessment of orthopaedic surgeries such as medial patellofemoral ligament reconstruction. We propose a robust method to measure the 3D motion of multiple rigid objects with high accuracy using a series of bi-plane fluoroscopic images and a multi-resolution, intensity-based, 2D-3D registration. A Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimizer was used with a gradient correlation similarity metric. Four approaches to register three rigid objects (femur, tibia-fibula and patella) were implemented: 1) an individual bone approach registering one bone at a time, each with optimization of a six degrees of freedom (6DOF) parameter, 2) a sequential approach registering one bone at a time but using the previous bone results as the background in DRR generation, 3) a simultaneous approach registering all the bones together (18DOF) and 4) a combination of the sequential and the simultaneous approaches. These approaches were compared in experiments using simulated images generated from the CT of a healthy volunteer and measured fluoroscopic images. Over the 120 simulated frames of motion, the simultaneous approach showed improved registration accuracy compared to the individual approach: with less than 0.68mm root-mean-square error (RMSE) for translation and less than 1.12° RMSE for rotation. A robustness evaluation was conducted with 45 trials of a randomly perturbed initialization showed that the sequential approach improved robustness significantly (74% success rate) compared to the individual bone approach (34% success) for patella registration (femur and tibia-fibula registration had a 100% success rate with each approach).

  19. 3D discrete angiogenesis dynamic model and stochastic simulation for the assessment of blood perfusion coefficient and impact on heat transfer between nanoparticles and malignant tumors.

    PubMed

    Yifat, Jonathan; Gannot, Israel

    2015-03-01

    Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method. PMID:24462603

  20. Dynamic simulation and modeling of the motion modes produced during the 3D controlled manipulation of biological micro/nanoparticles based on the AFM.

    PubMed

    Saraee, Mahdieh B; Korayem, Moharam H

    2015-08-01

    Determining the motion modes and the exact position of a particle displaced during the manipulation process is of special importance. This issue becomes even more important when the studied particles are biological micro/nanoparticles and the goals of manipulation are the transfer of these particles within body cells, repair of cancerous cells and the delivery of medication to damaged cells. However, due to the delicate nature of biological nanoparticles and their higher vulnerability, by obtaining the necessary force of manipulation for the considered motion mode, we can prevent the sample from interlocking with or sticking to the substrate because of applying a weak force or avoid damaging the sample due to the exertion of excessive force. In this paper, the dynamic behaviors and the motion modes of biological micro/nanoparticles such as DNA, yeast, platelet and bacteria due to the 3D manipulation effect have been investigated. Since the above nanoparticles generally have a cylindrical shape, the cylindrical contact models have been employed in an attempt to more precisely model the forces exerted on the nanoparticle during the manipulation process. Also, this investigation has performed a comprehensive modeling and simulation of all the possible motion modes in 3D manipulation by taking into account the eccentricity of the applied load on the biological nanoparticle. The obtained results indicate that unlike the macroscopic scale, the sliding of nanoparticle on substrate in nano-scale takes place sooner than the other motion modes and that the spinning about the vertical and transverse axes and the rolling of nanoparticle occur later than the other motion modes. The simulation results also indicate that the applied force necessary for the onset of nanoparticle movement and the resulting motion mode depend on the size and aspect ratio of the nanoparticle.

  1. Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix.

    PubMed

    Kim, Min-Cheol; Kim, Choong; Wood, Levi; Neal, Devin; Kamm, Roger D; Asada, H Harry

    2012-11-01

    An integrative cell migration model incorporating focal adhesion (FA) dynamics, cytoskeleton and nucleus remodeling and actin motor activity is developed for predicting cell migration behaviors on 3-dimensional curved surfaces, such as cylindrical lumens in the 3-D extracellular matrix (ECM). The work is motivated by 3-D microfluidic migration experiments suggesting that the migration speed and direction may vary depending on the cross sectional shape of the lumen along which the cell migrates. In this paper, the mechanical structure of the cell is modeled as double elastic membranes of cell and nucleus. The two elastic membranes are connected by stress fibers, which are extended from focal adhesions on the cell surface to the nuclear membrane. The cell deforms and gains traction as transmembrane integrins distributed over the outer cell membrane bind to ligands on the ECM, form focal adhesions, and activate stress fibers. Probabilities at which integrin ligand-receptor bonds are formed as well as ruptures are affected by the surface geometry, resulting in diverse migration behaviors that depend on the curvature of the surface. Monte Carlo simulations of the integrative model reveal that (a) the cell migration speed is dependent on the cross sectional area of the lumen with a maximum speed at a particular diameter or width, (b) as the lumen diameter increases, the cell tends to spread and migrate around the circumference of the lumen, while it moves in the longitudinal direction as the lumen diameter narrows, (c) once the cell moves in one direction, it tends to stay migrating in the same direction despite the stochastic nature of migration. The relationship between the cell migration speed and the lumen width agrees with microfluidic experimental data for cancer cell migration.

  2. Identification of Potent Virtual Leads Specific to S1' Loop of ADAMTS4: Pharmacophore Modeling, 3D-QSAR, Molecular Docking and Dynamic Studies.

    PubMed

    Suganya, P Rathi; Kalva, Sukesh; Saleena, Lilly M

    2016-01-01

    ADAMTS4 (Aggrecanase-1) is an important enzyme, which belongs to ADAMTS family. Aggrecanase-1 is involved in aggrecan degradation of articular cartilage in osteoarthritis and rheumatoid arthritis. Overall variability of S1' domain of ADAMTS4 has been the main selectivity determinant to design the unique inhibitors. 34 inhibitors from Binding database and literature were used to develop the pharmacophore model. The five featured pharmacophore model AHHRR had the best survival score of 3.493 and post-hoc score of 2.545, indicating that the model is highly reliable. The 3D-QSAR acquired had excellent r(2) value of 0.99 and GH score of 0.839. The validated pharmacophore model was used for insilico screening of Asinex and ZINC database for finding the potential lead compounds. ZINC00987406 and ASN04459656 which pose high glide score i.e >7 Kcal/mol and H-bond and hydrophobic interactions in the S1'loop residues of ADAMTS4 were subjected to Molecular Dynamics Simulation studies. Molecular dynamic simulation result indicates that the RMSD and RMSF of backbone atoms for the above complexes were within the limit of 2.0 A˚. These compounds can be potential candidates for osteoarthritis by inhibiting ADAMTS4. PMID:26813685

  3. In Silico Exploration of 1,7-Diazacarbazole Analogs as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and Molecular Dynamics Simulations.

    PubMed

    Gao, Xiaodong; Han, Liping; Ren, Yujie

    2016-01-01

    Checkpoint kinase 1 (Chk1) is an important serine/threonine kinase with a self-protection function. The combination of Chk1 inhibitors and anti-cancer drugs can enhance the selectivity of tumor therapy. In this work, a set of 1,7-diazacarbazole analogs were identified as potent Chk1 inhibitors through a series of computer-aided drug design processes, including three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, molecular docking, and molecular dynamics simulations. The optimal QSAR models showed significant cross-validated correlation q² values (0.531, 0.726), fitted correlation r² coefficients (higher than 0.90), and standard error of prediction (less than 0.250). These results suggested that the developed models possess good predictive ability. Moreover, molecular docking and molecular dynamics simulations were applied to highlight the important interactions between the ligand and the Chk1 receptor protein. This study shows that hydrogen bonding and electrostatic forces are key interactions that confer bioactivity. PMID:27164065

  4. Influence of disorder on ageing and memory effects in non-equilibrium critical dynamics of 3D Ising model relaxing from an ordered state

    NASA Astrophysics Data System (ADS)

    Prudnikov, Vladimir V.; Prudnikov, Pavel V.; Pospelov, Evgeny A.

    2016-04-01

    We have performed a numerical investigation of the influence of disorder on the dynamical non-equilibrium evolution of a 3D site-diluted Ising model from a low-temperature initial state with magnetization m 0  =  1. It is shown that two-time dependences of the autocorrelation and integrated response functions for systems with spin concentrations p  =  1.0, 0.95, 0.8, 0.6 and 0.5 demonstrate ageing properties with anomalous slowing-down relaxation and violation of the fluctuation-dissipation ratio. It was revealed that during non-equilibrium critical dynamics in the long-time regime t-{{t}\\text{w}}\\gg {{t}\\text{w}}\\gg 1 the autocorrelation functions for diluted systems are extremely slow due to the pinning of domain walls on impurity sites. We have found that the fluctuation-dissipation ratio {{X}∞}=0 for diluted systems with spin concentration p  <  1 while the pure system is characterized by {{X}∞}=0.784(7) . The autocorrelation function power-law delay becomes the same as for the time dependence of the magnetization in the critical point and is characterized by exponent -β /zν . Also, for diluted systems we reveal memory effects for critical evolution in the ageing regime with realization of cyclic temperature change and quenching at T<{{T}\\text{c}} .

  5. Use of RELAP5-3D for Dynamic Analysis of a Closed-Loop Brayton Cycle Coupled To a Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    McCann, Larry D.

    2007-01-01

    This paper describes results of a dynamic system model for a pair of closed Brayton-cycle (CBC) loops running in parallel that are connected to a nuclear gas reactor. The model assumes direct coupling between the reactor and the Brayton-cycle loops. The RELAP5-3D (version 2.4.1) computer program was used to perform the analysis. Few reactors have ever been coupled to closed Brayton-cycle systems. As such their behavior under dynamically varying loads, startup and shut down conditions, and requirements for safe and autonomous operation are largely unknown. The model described in this paper represents the reactor, turbine, compressor, recuperator, heat rejection system and alternator. The initial results of the model indicate stable operation of the reactor-driven Brayton-cycle system. However, for analysts with mostly pressurized water reactor experience, the Brayton cycle loops coupled to a gas-cooled reactor also indicate some counter-intuitive behavior for the complete coupled system. This model has provided crucial information in evaluating the reactor design and would have been further developed for use in developing procedures for safe start up, shut down, safe-standby, and other autonomous operating modes had the plant development cycle been completed.

  6. Use of RELAP5-3D for Dynamic Analysis of a Closed-Loop Brayton Cycle Coupled To a Nuclear Reactor

    SciTech Connect

    McCann, Larry D.

    2007-01-30

    This paper describes results of a dynamic system model for a pair of closed Brayton-cycle (CBC) loops running in parallel that are connected to a nuclear gas reactor. The model assumes direct coupling between the reactor and the Brayton-cycle loops. The RELAP5-3D (version 2.4.1) computer program was used to perform the analysis. Few reactors have ever been coupled to closed Brayton-cycle systems. As such their behavior under dynamically varying loads, startup and shut down conditions, and requirements for safe and autonomous operation are largely unknown. The model described in this paper represents the reactor, turbine, compressor, recuperator, heat rejection system and alternator. The initial results of the model indicate stable operation of the reactor-driven Brayton-cycle system. However, for analysts with mostly pressurized water reactor experience, the Brayton cycle loops coupled to a gas-cooled reactor also indicate some counter-intuitive behavior for the complete coupled system. This model has provided crucial information in evaluating the reactor design and would have been further developed for use in developing procedures for safe start up, shut down, safe-standby, and other autonomous operating modes had the plant development cycle been completed.

  7. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data.

    PubMed

    Kotasidis, F A; Mehranian, A; Zaidi, H

    2016-05-01

    reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.

  8. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data

    NASA Astrophysics Data System (ADS)

    Kotasidis, F. A.; Mehranian, A.; Zaidi, H.

    2016-05-01

    reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.

  9. Dynamic 3D scanning as a markerless method to calculate multi-segment foot kinematics during stance phase: methodology and first application.

    PubMed

    Van den Herrewegen, Inge; Cuppens, Kris; Broeckx, Mario; Barisch-Fritz, Bettina; Vander Sloten, Jos; Leardini, Alberto; Peeraer, Louis

    2014-08-22

    Multi-segmental foot kinematics have been analyzed by means of optical marker-sets or by means of inertial sensors, but never by markerless dynamic 3D scanning (D3DScanning). The use of D3DScans implies a radically different approach for the construction of the multi-segment foot model: the foot anatomy is identified via the surface shape instead of distinct landmark points. We propose a 4-segment foot model consisting of the shank (Sha), calcaneus (Cal), metatarsus (Met) and hallux (Hal). These segments are manually selected on a static scan. To track the segments in the dynamic scan, the segments of the static scan are matched on each frame of the dynamic scan using the iterative closest point (ICP) fitting algorithm. Joint rotations are calculated between Sha-Cal, Cal-Met, and Met-Hal. Due to the lower quality scans at heel strike and toe off, the first and last 10% of the stance phase is excluded. The application of the method to 5 healthy subjects, 6 trials each, shows a good repeatability (intra-subject standard deviations between 1° and 2.5°) for Sha-Cal and Cal-Met joints, and inferior results for the Met-Hal joint (>3°). The repeatability seems to be subject-dependent. For the validation, a qualitative comparison with joint kinematics from a corresponding established marker-based multi-segment foot model is made. This shows very consistent patterns of rotation. The ease of subject preparation and also the effective and easy to interpret visual output, make the present technique very attractive for functional analysis of the foot, enhancing usability in clinical practice.

  10. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  11. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  12. Bootstrapping 3D fermions

    DOE PAGESBeta

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  13. How muscle relaxation and laterotrusion resolve open locks of the temporomandibular joint. Forward dynamic 3D-modeling of the human masticatory system.

    PubMed

    Tuijt, M; Koolstra, J H; Lobbezoo, F; Naeije, M

    2016-01-25

    Patients with symptomatic hypermobility of the temporomandibular joint report problems with the closing movement of their jaw. Some are even unable to close their mouth opening wide (open lock). Clinical experience suggests that relaxing the jaw muscles or performing a jaw movement to one side (laterotrusion) might be a solution. The aim of our study was to assess the potential of these strategies for resolving an open lock and we hypothesised that both strategies work equally well in resolving open locks. We assessed the interplay of muscle forces, joint reaction forces and their moments during closing of mouth, following maximal mouth opening. We used a 3D biomechanical model of the masticatory system with a joint shape and muscle orientation that predispose for an open lock. In a forward dynamics approach, the effect of relaxation and laterotrusion strategies was assessed. Performing a laterotrusion movement was predicted to release an open lock for a steeper anterior slope of the articular eminence than relaxing the jaw-closing muscles, herewith we rejected our hypothesis. Both strategies could provide a net jaw closing moment, but only the laterotrusion strategy was able to provide a net posterior force for steeper anterior slope angles. For both strategies, the temporalis muscle appeared pivotal to retrieve the mandibular condyles to the glenoid fossa, due to its' more dorsally oriented working lines. PMID:26726782

  14. Background and Pickup Ion Velocity Distribution Dynamics in Titan's Plasma Environment: 3D Hybrid Simulation and Comparison with CAPS T9 Observations

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-01-01

    In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H(+); H2(+), CH4(+) and N2(+) is stronger than in the previous simulations when O+ ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfve n wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.

  15. Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold.

    PubMed

    Guyot, Y; Papantoniou, I; Luyten, F P; Geris, L

    2016-02-01

    The main challenge in tissue engineering consists in understanding and controlling the growth process of in vitro cultured neotissues toward obtaining functional tissues. Computational models can provide crucial information on appropriate bioreactor and scaffold design but also on the bioprocess environment and culture conditions. In this study, the development of a 3D model using the level set method to capture the growth of a microporous neotissue domain in a dynamic culture environment (perfusion bioreactor) was pursued. In our model, neotissue growth velocity was influenced by scaffold geometry as well as by flow- induced shear stresses. The neotissue was modeled as a homogenous porous medium with a given permeability, and the Brinkman equation was used to calculate the flow profile in both neotissue and void space. Neotissue growth was modeled until the scaffold void volume was filled, thus capturing already established experimental observations, in particular the differences between scaffold filling under different flow regimes. This tool is envisaged as a scaffold shape and bioprocess optimization tool with predictive capacities. It will allow controlling fluid flow during long-term culture, whereby neotissue growth alters flow patterns, in order to provide shear stress profiles and magnitudes across the whole scaffold volume influencing, in turn, the neotissue growth. PMID:26758425

  16. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  17. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  18. Modeling the spatial and temporal population dynamics of the copepod Centropages typicus in the northwestern Mediterranean Sea during the year 2001 using a 3D ecosystem model

    NASA Astrophysics Data System (ADS)

    Carlotti, F.; Eisenhauer, L.; Campbell, R.; Diaz, F.

    2014-07-01

    The spatio-temporal dynamics of a simulated Centropages typicus (Kröyer) population during the year 2001 at the regional scale of the northwestern Mediterranean Sea are addressed using a 3D coupled physical-biogeochemical model. The setup of the coupled biological model comprises a pelagic plankton ecosystem model and a stage-structured population model forced by the 3D velocity and temperature fields provided by an eddy-resolving regional circulation model. The population model for C. typicus (C. t. below) represents demographic processes through five groups of developmental stages, which depend on underlying individual growth and development processes and are forced by both biotic (prey and predator fields) and abiotic (temperature, advection) factors from the coupled physical-biogeochemical model. The objective is to characterize C. t. ontogenic habitats driven by physical and trophic processes. The annual dynamics are presented for two of the main oceanographic stations in the Gulf of Lions, which are representative of shelf and open sea conditions, while the spatial distributions over the whole area are presented for three dates during the year, in early and late spring and in winter. The simulated spatial patterns of C. t. developmental stages are closely related to mesoscale hydrodynamic features and circulation patterns. The seasonal and spatial distributions on the Gulf of Lions shelf depend on the seasonal interplay between the Rhône river plume, the mesoscale eddies on the shelf and the Northern Current acting as either as a dynamic barrier between the shelf and the open sea or allowing cross-shelf exchanges. In the central gyre of the northwestern Mediterranean Sea, the patchiness of plankton is tightly linked to mesoscale frontal systems, surface eddies and filaments and deep gradients. Due to its flexibility in terms of its diet, C. t. succeeds in maintaining its population in both coastal and offshore areas year round. The simulations suggest that

  19. Molecular modeling studies on series of Btk inhibitors using docking, structure-based 3D-QSAR and molecular dynamics simulation: a combined approach.

    PubMed

    Balasubramanian, Pavithra K; Balupuri, Anand; Cho, Seung Joo

    2016-03-01

    Bruton tyrosine kinase (Btk) is a non-receptor tyrosine kinase. It is a crucial component in BCR pathway and expressed only in hematopoietic cells except T cells and Natural killer cells. BTK is a promising target because of its involvement in signaling pathways and B cell diseases such as autoimmune disorders and lymphoma. In this work, a combined molecular modeling study of molecular docking, 3D-QSAR and molecular dynamic (MD) simulation were performed on a series of 2,5-diaminopyrimidine compounds as inhibitors targeting Btk kinase to understand the interaction and key residues involved in the inhibition. A structure based CoMFA (q (2) = 0.675, NOC = 5, r (2) = 0.961) and COMSIA (q (2) = 0.704, NOC = 6, r (2) = 0.962) models were developed from the conformation obtained by docking. The developed models were subjected to various validation techniques such as leave-five-out, external test set, bootstrapping, progressive sampling and rm (2) metrics and found to have a good predictive ability in both internal and external validation. Our docking results showed the important residues that interacts in the active site residues in inhibition of Btk kinase. Furthermore, molecular dynamics simulation was employed to study the stability of the docked conformation and to investigate the binding interactions in detail. The MD simulation analyses identified several important hydrogen bonds with Btk, including the gatekeeper residue Thr474 and Met477 at the hinge region. Hydrogen bond with active site residues Leu408 and Arg525 were also recognized. A good correlation between the MD results, docking studies and the contour map analysis are observed. This indicates that the developed models are reliable. Our results from this study can provide insights in the designing and development of more potent Btk kinase inhibitors.

  20. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle

    PubMed Central

    Hindel, Stefan; Sauerbrey, Anika; Maaß, Marc; Maderwald, Stefan; Schlamann, Marc; Lüdemann, Lutz

    2015-01-01

    The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the

  1. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle.

    PubMed

    Hindel, Stefan; Sauerbrey, Anika; Maaß, Marc; Maderwald, Stefan; Schlamann, Marc; Lüdemann, Lutz

    2015-01-01

    The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the

  2. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle.

    PubMed

    Hindel, Stefan; Sauerbrey, Anika; Maaß, Marc; Maderwald, Stefan; Schlamann, Marc; Lüdemann, Lutz

    2015-01-01

    The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the

  3. Application of the Kolmogorov-Zurbenko filter and the decoupled direct 3D method for the dynamic evaluation of a regional air quality model

    NASA Astrophysics Data System (ADS)

    Kang, Daiwen; Hogrefe, Christian; Foley, Kristen L.; Napelenok, Sergey L.; Mathur, Rohit; Trivikrama Rao, S.

    2013-12-01

    Regional air quality models are being used in a policy-setting to assess the changes in air pollutant concentrations from changes in emissions and meteorology. Dynamic evaluation entails examination of a retrospective case(s) to examine whether an air quality model has properly predicted the air quality response to known changes in emissions and/or meteorology. In this study, the Kolmogorov-Zurbenko (KZ) filter has been used to spectrally decompose pollutant time series into different forcings that are controlled by different atmospheric processes influencing the predicted and observed pollutant concentrations. Through analyses of the different components influenced by different forcings as part of dynamic model evaluation, we can discern which of the component(s) or scale(s) of forcing are simulated well by the model and the component(s) or scale(s) of forcing needing further improvement in the model. The KZ filter has been applied to both the observed and Community Multiscale Air Quality (CMAQ) model-predicted summertime ozone (O3) time series in years 2002 and 2005. The 2002-2005 time period is a good candidate for the dynamic evaluation case study because of the large changes in NOx emissions as a result of the U.S. Environmental Protection Agency's (USEPA) NOx State Implementation Plan (SIP) call together with a gradual decline in mobile emissions. Results suggest that the CMAQ model performs similarly for both years in terms of capturing the observed synoptic-scale forcing. However, the changes in the observed ozone baseline component (i.e. longer-term variations) are not properly captured by the model at some locations. The factors contributing to the ozone baseline include emissions loading, boundary conditions, and other parameters that vary slowly over time. Analysis using a reduced form model developed from the sensitivity coefficients calculated from the decoupled direct method in three dimensions (DDM-3D) reveals that ground-level NOx emissions

  4. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  5. 3D quasi-dynamic modeling of earthquake cycles of the great Tohoku-oki earthquake by considering high-speed friction and thermal pressurization

    NASA Astrophysics Data System (ADS)

    Shibazaki, B.; Tsutsumi, A.; Shimamoto, T.; Noda, H.

    2012-12-01

    Some observational studies [e.g. Hasegawa et al., 2011] suggested that the 2011 great Tohoku-oki Earthquake (Mw 9.0) released roughly all of the accumulated elastic strain on the plate interface owing to considerable weakening of the fault. Recent studies show that considerable weakening can occur at a high slip velocity because of thermal pressurization or thermal weakening processes [Noda and Lapusta, 2010; Di Toro et al., 2011]. Tsutsumi et al. [2011] examined the frictional properties of clay-rich fault materials under water-saturated conditions and found that velocity weakening or strengthening occurs at intermediate slip velocities and that dramatic weakening occurs at high slip velocities. This dramatic weakening at higher slip velocities is caused by pore-fluid pressurization via frictional heating or gouge weakening. In the present study, we investigate the generation mechanism of megathrust earthquakes along the Japan trench by performing 3D quasi-dynamic modeling with high-speed friction or thermal pressurization. We propose a rate- and state-dependent friction law with two state variables that exhibit weak velocity weakening or strengthening with a small critical displacement at low to intermediate velocities, but a strong velocity weakening with a large critical displacement at high slip velocities [Shibazaki et al., 2011]. We use this friction law for 3D quasi-dynamic modeling of a cycle of the great Tohoku-oki earthquake. We set several asperities where velocity weakening occurs at low to intermediate slip velocities. Outside of the asperities, velocity strengthening occurs at low to intermediate slip velocities. At high slip velocities, strong velocity weakening occurs both within and outside of the asperities. The rupture of asperities occurs at intervals of several tens of years, whereas megathrust events occur at much longer intervals (several hundred years). Megathrust slips occur even in regions where velocity strengthening occurs at low to

  6. Applying 3D Dynamic Visualisation to (Palaeo) Geomorphic Reconstruction: Modelling a Tenth Century Jökulhlaup at Sólheimajökull Glacier, South Iceland.

    NASA Astrophysics Data System (ADS)

    Booth, Laura; Isaacs, John

    2014-05-01

    Models of the area with aerial photography to create a 3D virtual environment, which provides the basis for entering field data to the geomorphic reconstruction. The result is a visual simulation of Sólheimajökull's Tenth Century physical environment which places the flood into geomorphic and topographic context. The wider implications of developing this tool are many when considering its ease of use and first-person navigational controls. The animations allow immediate exposure to environments that are otherwise lost in reality. VolcVis is a powerful tool in bringing reconstructed palaeo-environments back to life, albeit in the virtual sphere. It allows a uniquely contemporary appreciation of an elapsed event; yet which was a critical episode in the geomorphic evolution of this dynamic region. When field data are pieced together into a simulation, they hold a greater cohesive strength, giving the results wider applicability and relevance to a range of users and decision-makers, serving both technical and nontechnical perspectives. VolcVis' ability to dynamically display field data presents new possibilities for generating hypotheses, and for data sharing with Icelandic hazard mitigation authorities and the general public.

  7. Flow dynamics and sedimentation of lateral accretion packages in sinuous deep-water channels: A 3D seismic case study from the northwestern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Gong, Chenglin

    2016-07-01

    The current study uses 3D seismic data to document architectural styles and flow dynamics of lateral accretion packages (LAPs) associated with sinuous deep-water channels, contributing to a better understanding of flow processes and sedimentation associated with LAPs. The documented LAPs underwent three main stages of architectural evolution, including the early incision stages characterized by intense downcutting, active migration stages characterized by active migration and avulsion of the individual channels, and late abandonment stages characterized by the termination of sediment gravity-flows and LAP growth. These three stages of LAP growth repeated through time, yielding a fining-upward pattern from sandy channel-fill turbidites, into sand-mud couplets, all capped by muddy turbidites. A river-reversed helical flow circulation was created by an imbalance, through the flow depth, of inwardly directed pressure gradient forces near the bed and outwardly directed centrifugal forces near the surface. It consists of low-velocity cores near the outer banks and low-velocity cores along the inner banks. Such river-reversed helical flow pattern is evidenced by volumetrically extensive LAPs and toplap and downlap terminations along the gentle banks and by aerially restricted, seismically unresolvable levees and truncation terminations near the steep banks. This river-reversed helical flow circulation favors asymmetric intra-channel deposition characterized by inner bank deposition versus outer bank erosion, and which, in turn, forced individual channels to consistently migrate towards outer banks, resulting in significant asymmetric cross-channel profiles with aerially extensive LAPs along inner banks.

  8. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on estrogenic activity of hydroxylated polychlorinated biphenyls.

    PubMed

    Li, Xiaolin; Ye, Li; Wang, Xiaoxiang; Wang, Xinzhou; Liu, Hongling; Qian, Xiangping; Zhu, Yongliang; Yu, Hongxia

    2012-12-15

    Hydroxylated polychlorinated biphenyls (HO-PCBs), major metabolites of PCBs, have been reported to present agonist or antagonist interactions with estrogen receptor α (ERα) and induce ER-mediated responses. In this work, a multistep framework combining molecular docking, molecular dynamics (MD) simulations, and structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed to explore the influence of structural features on the estrogenic activities of HO-PCBs, and to investigate the molecular mechanism of ERα-ligand interactions. The CoMSIA (comparative molecular similarity indices analysis) model was developed from the conformations obtained from molecular docking. The model exhibited statistically significant results as the cross-validated correlation coefficient q² was 0.648, the non-cross-validated correlation coefficient r² was 0.968, and the external predictive correlation coefficient r(pred)² was 0.625. The key amino acid residues were identified by molecular docking, and the detailed binding modes of the compounds with different activities were determined by MD simulations. The binding free energies correlated well with the experimental activity. An energetic analysis, MM-GBSA energy decomposition, revealed that the van der Waals interaction was the major driving force for the binding of compounds to ERα. The hydrogen bond interactions between the ligands and residue His524 help to stabilize the conformation of ligands at the binding pocket. These results are expected to be beneficial to predict estrogenic activities of other HO-PCB congeners and helpful for understanding the binding mechanism of HO-PCBs and ERα. PMID:23137989

  9. Self consistent particles dynamics in/out of the cusp region by using back tracking technics; a global 3D PIC simulation approach

    NASA Astrophysics Data System (ADS)

    Esmaeili, A.; Cai, D.; Lembege, B.; Nishikawa, K.

    2013-12-01

    Large scale three dimensionbal PIC (particle in cell) simulations are presently used in order to analyze the global solar wind-terrestrial magnetosphere intreraction within a full self-consistent approach, and where both electrons and ions are treated as an assembly of individual particles. This 3D kinetic approach allows us to analyze in particular the dynamics and the fine structures of the cusp region when including self consistently not only its whole neighborhood (in the terrestrial magnetosphere) but also the impact of the solar wind and the interplanetary field (IMF) features. Herein, we focuss our attention on the cusp region and in particular on the acceleration and precipitation of particles (both ions and electrons) within the cusp. In present simulations, the IMF is chosen northward, (i.e. where the X -reconnection region is just above the cusp, in the meridian plane). Back-trackings of self-consistent particles are analyzed in details in order to determine (i) which particles (just above the cusp) are precipitated deeply into the cusp, (ii) which populations are injected from the cusp into the nearby tail, (iii) where the particles suffer the largest energisation along their self-consistent trajectories, (iv) where these populations accumulate, and (v) where the most energetic particles are originally coming from. This approach allows to make a traking of particles within the scenario "solar wind-magnetosheath- cusp -nearbytail"; moreover it strongly differs from the standard test particles technics and allows to provide informations not accessible when using full MHD approach. Keywords: Tracing Particles, Particle In Cell (PIC) simulation, double cusp, test particles method, IMF, Solar wind, Magnetosphere

  10. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  11. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  12. The influence of laser-induced 3-D titania nanofibrous platforms on cell behavior.

    PubMed

    Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, K

    2013-11-01

    The current challenge in tissue engineering is to design a platform that can provide appropriate topography and suitable surface chemistry to encourage desired cellular activities and to guide 3-D tissue regeneration. Compared with traditional cell culture materials, 3-D nanofibrous platforms offer a superior environment for promoting cell functions by mimicking the architecture of extracellular matrix (ECM). In this study, we present a technique to engineer freestanding 3-D titania nanofibrous structures on titanium substrates using femtosecond laser processing. The crystallinity, surface adhesion, and surface energy of the synthesized nanostructures are discussed. The effects of synthesized nanoarchitectures on the proliferation, morphology, and viability of MC3T3-E1 mouse osteoblast-like cells and NIH 3T3 mouse embryonic fibroblasts are investigated. The nanofibrous structures show high surface energy and hydrophilicity. The results from in vitro studies reveal that the titania nanofibrous architectures possess excellent biocompatibility and significantly enhances proliferation of both cell lines compared to untreated titanium specimens. Study of the cell morphology shows dynamic cell migration and attachment on the titania nanofibrous architecture. The bioactivity and biocompatibility of the engineered 3-D nanostructures suggest noticeable perspective for developing bio-functionalized scaffolds and implantable materials in regenerative medicine and clinical tissue engineering. PMID:24059083

  13. The dynamic distribution of fluorescent analogues of actin and myosin in protrusions at the leading edge of migrating Swiss 3T3 fibroblasts

    PubMed Central

    1988-01-01

    The formation of protrusions at the leading edge of the cell is an essential step in fibroblast locomotion. Using fluorescent analogue cytochemistry, ratio imaging, multiple parameter analysis, and fluorescence photobleaching recovery, the distribution of actin and myosin was examined in the same protrusions at the leading edge of live, locomoting cells during wound-healing in vitro. We have previously defined two temporal stages of the formation of protrusions: (a) initial protrusion and (b) established protrusion (Fisher et al., 1988). Actin was slightly concentrated in initial protrusions, while myosin was either totally absent or present at extremely low levels at the base of the initial protrusions. In contrast, established protrusions contained diffuse actin and actin microspikes, as well as myosin in both diffuse and structured forms. Actin and myosin were also localized along concave transverse fibers near the base of initial and established protrusions. The dynamics of myosin penetration into a relatively stable, established protrusion was demonstrated by recording sequential images over time. Myosin was shown to be absent from an initial protrusion, but diffuse and punctate myosin was detected in the same protrusion within 1-2 min. Fluorescence photobleaching recovery indicated that myosin was 100% immobile in the region behind the leading edge containing transverse fibers, in comparison to the 21% immobile fraction detected in the perinuclear region. Possible explanations of the delayed penetration of myosin into established protrusions and the implications on the mechanism of protrusion are discussed. PMID:3204122

  14. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  15. SU-D-213-03: Towards An Optimized 3D Scintillation Dosimetry Tool for Quality Assurance of Dynamic Radiotherapy Techniques

    SciTech Connect

    Rilling, M; Goulet, M; Thibault, S; Archambault, L

    2015-06-15

    specifications. This work leads the way to improving the 3D dosimeter’s achievable resolution, efficiency and build for providing a quality assurance tool fully meeting clinical needs. M.R. is financially supported by a Master’s Canada Graduate Scholarship from the NSERC. This research is also supported by the NSERC Industrial Research Chair in Optical Design.

  16. Synthesis, characterisation, conformational preferences, dynamic NMR studies and antimicrobial evaluation of N-nitroso- and N-formyl-c-3,t-3-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-ones

    NASA Astrophysics Data System (ADS)

    Ponnuswamy, S.; Akila, A.; Kiruthiga devi, D.; Maheshwaran, V.; Ponnuswamy, M. N.

    2016-04-01

    The stereochemical preferences of N-nitroso- and N-formyl-c-3,t-3-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-ones 3 & 4, respectively, have been determined using 1D and 2D NMR spectral techniques. Interestingly, the N-nitroso compound 3 is found to prefer an equilibrium between alternate chair conformations with diaxial phenyl groups, while the N-formyl compound 4 prefers flattened boat conformation. This is stereochemically a novel report on the flexible rings adopting a chair conformation with diaxial phenyl groups. The X-ray crystal structure of N-nitroso-c-3,t-3-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one (3) also supports the chair conformation with diaxial phenyl groups. Dynamic 1H NMR spectral studies have been carried out on the N-nitroso and N-formyl diazepan-5-ones 3 &4 and the energy barriers for N-NO and N-CO rotations are found to be 88.7 and 75.7 kJ/mol, respectively. The antimicrobial activities have been determined for the compounds 2-4 and it is found that all the compounds exhibit significant antibacterial and antifungal activities when compared to the standard chloramphenicol.

  17. FUN3D Manual: 12.7

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  18. FUN3D Manual: 13.0

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  19. FUN3D Manual: 12.6

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  20. FUN3D Manual: 12.5

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  1. FUN3D Manual: 12.9

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. FUN3D Manual: 12.8

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  3. FUN3D Manual: 12.4

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  4. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  5. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  6. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  7. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  8. Modeling Cellular Processes in 3-D

    PubMed Central

    Mogilner, Alex; Odde, David

    2011-01-01

    Summary Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated, we must address the issue of modeling cellular processes in 3-D. Here, we highlight recent advances related to 3-D modeling in cell biology. While some processes require full 3-D analysis, we suggest that others are more naturally described in 2-D or 1-D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3-D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling. PMID:22036197

  9. Structured light field 3D imaging.

    PubMed

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Yin, Yongkai; Li, Ameng; Wu, Jiachen; Gao, Bruce Z

    2016-09-01

    In this paper, we propose a method by means of light field imaging under structured illumination to deal with high dynamic range 3D imaging. Fringe patterns are projected onto a scene and modulated by the scene depth then a structured light field is detected using light field recording devices. The structured light field contains information about ray direction and phase-encoded depth, via which the scene depth can be estimated from different directions. The multidirectional depth estimation can achieve high dynamic 3D imaging effectively. We analyzed and derived the phase-depth mapping in the structured light field and then proposed a flexible ray-based calibration approach to determine the independent mapping coefficients for each ray. Experimental results demonstrated the validity of the proposed method to perform high-quality 3D imaging for highly and lowly reflective surfaces. PMID:27607639

  10. Assessing NEE and Carbon Dynamics Among European Forestecosystems: Development and Validation of a New Phenology and Soil Carbon Routines within the Process Oriented 3D-Cmcc-Forest-Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.

    2014-12-01

    The two main processes involved in forest ecosystems carbon balance are photosynthesis and respiration. Ecosystem respiration is determined by heterotrophic and autotrophic respiration, the former driven by microbial decomposition of soil organic matter (SOM), the latter by growth and maintenance of plant tissues. Thus it is extremely important to reliably quantify ecosystem respiration in order to estimate the global carbon budget of a forest ecosystem, namely the Net Ecosystem Exchange (NEE). For the very same reason we have improved the 6.1 version of the 3D-CMCC-Forest Ecosystem Model (3D-CMCC-FEM) with both a multilayer soil Carbon dynamics routine and several modifications in phenology and littering. Bud burst phenology has been improved with a new "Nonstructural Carbon injection function" representing the quantity of Carbon destined to new leaves and fineroots growth; fall phenology has been improved with a novel physical driven logistic function to simulate leaf falling. Soil carbon dynamics throughout the Residues, Microbial and Humads pools follow a zero order kinetics equation, representing microbial decomposition activity. The sum of CO2 oxidized at each decomposition step form Heterotrophic respiration.The present work focuses on the presentation of the 6.1 version of the 3D-CMCC-FEM and its validation against six FLUXNET sites representing a transect throughout the main European forest Ecosystems. The validation on about 10 years of simulation involved NEE, GPP and Reco: - Seasonal trends; - Daily, monthly and annual fluxes; - Interannual anomalies (annual and MJJ).

  11. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  12. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  13. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures

    PubMed Central

    Zambrano, Rafael; Jamroz, Michal; Szczasiuk, Agata; Pujols, Jordi; Kmiecik, Sebastian; Ventura, Salvador

    2015-01-01

    Protein aggregation underlies an increasing number of disorders and constitutes a major bottleneck in the development of therapeutic proteins. Our present understanding on the molecular determinants of protein aggregation has crystalized in a series of predictive algorithms to identify aggregation-prone sites. A majority of these methods rely only on sequence. Therefore, they find difficulties to predict the aggregation properties of folded globular proteins, where aggregation-prone sites are often not contiguous in sequence or buried inside the native structure. The AGGRESCAN3D (A3D) server overcomes these limitations by taking into account the protein structure and the experimental aggregation propensity scale from the well-established AGGRESCAN method. Using the A3D server, the identified aggregation-prone residues can be virtually mutated to design variants with increased solubility, or to test the impact of pathogenic mutations. Additionally, A3D server enables to take into account the dynamic fluctuations of protein structure in solution, which may influence aggregation propensity. This is possible in A3D Dynamic Mode that exploits the CABS-flex approach for the fast simulations of flexibility of globular proteins. The A3D server can be accessed at http://biocomp.chem.uw.edu.pl/A3D/. PMID:25883144

  14. Direct-dynamics VTST study of hydrogen or deuterium abstraction and C-C bond formation or dissociation in the reactions of CH3 + CH4, CH3 + CD4, CH3D + CD3, CH3CH3 + H, and CH3CD3 + D

    NASA Astrophysics Data System (ADS)

    Ramazani, Shapour

    2013-05-01

    Direct-dynamics variational transition-state theory calculations are studied at the MPWB1K/6-311++G(d,p) level for the four parts of reactions. The first part is hydrogen or deuterium abstraction in the reactions of CH3 + CH4, CH3 + CD4, and CH3D + CH3. The second part involves C-C bond formation in these reactions. The third one is the reactions of CH3CH3 + H and CH3CD3 + D to form of H2, HD, and D2. The last one is the dissociation of C-C bonds in the last group of reactions. The ground-state vibrational adiabatic potential is plotted for all channels. We have carried out direct-dynamics calculations of the rate constants, including multidimensional tunneling in the temperature range T = 200-2200 K. The results of CVT/μOMT rate constants were in good agreement with the experimental data which were available for some reactions. Small-curvature tunneling and Large-curvature tunneling with the LCG4 version were used to include the quantum effects in calculation of the rate constants. To try to find the region of formation and dissociation of bounds we have also reported the variations of harmonic vibrational frequencies along the reaction path. The thermally averaged transmission probability (P(E)exp (-ΔE/RT)) and representative tunneling energy at 298 K are reported for the reactions in which tunneling is important. We have calculated kinetic isotope effect which shows tunneling and vibrational contributions are noticeable to determine the rate constant. Nonlinear least-squares fitting is used to calculate rate constant expressions in the temperature range 200-2200 K. These expressions revealed that pre-exponential factor includes two parts; the first part is a constant number which is important at low temperatures while the second part is temperature dependent which is significant at high temperatures.

  15. Dynamic heterogeneity of DNA methylation and hydroxymethylation in embryonic stem cell populations captured by single-cell 3D high-content analysis

    SciTech Connect

    Tajbakhsh, Jian; Stefanovski, Darko; Tang, George; Wawrowsky, Kolja; Liu, Naiyou; Fair, Jeffrey H.

    2015-03-15

    Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a 10-day differentiation course in vitro: by means of confocal and super-resolution imaging together with 3D high-content analysis, an essential tool in single-cell screening. In summary: 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU/day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17: 0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, global DNA methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC{sup +}/5mC{sup −}, 5hmC{sup +}/5mC{sup +}, and 5hmC{sup −}/5mC{sup +} cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC{sup +}/5mC{sup +} cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably

  16. Analysis of Vertical Dynamics in the Northern Baltic Sea based on 3D Modelling and Data from Shallow-Water Argo Floats

    NASA Astrophysics Data System (ADS)

    Westerlund, Antti; Tuomi, Laura

    2016-04-01

    Vertical mixing is a challenge for ocean models. 3D hydrodynamic models often produce considerable errors in mixed layer depths and vertical temperature structure that can be related to the vertical turbulence parameterisation. These errors can be pronounced in areas with complex hydrography. In the Baltic Sea, for example, there are high horizontal and vertical salinity gradients. Furthermore, thermocline and halocline are located at different depths. This produces stratification conditions challenging for all ocean models. We studied vertical mixing with modelling experiments and new observational data. NEMO 3D ocean model has been set up at Finnish Meteorological Institute (FMI) for the Baltic Sea, based on the NEMO Nordic configuration. The model has been discretized on a Baltic Sea - North Sea grid with 2 nautical mile resolution and 56 vertical layers, using FMI-HIRLAM atmospheric forcing. The observational data for Baltic Sea off-shore areas is sparse and new methods are needed to collect data for model validation and development. FMI has been testing Argo floats in the Baltic Sea since 2011 in order to increase the amount of observed vertical profiles of salinity and temperature. This is the first time Argo floats have been successfully used in the brackish, shallow waters of the Baltic Sea. This new data set is well suited for evaluating the capability of hydrodynamic models to produce the vertical structure of temperature. It provides a time series of profiles from the area of interest with good temporal resolution, showing the structure of temperature in the water column throughout the summer. We found that NEMO was able to reproduce the general features of the seasonal temperature variations in the study area, when meteorological forcing was accurate. We ran the model with different vertical turbulence parameterisations. The k-ɛ and k-ω schemes showed clear differences, but neither proved superior. While sea surface temperature was better simulated

  17. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  18. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  19. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  20. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  1. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  2. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  3. Elucidating the structural basis of diphenyl ether derivatives as highly potent enoyl-ACP reductase inhibitors through molecular dynamics simulations and 3D-QSAR study.

    PubMed

    Kamsri, Pharit; Punkvang, Auradee; Saparpakorn, Patchareenart; Hannongbua, Supa; Irle, Stephan; Pungpo, Pornpan

    2014-07-01

    Diphenyl ether derivatives are good candidates for anti-tuberculosis agents that display a promising potency for inhibition of InhA, an essential enoyl-acyl carrier protein (ACP) reductase involved in fatty acid biosynthesis pathways in Mycobacterium tuberculosis. In this work, key structural features for the inhibition were identified by 3D-QSAR CoMSIA models, constructed based on available experimental binding properties of diphenyl ether inhibitors, and a set of four representative compounds was subjected to MD simulations of inhibitor-InhA complexes for the calculation of binding free energies. The results show that bulky groups are required for the R1 substituent on the phenyl A ring of the inhibitors to favor a hydrophobic pocket formed by residues Phe149, Met155, Pro156, Ala157, Tyr158, Pro193, Met199, Val203, Leu207, Ile215, and Leu218. Small substituents with a hydrophilic property are required at the R3 and R4 positions of the inhibitor phenyl B rings to form hydrogen bonds with the backbones of Gly96 and Met98, respectively. For the R2 substituent, small substituents with simultaneous hydrophilic or hydrophobic properties are required to favor the interaction with the pyrophosphate moiety of NAD(+) and the methyl side chain of Ala198, respectively. The reported data provide structural guidance for the design of new and potent diphenyl ether-based inhibitors with high inhibitory activities against M. tuberculosis InhA. PMID:24935113

  4. Single-Crystal to Single-Crystal Phase Transition and Segmented Thermochromic Luminescence in a Dynamic 3D Interpenetrated Ag(I) Coordination Network.

    PubMed

    Yan, Zhi-Hao; Li, Xiao-Yu; Liu, Li-Wei; Yu, Si-Qi; Wang, Xing-Po; Sun, Di

    2016-02-01

    A new 3D Ag(I)-based coordination network, [Ag2(pz)(bdc)·H2O]n (1; pz = pyrazine and H2bdc = benzene-1,3-dicarboxylic acid), was constructed by one-pot assembly and structurally established by single-crystal X-ray diffraction at different temperatures. Upon cooling from 298 to 93 K, 1 undergo an interesting single-crystal to single-crystal phase transition from orthorhombic Ibca (Z = 16) to Pccn (Z = 32) at around 148 K. Both phases show a rare 2-fold-interpenetrated 4-connected lvt network but incorporate different [Ag2(COO)2] dimeric secondary building units. It is worth mentioning that complex 1 shows red- and blue-shifted luminescences in the 290-170 and 140-80 K temperature ranges, respectively. The variable-temperature single-crystal X-ray crystallographic studies suggest that the argentophilic interactions and rigidity of the structure dominated the luminescence chromism trends at the respective temperature ranges. Upon being mechanically ground, 1 exhibits a slight mechanoluminescence red shift from 589 to 604 nm at 298 K.

  5. Elucidating the structural basis of diphenyl ether derivatives as highly potent enoyl-ACP reductase inhibitors through molecular dynamics simulations and 3D-QSAR study.

    PubMed

    Kamsri, Pharit; Punkvang, Auradee; Saparpakorn, Patchareenart; Hannongbua, Supa; Irle, Stephan; Pungpo, Pornpan

    2014-07-01

    Diphenyl ether derivatives are good candidates for anti-tuberculosis agents that display a promising potency for inhibition of InhA, an essential enoyl-acyl carrier protein (ACP) reductase involved in fatty acid biosynthesis pathways in Mycobacterium tuberculosis. In this work, key structural features for the inhibition were identified by 3D-QSAR CoMSIA models, constructed based on available experimental binding properties of diphenyl ether inhibitors, and a set of four representative compounds was subjected to MD simulations of inhibitor-InhA complexes for the calculation of binding free energies. The results show that bulky groups are required for the R1 substituent on the phenyl A ring of the inhibitors to favor a hydrophobic pocket formed by residues Phe149, Met155, Pro156, Ala157, Tyr158, Pro193, Met199, Val203, Leu207, Ile215, and Leu218. Small substituents with a hydrophilic property are required at the R3 and R4 positions of the inhibitor phenyl B rings to form hydrogen bonds with the backbones of Gly96 and Met98, respectively. For the R2 substituent, small substituents with simultaneous hydrophilic or hydrophobic properties are required to favor the interaction with the pyrophosphate moiety of NAD(+) and the methyl side chain of Ala198, respectively. The reported data provide structural guidance for the design of new and potent diphenyl ether-based inhibitors with high inhibitory activities against M. tuberculosis InhA.

  6. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  7. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  8. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect

    Christon, M. A.; Dovey, D.; Stillman, D. W.; Hallquist, J. O.; Rainsberger, R. B

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  9. 3D Spray Droplet Distributions in Sneezes

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra; Scharfman, Barry; Bourouiba, Lydia

    2015-11-01

    3D spray droplet clouds generated during human sneezing are investigated using the Synthetic Aperture Feature Extraction (SAFE) method, which relies on light field imaging (LFI) and synthetic aperture (SA) refocusing computational photographic techniques. An array of nine high-speed cameras are used to image sneeze droplets and tracked the droplets in 3D space and time (3D + T). An additional high-speed camera is utilized to track the motion of the head during sneezing. In the SAFE method, the raw images recorded by each camera in the array are preprocessed and binarized, simplifying post processing after image refocusing and enabling the extraction of feature sizes and positions in 3D + T. These binary images are refocused using either additive or multiplicative methods, combined with thresholding. Sneeze droplet centroids, radii, distributions and trajectories are determined and compared with existing data. The reconstructed 3D droplet centroids and radii enable a more complete understanding of the physical extent and fluid dynamics of sneeze ejecta. These measurements are important for understanding the infectious disease transmission potential of sneezes in various indoor environments.

  10. DYNA3D Code Practices and Developments

    SciTech Connect

    Lin, L.; Zywicz, E.; Raboin, P.

    2000-04-21

    DYNA3D is an explicit, finite element code developed to solve high rate dynamic simulations for problems of interest to the engineering mechanics community. The DYNA3D code has been under continuous development since 1976[1] by the Methods Development Group in the Mechanical Engineering Department of Lawrence Livermore National Laboratory. The pace of code development activities has substantially increased in the past five years, growing from one to between four and six code developers. This has necessitated the use of software tools such as CVS (Concurrent Versions System) to help manage multiple version updates. While on-line documentation with an Adobe PDF manual helps to communicate software developments, periodically a summary document describing recent changes and improvements in DYNA3D software is needed. The first part of this report describes issues surrounding software versions and source control. The remainder of this report details the major capability improvements since the last publicly released version of DYNA3D in 1996. Not included here are the many hundreds of bug corrections and minor enhancements, nor the development in DYNA3D between the manual release in 1993[2] and the public code release in 1996.

  11. 3D culture for cardiac cells.

    PubMed

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  12. Quasi-Instantaneous Bacterial Inactivation on Cu-Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics.

    PubMed

    Rtimi, Sami; Sanjines, Rosendo; Pulgarin, Cesar; Kiwi, John

    2016-01-13

    The first evidence for Cu-Ag (50%/50%) nanoparticulate hybrid coatings is presented leading to a complete and almost instantaneous bacterial inactivation in the dark (≤5 min). Dark bacterial inactivation times on Cu-Ag (50%/50%) were observed to coincide with the times required by actinic light irradiation. This provides the evidence that the bimetal Cu-Ag driven inactivation predominates over a CuO/Cu2O and Ag2O oxides inducing a semiconductor driven behavior. Cu- or Ag-coated polyurethane (PU) catheters led to bacterial inactivation needing about ∼30 min. The accelerated bacterial inactivation by Cu-Ag coated on 3D catheters sputtered was investigated in a detailed way. The release of Cu/Ag ions during bacterial inactivation was followed by inductively coupled plasma mass-spectrometry (ICP-MS) and the amount of Cu and Ag-ions released were below the cytotoxicity levels permitted by the sanitary regulations. By stereomicroscopy the amount of live/dead cells were followed during the bacterial inactivation time. By Fourier transform infrared spectroscopy (FTIR), the systematic shift of the -(CH2) band stretching of the outer lipo-polysaccharide bilayer (LPS) was followed to monitor the changes leading to cell lysis. A hydrophobic to hydrophilic transformation of the Cu-Ag PU catheter surface under light was observed within 30 min followed concomitantly to a longer back transformation to the hydrophobic initial state in the dark. Physical insight is provided for the superior performance of Cu-Ag films compared to Cu or Ag films in view of the drastic acceleration of the bacterial inactivation observed on bimetal Cu-Ag films coating PU catheters. A mechanism of bacterial inactivation is suggested that is consistent with the findings reported in this study. PMID:26699928

  13. Examining rhyolite lava flow dynamics through photo-based 3-D reconstructions of the 2011-2012 lava flow field at Cordón Caulle, Chile.

    NASA Astrophysics Data System (ADS)

    James, M. R.; Farquharson, J.; Tuffen, H.

    2014-12-01

    The 2011-2012 eruption at Cordón-Caulle, Chile, afforded the opportunity to observe and measure active rhyolitic lava for the first time. In 2012 and 2013, ~2500 photos were acquired on foot, parallel to flow fronts on the north and north-east of the flow field. Image suites were then processed into 3-D point clouds using Structure-from-Motion Multi-view Stereo (SfM-MVS) freeware. Interpolating these clouds into digital elevation models for dates in 2012-13 enabled analysis of the changing flow field dimensions [1], from which velocity, depth and rheological parameters, e.g.viscosity, could be estimated [see Fig. 1]. Viscosities ranged from 7.5 x109 to 1.1 x1011Pa s, allowing for uncertainties in slope, surface displacement and velocity. Temperatures were modeled using a 1D finite difference method; in concert with viscosities of flow units these values compared well with published non-Arrhenian viscosity models. Derived thermodynamic and force ratios confirmed flow characteristics inferred from the image analyses. SfM-MVS represents an effective method of quantifying and displaying variation in the flow field, indicating several parallels between rhyolite emplacement and that of low-silica lavas. Initially channelised lava spread laterally and stagnated due to topography and the influence of the surface crust. Continued effusion resulted in iterative emplacement of breakout lobes, promoting lateral extension of the flow field. Insulation of the flow core by the viscous crust allowed this process to continue after effusion had ceased, creating features comparable to low-silica lavas, despite high viscosity and low effusion rates. This suggests that compound flow emplacement may be described by universal, cross-compositional models encompassing rheological differences of many orders of magnitude. Tuffen et al. 2013, Nat. Comms., 4, 2709, doi:10.1038/ncomms3709

  14. Using the Flow-3D General Moving Object Model to Simulate Coupled Liquid Slosh - Container Dynamics on the SPHERES Slosh Experiment: Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Schulman, Richard; Kirk, Daniel; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul

    2013-01-01

    The SPHERES Slosh Experiment (SSE) is a free floating experimental platform developed for the acquisition of long duration liquid slosh data aboard the International Space Station (ISS). The data sets collected will be used to benchmark numerical models to aid in the design of rocket and spacecraft propulsion systems. Utilizing two SPHERES Satellites, the experiment will be moved through different maneuvers designed to induce liquid slosh in the experiment's internal tank. The SSE has a total of twenty-four thrusters to move the experiment. In order to design slosh generating maneuvers, a parametric study with three maneuvers types was conducted using the General Moving Object (GMO) model in Flow-30. The three types of maneuvers are a translation maneuver, a rotation maneuver and a combined rotation translation maneuver. The effectiveness of each maneuver to generate slosh is determined by the deviation of the experiment's trajectory as compared to a dry mass trajectory. To fully capture the effect of liquid re-distribution on experiment trajectory, each thruster is modeled as an independent force point in the Flow-3D simulation. This is accomplished by modifying the total number of independent forces in the GMO model from the standard five to twenty-four. Results demonstrate that the most effective slosh generating maneuvers for all motions occurs when SSE thrusters are producing the highest changes in SSE acceleration. The results also demonstrate that several centimeters of trajectory deviation between the dry and slosh cases occur during the maneuvers; while these deviations seem small, they are measureable by SSE instrumentation.

  15. A parameter-free dynamic alternative to hyper-viscosity for coupled transport equations: Application to the simulation of 3D squall lines using spectral elements

    NASA Astrophysics Data System (ADS)

    Marras, Simone; Giraldo, Francis X.

    2015-02-01

    The stabilization of high order spectral elements to solve the transport equations for tracers in the atmosphere remains an active topic of research among atmospheric modelers. This paper builds on our previous work on variational multiscale stabilization (VMS) and discontinuity capturing (DC) (Marras et al. (2012) [7]) and shows the applicability of VMS+DC to realistic atmospheric problems that involve physics coupling with phase change in the simulation of 3D deep convection. We show that the VMS+DC approach is a robust technique that can damp the high order modes characterizing the spectral element solution of complex coupled transport problems. The method has important properties that techniques of more common use often lack: 1) it is free of a user-defined parameter, 2) it is anisotropic in that it only acts along the flow direction, 3) it is numerically consistent, and 4) it can improve the monotonicity of high-order spectral elements. The proposed method is assessed by comparing the results against those obtained with a fourth-order hyper-viscosity programmed in the same code. The main conclusion that arises is that tuning can be fully avoided without loss of accuracy if the dissipative scheme is properly designed. Finally, the cost of parallel communication is that of a second order operator which means that fewer communications are required by VMS+DC than by a hyper-viscosity method; fewer communications translate into a faster and more scalable code, which is of vital importance as we approach the exascale range of computing.

  16. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  17. Application of Kolomogorov-Zurbenko Filter and the decoupled direct 3D method for the dynamic evaluation of a regional air quality model

    EPA Science Inventory

    Regional air quality models are being used in a policy-setting to estimate the response of air pollutant concentrations to changes in emissions and meteorology. Dynamic evaluation entails examination of a retrospective case(s) to assess whether an air quality model has properly p...

  18. Implementation of 3-D isoparametric finite elements on supercomputer for the formulation of recursive dynamical equations of multi-body systems

    NASA Technical Reports Server (NTRS)

    Shareef, N. H.; Amirouche, F. M. L.

    1991-01-01

    A computational algorithmic procedure is developed and implemented for the dynamic analysis of a multibody system with rigid/flexible interconnected bodies. The algorithm takes into consideration the large rotation/translation and small elastic deformations associated with the rigid-body degrees of freedom and the flexibility of the bodies in the system respectively. Versatile three-dimensional isoparametric brick elements are employed for the modeling of the geometric configurations of the bodies. The formulation of the recursive dynamical equations of motion is based on the recursive Kane's equations, strain energy concepts, and the techniques of component mode synthesis. In order to minimize CPU-intensive matrix multiplication operations and speed up the execution process, the concepts of indexed arrays is utilized in the formulation of the equations of motion. A spin-up maneuver of a space robot with three flexible links carrying a solar panel is used as an illustrative example.

  19. 3D quantification of dynamic fluid-fluid interfaces in porous media with fast x-ray microtomography: A comparison with quasi-equilibrium methods

    NASA Astrophysics Data System (ADS)

    Meisenheimer, D.; Brueck, C. L.; Wildenschild, D.

    2015-12-01

    X-ray microtomography imaging of fluid-fluid interfaces in three-dimensional porous media allows for the testing of thermodynamically derived predictions that seek a unique relationship between capillary pressure, fluid saturation, and specific interfacial area (Pc-Sw-Anw). Previous experimental studies sought to test this functional dependence under quasi-equilibrium conditions (assumed static on the imaging time-scale); however, applying predictive models developed under static conditions for dynamic scenarios can lead to substantial flaws in predicted outcomes. Theory and models developed using dynamic data can be verified using fast x-ray microtomography which allows for the unprecedented measurement of developing interfacial areas, curvatures, and trapping behaviors of fluid phases in three-dimensional systems. We will present results of drainage and imbibition experiments of air and water within a mixture of glass beads. The experiments were performed under both quasi-equilibrium and dynamic conditions at the Advanced Photon Source (APS) at Argonne National Laboratory. Fast x-ray microtomography was achieved by utilizing the high brilliance of the x-ray beam at the APS under pink-beam conditions where the white beam is modified with a 4 mm Al absorber and a 0.8 mrad Pt-coated mirror to eliminate low and high-energy photons, respectively. We present a comparison of the results from the quasi-equilibrium and dynamic experiments in an effort to determine if the Pc-Sw-Anw relationship is comparable under either experimental condition and to add to the discussion on whether the Pc-Sw-Anw relationship is unique as hypothesized by existing theory.

  20. Orbital and escape dynamics in barred galaxies - II. The 3D system: Exploring the role of the normally hyperbolic invariant manifolds

    NASA Astrophysics Data System (ADS)

    Jung, Christof; Zotos, Euaggelos E.

    2016-09-01

    A three degrees of freedom (3-dof) barred galaxy model composed of a spherically symmetric nucleus, a bar, a flat disc and a spherically symmetric dark matter halo is used for investigating the dynamics of the system. We use colour-coded plots to demonstrate how the value of the semi-major axis of the bar influences the regular or chaotic dynamics of the 3-dof system. For distinguishing between ordered and chaotic motion we use the Smaller ALingment Index (SALI) method, a fast yet very accurate tool. Undoubtedly, the most important elements of the dynamics are the normally hyperbolic invariant manifolds (NHIMs) located in the vicinity of the index 1 Lagrange points L2 and L3. These manifolds direct the flow of stars over the saddle points, while they also trigger the formation of rings and spirals. The dynamics in the neighbourhood of the saddle points is visualized by bifurcation diagrams of the Lyapunov orbits as well as by the restriction of the Poincaré map to the NHIMs. In addition, we reveal how the semi-major axis of the bar influences the structure of these manifolds which determine the final stellar structure (rings or spirals). Our numerical simulations suggest that in galaxies with weak bars the formation of R1 rings or R_1^' } pseudo-rings is favoured. In the case of galaxies with intermediate and strong bars the invariant manifolds seem to give rise to R1R2 rings and twin spiral formations, respectively. We also compare our numerical outcomes with earlier related work and with observational data.

  1. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  2. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  3. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  4. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  5. Probing the 3-D Structure, Dynamics, and Stability of Bacterial Collagenase Collagen Binding Domain (apo- versus holo-) by Limited Proteolysis MALDI-TOF MS

    NASA Astrophysics Data System (ADS)

    Sides, Cynthia R.; Liyanage, Rohana; Lay, Jackson O.; Philominathan, Sagaya Theresa Leena; Matsushita, Osamu; Sakon, Joshua

    2012-03-01

    Pairing limited proteolysis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to probe clostridial collagenase collagen binding domain (CBD) reveals the solution dynamics and stability of the protein, as these factors are crucial to CBD effectiveness as a drug-delivery vehicle. MS analysis of proteolytic digests indicates initial cleavage sites, thereby specifying the less stable and highly accessible regions of CBD. Modulation of protein structure and stability upon metal binding is shown through MS analysis of calcium-bound and cobalt-bound CBD proteolytic digests. Previously determined X-ray crystal structures illustrate that calcium binding induces secondary structure transformation in the highly mobile N-terminal arm and increases protein stability. MS-based detection of exposed residues confirms protein flexibility, accentuates N-terminal dynamics, and demonstrates increased global protein stability exported by calcium binding. Additionally, apo- and calcium-bound CBD proteolysis sites correlate well with crystallographic B-factors, accessibility, and enzyme specificity. MS-observed cleavage sites with no clear correlations are explained either by crystal contacts of the X-ray crystal structures or by observed differences between Molecules A and B in the X-ray crystal structures. The study newly reveals the absence of the βA strand and thus the very dynamic N-terminal linker, as corroborated by the solution X-ray scattering results. Cobalt binding has a regional effect on the solution phase stability of CBD, as limited proteolysis data implies the capture of an intermediate-CBD solution structure when cobalt is bound.