Science.gov

Sample records for 3t mri scanner

  1. Comparison of 1.5T and 3T MRI scanners in evaluation of acute bone stress in the foot.

    PubMed

    Sormaala, Markus J; Ruohola, Juha-Petri; Mattila, Ville M; Koskinen, Seppo K; Pihlajamäki, Harri K

    2011-06-06

    Bone stress injuries are common in athletes and military recruits. Only a minority of bone stress changes are available on plain radiographs. Acute bone stress is often visible on MRI as bone marrow edema, which is also seen in many other disease processes such as malignancies, inflammatory conditions and infections. The purpose of this study was to investigate the ability of radiographs, 1.5T and 3T MRI to identify acute bone marrow changes in the foot. Ten patients with 12 stress fractures seen on plain radiographs underwent MRI using 1.5T and 3T scanners. T1 FSE and STIR axial, sagittal, and coronal view sequences were obtained. Two musculoskeletal radiologists interpreted the images independently and by consensus in case of disagreement. Of the 63 acute bone stress changes seen on 3T images, 61 were also seen on 1.5T images. The sensitivity of 1.5T MRI was 97% (95% CI: 89%-99%) compared with 3T. The 3T MRI images where, therefore, at least equally sensitive to 1.5T scanners in detection of bone marrow edema. On T1-weighted sequences, 3T images were slightly superior to 1.5T images in visualizing the demarcation of the edema and bone trabeculae. The kappa-value for inter-observer variability was 0.86 in the MRI indicating substantial interobserver agreement. Owing to slightly better resolution of 3T images, edema characterization is easier, which might aid in the differential diagnosis of the bone marrow edema. There was, however, no noteworthy difference in the sensitivity of the 1.5T and 3T images to bone marrow edema. Routine identification of acute bone stress changes and suspected stress injuries can, therefore, be made with 1.5T field strength.

  2. Acute vertigo in an anesthesia provider during exposure to a 3T MRI scanner.

    PubMed

    Gorlin, Andrew; Hoxworth, Joseph M; Pavlicek, William; Thunberg, Christopher A; Seamans, David

    2015-01-01

    Vertigo induced by exposure to the magnetic field of a magnetic resonance imaging (MRI) scanner is a well-known phenomenon within the radiology community but is not widely appreciated by other clinical specialists. Here, we describe a case of an anesthetist experiencing acute vertigo while providing sedation to a patient undergoing a 3 Tesla MRI scan. After discussing previous reports, and the evidence surrounding MRI-induced vertigo, we review potential etiologies that include the effects of both static and time-varying magnetic fields on the vestibular apparatus. We conclude our review by discussing the occupational standards that exist for MRI exposure and methods to minimize the risks of MRI-induced vertigo for clinicians working in the MRI environment.

  3. Ag/AgCl electrodes in the EEG/fMRI method in 3T MRI scanner

    NASA Astrophysics Data System (ADS)

    Akay, Cengiz; Kepceoğlu, Abdullah

    2013-10-01

    This study focuses on the comparison of two different types of EEG electrodes (the first B10-S-150 Ag/AgCl sintered ring electrode with 1, 5 mm touch proof safety socket and 150 cm heavy-duty lead wire and the second, B12-LS-100 Ag/AgCl sintered FE-electrode with 100 cm light-duty lead wire and 1, 5 mm touch proof safety socket with 5 kΩ resistor near sensor) used in the EEG/fMRI method in 3T MRI scanner. We compared these electrodes by their specific absorption rate (SAR) simulation values and the temperature change calculated by PRF method. The experimental setup of the study is described as follows: a phantom is prepared and the electrodes are placed on it. Then, a simulation for SAR values is realized. The temperature change is calculated by MR thermometer. As a result of this study, Ag/AgCl pin electrode is better to be use in EEG/fMRI; because the measured temperature change is expected to be low.

  4. Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI.

    PubMed

    Demain, Boris; Davoust, Carole; Plas, Benjamin; Bolan, Faye; Boulanouar, Kader; Renaud, Luc; Darmana, Robert; Vaysse, Laurence; Vieu, Christophe; Loubinoux, Isabelle

    2015-01-01

    Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8 nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner.

  5. Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI

    PubMed Central

    Plas, Benjamin; Bolan, Faye; Boulanouar, Kader; Renaud, Luc; Darmana, Robert; Vaysse, Laurence; Vieu, Christophe; Loubinoux, Isabelle

    2015-01-01

    Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner. PMID:26398500

  6. Superparamagnetic MRI probes for in vivo tracking of dendritic cell migration with a clinical 3 T scanner.

    PubMed

    Xu, Ye; Wu, Changqiang; Zhu, Wencheng; Xia, Chunchao; Wang, Dan; Zhang, Houbin; Wu, Jun; Lin, Gan; Wu, Bing; Gong, Qiyong; Song, Bin; Ai, Hua

    2015-07-01

    Dendritic cell (DC) based vaccines have shown promising results in the immunotherapy of cancers and other diseases. How to track the in vivo fate of DC vaccines will provide important insights to the final therapeutic results. In this study, we chose magnetic resonance imaging (MRI) to track murine DCs migration to the draining lymph node under a clinical 3 T scanner. Different from labeling immature DCs usually reported in literature, this study instead labeled matured DC with superparamagnetic iron oxide (SPIO) nanoparticle based imaging probes. The labeling process did not show negative impacts on cell viability, morphology, and surface biomarker expression. To overcome the imaging challenges brought by the limitations of the scanner, the size of lymph node, and the number of labeled cell, we optimized MRI pulse sequences. As a result, the signal reduction, caused either by gelatin phantoms containing as low as 12 SPIO-laden cells in each voxel or by the homing SPIO-laden DCs within the draining nodes after footpad injection of only 1 × 10(5) cells, can be clearly depicted under a 3 T MR scanner. Overall, the MRI labeling probes offer a low-toxic and high-efficient MR imaging platform for the assessment of DC-based immunotherapies.

  7. Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Kännälä, Sami; Jokela, Kari

    2013-04-01

    Medical staff working near magnetic resonance imaging (MRI) scanners are exposed both to the static magnetic field itself and also to electric currents that are induced in the body when the body moves in the magnetic field. However, there are currently limited data available on the induced electric field for realistic movements. This study computationally investigates the movement induced electric fields for realistic movements in the magnetic field of a 3 T MRI scanner. The path of movement near the MRI scanner is based on magnetic field measurements using a coil sensor attached to a human volunteer. Utilizing realistic models for both the motion of the head and the magnetic field of the MRI scanner, the induced fields are computationally determined using the finite-element method for five high-resolution numerical anatomical models. The results show that the time-derivative of the magnetic flux density (dB/dt) is approximately linearly proportional to the induced electric field in the head, independent of the position of the head with respect to the magnet. This supports the use of dB/dt measurements for occupational exposure assessment. For the path of movement considered herein, the spatial maximum of the induced electric field is close to the basic restriction for the peripheral nervous system and exceeds the basic restriction for the central nervous system in the international guidelines. The 99th percentile electric field is a considerably less restrictive metric for the exposure than the spatial maximum electric field; the former is typically 60-70% lower than the latter. However, the 99th percentile electric field may exceed the basic restriction for dB/dt values that can be encountered during tasks commonly performed by MRI workers. It is also shown that the movement-induced eddy currents may reach magnitudes that could electrically stimulate the vestibular system, which could play a significant role in the generation of vertigo-like sensations reported

  8. Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner.

    PubMed

    Laakso, Ilkka; Kännälä, Sami; Jokela, Kari

    2013-04-21

    Medical staff working near magnetic resonance imaging (MRI) scanners are exposed both to the static magnetic field itself and also to electric currents that are induced in the body when the body moves in the magnetic field. However, there are currently limited data available on the induced electric field for realistic movements. This study computationally investigates the movement induced electric fields for realistic movements in the magnetic field of a 3 T MRI scanner. The path of movement near the MRI scanner is based on magnetic field measurements using a coil sensor attached to a human volunteer. Utilizing realistic models for both the motion of the head and the magnetic field of the MRI scanner, the induced fields are computationally determined using the finite-element method for five high-resolution numerical anatomical models. The results show that the time-derivative of the magnetic flux density (dB/dt) is approximately linearly proportional to the induced electric field in the head, independent of the position of the head with respect to the magnet. This supports the use of dB/dt measurements for occupational exposure assessment. For the path of movement considered herein, the spatial maximum of the induced electric field is close to the basic restriction for the peripheral nervous system and exceeds the basic restriction for the central nervous system in the international guidelines. The 99th percentile electric field is a considerably less restrictive metric for the exposure than the spatial maximum electric field; the former is typically 60-70% lower than the latter. However, the 99th percentile electric field may exceed the basic restriction for dB/dt values that can be encountered during tasks commonly performed by MRI workers. It is also shown that the movement-induced eddy currents may reach magnitudes that could electrically stimulate the vestibular system, which could play a significant role in the generation of vertigo-like sensations reported

  9. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion

    PubMed Central

    Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-01-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease. PMID:24834423

  10. Patient-induced susceptibility effect on geometric distortion of clinical brain MRI for radiation treatment planning on a 3T scanner

    NASA Astrophysics Data System (ADS)

    Wang, H.; Balter, J.; Cao, Y.

    2013-02-01

    Concerns about the geometric accuracy of MRI in radiation therapy (RT) have been present since its invention. Although modern scanners typically have system levels of geometric accuracy that meet requirements of RT, subject-specific distortion is variable, and methods to in vivo assess and control patient-induced geometric distortion are not yet resolved. This study investigated the nature and magnitude of the subject-induced susceptibility effect on geometric distortions in clinical brain MRI, and tested the feasibility of in vivo quality control using field inhomogeneity mapping. For 19 consecutive patients scanned on a dedicated 3T MR scanner, B0 field inhomogeneity maps were acquired and analyzed to determine subject-induced distortions. For 3D T1 weighted images frequency-encoded with a bandwidth of 180 Hz/pixel, 86.9% of the estimated displacements were <0.5 mm, 97.4% <1 mm, and only 0.1% of displacements > 2 mm. The maximum displacement was <4 mm. The greatest distortions were observed at the interfaces with air at the sinuses. Displacements decayed to less than 1 mm over a distance of 8 mm. Metal surgical wires generated smaller distortions, with an averaged maximum displacement of 0.76 mm. Repeat acquisition of the field maps in 17 patients revealed a within-subject standard deviation of 0.25 ppm, equivalent to 0.22 mm displacement in the frequency-encoding direction in the 3D T1 weighted images. Susceptibility-induced voxel displacements in the brain are generally small, but should be monitored for precision RT. These effects are manageable at 3T and lower fields, and the methods applied can be used to monitor for potential local errors in individual patients, as well as to correct for local distortions as needed.

  11. MR Spectroscopic Imaging of Peripheral Zone in Prostate Cancer Using a 3T MRI Scanner: Endorectal versus External Phased Array Coils.

    PubMed

    Nagarajan, Rajakumar; Margolis, Daniel Ja; Raman, Steven S; Ouellette, David; Sarma, Manoj K; Reiter, Robert E; Thomas, M Albert

    2013-01-01

    Magnetic resonance spectroscopic imaging (MRSI) detects alterations in major prostate metabolites, such as citrate (Cit), creatine (Cr), and choline (Ch). We evaluated the sensitivity and accuracy of three-dimensional MRSI of prostate using an endorectal compared to an external phased array "receive" coil on a 3T MRI scanner. Eighteen patients with prostate cancer (PCa) who underwent endorectal MR imaging and proton (1H) MRSI were included in this study. Immediately after the endorectal MRSI scan, the PCa patients were scanned with the external phased array coil. The endorectal coil-detected metabolite ratio [(Ch+Cr)/Cit] was significantly higher in cancer locations (1.667 ± 0.663) compared to non-cancer locations (0.978 ± 0.420) (P < 0.001). Similarly, for the external phased array, the ratio was significantly higher in cancer locations (1.070 ± 0.525) compared to non-cancer locations (0.521 ± 0.310) (P < 0.001). The sensitivity and accuracy of cancer detection were 81% and 78% using the endorectal 'receive' coil, and 69% and 75%, respectively using the external phased array 'receive' coil.

  12. Evaluation of two-dimensional L-COSY and JPRESS using a 3 T MRI scanner: from phantoms to human brain in vivo.

    PubMed

    Thomas, M Albert; Hattori, Noriaki; Umeda, Masahiro; Sawada, Tohru; Naruse, Shoji

    2003-08-01

    Localized versions of two-dimensional (2D) magnetic resonance spectroscopic (MRS) sequences, namely JPRESS and L-COSY, have been implemented on a whole-body 3T MRI/MRS scanner. Volume selection was achieved using three slice-selective radio-frequency (RF) pulses: 90 degrees-180 degrees-180 degrees in JPRESS and 90 degrees-180 degrees-90 degrees in L-COSY with a CHESS sequence prior to voxel localization for global water suppression. The last 180 degrees RF pulse was used for resolving the J-coupled cross peaks in JPRESS, whereas the last 90 degrees RF pulse was used for coherence transfer between J-coupled metabolites in L-COSY. A head MRI coil for 'transmission' and a 4 inch receive surface coil for 'reception' or a head coil transmit/receive were used. A total of 16 healthy volunteers were investigated using these 2D MRS sequences. Voxel sizes of 18 and 27 ml were localized in the occipito-parietal gray and white matter regions and the total duration for each 2D signal acquisition was typically 35 min. Compared with 2D L-COSY, reduced spectral width along the second spectral dimension and shorter 2D spectral acquisition were the major advantages of 2D JPRESS. In contrast, increased spectral width along the new spectral dimension in L-COSY resulted in an improved spectral dispersion enabling the detection of several brain metabolites at low concentrations that have not been resolved using the conventional one-dimensional (1D) MRS techniques. Due to increased sampling rate, severe loss of metabolite signals due to T2 during t1 was a major drawback of 2D JPRESS in vivo. Copyright 2003 John Wiley & Sons, Ltd.

  13. Cortical and subcortical mapping of language areas: correlation of functional MRI and tractography in a 3T scanner with intraoperative cortical and subcortical stimulation in patients with brain tumors located in eloquent areas.

    PubMed

    Jiménez de la Peña, M; Gil Robles, S; Recio Rodríguez, M; Ruiz Ocaña, C; Martínez de Vega, V

    2013-01-01

    To describe the detection of cortical areas and subcortical pathways involved in language observed in MRI activation studies and tractography in a 3T MRI scanner and to correlate the findings of these functional studies with direct intraoperative cortical and subcortical stimulation. We present a series of 14 patients with focal brain tumors adjacent to eloquent brain areas. All patients underwent neuropsychological evaluation before and after surgery. All patients underwent MRI examination including structural sequences, perfusion imaging, spectroscopy, functional imaging to determine activation of motor and language areas, and 3D tractography. All patients underwent cortical mapping through cortical and subcortical stimulation during the operation to resect the tumor. Postoperative follow-up studies were done 24 hours after surgery. The correlation of motor function and of the corticospinal tract determined by functional MRI and tractography with intraoperative mapping of cortical and subcortical motor areas was complete. The eloquent brain areas of language expression and reception were strongly correlated with intraoperative cortical mapping in all but two cases (a high grade infiltrating glioma and a low grade glioma located in the frontal lobe). 3D tractography identified the arcuate fasciculus, the lateral part of the superior longitudinal fasciculus, the subcallosal fasciculus, the inferior fronto-occipital fasciculus, and the optic radiations, which made it possible to mark the limits of the resection. The correlation with the subcortical mapping of the anatomic arrangement of the fasciculi with respect to the lesions was complete. The best treatment for brain tumors is maximum resection without associated deficits, so high quality functional studies are necessary for preoperative planning. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  14. 3 T ioMRI: the Istanbul experience.

    PubMed

    Pamir, M Necmettin

    2011-01-01

    Intraoperative imaging technologies have improved surgical results in glioma and pituitary adenoma surgeries. With improvements and refinements 3T intraoperative MRI systems offer a potential of further improving these results. Hereby we describe the equipment and technique of a cost-effective shared-resource 3-T ultra-high field intraoperative magnetic resonance imaging system and report our continuing experience on surgical tumor resection. A description of the facility design and equipment are given along with examples from our experience on low-grade gliomas and transsphenoidal surgeries. Our facility based on the twin room concept and uses a 3-T Siemens Trio (Siemens, Erlangen, Germany) scanner. The unit consists of adjacent but independent MRI and operative suites, which are connected by a wide door for ioMRI procedure but are used as conventional MRI and operative units. Rigid head fixation during neurosurgery is achieved with a custom designed 5 pin head-rest which also combines a 4+4 channel head coil. Operation is performed using regular non-MRI compatible equipment and the patient is transferred to the MRI during the procedure using a custom designed floating table. Advanced sequences such as diffusion weighted and diffusion tensor imaging, MR angiography, MR venography, MR spectroscopy can be performed with no changes in the setup and result in image quality comparable to outpatient scans. The intraoperative 3-T ultra high field MRI unit with the twin room concept permits both diagnostic outpatient imaging and image guided surgery in the same setting and is a cost effective solution to afford a highly capable ioMRI system.

  15. Characterization of prostate cancer using T2 mapping at 3T: a multi-scanner study.

    PubMed

    Hoang Dinh, A; Souchon, R; Melodelima, C; Bratan, F; Mège-Lechevallier, F; Colombel, M; Rouvière, O

    2015-04-01

    To assess the prostate T2 value as a predictor of malignancy on two different 3T scanners. Eighty-three pre-prostatectomy multiparametric MRIs were retrospectively evaluated [67 obtained on a General Electric MRI (scanner 1) and 16 on a Philips MRI (scanner 2)]. After correlation with prostatectomy specimens, readers measured the T2 value of regions-of-interest categorized as "cancers", "false positive lesions", or "normal tissue". On scanner 1, in PZ, cancers had significantly lower T2 values than false positive lesions (P=0.02) and normal tissue (P=2×10(-9)). Gleason≥6 cancers had similar T2 values than false positive lesions and significantly higher T2 values than Gleason≥7 cancers (P=0.009). T2 values corresponding to a 25% and 75% risk of Gleason≥7 malignancy were respectively 132 ms (95% CI: 129-135 ms) and 77 ms (95% CI: 74-81 ms). In TZ, cancers had significantly lower T2 values than normal tissue (P=0.008), but not than false positive findings. Mean T2 values measured on scanner 2 were not significantly different than those measured on scanner 1 for all tissue classes. All tested tissue classes had similar mean T2 values on both scanners. In PZ, the T2 value was a significant predictor of Gleason≥7 cancers. Copyright © 2014 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  16. Vascular thoracic outlet syndrome: protocol design and diagnostic value of contrast-enhanced 3D MR angiography and equilibrium phase imaging on 1.5- and 3-T MRI scanners.

    PubMed

    Ersoy, Hale; Steigner, Michael L; Coyner, Karl B; Gerhard-Herman, Marie D; Rybicki, Frank J; Bueno, Raphael; Nguyen, Louis L

    2012-05-01

    The purpose of this article is to evaluate the efficiency and reproducibility of a contrast-enhanced 3D MR angiography (MRA) protocol, using the provocative arm position on 1.5- and 3-T MRI scanners, and to determine the frequency and distribution of vascular compression and vascular complications in the thoracic outlet. Seventy-eight consecutive patients with clinically suspected thoracic outlet syndrome (TOS) were included in the study. Two radiologists independently analyzed all eligible vessel segments, and interobserver agreement was determined using kappa statistics. The distribution of vascular compression with regard to the clinical presentation at referral was also analyzed. A venous component, which presented with mainly venous symptoms and findings, was confirmed in 85% of the subjects. An arterial component, which presented with clinical symptoms and findings of vascular TOS syndrome, was seen in 82% of the subjects. The vascular component of TOS, which presented with mainly neurogenic or indeterminate symptoms or findings, was excluded in 61% of the subjects. Contrast-enhanced 3D MRA using provocative arm positioning allows excellent imaging of the arteries and veins on both sides and thus provides a noninvasive imaging alternative to digital subtraction angiography in patients with suspected vascular TOS. Contrast-enhanced 3D MRA is also an ideal imaging modality for postsurgical follow-up for identifying restenosis or residual vascular compression. However, all imaging studies, including the contrast-enhanced 3D MRA protocol described here, should be treated as complementary tests for the diagnosis of TOS.

  17. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on

  18. An RF dosimeter for independent SAR measurement in MRI scanners

    PubMed Central

    Qian, Di; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.; Edelstein, William A.

    2013-01-01

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B1) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average

  19. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on

  20. An RF dosimeter for independent SAR measurement in MRI scanners.

    PubMed

    Qian, Di; El-Sharkawy, Abdel-Monem M; Bottomley, Paul A; Edelstein, William A

    2013-12-01

    The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B1) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole-body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging

  1. Open magnetic resonance imaging (MRI) scanners.

    PubMed

    Hailey, D

    2006-11-01

    (1) In most MRI scanners, the patient examination table fits inside a long cylindrical tube. Large patients cannot be accommodated, and some persons experience claustrophobic reactions. Open MRI systems, in which the patient is placed between two plates, overcome these disadvantages. (2) Open MRI scanners are widely used in health care. High-field closed MRI systems are preferred for many examinations. (3) Early versions of open MRI scanners had low magnetic field strength, gave poorer image quality than most closed systems, and required longer examination times. Newer open scanners include machines with higher magnetic field strengths and improved image quality. (4) Closed high magnetic field scanners with short magnets and wide bore tubes offer improved comfort to patients, and may be an alternative to open scanners. (5) There is interest in using open systems for intra-operative and image-guided interventions.

  2. Combined PET/MRI scanner

    DOEpatents

    Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  3. Quantitative pulsed CEST-MRI at a clinical 3T MRI system.

    PubMed

    Stabinska, Julia; Cronenberg, Tom; Wittsack, Hans-Jörg; Lanzman, Rotem Shlomo; Müller-Lutz, Anja

    2017-05-31

    The goal of this study was to quantify CEST related parameters such as chemical exchange rate and fractional concentration of exchanging protons at a clinical 3T scanner. For this purpose, two CEST quantification approaches-the AREX metric (for 'apparent exchange dependent relaxation'), and the AREX-based Ω-plot method were used. In addition, two different pulsed RF irradiation schemes, using Gaussian-shaped and spin-lock pulses, were compared. Numerical simulations as well as MRI measurements in phantoms were performed. For simulations, the Bloch-McConnell equations were solved using a two-pool exchange model. MR experiments were performed on a clinical 3T MRI scanner using a cylindrical phantom filled with creatine solution at different pH values and different concentrations. The validity of the Ω-plot method and the AREX approach using spin-lock preparation for determination of the quantitative CEST parameters was demonstrated. Especially promising results were achieved for the Ω-plot method when the spin-lock preparation was employed. Pulsed CEST at 3T could be used to quantify parameters such as exchange rate constants and concentrations of protons exchanging with free water. In the future this technique might be used to estimate the exchange rates and concentrations of biochemical substances in human tissues in vivo.

  4. Multiple Echo Diffusion Tensor Acquisition Technique (MEDITATE) on a 3T clinical scanner

    PubMed Central

    Baete, Steven H.; Cho, Gene; Sigmund, Eric E.

    2013-01-01

    This paper describes the concepts and implementation of an MRI method, Multiple Echo Diffusion Tensor Acquisition Technique (MEDITATE), which is capable of acquiring apparent diffusion tensor maps in two scans on a 3T clinical scanner. In each MEDITATE scan, a set of RF-pulses generates multiple echoes whose amplitudes are diffusion-weighted in both magnitude and direction by a pattern of diffusion gradients. As a result, two scans acquired with different diffusion weighting strengths suffice for accurate estimation of diffusion tensor imaging (DTI)-parameters. The MEDITATE variation presented here expands previous MEDITATE approaches to adapt to the clinical scanner platform, such as exploiting longitudinal magnetization storage to reduce T2-weighting. Fully segmented multi-shot Cartesian encoding is used for image encoding. MEDITATE was tested on isotropic (agar gel), anisotropic diffusion phantoms (asparagus), and in vivo skeletal muscle in healthy volunteers with cardiac-gating. Comparisons of accuracy were performed with standard twice-refocused spin echo (TRSE) DTI in each case and good quantitative agreement was found between diffusion eigenvalues, mean diffusivity, and fractional anisotropy derived from TRSE-DTI and from the MEDITATE sequence. Orientation patterns were correctly reproduced in both isotropic and anisotropic phantoms, and approximately so for in vivo imaging. This illustrates that the MEDITATE method of compressed diffusion encoding is feasible on the clinical scanner platform. With future development and employment of appropriate view-sharing image encoding this technique may be used in clinical applications requiring time-sensitive acquisition of DTI parameters such as dynamical DTI in muscle. PMID:23828606

  5. Reconstruction of 7T-Like Images From 3T MRI.

    PubMed

    Bahrami, Khosro; Shi, Feng; Zong, Xiaopeng; Shin, Hae Won; An, Hongyu; Shen, Dinggang

    2016-09-01

    In the recent MRI scanning, ultra-high-field (7T) MR imaging provides higher resolution and better tissue contrast compared to routine 3T MRI, which may help in more accurate and early brain diseases diagnosis. However, currently, 7T MRI scanners are more expensive and less available at clinical and research centers. These motivate us to propose a method for the reconstruction of images close to the quality of 7T MRI, called 7T-like images, from 3T MRI, to improve the quality in terms of resolution and contrast. By doing so, the post-processing tasks, such as tissue segmentation, can be done more accurately and brain tissues details can be seen with higher resolution and contrast. To do this, we have acquired a unique dataset which includes paired 3T and 7T images scanned from same subjects, and then propose a hierarchical reconstruction based on group sparsity in a novel multi-level Canonical Correlation Analysis (CCA) space, to improve the quality of 3T MR image to be 7T-like MRI. First, overlapping patches are extracted from the input 3T MR image. Then, by extracting the most similar patches from all the aligned 3T and 7T images in the training set, the paired 3T and 7T dictionaries are constructed for each patch. It is worth noting that, for the training, we use pairs of 3T and 7T MR images from each training subject. Then, we propose multi-level CCA to map the paired 3T and 7T patch sets to a common space to increase their correlations. In such space, each input 3T MRI patch is sparsely represented by the 3T dictionary and then the obtained sparse coefficients are used together with the corresponding 7T dictionary to reconstruct the 7T-like patch. Also, to have the structural consistency between adjacent patches, the group sparsity is employed. This reconstruction is performed with changing patch sizes in a hierarchical framework. Experiments have been done using 13 subjects with both 3T and 7T MR images. The results show that our method outperforms previous

  6. Reconstruction of 7T-Like Images From 3T MRI

    PubMed Central

    Bahrami, Khosro; Shi, Feng; Zong, Xiaopeng; Shin, Hae Won; An, Hongyu

    2016-01-01

    In the recent MRI scanning, ultra-high-field (7T) MR imaging provides higher resolution and better tissue contrast compared to routine 3T MRI, which may help in more accurate and early brain diseases diagnosis. However, currently, 7T MRI scanners are more expensive and less available at clinical and research centers. These motivate us to propose a method for the reconstruction of images close to the quality of 7T MRI, called 7T-like images, from 3T MRI, to improve the quality in terms of resolution and contrast. By doing so, the post-processing tasks, such as tissue segmentation, can be done more accurately and brain tissues details can be seen with higher resolution and contrast. To do this, we have acquired a unique dataset which includes paired 3T and 7T images scanned from same subjects, and then propose a hierarchical reconstruction based on group sparsity in a novel multi-level Canonical Correlation Analysis (CCA) space, to improve the quality of 3T MR image to be 7T-like MRI. First, overlapping patches are extracted from the input 3T MR image. Then, by extracting the most similar patches from all the aligned 3T and 7T images in the training set, the paired 3T and 7T dictionaries are constructed for each patch. It is worth noting that, for the training, we use pairs of 3T and 7T MR images from each training subject. Then, we propose multi-level CCA to map the paired 3T and 7T patch sets to a common space to increase their correlations. In such space, each input 3T MRI patch is sparsely represented by the 3T dictionary and then the obtained sparse coefficients are used together with the corresponding 7T dictionary to reconstruct the 7T-like patch. Also, to have the structural consistency between adjacent patches, the group sparsity is employed. This reconstruction is performed with changing patch sizes in a hierarchical framework. Experiments have been done using 13 subjects with both 3T and 7T MR images. The results show that our method outperforms previous

  7. MRI scanner-independent specific absorption rate measurements using diffusion coefficients.

    PubMed

    Seo, Youngseob; Wang, Zhiyue J

    2017-07-01

    The purpose of this study was to measure specific absorption rate (SAR) during MRI scanning using a human torso phantom through quantification of diffusion coefficients independently of those reported by the scanner software for five 1.5 and 3 T clinical MRI systems from different vendors. A quadrature body coil transmitted the RF power and a body array coil received the signals. With diffusion tensor imaging, SAR values for three MRI sequences were measured on the five scanners and compared to the nominal values calculated by the scanners. For the GE 1.5 T MRI system, the MRI scanner-reported SAR value was 1.58 W kg(-1) and the measured SAR value was 1.38 W kg(-1) . For the Philips 1.5 T MRI scanner, the MRI system-reported SAR value was 1.48 W kg(-1) and the measured value was 1.39 W kg(-1) . For the Siemens 3 T MRI system, the reported SAR value was 2.5 W kg(-1) and the measured SAR value was 1.96 W kg(-1) . For two Philips 3 T MRI scanners, the reported SAR values were 1.5 W kg(-1) and the measured values were 1.94 and 1.96 W kg(-1) . The percentage differences between the measured and reported SAR values on the GE 1.5 T, Philips 1.5 T, Siemens 3 T, and Philips 3 T were 13.5, 6.3, 24.2, 25.6, and 26.6% respectively. The scanner-independent SAR measurements using diffusion coefficients described in this study can play a significant role in estimating accurate SAR values as a standardized method. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  8. In-bore setup and software for 3T MRI-guided transperineal prostate biopsy

    NASA Astrophysics Data System (ADS)

    Tokuda, Junichi; Tuncali, Kemal; Iordachita, Iulian; Song, Sang-Eun; Fedorov, Andriy; Oguro, Sota; Lasso, Andras; Fennessy, Fiona M.; Tempany, Clare M.; Hata, Nobuhiko

    2012-09-01

    MRI-guided prostate biopsy in conventional closed-bore scanners requires transferring the patient outside the bore during needle insertion due to the constrained in-bore space, causing a safety hazard and limiting image feedback. To address this issue, we present our custom-made in-bore setup and software to support MRI-guided transperineal prostate biopsy in a wide-bore 3 T MRI scanner. The setup consists of a specially designed tabletop and a needle-guiding template with a Z-frame that gives a physician access to the perineum of the patient at the imaging position and allows the physician to perform MRI-guided transperineal biopsy without moving the patient out of the scanner. The software and Z-frame allow registration of the template, target planning and biopsy guidance. Initially, we performed phantom experiments to assess the accuracy of template registration and needle placement in a controlled environment. Subsequently, we embarked on our clinical trial (N = 10). The phantom experiments showed that the translational errors of the template registration along the right-left (RP) and anterior-posterior (AP) axes were 1.1 ± 0.8 and 1.4 ± 1.1 mm, respectively, while the rotational errors around the RL, AP and superior-inferior axes were (0.8 ± 1.0)°, (1.7 ± 1.6)° and (0.0 ± 0.0)°, respectively. The 2D root-mean-square (RMS) needle-placement error was 3 mm. The clinical biopsy procedures were safely carried out in all ten clinical cases with a needle-placement error of 5.4 mm (2D RMS). In conclusion, transperineal prostate biopsy in a wide-bore 3T scanner is feasible using our custom-made tabletop setup and software, which supports manual needle placement without moving the patient out of the magnet.

  9. Fetal MRI at 3T-ready for routine use?

    PubMed

    Weisstanner, Christian; Gruber, Gerlinde M; Brugger, Peter C; Mitter, Christan; Diogo, Mariana C; Kasprian, Gregor; Prayer, Daniela

    2017-01-01

    Fetal MR now plays an important role in the clinical work-up of pregnant females. It is performed mainly at 1.5 T. However, the desire to obtain a more precise fetal depiction or the fact that some institutions have access only to a 3.0 T scanner has resulted in a growing interest in performing fetal MR at 3.0 T. The aim of this article was to provide a reference for the use of 3.0 T MRI as a prenatal diagnostic method.

  10. Philips 3T Intera Magnetic Resonance Imaging System and Upgrade of existing MRI equipment

    SciTech Connect

    Evanochko, William T

    2004-05-14

    The objective of this proposal was twofold. First, upgrade existing MRI equipment, specifically a research 4.1T whole-body system. Second, purchase a clinical, state-of-the-art 3T MRI system tailored specifically to cardiovascular and neurological applications. This project was within the guidelines of ''Medical Applications and Measurement Science''. The goals were: [1] to develop beneficial applications of magnetic resonance imaging; [2] discover new applications of MR strategies for medical research; and [2] apply them for clinical diagnosis. Much of this proposal searched for breakthroughs in this noninvasive and nondestructive imaging technology. Finally, this proposal's activities focused on research in the basic science of chemistry, biochemistry, physics, and engineering as applied to bioengineering. The centerpiece of this grant was our 4.1T ultra-high field whole-body nuclear magnetic resonance system and the newly acquired state-of-the-art, heart and head dedicated 3T clinical MRI system. We have successfully upgraded the equipment for the 4.1T system so that it is now state-of-the-art with new gradient and radio frequency amplifiers. We also purchase a unique In Vivo EKG monitoring unit that will permit tracking clinical quality EKG signals while the patient is in a high field MR scanner. Important upgrades of a peripheral vascular coil and a state-of-the-art clinical workstation for processing complex heart images were implemented. The most recent acquisition was the purchase of a state-of-the-art Philips 3T Intera clinical MRI system. This system is unique in that the magnet is only 5 1/2 feet long compare to over 12 feet long magnet of our 4.1T MRI system. The 3T MRI system is fully functional and its use and applications are already greatly benefiting the UAB with 200-300 micron resolution brain images and diagnostic quality MR angiography of coronary arteries in less than 5 minutes.

  11. In-bore setup and Software for 3T MRI-guided Transperineal Prostate Biopsy

    PubMed Central

    Tokuda, Junichi; Tuncali, Kemal; Iordachita, Iulian; Song, Sang-Eun; Fedorov, Andriy; Oguro, Sota; Lasso, Andras; Fennessy, Fiona M; Tempany, Clare M; Hata, Nobuhiko

    2012-01-01

    MRI-guided prostate biopsy in conventional closed-bore scanners requires transferring the patient outside the bore during needle insertion due to the constrained in-bore space, causing a safety hazard and limiting image feedback. To address this issue, we present our custom-made in-bore setup and software to support MRI-guided transperineal prostate biopsy in a wide-bore 3 Tesla (T) MRI scanner. The setup consists of a specially designed tabletop and a needle-guiding template with Z-frame that give a physician access to the perineum of the patient at the imaging position and allow performance of MRI-guided transperineal biopsy without moving the patient out of the scanner. The software and Z-frame allow registration of the template, target planning, and biopsy guidance. Initially, we performed phantom experiments to assess the accuracy of template registration and needle placement in a controlled environment. Subsequently, we embarked on our clinical trial (N = 10). The phantom experiments showed that the translational errors of the template registration along the right-left (RP) and anterior-posterior (AP) axes were 1.1 ± 0.8 mm and 1.4 ± 1.1 mm respectively, while the rotational errors around the RL, AP, and superior-inferior axes were 0.8 ± 1.0 degrees, 1.7 ± 1.6 degrees, and 0.0 ± 0.0 degrees respectively. The 2D root-mean-square (RMS) needle placement error was 3.0 mm. The clinical biopsy procedures were safely carried out in all ten clinical cases with a needle placement error of 5.4 mm (2D RMS). In conclusion, transperineal prostate biopsy in a wide-bore 3T scanner is feasible using our custom-made tabletop set up and software, which supports manual needle placement without moving the patient out of the magnet. PMID:22951350

  12. Incidental pineal cysts in children who undergo 3-T MRI.

    PubMed

    Whitehead, Matthew T; Oh, Christopher C; Choudhri, Asim F

    2013-12-01

    Pineal cysts, both simple and complex, are commonly encountered in children. More cysts are being detected with MR technology; however, nearly all pineal cysts are benign and require no follow-up. To discover the prevalence of pineal cysts in children at our institution who have undergone high-resolution 3-T MRI. We retrospectively reviewed 100 consecutive 3-T brain MRIs in children ages 1 month to 17 years (mean 6.8 ± 5.1 years). We evaluated 3-D volumetric T1-W imaging, axial T2-W imaging, axial T2-W FLAIR (fluid attenuated inversion recovery) and coronal STIR (short tau inversion recovery) sequences. Pineal parenchymal and cyst volumes were measured in three planes. Cysts were analyzed for the presence and degree of complexity. Pineal cysts were present in 57% of children, with a mean maximum linear dimension of 4.2 mm (range 1.5-16 mm). Of these cysts, 24.6% showed thin septations or fluid levels reflecting complexity. None of the cysts demonstrated complete T2/FLAIR signal suppression. No cyst wall thickening or nodularity was present. There was no significant difference between the ages of children with and without cysts. Cysts were more commonly encountered in girls than boys (67% vs. 52%; P = 0.043). There was a slight trend toward increasing pineal gland volume with age. Pineal cysts are often present in children and can be incidentally detected by 3-T MRI. Characteristic-appearing pineal cysts in children are benign, incidental findings, for which follow-up is not required if there are no referable symptoms or excessive size.

  13. Quest for an open MRI scanner.

    PubMed

    Bertora, Franco; Borceto, Alice; Viale, Andrea; Sandini, Giulio

    2014-01-01

    A study of the motor cortex during the programming, execution and mental representation of voluntary movement is of great relevance; its evaluation in conditions close to reality is necessary, given the close integration of the visuomotor, sensory feedback and proprioceptive systems, as of yet, a functional Magnetic Resonance Imaging (fMRI) scanner allowing a human subject to maintain erect stance, observe the surroundings and conserve limb freedom is still a dream. The need for high field suggests a solenoid magnet geometry that forces an unnatural posture that affects the results, particularly when the motor cortex is investigated. In contrast in a motor functional study, the scanner should allow the subject to sit or stand, with unobstructed sight and unimpeded movement. Two approaches are presented here to solve this problem. In the first approach, an increased field intensity in an open magnet is obtained lining the "back wall" of the cavity with a sheet of current: this boosts the field intensity at the cost of the introduction of a gradient, which has to be canceled by the introduction of an opposite gradient; The second approach is an adaptation of the "double doughnut" architecture, in which the cavity widens at the center to provide additional room for the subject. The detailed design of this kind of structure has proven the feasibility of the solution.

  14. Comparison of biochemical cartilage imaging techniques at 3 T MRI.

    PubMed

    Rehnitz, C; Kupfer, J; Streich, N A; Burkholder, I; Schmitt, B; Lauer, L; Kauczor, H-U; Weber, M-A

    2014-10-01

    To prospectively compare chemical-exchange saturation-transfer (CEST) with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping to assess the biochemical cartilage properties of the knee. Sixty-nine subjects were prospectively included (median age, 42 years; male/female = 32/37) in three cohorts: 10 healthy volunteers, 40 patients with clinically suspected cartilage lesions, and 19 patients about 1 year after microfracture therapy. T2 mapping, dGEMRIC, and CEST were performed at a 3 T MRI unit using a 15-channel knee coil. Parameter maps were evaluated using region-of-interest analysis of healthy cartilage, areas of chondromalacia and repair tissue. Differentiation of damaged from healthy cartilage was assessed using receiver-operating characteristic (ROC) analysis. Chondromalacia grade 2-3 had significantly higher CEST values (P = 0.001), lower dGEMRIC (T1-) values (P < 0.001) and higher T2 values (P < 0.001) when compared to the normal appearing cartilage. dGEMRIC and T2 mapping correlated moderately negative (Spearman coefficient r = -0.56, P = 0.0018) and T2 mapping and CEST moderately positive (r = 0.5, P = 0.007), while dGEMRIC and CEST did not significantly correlate (r = -0.311, P = 0.07). The repair tissue revealed lower dGEMRIC values (P < 0.001) and higher CEST values (P < 0.001) with a significant negative correlation (r = -0.589, P = 0.01), whereas T2 values were not different (P = 0.54). In healthy volunteers' cartilage, CEST and dGEMRIC showed moderate positive correlation (r = 0.56), however not reaching significance (P = 0.09). ROC-analysis demonstrated non-significant differences of T2 mapping vs CEST (P = 0.14), CEST vs dGEMRIC (P = 0.89), and T2 mapping vs dGEMRIC (P = 0.12). CEST is able to detect normal and damaged cartilage and is non-inferior in distinguishing both when compared to dGEMRIC and T2 mapping. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. [Retinotopic organization of the human visual cortex: a 3T fMRI study].

    PubMed

    Hoffart, L; Conrath, J; Matonti, F; Galland, F; Wotawa, N; Chavane, F; Castet, E; Ridings, B; Masson, G S

    2007-10-01

    INTRODUCTION. We used high-field (3T) functional magnetic resonance imaging (fMRI) to map the retinotopic organization of human cortical areas. Retinotopic maps were reconstructed using existing mapping techniques. Stimuli were made of a rotating wedge stimulus, which provided angular coordinate maps, and an expanding or contracting ring, which provided eccentricity coordinate maps. Stimuli consisted of a grey background alternating with a flickering checkerboard. A Brucker 3T scanner equipped with a head coil and a custom optical system was used to acquire sets of echoplanar images of 20 occipital coronal slices within a RT of 2.111 ms and an 8 mm3 voxel resolution. Surface models of each subject's occipital lobes were constructed using the Brainvisa software from a sagittal T1-weighted image with a 1 mm3 voxel resolution. The cortical models were then inflated to obtain unfolded surfaces. Statistical analyses of the functional data were made under SPM99, and the response amplitudes were finally assigned to the cortical reconstructed surfaces. We identified boundaries between different early visual areas (V1, V2, V3) using eccentricity and polar angle retinotopic maps and detection of reversals in the representation of the polar angle. Both complete maps and reversals corresponding to the V1/V2 borders were clearly visible with a single recording session. Also, we were able to compare data from subjects across various fMRI acquisitions and found that there was a strong correlation between maps acquired at different sessions for the same subject. We developed a quick (<40 min) retinotopic cortical area mapping method at 3T, which makes it possible to study the cortical remapping in patients with retinal scotomas.

  16. Occupational exposure measurements of static and pulsed gradient magnetic fields in the vicinity of MRI scanners.

    PubMed

    Kännälä, Sami; Toivo, Tim; Alanko, Tommi; Jokela, Kari

    2009-04-07

    Recent advances in magnetic resonance imaging (MRI) have increased occupational exposure to magnetic fields. In this study, we examined the assessment of occupational exposure to gradient magnetic fields and time-varying magnetic fields generated by motion in non-homogeneous static magnetic fields of MRI scanners. These magnetic field components can be measured simultaneously with an induction coil setup that detects the time rate of change of magnetic flux density (dB/dt). The setup developed was used to measure the field components around two MRI units (1 T open and 3 T conventional). The measured values can be compared with dB/dt reference levels derived from magnetic flux density reference levels given by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The measured motion-induced dB/dt values were above the dB/dt reference levels for both MRI units. The measured values for the gradient fields (echo planar imaging (EPI) and fast field echo (FFE) sequences) also exceeded the dB/dt reference levels in positions where the medical staff may have access during interventional procedures. The highest motion-induced dB/dt values were 0.7 T s(-1) for the 1 T scanner and 3 T s(-1) for the 3 T scanner when only the static field was present. Even higher values (6.5 T s(-1)) were measured for simultaneous exposure to motion-induced and gradient fields in the vicinity of the 3 T scanner.

  17. An Investigation of Optimizing and Translating pH-Sensitive Pulsed-Chemical Exchange Saturation Transfer (CEST) Imaging to a 3 T Clinical Scanner

    PubMed Central

    Zhe Sun, Phillip; Benner, Thomas; Kumar, Ashok; Sorensen, A Gregory

    2008-01-01

    Chemical exchange saturation transfer (CEST) MRI provides a sensitive detection mechanism that allows characterization of dilute labile protons usually undetectable by conventional MRI. Particularly, amide proton transfer (APT) imaging, a variant of CEST MRI, has been shown capable of detecting ischemic acidosis, and may serve as a surrogate metabolic imaging marker. For pre-clinical CEST imaging, continuous-wave (CW) RF irradiation is often applied so that the steady state CEST contrast can be reached. On clinical scanners, however, specific absorption rate (SAR) limit and hardware preclude the use of CW irradiation, and instead require an irradiation scheme of repetitive RF pulses (pulsed-CEST imaging). In this work, CW- and pulsed-CEST MRI were systematically compared using a tissue-like pH phantom on an imager capable of both CW and pulsed RF irradiation schemes. The results showed that the maximally obtainable pulsed-CEST contrast is about 95% of CW-CEST contrast, and their optimal RF irradiation powers are equal. Moreover, the pulsed-CEST sequence was translated to a 3 T clinical scanner and detected pH contrast from the labile creatine amine groups (1.9 ppm). Furthermore, pilot endogenous APT imaging of normal human volunteers was demonstrated, warranting future APT MRI of stroke patients to elucidate its diagnostic value. PMID:18816867

  18. Continuous Rapid Quantification of Stroke Volume using Magnetohydrodynamic Voltages in 3T MRI

    PubMed Central

    Gregory, T. Stan; Oshinski, John; Schmidt, Ehud J.; Kwong, Raymond Y.; Stevenson, William G.; Tse, Zion Tsz Ho

    2015-01-01

    Background To develop a technique to non-invasively estimate Stroke Volume (SV) in real-time during Magnetic Resonance Imaging (MRI) guided procedures, based on induced Magnetohydrodynamic Voltages (VMHD) that occur in Electrocardiogram (ECG) recordings during MRI exams, leaving the MRI scanner free to perform other imaging tasks. Due to the relationship between blood-flow (BF) and VMHD, we hypothesized that a method to obtain SV could be derived from extracted VMHD vectors in the Vectorcardiogram frame-of-reference (VMHDVCG). Methods and Results To estimate a subject-specific BF-VMHD model, VMHDVCG was acquired during a 20-second breath-hold and calibrated versus aortic BF measured using Phase Contrast Magnetic Resonance (PCMR) in 10 subjects (n=10) and one subject diagnosed with Premature Ventricular Contractions (PVCs). Beat-to-Beat validation of VMHDVCG derived BF was performed using Real-Time Phase Contrast (RTPC) imaging in 7 healthy subjects (n=7) during a 15 minute cardiac exercise stress tests and 30 minutes after stress relaxation in 3T MRIs. Subject-specific equations were derived to correlate VMHDVCG to BF at rest, and validated using RTPC. An average error of 7.22% and 3.69% in SV estimation, respectively, was found during peak stress, and after complete relaxation. Measured beat-to-beat blood flow time-history derived from RTPC and VMHD were highly correlated using a Spearman Rank Correlation Coefficient during stress tests (0.89) and after stress relaxation (=0.86). Conclusions Accurate beat-to-beat SV and BF were estimated using VMHDVCG extracted from intra-MRI 12-lead ECGs, providing a means to enhance patient monitoring during MR imaging and MR-guided interventions. PMID:26628581

  19. Normal findings on brain FLAIR MRI scans at 3T

    PubMed Central

    Neema, Mohit; Guss, Zachary D.; Stankiewicz, James M.; Arora, Ashish; Healy, Brian C.; Bakshi, Rohit

    2010-01-01

    BACKGROUND AND PURPOSE Fluid attenuated inversion recovery (FLAIR) MR imaging of the brain has become a routine tool for assessing lesions in patients with suspected neurologic disorders. There is growing interest in 3T brain FLAIR MR imaging but little normative data are available. The purpose of this study was to evaluate the frequency and topography of cerebral hyperintensities seen with FLAIR MR imaging of the brain at 3T in a normal population and compare those findings to 1.5T. MATERIALS AND METHODS Whole-brain 2D FLAIR MR imaging was performed in 22 healthy controls (mean age, 44 ± 8 years; range, 30–53 years) at 3T. Fifteen of these subjects also underwent 2D FLAIR at 1.5T, with similar optimized parameters and voxel size. Cerebral hyperintense areas, including discrete foci, anterior and posterior periventricular capping, diffuse parenchymal hyperintensity, septal hyperintensity, corticospinal tract hyperintensity, and CSF flow artifacts were assessed. The Spearman rank test assessed the correlation between discrete hyperintense foci and age. The Wilcoxon signed rank test compared foci detectability at 3T versus 1.5T. RESULTS FLAIR at 3T commonly showed hyperintensities such as discrete foci (mean, 10.68 per subject; at least 1 present in 68% of subjects), anterior and posterior periventricular capping, diffuse posterior white matter hyperintensity, septal hyperintensity, corticospinal tract hyperintensity, and ventricular CSF flow artifacts. FLAIR at 3T showed a higher hyperintense foci volume (170 ± 243 versus 93 ± 152 mm3, P < .01) and number (9.4 ± 13 versus 5.5 ± 9.2, P < .01) than at 1.5T. No significant differences (P = .68) in the length/diameter of individual discrete hyperintense foci were seen between 3T and 1.5T. Discrete foci volume (r = 0.72 at 3T, r = 0.70 at 1.5T) and number (r = 0.74 at 3T; r = 0.69 at 1.5T) correlated with age to a similar degree on both platforms. All discrete foci were confined to the noncallosal supratentorial

  20. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner.

    PubMed

    Yoon, Hyun Suk; Ko, Guen Bae; Kwon, Sun Il; Lee, Chan Mi; Ito, Mikiko; Chan Song, In; Lee, Dong Soo; Hong, Seong Jong; Lee, Jae Sung

    2012-04-01

    The most investigated semiconductor photosensor for MRI-compatible PET detectors is the avalanche photodiode (APD). However, the silicon photomultiplier (SiPM), also called the Geiger-mode APD, is gaining attention in the development of the next generation of PET/MRI systems because the SiPM has much better performance than the APD. We have developed an MRI-compatible PET system based on multichannel SiPM arrays to allow simultaneous PET/MRI. The SiPM PET scanner consists of 12 detector modules with a ring diameter of 13.6 cm and an axial extent of 3.2 cm. In each detector module, 4 multichannel SiPM arrays (with 4 × 4 channels arranged in a 2 × 2 array to yield 8 × 8 channels) were coupled with 20 × 18 Lu(1.9)Gd(0.1)SiO(5):Ce crystals (each crystal is 1.5 × 1.5 × 7 mm) and mounted on a charge division network for multiplexing 64 signals into 4 position signals. Each detector module was enclosed in a shielding box to reduce interference between the PET and MRI scanners, and the temperature inside the box was monitored for correction of the temperature-dependent gain variation of the SiPM. The PET detector signal was routed to the outside of the MRI room and processed with a field programmable gate array-based data acquisition system. MRI compatibility tests and simultaneous PET/MRI acquisitions were performed inside a 3-T clinical MRI system with 4-cm loop receiver coils that were built into the SiPM PET scanner. Interference between the imaging systems was investigated, and phantom and mouse experiments were performed. No radiofrequency interference on the PET signal or degradation in the energy spectrum and flood map was shown during simultaneous PET/MRI. The quality of the MRI scans acquired with and without the operating PET showed only slight degradation. The results of phantom and mouse experiments confirmed the feasibility of this system for simultaneous PET/MRI. Simultaneous PET/MRI was possible with a multichannel SiPM-based PET scanner, with no

  1. Vessel wall signal enhancement on 3-T MRI in acute stroke patients after stent retriever thrombectomy.

    PubMed

    Abraham, Peter; Scott Pannell, J; Santiago-Dieppa, David R; Cheung, Vincent; Steinberg, Jeffrey; Wali, Arvin; Gupta, Mihir; Rennert, Robert C; Lee, Roland R; Khalessi, Alexander A

    2017-04-01

    . CONCLUSIONS The study findings suggest that VW injury incurred during stent retriever thrombectomy can be reliably detected utilizing contrast-enhanced 3-T VW-MRI. The results further demonstrate that endothelial injury is associated with oversizing of stent retrievers relative to the treated vessel. Further studies are needed to evaluate the clinical significance of endothelial injury and to characterize the differential effects of various devices.

  2. Image quality and signal distribution in 1.5-T and 3-T MRI in mild traumatic brain injury patients

    NASA Astrophysics Data System (ADS)

    Rossi, Maija E.; Dastidar, Prasun; Ryymin, Pertti; Ylinen, Aarne; Öhman, Juha; Soimakallio, Seppo; Eskola, Hannu

    2009-02-01

    Clear standards are lacking in the imaging modalities of the deficit in mild traumatic brain injury (MTBI) patients. The purpose of this study is to compare the image quality by signal distribution between 1.5 Tesla and 3 Tesla MRI in turbo spin echo (TSE) and gradient echo (GRE) images in normal hospital settings and to find preferences for which field to use in MTBI patients. We studied 40 MTBI patients with TSE and GRE; 20 patients were imaged at 1.5 T and 20 at 3 T. The imaging parameters were optimized separately for the two scanners. Histograms of the signal distribution in 22 ROIs were fitted to a 1-peak Gaussian model and the resulting peak positions were scaled in respect to the peak positions of genu of the corpus callosum and the caudate nuclei. Correlation of the contrast of the ROIs in reference to genu of the corpus callosum between both the two scanners and the two imaging sequences was good. Image contrast was similar at both in the TSE images; in the GRE images contrast improved from 1.5 T to 3 T. However, based on peak positions and widths, a slight drawback in the separability between the ROIs was observed when 1.5 T MRI was replaced by 3 T. No clear improvement in tissue contrast or separability of 3 T was found compared to 1.5 T. Imaging of MTBI with 3 T should therefore be based on other advantages of high-field imaging, such as improved SNR and spatial resolution.

  3. A Novel Method for Quantifying Scanner Instability in fMRI

    PubMed Central

    Greve, Douglas N.; Mueller, Bryon A.; Liu, Thomas; Turner, Jessica A.; Voyvodic, James; Yetter, Elizabeth; Diaz, Michele; McCarthy, Gregory; Wallace, Stuart; Roach, Brian J.; Ford, Judy M.; Mathalon, Daniel H.; Calhoun, Vince D.; Wible, Cynthia G.; Potkin, Stephen G.; Glover, Gary

    2010-01-01

    A method was developed to quantify the effect of scanner instability on fMRI data by comparing the instability noise to endogenous noise present when scanning a human. The instability noise was computed from agar phantom data collected with two flip angles, allowing for a separation of the instability from the background noise. This method was used on human data collected at four 3T scanners, allowing the physiological noise level to be extracted from the data. In a “well-operating” scanner, the instability noise is generally less than 10% of physiological noise in white matter and only about 2% of physiological noise in cortex. This indicates that instability in a well-operating scanner adds very little noise to fMRI results. This new method allows researchers to make informed decisions about the maximum instability level a scanner can have before it is taken off line for maintenance or rejected from a multisite consortium. This method also provides information about the background noise, which is generally larger in magnitude than the instability noise. PMID:21413069

  4. Speech Perception in MRI Scanner Noise by Persons with Aphasia

    ERIC Educational Resources Information Center

    Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius

    2007-01-01

    Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different…

  5. Speech Perception in MRI Scanner Noise by Persons with Aphasia

    ERIC Educational Resources Information Center

    Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius

    2007-01-01

    Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different…

  6. A 64-channel 3T array coil for accelerated brain MRI.

    PubMed

    Keil, Boris; Blau, James N; Biber, Stephan; Hoecht, Philipp; Tountcheva, Veneta; Setsompop, Kawin; Triantafyllou, Christina; Wald, Lawrence L

    2013-07-01

    A 64-channel brain array coil was developed and compared to a 32-channel array constructed with the same coil former geometry to precisely isolate the benefit of the 2-fold increase in array coil elements. The constructed coils were developed for a standard clinical 3T MRI scanner and used a contoured head-shaped curved former around the occipital pole and tapered in at the neck to both improve sensitivity and patient comfort. Additionally, the design is a compact, split-former design intended for robust daily use. Signal-to-noise ratio and noise amplification (G-factor) for parallel imaging were quantitatively evaluated in human imaging and compared to a size and shape-matched 32-channel array coil. For unaccelerated imaging, the 64-channel array provided similar signal-to-noise ratio in the brain center to the 32-channel array and 1.3-fold more signal-to-noise ratio in the brain cortex. Reduced noise amplification during highly parallel imaging of the 64-channel array provided the ability to accelerate at approximately one unit higher at a given noise amplification compared to the sized-matched 32-channel array. For example, with a 4-fold acceleration rate, the central brain and cortical signal-to-noise ratio of the 64-channel array was 1.2- and 1.4-fold higher, respectively, compared to the 32-channel array. The characteristics of the coil are demonstrated in accelerated brain imaging. Copyright © 2012 Wiley Periodicals, Inc.

  7. A 64-channel 3T array coil for accelerated brain MRI

    PubMed Central

    Keil, Boris; Blau, James N.; Biber, Stephan; Hoecht, Philipp; Tountcheva, Veneta; Setsompop, Kawin; Triantafyllou, Christina; Wald, Lawrence L.

    2012-01-01

    A 64-channel brain array coil was developed and compared to a 32-channel array constructed with the same coil former geometry in order to precisely isolate the benefit of the two-fold increase in array coil elements. The constructed coils were developed for a standard clinical 3T MRI scanner and used a contoured head-shape curved former around the occipital pole and tapered in at the neck to both improve sensitivity and patient comfort. Additionally, the design is a compact, split-former design intended for robust daily use. Signal-to-noise ratio (SNR) and noise amplification (G-factor) for parallel imaging were quantitatively evaluated in human imaging and compared to a size and shape-matched 32-channel array coil. For unaccelerated imaging, the 64-channel array provided similar SNR in the brain center to the 32-channel array and 1.3-fold more SNR in the brain cortex. Reduced noise amplification during highly parallel imaging of the 64-channel array provided the ability to accelerate at approximately one unit higher at a given noise amplification compared to the sized-matched 32-channel array. For example, with a 4-fold acceleration rate, the central brain and cortical SNR of the 64-channel array was 1.2 and 1.4-fold higher, respectively, compared to the 32-channel array. The characteristics of the coil are demonstrated in accelerated brain imaging. PMID:22851312

  8. Multiparametric 3T Prostate MR Imaging to Detect Cancer: Histopathologic Correlation Using Prostatectomy Specimens Processed in Customized MRI-Based Molds

    PubMed Central

    Turkbey, Baris; Mani, Haresh; Shah, Vijay; Rastinehad, Ardeshir R.; Bernardo, Marcelino; Pohida, Thomas; Pang, Yuxi; Daar Dagane, R.T.; Benjamin, Compton; McKinney, Yolanda L.; Trivedi, Hari; Chua, Celene; Bratslavsky, Gennady; Shih, Joanna H.; Linehan, William M.; Merino, Maria J.; Choyke, Peter L.; Pinto, Peter A.

    2017-01-01

    Purpose To determine the prostate cancer detection rate of multi-parametric (MP) MRI at 3T. Precise one to one histopathologic correlation with MRI was possible using prostate MRI based custom-printed specimen molds following radical prostatectomy. Materials and methods This IRB approved prospective study included forty-five patients (mean age 60.2 years, range 49–75 years) with a mean PSA of 6.37ng/mL (range 2.3–23.7ng/mL), who had biopsy proven prostate cancer (mean Gleason score of 6.7; range 6 to 9). Prior to prostatectomy, all patients underwent prostate MRI on a 3T scanner which included tri-plane T2 weighted MRI, apparent diffusion coefficient maps of diffusion weighted MRI, dynamic contrast enhanced MRI, and spectroscopy.. The prostate specimen was whole mount sectioned in the mold allowing geometric alignment to MRI. Tumors were mapped on MRI and histopathology.. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of MRI for cancer detection were calculated. Additionally, the effects of tumor size and Gleason score on sensitivity of MP-MRI were evaluated. Results PPV of MP-MRI to detect prostate cancer was 98%, 98%, and 100% in overall prostate, peripheral zone, and central gland, respectively. Sensitivities of MRI sequences were higher for tumors >5mm in diameter, as well as for tumors with higher Gleason scores (>7) (p<0.05). Conclusion Prostate MRI at 3T allows for the detection of prostate cancer. A multi-parametric approach increases the predictive power of MRI for diagnosis. In this study, accurate correlation between MP-MRI and histopathology was obtained by the patient specific MRI-based mold technique. PMID:21944089

  9. Acoustic noise reduction in a 4 T MRI scanner.

    PubMed

    Mechefske, Chris K; Geris, Ryan; Gati, Joseph S; Rutt, Brian K

    2002-01-01

    High-field, high-speed magnetic resonance imaging (MRI) can generate high levels of noise. There is ongoing concern in the medical and imaging research communities regarding the detrimental effects of high acoustic levels on auditory function, patient anxiety, verbal communication between patients and health care workers and ultimately MR image quality. In order to effectively suppress the noise levels inside MRI scanners, the sound field needs to be accurately measured and characterized. This paper presents the results of measurements of the sound radiation from a gradient coil cylinder within a 4 T MRI scanner under a variety of conditions. These measurement results show: (1) that noise levels can be significantly reduced through the use of an appropriately designed passive acoustic liner; and (2) the true noise levels that are experienced by patients during echo planar imaging.

  10. New Clinically-Feasible 3-T MRI Protocol to Discriminate Internal Brain Stem Anatomy

    PubMed Central

    Hoch, Michael J.; Chung, Sohae; Ben-Eliezer, Noam; Bruno, Mary T.; Fatterpekar, Girish M.; Shepherd, Timothy M.

    2015-01-01

    Two new 3-T MRI contrast methods, track density imaging and echo modulation curve T2 mapping were combined with simultaneous multislice acquisition to reveal exquisite anatomical detail at 7 canonical levels of the brainstem. Compared to conventional MRI contrasts, many individual brainstem tracts and nuclear groups were directly visualized for the first time at 3-T. This new approach is clinically practical and feasible (total scan time = 20 min) allowing better brainstem anatomical localization and characterization. PMID:26869471

  11. Robotic Prostate Biopsy in Closed MRI Scanner

    DTIC Science & Technology

    2009-02-01

    robots, and biologically inspired robots. Csaba Csoma received the B.Sc. degree in computer science from Dennis Gabor University, Budapest, Hungary...Nobuhiko Hata, Member, IEEE, and Gabor Fichtinger, Member, IEEE Abstract—Magnetic resonance imaging (MRI) can provide high- quality 3-D visualization of...Simon.DiMaio@intusurg.com). G. Fichtinger is with the School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada (e-mail: gabor

  12. Robotic Prostate Biopsy in Closed MRI Scanner

    DTIC Science & Technology

    2008-02-01

    MR images were used to plan and monitor transperineal needle placement. The needles were inserted manually using a guide comprising a grid of holes...and manually manipulated mechanical linkage to aim a needle guide for transrectal prostate biopsy with MRI guidance [18]. With the use of three...is situated upon a manual linear slide that positions the robot in the access tunnel and allows fast removal for reloading brachyther- apy needles or

  13. Visual stimulus presentation using fiber optics in the MRI scanner.

    PubMed

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  14. fMRI Scanner Noise Interaction with Affective Neural Processes

    PubMed Central

    Skouras, Stavros; Gray, Marcus; Critchley, Hugo; Koelsch, Stefan

    2013-01-01

    The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy). Participants (N=34, 19 female) were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier) and emotion (fear, neutral, joy) were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus). Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes. PMID:24260420

  15. 3-T MRI safety assessments of magnetic dental attachments and castable magnetic alloys

    PubMed Central

    Miyata, K; Abe, Y; Ishii, T; Ishigami, T; Ohtani, K; Nagai, E; Ohyama, T; Umekawa, Y; Nakabayashi, S

    2015-01-01

    Objectives: To assess the safety of different magnetic dental attachments during 3-T MRI according to the American Society for Testing and Materials F2182-09 and F2052-06e1 standard testing methods and to develop a method to determine MRI compatibility by measuring magnetically induced torque. Methods: The temperature elevations, magnetically induced forces and torques of a ferromagnetic stainless steel keeper, a coping comprising a keeper and a cast magnetic alloy coping were measured on MRI systems. Results: The coping comprising a keeper demonstrated the maximum temperature increase (1.42 °C) for the whole-body-averaged specific absorption rate and was calculated as 2.1 W kg−1 with the saline phantom. All deflection angles exceeded 45°. The cast magnetic alloy coping had the greatest deflection force (0.33 N) during 3-T MRI and torque (1.015 mN m) during 0.3-T MRI. Conclusions: The tested devices showed minimal radiofrequency (RF)-induced heating in a 3-T MR environment, but the cast magnetic alloy coping showed a magnetically induced deflection force and torque approximately eight times that of the keepers. For safety, magnetic dental attachments should be inspected before and after MRI and large prostheses containing cast magnetic alloy should be removed. Although magnetic dental attachments may pose no great risk of RF-induced heating or magnetically induced torque during 3-T MRI, their magnetically induced deflection forces tended to exceed acceptable limits. Therefore, the inspection of such devices before and after MRI is important for patient safety. PMID:25785821

  16. Left Ventricular Function Evaluation on a 3T MR Scanner with Parallel RF Transmission Technique: Prospective Comparison of Cine Sequences Acquired before and after Gadolinium Injection.

    PubMed

    Caspar, Thibault; Schultz, Anthony; Schaeffer, Mickaël; Labani, Aïssam; Jeung, Mi-Young; Jurgens, Paul Thomas; El Ghannudi, Soraya; Roy, Catherine; Ohana, Mickaël

    To compare cine MR b-TFE sequences acquired before and after gadolinium injection, on a 3T scanner with a parallel RF transmission technique in order to potentially improve scanning time efficiency when evaluating LV function. 25 consecutive patients scheduled for a cardiac MRI were prospectively included and had their b-TFE cine sequences acquired before and right after gadobutrol injection. Images were assessed qualitatively (overall image quality, LV edge sharpness, artifacts and LV wall motion) and quantitatively with measurement of LVEF, LV mass, and telediastolic volume and contrast-to-noise ratio (CNR) between the myocardium and the cardiac chamber. Statistical analysis was conducted using a Bayesian paradigm. No difference was found before or after injection for the LVEF, LV mass and telediastolic volume evaluations. Overall image quality and CNR were significantly lower after injection (estimated coefficient cine after > cine before gadolinium: -1.75 CI = [-3.78;-0.0305], prob(coef>0) = 0% and -0.23 CI = [-0.49;0.04], prob(coef>0) = 4%) respectively), but this decrease did not affect the visual assessment of LV wall motion (cine after > cine before gadolinium: -1.46 CI = [-4.72;1.13], prob(coef>0) = 15%). In 3T cardiac MRI acquired with parallel RF transmission technique, qualitative and quantitative assessment of LV function can reliably be performed with cine sequences acquired after gadolinium injection, despite a significant decrease in the CNR and the overall image quality.

  17. Left Ventricular Function Evaluation on a 3T MR Scanner with Parallel RF Transmission Technique: Prospective Comparison of Cine Sequences Acquired before and after Gadolinium Injection

    PubMed Central

    Caspar, Thibault; Schultz, Anthony; Schaeffer, Mickaël; Labani, Aïssam; Jeung, Mi-Young; Jurgens, Paul Thomas; El Ghannudi, Soraya; Roy, Catherine; Ohana, Mickaël

    2016-01-01

    Objectives To compare cine MR b-TFE sequences acquired before and after gadolinium injection, on a 3T scanner with a parallel RF transmission technique in order to potentially improve scanning time efficiency when evaluating LV function. Methods 25 consecutive patients scheduled for a cardiac MRI were prospectively included and had their b-TFE cine sequences acquired before and right after gadobutrol injection. Images were assessed qualitatively (overall image quality, LV edge sharpness, artifacts and LV wall motion) and quantitatively with measurement of LVEF, LV mass, and telediastolic volume and contrast-to-noise ratio (CNR) between the myocardium and the cardiac chamber. Statistical analysis was conducted using a Bayesian paradigm. Results No difference was found before or after injection for the LVEF, LV mass and telediastolic volume evaluations. Overall image quality and CNR were significantly lower after injection (estimated coefficient cine after > cine before gadolinium: -1.75 CI = [-3.78;-0.0305], prob(coef>0) = 0% and -0.23 CI = [-0.49;0.04], prob(coef>0) = 4%) respectively), but this decrease did not affect the visual assessment of LV wall motion (cine after > cine before gadolinium: -1.46 CI = [-4.72;1.13], prob(coef>0) = 15%). Conclusions In 3T cardiac MRI acquired with parallel RF transmission technique, qualitative and quantitative assessment of LV function can reliably be performed with cine sequences acquired after gadolinium injection, despite a significant decrease in the CNR and the overall image quality. PMID:27669571

  18. MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil

    NASA Astrophysics Data System (ADS)

    Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin

    2015-07-01

    Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.

  19. Towards clinical assessment of velopharyngeal closure using MRI: evaluation of real-time MRI sequences at 1.5 and 3 T

    PubMed Central

    Scott, A D; Boubertakh, R; Birch, M J; Miquel, M E

    2012-01-01

    Objective The objective of this study was to demonstrate soft palate MRI at 1.5 and 3 T with high temporal resolution on clinical scanners. Methods Six volunteers were imaged while speaking, using both four real-time steady-state free-precession (SSFP) sequences at 3 T and four balanced SSFP (bSSFP) at 1.5 T. Temporal resolution was 9–20 frames s−1 (fps), spatial resolution 1.6×1.6×10.0–2.7×2.7×10.0 mm3. Simultaneous audio was recorded. Signal-to-noise ratio (SNR), palate thickness and image quality score (1–4, non-diagnostic–excellent) were evaluated. Results SNR was higher at 3 T than 1.5 T in the relaxed palate (nasal breathing position) and reduced in the elevated palate at 3 T, but not 1.5 T. Image quality was not significantly different between field strengths or sequences (p=NS). At 3 T, 40% acquisitions scored 2 and 56% scored 3. Most 1.5 T acquisitions scored 1 (19%) or 4 (46%). Image quality was more dependent on subject or field than sequence. SNR in static images was highest with 1.9×1.9×10.0 mm3 resolution (10 fps) and measured palate thickness was similar (p=NS) to that at the highest resolution (1.6×1.6×10.0 mm3). SNR in intensity–time plots through the soft palate was highest with 2.7×2.7×10.0 mm3 resolution (20 fps). Conclusions At 3 T, SSFP images are of a reliable quality, but 1.5 T bSSFP images are often better. For geometric measurements, temporal should be traded for spatial resolution (1.9×1.9×10.0 mm3, 10 fps). For assessment of motion, temporal should be prioritised over spatial resolution (2.7×2.7×10.0 mm3, 20 fps). Advances in knowledge Diagnostic quality real-time soft palate MRI is possible using clinical scanners and optimised protocols have been developed. 3 T SSFP imaging is reliable, but 1.5 T bSSFP often produces better images. PMID:22806623

  20. Rectal Imaging: Part I, High-Resolution MRI of Carcinoma of the Rectum at 3 T

    PubMed Central

    Halappa, Vivek Gowdra; Villalobos, Celia Pamela Corona; Bonekamp, Susanne; Gearhart, Susan L.; Efron, Jonathan; Herman, Joseph; Kamel, Ihab R.

    2013-01-01

    OBJECTIVE MRI is currently the imaging modality of choice for the detection, characterization, and staging of rectal cancer. A variety of examinations have been used for preoperative staging of rectal cancer, including digital rectal examination, endorectal (endoscopic) ultrasound, CT, and MRI. Endoscopic ultrasound is the imaging modality of choice for small and small superficial tumors. MRI is superior to CT for assessing invasion to adjacent organs and structures, especially low tumors that carry a high risk of recurrence. CONCLUSION High-resolution MRI is an accurate and sensitive imaging method delineating tumoral margins, mesorectal involvement, nodes, and distant metastasis. In this article, we will review the utility of rectal MRI in local staging, preoperative evaluation, and surgical planning. MRI at 3 T can accurately delineate the mesorectal fascia involvement, which is one of the main decision points in planning treatment. PMID:22733930

  1. A comparison of distributional considerations with statistical analysis of resting state fMRI at 3T and 7T

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Holmes, Martha J.; Newton, Allen T.; Morgan, Victoria L.; Landman, Bennett A.

    2012-02-01

    Ultra-high field 7T magnetic resonance imaging (MRI) offers potentially unprecedented spatial resolution of functional activity within the human brain through increased signal and contrast to noise ratios over traditional 1.5T and 3T MRI scanners. However, the effects physiological and imaging artifacts are also greatly increased. Traditional statistical parametric mapping theories based on distributional properties representative of data acquired at lower fields may be inadequate for new 7T data. Herein, we investigate the model fitting residuals based on two 7T and one 3T protocols. We find that model residuals are substantively more non-Gaussian at 7T relative to 3T. Imaging slices that passed through regions with peak inhomogeneity problems (e.g., mid-brain acquisitions for the 7T hippocampus) exhibited visually higher degrees of distortion along with spatially correlated and extreme values of kurtosis (a measure of non- Gaussianity). The impacts of artifacts have been previously addressed for 3T data by estimating the covariance matrix of the regression errors. We further extend the robust estimation approach for autoregressive models and evaluate the qualitative impacts of this technique relative to traditional inference. Clear differences in statistical significance are shown between inferences based on classical versus robust assumptions, which suggest that inferences based on Gaussian assumptions are subject to practical (as well as theoretical) concerns regarding their power and validity. Hence, modern statistical approaches, such as the robust autoregressive model posed herein, are appropriate and suitable for inference with ultra-high field functional magnetic resonance imaging.

  2. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner

    PubMed Central

    El-Sharkawy, AbdEl-Monem M.; Sotiriadis, Paul P.; Bottomley, Paul A.; Atalar, Ergin

    2007-01-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C–40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  3. A retrospective comparison of propofol alone to propofol in combination with dexmedetomidine for pediatric 3T MRI sedation.

    PubMed

    Boriosi, Juan P; Eickhoff, Jens C; Klein, Kristi B; Hollman, Gregory A

    2017-01-01

    Both propofol and dexmedetomidine have been found to be safe and effective sedation for magnetic resonance imaging (MRI). Our program experienced an increase in patients arousing and experiencing an adverse airway event during propofol sedation for MRI in the first months of using a new 3T (Tesla) MRI scanner that was found to have a longer reverberation time compared to the previous 1.5 T MRI. In an effort to decrease patient arousal and adverse airway events during MRI, we administered a dexmedetomidine load prior to our standard propofol protocol. The objective was to compare adverse events and other outcome measures of patients sedated with propofol alone (Pro) and propofol preceded by a dexmedetomidine load (D+P). We reviewed a sedation database and medical records for all children undergoing 3T MRI studies while sedated with propofol alone or propofol preceded by a dexmedetomidine load in 2014. Two hundred and fifty-six sedations were performed for MRI (87 Pro and 169 D+P). The two groups were comparable with regard to age, weight, gender, and American Society of Anesthesiologists status. Subjects in the D+P cohort had significantly fewer adverse events (10/169 patients (5.9%) vs 23/87 patients (26.4%) [OR 0.18, 95% CI: 0.08-0.39, P < 0.001]), particularly upper airway obstruction. Mean discharge time was longer in the D+P cohort compared to the Pro cohort (87.1, SD 26.3 min vs 69.7, SD 23.6; [mean difference 17.7 min, 95% CI: 10.6-24.8, P < 0.001]). The addition of a dexmedetomidine infusion prior to our propofol MRI sedation protocol resulted in fewer sedation-related adverse events, particularly upper airway obstruction. Further studies are needed to evaluate the potential for a reduction on adverse events with this drug combination. © 2016 John Wiley & Sons Ltd.

  4. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths.

    PubMed

    Jovicich, Jorge; Czanner, Silvester; Han, Xiao; Salat, David; van der Kouwe, Andre; Quinn, Brian; Pacheco, Jenni; Albert, Marilyn; Killiany, Ronald; Blacker, Deborah; Maguire, Paul; Rosas, Diana; Makris, Nikos; Gollub, Randy; Dale, Anders; Dickerson, Bradford C; Fischl, Bruce

    2009-05-15

    Automated MRI-derived measurements of in-vivo human brain volumes provide novel insights into normal and abnormal neuroanatomy, but little is known about measurement reliability. Here we assess the impact of image acquisition variables (scan session, MRI sequence, scanner upgrade, vendor and field strengths), FreeSurfer segmentation pre-processing variables (image averaging, B1 field inhomogeneity correction) and segmentation analysis variables (probabilistic atlas) on resultant image segmentation volumes from older (n=15, mean age 69.5) and younger (both n=5, mean ages 34 and 36.5) healthy subjects. The variability between hippocampal, thalamic, caudate, putamen, lateral ventricular and total intracranial volume measures across sessions on the same scanner on different days is less than 4.3% for the older group and less than 2.3% for the younger group. Within-scanner measurements are remarkably reliable across scan sessions, being minimally affected by averaging of multiple acquisitions, B1 correction, acquisition sequence (MPRAGE vs. multi-echo-FLASH), major scanner upgrades (Sonata-Avanto, Trio-TrioTIM), and segmentation atlas (MPRAGE or multi-echo-FLASH). Volume measurements across platforms (Siemens Sonata vs. GE Signa) and field strengths (1.5 T vs. 3 T) result in a volume difference bias but with a comparable variance as that measured within-scanner, implying that multi-site studies may not necessarily require a much larger sample to detect a specific effect. These results suggest that volumes derived from automated segmentation of T1-weighted structural images are reliable measures within the same scanner platform, even after upgrades; however, combining data across platform and across field-strength introduces a bias that should be considered in the design of multi-site studies, such as clinical drug trials. The results derived from the young groups (scanner upgrade effects and B1 inhomogeneity correction effects) should be considered as preliminary and in

  5. Validation of radiocarpal joint contact models based on images from a clinical MRI scanner.

    PubMed

    Johnson, Joshua E; McIff, Terence E; Lee, Phil; Toby, E Bruce; Fischer, Kenneth J

    2014-01-01

    This study was undertaken to assess magnetic resonance imaging (MRI)-based radiocarpal surface contact models of functional loading in a clinical MRI scanner for future in vivo studies, by comparison with experimental measures from three cadaver forearm specimens. Experimental data were acquired using a Tekscan sensor during simulated light grasp. Magnetic resonance (MR) images were used to obtain model geometry and kinematics (image registration). Peak contact pressures (PPs) and average contact pressures (APs), contact forces and contact areas were determined in the radiolunate and radioscaphoid joints. Contact area was also measured directly from MR images acquired with load and compared with model data. Based on the validation criteria (within 25% of experimental data), out of the six articulations (three specimens with two articulations each), two met the criterion for AP (0%, 14%); one for peak pressure (20%); one for contact force (5%); four for contact area with respect to experiment (8%, 13%, 19% and 23%), and three contact areas met the criterion with respect to direct measurements (14%, 21% and 21%). Absolute differences between model and experimental PPs were reasonably low (within 2.5 MPa). Overall, the results indicate that MRI-based models generated from 3T clinical MR scanner appear sufficient to obtain clinically relevant data.

  6. Effect of scanner acoustic background noise on strict resting-state fMRI

    PubMed Central

    Rondinoni, C.; Amaro, E.; Cendes, F.; Santos, A.C.dos; Salmon, C.E.G.

    2013-01-01

    Functional MRI (fMRI) resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a ‘resting-state’ fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs). Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced “silent” pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent) counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal), while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors. PMID:23579634

  7. Effects of ACL Interference Screws on Articular Cartilage Volume and Thickness Measurements with 1.5T and 3T MRI

    PubMed Central

    Bowers, Megan E.; Tung, Glenn A.; Trinh, Nhon; Leventhal, Evan; Crisco, Joseph J.; Kimia, Benjamin; Fleming, Braden C.

    2008-01-01

    Objective To assess the effects of interference screws, which are commonly used to surgically fix an anterior cruciate ligament (ACL) graft in the ACL-deficient knee, and magnetic field strength on cartilage volume and thickness measurements with quantitative MRI (qMRI). Methods Five cadaver knees were imaged using a cartilage-sensitive sequence (T1-weighted WE-3D FLASH) on 1.5T and 3T scanners with and without interference screws implanted. The tibiofemoral articular cartilage was segmented and reconstructed from the MR images, and volume and thickness measurements were made on the resulting three-dimensional models. Results Although several load-bearing regions showed significant differences in volume and thickness between magnet strengths, most showed no significant difference between screw conditions. The medial tibial cartilage showed a mean decrease in volume of 5.9% and 8.0% in the presence of interference screws at 3T and 1.5T, respectively. At 3T and 1.5T, the medial tibial cartilage showed a mean decrease in thickness of 7.0% and 12.0%, respectively, in the presence of interference screws. Conclusions Caution should be used when interpreting thickness and volume of cartilage at 3T in the presence of interference screws, particularly in the medial tibial compartment. Additionally, 3T and 1.5T qMRI should not be used interchangeably to assess structural changes in tibiofemoral articular cartilage during longitudinal studies. PMID:17933559

  8. Evaluation of a positron emission tomography (PET)-compatible field-cycled MRI (FCMRI) scanner.

    PubMed

    Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Alford, Jamu K; Chronik, Blaine A

    2009-10-01

    Field-cycled MRI (FCMRI) uses two independent, actively controlled resistive magnets to polarize a sample and to provide the magnetic field environment during data acquisition. This separation of tasks allows for novel forms of contrast, reduction of susceptibility artifacts, and a versatility in design that facilitates the integration of a second imaging modality. A 0.3T/4-MHz FCMRI scanner was constructed with a 9-cm-wide opening through the side for the inclusion of a photomultiplier-tube-based positron emission tomography (PET) system. The performance of the FCMRI scanner was evaluated prior to integrating PET detectors. Quantitative measurements of the system's signal, phase, and temperature were recorded. The polarizing and readout magnets could be operated continuously at 100 A without risk of damage to the system. Transient instabilities in the readout magnet, caused by the pulsing of the polarizing magnet, dissipated in 50 ms; this resulted in a steady-state homogeneity of 32 Hz over a 7-cm-diameter volume. The short- and long-term phase behaviors of the readout field were sufficiently stable to prevent visible readout or phase-encode artifacts during imaging. Preliminary MR images demonstrated the potential of the FCMRI scanner and the efficacy of integrating a PET system. (c) 2009 Wiley-Liss, Inc.

  9. SU-E-J-209: Geometric Distortion at 3T in a Commercial 4D MRI-Compatible Phantom

    SciTech Connect

    Fatemi-Ardekani, A; Wronski, M; Kim, A; Stanisz, G; Sarfehnia, A; Keller, B

    2015-06-15

    Purpose: There are very few commercial 4D phantoms that are marketed as MRI compatible. We are evaluating one such commercial phantom, made to be used with an MRI-Linear accelerator. The focus of this work is to characterize the geometric distortions produced in this phantom at 3T using 3 clinical MR pulse sequences. Methods: The CIRS MRI-Linac Dynamic Phantom (CIRSTM) under investigation in this study consists of a softwaredriven moving tumour volume within a thorax phantom body and enables dose accumulation by placing a dosimeter within the tumour volume. Our initial investigation is to evaluate the phantom in static mode prior to examining its 4D capability. The water-filled thorax phantom was scanned using a wide-bore Philips 3T Achieva MRI scanner employing a Thoracic xl coil and clinical 2D T1W FFE, 2D T1W TSE and 3D T1W TFE pulse sequences. Each of the MR image sets was rigidly fused with a reference CT image of the phantom employing a rigid registration with 6 degrees of freedom. Geometric distortions between the MR and CT image sets were measured in 3 dimensions at selected points along the periphery of the distortion grid embedded within the phantom body (11.5, 7.5 and 3 cm laterally, ant/post and sup/inf of magnetic isocenter respectively). Results: The maximal measured geometric distortions between the MR and reference CT points of interest were 0.9, 1.8 and 1.3 mm in the lateral, anteriorposterior and cranio-caudal directions, respectively. For all 3 spatial dimensions, the maximal distortions occurred for the FFE pulse sequence. Maximal distortions for the 2D FFE, 2D TSE and 3D TFE sequences were 1, 0.7 and 1.8 mm, respectively. Conclusion: Our initial static investigation of this phantom shows minimal geometric distortions at 3T along the periphery of the embedded grid. CIRS has provided us with a phantom at no charge for evaluation at 3 Tesla.

  10. Feasibility study to assess clinical applications of 3-T cine MRI coupled with synchronous audio recording during speech in evaluation of velopharyngeal insufficiency in children.

    PubMed

    Sagar, Pallavi; Nimkin, Katherine

    2015-02-01

    In the past decade, there has been increased utilization of magnetic resonance imaging (MRI) in evaluating and understanding velopharyngeal insufficiency (VPI). To our knowledge, none of the prior studies with MRI has simultaneously linked the audio recordings of speech during cine MRI acquisition with the corresponding images and created a video for evaluating VPI. To develop an MRI protocol with static and cine sequences during phonation to evaluate for VPI in children and compare the findings to nasopharyngoscopy and videofluoroscopy. Five children, ages 8-16 years, with known VPI, who had previously undergone nasopharyngoscopy and videofluoroscopy, were included. MRI examination was performed on a 3-T Siemens scanner. Anatomical data was obtained using an isotropic T2-weighted 3-D SPACE sequence with multiplanar reformation capability. Dynamic data was obtained using 2-D FLASH cine sequences of the airway in three imaging planes during phonation. Audio recordings were captured by a MRI compatible optical microphone. All five cases had MRI and nasopharyngoscopy and four had videofluoroscopy performed. VPI was identified by MRI in all five patients. The location and severity of the velopharyngeal gap, closure pattern, velar size and shape and levator veli palatini (LVP) muscle were identified in all patients. MRI was superior in visualizing the integrity of the LVP muscle. MRI was unable to identify hemipalatal weakness in one case. In a case of stress-induced VPI, occurring only during clarinet playing, cine MRI demonstrated discordant findings of a velopharyngeal gap during phonatory tasks but not with instrument playing. Overall, there was satisfactory correlation among MRI, nasopharyngoscopy and videofluoroscopy findings. Cine MRI of the airway during speech is a noninvasive, well-tolerated diagnostic imaging tool that has the potential to serve as a guide prior to and after surgical correction of VPI. MRI provided superior anatomical detail of the levator

  11. Implementation of fast macromolecular proton fraction mapping on 1.5 and 3 Tesla clinical MRI scanners: preliminary experience

    NASA Astrophysics Data System (ADS)

    Yarnykh, V.; Korostyshevskaya, A.

    2017-08-01

    Macromolecular proton fraction (MPF) is a biophysical parameter describing the amount of macromolecular protons involved into magnetization exchange with water protons in tissues. MPF represents a significant interest as a magnetic resonance imaging (MRI) biomarker of myelin for clinical applications. A recent fast MPF mapping method enabled clinical translation of MPF measurements due to time-efficient acquisition based on the single-point constrained fit algorithm. However, previous MPF mapping applications utilized only 3 Tesla MRI scanners and modified pulse sequences, which are not commonly available. This study aimed to test the feasibility of MPF mapping implementation on a 1.5 Tesla clinical scanner using standard manufacturer’s sequences and compare the performance of this method between 1.5 and 3 Tesla scanners. MPF mapping was implemented on 1.5 and 3 Tesla MRI units of one manufacturer with either optimized custom-written or standard product pulse sequences. Whole-brain three-dimensional MPF maps obtained from a single volunteer were compared between field strengths and implementation options. MPF maps demonstrated similar quality at both field strengths. MPF values in segmented brain tissues and specific anatomic regions appeared in close agreement. This experiment demonstrates the feasibility of fast MPF mapping using standard sequences on 1.5 T and 3 T clinical scanners.

  12. Can MRI biomarkers at 3 T identify low-risk ductal carcinoma in situ?

    PubMed

    Rahbar, Habib; Parsian, Sana; Lam, Diana L; Dontchos, Brian N; Andeen, Nicole K; Rendi, Mara H; Lehman, Constance D; Partridge, Savannah C

    2016-01-01

    The objective was to explore whether 3-T magnetic resonance imaging (MRI) can identify low-risk ductal carcinoma in situ (DCIS). Dynamic contrast-enhanced and diffusion-weighted (DWI) MRI features of 36 DCIS lesions [8 low risk, Van Nuys Pathologic Classification (VNPC) 1; 28 high risk, VNPC 2/3] were reviewed. An MRI model that best identified low-risk DCIS was determined using multivariate logistic regression. Low-risk DCIS exhibited different DWI properties [i.e., higher contrast-to-noise ratio (P=.02) and lower normalized apparent diffusion coefficients (P=.04)] than high-risk DCIS. A model combining these DWI features provided best performance (area under receiver operating characteristic curve =0.86). DWI may help identify DCIS lesions requiring less therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI.

    PubMed

    Bowers, M E; Tung, G A; Trinh, N; Leventhal, E; Crisco, J J; Kimia, B; Fleming, B C

    2008-05-01

    To assess the effects of interference screws, which are commonly used to surgically fix an anterior cruciate ligament (ACL) graft in the ACL-deficient knee, and magnetic field strength on cartilage volume and thickness measurements with quantitative magnetic resonance imaging (qMRI). Five cadaver knees were imaged using a cartilage-sensitive sequence (T1-weighted water-excitation, three-dimensional (3D) fast low-angle shot) on 1.5T and 3T scanners with and without interference screws implanted. The tibiofemoral articular cartilage was segmented and reconstructed from the magnetic resonance images, and volume and thickness measurements were made on the resulting 3D models. Although several load-bearing regions showed significant differences in volume and thickness between magnet strengths, most showed no significant difference between screw conditions. The medial tibial cartilage showed a mean decrease in volume of 5.9% and 8.0% in the presence of interference screws at 3T and 1.5T, respectively. At 3T and 1.5T, the medial tibial cartilage showed a mean decrease in thickness of 7.0% and 12.0%, respectively, in the presence of interference screws. Caution should be used when interpreting thickness and volume of cartilage at 3T in the presence of interference screws, particularly in the medial tibial compartment. Additionally, 3T and 1.5T qMRI should not be used interchangeably to assess structural changes in tibiofemoral articular cartilage during longitudinal studies.

  14. Occupational exposure levels of static magnetic field during routine MRI examination in 3T MR system.

    PubMed

    Yamaguchi-Sekino, Sachiko; Nakai, Toshiharu; Imai, Shinya; Izawa, Shuhei; Okuno, Tsutomu

    2014-01-01

    Occupational exposure to the high static magnetic fields (SMFs) during magnetic resonance imaging (MRI) examinations raises concerns of adverse health effects. In this study, personal exposure monitoring of the magnetic fields during routine examinations in two 3 T MRI systems was carried out. A three-axis Hall magnetometer was attached to a subject's chest during monitoring. Data acquisition started every time the subject entered the scanner room and ended when the subject exited the room. Four radiologic technologists from two different institutes participated in this study. The maximum exposed field ranged from 0 to 1250 mT and the average peak magnetic field (B) was 428 ± 231 mT (mean ± standard deviation (SD): number of samples (N) = 103). Then, the relationship between exposure levels and work duties was analyzed. The MRI examination of the head or neck showed the highest average peak B among four work categories. These results provide information of real exposure levels for 3 T MRI system operators and can also improve the current practical training advice for preventing extra occupational field exposure.

  15. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.

    PubMed

    Deng, Minghui; Yu, Renping; Wang, Li; Shi, Feng; Yap, Pew-Thian; Shen, Dinggang

    2016-12-01

    Segmentation of brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is crucial for brain structural measurement and disease diagnosis. Learning-based segmentation methods depend largely on the availability of good training ground truth. However, the commonly used 3T MR images are of insufficient image quality and often exhibit poor intensity contrast between WM, GM, and CSF. Therefore, they are not ideal for providing good ground truth label data for training learning-based methods. Recent advances in ultrahigh field 7T imaging make it possible to acquire images with excellent intensity contrast and signal-to-noise ratio. In this paper, the authors propose an algorithm based on random forest for segmenting 3T MR images by training a series of classifiers based on reliable labels obtained semiautomatically from 7T MR images. The proposed algorithm iteratively refines the probability maps of WM, GM, and CSF via a cascade of random forest classifiers for improved tissue segmentation. The proposed method was validated on two datasets, i.e., 10 subjects collected at their institution and 797 3T MR images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Specifically, for the mean Dice ratio of all 10 subjects, the proposed method achieved 94.52% ± 0.9%, 89.49% ± 1.83%, and 79.97% ± 4.32% for WM, GM, and CSF, respectively, which are significantly better than the state-of-the-art methods (p-values < 0.021). For the ADNI dataset, the group difference comparisons indicate that the proposed algorithm outperforms state-of-the-art segmentation methods. The authors have developed and validated a novel fully automated method for 3T brain MR image segmentation. © 2016 American Association of Physicists in Medicine.

  16. Oxygenation in Cervical Cancer and Normal Uterine Cervix assessed using BOLD MRI at 3 T1

    PubMed Central

    Hallac, Rami R.; Ding, Yao; Yuan, Qing; McColl, Roderick W.; Lea, Jayanthi; Sims, Robert D.; Weatherall, Paul T.; Mason, Ralph P.

    2012-01-01

    Hypoxia is reported to be a biomarker for poor prognosis in cervical cancer. However, a practical non-invasive method is needed for routine clinical evaluation of tumor hypoxia. This study examined the potential use of BOLD (Blood Oxygenation Level Dependent) contrast MRI as a non-invasive technique to assess tumor vascular oxygenation at 3 T. Following IRB-approved informed consent and in compliance with HIPAA, successful results were achieved in nine patients with locally advanced cervical cancer (FIGO stage IIA to IVA) and three normal volunteers. In the first four patients, dynamic T2*-weighted MRI was performed in the transaxial plane using a multi-shot EPI sequence while patients breathed room air followed by oxygen (15 dm3/min). Later, a multi-echo gradient echo examination was added to provide quantitative R2* measurements. Baseline T2*-weighted signal intensity was quite stable, but increased to various extents in tumors upon initiation of oxygen breathing. Signal in normal uterus increased significantly, while iliacus muscle did not change. R2* responded significantly in healthy uterus, cervix, and eight cervical tumors. This preliminary study demonstrates that BOLD MRI of cervical cancer at 3 T is feasible. However, more patients must be evaluated and followed clinically before any prognostic value can be determined. PMID:22619091

  17. A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T.

    PubMed

    Zhang, Tao; Grafendorfer, Thomas; Cheng, Joseph Y; Ning, Peigang; Rainey, Bob; Giancola, Mark; Ortman, Sarah; Robb, Fraser J; Calderon, Paul D; Hargreaves, Brian A; Lustig, Michael; Scott, Greig C; Pauly, John M; Vasanawala, Shreyas S

    2016-09-01

    To design, construct, and validate a semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T. A 64-channel receive-only phased array was developed and constructed. The designed flexible coil can easily conform to different patient sizes with nonoverlapping coil elements in the transverse plane. It can cover a field of view of up to 44 × 28 cm(2) and removes the need for coil repositioning for body MRI patients with multiple clinical concerns. The 64-channel coil was compared with a 32-channel standard coil for signal-to-noise ratio and parallel imaging performances on different phantoms. With IRB approval and informed consent/assent, the designed coil was validated on 21 consecutive pediatric patients. The pediatric coil provided higher signal-to-noise ratio than the standard coil on different phantoms, with the averaged signal-to-noise ratio gain at least 23% over a depth of 7 cm along the cross-section of phantoms. It also achieved better parallel imaging performance under moderate acceleration factors. Good image quality (average score 4.6 out of 5) was achieved using the developed pediatric coil in the clinical studies. A 64-channel semiflexible receive-only phased array has been developed and validated to facilitate high quality pediatric body MRI at 3T. Magn Reson Med 76:1015-1021, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. [Multiparametric 3T MRI in the routine staging of prostate cancer].

    PubMed

    Largeron, J P; Galonnier, F; Védrine, N; Alfidja, A; Boyer, L; Pereira, B; Boiteux, J P; Kemeny, J L; Guy, L

    2014-03-01

    To analyse the detection ability of a multiparametric 3T MRI with phased-array coil in comparison with the pathological data provided by the prostatectomy specimens. Prospective study of 30 months, including 74 patients for whom a diagnosis of prostate cancer had been made on randomized prostate biopsies, and all eligible to a radical prostatectomy. They all underwent multiparametric 3T MRI with pelvic phased-array coil including T2-weighted imaging (T2W), dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) with an ADC mapping. Each gland was divided in octants. Three specific criteria have been sought (detection ability, capsular contact [CC] and extracapsular extension [ECE]), in comparison with the pathological data provided by the prostatectomy specimens. Five hundred and ninety-two octants were considered with 124 significant tumors (volume ≥ 0.1cm(3)). The general ability of tumor detection had a sensitivity, specificity, PPV and NPV respectively to 72.3%, 87.4%, 83.2% and 78.5%. The estimate of the CC and ECE had a high negative predictive power with specificities and VPN respectively to 96.4% and 95.4% for CC, and 97.5 and 97.7% for ECE. Multiparametric 3T MRI with pelvic phased-array coil appeared to be a reliable imaging technique in clinical and routine practice for the detection of localized prostate cancer. Estimation of the CC and millimeter ECE remains to be clarified, even if the negative predictive power for these parameters seems encouraging. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. [Reformatting 3-dimensional medical images. Application to MRI and scanners].

    PubMed

    Cuchet, E; Lambert, F; Derosier, C

    1994-04-01

    Several kinds of images, each giving a different information, are now available to radiologists. The MRI images have excellent contrast resolution and enable soft tissues to be differentiated, but they do not distinguish structures with low water content, notably air and bone, whereas these are easily recognized by CT. The aim of this study is to present a simple, entirely radiologist-supervised method to examine the radiological data of any patient, obtained from several kinds of images. MRI is performed using a GEMS Signa, 1.5 Tesla, 4.9 version magnet. Acquisitions are T1- or T2-weighted spin-echo or gradient sequences, with a 256 or 512 matrix, on axial sections, with of without contrast injection. CT is performed using a GEMS Hi Speed scanner. Acquisitions are obtained on a 512 matrix and with a "Soft" or "Bone" filter, without contrast injection. The two series of sections are transmitted, through an Etherne network, to a Sun console where the two corresponding volumes are reconstructed on a GEMS Voxtol by means of a 3-dimensional soft ware for image treatment. At least 3 couples define the rotation and translation required for one of the two volumes to reset it in the guide mark of the other. The soft ware then looks for the best transformation, in terms of least square, between the two 3-dimensional volumes. The calculation demands only a few seconds. One of the two objects is then recalculated in the guide mark of the other. The cursor positioned by the user on any point of the object is linked to a second cursor which will automatically position itself on the corresponding point of the other object. The accuracy obtained (about one millimeter) is specified by the soft ware which indicates how to improve resetting. In addition to its teaching value, this superimposition image can help in the diagnosis and can be used for surgical stimulation because it is possible to mix the images. This mixing gives access to a new type of imaging, since the images spared

  20. A 22-channel receive array with Helmholtz transmit coil for anesthetized macaque MRI at 3 T.

    PubMed

    Janssens, Thomas; Keil, Boris; Serano, Peter; Mareyam, Azma; McNab, Jennifer A; Wald, Lawrence L; Vanduffel, Wim

    2013-11-01

    The macaque monkey is an important model for cognitive and sensory neuroscience that has been used extensively in behavioral, electrophysiological, molecular and, more recently, neuroimaging studies. However, macaque MRI has unique technical differences relative to human MRI, such as the geometry of highly parallel receive arrays, which must be addressed to optimize imaging performance. A 22-channel receive coil array was constructed specifically for rapid high-resolution anesthetized macaque monkey MRI at 3 T. A local Helmholtz transmit coil was used for excitation. Signal-to-noise ratios (SNRs) and noise amplification for parallel imaging were compared with those of single- and four-channel receive coils routinely used for macaque MRI. The 22-channel coil yielded significant improvements in SNR throughout the brain. Using this coil, the SNR in peripheral brain was 2.4 and 1.7 times greater than that obtained with single- or four-channel coils, respectively. In the central brain, the SNR gain was 1.5 times that of both the single- and four-channel coils. Finally, the performance of the array for functional, anatomical and diffusion-weighted imaging was evaluated. For all three modalities, the use of the 22-channel array allowed for high-resolution and accelerated image acquisition. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Use of an advanced 3-T MRI movie to investigate articulation.

    PubMed

    Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi

    2015-06-01

    To develop a magnetic resonance imaging (MRI) movie to reveal the dynamic movement of articulators and teeth. Five healthy females with normal occlusion participated in this study. Various concentrations of MRI contrast media (ferric ammonium citrate [FAC]) were tested for visualization of teeth, according to facial markers and with the use of a gel. Custom-made circuitry was connected to synchronize pronunciation of fricative sounds (/asa/) with scans. Three gradient echo sequences (True fast imaging with steady state precession [true FISP], FISP, and fast low angle shot [FLASH]) with a segmented cine were tested with the use of repetition times (TRs) of 9 ms and 31.5 ms. The MRI movie images were superimposed over the boundaries of teeth. The images produced during pronunciation, using the two different TRs (9 ms and 31 ms), were compared to assess the position of the lips and the tongue. Images obtained using the FLASH sequence, with a TR of 9 ms or 31.5 ms, can be used for diagnostic purposes. A TR of 9 ms, with 161 continuous images acquired, produced the highest-quality images of teeth, with few artifacts present. Pronunciation of the consonant "s" was clearly discernable. Our 3-T MRI movie system, with a temporal resolution less than 9 ms, can provide detailed information pertaining to variations in speech or oropharyngeal function. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The impact of MRI scanner environment on perceptual decision-making.

    PubMed

    van Maanen, Leendert; Forstmann, Birte U; Keuken, Max C; Wagenmakers, Eric-Jan; Heathcote, Andrew

    2016-03-01

    Despite the widespread use of functional magnetic resonance imaging (fMRI), few studies have addressed scanner effects on performance. The studies that have examined this question show a wide variety of results. In this article we report analyses of three experiments in which participants performed a perceptual decision-making task both in a traditional setting as well as inside an MRI scanner. The results consistently show that response times increase inside the scanner. Error rates also increase, but to a lesser extent. To reveal the underlying mechanisms that drive the behavioral changes when performing a task inside the MRI scanner, the data were analyzed using the linear ballistic accumulator model of decision-making. These analyses show that, in the scanner, participants exhibit a slow down of the motor component of the response and have less attentional focus on the task. However, the balance between focus and motor slowing depends on the specific task requirements.

  3. Comparing 3 T and 1.5 T MRI for Tracking Alzheimer's Disease Progression with Tensor-Based Morphometry

    PubMed Central

    Ho, April J.; Hua, Xue; Lee, Suh; Leow, Alex D.; Yanovsky, Igor; Gutman, Boris; Dinov, Ivo D.; Leporé, Natasha; Stein, Jason L.; Toga, Arthur W.; Jack, Clifford R.; Bernstein, Matt A.; Reiman, Eric M.; Harvey, Danielle J.; Kornak, John; Schuff, Norbert; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2009-01-01

    A key question in designing MRI-based clinical trials is how the main magnetic field strength of the scanner affects the power to detect disease effects. In 110 subjects scanned longitudinally at both 3.0 and 1.5 T, including 24 patients with Alzheimer's Disease (AD) [74.8 ± 9.2 years, MMSE: 22.6 ± 2.0 at baseline], 51 individuals with mild cognitive impairment (MCI) [74.1 ± 8.0 years, MMSE: 26.6 ± 2.0], and 35 controls [75.9 ± 4.6 years, MMSE: 29.3 ± 0.8], we assessed whether higher-field MR imaging offers higher or lower power to detect longitudinal changes in the brain, using tensor-based morphometry (TBM) to reveal the location of progressive atrophy. As expected, at both field strengths, progressive atrophy was widespread in AD and more spatially restricted in MCI. Power analysis revealed that, to detect a 25% slowing of atrophy (with 80% power), 37 AD and 108 MCI subjects would be needed at 1.5 T versus 49 AD and 166 MCI subjects at 3 T; however, the increased power at 1.5 T was not statistically significant (α = 0.05) either for TBM, or for SIENA, a related method for computing volume loss rates. Analysis of cumulative distribution functions and false discovery rates showed that, at both field strengths, temporal lobe atrophy rates were correlated with interval decline in Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog), mini-mental status exam (MMSE), and Clinical Dementia Rating sum-of-boxes (CDR-SB) scores. Overall, 1.5 and 3 T scans did not significantly differ in their power to detect neurodegenerative changes over a year. PMID:19780044

  4. Improved T1 mapping by motion correction and template based B1 correction in 3T MRI brain studies

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Yao, Jianhua; Lee, Christabel; Pang, Yuxi; Baker, Eva; Butman, John; Thomasson, David

    2009-02-01

    Accurate estimation of relaxation time T1 from MRI images is increasingly important for some clinical applications. Low noise, high resolution, fast and accurate T1 maps from MRI images of the brain can be performed using a dual flip angle method. However, accuracy is limited by the scanners ability to deliver the prescribed flip angle due to the B1 inhomogeneity, particularly at high field strengths (e.g. 3T). One of the most accurate methods to correct that inhomogeneity is to acquire a subject-specific B1 map. However, since B1 map acquisition takes up precious scanning time and most retrospective studies do not have B1 map, it would be desirable to perform that correction from a template. For this work a dual repetition time method was used for B1 map acquisition in five normal subjects. Inaccuracies due to misregistration of acquired T1-weighted images were corrected by rigid registration, and the effects of misalignment were compared to those of B1 inhomogeneity. T1-intensity histograms were produced and three-Gaussian curves were fitted for every fully-, partially- and non-corrected histogram in order to estimate and compare the white and gray matter peaks. In addition, in order to reduce the scanning time we designed a template based correction strategy. Images from different subjects were aligned using a twelve-parameter affine registration, and B1 maps were aligned according to that transformation. Recomputed T1 maps showed a significant improvement with respect to non-corrected ones. These results are very promising and have the potential for clinical application.

  5. Time Efficient 3D Radial UTE Sampling with Fully Automatic Delay Compensation on a Clinical 3T MR Scanner

    PubMed Central

    Reichenbach, Jürgen R.

    2016-01-01

    This work’s aim was to minimize the acquisition time of a radial 3D ultra-short echo-time (UTE) sequence and to provide fully automated, gradient delay compensated, and therefore artifact free, reconstruction. The radial 3D UTE sequence (echo time 60 μs) was implemented as single echo acquisition with center-out readouts and improved time efficient spoiling on a clinical 3T scanner without hardware modifications. To assess the sequence parameter dependent gradient delays each acquisition contained a quick calibration scan and utilized the phase of the readouts to detect the actual k-space center. This calibration scan does not require any user interaction. To evaluate the robustness of this automatic delay estimation phantom experiments were performed and 19 in vivo imaging data of the head, tibial cortical bone, feet and lung were acquired from 6 volunteers. As clinical application of this fast 3D UTE acquisition single breath-hold lung imaging is demonstrated. The proposed sequence allowed very short repetition times (TR~1ms), thus reducing total acquisition time. The proposed, fully automated k-phase based gradient delay calibration resulted in accurate delay estimations (difference to manually determined optimal delay −0.13 ± 0.45 μs) and allowed unsupervised reconstruction of high quality images for both phantom and in vivo data. The employed fast spoiling scheme efficiently suppressed artifacts caused by incorrectly refocused echoes. The sequence proved to be quite insensitive to motion, flow and susceptibility artifacts and provides oversampling protection against aliasing foldovers in all directions. Due to the short TR, acquisition times are attractive for a wide range of clinical applications. For short T2* mapping this sequence provides free choice of the second TE, usually within less scan time as a comparable dual echo UTE sequence. PMID:26975051

  6. Time Efficient 3D Radial UTE Sampling with Fully Automatic Delay Compensation on a Clinical 3T MR Scanner.

    PubMed

    Herrmann, Karl-Heinz; Krämer, Martin; Reichenbach, Jürgen R

    2016-01-01

    This work's aim was to minimize the acquisition time of a radial 3D ultra-short echo-time (UTE) sequence and to provide fully automated, gradient delay compensated, and therefore artifact free, reconstruction. The radial 3D UTE sequence (echo time 60 μs) was implemented as single echo acquisition with center-out readouts and improved time efficient spoiling on a clinical 3T scanner without hardware modifications. To assess the sequence parameter dependent gradient delays each acquisition contained a quick calibration scan and utilized the phase of the readouts to detect the actual k-space center. This calibration scan does not require any user interaction. To evaluate the robustness of this automatic delay estimation phantom experiments were performed and 19 in vivo imaging data of the head, tibial cortical bone, feet and lung were acquired from 6 volunteers. As clinical application of this fast 3D UTE acquisition single breath-hold lung imaging is demonstrated. The proposed sequence allowed very short repetition times (TR~1ms), thus reducing total acquisition time. The proposed, fully automated k-phase based gradient delay calibration resulted in accurate delay estimations (difference to manually determined optimal delay -0.13 ± 0.45 μs) and allowed unsupervised reconstruction of high quality images for both phantom and in vivo data. The employed fast spoiling scheme efficiently suppressed artifacts caused by incorrectly refocused echoes. The sequence proved to be quite insensitive to motion, flow and susceptibility artifacts and provides oversampling protection against aliasing foldovers in all directions. Due to the short TR, acquisition times are attractive for a wide range of clinical applications. For short T2* mapping this sequence provides free choice of the second TE, usually within less scan time as a comparable dual echo UTE sequence.

  7. Precision of volumetric assessment of proximal femur microarchitecture from high-resolution 3T MRI.

    PubMed

    Hotca, Alexandra; Ravichandra, Shreyas; Mikheev, Artem; Rusinek, Henry; Chang, Gregory

    2015-01-01

    To evaluate the precision of measures of bone volume and bone volume fraction derived from high-resolution 3T MRI of proximal femur bone microarchitecture using non-uniformity correction. This HIPAA compliant, institutional review board approved study was conducted on six volunteers (mean age 56 ± 13 years), and written informed consent was obtained. All volunteers underwent a 3T FLASH MRI hip scan at three time points: baseline, second scan same day (intra-scans), and third scan one week later (inter-scans). Segmentation of femur images and values for total proximal femur volume (T), bone volume (B), and bone volume fraction (BVF) were calculated using in-house developed software, FireVoxel. Two types of non-uniformity corrections were applied to images (N3 and BiCal). Precision values were calculated using absolute percent error (APE). Statistical analysis was carried out using one-sample one-sided t test to observe the consistency of the precision and paired t test to compare between the various methods and scans. No significant differences in bone volume measurements were observed for intra- and inter-scans. When using non-uniformity correction and assessing all subjects uniformly at the level of the lesser trochanter, precision values overall improved, especially significantly (p < 0.05) when measuring bone volume, B . B values using the combination of N3 or BiCal with CLT had a significant consistent APE values of less than 2.5 %, while BVF values were all consistently and significantly lower than 2.5 % APE. Our results demonstrate the precision of high-resolution 3D MRI measures were comparable to that of dual-energy X-ray absorptiometry. Additional corrections to the analysis technique by cropping at the lesser trochanter or using non-uniformity corrections helped to improve precision. The high precision values from these MRI scans provide evidence for MRI of the proximal femur as a promising tool for osteoporosis diagnosis and treatment.

  8. A novel coil array for combined TMS/fMRI experiments at 3 T

    PubMed Central

    Navarro de Lara, Lucia I.; Windischberger, Christian; Kuehne, Andre; Woletz, Michael; Sieg, Jürgen; Bestmann, Sven; Weiskopf, Nikolaus; Strasser, Bernhard; Moser, Ewald

    2014-01-01

    Purpose To overcome current limitations in combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies by employing a dedicated coil array design for 3 Tesla. Methods The state‐of‐the‐art setup for concurrent TMS/fMRI is to use a large birdcage head coil, with the TMS between the subject's head and the MR coil. This setup has drawbacks in sensitivity, positioning, and available imaging techniques. In this study, an ultraslim 7‐channel receive‐only coil array for 3 T, which can be placed between the subject's head and the TMS, is presented. Interactions between the devices are investigated and the performance of the new setup is evaluated in comparison to the state‐of‐the‐art setup. Results MR sensitivity obtained at the depth of the TMS stimulation is increased by a factor of five. Parallel imaging with an acceleration factor of two is feasible with low g‐factors. Possible interactions between TMS and the novel hardware were investigated and were found negligible. Conclusion The novel coil array is safe, strongly improves signal‐to‐noise ratio in concurrent TMS/fMRI experiments, enables parallel imaging, and allows for flexible positioning of the TMS on the head while ensuring efficient TMS stimulation due to its ultraslim design. Magn Reson Med 74:1492–1501, 2015. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:25421603

  9. A novel coil array for combined TMS/fMRI experiments at 3 T.

    PubMed

    Navarro de Lara, Lucia I; Windischberger, Christian; Kuehne, Andre; Woletz, Michael; Sieg, Jürgen; Bestmann, Sven; Weiskopf, Nikolaus; Strasser, Bernhard; Moser, Ewald; Laistler, Elmar

    2015-11-01

    To overcome current limitations in combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies by employing a dedicated coil array design for 3 Tesla. The state-of-the-art setup for concurrent TMS/fMRI is to use a large birdcage head coil, with the TMS between the subject's head and the MR coil. This setup has drawbacks in sensitivity, positioning, and available imaging techniques. In this study, an ultraslim 7-channel receive-only coil array for 3 T, which can be placed between the subject's head and the TMS, is presented. Interactions between the devices are investigated and the performance of the new setup is evaluated in comparison to the state-of-the-art setup. MR sensitivity obtained at the depth of the TMS stimulation is increased by a factor of five. Parallel imaging with an acceleration factor of two is feasible with low g-factors. Possible interactions between TMS and the novel hardware were investigated and were found negligible. The novel coil array is safe, strongly improves signal-to-noise ratio in concurrent TMS/fMRI experiments, enables parallel imaging, and allows for flexible positioning of the TMS on the head while ensuring efficient TMS stimulation due to its ultraslim design. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  10. Armor-piercing bullet: 3-T MRI findings and identification by a ferromagnetic detection system.

    PubMed

    Karacozoff, Alexandra M; Pekmezci, Murat; Shellock, Frank G

    2013-03-01

    The objective of this project was to evaluate magnetic resonance imaging (MRI) issues at 3 T for an armor-piercing bullet and to determine if this item could be identified using a ferromagnetic detection system. An armor-piercing bullet (.30 caliber, 7.62 × 39, copper-jacketed round, steel core; Norinco) underwent evaluation for magnetic field interactions, heating, and artifacts using standardized techniques. Heating was assessed with the bullet in a gelled-saline-filled phantom with MRI performed using a transmit/receive radio frequency body coil at a whole-body-averaged specific absorption rate of 2.9 W/kg for 15 minutes. Artifacts were characterized using T1-weighted spin echo and gradient echo pulse sequences. In addition, a special ferromagnetic detection system (Ferroguard Screener; Metrasens, Lisle, Illinois) was used in an attempt to identify this armor-piercing bullet. The findings indicated that the armor-piercing bullet showed substantial magnetic field interactions. Heating was not excessive. Artifacts were large and may create diagnostic problems if the area of interest is close to this bullet. The ferromagnetic detection system yielded a positive result. We concluded that this armor-piercing bullet is MR unsafe. Importantly, this ballistic item was identified using the particular ferromagnetic detection system utilized in this investigation, which has important implications for MRI screening and patient safety. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  11. [Experimental evaluation of the occupational exposure to static magnetic fields on a 3 T magnetic resonance scanner].

    PubMed

    Moro, Luca; Alabiso, Francesco; Parisoli, Francesco; Frigerio, Francesco

    2013-01-01

    The recent postponement until 31 October 2013 of the deadline for transposition of the EU Directive 2004/40/EC, concerning the minimum health requirementsfor the exposure of workers to the risks arising from electromagnetic fields between 0 and 300 GHz, keeps on suspending the Italian law which was aimed to implement the EU regulations on the occupational exposure to electromagnetic fields, including those generated by Magnetic Resonance Imaging (MRI) units. Waiting for the revision of the exposure limits proposed by the EU Directive taking into account results from new studies and evolution of knowledge, the time-weighted values of static magnetic field proposed by the Italian Ministry of Health (D.M 02/08/91) still survive as limits for worker's exposure. The comparison between the proposed thresholds and the time required to position patients allows to calculate how long the MRI staff can stay at different values of static magnetic field, i.e. the maximum workload of each worker. In order to evaluate more accurately how many time the members of MRI staff are near the magnet bore and the real value of worker's exposure to the static magnetic field during the handling of patients, a teslameter Metrolab THM1176-PDA was used. Personal exposure measurements on the radiologists and the radiographers who worked on a 3 T GE Healthcare Discovery 750 MR were carried out during the positioning of self-sufficient and collaborative patients. The sensor was worn at the chest level on the side that was nearest to the magnet bore. Results show wide variations occurring between individual working procedures concerning the handling of patients, especially during the initial position phase. The mean values of the time spent by radiographers inside the magnet room (B > 0.5 mT) to place the patient and to take him outside at the end of the exam were respectively 220 and 127 seconds. The mean value of the time spent by radiologists was 162 seconds when they had to insert a peripheral

  12. Intramuscular adipose tissue determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids.

    PubMed

    Akima, Hiroshi; Hioki, Maya; Yoshiko, Akito; Koike, Teruhiko; Sakakibara, Hisataka; Takahashi, Hideyuki; Oshida, Yoshiharu

    2016-05-01

    The purpose of this study was to assess relationships between intramuscular adipose tissue (IntraMAT) content determined by MRI and intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL) determined by (1)H magnetic resonance spectroscopy ((1)H MRS) or echo intensity determined by B-mode ultrasonography of human skeletal muscles. Thirty young and elderly men and women were included. T1-weighted MRI was taken from the right mid-thigh to measure IntraMAT content of the vastus lateralis (VL) and biceps femoris (BF) using a histogram shape-based thresholding technique. IMCL and EMCL were measured from the VL and BF at the right mid-thigh using (1)H MRS. Ultrasonographic images were taken from the VL and BF of the right mid-thigh to measure echo intensity based on gray-scale level for quantitative analysis. There was a significant correlation between IntraMAT content by MRI and EMCL of the VL and BF (VL, r=0.506, P<0.01; BF, r=0.591, P<0.001) and between echo intensity and EMCL of the VL and BF (VL, r=0.485, P<0.05; BF, r=0.648, P<0.01). IntraMAT content was also significantly correlated with echo intensity of the VL and BF (VL, r=0.404, P<0.05; BF, r=0.493, P<0.01). Our study suggests that IntraMAT content determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids, not intramyocellular lipids, in human skeletal muscles. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans.

    PubMed

    Mendrik, Adriënne M; Vincken, Koen L; Kuijf, Hugo J; Breeuwer, Marcel; Bouvy, Willem H; de Bresser, Jeroen; Alansary, Amir; de Bruijne, Marleen; Carass, Aaron; El-Baz, Ayman; Jog, Amod; Katyal, Ranveer; Khan, Ali R; van der Lijn, Fedde; Mahmood, Qaiser; Mukherjee, Ryan; van Opbroek, Annegreet; Paneri, Sahil; Pereira, Sérgio; Persson, Mikael; Rajchl, Martin; Sarikaya, Duygu; Smedby, Örjan; Silva, Carlos A; Vrooman, Henri A; Vyas, Saurabh; Wang, Chunliang; Zhao, Liang; Biessels, Geert Jan; Viergever, Max A

    2015-01-01

    Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T brain MRI scans of elderly subjects (65-80 y). Participants apply their algorithms to the provided data, after which their results are evaluated and ranked. Full manual segmentations of GM, WM, and CSF are available for all scans and used as the reference standard. Five datasets are provided for training and fifteen for testing. The evaluated methods are ranked based on their overall performance to segment GM, WM, and CSF and evaluated using three evaluation metrics (Dice, H95, and AVD) and the results are published on the MRBrainS13 website. We present the results of eleven segmentation algorithms that participated in the MRBrainS13 challenge workshop at MICCAI, where the framework was launched, and three commonly used freeware packages: FreeSurfer, FSL, and SPM. The MRBrainS evaluation framework provides an objective and direct comparison of all evaluated algorithms and can aid in selecting the best performing method for the segmentation goal at hand.

  14. MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans

    PubMed Central

    Mendrik, Adriënne M.; Vincken, Koen L.; Kuijf, Hugo J.; Breeuwer, Marcel; Bouvy, Willem H.; de Bresser, Jeroen; Alansary, Amir; de Bruijne, Marleen; Carass, Aaron; El-Baz, Ayman; Jog, Amod; Katyal, Ranveer; Khan, Ali R.; van der Lijn, Fedde; Mahmood, Qaiser; Mukherjee, Ryan; van Opbroek, Annegreet; Paneri, Sahil; Pereira, Sérgio; Rajchl, Martin; Sarikaya, Duygu; Smedby, Örjan; Silva, Carlos A.; Vrooman, Henri A.; Vyas, Saurabh; Wang, Chunliang; Zhao, Liang; Biessels, Geert Jan; Viergever, Max A.

    2015-01-01

    Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T brain MRI scans of elderly subjects (65–80 y). Participants apply their algorithms to the provided data, after which their results are evaluated and ranked. Full manual segmentations of GM, WM, and CSF are available for all scans and used as the reference standard. Five datasets are provided for training and fifteen for testing. The evaluated methods are ranked based on their overall performance to segment GM, WM, and CSF and evaluated using three evaluation metrics (Dice, H95, and AVD) and the results are published on the MRBrainS13 website. We present the results of eleven segmentation algorithms that participated in the MRBrainS13 challenge workshop at MICCAI, where the framework was launched, and three commonly used freeware packages: FreeSurfer, FSL, and SPM. The MRBrainS evaluation framework provides an objective and direct comparison of all evaluated algorithms and can aid in selecting the best performing method for the segmentation goal at hand. PMID:26759553

  15. Brain iron deposition in white matter hyperintensities: a 3-T MRI study.

    PubMed

    Yan, Shenqiang; Sun, Jianzhong; Chen, Yi; Selim, Magdy; Lou, Min

    2013-10-01

    Iron accumulation has been implicated in the pathogenesis of demyelinating diseases. Therefore, we hypothesized that abnormal high cerebral iron deposition may be involved in the development of white matter hyperintensities (WMHs). We used R2* relaxometry to assess whether iron levels in different brain regions correlate with the severity of WMHs. This technique has been recently validated in a postmortem study to demonstrate in vivo brain iron accumulation in a quantitative manner. Fifty-two consecutive WMH patients and 30 healthy controls with 3-T magnetic resonance imaging (MRI) were reviewed in this study. We measured WMH volume (as a marker of the severity of WMHs) on MRI, and the transverse relaxation rate R2*, as an estimate of iron content in seven brain regions. We found that R2* in globus pallidus was associated with WMH volume after adjusting for sociodemographic variables (partial correlation coefficient = 0.521, P < 0.001) and in a multivariate analysis adjusted for common vascular risk factors (partial correlation coefficient = 0.572, P = 0.033). Regional R2* in globus pallidus was also significantly higher in WMHs than in controls (P = 0.042). Iron content in globus pallidus, as assessed by R2* relaxometry, is independently linked to the severity of WMHs in our cohort of patients, suggesting that iron deposition in the brain may play a role in the pathogenesis of WMHs. This may provide prognostic information on patients with WMHs and may have implications for therapeutic interventions in WMHs.

  16. MRI compatibility study of an integrated PET/RF-coil prototype system at 3T.

    PubMed

    Akram, Md Shahadat Hossain; Obata, Takayuki; Suga, Mikio; Nishikido, Fumihiko; Yoshida, Eiji; Saito, Kazuyuki; Yamaya, Taiga

    2017-10-01

    We have been working on the development of a PET insert for existing magnetic resonance imaging (MRI) systems for simultaneous PET/MR imaging, which integrates radiofrequency (RF)-shielded PET detector modules with an RF head coil. In order to avoid interferences between the PET detector circuits and the different MRI-generated electromagnetic fields, PET detector circuits were installed inside eight Cu-shielded fiber-reinforced plastic boxes, and these eight shielded PET modules were integrated in between the eight elements of a 270-mm-diameter and 280-mm-axial-length cylindrical birdcage RF coil, which was designed to be used with a 3-T clinical MRI system. The diameter of the PET scintillators with a 12-mm axial field-of-view became 255mm, which was very close to the imaging region. In this study, we have investigated the effects of this PET/RF-coil integrated system on the performance of MRI, which include the evaluation of static field (Bo) inhomogeneity, RF field (B1) distribution, local specific absorption rate (SAR) distribution, average SAR, and signal-to-noise ratio (SNR). For the central 170-mm-diameter and 80-mm-axial-length of a homogenous cylindrical phantom (with the total diameter of 200mm and axial-length of 100mm), an increase of about a maximum of 3μT in the Bo inhomogeneity was found, both in the central and 40-mm off-centered transverse planes, and a 5 percentage point increase of B1 field inhomogeneity was observed in the central transverse plane (from 84% without PET to 79% with PET), while B1 homogeneity along the coronal plane was almost unchanged (77%) following the integration of PET with the RF head coil. The average SAR and maximum local SAR were increased by 1.21 and 1.62 times, respectively. However, the SNR study for both spin-echo and gradient-echo sequences showed a reduction of about 70% and 60%, respectively, because of the shielded PET modules. The overall results prove the feasibility of this integrated PET/RF-coil system for

  17. Neuronal correlates of gastric pain induced by fundus distension: a 3T-fMRI study.

    PubMed

    Lu, C-L; Wu, Y-T; Yeh, T-C; Chen, L-F; Chang, F-Y; Lee, S-D; Ho, L-T; Hsieh, J-C

    2004-10-01

    Visceral hypersensitivity in gastric fundus is a possible pathogenesis for functional dyspepsia. The cortical representation of gastric fundus is still unclear. Growing evidence shows that the insula, but not the primary or secondary somatosensory region (SI or SII), may be the cortical target for visceral pain. Animal studies have also demonstrated that amygdala plays an important role in processing visceral pain. We used fMRI to study central projection of stomach pain from fundus balloon distension. We also tested the hypothesis that there will be neither S1 nor S2 activation, but amygdala activation with the fundus distension. A 3T-fMRI was performed on 10 healthy subjects during baseline, fullness (12.7 +/- 0.6 mmHg) and moderate gastric pain (17.0 +/- 0.8 mmHg). fMRI signal was modelled by convolving the predetermined psychophysical response. Statistical comparisons were performed between conditions on a group level. Gastric pain activated a wide range of cortical and subcortical structures, including thalamus and insula, anterior and posterior cingulate cortices, basal ganglia, caudate nuclei, amygdala, brain stem, cerebellum and prefrontal cortex (P < 0.001). A subset of these neuronal substrates was engaged in the central processing of fullness sensation. SI and SII were not activated during the fundus stimulation. In conclusion, the constellation of neuronal structures activated by fundus distension overlaps the pain matrices induced musculocutaneous pain, with the exception of the absence of SI or SII activation. This may account for the vague nature of visceral sensation/pain. Our data also confirms that the insula and amygdala may act as the central role in visceral sensation/pain, as well as in the proposed sensory-limbic model of learning and memory of pain.

  18. Amyloidoma Involving the Orbit, Meckel's Cave and Infratemporal Fossa: 3T MRI Findings.

    PubMed

    Menetti, F; Bartolomei, I; Ambrosini-Spaltro, A; Salvi, F; Agati, R; Leonardi, M

    2009-03-23

    Amyloidoma is a rare lesion characterized by tissue deposition of an abnormal fibrillary protein (amyloid). It is the focal and localized counterpart of systemic amyloidosis, where the deposition of amyloid diffusely involves several organs. The few literature reports of intracranial amyloidomas include lesions involving the pituitary gland, orbit, cerebral hemispheres, temporal bone, cerebellopontine angle and jugular foramen. We describe the case of a 27-year-old woman presenting with painless slowly progressive proptosis of the right eye. The patient underwent a contrast-enhanced CT study of the head, followed by 3T MRI which disclosed a homogeneous mass in the right Meckel's cave and cavernous sinus, extending through an enlarged foramen ovale to the infratemporal fossa. The right optic nerve and ocular muscles were enlarged and infiltrated along with the retrobulbar fat by contrast-enhancing tissue. Thin contrast-enhanced MRI scans through the area of interest showed the mass to extend posterior to the gasserian ganglion, involving the cerebellopontine angle cistern, where the intracisternal parts of the III, V, and VI nerves bilaterally appeared enlarged and showed perineural enhancement. The lesion closely mimicked a malignant tumor with perineural tumor infiltration, so we performed fine needle biopsy of the portion of the lesion near the right foramen ovale under fluoroscopic guidance. Histopathology revealed that the lesion was an amyloidoma. Further clinical and blood examinations, serum chemistry, followed by biopsy of the periumbilical fat showed no signs of systemic amyloidosis or an underlying inflammatory or neoplastic disorder. No further treatment was instituted, follow-up MRI six months later showed no enlargement of the mass.

  19. 3T-MRI in patients with pharmacoresistant epilepsy and a vagus nerve stimulator: a pilot study.

    PubMed

    Rösch, Julie; Hamer, Hajo M; Mennecke, Angelika; Kasper, Burkhard; Engelhorn, Tobias; Doerfler, Arnd; Graf, Wolfgang

    2015-02-01

    For safe 3T-MRI of patients with VNS (vagus nerve stimulator), specific conditions are mandatory. However, application of these conditions can lead to a loss of image quality. In this work, we evaluated the diagnostic value of 3T-MRI in VNS patients with pharmacoresistant epilepsy. Using a transmit-and-receive head coil and adapting our sequences to allow for low SAR (specific absorption rate), we examined 15 patients with pharmacoresistant epilepsy. Diagnostic quality was assessed by comparison of the SNR (signal to noise ratio) and CNR (contrast to noise ratio) of the hippocampus, the grey-white matter contrast and epileptogenic lesions to images of patients without VNS acquired with our routine 3T-MRI protocol and the 32-channel head coil. 3T-MRI is feasible in VNS-patients. Image quality is adequate for detection and follow-up of epileptogenic lesions such as ganglioglioma or PNH (periventricular nodular heterotopia). Due to a significant reduction of SNR and CNR, the diagnostic value for subtle lesions may be decreased. Overall, the feasibility of 3T-MRI is beneficial in the diagnostic workup and follow-up of epilepsy-patients with VNS. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Multiparametric 3T MRI in the evaluation of intraglandular prostate cancer: correlation with histopathology.

    PubMed

    Styles, Colin; Ferris, Nicholas; Mitchell, Catherine; Murphy, Declan; Frydenberg, Mark; Mills, John; Pedersen, John; Bergen, Noelene; Duchesne, Gillian

    2014-08-01

    Prostate cancer is common and may be treated immediately or managed conservatively by observation. We sought to determine how reliable multiparametric MRI is in the detection of intraprostatic prostate cancer and what role it has in risk stratification. The histology from 38 whole mount prostate specimens was compared with preoperative multiparametric 3T MRI studies with an endorectal receiver coil in place. T1-weighted, T2-weighted, diffusion (b values 50 400 800), perfusion (Ve , Kep , Ktrans , area under the curve) and proton spectroscopic sequences were used. For cancers greater than 0.5 cc, the detection rate for combined T2-weighted imaging and diffusion-weighted imaging (DWI) was 85%. For cancers 0.1 cc-0.5 cc, the sensitivity was 52%.Per patient, false positive rate was 50% for combined T2-weighted imaging and DWI. Perfusion imaging had a sensitivity of 70% for tumours greater than 0.5 cc but had a per patient false positive rate of 80% influenced by benign prostatic hypertrophy. In only 15 patients could a satisfactory spectroscopy study be obtained. Weak correlation was found between the Gleason score and tumour size (r = 0.51), apparent diffusion coefficient (ADC) (r = -0.30) and (choline + creatine)/citrate ratio (r = 0.41). T2-weighted imaging and DWI in combination were the best strategy for detecting prostate cancer and had a sensitivity of 85% for detecting lesions greater than 0.5 cc. At 3T, an ADC threshold of between 1100-1200.10(-6)  mm(2) /s was optimal for diagnosing prostate cancer. There are significant limitations in the use of perfusion and spectroscopy to detect prostate cancer. Magnetic resonance imaging-targeted or guided biopsy post-MRI imaging is likely to be needed in some patients to assist risk stratification. © 2014 The Royal Australian and New Zealand College of Radiologists.

  1. Instrument visualization using conventional and compressed sensing SEMAC for interventional MRI at 3T.

    PubMed

    Sonnow, Lena; Gilson, Wesley D; Raithel, Esther; Nittka, Mathias; Wacker, Frank; Fritz, Jan

    2017-09-21

    Interventional magnetic resonance imaging (MRI) at 3T benefits from higher spatial and temporal resolution, but artifacts of metallic instruments are often larger and may obscure target structures. To test that compressed sensing (CS) slice-encoding metal artifact correction (SEMAC) is feasible for 3T interventional MRI and affords more accurate instrument visualization than turbo spin echo (TSE) and gradient echo (GRE) techniques, and facilitates faster data acquisition than conventional SEMAC. Prospective. Cadaveric animal and 20 human subjects. TSE (acquisition time 31 sec), GRE (28-33 sec), SEMAC (128 sec), and CS-SEMAC (57 sec) pulse sequences were evaluated at 3T. Artifact width and length, signal-to-noise (SNR), and contrast-to-noise (CNR) ratios of 14-22G MR-conditional needles were measured in a phantom. Subsequently, high-bandwidth TSE and CS-SEMAC sequences were assessed in vivo with 20 patient procedures for the size of the metal artifact, image sharpness, image noise, motion artifacts, image contrast, and target, instrument, and structural visibility. Repeated-measures-analysis-of-variances and Mann-Whitney U-tests were applied. P ≤ 0.05 was considered statistically significant. CS-SEMAC and SEMAC created the smallest needle artifact widths (3.2-3.3 ± 0.4 mm, P = 1.0), whereas GRE showed the largest needle artifact widths (8.5-8.6 ± 0.4 mm) (P < 0.001). The artifact width difference between high-bandwidth TSE and CS-SEMAC was 0.8 ± 0.6 mm (P < 0.01). SEMAC and CS-SEMAC created the lowest average needle tip errors (0.3-0.4 ± 0.1 mm, P = 1.0). The average tip error difference between high-bandwidth TSE and SEMAC/CS-SEMAC was 2.0 ± 1.7 mm (P < 0.01). SNR and CNR were similar on TSE, SEMAC, and CS-SEMAC, and lowest on GRE. CS-SEMAC yielded smaller artifacts, less noise, less motion, and better instrument visibility (P < 0.001); high-bandwidth TSE showed better sharpness (P < 0.001) and targets visibility (P

  2. Information of prostate biopsy positive core: does it affect MR detection of prostate cancer on using 3T-MRI?

    PubMed

    Yoshida, Rika; Kaji, Yasushi; Tamaki, Yukihisa; Katsube, Takashi; Kitagaki, Hajime; Kanbara, Tsunehito; Kamai, Takao

    2015-05-01

    We assessed which information from a prostate biopsy had the strongest relationship with prostate cancer detection by 3T-MRI. Sixty-one consecutive patients with biopsy-proven prostate cancer who underwent 3T-MRI before biopsy were enrolled in this retrospective study. Two radiologists independently reviewed T2-weighted and diffusion-weighted images. When the cancer lesions were revealed by biopsy and MRI depicted them at corresponding sites, we classified these lesions as MRI-detectable cancer. If the cancer lesions were revealed by biopsy, but any cancers had not been detected, we classified these lesions as MRI-undetectable cancer. We compared the Gleason score (GS), cancer ratio (CaR) and cancer length (CaL) from core biopsies between the two groups. GS, CaR and CaL differed significantly between the MRI-detectable group (N = 70), and the MRI-undetectable group (N = 73). 3T-MRI could detect cancer cores with a sensitivity of 90.5% in cores with CaR ≥ 60%, and with a sensitivity of 81.8% in those with CaL ≥ 5 mm. Receiver operating characteristic analysis showed that CaR (P = 0.006) and CaL (P = 0.010) significantly associated with the prostate cancer detection using MRI rather than GS. CaR and CaL from the core biopsies showed a stronger relationship to detection of the prostate cancer on 3T-MRI than the GS did.

  3. 3T renal (23)Na-MRI: effects of desmopressin in patients with central diabetes insipidus.

    PubMed

    Haneder, Stefan; Michaely, Henrik J; Konstandin, Simon; Schad, Lothar R; Morelli, John N; Krämer, Bernhard K; Schoenberg, Stefan O; Lammert, Alexander

    2014-02-01

    The purpose of this prospective study was to assess physiologic changes in the renal corticomedullary (23)Na-concentration ([(23)Na]) gradient with (23)Na-MRI at 3.0T in patients with central diabetes insipidus (CDI) before and after intranasal administration of 20 μg desmopressin (DDAVP). Four patients with CDI (all male, mean age 60.2 years) were included in this IRB-approved study. For (23)Na-imaging, a 3D density adapted, radial GRE-sequence (TE = 0.55 ms; TR = 120 ms; projections = 8,000; spatial resolution = 5 × 5 × 5 mm(3)) was used in combination with a dedicated (23)Na-coil and reference phantoms. The corticomedullary [(23)Na] gradient (in mmol/L/mm) was calculated pixel-by-pixel along a linear region-of-interest (ROI) spanning from the renal cortex in the direction of the medulla. Mean ± SDs of [(23)Na] were calculated for each patient as well as for the entire group. Mean [(23)Na] increased along the corticomedullary gradient from the cortex (pre-DDAVP 38.0 ± 6.3 mmol/L vs. post-DDAVP 30.7 ± 3.5 mmol/L) to the medulla (pre-DDAVP 71.6 ± 14.8 mmol/L vs. post-DDAVP 59.7 ± 10.8 mmol/L). The overall mean decrease of [(23)Na] after DDAVP administration was 17.1 ± 1.1 %. (23)Na-MRI with state-of-the-art techniques at 3T depicts the physiologic renal response to the administration of desmopressin in patients with central diabetes insipidus.

  4. Normal-appearing brain tissue analysis in radiologically isolated syndrome using 3 T MRI

    PubMed Central

    Labiano-Fontcuberta, Andrés; Mato-Abad, Virginia; Álvarez-Linera, Juan; Hernández-Tamames, Juan Antonio; Martínez-Ginés, María Luisa; Aladro, Yolanda; Ayuso, Lucía; Domingo-Santos, Ángela; Benito-León, Julián

    2016-01-01

    Abstract To date, it remains largely unknown whether there is in radiologically isolated syndrome (RIS) brain damage beyond visible T2 white matter lesions. We used single- voxel proton magnetic resonance spectroscopy and diffusion tensor imaging (3 T MRI) to analyze normal-appearing brain tissue regions in 18 RIS patients and 18 matched healthy controls. T2-hyperintense lesion volumes and structural brain volumes were also measured. The absolute metabolite concentrations and ratios of total N-acetylaspartate+N-acetylaspartyl glutamate (NAA), choline-containing compounds, myoinositol, and glutamine-glutamate complex to creatine were calculated. Spectral analysis was performed by LCModel. Voxelwise morphometry analysis was performed to localize regions of brain tissue showing significant changes of fractional anisotropy or mean diffusivity. Compared with healthy controls, RIS patients did not show any significant differences in either the absolute concentration of NAA or NAA/Cr ratio in mid-parietal gray matter. A trend toward lower NAA concentrations (–3.35%) was observed among RIS patients with high risk for conversion to multiple sclerosis. No differences in the other metabolites or their ratios were observed. RIS patients showed lower fractional anisotropy only in clusters overlapping lesional areas, namely in the cingulate gyrus bilaterally and the frontal lobe subgyral bilaterally (P < 0.001). Normalized brain and cortical volumes were significantly lower in RIS patients than in controls (P = 0.01 and P = 0.03, respectively). Our results suggest that in RIS, global brain and cortical atrophy are not primarily driven by significant occult microstructural normal appearing brain damage. Longitudinal MRI studies are needed to better understand the pathological processes underlying this novel entity. PMID:27399108

  5. Improved reliability in skeletal age assessment using a pediatric hand MR scanner with a 0.3T permanent magnet.

    PubMed

    Terada, Yasuhiko; Kono, Saki; Uchiumi, Tomomi; Kose, Katsumi; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; Yoshioka, Hiroshi

    2014-01-01

    The purpose of this study was to improve the reliability and validity of skeletal age assessment using an open and compact pediatric hand magnetic resonance (MR) imaging scanner. We used such a scanner with 0.3-tesla permanent magnet to image the left hands of 88 healthy children (aged 3.4 to 15.7 years, mean 8.8 years), and 3 raters (2 orthopedic specialists and a radiologist) assessed skeletal age using those images. We measured the strength of agreement in ratings by values of weighted Cohen's κ and the proportion of cases excluded from rating because of motion artifact and inappropriate positioning. We compared the current results with those of a previous study in which 93 healthy children (aged 4.1 to 16.4 years, mean 9.7 years) were examined with an adult hand scanner. The κ values between raters exceeded 0.80, which indicates almost perfect agreement, and most were higher than those of the previous study. The proportion of cases excluded from rating because of motion artifact or inappropriate positioning was also reduced. The results indicate that use of the compact pediatric hand scanner improved the reliability and validity of skeletal age assessments.

  6. Neonatal cardiac MRI using prolonged balanced SSFP imaging at 3T with active frequency stabilization.

    PubMed

    Price, Anthony N; Malik, Shaihan J; Broadhouse, Kathryn M; Finnemore, Anna E; Durighel, Giuliana; Cox, David J; Edwards, A David; Groves, Alan M; Hajnal, Joseph V

    2013-09-01

    Cardiac MRI in neonates holds promise as a tool that can provide detailed functional information in this vulnerable group. However, their small size, rapid heart rate, and inability to breath-hold, pose particular challenges that require prolonged high-contrast and high-SNR methods. Balanced-steady state free precession (SSFP) offers high SNR efficiency and excellent contrast, but is vulnerable to off-resonance effects that cause banding artifacts. This is particularly problematic in the blood-pool, where off-resonance flow artifacts severely degrade image quality. In this article, we explore active frequency stabilization, combined with image-based shimming, to achieve prolonged SSFP imaging free of banding artifacts. The method was tested using 2D multislice SSFP cine acquisitions on 18 preterm infants, and the functional measures derived were validated against phase-contrast flow assessment. Significant drifts in the resonant frequency (165 ± 23Hz) were observed during 10-min SSFP examinations. However, full short-axis stacks free of banding artifacts were achieved in 16 subjects with stabilization; the cardiac output obtained revealed a mean difference of 9.0 ± 8.5% compared to phase-contrast flow measurements. Active frequency stabilization has enabled the use of prolonged SSFP acquisitions for neonatal cardiac imaging at 3T. The findings presented could have broader implications for other applications using prolong SSFP acquisitions. Copyright © 2012 Wiley Periodicals, Inc.

  7. Wrong detection of ventricular fibrillation in an implantable cardioverter defibrillator caused by the movement near the MRI scanner bore.

    PubMed

    Mattei, Eugenio; Censi, Federica; Triventi, Michele; Mancini, Matteo; Napolitano, Antonio; Genovese, Elisabetta; Cannata, Vittorio; Falsaperla, Rosaria; Calcagnini, Giovanni

    2015-01-01

    The static magnetic field generated by MRI systems is highly non-homogenous and rapidly decreases when moving away from the bore of the scanner. Consequently, the movement around the MRI scanner is equivalent to an exposure to a time-varying magnetic field at very low frequency (few Hz). For patients with an implanted cardiac stimulators, such as an implantable cardioverter/defibrillator (ICD), the movements inside the MRI environment may thus induce voltages on the loop formed by the leads of the device, with the potential to affect the behavior of the stimulator. In particular, the ICD's detection algorithms may be affected by the induced voltage and may cause inappropriate sensing, arrhythmia detections, and eventually inappropriate ICD therapy.We performed in-vitro measurements on a saline-filled humanshaped phantom (male, 170 cm height), equipped with an MRconditional ICD able to transmit in real-time the detected cardiac activity (electrograms). A biventricular implant was reproduced and the ICD was programmed in standard operating conditions, but with the shock delivery disabled. The electrograms recorded in the atrial, left and right ventricle channels were monitored during rotational movements along the vertical axis, in close proximity of the bore. The phantom was also equipped with an accelerometer and a magnetic field probe to measure the angular velocity and the magnetic field variation during the experiment. Pacing inhibition, inappropriate detection of tachyarrhythmias and of ventricular fibrillation were observed. Pacing inhibition began at an angular velocity of about 7 rad/s, (dB/dt of about 2 T/s). Inappropriate detection of ventricular fibrillation occurred at about 8 rad/s (dB/dt of about 3 T/s). These findings highlight the need for a specific risk assessment of workers with MR-conditional ICDs, which takes into account also effects that are generally not considered relevant for patients, such as the movement around the scanner bore.

  8. T1rho MRI of Menisci in Patients with Osteoarthritis at 3T: A Preliminary Study

    PubMed Central

    Wang, Ligong; Chang, Gregory; Bencardino, Jenny; Babb, James S.; Krasnokutsky, Svetlana; Abramson, Steven; Regatte, Ravinder R.

    2013-01-01

    Purpose To compare and assess subregional, compartmental, and whole T1rho values of menisci in patients with doubtful-minimal [Kellgren-Lawrence (KL) grade 1–2] as compared to moderate-severe (KL3–4) osteoarthritis (OA) and healthy controls at 3T. Materials and Methods 46 subjects were included in the study and subdivided into three subgroups: 16 healthy controls (4 females, 12 males; mean age = 34.4±10.2 years, age range 24–63 years), 20 patients with doubtful-minimal (KL1–2) OA (9 females, 11 males; mean age = 61.9±10.8 years, age range 40–80 years), and 10 patients with moderate-severe (KL3–4) OA (4 females, 6 males; mean age = 71.1±9.6 years, age range 58–89 years). All subjects were evaluated on a 3T MR scanner using a spin-lock-based 3D GRE sequence for T1rho mapping. Clinical proton density (PD)-weighted fast spin echoes (FSE) images in the sagittal (without fat saturation), axial, and coronal (fat-saturated) planes were acquired for cartilage Whole-Organ MR Imaging Score (WORMS) grading. Analysis of covariance (ANCOVA) was performed to determine whether there were any statistically significant differences between subregional, compartmental, and whole T1rho values of meniscus among healthy controls, OA patients with KL1–2 and with KL3–4. Results Lateral anterior (median±inter-quartile range: 26±3 ms) and medial posterior (29±6 ms) meniscus subregions in healthy controls had significantly lower T1rho values (p < 0.05) than the corresponding meniscus subregions in both KL1–2 (29±7 ms and 35±8 ms, respectively) and KL3–4 (30±12 ms and 40±13 ms, respectively) OA subjects. Significantly lower meniscus T1rho values (p < 0.05) were also identified in the medial compartment in healthy controls (28±5 ms) relative to both KL1–2 OA subjects and KL3–4 OA subjects (32±7 ms and 37±7 ms, respectively). The entire meniscus T1rho values in healthy controls (28±4 ms) were significantly lower than those of both KL1–2 and KL3–4 OA

  9. Structural-acoustic modal analysis of cylindrical shells: application to MRI scanner systems.

    PubMed

    Li, Gemin; Mechefske, Chris K

    2009-12-01

    The acoustic noise in a magnetic resonance imaging (MRI) scanner bore is mainly introduced by the vibration of gradient coils. The interaction between acoustic modes in the scanner bore and structure modes in the coil structure leads to structural-acoustic coupling. In order to implement quiet MRI design, the structural-acoustic coupling mechanism in MRI machines needs to be fully investigated. Structural analysis was first implemented using Love's classical shell theory. The concept of a "virtually closed cavity" was used in the acoustic modal analysis of the gradient coil duct. The dispersion curves and the number of modes per frequency band were used to reveal modal distribution properties for both structural modes and acoustic modes. Structural-acoustic coupling modes were identified by superposition of the dispersion diagrams of the structural waves and acoustic waves. Experimental validation was implemented separately for the structural analysis and acoustic analysis. Independent structural modes and acoustic modes and their distribution patterns were calculated up to 3000Hz with various boundary conditions. Coupling modes were clearly revealed using the analysis procedures presented in this paper and were found to be in agreement with the ones identified from experimental measurements. These methods are effective for coupled and uncoupled modal analysis of MRI scanner systems and can be used for quiet MRI design or sound absorber design for existing MRI systems.

  10. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    SciTech Connect

    Paulson, Eric S.; Erickson, Beth; Schultz, Chris; Allen Li, X.

    2015-01-15

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In

  11. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    PubMed

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  12. In vivo micro-CT imaging of rat brain glioma: a comparison with 3T MRI and histology.

    PubMed

    Engelhorn, Tobias; Eyupoglu, Ilker Y; Schwarz, Marc A; Karolczak, Marek; Bruenner, Holger; Struffert, Tobias; Kalender, Willi; Doerfler, Arnd

    2009-07-10

    The aim of this study was to evaluate the potential of a novel micro-CT system to image in vivo the extent of tumor in a rat model of malignant glioma compared to 3T magnetic resonance imaging (MRI) and histology. Fourteen animals underwent double dose contrast-enhanced imaging with micro-CT and 3T MRI using a clinical machine at day 10 after stereotactic F98 glioma cell implantation. Calculation of the volume of the contrast-uptaking part of the tumor was done by manually outlining the tumor contours by two experienced neuroradiologists. The micro-CT- and MRI-derived tumor volumes were compared to histology as gold standard (hematoxylin and eosin staining and fluorescence staining). There was high interobserver reability regarding the tumor volumes (Crombach's alpha>0.81). Also, there was good correlation of micro-CT- and high-field MRI-derived tumor volumes compared to histology: 72+/-21 mm3 and 69+/-23 mm3 compared to 81+/-14 mm3, respectively (r>0.76). Both the micro-CT- and MRI-derived tumor volumes were not significantly smaller compared to histology (P>0.14). In conclusion, micro-CT allows in vivo imaging of the contrast-enhancing part of experimental gliomas with an accuracy comparable to high-field MRI.

  13. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    PubMed

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI

  14. MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast

    PubMed Central

    Giannelli, Marco; Sghedoni, Roberto; Iacconi, Chiara; Iori, Mauro; Traino, Antonio Claudio; Guerrisi, Maria; Mascalchi, Mario; Toschi, Nicola; Diciotti, Stefano

    2014-01-01

    Breast imaging represents a relatively recent and promising field of application of quantitative diffusion-MRI techniques. In view of the importance of guaranteeing and assessing its reliability in clinical as well as research settings, the aim of this study was to specifically characterize how the main MR scanner system-related factors affect quantitative measurements in diffusion-MRI of the breast. In particular, phantom acquisitions were performed on three 1.5 T MR scanner systems by different manufacturers, all equipped with a dedicated multi-channel breast coil as well as acquisition sequences for diffusion-MRI of the breast. We assessed the accuracy, inter-scan and inter-scanner reproducibility of the mean apparent diffusion coefficient measured along the main orthogonal directions () as well as of diffusion-tensor imaging (DTI)-derived mean diffusivity (MD) measurements. Additionally, we estimated spatial non-uniformity of (NU) and MD (NUMD) maps. We showed that the signal-to-noise ratio as well as overall calibration of high strength diffusion gradients system in typical acquisition sequences for diffusion-MRI of the breast varied across MR scanner systems, introducing systematic bias in the measurements of diffusion indices. While and MD values were not appreciably different from each other, they substantially varied across MR scanner systems. The mean of the accuracies of measured and MD was in the range [−2.3%,11.9%], and the mean of the coefficients of variation for and MD measurements across MR scanner systems was 6.8%. The coefficient of variation for repeated measurements of both and MD was < 1%, while NU and NUMD values were <4%. Our results highlight that MR scanner system-related factors can substantially affect quantitative diffusion-MRI of the breast. Therefore, a specific quality control program for assessing and monitoring the performance of MR scanner systems for diffusion-MRI of the breast is

  15. Brain MRI lesion load at 1.5T and 3T vs. clinical status in multiple sclerosis

    PubMed Central

    Stankiewicz, James M; Glanz, Bonnie I; Healy, Brian C; Arora, Ashish; Neema, Mohit; Benedict, Ralph HB; Guss, Zachary D; Tauhid, Shahamat; Buckle, Guy J; Houtchens, Maria K; Khoury, Samia; Weiner, Howard L; Guttmann, Charles RG; Bakshi, Rohit

    2010-01-01

    Background/Purpose To assess correlation between brain lesions and clinical status with 1.5T and 3T MRI. Methods Brain MRI fluid-attenuated inversion-recovery (FLAIR) sequences were performed in 32 MS patients Expanded Disability Status Scale (EDSS) score (mean +/− SD) 2 +/− 2.0 (range 0–8), disease duration 9.3 +/− 8.0 (range 0.8–29) years]. Results FLAIR lesion volume (FLLV) at 3T was higher than at 1.5T (p=0.01). Correlation between 1.5T FLLV and EDSS score was poor, while 3T FLAIR lesion volume correlated moderately and significantly (rs=0.39, p=0.03). When controlling for age and depression, correlations between FLLV and cognitive measures were significant at 1.5T for the Judgment of Line Orientation test (JLO) (rs =−0.44, p=0.05), the Symbol Digit Modalities Test (SDMT) (rs=−0.49, p=0.02) and the California Verbal Learning Test, delayed free recall (CVLT DR) (rs=−0.44, p=0.04). Correlations at 3T were also significant for these tests, but of greater magnitude: JLO (rs =−0.70, p=0.0005), SDMT (rs =−0.73, p=0.0001), CVLT DR (rs=−.061, p=0.003). Additional significant correlations obtained only at 3T included the two second paced auditory serial addition test (rs=−0.55, p=0.01), the Brief Visuospatial Memory Test-Delayed Free Recall (rs=−0.56, p=0.007), and the California Verbal Learning Test total recall (rs=−0.42, p=0.05). Conclusion MRI at 3T may boost sensitivity and improve validity in MS brain lesion assessment. PMID:19888926

  16. Small PET scanner based on MRI-compatible light sensor

    NASA Astrophysics Data System (ADS)

    Molnar, J.; Balkay, L.; Berenyi, E.

    2015-03-01

    Improving the quality of life of elderly people requires diagnostic and therapeutic capabilities for diseases of the central nervous system, such as Alzheimer's, Parkinson's, and epilepsy which have a rapidly growing impact on society. Minimallyinvasive imaging technologies such as PET and MRI allow for monitoring and tracking these illnesses, starting from their preliminary manifestations.

  17. Who gets afraid in the MRI-scanner? Neurogenetics of state-anxiety changes during an fMRI experiment.

    PubMed

    Mutschler, Isabella; Wieckhorst, Birgit; Meyer, Andrea H; Schweizer, Tina; Klarhöfer, Markus; Wilhelm, Frank H; Seifritz, Erich; Ball, Tonio

    2014-11-07

    Experiments using functional magnetic resonance imaging (fMRI) play a fundamental role in affective neuroscience. When placed in an MR scanner, some volunteers feel safe and relaxed in this situation, while others experience uneasiness and fear. Little is known about the basis and consequences of such inter-individually different responses to the general experimental fMRI setting. In this study emotional stimuli were presented during fMRI and subjects' state-anxiety was assessed at the onset and end of the experiment while they were within the scanner. We show that Val/Val but neither Met/Met nor Val/Met carriers of the catechol-O-methyltransferase (COMT) Val(158)Met polymorphism-a prime candidate for anxiety vulnerability-became significantly more anxious during the fMRI experiment (N=97 females: 24 Val/Val, 51 Val/Met, and 22 Met/Met). Met carriers demonstrated brain responses with increased stability over time in the right parietal cortex and significantly better cognitive performances likely mediated by lower levels of anxiety. Val/Val, Val/Met and Met/Met did not significantly differ in state-anxiety at the beginning of the experiment. The exposure of a control group (N=56 females) to the same experiment outside the scanner did not cause a significant increase in state-anxiety, suggesting that the increase we observe in the fMRI experiment may be specific to the fMRI setting. Our findings reveal that genetics may play an important role in shaping inter-individual different emotional, cognitive and neuronal responses during fMRI experiments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Workflow assessment of 3T MRI-guided transperineal targeted prostate biopsy using a robotic needle guidance

    NASA Astrophysics Data System (ADS)

    Song, Sang-Eun; Tuncali, Kemal; Tokuda, Junichi; Fedorov, Andriy; Penzkofer, Tobias; Fennessy, Fiona; Tempany, Clare; Yoshimitsu, Kitaro; Magill, John; Hata, Nobuhiko

    2014-03-01

    Magnetic resonance imaging (MRI) guided transperineal targeted prostate biopsy has become a valuable instrument for detection of prostate cancer in patients with continuing suspicion for aggressive cancer after transrectal ultrasound guided (TRUS) guided biopsy. The MRI-guided procedures are performed using mechanical targeting devices or templates, which suffer from limitations of spatial sampling resolution and/or manual in-bore adjustments. To overcome these limitations, we developed and clinically deployed an MRI-compatible piezoceramic-motor actuated needle guidance device, Smart Template, which allows automated needle guidance with high targeting resolution for use in a wide closed-bore 3-Tesla MRI scanner. One of the main limitations of the MRI-guided procedure is the lengthy procedure time compared to conventional TRUS-guided procedures. In order to optimize the procedure, we assessed workflow of 30 MRI-guided biopsy procedures using the Smart Template with focus on procedure time. An average of 3.4 (range: 2~6) targets were preprocedurally selected per procedure and 2.2 ± 0.8 biopsies were performed for each target with an average insertion attempt of 1.9 ± 0.7 per biopsy. The average technical preparation time was 14 ± 7 min and the in-MRI patient preparation time was 42 ± 7 min. After 21 ± 7 min of initial imaging, 64 ± 12 min of biopsy was performed yielding an average of 10 ± 2 min per tissue sample. The total procedure time occupying the MRI suite was 138 ± 16 min. No noticeable tendency in the length of any time segment was observed over the 30 clinical cases.

  19. Evaluation of Fat Suppression of Diffusion-weighted Imaging Using Section Select Gradient Reversal Technique on 3 T Breast MRI.

    PubMed

    Takemori, Daichi; Kimura, Daisuke; Yamada, Eiji; Higashida, Mitsuji

    2016-07-01

    This study evaluates fat suppression of diffusion-weighted imaging (DWI) using section select gradient reversal (SSGR) technique in clinical images on 3 T breast MRI. A total of 20 patients with breast cancer were examined at a Philips Ingenia 3 T MRI. We acquired DWI with SPAIR, SSGR-SPAIR, STIR, and SSGR-STIR. We evaluated contrast between the fat region and lesion, the coefficient of variance (CV) of the fat region and the apparent diffusion coefficient (ADC) of normal breast tissue and lesion. The contrast between the fat region and lesion was improved with SSGR technique. The CV of the fattest region did not have any significant difference in SPAIR technique (p>0.05), but it was significantly decreased in the STIR technique using SSGR technique (p<0.05). Positive correlation was observed in ADC value between SPAIR and other fat suppression techniques (SSGR-SPAIR, STIR, SSGR-STIR). DWI using SSGR technique was suggested to be effective on 3 T breast MRI.

  20. Enhancement of abdominal structures on MRI at 1.5 and 3 T: a retrospective intraindividual crossover comparison.

    PubMed

    AlObaidy, Mamdoh; Ramalho, Miguel; Velloni, Fernanda; Matos, António P; Herman, Kevin; Semelka, Richard C

    2017-04-01

    To quantitatively compare the extent of enhancement of abdominal structures on MRI in an intraindividual fashion at 1.5 and 3 T. HIPAA-compliant, retrospective, longitudinal, intraindividual, crossover study, with waived informed consent, of consecutive individuals scanned at both 1.5 and 3 T closed-bore magnets using gadobenate dimeglumine during different phases of enhancement at tightly controlled arterial phase timing. Quantitative ROI measurements and qualitative sub-phase arterial phase assignments were independently performed by two radiologists. Qualitative discrepancies were resolved by a senior radiologist. Final population included 60 patients [41 female and 19 male; age, 49.35 ± 18.31 years (range 16-81); weight, 78.88 ± 20.3 kg (range 44.5-136)]. Similar enhancement peak patterns were noted at both field strengths. Interobserver agreement of quantitative evaluations was substantial. Significantly higher amplitudes of enhancement peaks were noted for all abdominal solid organs during all phases at 3 T, except for the pancreas (p = 0.17-0.30). Significantly higher amplitudes of enhancement peaks of the abdominal aorta at 1.5 T were noted. Similar peak patterns of enhancement for abdominal structures were observed at 1.5 and 3 T, with solid abdominal organs showing a higher percentage enhancement at 3 T, while unexpectedly higher aortic higher percentage enhancement was observed at 1.5 T. • Similar enhancement peak patterns at both field strengths for studied abdominal structures. • Significantly higher percentage enhancement of most abdominal organs at 3 T. • Non-statistically significant trend of higher pancreatic percentage enhancement at 3 T. • Significantly lower abdominal aortic percentage enhancement at 3 T.

  1. Quantification of Global Cerebral Atrophy in Multiple Sclerosis from 3T MRI Using SPM: The Role of Misclassification Errors

    PubMed Central

    Dell’Oglio, Elisa; Ceccarelli, Antonia; Glanz, Bonnie I; Healy, Brian C; Tauhid, Shahamat; Arora, Ashish; Saravanan, Nikila; Bruha, Matthew J; Vartanian, Alexander V; Dupuy, Sheena L; Benedict, Ralph HB; Bakshi, Rohit; Neema, Mohit

    2015-01-01

    Purpose We tested the validity of a freely available segmentation pipeline to measure compartmental brain volumes from 3T MRI in patients with multiple sclerosis (MS). Our primary focus was methodological to explore the effect of segmentation corrections on the clinical relevance of the output metrics. Methods Three-dimensional T1-weighted images were acquired to compare 61 MS patients to 30 age- and gender-matched normal controls (NC). We also tested the within patient MRI relationship to disability (eg, expanded disability status scale [EDSS] score) and cognition. Statistical parametric mapping v. 8 (SPM8)-derived gray matter (GMF), white matter (WMF), and total brain parenchyma fractions (BPF) were derived before and after correcting errors from T1 hypointense MS lesions and/or ineffective deep GM contouring. Results MS patients had lower GMF and BPF as compared to NC (P<.05). Cognitively impaired patients had lower BPF than cognitively preserved patients (P<.05). BPF was related to EDSS; BPF and GMF were related to disease duration (all P<.05). Errors caused bias in GMFs and WMFs but had no discernable influence on BPFs or any MRI-clinical associations. Conclusions We report the validity of a segmentation pipeline for the detection of MS-related brain atrophy with 3T MRI. Longitudinal studies are warranted to extend these results. PMID:25523616

  2. Imaging of posterior tibial tendon dysfunction--Comparison of high-resolution ultrasound and 3T MRI.

    PubMed

    Arnoldner, Michael A; Gruber, Michael; Syré, Stefanie; Kristen, Karl-Heinz; Trnka, Hans-Jörg; Kainberger, Franz; Bodner, Gerd

    2015-09-01

    Posterior tibial tendon dysfunction is the most common cause of acquired asymmetric flatfoot deformity. The purpose of this study was to determine and compare the diagnostic value of MRI and high-resolution ultrasound (HR-US) in posterior tibial tendon dysfunction (PTTD), and assess their correlation with intraoperative findings. We reviewed 23 posterior tibial tendons in 23 patients with clinical findings of PTTD (13 females, 10 males; mean age, 50 years) with 18MHz HR-US and 3T MRI. Surgical intervention was performed in nine patients. HR-US findings included 2 complete tears, 6 partial tears, 10 tendons with tendinosis, and 5 unremarkable tendons. MRI demonstrated 2 complete tears, 7 partial tears, 10 tendons with tendinosis, and 4 unremarkable tendons. HR-US and MRI were concordant in 20/23 cases (87%). Image findings for HR-US were confirmed in six of nine patients (66.7%) by intraoperative inspection, whereas imaging findings for MRI were concordant with five of nine cases (55.6%). Our results indicate that HR-US can be considered slightly more accurate than MRI in the detection of PTTD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Permittivity and Performance of Dielectric Pads with Sintered Ceramic Beads in MRI: Early Experiments and Simulations at 3 T

    PubMed Central

    Luo, Wei; Lanagan, Michael T.; Sica, Christopher T.; Ryu, YeunChul; Oh, Sukhoon; Ketterman, Matthew; Yang, Qing X.; Collins, Christopher M.

    2014-01-01

    Passive dielectric materials have been used to improve aspects of MRI by affecting the distribution of radiofrequency electromagnetic fields. Recently, interest in such materials has increased with the number of high-field MRI sites. Here, we introduce a new material composed of sintered high-permittivity ceramic beads in deuterated water. This arrangement maintains the ability to create flexible pads for conforming to individual subjects. The properties of the material are measured and the performance of the material is compared to previously used materials in both simulation and experiment at 3 T. Results show that both permittivity of the beads and effect on signal-to-noise ratio and required transmit power in MRI are greater than those of materials consisting of ceramic powder in water. Importantly, use of beads results in both higher permittivity and lower conductivity than use of powder. PMID:22890908

  4. Permittivity and performance of dielectric pads with sintered ceramic beads in MRI: early experiments and simulations at 3 T.

    PubMed

    Luo, Wei; Lanagan, Michael T; Sica, Christopher T; Ryu, Yeunchul; Oh, Sukhoon; Ketterman, Matthew; Yang, Qing X; Collins, Christopher M

    2013-07-01

    Passive dielectric materials have been used to improve aspects of MRI by affecting the distribution of radiofrequency electromagnetic fields. Recently, interest in such materials has increased with the number of high-field MRI sites. Here, we introduce a new material composed of sintered high-permittivity ceramic beads in deuterated water. This arrangement maintains the ability to create flexible pads for conforming to individual subjects. The properties of the material are measured and the performance of the material is compared to previously used materials in both simulation and experiment at 3 T. Results show that both permittivity of the beads and effect on signal-to-noise ratio and required transmit power in MRI are greater than those of materials consisting of ceramic powder in water. Importantly, use of beads results in both higher permittivity and lower conductivity than use of powder. Copyright © 2012 Wiley Periodicals, Inc.

  5. Adaptation of a haptic robot in a 3T fMRI.

    PubMed

    Snider, Joseph; Plank, Markus; May, Larry; Liu, Thomas T; Poizner, Howard

    2011-10-04

    Functional magnetic resonance imaging (fMRI) provides excellent functional brain imaging via the BOLD signal with advantages including non-ionizing radiation, millimeter spatial accuracy of anatomical and functional data, and nearly real-time analyses. Haptic robots provide precise measurement and control of position and force of a cursor in a reasonably confined space. Here we combine these two technologies to allow precision experiments involving motor control with haptic/tactile environment interaction such as reaching or grasping. The basic idea is to attach an 8 foot end effecter supported in the center to the robot allowing the subject to use the robot, but shielding it and keeping it out of the most extreme part of the magnetic field from the fMRI machine (Figure 1). The Phantom Premium 3.0, 6DoF, high-force robot (SensAble Technologies, Inc.) is an excellent choice for providing force-feedback in virtual reality experiments, but it is inherently non-MR safe, introduces significant noise to the sensitive fMRI equipment, and its electric motors may be affected by the fMRI's strongly varying magnetic field. We have constructed a table and shielding system that allows the robot to be safely introduced into the fMRI environment and limits both the degradation of the fMRI signal by the electrically noisy motors and the degradation of the electric motor performance by the strongly varying magnetic field of the fMRI. With the shield, the signal to noise ratio (SNR: mean signal/noise standard deviation) of the fMRI goes from a baseline of ~380 to ~330, and ~250 without the shielding. The remaining noise appears to be uncorrelated and does not add artifacts to the fMRI of a test sphere (Figure 2). The long, stiff handle allows placement of the robot out of range of the most strongly varying parts of the magnetic field so there is no significant effect of the fMRI on the robot. The effect of the handle on the robot's kinematics is minimal since it is lightweight (~2

  6. Fast high-spatial-resolution MRI of the ankle with parallel imaging using GRAPPA at 3 T.

    PubMed

    Bauer, Jan Stefan; Banerjee, Suchandrima; Henning, Tobias D; Krug, Roland; Majumdar, Sharmilla; Link, Thomas M

    2007-07-01

    The purpose of our study was to compare an autocalibrating parallel imaging technique at 3 T with standard acquisitions at 3 and 1.5 T for small-field-of-view imaging of the ankle. MRI of the ankle was performed in three fresh human cadaver specimens and three healthy volunteers. Axial and sagittal T1-weighted, axial fat-saturated T2-weighted, and coronal intermediate-weighted fast spin-echo sequences, as well as a fat-saturated spoiled gradient-echo sequence, were acquired at 1.5 and 3 T. At 3 T, reduced data sets were reconstructed using a generalized autocalibrating partially parallel acquisition (GRAPPA) technique, with a scan time reduction of approximately 44%. All images were assessed by two radiologists independently concerning image quality. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured in every data set. In the cadaver specimens, macroscopic findings after dissection served as a reference for the pathologic evaluation. SNR and CNR in the GRAPPA images were comparable to the standard acquisition at 3 T. The image quality was rated significantly higher at 3 T with both normal and parallel acquisition compared with 1.5 T. There was no significant difference in ligament and cartilage visualization or in image quality between standard and GRAPPA reconstruction at 3 T. Ankle abnormalities were better seen at 3 T than at 1.5 T for both normal and parallel acquisitions. Using higher field strength combined with parallel technique, MR images of the ankle were obtained with excellent diagnostic quality and a scan time reduction of about 44%. In addition, parallel imaging can provide more flexibility in protocol design.

  7. Inter-site and inter-scanner diffusion MRI data harmonization.

    PubMed

    Mirzaalian, H; Ning, L; Savadjiev, P; Pasternak, O; Bouix, S; Michailovich, O; Grant, G; Marx, C E; Morey, R A; Flashman, L A; George, M S; McAllister, T W; Andaluz, N; Shutter, L; Coimbra, R; Zafonte, R D; Coleman, M J; Kubicki, M; Westin, C F; Stein, M B; Shenton, M E; Rathi, Y

    2016-07-15

    We propose a novel method to harmonize diffusion MRI data acquired from multiple sites and scanners, which is imperative for joint analysis of the data to significantly increase sample size and statistical power of neuroimaging studies. Our method incorporates the following main novelties: i) we take into account the scanner-dependent spatial variability of the diffusion signal in different parts of the brain; ii) our method is independent of compartmental modeling of diffusion (e.g., tensor, and intra/extra cellular compartments) and the acquired signal itself is corrected for scanner related differences; and iii) inter-subject variability as measured by the coefficient of variation is maintained at each site. We represent the signal in a basis of spherical harmonics and compute several rotation invariant spherical harmonic features to estimate a region and tissue specific linear mapping between the signal from different sites (and scanners). We validate our method on diffusion data acquired from seven different sites (including two GE, three Philips, and two Siemens scanners) on a group of age-matched healthy subjects. Since the extracted rotation invariant spherical harmonic features depend on the accuracy of the brain parcellation provided by Freesurfer, we propose a feature based refinement of the original parcellation such that it better characterizes the anatomy and provides robust linear mappings to harmonize the dMRI data. We demonstrate the efficacy of our method by statistically comparing diffusion measures such as fractional anisotropy, mean diffusivity and generalized fractional anisotropy across multiple sites before and after data harmonization. We also show results using tract-based spatial statistics before and after harmonization for independent validation of the proposed methodology. Our experimental results demonstrate that, for nearly identical acquisition protocol across sites, scanner-specific differences can be accurately removed using the

  8. Simulation Study on Active Noise Control for a 4 Tesla MRI Scanner

    PubMed Central

    Li, Mingfeng; Lim, Teik C.; Lee, Jing-Huei

    2008-01-01

    The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for MRI acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20 dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction. PMID:18060719

  9. Simulation study on active noise control for a 4-T MRI scanner.

    PubMed

    Li, Mingfeng; Lim, Teik C; Lee, Jing-Huei

    2008-04-01

    The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for magnetic resonance imaging (MRI) acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely, the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20-dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction.

  10. Can MRI accurately detect pilon articular malreduction? A quantitative comparison between CT and 3T MRI bone models

    PubMed Central

    Radzi, Shairah; Dlaska, Constantin Edmond; Cowin, Gary; Robinson, Mark; Pratap, Jit; Schuetz, Michael Andreas; Mishra, Sanjay

    2016-01-01

    Background Pilon fracture reduction is a challenging surgery. Radiographs are commonly used to assess the quality of reduction, but are limited in revealing the remaining bone incongruities. The study aimed to develop a method in quantifying articular malreductions using 3D computed tomography (CT) and magnetic resonance imaging (MRI) models. Methods CT and MRI data were acquired using three pairs of human cadaveric ankle specimens. Common tibial pilon fractures were simulated by performing osteotomies to the ankle specimens. Five of the created fractures [three AO type-B (43-B1), and two AO type-C (43-C1) fractures] were then reduced and stabilised using titanium implants, then rescanned. All datasets were reconstructed into CT and MRI models, and were analysed in regards to intra-articular steps and gaps, surface deviations, malrotations and maltranslations of the bone fragments. Results Initial results reveal that type B fracture CT and MRI models differed by ~0.2 (step), ~0.18 (surface deviations), ~0.56° (rotation) and ~0.4 mm (translation). Type C fracture MRI models showed metal artefacts extending to the articular surface, thus unsuitable for analysis. Type C fracture CT models differed from their CT and MRI contralateral models by ~0.15 (surface deviation), ~1.63° (rotation) and ~0.4 mm (translation). Conclusions Type B fracture MRI models were comparable to CT and may potentially be used for the postoperative assessment of articular reduction on a case-to-case basis. PMID:28090442

  11. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    PubMed Central

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  12. EEG-MRI co-registration and sensor labeling using a 3D laser scanner.

    PubMed

    Koessler, L; Cecchin, T; Caspary, O; Benhadid, A; Vespignani, H; Maillard, L

    2011-03-01

    This paper deals with the co-registration of an MRI scan with EEG sensors. We set out to evaluate the effectiveness of a 3D handheld laser scanner, a device that is not widely used for co-registration, applying a semi-automatic procedure that also labels EEG sensors. The scanner acquired the sensors' positions and the face shape, and the scalp mesh was obtained from the MRI scan. A pre-alignment step, using the position of three fiducial landmarks, provided an initial value for co-registration, and the sensors were automatically labeled. Co-registration was then performed using an iterative closest point algorithm applied to the face shape. The procedure was conducted on five subjects with two scans of EEG sensors and one MRI scan each. The mean time for the digitization of the 64 sensors and three landmarks was 53 s. The average scanning time for the face shape was 2 min 6 s for an average number of 5,263 points. The mean residual error of the sensors co-registration was 2.11 mm. These results suggest that the laser scanner associated with an efficient co-registration and sensor labeling algorithm is sufficiently accurate, fast and user-friendly for longitudinal and retrospective brain sources imaging studies.

  13. Silent speechreading in the absence of scanner noise: an event-related fMRI study.

    PubMed

    MacSweeney, M; Amaro, E; Calvert, G A; Campbell, R; David, A S; McGuire, P; Williams, S C; Woll, B; Brammer, M J

    2000-06-05

    In a previous study we used functional magnetic resonance imaging (fMRI) to demonstrate activation in auditory cortex during silent speechreading. Since image acquisition during fMRI generates acoustic noise, this pattern of activation could have reflected an interaction between background scanner noise and the visual lip-read stimuli. In this study we employed an event-related fMRI design which allowed us to measure activation during speechreading in the absence of acoustic scanner noise. In the experimental condition, hearing subjects were required to speechread random numbers from a silent speaker. In the control condition subjects watched a static image of the same speaker with mouth closed and were required to subvocally count an intermittent visual cue. A single volume of images was collected to coincide with the estimated peak of the blood oxygen level dependent (BOLD) response to these stimuli across multiple baseline and experimental trials. Silent speechreading led to greater activation in lateral temporal cortex relative to the control condition. This indicates that activation of auditory areas during silent speechreading is not a function of acoustic scanner noise and confirms that silent speechreading engages similar regions of auditory cortex as listening to speech.

  14. A Semi-flexible 64-channel Receive-only Phased Array for Pediatric Body MRI at 3T

    PubMed Central

    Zhang, Tao; Grafendorfer, Thomas; Cheng, Joseph Y.; Ning, Peigang; Rainey, Bob; Giancola, Mark; Ortman, Sarah; Robb, Fraser J.; Calderon, Paul D.; Hargreaves, Brian A.; Lustig, Michael; Scott, Greig C.; Pauly, John M.; Vasanawala, Shreyas S.

    2015-01-01

    Purpose To design, construct, and validate a semi-flexible 64-channel receive-only phased array for pediatric body MRI at 3T. Methods A 64-channel receive-only phased array was developed and constructed. The designed flexible coil can easily conform to different patient sizes with non-overlapping coil elements in the transverse plane. It can cover a field of view of up to 44 × 28 cm2 and removes the need for coil repositioning for body MRI patients with multiple clinical concerns. The 64-channel coil was compared with a 32-channel standard coil for signal-to-noise ratio (SNR) and parallel imaging performances on different phantoms. With IRB approval and informed consent/assent, the designed coil was validated on 21 consecutive pediatric patients. Results The pediatric coil provided higher SNR than the standard coil on different phantoms, with the averaged SNR gain at least 23% over a depth of 7 cm along the cross-section of phantoms. It also achieved better parallel imaging performance under moderate acceleration factors. Good image quality (average score 4.6 out of 5) was achieved using the developed pediatric coil in the clinical studies. Conclusion A 64-channel semi-flexible receive-only phased array has been developed and validated to facilitate high quality pediatric body MRI at 3T. PMID:26418283

  15. Oxygenation in cervical cancer and normal uterine cervix assessed using blood oxygenation level-dependent (BOLD) MRI at 3T.

    PubMed

    Hallac, Rami R; Ding, Yao; Yuan, Qing; McColl, Roderick W; Lea, Jayanthi; Sims, Robert D; Weatherall, Paul T; Mason, Ralph P

    2012-12-01

    Hypoxia is reported to be a biomarker for poor prognosis in cervical cancer. However, a practical noninvasive method is needed for the routine clinical evaluation of tumor hypoxia. This study examined the potential use of blood oxygenation level-dependent (BOLD) contrast MRI as a noninvasive technique to assess tumor vascular oxygenation at 3T. Following Institutional Review Board-approved informed consent and in compliance with the Health Insurance Portability and Accountability Act, successful results were achieved in nine patients with locally advanced cervical cancer [International Federation of Gynecology and Obstetrics (FIGO) stage IIA to IVA] and three normal volunteers. In the first four patients, dynamic T₂*-weighted MRI was performed in the transaxial plane using a multi-shot echo planar imaging sequence whilst patients breathed room air followed by oxygen (15 dm³/min). Later, a multi-echo gradient echo examination was added to provide quantitative R₂* measurements. The baseline T₂*-weighted signal intensity was quite stable, but increased to various extents in tumors on initiation of oxygen breathing. The signal in normal uterus increased significantly, whereas that in the iliacus muscle did not change. R₂* responded significantly in healthy uterus, cervix and eight cervical tumors. This preliminary study demonstrates that BOLD MRI of cervical cancer at 3T is feasible. However, more patients must be evaluated and followed clinically before any prognostic value can be determined. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Subtle In-Scanner Motion Biases Automated Measurement of Brain Anatomy From In Vivo MRI

    PubMed Central

    Alexander-Bloch, Aaron; Clasen, Liv; Stockman, Michael; Ronan, Lisa; Lalonde, Francois; Giedd, Jay; Raznahan, Armin

    2016-01-01

    While the potential for small amounts of motion in functional magnetic resonance imaging (fMRI) scans to bias the results of functional neuroimaging studies is well appreciated, the impact of in-scanner motion on morphological analysis of structural MRI is relatively under-studied. Even among “good quality” structural scans, there may be systematic effects of motion on measures of brain morphometry. In the present study, the subjects’ tendency to move during fMRI scans, acquired in the same scanning sessions as their structural scans, yielded a reliable, continuous estimate of in-scanner motion. Using this approach within a sample of 127 children, adolescents, and young adults, significant relationships were found between this measure and estimates of cortical gray matter volume and mean curvature, as well as trend-level relationships with cortical thickness. Specifically, cortical volume and thickness decreased with greater motion, and mean curvature increased. These effects of subtle motion were anatomically heterogeneous, were present across different automated imaging pipelines, showed convergent validity with effects of frank motion assessed in a separate sample of 274 scans, and could be demonstrated in both pediatric and adult populations. Thus, using different motion assays in two large non-overlapping sets of structural MRI scans, convergent evidence showed that in-scanner motion—even at levels which do not manifest in visible motion artifact—can lead to systematic and regionally specific biases in anatomical estimation. These findings have special relevance to structural neuroimaging in developmental and clinical datasets, and inform ongoing efforts to optimize neuroanatomical analysis of existing and future structural MRI datasets in non-sedated humans. PMID:27004471

  17. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.

    PubMed

    Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Comparison of Median Nerve Cross-sectional Area on 3-T MRI in Patients With Carpal Tunnel Syndrome.

    PubMed

    Ikeda, Mikinori; Okada, Mitsuhiro; Toyama, Masahiko; Uemura, Takuya; Takamatsu, Kiyohito; Nakamura, Hiroaki

    2017-01-01

    This study correlated morphologic abnormalities of idiopathic carpal tunnel syndrome (CTS) with the severity of CTS using 3-T magnetic resonance imaging (MRI). The relationship of the severity of CTS and the cross-sectional area of the median nerve (CSA) was assessed at several levels. Seventy wrists of 35 patients (27 women and 8 men) with unilateral idiopathic CTS underwent nerve conduction study and 3-T MRI of the wrist. The CSA at 4 levels (distal radioulnar joint, body of scaphoid, tubercule of scaphoid, and hook of hamate) and the thickness of the transverse carpal ligament at 3 levels in both affected and unaffected hands were measured using 3-T MRI and correlated with the severity of CTS assessed with distal motor latency. The CSA in the affected hand at the scaphoid body level was significantly higher than in the unaffected hand. The CSA at the scaphoid body level was positively correlated with distal motor latency in the affected hand. The CSA in the affected hand at the scaphoid tubercule level was significantly lower than in the unaffected hand. The CSA had a negative correlation with distal motor latency at the scaphoid tubercule level. The CSA at the distal radioulnar joint and the hamate hook was not significantly different between the affected hand and the unaffected hand. The CSA at the distal radioulnar joint level and hook level were not correlated significantly with distal motor latency in the affected hand. The mean CSA of the affected hand at the scaphoid body level was highest in 4 levels. [Orthopedics. 2017; 40(1):e77-e81.]. Copyright 2016, SLACK Incorporated.

  19. Simultaneous and interleaved acquisition of NMR signals from different nuclei with a clinical MRI scanner

    PubMed Central

    Magill, Arthur W.; Kuehne, Andre; Gruetter, Rolf; Moser, Ewald; Schmid, Albrecht Ingo

    2015-01-01

    Purpose Modification of a clinical MRI scanner to enable simultaneous or rapid interleaved acquisition of signals from two different nuclei. Methods A device was developed to modify the local oscillator signal fed to the receive channel(s) of an MRI console. This enables external modification of the frequency at which the receiver is sensitive and rapid switching between different frequencies. Use of the device was demonstrated with interleaved and simultaneous 31P and 1H spectroscopic acquisitions, and with interleaved 31P and 1H imaging. Results Signal amplitudes and signal‐to‐noise ratios were found to be unchanged for the modified system, compared with data acquired with the MRI system in the standard configuration. Conclusion Interleaved and simultaneous 1H and 31P signal acquisition was successfully demonstrated with a clinical MRI scanner, with only minor modification of the RF architecture. While demonstrated with 31P, the modification is applicable to any detectable nucleus without further modification, enabling a wide range of simultaneous and interleaved experiments to be performed within a clinical setting. Magn Reson Med 76:1636–1641, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26608834

  20. A modified rabbit model of stroke: evaluation using clinical MRI scanner.

    PubMed

    Yang, Ji-Ping; Liu, Huai-Jun; Liu, Rui-Chun

    2009-12-01

    Occluding the middle cerebral artery of small animals with an intraluminal filament to build a stroke model has gained increasing acceptance. In light of the growing demand for magnetic resonance imaging (MRI) studies using the clinical MRI scanner, large animal models can be superior to small animal models. In this work, we developed a modified rabbit model of stroke, which was assessed using clinical MRI scanner and compared with a most commonly silicone-coated filament model. We presented a focal cerebral ischemia in rabbits. The key feature of this modified method is the use of a guide wire as a 'nylon suture'. At 3 days after ischemia, the percentage of brain infarct volume, neurobehavioral score, intracranial hemorrhagic incidence and dynamic changes of T(2) and apparent diffusion coefficient values were assessed respectively and compared between the focal cerebral models. Wire-induced models had more severe brain infarct size with less dispersion (32.7 +/- 6.5%, coefficient of variation=0.20) than that with filament models (25.4 +/- 8.9%, coefficient of variation=0.31; p<0.05). There were more significant MRI changes in the early stage, higher rate of technique success (wire, 20/20; filament, 17/20) and less intracranial hemorrhage (wire, 0/20; filament, 3/20) in wire-induced models than in filament-induced rabbits (p<0.05). Our data suggest that wire-induced method can provide a useful tool for the earlier research of ischemia.

  1. Exploring cartilage damage in gout using 3-T MRI: distribution and associations with joint inflammation and tophus deposition.

    PubMed

    Popovich, I; Dalbeth, N; Doyle, A; Reeves, Q; McQueen, F M

    2014-07-01

    Few imaging studies have investigated cartilage in gout. Magnetic resonance imaging (MRI) can image cartilage damage and also reveals other features of gouty arthropathy. The objective was to develop and validate a system for quantifying cartilage damage in gout. 3-T MRI scans of the wrist were obtained in 40 gout patients. MRI cartilage damage was quantified using an adaptation of the radiographic Sharp van der Heijde score. Two readers scored cartilage loss at 7 wrist joints: 0 (normal), 1 (partial narrowing), 2 (complete narrowing) and concomitant osteoarthritis was recorded. Bone erosion, bone oedema and synovitis were scored (RAMRIS) and tophi were assessed. Correlations between radiographic and MRI cartilage scores were investigated, as was the reliability of the MRI cartilage score and its associations. The GOut MRI Cartilage Score (GOMRICS) was highly correlated with the total Sharp van der Heijde (SvdH) score and the joint space narrowing component (R = 0.8 and 0.71 respectively, p < 0.001). Reliability was high (intraobserver, interobserver ICCs = 0.87 [0.57-0.97], 0.64 [0.41-0.79] respectively), and improved on unenhanced scans; interobserver ICC = 0.82 [0.49-0.95]. Cartilage damage was predominantly focal (82% of lesions) and identified in 40 out of 280 (14%) of joints. Cartilage scores correlated with bone erosion (R = 0.57), tophus size (R = 0.52), and synovitis (R = 0.55), but not bone oedema scores. Magnetic resonance imaging can be used to investigate cartilage in gout. Cartilage damage was relatively uncommon, focal, and associated with bone erosions, tophi and synovitis, but not bone oedema. This emphasises the unique pathophysiology of gout.

  2. 3T diffusion-weighted MRI of the thyroid gland with reduced distortion: preliminary results

    PubMed Central

    Nagala, S; Priest, A N; McLean, M A; Jani, P; Graves, M J

    2013-01-01

    Objective: Single-shot diffusion-weighted (DW) echo planar imaging (EPI), which is commonly used for imaging the thyroid, is characterised by severe blurring and distortion. The objectives of this work were: 1, to show that a reduced-field of view (r-FOV) DW EPI technique can improve image quality; and 2, to investigate the effect of different reconstruction strategies on the resulting apparent diffusion coefficients (ADCs). Methods: We implemented a single-shot, r-FOV DW EPI technique with a two-dimensional radiofrequency excitation pulse for DW imaging of the thyroid at 3T. Images were reconstructed using root sum of squares (SOS) and an optimal-B1 reconstruction (OBR). Phantom and in vivo experiments were performed to compare r-FOV and conventional full-FOV DW EPI with root SOS and OBR. Results: r-FOV with OBR substantially improved image quality at 3T. In phantoms, r-FOV gave more accurate ADCs than full-FOV. In vivo r-FOV always gave lower ADC values with respect to the full-FOV technique irrespective of the reconstruction used and whether only two or multiple b-values were used to compute the ADCs. Conclusion: r-FOV DW EPI can reduce image blurring and distortion at the expense of a low signal-to-noise ratio. OBR is a promising reconstruction technique for accurate ADC measurements in lower signal-to-noise ratio regimes, although further studies are needed to characterise its performance. Advances in knowledge: DW imaging of the thyroid at 3T could potentially benefit from r-FOV acquisition strategies, such as the r-FOV DW EPI technique proposed in this paper. PMID:23770539

  3. Doppler Ultrasound Triggering for Cardiovascular MRI at 3T in a Healthy Volunteer Study.

    PubMed

    Kording, Fabian; Yamamura, Jin; Lund, Gunnar; Ueberle, Friedrich; Jung, Caroline; Adam, Gerhard; Schoennagel, Bjoern Philip

    2017-04-10

    Electrocardiogram (ECG) triggering for cardiac magnetic resonance (CMR) may be influenced by electromagnetic interferences with increasing magnetic field strength. The aim of this study was to evaluate the performance of Doppler ultrasound (DUS) as an alternative trigger technique for CMR in comparison to ECG and pulse oximetry (POX) at 3T and using different sequence types. Balanced turbo field echo two-dimensional (2D) short axis cine CMR and 2D phase-contrast angiography of the ascending aorta was performed in 11 healthy volunteers at 3T using ECG, DUS, and POX for cardiac triggering. DUS and POX triggering were compared to the reference standard of ECG in terms of trigger quality (trigger detection and temporal variability), image quality [endocardial blurring (EB)], and functional measurements [left ventricular (LV) volumetry and aortic blood flow velocimetry]. Trigger signal detection and temporal variability did not differ significantly between ECG/DUS (I = 0.6) and ECG/POX (P = 0.4). Averaged EB was similar for ECG, DUS, and POX (pECG/DUS = 0.4, pECG/POX = 0.9). Diastolic EB was significantly decreased for DUS in comparison to ECG (P = 0.02) and POX (P = 0.04). The LV function assessment and aortic blood flow were not significantly different. This study demonstrated the feasibility of DUS for gating human CMR at 3T. The magnetohydrodynamic effect did not significantly disturb ECG triggering in this small healthy volunteer study. DUS showed a significant improvement in diastolic EB but could not be identified as a superior trigger method. The potential benefit of DUS has to be evaluated in a larger clinical patient population.

  4. The Interconnection of MRI Scanner and MR-Compatible Robotic Device: Synergistic Graphical User Interface to Form a Mechatronic System

    PubMed Central

    Özcan, Alpay; Tsekos, Nikolaos

    2011-01-01

    MRI scanner and magnetic resonance (MR)-compatible robotic devices are mechatronic systems. Without an interconnecting component, these two devices cannot be operated synergetically for medical interventions. In this paper, the design and properties of a graphical user interface (GUI) that accomplishes the task is presented. The GUI interconnects the two devices to obtain a larger mechatronic system by providing command and control of the robotic device based on the visual information obtained from the MRI scanner. Ideally, the GUI should also control imaging parameters of the MRI scanner. Its main goal is to facilitate image-guided interventions by acting as the synergistic component between the physician, the robotic device, the scanner, and the patient. PMID:21544216

  5. The Interconnection of MRI Scanner and MR-Compatible Robotic Device: Synergistic Graphical User Interface to Form a Mechatronic System.

    PubMed

    Ozcan, Alpay; Tsekos, Nikolaos

    2008-06-01

    MRI scanner and magnetic resonance (MR)-compatible robotic devices are mechatronic systems. Without an interconnecting component, these two devices cannot be operated synergetically for medical interventions. In this paper, the design and properties of a graphical user interface (GUI) that accomplishes the task is presented. The GUI interconnects the two devices to obtain a larger mechatronic system by providing command and control of the robotic device based on the visual information obtained from the MRI scanner. Ideally, the GUI should also control imaging parameters of the MRI scanner. Its main goal is to facilitate image-guided interventions by acting as the synergistic component between the physician, the robotic device, the scanner, and the patient.

  6. Interventional and intraoperative MRI at low field scanner--a review.

    PubMed

    Blanco, Roberto T; Ojala, Risto; Kariniemi, Juho; Perälä, Jukka; Niinimäki, Jaakko; Tervonen, Osmo

    2005-11-01

    Magnetic resonance imaging (MRI) is a cutting edge imaging modality in detecting diseases and pathologic tissue. The superior soft tissue contrast in MRI allows better definition of the pathology. MRI is increasingly used for guiding, monitoring and controlling percutaneous procedures and surgery. The rapid development of interventional techniques in radiology has led to integration of imaging with computers, new therapy devices and operating room like conditions. This has projected as faster and more accurate imaging and hence more demanding procedures have been applied to the repertoire of the interventional radiologist. In combining features of various other imaging modalities and adding some more into them, interventional MRI (IMRI) has potential to take further the interventional radiology techniques, minimally invasive therapies and surgery. The term "Interventional MRI" consists in short all those procedures, which are performed under MRI guidance. These procedures can be either percutaneous or open surgical of nature. One of the limiting factors in implementing MRI as guidance modality for interventional procedures has been the fact, that most widely used magnet design, a cylindrical magnet, is not ideal for guiding procedures as it does not allow direct access to the patient. Open, low field scanners usually operating around 0.2 T, offer this feature. Clumsy hardware, bad patient access, slow image update frequency and strong magnetic fields have been other limiting factors for interventional MRI. However, the advantages of MRI as an imaging modality have been so obvious that considerable development has taken place in the 20-year history of MRI. The image quality has become better, ever faster software, new innovative sequences, better MRI hardware and increased computing power have accelerated imaging speed and image quality to a totally new level. Perhaps the most important feature in the recent development has been the introduction of open

  7. Continuous ASL (CASL) perfusion MRI with an array coil and parallel imaging at 3T.

    PubMed

    Wang, Ze; Wang, Jiongjiong; Connick, Thomas J; Wetmore, Gabriel S; Detre, John A

    2005-09-01

    The purpose of this work was to assess the feasibility and efficacy of using an array coil and parallel imaging in continuous arterial spin labeling (CASL) perfusion MRI. An 8-channel receive-only array head coil was used in conjunction with a surrounding detunable volume transmit coil. The signal to noise ratio (SNR), temporal stability, cerebral blood flow (CBF), and perfusion image coverage were measured from steady state CASL scans using: a standard volume coil, array coil, and array coil with 2- and 3-fold accelerated parallel imaging. Compared to the standard volume coil, the array coil provided 3 times the average SNR increase and higher temporal stability for the perfusion weighted images, even with threefold acceleration. Although perfusion images of the array coil were affected by the inhomogeneous coil sensitivities, this effect was invisible in the quantitative CBF images, which showed highly reproducible perfusion values compared to the standard volume coil. The unfolding distortions of parallel imaging were suppressed in the perfusion images by pairwise subtraction, though they sharply degraded the raw EPI images. Moreover, parallel imaging provided the potential of acquiring more slices due to the shortened acquisition time and improved coverage in brain regions with high static field inhomogeneity. Such results highlight the potential utility of array coils and parallel imaging in ASL perfusion MRI. Copyright (c) 2005 Wiley-Liss, Inc.

  8. An implanted 8-channel array coil for high-resolution macaque MRI at 3T.

    PubMed

    Janssens, T; Keil, B; Farivar, R; McNab, J A; Polimeni, J R; Gerits, A; Arsenault, J T; Wald, L L; Vanduffel, W

    2012-09-01

    An 8-channel receive coil array was constructed and implanted adjacent to the skull in a male rhesus monkey in order to improve the sensitivity of (functional) brain imaging. The permanent implant was part of an acrylic headpost assembly and only the coil element loop wires were implanted. The tuning, matching, and preamplifier circuitry was connected via a removable external assembly. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging were compared to single-, 4-, and 8-channel external receive-only coils routinely used for macaque fMRI. In vivo measurements showed significantly improved SNR within the brain for the implanted versus the external coils. Within a region-of-interest covering the cerebral cortex, we observed a 5.4-, 3.6-fold, and 3.4-fold increase in SNR compared to the external single-, 4-, and 8-channel coils, respectively. In the center of the brain, the implanted array maintained a 2.4×, 2.5×, and 2.1× higher SNR, respectively compared to the external coils. The array performance was evaluated for anatomical, diffusion tensor and functional brain imaging. This study suggests that a stable implanted phased-array coil can be used in macaque MRI to substantially increase the spatial resolution for anatomical, diffusion tensor, and functional imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Correlating quantitative tractography at 3T MRI and cognitive tests in healthy older adults.

    PubMed

    Reginold, William; Itorralba, Justine; Tam, Angela; Luedke, Angela C; Fernandez-Ruiz, Juan; Reginold, Jennifer; Islam, Omar; Garcia, Angeles

    2016-12-01

    This study used diffusion tensor imaging tractography at 3 T MRI to relate cognitive function to white matter tracts in the brain. Brain T2 fluid attenuated inversion recovery-weighted and diffusion tensor 3 T MRI scans were acquired in thirty-three healthy participants without mild cognitive impairment or dementia. They completed a battery of neuropsychological tests including the Montreal Cognitive Assessment, Stroop test, Trail Making Test B, Wechsler Memory Scale-III Longest span forward, Wechsler Memory Scale-III Longest span backward, Mattis Dementia Rating Scale, California Verbal Learning Test Version II Long Delay Free Recall, and Letter Number Sequencing. Tractography was generated by the Fiber Assignment by Continuous Tracking method. The corpus callosum, cingulum, long association fibers, corticospinal/bulbar tracts, thalamic projection fibers, superior cerebellar peduncle, middle cerebellar peduncle and inferior cerebellar peduncle were manually segmented. The fractional anisotropy (FA) and mean diffusivity (MD) of these tracts were quantified. We studied the association between cognitive test scores and the MD and FA of tracts while controlling for age and total white matter hyperintensities volume. Worse scores on the Stroop test was associated with decreased FA of the corpus callosum, corticospinal/bulbar tract, and thalamic projection tracts. Scores on the other cognitive tests were not associated with either the FA or MD of measured tracts. In healthy persons the Stroop test appears to be a better predictor of the microstructural integrity of white matter tracts measured by DTI tractography than other cognitive tests.

  10. An implanted 8-channel array coil for high-resolution macaque MRI at 3T

    PubMed Central

    Janssens, T.; Keil, B.; Farivar, R.; McNab, J.A.; Polimeni, J. R.; Gerits, A.; Arsenault, J.T.; Wald, L. L.; Vanduffel, W.

    2012-01-01

    An 8-channel receive coil array was constructed and implanted adjacent to the skull in a male rhesus monkey in order to improve the sensitivity of (functional) brain imaging. The permanent implant was part of an acrylic headpost assembly and only the coil element loop wires were implanted. The tuning, matching, and preamplifier circuitry was connected via a removable external assembly. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging were compared to a single-, 4-, and 8-channel external receive-only coil routinely used for macaque fMRI. In vivo measurements showed significantly improved SNR within the brain for the implanted versus the external coils. Within a region-of-interest covering the cerebral cortex, we observed a 5.4-, 3.6-fold, and 3.4-fold increase in SNR compared to the external single-, 4-, and 8-channel coil, respectively. In the center of the brain, the implanted array maintained a 2.4×, 2.5×, and 2.1× higher SNR, respectively compared to the external coils. The array performance was evaluated for anatomical, diffusion tensor and functional brain imaging. This study suggests that a stable implanted phased-array coil can be used in macaque MRI to substantially increase the spatial resolution for anatomical, diffusion tensor, and functional imaging. PMID:22609793

  11. Prediction of nodal metastasis in head and neck cancer using a 3T MRI ADC map.

    PubMed

    Lee, M-C; Tsai, H-Y; Chuang, K-S; Liu, C-K; Chen, M-K

    2013-04-01

    The detection of cervical nodal metastases is important for the prognosis and treatment of head and neck tumors. The purpose of this study was to assess the ability of ADC values at 3T to distinguish malignant from benign lymph nodes. From July 2009 to June 2010, twenty-two patients (21 men and 1 woman; mean age, 49.8±9.5 years; age range, 28-66 years) scheduled for surgical treatment of biopsy-proved head and neck cancer were prospectively and consecutively enrolled in this study. All patients were scanned on a 3T imaging unit (Verio) by using a 12-channel head coil combined with a 4-channel neck coil. Histologic findings were the reference standard for the diagnosis of lymph node metastasis. The ADC values derived from the signal intensity averaged across images obtained with b-values of 0 and 800 s/mm2 were 1.086±0.222×10(-3) mm2/s for benign lymph nodes and 0.705±0.118×10(-3) mm2/s for malignant lymph nodes (P<.0001). When an ADC value of 0.851×10(-3) mm2/s was used as a threshold value for differentiating benign from malignant lymph nodes, the best results were obtained with an accuracy of 91.0%, sensitivity of 91.3%, and specificity of 91.1%. The ADC value is a sensitive and specific parameter that can help to differentiate malignant from benign lymph nodes.

  12. Can T2-weighted 3-T breast MRI predict clinically occult inflammatory breast cancer before pathological examination? A single-center experience.

    PubMed

    Uematsu, Takayoshi; Kasami, Masako; Watanabe, Junichiro

    2014-01-01

    Occult inflammatory breast cancer (IBC) is defined as an invasive cancer without any clinical inflammatory signs but with pathologically proven dermal lymphovascular invasion. The purpose of this study is to evaluate the ability of 3-T breast MRI to predict occult IBC before pathological examination and compare its effectiveness with that of mammography (MMG) and ultrasound (US). A retrospective review of clinical, radiological, and pathological records of 460 consecutive breast cancers revealed five proved occult IBCs. We analyzed the findings of 3-T MRI, MMG, and US for these five occult IBCs. Primary breast lesions were detected by 3-T MRI, MMG, and US in all five breasts with occult IBCs. 3-T MRI revealed 40% mass type lesions and 60% non-mass-like type lesions. Kinetic curve analysis of the primary breast lesions showed a rapid initial kinetic phase in 80% of lesions and a delayed washout pattern in 60% of lesions. 3-T MRI showed slight skin thickness in 60% of breasts, whereas MMG and US showed slight skin thickness in 40 and 20% of breasts, respectively. Subcutaneous and prepectoral edema, as evaluated on T2-weighted images, was present in all five breasts with occult IBCs. The presence of subcutaneous and prepectoral edema on T2-weighted 3-T breast MRI is an important finding that should suggest the diagnosis of occult IBC before pathological examination.

  13. Deep brain stimulation lead-contact heating during 3T MRI: single- versus dual-channel pulse generator configurations.

    PubMed

    Nazzaro, Jules M; Klemp, Joshua A; Brooks, William M; Cook-Wiens, Galen; Mayo, Matthew S; Van Acker, Gustaf M; Lyons, Kelly E; Cheney, Paul D

    2014-03-01

    Magnetic resonance imaging (MRI) after deep brain stimulation (DBS) carries the risk of heating at the lead-contacts within the brain. To compare the effect of single- and dual-channel DBS implantable pulse generator (IPG) configurations on brain lead-contact heating during 3T MRI. A phantom with bilateral brain leads and extensions connected to two single-channel IPGs or a dual-channel right or left IPG was utilized. Using a transmit/receive head coil, seven scan sequences were conducted yielding a range of head-specific absorption rates (SAR-H). Temperature changes (ΔT) at the bilateral 0 and 3 lead-contacts were recorded, and normalized temperatures (ΔT/SAR-H) and slopes defining the ΔT/SAR-H over the SAR-H range were compared. Greater heating was strongly correlated with higher SAR-H in all configurations. For each scan sequence, the ΔT/SAR-H of single-channel left lead-contacts was significantly greater than the ΔT/SAR-H of either dual-channel configuration. The slope defining the relationship between ΔT and SAR-H for the single-channel left lead (1.68°C/SAR-H) was significantly greater (p < 0.0001) than the ΔT/SAR-H slope for the single-channel right lead (0.97°C/SAR-H), both of which were significantly greater (p < 0.0001) than the ΔT/SAR-H slopes of left or right leads (range 0.68 to 0.70°C/SAR-H) in the dual-channel configurations. There were no significant differences in ΔT/SAR-H slope values between the dual-channel configurations. DBS hardware configuration using bilateral single-channel versus unilateral dual-channel IPGs significantly affects DBS lead-contact heating during 3T MRI brain scanning.

  14. 2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils

    PubMed Central

    Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.

    2014-01-01

    Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520

  15. Physiological brainstem mechanisms of trigeminal nociception: An fMRI study at 3T.

    PubMed

    Schulte, Laura H; Sprenger, Christian; May, Arne

    2016-01-01

    The brainstem is a major site of processing and modulation of nociceptive input and plays a key role in the pathophysiology of various headache disorders. However, human imaging studies on brainstem function following trigeminal nociceptive stimulation are scarce as brainstem specific imaging approaches have to address multiple challenges such as magnetic field inhomogeneities and an enhanced level of physiological noise. In this study we used a viable protocol for brainstem fMRI of standardized trigeminal nociceptive stimulation to achieve detailed insight into physiological brainstem mechanisms of trigeminal nociception. We conducted a study of 21 healthy participants using a nociceptive ammonia stimulation of the left nasal mucosa with an optimized MR acquisition protocol for high resolution brainstem echoplanar imaging in combination with two different noise correction techniques. Significant BOLD responses to noxious ammonia stimulation were observed in areas typically involved in trigeminal nociceptive processing such as the spinal trigeminal nuclei (sTN), thalamus, secondary somatosensory cortex, insular cortex and cerebellum as well as in a pain modulating network including the periaqueductal gray area, hypothalamus (HT), locus coeruleus and cuneiform nucleus (CNF). Activations of the left CNF were positively correlated with pain intensity ratings. Employing psychophysiological interaction (PPI) analysis we found enhanced functional connectivity of the sTN with the contralateral sTN and HT following trigeminal nociception. We also observed enhanced functional connectivity of the CNF with the RVM during painful stimulation thus implying an important role of these two brainstem regions in central pain processing. The chosen approach to study trigeminal nociception with high-resolution fMRI offers new insight into human pain processing and might thus lead to a better understanding of headache pathophysiology.

  16. Multiparametric breast MRI with 3T: Effectivity of combination of contrast enhanced MRI, DWI and 1H single voxel spectroscopy in differentiation of Breast tumors.

    PubMed

    Aribal, Erkin; Asadov, Ruslan; Ramazan, Abdullah; Ugurlu, Mustafa Ümit; Kaya, Handan

    2016-05-01

    To evaluate the diagnostic accuracy of dynamic contrast enhanced breast MRI (DCE-MRI) combined with diffusion weighted imaging (DWI) and 1H single-voxel magnetic resonance spectroscopy (1HMRS) in differentiating malignant from benign breast lesions. One hundred twenty-nine patients with 138 lesions were included in the study. Multiparametric MRI of the breast was performed with a 3T unit. A DWI is followed by DCE-MRI and 1HMRS. All lesions were biopsied within one week after MRI. Histopathologic findings were accepted as the standard of reference. Probability of malignancy was assessed according to BI-RADS for DCE-MRI. ADC values were measured for DWI and choline peaks were assessed using a semi-quantitative method in 1HMRS. Two blinded radiologists evaluated findings in consensus. Diagnostic performance of DCE-MRI, DWI and 1HMRS alone or in combination for multiparametric imaging were statistically evaluated. Histopathology revealed malignancy in 54.4% of lesions (75/138). DCE-MRI showed the highest AUC (0.978), sensitivity (97.33%) and specificity (88.89%) compared to DWI and 1HMRS. Sensitivity was 100% when a positive result from any one of three techniques was accepted as malignancy, albeit with a trade-off for 65.1% specificity. Highest specificity (98.4%) was attained when all three techniques were required to be positive, though with a lower sensitivity (82.7%) as trade-off. Logistic regression analysis confirmed significant association with DCE-MRI (p<0.001) and 1H MRS (p=0.009) but not with DWI (p=0.127). There was one case of fat necrosis which was false positive in all three techniques. Multiparametric imaging with combination of DCE-MRI, DWI and 1HMRS does not improve, and may even reduce the diagnostic accuracy of breast MRI. Although, the specificity may be improved with a trade-off for lower sensitivity, we have not set a convenient algorithm for the combined use of these techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. In Vivo O-Space Imaging With a Dedicated 12 cm Z2 Insert Coil on a Human 3T Scanner Using Phase Map Calibration

    PubMed Central

    Stockmann, Jason P.; Galiana, Gigi; Tam, Leo; Juchem, Christoph; Nixon, Terence W.; Constable, R. Todd

    2012-01-01

    Recently, spatial encoding with nonlinear magnetic fields has drawn attention for its potential to achieve faster gradient switching within safety limits, tailored resolution in regions of interest, and improved parallel imaging using encoding fields that complement the sensitivity profiles of radio frequency receive arrays. Proposed methods can broadly be divided into those that use phase encoding (Cartesian-trajectory PatLoc and COGNAC) and those that acquire nonlinear projections (O-Space, Null space imaging, radial PatLoc, and 4D-RIO). Nonlinear projection data are most often reconstructed with iterative algorithms that backproject data using the full encoding matrix. Just like conventional radial sequences that use linear spatial encoding magnetic fields, nonlinear projection methods are more sensitive than phase encoding methods to imperfect calibration of the encoding fields. In this work, voxel-wise phase evolution is mapped at each acquired point in an O-Space trajectory using a variant of chemical shift imaging, capturing all spin dynamics caused by encoding fields, eddy currents, and pulse timing. Phase map calibration is then applied to data acquired from a high-power, 12 cm, Z2 insert coil with an eight-channel radio frequency transmit-receive array on a 3T human scanner. We show the first experimental proof-of-concept O-Space images on in vivo and phantom samples, paving the way for more in-depth exploration of O-Space and similar imaging methods. PMID:22585546

  18. Structural brain alterations in primary open angle glaucoma: a 3T MRI study

    PubMed Central

    Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang

    2016-01-01

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811

  19. Structural brain alterations in primary open angle glaucoma: a 3T MRI study.

    PubMed

    Wang, Jieqiong; Li, Ting; Sabel, Bernhard A; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang

    2016-01-08

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma.

  20. A 20-Channel Receive-Only Mouse Array Coil for a 3T Clinical MRI System

    PubMed Central

    Keil, Boris; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.; Meise, Florian M.; Schreiber, Laura M.; Klose, Klaus J.; Heverhagen, Johannes T.

    2010-01-01

    A 20-channel phased-array coil for Magnetic Resonance Imaging (MRI) of mice has been designed, constructed and validated with bench measurements and high resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3-fold and 1.3-fold, respectively. Comparison to a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of 2-fold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. PMID:21433066

  1. A 20-channel receive-only mouse array coil for a 3 T clinical MRI system.

    PubMed

    Keil, Boris; Wiggins, Graham C; Triantafyllou, Christina; Wald, Lawrence L; Meise, Florian M; Schreiber, Laura M; Klose, Klaus J; Heverhagen, Johannes T

    2011-08-01

    A 20-channel phased-array coil for MRI of mice has been designed, constructed, and validated with bench measurements and high-resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3- and 1.3-fold, respectively. Comparison with a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of twofold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. Copyright © 2011 Wiley-Liss, Inc.

  2. MRI in multiple sclerosis: an intra-individual, randomized and multicentric comparison of gadobutrol with gadoterate meglumine at 3 T.

    PubMed

    Saake, Marc; Langner, Soenke; Schwenke, Carsten; Weibart, Marina; Jansen, Olav; Hosten, Norbert; Doerfler, Arnd

    2016-03-01

    To compare contrast effects of gadobutrol with gadoterate meglumine for brain MRI in multiple sclerosis (MS) in a multicentre, randomized, prospective, intraindividual study at 3 T. Institutional review board approval was obtained. Patients with known or suspected active MS lesions were included. Two identical MRIs were performed using randomized contrast agent order. Four post-contrast T1 sequences were acquired (start time points 0, 3, 6 and 9 min). If no enhancing lesion was present in first MRI, second MRI was cancelled. Quantitative (number and signal intensity of enhancing lesions) and qualitative parameters (time points of first and all lesions enhancing; subjective preference regarding contrast enhancement and lesion delineation; global preference) were evaluated blinded. Seventy-four patients (male, 26; mean age, 35 years) were enrolled in three centres. In 45 patients enhancing lesions were found. Number of enhancing lesions increased over time for both contrast agents without significant difference (median 2 for both). Lesions signal intensity was significantly higher for gadobutrol (p < 0.05 at time points 3, 6 and 9 min). Subjective preference rating showed non-significant tendency in favour of gadobutrol. Both gadobutrol and gadoterate meglumine can be used for imaging of acute inflammatory MS lesions. However, gadobutrol generates higher lesion SI. Contrast-enhanced MRI plays a key role in the management of multiple sclerosis. Different gadolinium-based contrast agents are available. Number of visibly enhancing lesions increases over time after contrast injection. Gadobutrol and gadoterate meglumine do not differ in number of visible lesions. Gadobutrol generates higher signal intensity than gadoterate meglumine.

  3. Parenchymal Signal Intensity in 3-T Body MRI of Dogs with Hematopoietic Neoplasia

    PubMed Central

    Feeney, Daniel A; Sharkey, Leslie C; Steward, Susan M; Bahr, Katherine L; Henson, Michael S; Ito, Daisuke; O'Brien, Timothy D; Jessen, Carl R; Husbands, Brian D; Borgatti, Antonella; Modiano, Jaime F

    2013-01-01

    We performed a preliminary study involving 10 dogs to assess the applicability of body MRI for staging of canine diffuse hematopoietic neoplasia. T1-weighted (before and after intravenous gadolinium), T2-weighted, in-phase, out-of-phase, and short tau inversion recovery pulse sequences were used. By using digital region of interest (ROI) and visual comparison techniques, relative parenchymal organ (medial iliac lymph nodes, liver, spleen, kidney cortex, and kidney medulla) signal intensity was quantified as less than, equal to, or greater than that of skeletal muscle in 2 clinically normal young adult dogs and 10 dogs affected with either B-cell lymphoma (n = 7) or myelodysplastic syndrome (n = 3). Falciform fat and urinary bladder were evaluated to provide additional perspective regarding signal intensity from the pulse sequences. Dogs with nonfocal disease could be distinguished from normal dogs according to both the visual and ROI signal-intensity relationships. In normal dogs, liver signal intensity on the T2-weighted sequence was greater than that of skeletal muscle by using either the visual or ROI approach. However in affected dogs, T2-weighted liver signal intensity was less than that of skeletal muscle by using either the ROI approach (10 of 10 dogs) or the visual approach (9 of 10 dogs). These findings suggest that the comparison of relative signal intensity among organs may have merit as a research model for infiltrative parenchymal disease (ROI approach) or metabolic effects of disease; this comparison may have practical clinical applicability (visual comparison approach) as well. PMID:23582424

  4. Clinical Utility of Continuous Radial MRI Acquisition at 3T in Patellofemoral Kinematic Assessment

    PubMed Central

    Kaplan, Daniel James; Campbell, Kirk A.; Alaia, Michael Joseph; Strauss, Eric Jason; Jazrawi, Laith M.; Chang, Gregory; Burke, Christopher

    2017-01-01

    Objectives: Continuous gradient-echo (GRE) acquisition or “dynamic magnetic resonance imaging”, allows for high-speed examination of pathologies based on joint motion. We sought to assess the efficacy of a radial GRE sequence with in the characterization of patellofemoral maltracking. Methods: Patients with suspected patellofemoral maltracking and asymptomatic volunteers were scanned using GRE (Siemens LiveView WIP; Malvern, PA, USA) at 3T in the axial plane at the patella level through a range of flexion-extension (0-30°). The mean time to perform the dynamic component ranged from 3-7 mins. Lateral maltracking (amount patella moved laterally through knee ranging) was measured. Patella lateralization was categorized as normal (≤ 2mm), mild (2-5mm), moderate (5-10mm), or severe (>10mm). Tibial tuberosity:trochlear groove (TT:TG) distance, trochlea depth, Insall-Salvati ratio, and patellofemoral cartilage quality (according to the modified Outerbridge grading system) were also assessed. Results: Eighteen symptomatic (6 men; 12 women, age range 14-51 years) and 10 asymptomatic subjects (6 men; 4 women, age range 25-68 years) were included. Two symptomatic patients underwent bilateral examinations. Lateralization in the symptomatic group was normal (n=10), mild (n=2), moderate (n=5) and severe (n=3). There was no abnormal maltracking in the volunteer group. Lateral tracking significantly correlated with TT:TG distance (F=38.0; p<.0001), trochlea depth (F=5.8; p=.023), Insall-Salvati ratio (F=4.642; p=.04) and Outerbridge Patella score (F=6.6; p=.016). Lateral tracking did not correlate with Outerbridge Trochlear score. Conclusion: Lateral tracking measured on GRE was found to significantly correlate with current measures of patellar instability including, TT:TG, trochlea depth, and the Insall-Salvati ratio. GRE is a rapid and easily performed addition to the standard protocol for kinematic patellofemoral motion and can add dynamic information on patellofemoral

  5. Osteoporosis detection by 3T diffusion tensor imaging and MRI spectroscopy in women older than 60 years.

    PubMed

    Manenti, G; Capuani, S; Fusco, Armando; Fanucci, E; Tarantino, U; Simonetti, G

    2013-10-01

    Aim of this study was to evaluate the cancellous bone quality of postmenopausal women (age >60 years) by diffusion tensor imaging (DTI) using mean diffusivity (MD) and fractional anisotropy (FA) in combination with proton magnetic resonance spectroscopy (1H-MRS). 20 postmenopausal women older than 60 years were introduced to dual-energy X-ray absorptiometry (DXA) examination in femoral neck and to an MRI spectroscopy and DTI evaluation at 3T. We observed that fat fraction (FF) can discriminate healthy and osteoporotic patients. Water mean diffusivity (MD) and FA can discriminate the healthy group from osteopenic and osteoporotic group. MD/FF vs FA/FF graph extracted from the femoral neck identifies all healthy individuals, according to DXA results. DTI and spectroscopy protocol performed in the femoral neck could be highly sensitive and specific in identifying healthy subjects.

  6. Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations.

    PubMed

    Jovicich, Jorge; Marizzoni, Moira; Sala-Llonch, Roser; Bosch, Beatriz; Bartrés-Faz, David; Arnold, Jennifer; Benninghoff, Jens; Wiltfang, Jens; Roccatagliata, Luca; Nobili, Flavio; Hensch, Tilman; Tränkner, Anja; Schönknecht, Peter; Leroy, Melanie; Lopes, Renaud; Bordet, Régis; Chanoine, Valérie; Ranjeva, Jean-Philippe; Didic, Mira; Gros-Dagnac, Hélène; Payoux, Pierre; Zoccatelli, Giada; Alessandrini, Franco; Beltramello, Alberto; Bargalló, Núria; Blin, Olivier; Frisoni, Giovanni B

    2013-12-01

    Large-scale longitudinal multi-site MRI brain morphometry studies are becoming increasingly crucial to characterize both normal and clinical population groups using fully automated segmentation tools. The test-retest reproducibility of morphometry data acquired across multiple scanning sessions, and for different MR vendors, is an important reliability indicator since it defines the sensitivity of a protocol to detect longitudinal effects in a consortium. There is very limited knowledge about how across-session reliability of morphometry estimates might be affected by different 3T MRI systems. Moreover, there is a need for optimal acquisition and analysis protocols in order to reduce sample sizes. A recent study has shown that the longitudinal FreeSurfer segmentation offers improved within session test-retest reproducibility relative to the cross-sectional segmentation at one 3T site using a nonstandard multi-echo MPRAGE sequence. In this study we implement a multi-site 3T MRI morphometry protocol based on vendor provided T1 structural sequences from different vendors (3D MPRAGE on Siemens and Philips, 3D IR-SPGR on GE) implemented in 8 sites located in 4 European countries. The protocols used mild acceleration factors (1.5-2) when possible. We acquired across-session test-retest structural data of a group of healthy elderly subjects (5 subjects per site) and compared the across-session reproducibility of two full-brain automated segmentation methods based on either longitudinal or cross-sectional FreeSurfer processing. The segmentations include cortical thickness, intracranial, ventricle and subcortical volumes. Reproducibility is evaluated as absolute changes relative to the mean (%), Dice coefficient for volume overlap and intraclass correlation coefficients across two sessions. We found that this acquisition and analysis protocol gives comparable reproducibility results to previous studies that used longer acquisitions without acceleration. We also show that

  7. In vivo electric conductivity of cervical cancer patients based on B_{1}^{+} maps at 3T MRI

    NASA Astrophysics Data System (ADS)

    Balidemaj, E.; de Boer, P.; van Lier, A. L. H. M. W.; Remis, R. F.; Stalpers, L. J. A.; Westerveld, G. H.; Nederveen, A. J.; van den Berg, C. A. T.; Crezee, J.

    2016-02-01

    The in vivo electric conductivity (σ) values of tissue are essential for accurate electromagnetic simulations and specific absorption rate (SAR) assessment for applications such as thermal dose computations in hyperthermia. Currently used σ-values are mostly based on ex vivo measurements. In this study the conductivity of human muscle, bladder content and cervical tumors is acquired non-invasively in vivo using MRI. The conductivity of 20 cervical cancer patients was measured with the MR-based electric properties tomography method on a standard 3T MRI system. The average in vivo σ-value of muscle is 14% higher than currently used in human simulation models. The σ-value of bladder content is an order of magnitude higher than the value for bladder wall tissue that is used for the complete bladder in many models. Our findings are confirmed by various in vivo animal studies from the literature. In cervical tumors, the observed average conductivity was 13% higher than the literature value reported for cervical tissue. Considerable deviations were found for the electrical conductivity observed in this study and the commonly used values for SAR assessment, emphasizing the importance of acquiring in vivo conductivity for more accurate SAR assessment in various applications.

  8. Voxel-based morphometry at ultra-high fields. A comparison of 7T and 3T MRI data

    PubMed Central

    Seiger, Rene; Hahn, Andreas; Hummer, Allan; Kranz, Georg S; Ganger, Sebastian; Küblböck, Martin; Kraus, Christoph; Sladky, Ronald; Kasper, Siegfried; Windischberger, Christian; Lanzenberger, Rupert

    2017-01-01

    Recent technological progress enables MRI recordings at ultra-high fields of 7 Tesla and above leading to brain images of higher resolution and increased signal-to-noise ratio. Despite these benefits, imaging at 7T exhibits distinct challenges due to B1 field inhomogeneities, causing decreased image quality and problems in data analysis. Although several strategies have been proposed, a systematic investigation of bias-corrected 7T data for voxel-based morphometry (VBM) is still missing and it is an ongoing matter of debate if VBM at 7T can be carried out properly. Here, an optimized VBM study was conducted, evaluating the impact of field strength (3T vs 7T) and pulse sequence (MPRAGE vs MP2RAGE) on gray matter volume (GMV) estimates. More specifically, twenty-two participants were measured under the conditions 3T MPRAGE, 7T MPRAGE and 7T MP2RAGE. Due to the fact that 7T MPRAGE data exhibited strong intensity inhomogeneities, an alternative preprocessing pipeline was proposed and applied for that data. VBM analysis revealed higher GMV estimates for 7T predominantly in superior cortical areas, caudate nucleus, cingulate cortex and the hippocampus. On the other hand, 3T yielded higher estimates especially in inferior cortical areas of the brain, cerebellum, thalamus and putamen compared to 7T. Besides minor exceptions, these results were observed for 7T MPRAGE as well for the 7T MP2RAGE measurements. Results gained in the inferior parts of the brain should be taken with caution, as native GM segmentations displayed misclassifications in these regions for both 7T sequences. This was supported by the test-retest measurements showing highest variability in these inferior regions of the brain for 7T also for the advanced MP2RAGE sequence. Hence, our data support the use of 7T MRI for VBM analysis in cortical areas, but direct comparison between field strengths and sequences requires careful assessment. Similarly, analysis of inferior cortical regions, cerebellum and

  9. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  10. Studies of the interactions of an MRI system with the shielding in a combined PET/MRI scanner

    NASA Astrophysics Data System (ADS)

    Peng, Bo J.; Walton, Jeffrey H.; Cherry, Simon R.; Willig-Onwuachi, Jacob

    2010-01-01

    A positron emission tomography (PET) system or 'insert' has been constructed for placement and operation in the bore of a small animal magnetic resonance imaging (MRI) scanner to allow simultaneous MR and PET imaging. The insert contains electronics, components with a variety of magnetic properties and large continuous sheets of metal—all characteristics of an object that should, by conventional wisdom, never be placed in the bore of an MR scanner, especially near the imaging volume. There are a variety of ways the two systems might be expected to interact that could negatively impact the performance of either or both. In this article, the interaction mechanisms, particularly the impact of the PET insert and shielding on MR imaging, are defined and explored. Additionally, some of the difficulties in quantifying errors introduced into the MR images as a result of the presence of the PET components are demonstrated. Several different approaches are used to characterize image artifacts and determine optimal placement of the shielding. Data are also presented that suggest ways the shielding could be modified to reduce errors and enable placement closer to the isocenter of the magnet.

  11. Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM

    NASA Astrophysics Data System (ADS)

    Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.

    2013-06-01

    The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.

  12. The registration of signals from the nuclei other than protons at 0.5 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Anisimov, N.; Volkov, D.; Gulyaev, M.; Pavlova, O.; Pirogov, Yu

    2016-02-01

    The practical aspects of the adaptation of the medical MRI scanner for multinuclear applications are considered. Examples of high resolution NMR spectra for nuclei 19F, 31P, 23Na, 11B, 13C, 2H, and also NQR spectrum for 35Cl are given. Possibilities of MRI for nuclei 19F, 31P, 23Na, 11B are shown. Experiments on registration of signals 19F from the fluorocarbons injected in laboratory animals are described.

  13. Hobbs 3T MRI

    DTIC Science & Technology

    2009-08-01

    PGLYRP‐1   Peptidoglycan  recognition protein Associations with ASHD (Published in  Atherosclerosis 2008)  sESAM   Endothelial cell‐selective adhesion...Gelatinase-Associated Lipocalin (NGAL) Leptin Urine microalbumin Peptidoglycan recognition protein-1 Matrix metalloproteinase-9 Cardiotrophin-1

  14. Analysis of the role of lead resistivity in specific absorption rate for deep brain stimulator leads at 3T MRI.

    PubMed

    Angelone, Leonardo M; Ahveninen, Jyrki; Belliveau, John W; Bonmassar, Giorgio

    2010-04-01

    Magnetic resonance imaging (MRI) on patients with implanted deep brain stimulators (DBSs) can be hazardous because of the antenna-effect of leads exposed to the incident radio-frequency field. This study evaluated electromagnetic field and specific absorption rate (SAR) changes as a function of lead resistivity on an anatomically precise head model in a 3T system. The anatomical accuracy of our head model allowed for detailed modeling of the path of DBS leads between epidermis and the outer table. Our electromagnetic finite difference time domain (FDTD) analysis showed significant changes of 1 g and 10 g averaged SAR for the range of lead resistivity modeled, including highly conductive leads up to highly resistive leads. Antenna performance and whole-head SAR were sensitive to the presence of the DBS leads only within 10%, while changes of over one order of magnitude were observed for the peak 10 g averaged SAR, suggesting that local SAR values should be considered in DBS guidelines. With rho(lead) = rho(copper) , and the MRI coil driven to produce a whole-head SAR without leads of 3.2 W/kg, the 1 g averaged SAR was 1080 W/kg and the 10 g averaged SAR 120 W/kg at the tip of the DBS lead. Conversely, in the control case without leads, the 1 g and 10 g averaged SAR were 0.5 W/kg and 0.6 W/kg, respectively, in the same location. The SAR at the tip of lead was similar with electrically homogeneous and electrically heterogeneous models. Our results show that computational models can support the development of novel lead technology, properly balancing the requirements of SAR deposition at the tip of the lead and power dissipation of the system battery.

  15. Analysis of the Role of Lead Resistivity in Specific Absorption Rate for Deep Brain Stimulator Leads at 3T MRI

    PubMed Central

    Angelone, Leonardo M.; Ahveninen, Jyrki; Belliveau, John W.; Bonmassar, Giorgio

    2011-01-01

    Magnetic resonance imaging (MRI) on patients with implanted deep brain stimulators (DBSs) can be hazardous because of the antenna-effect of leads exposed to the incident radio-frequency field. This study evaluated electromagnetic field and specific absorption rate (SAR) changes as a function of lead resistivity on an anatomically precise head model in a 3T system. The anatomical accuracy of our head model allowed for detailed modeling of the path of DBS leads between epidermis and the outer table. Our electromagnetic finite difference time domain (FDTD) analysis showed significant changes of 1 g and 10 g averaged SAR for the range of lead resistivity modeled, including highly conductive leads up to highly resistive leads. Antenna performance and whole-head SAR were sensitive to the presence of the DBS leads only within 10%, while changes of over one order of magnitude were observed for the peak 10 g averaged SAR, suggesting that local SAR values should be considered in DBS guidelines. With ρlead = ρcopper, and the MRI coil driven to produce a whole-head SAR without leads of 3.2 W/kg, the 1 g averaged SAR was 1080 W/kg and the 10 g averaged SAR 120 W/kg at the tip of the DBS lead. Conversely, in the control case without leads, the 1 g and 10 g averaged SAR were 0.5 W/kg and 0.6 W/kg, respectively, in the same location. The SAR at the tip of lead was similar with electrically homogeneous and electrically heterogeneous models. Our results show that computational models can support the development of novel lead technology, properly balancing the requirements of SAR deposition at the tip of the lead and power dissipation of the system battery. PMID:20335090

  16. Diagnostic accuracy of (18)F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3 T.

    PubMed

    Magometschnigg, Heinrich F; Baltzer, Pascal A; Fueger, Barbara; Helbich, Thomas H; Karanikas, Georgios; Dubsky, Peter; Rudas, Margaretha; Weber, Michael; Pinker, Katja

    2015-10-01

    To compare the diagnostic accuracy of prone (18)F-FDG PET/CT with that of contrast-enhanced MRI (CE-MRI) at 3 T in suspicious breast lesions. To evaluate the influence of tumour size on diagnostic accuracy and the use of maximum standardized uptake value (SUVMAX) thresholds to differentiate malignant from benign breast lesions. A total of 172 consecutive patients with an imaging abnormality were included in this IRB-approved prospective study. All patients underwent (18)F-FDG PET/CT and CE-MRI of the breast at 3 T in the prone position. Two reader teams independently evaluated the likelihood of malignancy as determined by (18)F-FDG PET/CT and CE-MRI independently. (18)F-FDG PET/CT data were qualitatively evaluated by visual interpretation. Quantitative assessment was performed by calculation of SUVMAX. Sensitivity, specificity, diagnostic accuracy, area under the curve and interreader agreement were calculated for all lesions and for lesions <10 mm. Histopathology was used as the standard of reference. There were 132 malignant and 40 benign lesions; 23 lesions (13.4%) were <10 mm. Both (18)F-FDG PET/CT and CE-MRI achieved an overall diagnostic accuracy of 93%. There were no significant differences in sensitivity (p = 0.125), specificity (p = 0.344) or diagnostic accuracy (p = 1). For lesions <10 mm, diagnostic accuracy deteriorated to 91% with both (18)F-FDG PET/CT and CE-MRI. Although no significant difference was found for lesions <10 mm, CE-MRI at 3 T seemed to be more sensitive but less specific than (18)F-FDG PET/CT. Interreader agreement was excellent (κ = 0.85 and κ = 0.92). SUVMAX threshold was not helpful in differentiating benign from malignant lesions. (18)F-FDG PET/CT and CE-MRI at 3 T showed equal diagnostic accuracies in breast cancer diagnosis. For lesions <10 mm, diagnostic accuracy deteriorated, but was equal for (18)F-FDG PET/CT and CE-MRI at 3 T. For lesions <10 mm, CE-MRI at 3 T seemed to be more sensitive but less specific

  17. Perception of matching and conflicting audiovisual speech in dyslexic and fluent readers: an fMRI study at 3 T.

    PubMed

    Pekkola, Johanna; Laasonen, Marja; Ojanen, Ville; Autti, Taina; Jääskeläinen, Iiro P; Kujala, Teija; Sams, Mikko

    2006-02-01

    We presented phonetically matching and conflicting audiovisual vowels to 10 dyslexic and 10 fluent-reading young adults during "clustered volume acquisition" functional magnetic resonance imaging (fMRI) at 3 T. We further assessed co-variation between the dyslexic readers' phonological processing abilities, as indexed by neuropsychological test scores, and BOLD signal change within the visual cortex, auditory cortex, and Broca's area. Both dyslexic and fluent readers showed increased activation during observation of phonetically conflicting compared to matching vowels within the classical motor speech regions (Broca's area and the left premotor cortex), this activation difference being more extensive and bilateral in the dyslexic group. The between-group activation difference in conflicting > matching contrast reached significance in the motor speech regions and in the left inferior parietal lobule, with dyslexic readers exhibiting stronger activation than fluent readers. The dyslexic readers' BOLD signal change co-varied with their phonological processing abilities within the visual cortex and Broca's area, and to a lesser extent within the auditory cortex. We suggest these findings as reflecting dyslexic readers' greater use of motor-articulatory and visual strategies during phonetic processing of audiovisual speech, possibly to compensate for their difficulties in auditory speech perception.

  18. In Situ Active Control of Noise in a 4-Tesla MRI Scanner

    PubMed Central

    Li, Mingfeng; Rudd, Brent; Lim, Teik C.; Lee, Jing-Huei

    2011-01-01

    Purpose To evaluate the effectiveness of the proposed active noise control (ANC) system for the reduction of the acoustic noise emission generated by a 4 T MRI scanner during operation and to assess the feasibility of developing an ANC device that can be deployed in situ. Materials and Methods Three typical scanning sequences, namely EPI (echo planar imaging), GEMS (gradient echo multi-slice) and MDEFT (Modified Driven Equilibrium Fourier Transform), were used for evaluating the performance of the ANC system, which was composed of a magnetic compatible headset and a multiple reference feedforward filtered-x least mean square controller. Results The greatest reduction, about 55 dB, was achieved at the harmonic at a frequency of 1.3 kHz in the GEMS case. Approximately 21 dB and 30 dBA overall reduction was achieved for GEMS noise across the entire audible frequency range. For the MDEFT sequence, the control system achieved 14 dB and 14 dBA overall reduction in the audible frequency range, while 13 dB and 14 dBA reduction was obtained for the EPI case. Conclusion The result is highly encouraging because it shows great potential for treating MRI noise with an ANC application during real time scanning. PMID:21751284

  19. Whole-Body MRI Virtual Autopsy Using Diffusion-weighted Imaging With Background Suppression (DWIBS) at 3 T in a Child Succumbing to Chordoma.

    PubMed

    Andronikou, Savvas; Kemp, Marnie L; Meiring, Michelle

    2017-03-01

    We report the use of diffusion-weighted imaging with background suppression (DWIBS) in pediatric virtual magnetic resonance imaging (MRI) autopsy of a child who succumbed to chordoma. A 10-year-old girl who succumbed to relapse of a chordoma underwent whole-body virtual MRI autopsy 12 hours postmortem with short Tau inversion recovery (STIR) and DWIBS on 3 T, which demonstrated the primary mass, local and cardiac invasion, and metastatic disease to the thorax, abdomen, head/neck, and musculoskeletal system. Postmortem virtual MRI autopsy including DWIBS successfully demonstrated the transthoracic spread of chordoma and invasion of the heart, resulting in blood-borne metastases. Motion and respiratory artifact were not factors during virtual autopsy using DWIBS on 3 T, making ideal use of this technology.

  20. Inner experience in the scanner: can high fidelity apprehensions of inner experience be integrated with fMRI?

    PubMed Central

    Kühn, Simone; Fernyhough, Charles; Alderson-Day, Benjamin; Hurlburt, Russell T.

    2014-01-01

    To provide full accounts of human experience and behavior, research in cognitive neuroscience must be linked to inner experience, but introspective reports of inner experience have often been found to be unreliable. The present case study aimed at providing proof of principle that introspection using one method, descriptive experience sampling (DES), can be reliably integrated with fMRI. A participant was trained in the DES method, followed by nine sessions of sampling within an MRI scanner. During moments where the DES interview revealed ongoing inner speaking, fMRI data reliably showed activation in classic speech processing areas including left inferior frontal gyrus. Further, the fMRI data validated the participant’s DES observations of the experiential distinction between inner speaking and innerly hearing her own voice. These results highlight the precision and validity of the DES method as a technique of exploring inner experience and the utility of combining such methods with fMRI. PMID:25538649

  1. Apparent diffusion coefficient measurements of bilateral kidneys at 3 T MRI: effects of age, gender, and laterality in healthy adults.

    PubMed

    Suo, S-T; Cao, M-Q; Ding, Y-Z; Yao, Q-Y; Wu, G-Y; Xu, J-R

    2014-12-01

    To investigate the effects of age and gender on apparent diffusion coefficient (ADC) measurements of bilateral kidneys at 3 T MRI, and compare the ADC values of left and right kidneys. In all, 137 healthy participants (mean age 42.8 ± 14.7 years; age range 16-75 years) comprising 68 male and 69 female participants were enrolled. Three Tesla echo-planar diffusion-weighted imaging (DWI) of bilateral kidneys was performed and ADC values were measured in the cortex, medulla, and whole parenchyma. Pearson correlation analysis and linear regression were performed to determine the associations between the ADC values in each region and age. Effects of age and gender on ADC values were analysed using two-factor analysis of variance (ANOVA). The paired-samples t-test was established to compare the ADC values between left and right kidneys. ADC values were significantly higher in the young group (≤50 years) than in the old group (>50 years), and correlated inversely with the age in all regions. Male participants had higher ADC values than female participants in all regions except left medulla. Two-factor ANOVA of age × gender showed no significant interactions between the variables age and gender were found. No significant differences in ADC values between left and right kidneys were observed. Renal ADC values are age- and gender-dependent, and show no significant difference between left and right kidneys. Age- and gender-related effects should be taken into consideration in future renal DWI studies when using normal ADC values from health controls. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  2. Characteristics of Detected and Missed Prostate Cancer Foci on 3-T Multiparametric MRI Using an Endorectal Coil Correlated With Whole-Mount Thin-Section Histopathology

    PubMed Central

    Tan, Nelly; Margolis, Daniel J.; Lu, David Y.; King, Kevin G.; Huang, Jiaoti; Reiter, Robert E.; Raman, Steven S.

    2016-01-01

    OBJECTIVE The objective of this study was to determine the characteristics of prostate cancer foci missed on 3-T multiparametric MRI performed with an endorectal coil. MATERIALS AND METHODS The MRI examinations of 122 patients who underwent 3-T multiparametric MRI of the prostate with an endorectal coil were compared with whole-mount histopathology obtained after radical prostatectomy. The mean age of the patients was 60.6 years (SD, 7.6 years), and the mean prostate-specific antigen value was 7.2 ng/mL (SD, 5.9 ng/mL). The clinical, multiparametric MRI (i.e., T2-weighted imaging, diffusion-weighted imaging, and dynamic contrast-enhanced imaging), and histopathologic features were obtained. After an independent review, two blinded genitourinary radiologists matched each case with a genitourinary pathologist. A structured reporting system was used to classify the multiparametric MRI features of each MRI-detected lesion. A chi-square analysis was performed for categoric variables, and the t test was performed for continuous variables. RESULTS On whole-mount histopathology, 285 prostate cancer foci were detected in 122 patients. Of the 285 cancer foci detected at histopathology, 153 (53.3%) were missed on MRI and 132 (46.7%) were detected on MRI. Of the missed lesions, 75.2% were low-grade prostate cancer. Multiparametric MRI had a significantly higher sensitivity for prostate cancer foci 1 cm or larger than for subcentimeter foci (81.1% vs 18.9%, respectively; p < 0.001), for lesions with a Gleason score of 7 or greater than for lesions with a Gleason score of 6 (72.7% vs 27.3%; p < 0.01), and for index lesions than for satellite lesions (80.3% vs 20.8%; p < 0.01). The 3-T multiparametric MRI examinations showed a higher detection rate for lesions in the midgland or base of the gland compared with lesions in the apex (52.3% vs 22.0%, respectively; p < 0.01). CONCLUSION Compared with the prostate cancer lesions that were detected on multiparametric MRI, the prostate

  3. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    PubMed

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)).

  4. Numerical evaluation of E-fields induced by body motion near high-field MRI scanner.

    PubMed

    Crozier, S; Liu, F

    2004-01-01

    In modern magnetic resonance imaging (MRI), both patients and radiologists are exposed to strong, nonuniform static magnetic fields inside or outside of the scanner, in which the body movement may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in the human model when moving at various positions around the magnet. The numerical calculations are based on an efficient, quasistatic, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively-shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are easy to extrapolate to very high field strengths for the safety evaluation at a variety of field strengths and motion velocities.

  5. Usefulness of metal artifact reduction with WARP technique at 1.5 and 3T MRI in imaging metal-on-metal hip resurfacings.

    PubMed

    Lazik, Andrea; Landgraeber, Stefan; Schulte, Patrick; Kraff, Oliver; Lauenstein, Thomas C; Theysohn, Jens M

    2015-07-01

    To evaluate the usefulness of the metal artifact reduction technique "WARP" in the assessment of metal-on-metal hip resurfacings at 1.5 and 3T in the context of image quality and imaging speed. Nineteen patients (25 hip resurfacings) were randomized for 1.5 and 3T MRI, both including T1 and T2 turbo spin-echo as well as turbo inversion recovery magnitude sequences with and without view angle tilting and high bandwidth. Additional 3T sequences were acquired with a reduced number of averages and using the parallel acquisition technique for accelerating imaging speed. Artifact size (diameter, area), image quality (5-point scale) and delineation of anatomical structures were compared among the techniques, sequences and field strengths using the Wilcoxon sign-rank and paired t-test with Bonferroni correction. At both field strengths, WARP showed significant superiority over standard sequences regarding image quality, artifact size and delineation of anatomical structures. At 3T, artifacts were larger compared to 1.5T without affecting diagnostic quality, and scanning time could be reduced by up to 64 % without quality degradation. WARP proved useful in imaging metal-on-metal hip resurfacings at 1.5T as well as 3T with better image quality surrounding the implants. At 3T imaging could be considerably accelerated without losing diagnostic quality.

  6. Development and preliminary evaluation of an ultrasonic motor actuated needle guide for 3T MRI-guided transperineal prostate interventions

    NASA Astrophysics Data System (ADS)

    Song, Sang-Eun; Tokuda, Junichi; Tuncali, Kemal; Tempany, Clare; Hata, Nobuhiko

    2012-02-01

    Image guided prostate interventions have been accelerated by Magnetic Resonance Imaging (MRI) and robotic technologies in the past few years. However, transrectal ultrasound (TRUS) guided procedure still remains as vast majority in clinical practice due to engineering and clinical complexity of the MRI-guided robotic interventions. Subsequently, great advantages and increasing availability of MRI have not been utilized at its maximum capacity in clinic. To benefit patients from the advantages of MRI, we developed an MRI-compatible motorized needle guide device "Smart Template" that resembles a conventional prostate template to perform MRI-guided prostate interventions with minimal changes in the clinical procedure. The requirements and specifications of the Smart Template were identified from our latest MRI-guided intervention system that has been clinically used in manual mode for prostate biopsy. Smart Template consists of vertical and horizontal crossbars that are driven by two ultrasonic motors via timing-belt and mitergear transmissions. Navigation software that controls the crossbar position to provide needle insertion positions was also developed. The software can be operated independently or interactively with an open-source navigation software, 3D Slicer, that has been developed for prostate intervention. As preliminary evaluation, MRI distortion and SNR test were conducted. Significant MRI distortion was found close to the threaded brass alloy components of the template. However, the affected volume was limited outside the clinical region of interest. SNR values over routine MRI scan sequences for prostate biopsy indicated insignificant image degradation during the presence of the robotic system and actuation of the ultrasonic motors.

  7. Occupational exposure of healthcare and research staff to static magnetic stray fields from 1.5–7 Tesla MRI scanners is associated with reporting of transient symptoms

    PubMed Central

    Schaap, Kristel; Christopher-de Vries, Yvette; Mason, Catherine K; de Vocht, Frank; Portengen, Lützen; Kromhout, Hans

    2014-01-01

    Objectives Limited data is available about incidence of acute transient symptoms associated with occupational exposure to static magnetic stray fields from MRI scanners. We aimed to assess the incidence of these symptoms among healthcare and research staff working with MRI scanners, and their association with static magnetic field exposure. Methods We performed an observational study among 361 employees of 14 clinical and research MRI facilities in The Netherlands. Each participant completed a diary during one or more work shifts inside and/or outside the MRI facility, reporting work activities and symptoms (from a list of potentially MRI-related symptoms, complemented with unrelated symptoms) experienced during a working day. We analysed 633 diaries. Exposure categories were defined by strength and type of MRI scanner, using non-MRI shifts as the reference category for statistical analysis. Non-MRI shifts originated from MRI staff who also participated on MRI days, as well as CT radiographers who never worked with MRI. Results Varying per exposure category, symptoms were reported during 16–39% of the MRI work shifts. We observed a positive association between scanner strength and reported symptoms among healthcare and research staff working with closed-bore MRI scanners of 1.5 Tesla (T) and higher (1.5 T OR=1.88; 3.0 T OR=2.14; 7.0 T OR=4.17). This finding was mainly driven by reporting of vertigo and metallic taste. Conclusions The results suggest an exposure-response association between exposure to strong static magnetic fields (and associated motion-induced time-varying magnetic fields) and reporting of transient symptoms on the same day of exposure. Trial registration number 11-032/C PMID:24714654

  8. Comprehensive Small Animal Imaging Strategies on a Clinical 3 T Dedicated Head MR-Scanner; Adapted Methods and Sequence Protocols in CNS Pathologies

    PubMed Central

    Pillai, Deepu R.; Heidemann, Robin M.; Lanz, Titus; Dittmar, Michael S.; Sandner, Beatrice; Beier, Christoph P.; Weidner, Norbert; Greenlee, Mark W.; Schuierer, Gerhard; Bogdahn, Ulrich; Schlachetzki, Felix

    2011-01-01

    Background Small animal models of human diseases are an indispensable aspect of pre-clinical research. Being dynamic, most pathologies demand extensive longitudinal monitoring to understand disease mechanisms, drug efficacy and side effects. These considerations often demand the concomitant development of monitoring systems with sufficient temporal and spatial resolution. Methodology and Results This study attempts to configure and optimize a clinical 3 Tesla magnetic resonance scanner to facilitate imaging of small animal central nervous system pathologies. The hardware of the scanner was complemented by a custom-built, 4-channel phased array coil system. Extensive modification of standard sequence protocols was carried out based on tissue relaxometric calculations. Proton density differences between the gray and white matter of the rodent spinal cord along with transverse relaxation due to magnetic susceptibility differences at the cortex and striatum of both rats and mice demonstrated statistically significant differences. The employed parallel imaging reconstruction algorithms had distinct properties dependent on the sequence type and in the presence of the contrast agent. The attempt to morphologically phenotype a normal healthy rat brain in multiple planes delineated a number of anatomical regions, and all the clinically relevant sequels following acute cerebral ischemia could be adequately characterized. Changes in blood-brain-barrier permeability following ischemia-reperfusion were also apparent at a later time. Typical characteristics of intra-cerebral haemorrhage at acute and chronic stages were also visualized up to one month. Two models of rodent spinal cord injury were adequately characterized and closely mimicked the results of histological studies. In the employed rodent animal handling system a mouse model of glioblastoma was also studied with unequivocal results. Conclusions The implemented customizations including extensive sequence protocol

  9. Comprehensive small animal imaging strategies on a clinical 3 T dedicated head MR-scanner; adapted methods and sequence protocols in CNS pathologies.

    PubMed

    Pillai, Deepu R; Heidemann, Robin M; Kumar, Praveen; Shanbhag, Nagesh; Lanz, Titus; Dittmar, Michael S; Sandner, Beatrice; Beier, Christoph P; Weidner, Norbert; Greenlee, Mark W; Schuierer, Gerhard; Bogdahn, Ulrich; Schlachetzki, Felix

    2011-02-07

    Small animal models of human diseases are an indispensable aspect of pre-clinical research. Being dynamic, most pathologies demand extensive longitudinal monitoring to understand disease mechanisms, drug efficacy and side effects. These considerations often demand the concomitant development of monitoring systems with sufficient temporal and spatial resolution. This study attempts to configure and optimize a clinical 3 Tesla magnetic resonance scanner to facilitate imaging of small animal central nervous system pathologies. The hardware of the scanner was complemented by a custom-built, 4-channel phased array coil system. Extensive modification of standard sequence protocols was carried out based on tissue relaxometric calculations. Proton density differences between the gray and white matter of the rodent spinal cord along with transverse relaxation due to magnetic susceptibility differences at the cortex and striatum of both rats and mice demonstrated statistically significant differences. The employed parallel imaging reconstruction algorithms had distinct properties dependent on the sequence type and in the presence of the contrast agent. The attempt to morphologically phenotype a normal healthy rat brain in multiple planes delineated a number of anatomical regions, and all the clinically relevant sequels following acute cerebral ischemia could be adequately characterized. Changes in blood-brain-barrier permeability following ischemia-reperfusion were also apparent at a later time. Typical characteristics of intra-cerebral haemorrhage at acute and chronic stages were also visualized up to one month. Two models of rodent spinal cord injury were adequately characterized and closely mimicked the results of histological studies. In the employed rodent animal handling system a mouse model of glioblastoma was also studied with unequivocal results. The implemented customizations including extensive sequence protocol modifications resulted in images of high diagnostic

  10. Design of a loop resonator with a split-ring-resonator (SRR) for a human-body coil in 3 T MRI systems

    NASA Astrophysics Data System (ADS)

    Son, Hyeok Woo; Cho, Young Ki; Kim, Byung Mun; Back, Hyun Man; Yoo, Hyoungsuk

    2016-04-01

    A new radio-frequency (RF) resonator for Nuclear Magnetic Resonance (NMR) imaging at clinical magnetic resonance imaging (MRI) systems is proposed in this paper. An approach based on the effects of the properties of metamaterials in split-ring resonators (SRRs) is used to design a new loop resonator with a SRR for NMR imaging. This loop resonator with a SRR is designed for NMR imaging at 3 T MRI systems. The 3D electromagnetic simulation was used to optimize the design of the proposed RF resonator and analyze it's performance at 3 T MRI systems. The proposed RF resonator provides strong penetrating magnetic fields at the center of the human phantom model, approximately 10%, as compared to the traditional loop-type RF resonator used for NMR imaging at clinical MRI systems. We also designed an 8-channel body coil for human-body NMR imaging by using the proposed loop resonator with a SRR. This body coil also produces more homogeneous and highly penetrating magnetic fields into the human phantom model.

  11. Significance of Additional Non-Mass Enhancement in Patients with Breast Cancer on Preoperative 3T Dynamic Contrast Enhanced MRI of the Breast

    PubMed Central

    Cho, Yun Hee; Cho, Kyu Ran; Park, Eun Kyung; Seo, Bo Kyoung; Woo, Ok Hee; Cho, Sung Bum; Bae, Jeoung Won

    2016-01-01

    Background In preoperative assessment of breast cancer, MRI has been shown to identify more additional breast lesions than are detectable using conventional imaging techniques. The characterization of additional lesions is more important than detection for optimal surgical treatment. Additional breast lesions can be included in focus, mass, and non-mass enhancement (NME) on MRI. According to the fifth edition of the breast imaging reporting and data system (BI-RADS®), which includes several changes in the NME descriptors, few studies to date have evaluated NME in preoperative assessment of breast cancer. Objectives We investigated the diagnostic accuracy of BI-RADS descriptors in predicting malignancy for additional NME lesions detected on preoperative 3T dynamic contrast enhanced MRI (DCE-MRI) in patients with newly diagnosed breast cancer. Patients and Methods Between January 2008 and December 2012, 88 patients were enrolled in our study, all with NME lesions other than the index cancer on preoperative 3T DCE-MRI and all with accompanying histopathologic examination. The MRI findings were analyzed according to the BI-RADS MRI lexicon. We evaluated the size, distribution, internal enhancement pattern, and location of NME lesions relative to the index cancer (i.e., same quadrant, different quadrant, or contralateral breast). Results On histopathologic analysis of the 88 NME lesions, 73 (83%) were malignant and 15 (17%) were benign. Lesion size did not differ significantly between malignant and benign lesions (P = 0.410). Malignancy was more frequent in linear (P = 0.005) and segmental (P = 0.011) distributions, and benignancy was more frequent in focal (P = 0.004) and regional (P < 0.001) NME lesions. The highest positive predictive value (PPV) for malignancy occurred in segmental (96.8%), linear (95.1%), clustered ring (100%), and clumped (92.0%) enhancement. Asymmetry demonstrated a high positive predictive value of 85.9%. The frequency of malignancy was higher

  12. Spatial distortion correction and crystal identification for MRI-compatible position-sensitive avalanche photodiode-based PET scanners.

    PubMed

    Chaudhari, Abhijit J; Joshi, Anand A; Wu, Yibao; Leahy, Richard M; Cherry, Simon R; Badawi, Ramsey D

    2009-06-01

    Position-sensitive avalanche photodiodes (PSAPDs) are gaining widespread acceptance in modern PET scanner designs, and owing to their relative insensitivity to magnetic fields, especially in those that are MRI-compatible. Flood histograms in PET scanners are used to determine the crystal of annihilation photon interaction and hence, for detector characterization and routine quality control. For PET detectors that use PSAPDs, flood histograms show a characteristic pincushion distortion when Anger logic is used for event positioning. A small rotation in the flood histogram is also observed when the detectors are placed in a magnetic field. We first present a general purpose automatic method for spatial distortion correction for flood histograms of PSAPD-based PET detectors when placed both inside and outside a MRI scanner. Analytical formulae derived for this scheme are based on a hybrid approach that combines desirable properties from two existing event positioning schemes. The rotation of the flood histogram due to the magnetic field is determined iteratively and is accounted for in the scheme. We then provide implementation details of a method for crystal identification we have previously proposed and evaluate it for cases when the PET detectors are both outside and in a magnetic field. In this scheme, Fourier analysis is used to generate a lower-order spatial approximation of the distortion-corrected PSAPD flood histogram, which we call the 'template'. The template is then registered to the flood histogram using a diffeomorphic iterative intensity-based warping scheme. The calculated deformation field is then applied to the segmentation of the template to obtain a segmentation of the flood histogram. A manual correction tool is also developed for exceptional cases. We present a quantitative assessment of the proposed distortion correction scheme and crystal identification method against conventional methods. Our results indicate that our proposed methods lead to

  13. Whole Brain Volume Measured from 1.5T versus 3T MRI in Healthy Subjects and Patients with Multiple Sclerosis

    PubMed Central

    Chu, Renxin; Tauhid, Shahamat; Glanz, Bonnie I.; Healy, Brian C.; Kim, Gloria; Oommen, Vinit V.; Khalid, Fariha; Neema, Mohit

    2016-01-01

    ABSTRACT BACKGROUND Whole brain atrophy is a putative outcome measure in monitoring relapsing‐remitting multiple sclerosis (RRMS). With the ongoing MRI transformation from 1.5T to 3T, there is an unmet need to calibrate this change. We evaluated brain parenchymal volumes (BPVs) from 1.5T versus 3T in MS and normal controls (NC). METHODS We studied MS [n = 26, age (mean, range) 43 (21‐55), 22 (85%) RRMS, Expanded Disability Status Scale (EDSS) 1.98 (0‐6.5), timed 25 foot walk (T25FW) 5.95 (3.2‐33.0 seconds)] and NC [n = 9, age 45 (31‐53)]. Subjects underwent 1.5T (Phillips) and 3T (GE) 3‐dimensional T1‐weighted scans to derive normalized BPV from an automated SIENAX pipeline. Neuropsychological testing was according to consensus panel recommendations. RESULTS BPV‐1.5T was higher than BPV‐3T [mean (95% CI) + 45.7 mL (+35.3, +56.1), P < .00001], most likely due to improved tissue‐CSF contrast at 3T. BPV‐3T showed a larger volume decrease and larger effect size in detecting brain atrophy in MS versus NC [−74.5 mL (−126.5, −22.5), P = .006, d = .92] when compared to BPV‐1.5T [−51.3.1 mL (−99.8, −2.8), P = .04, d = .67]. Correlations between BPV‐1.5T and EDSS (r = −.43, P = .027) and BPV‐3T and EDSS (r = −.49, P = .011) and between BPV‐1.5T and T25FW (r = −.46, P = .018) and BPV‐3T and T25FW (r = −.56, P = .003) slightly favored 3T. BPV‐cognition correlations were significant (P < .05) for 6 of 11 subscales to a similar degree at 1.5T (r range = .44‐.58) and 3T (r range = .43‐.53). CONCLUSIONS Field strength may impact whole brain volume measurements in patients with MS though the differences are not too divergent between 1.5T and 3T. PMID:26118637

  14. Multiple-animal MR imaging using a 3T clinical scanner and multi-channel coil for volumetric analysis in a mouse tumor model.

    PubMed

    Mitsuda, Minoru; Yamaguchi, Masayuki; Furuta, Toshihiro; Nabetani, Akira; Hirayama, Akira; Nozaki, Atsushi; Niitsu, Mamoru; Fujii, Hirofumi

    2011-01-01

    Multiple small-animal magnetic resonance (MR) imaging to measure tumor volume may increase the throughput of preclinical cancer research assessing tumor response to novel therapies. We used a clinical scanner and multi-channel coil to evaluate the usefulness of this imaging to assess experimental tumor volume in mice. We performed a phantom study to assess 2-dimensional (2D) geometric distortion using 9-cm spherical and 32-cell (8×4 one-cm(2) grids) phantoms using a 3-tesla clinical MR scanner and dedicated multi-channel coil composed of 16 5-cm circular coils. Employing the multi-channel coil, we simultaneously scanned 6 or 8 mice bearing sarcoma 180 tumors. We estimated tumor volume from the sum of the product of tumor area and slice thickness on 2D spin-echo images (repetition time/echo time, 3500/16 ms; in-plane resolution, 0.195×0.195×1 mm(3)). After MR acquisition, we excised and weighed tumors, calculated reference tumor volumes from actual tumor weight assuming a density of 1.05 g/cm(3), and assessed the correlation between the estimated and reference volumes using Pearson's test. Two-dimensional geometric distortion was acceptable below 5% in the 9-cm spherical phantom and in every cell in the 32-cell phantom. We scanned up to 8 mice simultaneously using the multi-channel coil and found 11 tumors larger than 0.1 g in 12 mice. Tumor volumes were 1.04±0.73 estimated by MR imaging and 1.04±0.80 cm(3) by reference volume (average±standard deviation) and highly correlated (correlation coefficient, 0.995; P<0.01, Pearson's test). Use of multiple small-animal MR imaging employing a clinical scanner and multi-channel coil enabled accurate assessment of experimental tumor volume in a large number of mice and may facilitate high throughput monitoring of tumor response to therapy in preclinical research.

  15. Effective localization in tumor-induced osteomalacia using 68Ga-DOTATOC-PET/CT, venous sampling and 3T-MRI

    PubMed Central

    Kawai, Shintaro; Furukawa, Yasushi; Yamamoto, Reika; Uraki, Shinsuke; Takeshima, Ken; Warigaya, Kenji; Nakamoto, Yuji; Akamizu, Takashi

    2017-01-01

    Summary Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome characterized by renal phosphate wasting leading to hypophosphatemia due to excessive actions of fibroblast growth factor 23 (FGF23) produced by the tumors. Although the best way of curing TIO is complete resection, it is usually difficult to detect the culprit tumors by general radiological modalities owing to the size and location of the tumors. We report a case of TIO in which the identification of the tumor by conventional imaging studies was difficult. Nonetheless, a diagnosis was made possible by effective use of multiple modalities. We initially suspected that the tumor existed in the right dorsal aspect of the scapula by 68Ga-DOTATOC positron emission tomography/computed tomography (68Ga-DOTATOC-PET/CT) and supported the result by systemic venous sampling (SVS). The tumor could also be visualized by 3T-magnetic resonance imaging (MRI), although it was not detected by 1.5T-MRI, and eventually be resected completely. In cases of TIO, a stepwise approach of 68Ga-DOTATOC-PET/CT, SVS and 3T-MRI can be effective for confirmation of diagnosis. Learning points: TIO shows impaired bone metabolism due to excessive actions of FGF23 produced by the tumor. The causative tumors are seldom detected by physical examinations and conventional radiological modalities. In TIO cases, in which the localization of the culprit tumors is difficult, 68Ga-DOTATOC-PET/CT should be performed as a screening of localization and thereafter SVS should be conducted to support the result of the somatostatin receptor (SSTR) imaging leading to increased diagnosability. When the culprit tumors cannot be visualized by conventional imaging studies, using high-field MRI at 3T and comparing it to the opposite side are useful after the tumor site was determined. PMID:28469928

  16. 3D-FIESTA MRI at 3 T demonstrating branches of the intraparotid facial nerve, parotid ducts and relation with benign parotid tumours.

    PubMed

    Li, Chuanting; Li, Yan; Zhang, Dongsheng; Yang, Zhenzhen; Wu, Lebin

    2012-11-01

    To investigate the usefulness of three-dimensional (3D) fast imaging employing steady state precession (FIESTA) magnetic resonance imaging (MRI) at 3 T in evaluating the intraparotid components of the facial nerve and parotid ducts, and to compare the MRI images with surgical findings. Thirty-one cases of benign parotid tumours were studied with conventional and 3D FIESTA MRI sequences at 3T using a head coil. The most clinically useful 3D FIESTA images were acquired at parameters of 4.9 ms repetition time (TR); 1.5 effective echo time (TEeff); a flip of 55°, a field of view of 18 to 20 cm, a matrix of 512 × 320, an axial plane, no gaps, and a section thickness of 1 mm. Post-processed multiplanar images were obtained with an Advantage Windows (AW sdc 4.3) workstation. Parotid ducts, facial nerves, and tumours were identified on these images. The relationship of the tumours to the facial nerves and parotid ducts was confirmed at surgery. The facial nerves appeared as linear structures of low intensity. The main trunk of the facial nerve was identified bilaterally in 93.5% of the 3D-FIESTA sequence images. Parotid ducts appeared as structures of high intensity on multiplanar 3D-FIESTA images (100%). The relationships of the tumours with the cervicofacial and temporofacial divisions of the facial nerve were correctly diagnosed in 26 of 31 cases (83.9%) using 3D-FIESTA sequence images. 3D-FIESTA MRI at 3 T depicted the main trunk, cervicofacial and temporofacial divisions of the facial nerve, and the main parotid duct. It is useful for preoperative evaluation of parotid gland tumours. Copyright © 2012 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. Visceral pain perception in patients with irritable bowel syndrome and healthy volunteers is affected by the MRI scanner environment

    PubMed Central

    Wong, Reuben K; Van Oudenhove, Lukas; Li, Xinhua; Cao, Yang; Ho, Khek Yu

    2015-01-01

    Background The MRI scanner environment induces marked psychological effects, but specific effects on pain perception and processing are unknown and relevant to all brain imaging studies. Objectives and methods We performed visceral and somatic quantitative sensory and pain testing and studied endogenous pain modulation by heterotopic stimulation outside and inside the functional MRI scanner in 11 healthy controls and 13 patients with irritable bowel syndrome. Results Rectal pain intensity (VAS 0–100) during identical distension pressures increased from 39 (95% confidence interval: 35–42) outside the scanner to 53 (43–63) inside the scanner in irritable bowel syndrome, and from 42 (31–52) to 49 (39–58), respectively, in controls (ANOVA for scanner effect: p = 0.006, group effect: p = 0.92). The difference in rectal pain outside versus inside correlated significantly with stress (r = −0.76, p = 0.006), anxiety (r = −0.68, p = 0.02) and depression scores (r = −0.67, p = 0.02) in controls, but not in irritable bowel syndrome patients, who a priori had significantly higher stress and anxiety scores. ANOVA analysis showed trends for effect of the scanner environment and subject group on endogenous pain modulation (p = 0.09 and p = 0.1, respectively), but not on somatic pain (p > 0.3). Conclusion The scanner environment significantly increased visceral, but not somatic, pain perception in irritable bowel syndrome patients and healthy controls in a protocol specifically aimed at investigating visceral pain. Psychological factors, including anxiety and stress, are the likely underlying causes, whereas classic endogenous pain modulation pathways activated by heterotopic stimulation play a lesser role. These results are highly relevant to a wide range of imaging applications and need to be taken into account in future pain research. Further controlled studies are indicated to clarify these findings. PMID:26966533

  18. A cradle-shaped gradient coil to expand the clear-bore width of an animal MRI scanner.

    PubMed

    Gilbert, K M; Gati, J S; Klassen, L M; Menon, R S

    2010-01-21

    The never ending quest for higher magnetic field strengths in MRI and MRS has led to small and medium bore scanners at 9.4 T and above for both human and animal use; however, these bore diameters restrict the size of object that can be accommodated when using a conventional gradient coil. By replacing a cylindrical gradient-coil insert with a single-sided gradient coil, the scanner's functionality can be extended to include localized imaging of wider samples. As a prototype, a three-axis, cradle-shaped gradient coil was designed, fabricated and implemented in a 9.4 T animal MRI scanner. Since gradient fields are required only to be monotonic over the desired field of view, the cradle gradient coil was designed to produce high gradient efficiencies (up to 2.25 mT m(-1) A(-1) over a 5 cm imaging region) at the expense of gradient linearity. A dedicated three-dimensional algorithm was developed to correct the resultant image distortion. Preliminary images of a grid phantom and a mouse demonstrated the fidelity of the algorithm in correcting image distortion of greater than 200%. Eddy currents were measured along each gradient axis. A large 65.2 (Hz mT(-1) m) B(0) eddy current was produced by the y-axis, suggesting potential limitations of single-sided gradient coils.

  19. Superficial amygdala and hippocampal activity during affective music listening observed at 3 T but not 1.5 T fMRI.

    PubMed

    Skouras, Stavros; Gray, Marcus; Critchley, Hugo; Koelsch, Stefan

    2014-11-01

    The purpose of this study was to compare 3 T and 1.5 T fMRI results during emotional music listening. Stimuli comprised of psychoacoustically balanced instrumental musical pieces, with three different affective expressions (fear, neutral, joy). Participants (N=32) were split into two groups, one subjected to fMRI scanning using 3 T and another group scanned using 1.5 T. Whole brain t-tests (corrected for multiple comparisons) compared joy and fear in each of the two groups. The 3 T group showed significant activity differences between joy and fear localized in bilateral superficial amygdala, bilateral hippocampus and bilateral auditory cortex. The 1.5 T group showed significant activity differences between joy and fear localized in bilateral auditory cortex and cuneus. This is the first study to compare results obtained under different field strengths with regard to affective processes elicited by means of auditory/musical stimulation. The findings raise concern over false negatives in the superficial amygdala and hippocampus in affective studies conducted under 1.5 T and caution that imaging improvements due to increasing magnetic field strength can be influenced by region-specific characteristics.

  20. Bone erosions in patients with chronic gouty arthropathy are associated with tophi but not bone oedema or synovitis: new insights from a 3 T MRI study.

    PubMed

    McQueen, Fiona M; Doyle, Anthony; Reeves, Quentin; Gao, Angela; Tsai, Amy; Gamble, Greg D; Curteis, Barbara; Williams, Megan; Dalbeth, Nicola

    2014-01-01

    Bone erosion has been linked with tophus deposition in gout but the roles of osteitis (MRI bone oedema) and synovitis remain uncertain. Our aims in this prospective 3 T MRI study were to investigate the frequency of these features in gout and determine their relation to one another. 3 T MRI scans of the wrist were obtained in 40 gout patients. Scans were scored independently by two radiologists for bone oedema, erosions, tophi and synovitis. Dual-energy CT (DECT) scans were scored for tophi in a subgroup of 10 patients. Interreader reliability was high for erosions and tophi [intraclass correlation coefficients (ICCs) 0.77 (95% CI 0.71, 0.87) and 0.71 (95% CI 0.52, 0.83)] and moderate for bone oedema [ICC = 0.60 (95% CI 0.36, 0.77)]. Compared with DECT, MRI had a specificity of 0.98 (95% CI 0.93, 0.99) and sensitivity of 0.63 (95% CI 0.48, 0.76) for tophi. Erosions were detected in 63% of patients and were strongly associated with tophi [odds ratio (OR) = 13.0 (95% CI 1.5, 113)]. In contrast, no association was found between erosions and bone oedema. Using concordant data, bone oedema was scored at 6/548 (1%) sites in 5/40 patients (12.5%) and was very mild (median carpal score = 1, maximum = 45). In logistic regression analysis across all joints nested within individuals, tophus, but not synovitis, was independently associated with erosion [OR = 156.5 (21.2, >999.9), P < 0.0001]. Erosions were strongly associated with tophi but not bone oedema or synovitis. MRI bone oedema was relatively uncommon and low grade. These findings highlight the unique nature of the osteopathology of gout.

  1. Quantitative planar and volumetric cardiac measurements using 64 MDCT and 3T MRI versus standard 2D and M-mode echocardiography: Does anesthetic protocol matter?

    PubMed Central

    Drees, Randi; Johnson, Rebecca A; Stepien, Rebecca L; Rio, Alejandro Munoz Del; Saunders, Jimmy H; François, Christopher J

    2016-01-01

    Cross-sectional imaging of the heart utilizing computed tomography (CT) and magnetic resonance imaging (MRI) has been shown to be superior for the evaluation of cardiac morphology and systolic function in humans compared to echocardiography. The purpose of this prospective study was to test the effects of two different anesthetic protocols on cardiac measurements in 10 healthy beagle dogs using 64-multidetector row computed tomographic angiography (64-MDCTA), 3T magnetic resonance (MRI) and standard awake echocardiography. Both anesthetic protocols used propofol for induction and isoflourane for anesthetic maintenance. In addition, protocol A used midazolam/fentanyl and protocol B used dexmedetomedine as premedication and constant rate infusion during the procedure. Significant elevations in systolic and mean blood pressure were present when using protocol B. There was overall good agreement between the variables of cardiac size and systolic function generated from the MDCTA and MRI exams and no significant difference was found when comparing the variables acquired using either anesthetic protocol within each modality. Systolic function variables generated using 64-MDCTA and 3T MRI were only able to predict the left ventricular end diastolic volume as measured during awake echocardiogram when using protocol B and 64-MDCTA. For all other systolic function variables, prediction of awake echocardiographic results was not possible (P = 1). Planar variables acquired using MDCTA or MRI did not allow prediction of the corresponding measurements generated using echocardiography in the awake patients (P=1). Future studies are needed to validate this approach in a more varied population and clinically affected dogs. PMID:26082285

  2. Development of 1.45-mm resolution four-layer DOI-PET detector for simultaneous measurement in 3T MRI.

    PubMed

    Nishikido, Fumihiko; Tachibana, Atsushi; Obata, Takayuki; Inadama, Naoko; Yoshida, Eiji; Suga, Mikio; Murayama, Hideo; Yamaya, Taiga

    2015-01-01

    Recently, various types of PET-MRI systems have been developed by a number of research groups. However, almost all of the PET detectors used in these PET-MRI systems have no depth-of-interaction (DOI) capability. The DOI detector can reduce the parallax error and lead to improvement of the performance. We are developing a new PET-MRI system which consists of four-layer DOI detectors positioned close to the measured object to achieve high spatial resolution and high scanner sensitivity. As a first step, we are investigating influences the PET detector and the MRI system have on each other using a prototype four-layer DOI-PET detector. This prototype detector consists of a lutetium yttrium orthosilicate crystal block and a 4 × 4 multi-pixel photon counter array. The size of each crystal element is 1.45 mm × 1.45 mm × 4.5 mm, and the crystals are arranged in 6 × 6 elements × 4 layers with reflectors. The detector and some electric components are packaged in an aluminum shielding box. Experiments were carried out with 3.0 T MRI (GE, Signa HDx) and a birdcage-type RF coil. We demonstrated that the DOI-PET detector was normally operated in simultaneous measurements with no influence of the MRI measurement. A slight influence of the PET detector on the static magnetic field of the MRI was observed near the PET detector. The signal-to-noise ratio was decreased by presence of the PET detector due to environmental noise entering the MRI room through the cables, even though the PET detector was not powered up. On the other hand, no influence of electric noise from the PET detector in the simultaneous measurement on the MRI images was observed, even though the PET detector was positioned near the RF coil.

  3. The diagnostic performance of non-contrast 3-Tesla magnetic resonance imaging (3-T MRI) versus 1.5-Tesla magnetic resonance arthrography (1.5-T MRA) in femoro-acetabular impingement.

    PubMed

    Crespo-Rodríguez, Ana M; De Lucas-Villarrubia, Jose C; Pastrana-Ledesma, Miguel; Hualde-Juvera, Ana; Méndez-Alonso, Santiago; Padron, Mario

    2017-03-01

    The aim of this study was to evaluate the diagnostic accuracy of 3-T non-contrast MRI versus 1.5-T MRA for assessing labrum and articular cartilage lesions in patients with clinical suspicion of femoro-acetabular impingement (FAI). Fifty patients (thirty men and twenty women, mean age 42.5 years) underwent 1.5-T MRA, 3-T MRI and arthroscopy on the same hip. An optimized high-resolution proton density spin echo pulse sequence was included in the 3-T non-contrast MRI protocol. The 3-T non-contrast MRI identified forty-two of the forty-three arthroscopically proven tears at the labral-chondral transitional zone (sensitivity, 97.7%; specificity, 100%; positive predictive value (PPV), 100%; negative predictive value (NPV), 87.5%; accuracy 98%). With 1.5-T MRA, forty-four tears were diagnosed. However, there was one false positive (sensitivity, 100%; specificity, 85.7%; PPV, 97.7%; NPV, 100%; accuracy 98%). Agreement between arthroscopy and MRI, whether 3-T non-contrast MRI or 1.5-T MRA, as to the degree of chondral lesion in the acetabulum was reached in half of the patients and in the femur in 76% of patients. Non-invasive assessment of the hip is possible with 3-T MR magnet. 3-T non-contrast MRI could replace MRA as the workhorse technique for assessing hip internal damage. MRA would then be reserved for young adults with a strong clinical suspicion of FAI but normal findings on 3-T non-contrast MRI. When compared with 1.5-T MRA, optimized sequences with 3-T non-contrast MRI help in detecting normal variants and in diagnosing articular cartilage lesions. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. PET performance evaluation of MADPET4: a small animal PET insert for a 7-Tesla MRI scanner.

    PubMed

    Omidvari, Negar; Cabello, Jorge; Topping, Geoffrey; Schneider, Florian Roland; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I

    2017-10-04

    MADPET4 is the first small animal PET insert with two layers of individually read out crystals in combination with silicon photomultiplier technology. It has a novel detector arrangement, in which all crystals face the center of field of view transaxially. In this work, the PET performance of MADPET4 was evaluated and compared to other preclinical PET scanners using the NEMA NU 4 measurements, followed by imaging a mouse-size hot-rod resolution phantom and two in vivo simultaneous PET/MRI scans in a 7-T MRI scanner. The insert had a peak sensitivity of 0.49%, using an energy threshold of 350 keV. A uniform transaxial resolution was obtained up to 15 mm radial offset from the axial center, using filtered back-projection with single-slice rebinning. The measured average radial and tangential resolutions (FWHM) were 1.38 mm and 1.39 mm, respectively. The 1.2 mm rods were separable in the hot-rod phantom using an iterative image reconstruction algorithm. The scatter fraction was 7.3% and peak noise equivalent count rate was 15.5 kcps at 65.1 MBq of activity. The FDG uptake in a mouse heart and brain were visible in the two in vivo simultaneous PET/MRI scans without applying image corrections. In conclusion, the insert demonstrated a good overall performance and can be used for small animal multi-modal research applications. © 2017 Institute of Physics and Engineering in Medicine.

  5. Quantitative PET imaging with the 3T MR-BrainPET

    NASA Astrophysics Data System (ADS)

    Weirich, C.; Scheins, J.; Lohmann, P.; Tellmann, L.; Byars, L.; Michel, C.; Rota Kops, E.; Brenner, D.; Herzog, H.; Shah, N. J.

    2013-02-01

    The new hybrid imaging technology of MR-PET allows for simultaneous acquisition of versatile MRI contrasts and the quantitative metabolic imaging with PET. In order to achieve the quantification of PET images with minimal residual error the application of several corrections is crucial. In this work we present our results on quantification with the 3T MR BrainPET scanner.

  6. Force and torque effects of a 1.5-Tesla MRI scanner on cardiac pacemakers and ICDs.

    PubMed

    Luechinger, R; Duru, F; Scheidegger, M B; Boesiger, P; Candinas, R

    2001-02-01

    Magnetic resonance imaging (MRI) is a widely accepted tool for the diagnosis of a variety of disease states. However, the presence of an implanted pacemaker is considered to be a strict contraindication to MRI in a vast majority of centers due to safety concerns. In phantom studies, the authors investigated the force and torque effects of the static magnetic field of MRI on pacemakers and ICDs. Thirty-one pacemakers (15 dual chamber and 16 single chamber units) from eight manufacturers and 13 ICDs from four manufacturers were exposed to the static magnetic field of a 1.5-Tesla MRI scanner. Magnetic force and acceleration measurements were obtained quantitatively, and torque measurements were made qualitatively. For pacemakers, the measured magnetic force was in the range of 0.05-3.60 N. Pacemakers released after 1995 had low magnetic force values as compared to the older devices. For these devices, the measured acceleration was even lower than the gravity of the earth (< 9.81 N/kg). Likewise, the torque levels were significantly reduced in newer generation pacemakers (< or = 2 from a scale of 6). ICD devices, except for one recent model, showed higher force (1.03-5.85 N), acceleration 9.5-34.2 N/kg), and torque (5-6 out of 6) levels. In conclusion, modern pacemakers present no safety risk with respect to magnetic force and torque induced by the static magnetic field of a 1.5-Tesla MRI scanner. However, ICD devices, despite considerable reduction in size and weight, may still pose problems due to strong magnetic force and torque.

  7. Reliability of a 3 T MRI protocol for objective grading of supraspinatus tendonosis and partial thickness tears.

    PubMed

    Bauer, Stefan; Wang, Allan; Butler, Rodney; Fallon, Michael; Nairn, Robert; Budgeon, Charley; Breidahl, William; Zheng, Ming-Hao

    2014-12-18

    Partial thickness supraspinatus tears and tendonosis can be managed either nonoperatively or by various arthroscopic techniques. New biologic treatment approaches are currently being investigated. MRI is commonly used for objective imaging outcome evaluation but there is a lack of reliability studies. We propose a novel MRI classification of partial supraspinatus tears and tendonosis and evaluate its inter-observer and intra-observer reliability. Digital MRI scans (3 Tesla) of 65 patients investigated for assessment of supraspinatus pathology or subacromial impingement were evaluated by three independent and experienced musculoskeletal (MSK) radiologists. Tendonosis (absent, focal, generalized), partial thickness (PT) tears (absent, 0%-25% PT, 25%-50% PT, 50%-100% PT, and full thickness tears), and anteroposterior extent of tears (less than 5 mm, 5-10 mm, greater than 10 mm) were scored by each radiologist on two separate occasions (t1, t2), 2 months apart. The inter-observer and intra-observer agreement and weighted kappa values for each parameter were calculated. The range of weighted intra-observer kappa (IAK) was 0.84-0.93 for evaluation of tendonosis; 0.84 (all raters) for depth of partial thickness, 0.74-0.84 for AP tear size, and 0.83-0.85 for the total score. The range of weighted inter-observer kappa (IEK) over two time points (t1, t2) was 0.55-0.74 for tendonosis, 0.69-0.84 for depth for partial thickness tears, 0.57-0.80 for AP tear size, and 0.63-0.80 for the total score. A comprehensive MRI grading protocol is proposed and is reliable for the evaluation of supraspinatus tendonosis and partial thickness tears with good to excellent kappa values. This rotator cuff MRI protocol can be applied to evaluate morphological tendon outcomes after different treatment modalities.

  8. Commissioning of a new wide-bore MRI scanner for radiotherapy planning of head and neck cancer.

    PubMed

    Liney, G P; Owen, S C; Beaumont, A K E; Lazar, V R; Manton, D J; Beavis, A W

    2013-07-01

    A combination of CT and MRI is recommended for radiotherapy planning of head and neck cancers, and optimal spatial co-registration is achieved by imaging in the treatment position using the necessary immobilisation devices on both occasions, something which requires wide-bore scanners. Quality assurance experiments were carried out to commission a newly installed 1.5-T wide-bore MRI scanner and a dedicated, flexible six-channel phased array head and neck coil. Signal-to-noise ratio (SNR) and spatial signal uniformity were quantified using a homogeneous aqueous phantom, and geometric distortion was quantified using a phantom with water-filled fiducials in a grid pattern. Volunteer scans were also used to determine the in vivo image quality. Clinically relevant T1 weighted and T2 weighted fat-suppressed sequences were assessed in multiple scan planes (both sequences fast spin echo based). The performance of two online signal uniformity correction schemes, one utilising low-resolution reference scans and the other not utilising low-resolution reference scans, was compared. Geometric distortions, for a ±35-kHz bandwidth, were <1 mm for locations within 10 cm of the isocentre rising to 1.8 mm at 18 cm away. SNR was above 50, and uniformity in the axial plane was 71% and 95% before and after uniformity correction, respectively. The combined performance of the wide-bore scanner and the dedicated coil was adjudged adequate, although superior-inferior spatial coverage was slightly limited in the lower neck. These results will be of interest to the increasing number of oncology centres that are seeking to incorporate MRI into planning practice using dedicated equipment.

  9. Quantitative Tractography and Volumetric MRI in Blast and Blunt Force TBI: Predictors of Neurocognitive and Behavioral Outcome

    DTIC Science & Technology

    2013-10-01

    All participants underwent structural MRI and DTI on 3T General Electric MRI scanners housed within the UCSDFunctionalMagnetic Resonance Imaging (FMRI...Center on the UCSD La Jolla campus. Thirty-five par- ticipants (78%) were scanned with the scanner running the Excite HDx platform and, following the...FMRI Cen- ter’s scanner upgrade, data on 10 subjects were acquired with the scanner running the MR750 platform. Several studies support the

  10. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept.

    PubMed

    Raaymakers, B W; Lagendijk, J J W; Overweg, J; Kok, J G M; Raaijmakers, A J E; Kerkhof, E M; van der Put, R W; Meijsing, I; Crijns, S P M; Benedosso, F; van Vulpen, M; de Graaff, C H W; Allen, J; Brown, K J

    2009-06-21

    At the UMC Utrecht, The Netherlands, we have constructed a prototype MRI accelerator. The prototype is a modified 6 MV Elekta (Crawley, UK) accelerator next to a modified 1.5 T Philips Achieva (Best, The Netherlands) MRI system. From the initial design onwards, modifications to both systems were aimed to yield simultaneous and unhampered operation of the MRI and the accelerator. Indeed, the simultaneous operation is shown by performing diagnostic quality 1.5 T MRI with the radiation beam on. No degradation of the performance of either system was found. The integrated 1.5 T MRI system and radiotherapy accelerator allow simultaneous irradiation and MR imaging. The full diagnostic imaging capacities of the MRI can be used; dedicated sequences for MRI-guided radiotherapy treatments will be developed. This proof of concept opens the door towards a clinical prototype to start testing MRI-guided radiation therapy (MRIgRT) in the clinic.

  11. MRI-Based Liver Iron Content Determination at 3T in Regularly Transfused Patients by Signal Intensity Ratio Using an Alternative Analysis Approach Based on R2* Theory.

    PubMed

    Wunderlich, A P; Cario, H; Bommer, M; Beer, M; Schmidt, S A; Juchems, M S

    2016-09-01

    To evaluate the feasibility of addressing liver iron content (LIC) in regularly transfused patients by MR imaging at 3 T based on the signal intensity ratio (SIR). An innovative data analysis approach was developed for this purpose. 47 consecutive examinations of regularly transfused patients were included. In all cases, we expected high LIC levels. Patients were scanned with MRI at 3 T with multi-echo gradient echo sequences (GRE) at four different flip angles between 20° and 90° with echo times (TE) ranging from 0.9 to 9.8 ms. Spin-echo protocols were acquired to determine the LIC with a reference MRI method working at 1.5 T. 3 T GRE data were analyzed using the liver-to-muscle SIR. Since the method known for 1.5 T was not expected to be applicable for analyzing 3 T data, theoretic dependence of the SIR on the LIC was derived from the equation describing R2* signal decay. Obtained SIR values were correlated to reference LIC to get a relation for calculating LIC from SIR quantities. LIC values and their uncertainties were determined from GRE data and correlated to LIC reference values. For two LIC thresholds, the diagnostic accuracy was determined. LIC was reliably determined from SIR in our patient cohort even for large LIC values. Median of LIC uncertainties was 10 %, and the diagnostic accuracy was 0.92 and 0.91, respectively. Determination of even high LIC, resulting in small SIR values, is feasible at 3 T using appropriate SIR analysis. • Determination of Liver Iron Concentration (LIC) based on GRE MRI at 3T is feasible even for high LIC levels using Signal Intensiy Ratios. • Relative uncertainty of LIC determined with 3T GRE MRI was below 13 % in most cases. • The patient-management relevant threshold (LIC = 80 µmol/g (4.5 mg/g)) yielded an accuracy of .92 in our cohort. • The proposed method is quick and simple, both in terms of data acquisition and analysis. Citation Format: • Wunderlich AP, Cario H, Bommer M

  12. Volumetric Analysis of the Hypothalamus in Huntington Disease Using 3T MRI: The IMAGE-HD Study

    PubMed Central

    Gabery, Sanaz; Georgiou-Karistianis, Nellie; Lundh, Sofia Hult; Cheong, Rachel Y.; Churchyard, Andrew; Chua, Phyllis; Stout, Julie C.; Egan, Gary F.; Kirik, Deniz; Petersén, Åsa

    2015-01-01

    Huntington disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Non-motor symptoms and signs such as psychiatric disturbances, sleep problems and metabolic dysfunction are part of the disease manifestation. These aspects may relate to changes in the hypothalamus, an area of the brain involved in the regulation of emotion, sleep and metabolism. Neuropathological and imaging studies using both voxel-based morphometry (VBM) of magnetic resonance imaging (MRI) as well as positron emission tomography (PET) have demonstrated pathological changes in the hypothalamic region during early stages in symptomatic HD. In this investigation, we aimed to establish a robust method for measurements of the hypothalamic volume in MRI in order to determine whether the hypothalamic dysfunction in HD is associated with the volume of this region. Using T1-weighted imaging, we describe a reproducible delineation procedure to estimate the hypothalamic volume which was based on the same landmarks used in histologically processed postmortem hypothalamic tissue. Participants included 36 prodromal HD (pre-HD), 33 symptomatic HD (symp-HD) and 33 control participants who underwent MRI scanning at baseline and 18 months follow-up as part of the IMAGE-HD study. We found no evidence of cross-sectional or longitudinal changes between groups in hypothalamic volume. Our results suggest that hypothalamic pathology in HD is not associated with volume changes. PMID:25659157

  13. The evaluation of non-ischemic dilated cardiomyopathy with T1 mapping and ECV methods using 3T cardiac MRI.

    PubMed

    Görmeli, Cemile Ayşe; Özdemir, Zeynep Maraş; Kahraman, Ayşegül Sağır; Yağmur, Jülide; Özdemir, Ramazan; Çolak, Cemil

    2017-02-01

    The aim of this study was to examine the correlation between ventricular function and the extracellular volume fraction (ECV) in patients with non-ischemic dilated cardiomyopathy (NIDCM) using 3.0 T magnetic resonance imaging (MRI). We also hypothesized that native T1 and ECV values would be increased in patients with NIDCM, independent of the left ventricular ejection fraction (LVEF). The findings of our study could lead to further studies of the follow-up protocols. In total, 53 consecutive dilated cardiomyopathy patients who had undergone cardiac MRI were functionally evaluated and underwent tissue characterization. The mean native T1 value was 1235 ± 10 ms, and the mean ECV value was 35.4 ± 2.7% in the myocardia. The LVEF values ranged from 29 to 44%. No significant correlations were observed between functional analysis measurements and native T1 or ECV values. Our results showed that myocardial fibrosis is unrelated to cardiac functional findings in NIDCM patients. Therefore, we propose that these patients should be evaluated using MRI and tissue characterization techniques, in addition to cardiac functional analysis.

  14. Diffusion-tensor MRI at 3 T: differentiation of central gland prostate cancer from benign prostatic hyperplasia.

    PubMed

    Park, Sung Yoon; Kim, Chan Kyo; Park, Byung Kwan; Ha, Sang Yun; Kwon, Ghee Young; Kim, Bohyun

    2014-03-01

    The purpose of this article is to retrospectively evaluate the utility of diffusion-tensor imaging (DTI) at 3 T in differentiating central gland prostate cancer from benign prostatic hyperplasia (BPH). Eighty consecutive patients (57 with central gland cancer and 23 without central gland cancer) were included in this study. All patients underwent T2-weighted imaging and DTI at 3 T, followed by surgery. For predicting central gland cancer, experienced and less-experienced radiologists independently analyzed T2-weighted imaging and combined T2-weighted imaging and DTI, respectively. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured for central gland cancers and BPH foci of stromal and glandular hyperplasia. Statistical analyses were performed using McNemar test, linear mixed model, receiver operating characteristic (ROC), and kappa statistics. For predicting central gland cancers, the area under the curve (Az) of combined T2-weighted imaging and DTI for the experienced (0.915) and less-experienced reader (0.753) was superior to that of T2-weighted imaging (0.723 vs 0.664; p<0.001). The mean ADC and FA values were 0.77×10(-3) mm2/s and 0.35, respectively, for central gland cancers, 1.22×10(-3) mm2/s and 0.26, respectively, for stromal hyperplasia foci, and 1.59×10(-3) mm2/s and 0.21, respectively, for glandular hyperplasia foci, and the values differed significantly. For differentiating central gland cancer from stromal hyperplasia foci and glandular hyperplasia foci, Az values of ADC versus FA were 0.989 and 1.0 versus 0.818 and 0.916, respectively, and the difference was statistically different. DTI at 3 T is useful for distinguishing central gland cancers from BPH foci, with significantly different ADC and FA values. Furthermore, ADC showed greater diagnostic accuracy than FA in differentiating central gland cancers from stromal and glandular hyperplasia foci.

  15. Spatial distortion correction and crystal identification for MRI-compatible position-sensitive avalanche photodiode-based PET scanners

    PubMed Central

    Chaudhari, Abhijit J.; Joshi, Anand A.; Wu, Yibao; Leahy, Richard M.; Cherry, Simon R.; Badawi, Ramsey D.

    2009-01-01

    Position-sensitive avalanche photodiodes (PSAPDs) are gaining widespread acceptance in modern PET scanner designs, and owing to their relative insensitivity to magnetic fields, especially in those that are MRI-compatible. Flood histograms in PET scanners are used to determine the crystal of annihilation photon interaction and hence, for detector characterization and routine quality control. For PET detectors that use PSAPDs, flood histograms show a characteristic pincushion distortion when Anger logic is used for event positioning. A small rotation in the flood histogram is also observed when the detectors are placed in a magnetic field. We first present a general purpose automatic method for spatial distortion correction for flood histograms of PSAPD-based PET detectors when placed both inside and outside a MRI scanner. Analytical formulae derived for this scheme are based on a hybrid approach that combines desirable properties from two existing event positioning schemes. The rotation of the flood histogram due to the magnetic field is determined iteratively and is accounted for in the scheme. We then provide implementation details of a method for crystal identification we have previously proposed and evaluate it for cases when the PET detectors are both outside and in a magnetic field. In this scheme, Fourier analysis is used to generate a lower-order spatial approximation of the distortion-corrected PSAPD flood histogram, which we call the ‘template’. The template is then registered to the flood histogram using a diffeomorphic iterative intensity-based warping scheme. The calculated deformation field is then applied to the segmentation of the template to obtain a segmentation of the flood histogram. A manual correction tool is also developed for exceptional cases. We present a quantitative assessment of the proposed distortion correction scheme and crystal identification method against conventional methods. Our results indicate that our proposed methods lead

  16. Arterial spin labeling for motor activation mapping at 3T with a 32-channel coil: reproducibility and spatial accuracy in comparison with BOLD fMRI.

    PubMed

    Raoult, Hélène; Petr, Jan; Bannier, Elise; Stamm, Aymeric; Gauvrit, Jean-Yves; Barillot, Christian; Ferré, Jean-Christophe

    2011-09-01

    Functional arterial spin labeling (fASL) is an innovative biomarker of neuronal activation that allows direct and absolute quantification of activation-related CBF and is less sensitive to venous contamination than BOLD fMRI. This study evaluated fASL for motor activation mapping in comparison with BOLD fMRI in terms of involved anatomical area localization, intra-individual reproducibility of location, quantification of neuronal activation, and spatial accuracy. Imaging was performed at 3T with a 32-channel coil and dedicated post-processing tools were used. Twelve healthy right-handed subjects underwent fASL and BOLD fMRI while performing a right hand motor activation task. Three sessions were performed 7days apart in similar physiological conditions. Our results showed an activation in the left primary hand motor area for all 36 sessions in both fASL and BOLD fMRI. The individual functional maps for fASL demonstrated activation in ipsilateral secondary motor areas more often than the BOLD fMRI maps. This finding was corroborated by the group maps. In terms of activation location, fASL reproducibility was comparable to BOLD fMRI, with a distance between activated volumes of 2.1mm and an overlap ratio for activated volumes of 0.76, over the 3 sessions. In terms of activation quantification, fASL reproducibility was higher, although not significantly, with a CVintra of 11.6% and an ICC value of 0.75. Functional ASL detected smaller activation volumes than BOLD fMRI but the areas had a high degree of co-localization. In terms of spatial accuracy in detecting activation in the hand motor area, fASL had a higher specificity (43.5%) and a higher positive predictive value (69.8%) than BOLD fMRI while maintaining high sensitivity (90.7%). The high intra-individual reproducibility and spatial accuracy of fASL revealed in the present study will subsequently be applied to pathological subjects. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Evoked Potentials and Memory/Cognition Tests Validate Brain Atrophy as Measured by 3T MRI (NeuroQuant) in Cognitively Impaired Patients

    PubMed Central

    Braverman, Eric R.; Blum, Kenneth; Hussman, Karl L.; Han, David; Dushaj, Kristina; Li, Mona; Marin, Gabriela; Badgaiyan, Rajendra D.; Smayda, Richard; Gold, Mark S.

    2015-01-01

    To our knowledge, this is the largest study evaluating relationships between 3T Magnetic Resonance Imaging (MRI) and P300 and memory/cognitive tests in the literature. The 3T MRI using NeuroQuant has an increased resolution 15 times that of 1.5T MRI. Utilizing NeuroQuant 3T MRI as a diagnostic tool in primary care, subjects (N=169; 19–90 years) displayed increased areas of anatomical atrophy: 34.62% hippocampal atrophy (N=54), 57.14% central atrophy (N=88), and 44.52% temporal atrophy (N=69). A majority of these patients exhibited overlap in measured areas of atrophy and were cognitively impaired. These results positively correlated with decreased P300 values and WMS-III (WMS-III) scores differentially across various brain loci. Delayed latency (p=0.0740) was marginally associated with temporal atrophy; reduced fractional anisotropy (FA) in frontal lobes correlated with aging, delayed P300 latency, and decreased visual and working memory (p=0.0115). Aging and delayed P300 latency correlated with lower FA. The correlation between working memory and reduced FA in frontal lobes is marginally significant (p=0.0787). In the centrum semiovale (CS), reduced FA correlated with visual memory (p=0.0622). Lower demyelination correlated with higher P300 amplitude (p=0.0002). Compared to males, females have higher demyelination (p=0.0064). Along these lines, the higher the P300 amplitude, the lower the bilateral atrophy (p=0.0165). Hippocampal atrophy correlated with increased auditory memory and gender, especially in males (p=0.0087). In considering temporal lobe atrophy correlations: delayed P300 latency and high temporal atrophy (p=0.0740); high auditory memory and low temporal atrophy (p=0.0417); and high working memory and low temporal atrophy (p=0.0166). Central atrophy correlated with aging and immediate memory (p=0.0294): the higher the immediate memory, the lower the central atrophy. Generally, the validation of brain atrophy by P300 and WMS-III could lead to cost

  18. Evoked Potentials and Memory/Cognition Tests Validate Brain Atrophy as Measured by 3T MRI (NeuroQuant) in Cognitively Impaired Patients.

    PubMed

    Braverman, Eric R; Blum, Kenneth; Hussman, Karl L; Han, David; Dushaj, Kristina; Li, Mona; Marin, Gabriela; Badgaiyan, Rajendra D; Smayda, Richard; Gold, Mark S

    2015-01-01

    To our knowledge, this is the largest study evaluating relationships between 3T Magnetic Resonance Imaging (MRI) and P300 and memory/cognitive tests in the literature. The 3T MRI using NeuroQuant has an increased resolution 15 times that of 1.5T MRI. Utilizing NeuroQuant 3T MRI as a diagnostic tool in primary care, subjects (N=169; 19-90 years) displayed increased areas of anatomical atrophy: 34.62% hippocampal atrophy (N=54), 57.14% central atrophy (N=88), and 44.52% temporal atrophy (N=69). A majority of these patients exhibited overlap in measured areas of atrophy and were cognitively impaired. These results positively correlated with decreased P300 values and WMS-III (WMS-III) scores differentially across various brain loci. Delayed latency (p=0.0740) was marginally associated with temporal atrophy; reduced fractional anisotropy (FA) in frontal lobes correlated with aging, delayed P300 latency, and decreased visual and working memory (p=0.0115). Aging and delayed P300 latency correlated with lower FA. The correlation between working memory and reduced FA in frontal lobes is marginally significant (p=0.0787). In the centrum semiovale (CS), reduced FA correlated with visual memory (p=0.0622). Lower demyelination correlated with higher P300 amplitude (p=0.0002). Compared to males, females have higher demyelination (p=0.0064). Along these lines, the higher the P300 amplitude, the lower the bilateral atrophy (p=0.0165). Hippocampal atrophy correlated with increased auditory memory and gender, especially in males (p=0.0087). In considering temporal lobe atrophy correlations: delayed P300 latency and high temporal atrophy (p=0.0740); high auditory memory and low temporal atrophy (p=0.0417); and high working memory and low temporal atrophy (p=0.0166). Central atrophy correlated with aging and immediate memory (p=0.0294): the higher the immediate memory, the lower the central atrophy. Generally, the validation of brain atrophy by P300 and WMS-III could lead to cost

  19. [Prospects of the use of mobile MRI scanner in medical service of the Armed Forces].

    PubMed

    Troyan, V N; Dydykin, A V; Rikun, A O; Filisteev, P A; Zayats, V V; Zhigalov, A A

    2015-10-01

    Computed tomography is currently one of the most informative methods of diagnostics of a broad range of injuries and diseases, as well as an effective additional mean for various surgical interventions thank to intraoperative use. In this regard, the question of the necessity of the use of this diagnostic technology in mobile hospitals is one of the current tasks. The article analyses the experience of the use of mobile CT scanners at the medical service of the armed forces of foreign states and provides calculations indicating the necessity of the introduction of mobile CT scanners into the hospital link. The review and classification of mobile CT scanners have allowed to formulate technical requirements for their hardware capabilities, as well as to draw conclusions about the conditions of their effective use.

  20. Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength.

    PubMed

    Welsch, Goetz H; Apprich, Sebastian; Zbyn, Stefan; Mamisch, Tallal C; Mlynarik, Vladimir; Scheffler, Klaus; Bieri, Oliver; Trattnig, Siegfried

    2011-06-01

    This study compares the performance and the reproducibility of quantitative T2, T2* and the magnetisation transfer ratio (MTR) of articular cartilage at 7T and 3T. Axial MRI of the patella was performed in 17 knees of healthy volunteers (25.8 ± 5.7 years) at 3T and 7T using a comparable surface coil and whole-body MR systems from the same vendor, side-by-side. Thirteen knee joints were assessed once, and four knee joints were measured three times to assess reproducibility. T2 relaxation was prepared by a multi-echo, spin-echo sequence and T2* relaxation by a multi-echo, gradient-echo sequence. MTR was based on a magnetisation transfer-sensitized, steady-state free precession approach. Statistical analysis-of-variance and coefficient-of-variation (CV) were prepared. For T2 and T2*, global values were significantly lower at 7T compared with 3T; the zonal evaluation revealed significantly less pronounced stratification at 7T (p < 0.05). MTR provided higher values at 7T (p < 0.05). CV, indicating reproducibility, showed slightly lower values at 7T, but only for T2 and T2*. Although lower T2 and T2* relaxation times were expected at 7T, the differences in stratification between the field strengths were reported for the first time. The assessment of MT is feasible at 7T, but requires further investigation.

  1. Intact blood-brain barrier during spontaneous attacks of migraine without aura: a 3T DCE-MRI study.

    PubMed

    Amin, F M; Hougaard, A; Cramer, S P; Christensen, C E; Wolfram, F; Larsson, H B W; Ashina, M

    2017-09-01

    The integrity of the blood-brain barrier (BBB) has been questioned in migraine, but BBB permeability has never been investigated during spontaneous migraine attacks. In the present study, BBB permeability during spontaneous attacks of migraine without aura was investigated compared to an interictal state. Seventy-four patients suffering from migraine without aura were recruited to participate in this cross-sectional dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) study. The patients were instructed to report at the hospital for DCE-MRI scan during and outside of a spontaneous migraine attack. The primary end-point was a difference in the BBB permeability (ml/100 g/min) between the attack and the headache-free days. The permeability was assessed in five different regions of interest (ROIs) located in the anterior, middle and posterior cerebral area, brain stem, posterior pons and whole brain. The paired samples t test was used to compare Ki (permeability) values between the attack and headache-free days. Nineteen patients completed the study. Median time from onset of migraine attack to scan was 6.5 h (range 4.0-15.5 h). No change in the mean BBB permeability (ml/100 g/min) was found between the attack and the headache-free days in any of the measured ROIs. No relationship between the pain side or intensity and BBB permeability was found in 15 patients with unilateral pain during the examined attack. It was demonstrated that the BBB permeability during spontaneous migraine attacks without aura was unchanged. © 2017 EAN.

  2. Impact of the use of an endorectal coil for 3 T prostate MRI on image quality and cancer detection rate

    NASA Astrophysics Data System (ADS)

    Gawlitza, Josephin; Reiss-Zimmermann, Martin; Thörmer, Gregor; Schaudinn, Alexander; Linder, Nicolas; Garnov, Nikita; Horn, Lars-Christian; Minh, Do Hoang; Ganzer, Roman; Stolzenburg, Jens-Uwe; Kahn, Thomas; Moche, Michael; Busse, Harald

    2017-02-01

    This work aims to assess the impact of an additional endorectal coil on image quality and cancer detection rate within the same patients. At a single academic medical center, this transversal study included 41 men who underwent T2- and diffusion-weighted imaging at 3 T using surface coils only or in combination with an endorectal coil in the same session. Two blinded readers (A and B) randomly evaluated all image data in separate sessions. Image quality with respect to localization and staging was rated on a five-point scale. Lesions were classified according to their prostate imaging reporting and data system (PIRADS) score version 1. Standard of reference was provided by whole-mount step-section analysis. Mean image quality scores averaged over all localization-related items were significantly higher with additional endorectal coil for both readers (p < 0.001), corresponding staging-related items were only higher for reader B (p < 0.001). With an endorectal coil, the rate of correctly detecting cancer per patient was significantly higher for reader B (p < 0.001) but not for reader A (p = 0.219). The numbers of histologically confirmed tumor lesions were rather similar for both settings. The subjectively rated 3-T image quality was improved with an endorectal coil. In terms of diagnostic performance, the use of an additional endorectal coil was not superior.

  3. Impact of the use of an endorectal coil for 3 T prostate MRI on image quality and cancer detection rate

    PubMed Central

    Gawlitza, Josephin; Reiss-Zimmermann, Martin; Thörmer, Gregor; Schaudinn, Alexander; Linder, Nicolas; Garnov, Nikita; Horn, Lars-Christian; Minh, Do Hoang; Ganzer, Roman; Stolzenburg, Jens-Uwe; Kahn, Thomas; Moche, Michael; Busse, Harald

    2017-01-01

    This work aims to assess the impact of an additional endorectal coil on image quality and cancer detection rate within the same patients. At a single academic medical center, this transversal study included 41 men who underwent T2- and diffusion-weighted imaging at 3 T using surface coils only or in combination with an endorectal coil in the same session. Two blinded readers (A and B) randomly evaluated all image data in separate sessions. Image quality with respect to localization and staging was rated on a five-point scale. Lesions were classified according to their prostate imaging reporting and data system (PIRADS) score version 1. Standard of reference was provided by whole-mount step-section analysis. Mean image quality scores averaged over all localization-related items were significantly higher with additional endorectal coil for both readers (p < 0.001), corresponding staging-related items were only higher for reader B (p < 0.001). With an endorectal coil, the rate of correctly detecting cancer per patient was significantly higher for reader B (p < 0.001) but not for reader A (p = 0.219). The numbers of histologically confirmed tumor lesions were rather similar for both settings. The subjectively rated 3-T image quality was improved with an endorectal coil. In terms of diagnostic performance, the use of an additional endorectal coil was not superior. PMID:28145525

  4. High responsivity to threat during the initial stage of perception in repression: a 3 T fMRI study

    PubMed Central

    Paul, Victoria Gabriele; Rauch, Astrid Veronika; Kugel, Harald; ter Horst, Lena; Bauer, Jochen; Dannlowski, Udo; Ohrmann, Patricia; Lindner, Christian; Donges, Uta-Susan; Kersting, Anette; Egloff, Boris

    2012-01-01

    Repression designates coping strategies such as avoidance, or denial that aim to shield the organism from threatening stimuli. Derakshan et al. have proposed the vigilance–avoidance theory of repressive coping. It is assumed that repressors have an initial rapid vigilant response triggering physiological responses to threat stimuli. In the following second stage repressors manifest avoidant cognitive biases. Functional magnetic resonance imaging at 3T was used to study neural correlates of repressive coping during the first stages of perception of threat. Pictures of human faces bearing fearful, angry, happy and neutral expressions were briefly presented masked by neutral faces. Forty study participants (20 repressive and 20 sensitizing individuals) were selected from a sample of 150 female students on the basis of their scores on the Mainz Coping Inventory. Repressors exhibited stronger neural activation than sensitizers primarily in response to masked threatening faces (vs neutral baseline) in the frontal, parietal and temporal cortex as well as in the cingulate gyrus, basal ganglia and insula. There was no brain region in which sensitizers showed increased activation to emotion expression compared to repressors. The present results are in line with the vigilance–avoidance theory which predicts heightened automatic responsivity to threatening stimuli in repression. PMID:22133562

  5. A Workspace-oriented Needle Guiding Robot for 3T MRI-guided Transperineal Prostate Intervention: Evaluation of In-bore Workspace and MRI Compatibility

    PubMed Central

    Song, Sang-Eun; Hata, Nobuhiko; Iordachita, Iulian; Fichtinger, Gabor; Tempany, Clare; Tokuda, Junichi

    2013-01-01

    Background Magnetic Resonance Imaging (MRI) guided prostate interventions have been introduced to enhance the cancer detection. For accurate needle positioning, in-bore operated robotic systems have been developed and optimal use of the confined in-bore space become a critical engineering challenge. Methods As preliminary evaluation of our prostate intervention robot, we conducted a workspace design analysis using a new evaluation method that we developed for in-bore operated robots for transperineal prostate interventions, and an MRI compatibility study. Results The workspace analysis resulted in the effective workspace (VW) of 0.32, which is greater than that of our early prototype despite that the current robot is approximately 50% larger than the early prototype in sectional space. The MRI compatibility study resulted in less than 15% signal-to-noise ratio (SNR) reduction. Conclusions The new workspace evaluation method quantifies the workspace utilization of the in-bore operated robots for MRI-guided transperineal prostate interventions, providing a useful tool for evaluation and new robot design. The robot creates insignificant electromagnetic noise during typical prostate imaging sequences. PMID:22492680

  6. Benign prostatic hyperplasia after prostatic arterial embolization in a canine model: A 3T multiparametric MRI and whole-mount step-section pathology correlated longitudinal study.

    PubMed

    Li, Basen; Xu, Anhui; Wang, Nan; Min, Xiangde; Feng, Zhaoyan; Deng, Ming; Li, Liang; Cai, Jie; Kang, Zhen; Jiang, Kehua; Kuang, Dong; Wang, Liang

    2017-10-01

    To explore the morphological and functional characteristics of prostatic arterial embolization (PAE) in a canine model of benign prostatic hyperplasia (BPH) with 3T multiparametric magnetic resonance imaging (mp-MRI) and whole-mount step-section pathology correlation. Eight adult male beagle dogs with hormone-induced BPH underwent 3T mp-MRI before and 1, 3, and 6 months after PAE, with subsequent whole-mount step-section pathologic assessment. Images were acquired using T1 -weighted images (T1 WI), T2 WI, 3D-SPACE, diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), T2 -mapping, and dynamic contrast-enhanced (DCE) sequences. Variance analysis was performed to assess statistical differences in prostatic volume (PV), apparent diffusion coefficient (ADC), and T2 values. Pearson correlation analysis was performed to correlate ADC, T2 , and PV. The PV decreased from baseline to 1, 3, and 6 months after PAE from (25.88 ± 7.09) cm(3) to (6.48 ± 2.08) cm(3) , (6.48 ± 3.39) cm(3) , (6.20 ± 2.88) cm(3) . The ADC values sequentially decreased from baseline to 1, 3, and 6 months after PAE from (1497.06 ± 222.72) × 10(-6) mm(2) /s to (1056.00 ± 189.46) × 10(-6) mm(2) /s, (950.48 ± 77.85) × 10(-6) mm(2) /s, (980.98 ± 107.78) × 10(-6) mm(2) /s. The T2 values decreased from baseline to 1, 3, and 6 months after PAE were (83.74 ± 5.29) msec, (68.72 ± 5.66) msec, (53.96 ± 15.04) msec, (49.81 ± 13.34) msec, respectively. ADC and T2 values were positively correlated with PV (r = 0.823 and 0.744, respectively). Microhemorrhages and hemosiderin were found on SWI after PAE. 3T mp-MRI may facilitate noninvasive assessment of morphological and functional changes of BPH after PAE. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1220-1229. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Wavelet based characterization of ex vivo vertebral trabecular bone structure with 3T MRI compared to microCT

    SciTech Connect

    Krug, R; Carballido-Gamio, J; Burghardt, A; Haase, S; Sedat, J W; Moss, W C; Majumdar, S

    2005-04-11

    Trabecular bone structure and bone density contribute to the strength of bone and are important in the study of osteoporosis. Wavelets are a powerful tool to characterize and quantify texture in an image. In this study the thickness of trabecular bone was analyzed in 8 cylindrical cores of the vertebral spine. Images were obtained from 3 Tesla (T) magnetic resonance imaging (MRI) and micro-computed tomography ({micro}CT). Results from the wavelet based analysis of trabecular bone were compared with standard two-dimensional structural parameters (analogous to bone histomorphometry) obtained using mean intercept length (MR images) and direct 3D distance transformation methods ({micro}CT images). Additionally, the bone volume fraction was determined from MR images. We conclude that the wavelet based analyses delivers comparable results to the established MR histomorphometric measurements. The average deviation in trabecular thickness was less than one pixel size between the wavelet and the standard approach for both MR and {micro}CT analysis. Since the wavelet based method is less sensitive to image noise, we see an advantage of wavelet analysis of trabecular bone for MR imaging when going to higher resolution.

  8. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer

    NASA Astrophysics Data System (ADS)

    Wetterling, Friedrich; Corteville, Dominique M.; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M.; Stark, Helmut; Schad, Lothar R.

    2012-07-01

    Sodium magnetic resonance imaging (23Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (23Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a 23Na resonator was constructed for whole body 23Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B1-field profile was simulated and measured on phantoms, and 3D whole body 23Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm3 and a 10 min acquisition time per scan. The measured SNR values in the 23Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, 23Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.

  9. A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners

    PubMed Central

    Greco, V.; Frijia, F.; Mikellidou, K.; Montanaro, D.; Farini, A.; D’Uva, M.; Poggi, P.; Pucci, M.; Sordini, A.; Morrone, M. C.; Burr, D. C.

    2016-01-01

    We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields. PMID:26092392

  10. A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners.

    PubMed

    Greco, V; Frijia, F; Mikellidou, K; Montanaro, D; Farini, A; D'Uva, M; Poggi, P; Pucci, M; Sordini, A; Morrone, M C; Burr, D C

    2016-06-01

    We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields.

  11. Quantitative and qualitative comparison of 0.025 mmol/kg gadobenate dimeglumine for abdominal MRI at 1.5T and 3T MRI in patients with low estimated glomerular filtration rate.

    PubMed

    Ramalho, Miguel; AlObaidy, Mamdoh; Busireddy, Kiran K; Altun, Ersan; Liu, Baodong; Semelka, Richard C

    2015-01-01

    To investigate the efficacy and adequacy of enhancement employing 0.025 mmol/kg of gadobenate dimeglumine at 1.5 Tesla (T), and to compare the extent of enhancement of this dosage between 1.5T and 3T systems. Our final population included 116 consecutive patients who underwent 0.025 mmol/kg gadobenate dimeglumine-enhanced abdominal MRI (78 men and 38 women; age, 64.1 ± 13.6 years). Sixty patients underwent imaging at 1.5T and 56 patients underwent imaging at 3T. Abdominal enhancement was evaluated qualitatively and quantitatively. The quality of enhancement was compared using Mann-Whitney U test. The percentage of enhancement of each organ was compared using Student t-test. The mean quality rating of enhancement was at least "good" in all phases of enhancement for both 1.5T and 3T. There was a non-significant trend to higher mean ratings at 3T. The liver showed a 1.3-fold higher arterial-phase percentage of enhancement at 3T (p=0.0138). There were no differences between the mean relative enhancement of the pancreas and aorta throughout all phases of enhancement. The percentage of enhancement of the renal cortex was significantly higher at 3T (p<0.0001 to p=0.0293). A dose of 0.025 mmol/kg of gadobenate dimeglumine demonstrates diagnostic enhancement in the majority of patients at 1.5T, without significant differences on qualitative evaluation compared to 3T. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Experimental MRI-SPECT insert system with Hybrid Semiconductor detectors Timepix for MR animal scanner Bruker 47/20

    NASA Astrophysics Data System (ADS)

    Zajicek, J.; Burian, M.; Soukup, P.; Novak, V.; Macko, M.; Jakubek, J.

    2017-01-01

    Multimodal medical imaging based on Magnetic Resonance is mainly combinated with one of the scintigraphic method like PET or SPECT. These methods provide functional information whereas magnetic resonance imaging provides high spatial resolution of anatomical information or complementary functional information. Fusion of imaging modalities allows researchers to obtain complimentary information in a single measurement. The combination of MRI with SPECT is still relatively new and challenging in many ways. The main complication of using SPECT in MRI systems is the presence of a high magnetic field therefore (ferro)magnetic materials have to be eliminated. Furthermore the application of radiofrequency fields within the MR gantry does not allow for the use of conductive structures such as the common heavy metal collimators. This work presents design and construction of an experimental MRI-SPECT insert system and its initial tests. This unique insert system consists of an MR-compatible SPECT setup with CdTe pixelated sensors Timepix tungsten collimators and a radiofrequency coil. Measurements were performed on a gelatine and tissue phantom with an embedded radioisotopic source (57Co 122 keV γ ray) inside the RF coil by the Bruker BioSpec 47/20 (4.7 T) MR animal scanner. The project was performed in the framework of the Medipix Collaboration.

  13. Fascicular ratio: a new parameter to evaluate peripheral nerve pathology on magnetic resonance imaging: a feasibility study on a 3T MRI system.

    PubMed

    Tagliafico, Alberto S; Tagliafico, Giulio

    2014-09-01

    The objective of the study was to define and quantitatively evaluate the fascicular ratio (FR) on magnetic resonance imaging (MRI) in patients with peripheral neuropathies compared with healthy controls. Forty control subjects (20 women, 20 men; age, 44.6 ± 13.4 years) and 40 patients with peripheral neuropathy (22 women, 18 men; age, 50.3 ± 10.2 years) were examined with a standard 3T MRI protocol. With customized software (with semiautomatic and automatic interface), the hypointense and hyperintense areas of the peripheral nerves corresponding to fascicular and nonfascicular tissue were examined on T1-weighted sequences. The ratio of fascicular pixels to total pixels was called FR. Correlation with FR calculated on high-resolution ultrasound was performed. The statistical analysis included the Mann-Whitney U test of controls versus patients, the receiver operating characteristic (ROC) analysis, and the subgroup analysis of patients according to etiologies of neuropathy. Intraobserver and interobserver agreement was calculated based on the evaluation made by 3 readers. Finally, a complete automatic evaluation was performed. On MRI, FRs were significantly increased in patients compared with controls (FR, 76.7 ± 15.1 vs 56 ± 12.3; P < 0.0001 for the semiautomatic interface; and FR 66.3 ± 17.5 vs 47.8 ± 18.4; P < 0.0001 for the automatic interface). The increase in FR was caused mainly by an increase in the hypointense part of the nerve. This observation was valid for all causes of neuropathies. ROC analysis found an area under the curve of 0.75 (95% confidence interval, 0.44-0.81) for FR to discriminate neuropathy from control. The correlation coefficient between MRI and ultrasound was significant (r = 0.49; 95% confidence interval for r, 0.21-0.70; P = 0.012). With the semiautomated evaluation, the mean intraobserver agreement was good (K = 0.86). The interobserver agreements were also good (reader 1 vs reader 2, k

  14. Evaluation of a 32-channel versus a 12-channel head coil for high-resolution post-contrast MRI in giant cell arteritis (GCA) at 3T.

    PubMed

    Franke, Philipp; Markl, Michael; Heinzelmann, Sonja; Vaith, Peter; Bürk, Jonas; Langer, Mathias; Geiger, J

    2014-10-01

    The aim of this study was to evaluate the diagnostic value of a 32-channel head coil for the characterization of mural inflammation patterns in the superficial cranial arteries in patients with giant cell arteritis (GCA) compared to a standard 12-channel coil at 3T MRI. 55 patients with suspected GCA underwent high resolution T1-weighted post-contrast MRI at 3T to detect inflammation related vessel wall enhancement using both coils. To account for different time delays between contrast agent injection and sequence acquisition, the patients were divided into two cohorts: 27 patients were examined with the 32-channel coil first and 28 patients with the 12-channel coil first. Images were evaluated by two blinded readers with regard to image quality, artifact level and arteries' inflammation according to a standardized ranking scale; furthermore signal-to-noise ratio (SNR) measurements were performed at three locations. Identification of arteries' inflammation was achieved with both coils with excellent inter-observer agreement (κ=0.89 for 12-channel and κ=0.96 for 32-channel coil). Regarding image grading, the inter-observer variability was moderate for the 12-channel (κ=0.5) and substantial for the 32-channel coil (κ=0.63). Significantly higher SNR and improved image quality (p<0.01) were obtained with the 32-channel coil in either coil order. Image quality for depiction of the superficial cranial arteries was superior for the 32-channel coil. For standardized GCA diagnosis, the 12-channel coil was sufficient.

  15. Comparison of parallel acquisition techniques generalized autocalibrating partially parallel acquisitions (GRAPPA) and modified sensitivity encoding (mSENSE) in functional MRI (fMRI) at 3T.

    PubMed

    Preibisch, Christine; Wallenhorst, Tim; Heidemann, Robin; Zanella, Friedhelm E; Lanfermann, Heinrich

    2008-03-01

    To evaluate the parallel acquisition techniques, generalized autocalibrating partially parallel acquisitions (GRAPPA) and modified sensitivity encoding (mSENSE), and determine imaging parameters maximizing sensitivity toward functional activation at 3T. A total of eight imaging protocols with different parallel imaging techniques (GRAPPA and mSENSE) and reduction factors (R = 1, 2, 3) were compared at different matrix sizes (64 and 128) with respect to temporal noise characteristics, artifact behavior, and sensitivity toward functional activation. Echo planar imaging (EPI) with GRAPPA and a reduction factor of 2 revealed similar image quality and sensitivity than full k-space EPI. A higher incidence of artifacts and a marked sensitivity loss occurred at R = 3. Even though the same eight-channel head coil was used for signal detection in all experiments, GRAPPA generally showed more benign patterns of spatially-varying noise amplification, and mSENSE was also more susceptible to residual unfolding artifacts than GRAPPA. At 3T and a reduction factor of 2, parallel imaging can be used with only little penalty with regard to sensitivity. With our implementation and coil setup the performance of GRAPPA was clearly superior to mSENSE. Thus, it seems advisable to pay special attention to the employed parallel imaging method and its implementation.

  16. Abdominal adipose tissue quantification on water-suppressed and non-water-suppressed MRI at 3T using semi-automated FCM clustering algorithm

    NASA Astrophysics Data System (ADS)

    Valaparla, Sunil K.; Peng, Qi; Gao, Feng; Clarke, Geoffrey D.

    2014-03-01

    Accurate measurements of human body fat distribution are desirable because excessive body fat is associated with impaired insulin sensitivity, type 2 diabetes mellitus (T2DM) and cardiovascular disease. In this study, we hypothesized that the performance of water suppressed (WS) MRI is superior to non-water suppressed (NWS) MRI for volumetric assessment of abdominal subcutaneous (SAT), intramuscular (IMAT), visceral (VAT), and total (TAT) adipose tissues. We acquired T1-weighted images on a 3T MRI system (TIM Trio, Siemens), which was analyzed using semi-automated segmentation software that employs a fuzzy c-means (FCM) clustering algorithm. Sixteen contiguous axial slices, centered at the L4-L5 level of the abdomen, were acquired in eight T2DM subjects with water suppression (WS) and without (NWS). Histograms from WS images show improved separation of non-fatty tissue pixels from fatty tissue pixels, compared to NWS images. Paired t-tests of WS versus NWS showed a statistically significant lower volume of lipid in the WS images for VAT (145.3 cc less, p=0.006) and IMAT (305 cc less, p<0.001), but not SAT (14.1 cc more, NS). WS measurements of TAT also resulted in lower fat volumes (436.1 cc less, p=0.002). There is strong correlation between WS and NWS quantification methods for SAT measurements (r=0.999), but poorer correlation for VAT studies (r=0.845). These results suggest that NWS pulse sequences may overestimate adipose tissue volumes and that WS pulse sequences are more desirable due to the higher contrast generated between fatty and non-fatty tissues.

  17. Virtual MRI: a PC-based simulation of a clinical MR scanner.

    PubMed

    Hackländer, Thomas; Mertens, Heinrich

    2005-01-01

    The aim of this project was to simulate the features and functions of a clinical or real-world MR scanner on a personal computer by means of a computer program. The users should be able to change all relevant settings of the virtual scanner and adapt them to the expected pathology. The algorithms of the simulation are based on parameter images of the three physical basic properties T1, T2, and proton density. From this, the synthetic images are calculated pixel by pixel on the basis of the well-known formulas of the pulse sequences chosen and modified by the user. The graphical user interface is oriented to a real-world MR scanner. The software is programmed in pure Java and is freely available under the GPL license. Besides spin echo pulse sequence, 6 other pulse sequence classes are implemented. Parameters like repetition time and echo time can be adjusted. The choice of parameters like matrix size, slice-thickness, and number of acquisitions has an impact on the signal-to-noise ratio of the images. In a first step, the simulation calculates the signal intensity in k-space. Wraparound and motion artifacts are simulated by modifying the data of k-space. In a last step, a 2D-Fourier transform of k-space data is performed. As the image calculation takes only a few seconds, an interactive manner of working is possible. The simulation has been used in the education of medical students and interns for more than 1 year and has gained widespread acceptance.

  18. New shielding configurations for a simultaneous PET/MRI scanner at 7T.

    PubMed

    Peng, Bo J; Wu, Yibao; Cherry, Simon R; Walton, Jeffrey H

    2014-02-01

    Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI

  19. New shielding configurations for a simultaneous PET/MRI scanner at 7T

    PubMed Central

    Peng, Bo J.; Wu, Yibao; Cherry, Simon R.; Walton, Jeffrey H.

    2014-01-01

    Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300 MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81 kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI

  20. Evaluation of an independent linear model for acoustic noise on a conventional MRI scanner and implications for acoustic noise reduction.

    PubMed

    Wu, Ziyue; Kim, Yoon-Chul; Khoo, Michael C K; Nayak, Krishna S

    2014-04-01

    To evaluate an independent linear model for gradient acoustic noise on a conventional MRI scanner, and to explore implications for acoustic noise reduction in routine imaging. Acoustic noise generated from each physical gradient axis was modeled as the prescribed gradient waveform passed through a linear time-invariant system. Homogeneity and superposition properties were experimentally determined. We also developed a new method to correct relative time shifts between the measured impulse responses for different physical gradient axes. Model accuracy was determined by comparing predicted and measured sound using normalized energy difference. Transfer functions were also measured in subjects with different body habitus and at multiple microphone locations. Both superposition and homogeneity held for each physical gradient axis with errors less than 3%. When all gradients were on simultaneous sound prediction, error was reduced from 32% to 4% after time-shift correction. Transfer functions also showed high sensitivity to body habitus and microphone location. The independent linear model predicts MRI acoustic noise with less than 4% error. Acoustic transfer functions are highly sensitive to body habitus and position within the bore, making it challenging to produce a general approach to acoustic noise reduction based on avoiding system resonance peaks. Copyright © 2013 Wiley Periodicals, Inc.

  1. 3T MRI investigation of cardiac left ventricular structure and function in a UK population: The tayside screening for the prevention of cardiac events (TASCFORCE) study

    PubMed Central

    Gandy, Stephen J.; Lambert, Matthew; Belch, Jill; Cavin, Ian; Crowe, Elena; Littleford, Roberta; MacFarlane, Jennifer A.; Matthew, Shona Z.; Martin, Patricia; Nicholas, R. Stephen; Struthers, Allan; Sullivan, Frank; Waugh, Shelley A.; White, Richard D.; Weir‐McCall, Jonathan R.

    2016-01-01

    Purpose To scan a volunteer population using 3.0T magnetic resonance imaging (MRI). MRI of the left ventricular (LV) structure and function in healthy volunteers has been reported extensively at 1.5T. Materials and Methods A population of 1528 volunteers was scanned. A standardized approach was taken to acquire steady‐state free precession (SSFP) LV data in the short‐axis plane, and images were quantified using commercial software. Six observers undertook the segmentation analysis. Results Mean values (±standard deviation, SD) were: ejection fraction (EF) = 69 ± 6%, end diastolic volume index (EDVI) = 71 ± 13 ml/m2, end systolic volume index (ESVI) = 22 ± 7 ml/m2, stroke volume index (SVI) = 49 ± 8 ml/m2, and LV mass index (LVMI) = 55 ± 12 g/m2. The mean EF was slightly larger for females (69%) than for males (68%), but all other variables were smaller for females (EDVI 68v77 ml/m2, ESVI 21v25 ml/m2, SVI 46v52 ml/m2, LVMI 49v64 g/m2, all P < 0.05). The mean LV volume data mostly decreased with each age decade (EDVI males: –2.9 ± 1.3 ml/m2, females: –3.1 ± 0.8 ml/m2; ESVI males: –1.3 ± 0.7 ml/m2, females: –1.7 ± 0.5 ml/m2; SVI males: –1.7 ± 0.9 ml/m2, females: –1.4 ± 0.6 ml/m2; LVMI males: –1.6 ± 1.1 g/m2, females: –0.2 ± 0.6 g/m2) but the mean EF was virtually stable in males (0.6 ± 0.6%) and rose slightly in females (1.2 ± 0.5%) with age. Conclusion LV reference ranges are provided in this population‐based MR study at 3.0T. The variables are similar to those described at 1.5T, including variations with age and gender. These data may help to support future population‐based MR research studies that involve the use of 3.0T MRI scanners. J. Magn. Reson. Imaging 2016;44:1186–1196. PMID:27143317

  2. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer.

    PubMed

    Wetterling, Friedrich; Corteville, Dominique M; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M; Stark, Helmut; Schad, Lothar R

    2012-07-21

    Sodium magnetic resonance imaging (²³Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (²³Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a ²³Na resonator was constructed for whole body ²³Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B₁-field profile was simulated and measured on phantoms, and 3D whole body ²³Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm³ and a 10 min acquisition time per scan. The measured SNR values in the ²³Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, ²³Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.

  3. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    PubMed

    Scheef, Lukas; Nordmeyer-Massner, Jurek A; Smith-Collins, Adam Pr; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H; Pruessmann, Klaas P; Heep, Axel; Boecker, Henning

    2017-01-01

    Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected. Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13). Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC) increase in tSNR, as compared to the 'adult' MR-coil. Our findings strengthen the importance of

  4. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil

    PubMed Central

    Smith-Collins, Adam PR; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H.; Pruessmann, Klaas P.; Boecker, Henning

    2017-01-01

    Background Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Patients / methods Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an ‘adult’ 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected. Results Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13). Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC) increase in tSNR, as compared to the ‘adult’ MR

  5. Burns from ECG leads in an MRI scanner: Case series and discussion of mechanisms

    PubMed Central

    Abdel-Rehim, S.; Bagirathan, S.; Al-Benna, S.; O’Boyle, C.

    2014-01-01

    Summary Iatrogenic burns are rare and preventable. The authors present two cases of burns from ECG leads, sustained during magnetic resonance imaging (MRI). Common features included a long duration spinal MR scan (120 and 60 minutes) and high patient body mass index (BMI >30). Both patients were discharged within 24 hours of admission, but required a period of outpatient burn care. The causation of these injuries remains unclear but there are several possible mechanisms including: electromagnetic induction heating, antenna effects and closed-loop current induction. The authors provide a description of the injuries, discuss possible mechanisms that may lead to burn injury in the MRI environment and suggest ways to reduce the risks of such injuries. PMID:26336370

  6. Burns from ECG leads in an MRI scanner: Case series and discussion of mechanisms.

    PubMed

    Abdel-Rehim, S; Bagirathan, S; Al-Benna, S; O'Boyle, C

    2014-12-31

    Iatrogenic burns are rare and preventable. The authors present two cases of burns from ECG leads, sustained during magnetic resonance imaging (MRI). Common features included a long duration spinal MR scan (120 and 60 minutes) and high patient body mass index (BMI >30). Both patients were discharged within 24 hours of admission, but required a period of outpatient burn care. The causation of these injuries remains unclear but there are several possible mechanisms including: electromagnetic induction heating, antenna effects and closed-loop current induction. The authors provide a description of the injuries, discuss possible mechanisms that may lead to burn injury in the MRI environment and suggest ways to reduce the risks of such injuries.

  7. Development of a MPPC-based prototype gantry for future MRI-PET scanners

    NASA Astrophysics Data System (ADS)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.

    2014-12-01

    We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.

  8. Sample size requirements for one-year treatment effects using deep gray matter volume from 3T MRI in progressive forms of multiple sclerosis.

    PubMed

    Kim, Gloria; Chu, Renxin; Yousuf, Fawad; Tauhid, Shahamat; Stazzone, Lynn; Houtchens, Maria K; Stankiewicz, James M; Severson, Christopher; Kimbrough, Dorlan; Quintana, Francisco J; Chitnis, Tanuja; Weiner, Howard L; Healy, Brian C; Bakshi, Rohit

    2017-11-01

    The subcortical deep gray matter (DGM) develops selective, progressive, and clinically relevant atrophy in progressive forms of multiple sclerosis (PMS). This patient population is the target of active neurotherapeutic development, requiring the availability of outcome measures. We tested a fully automated MRI analysis pipeline to assess DGM atrophy in PMS. Consistent 3D T1-weighted high-resolution 3T brain MRI was obtained over one year in 19 consecutive patients with PMS [15 secondary progressive, 4 primary progressive, 53% women, age (mean±SD) 50.8±8.0 years, Expanded Disability Status Scale (median, range) 5.0, 2.0-6.5)]. DGM segmentation applied the fully automated FSL-FIRST pipeline ( http://fsl.fmrib.ox.ac.uk ). Total DGM volume was the sum of the caudate, putamen, globus pallidus, and thalamus. On-study change was calculated using a random-effects linear regression model. We detected one-year decreases in raw [mean (95% confidence interval): -0.749 ml (-1.455, -0.043), p = 0.039] and annualized [-0.754 ml/year (-1.492, -0.016), p = 0.046] total DGM volumes. A treatment trial for an intervention that would show a 50% reduction in DGM brain atrophy would require a sample size of 123 patients for a single-arm study (one-year run-in followed by one-year on-treatment). For a two-arm placebo-controlled one-year study, 242 patients would be required per arm. The use of DGM fraction required more patients. The thalamus, putamen, and globus pallidus, showed smaller effect sizes in their on-study changes than the total DGM; however, for the caudate, the effect sizes were somewhat larger. DGM atrophy may prove efficient as a short-term outcome for proof-of-concept neurotherapeutic trials in PMS.

  9. [Three-dimensional fluid attenuated inversion recovery imaging at 3T MRI in sudden deafness: its findings and relationship with the prognosis].

    PubMed

    Qian, Yin-feng; Wu, Ji-chun; Zhang, Cheng; Yu, Yong-qiang

    2011-10-01

    To investigate inner ear of patients with sudden deafness with three-dimensional fluid attenuated inversion recovery (3D FLAIR) MRI, and the relationship between the results of 3D FLAIR and the prognosis. Twenty-three patients with sudden deafness received 3D FLAIR at 3T MRI, and the signals of inner ear were recorded. Hearing levels were evaluated at initial visit and after treatment. The relationship between 3D FLAIR findings and hearing prognosis was evaluated. Eight patients with sudden deafness showed high signals in the affected cochlea on 3D FLAIR, the others of affected cochlea and all of contralateral cochlea showed no signal on 3D FLAIR. The age, sex, affected side, period to initial visit and initial audiogram had no difference between cochlea no signal group and high signal group. The average auditory threshold (x±s) in cochlea high signal group (90±21) dB HL was significant higher than that in cochlea no signal group (60±28) dB HL, P<0.05 at patients' discharge. After treatment, in cochlea no signal group, two cases' hearing was complete recovered, remarkable improvement in five cases, slight improvement in two cases and no change in six cases. In cochlea high signal group, hearing was slight improvement in one case and no change in seven cases. The prognosis was significant difference between two groups. Five of seven patients with vertigo and sudden deafness showed high signal in affected side vestibule on 3D FLAIR, and the hearing of whom had no change after treatment. 3D FLAIR can show high signal in affected inner ear in sudden deafness patients, and which is related to a poor hearing prognosis.

  10. Assessment of cerebrospinal fluid flow patterns using the time-spatial labeling inversion pulse technique with 3T MRI: early clinical experiences.

    PubMed

    Abe, Kayoko; Ono, Yuko; Yoneyama, Hiroko; Nishina, Yu; Aihara, Yasuo; Okada, Yoshikazu; Sakai, Shuji

    2014-06-01

    CSF imaging using the time-spatial labeling inversion pulse (time-SLIP) technique at 3T magnetic resonance imaging (MRI) was performed to assess cerebrospinal fluid (CSF) dynamics. The study population comprised 15 healthy volunteers and five patients with MR findings showing expansive dilation of the third and lateral ventricles suggesting aqueductal stenosis (AS). Signal intensity changes were evaluated in the tag-labeled CSF, untagged brain parenchyma, and untagged CSF of healthy volunteers by changing of black-blood time-inversion pulse (BBTI). CSF flow from the aqueduct to the third ventricle, the aqueduct to the fourth ventricle, and the foramen of Monro to the lateral ventricle was clearly rendered in all healthy volunteers with suitable BBTI. The travel distance of CSF flow as demonstrated by the time-SLIP technique was compared with the distance between the aqueduct and the fourth ventricle. The distance between the foramen of Monro and the lateral ventricle was used to calculate the CSF flow/distance ratio (CD ratio). The CD ratio at each level was significantly reduced in patients suspected to have AS compared to healthy volunteers. CSF flow was not identified at the aqueductal level in most of the patients. Two patients underwent time-SLIP assessments before and after endoscopic third ventriculostomies (ETVs). CSF flow at the ETV site was confirmed in each patient. With the time-SLIP technique, CSF imaging is sensitive enough to detect kinetic changes in CSF flow due to AS and ETV.

  11. Genotoxic effects of 3 T magnetic resonance imaging in cultured human lymphocytes.

    PubMed

    Lee, Joong Won; Kim, Myeong Seong; Kim, Yang Jee; Choi, Young Joo; Lee, Younghyun; Chung, Hai Won

    2011-10-01

    The clinical and preclinical use of high-field intensity (HF, 3 T and above) magnetic resonance imaging (MRI) scanners have significantly increased in the past few years. However, potential health risks are implied in the MRI and especially HF MRI environment due to high-static magnetic fields, fast gradient magnetic fields, and strong radiofrequency electromagnetic fields. In this study, the genotoxic potential of 3 T clinical MRI scans in cultured human lymphocytes in vitro was investigated by analyzing chromosome aberrations (CA), micronuclei (MN), and single-cell gel electrophoresis. Human lymphocytes were exposed to electromagnetic fields generated during MRI scanning (clinical routine brain examination protocols: three-channel head coil) for 22, 45, 67, and 89 min. We observed a significant increase in the frequency of single-strand DNA breaks following exposure to a 3 T MRI. In addition, the frequency of both CAs and MN in exposed cells increased in a time-dependent manner. The frequencies of MN in lymphocytes exposed to complex electromagnetic fields for 0, 22, 45, 67, and 89 min were 9.67, 11.67, 14.67, 18.00, and 20.33 per 1000 cells, respectively. Similarly, the frequencies of CAs in lymphocytes exposed for 0, 45, 67, and 89 min were 1.33, 2.33, 3.67, and 4.67 per 200 cells, respectively. These results suggest that exposure to 3 T MRI induces genotoxic effects in human lymphocytes. Copyright © 2011 Wiley-Liss, Inc.

  12. An adaptive, individualized fMRI delay discounting procedure to increase flexibility and optimize scanner time.

    PubMed

    Koffarnus, Mikhail N; Deshpande, Harshawardhan U; Lisinski, Jonathan M; Eklund, Anders; Bickel, Warren K; LaConte, Stephen M

    2017-08-10

    Research on the rate at which people discount the value of future rewards has become increasingly prevalent as discount rate has been shown to be associated with many unhealthy patterns of behavior such as drug abuse, gambling, and overeating. fMRI research points to a fronto-parietal-limbic pathway that is active during decisions between smaller amounts of money now and larger amounts available after a delay. Researchers in this area have used different variants of delay discounting tasks and reported various contrasts between choice trials of different types from these tasks. For instance, researchers have compared 1) choices of delayed monetary amounts to choices of the immediate monetary amounts, 2) 'hard' choices made near one's point of indifference to 'easy' choices that require little thought, and 3) trials where an immediate choice is available versus trials where one is unavailable, regardless of actual eventual choice. These differences in procedure and analysis make comparison of results across studies difficult. In the present experiment, we designed a delay discounting task with the intended capability of being able to construct contrasts of all three comparisons listed above while optimizing scanning time to reduce costs and avoid participant fatigue. This was accomplished with an algorithm that customized the choice trials presented to each participant with the goal of equalizing choice trials of each type. We compared this task, which we refer to here as the individualized discounting task (IDT), to two other delay discounting tasks previously reported in the literature (McClure et al., 2004; Amlung et al., 2014) in 18 participants. Results show that the IDT can examine each of the three contrasts mentioned above, while yielding a similar degree of activation as the reference tasks. This suggests that this new task could be used in delay discounting fMRI studies to allow researchers to more easily compare their results to a majority of previous

  13. Talking about social conflict in the MRI scanner: neural correlates of being empathized with.

    PubMed

    Seehausen, Maria; Kazzer, Philipp; Bajbouj, Malek; Heekeren, Hauke R; Jacobs, Arthur M; Klann-Delius, Gisela; Menninghaus, Winfried; Prehn, Kristin

    2014-01-01

    This study investigated the emotional effects and neural correlates of being empathized with while speaking about a currently experienced real-life social conflict during fMRI. Specifically, we focused on the effects of cognitive empathy in the form of paraphrasing, a technique regularly used in conflict resolution. 22 participants underwent fMRI while being interviewed on their social conflict and receiving empathic or unempathic responses from the interviewer. Skin conductance response (SCR) and self-report ratings of feeling understood and emotional valence were used to assess emotional responses. Results confirm previous findings indicating that cognitive empathy exerts a positive short-term effect on emotions in social conflict, while at the same time increasing autonomic arousal reflected by SCR. Effects of paraphrasing and unempathic interventions as indicated by self-report ratings varied depending on self-esteem, pre-interview negative affect, and participants' empathy quotient. Empathic responses engaged a fronto-parietal network with activity in the right precentral gyrus (PrG), left middle frontal gyrus (MFG), left inferior parietal gyrus (IPG), and right postcentral gyrus (PoG). Processing unempathic responses involved a fronto-temporal network with clusters peaking in the left inferior frontal gyrus, pars triangularis (IFGTr), and right temporal pole (TP). A specific modeling of feeling misunderstood activated a network consisting of the IFG, left TP, left Heschl gyrus, IFGTr, and right precuneus, extending to several limbic regions, such as the insula, amygdala, putamen, and anterior cingulate cortex/right middle cingulum (ACC/MCC). The results support the effectiveness of a widely used conflict resolution technique, which may also be useful for professionals who regularly deal with and have to de-escalate situations highly charged with negative emotion, e.g. physicians or judges. © 2013 Elsevier Inc. All rights reserved.

  14. Combined MRI-PET scanner: A Monte Carlo evaluation of the improvements in PET resolution due to the effects of a static homogeneous magnetic field

    SciTech Connect

    Raylman, R.R.; Hammer, B.E.; Christensen, N.L.

    1996-08-01

    Positron emission tomography (PET) relies upon the detection of photons resulting from the annihilation of positrons emitted by a radiopharmaceutical. The combination of images obtained with PET and magnetic resonance imaging (MRI) have begun to greatly enhance the study of many physiological processes. A combined MRI-PET scanner could alleviate much of the spatial and temporal coregistration difficulties currently encountered in utilizing images from these complementary imaging modalities. In addition, the resolution of the PET scanner could be improved by the effects of the magnetic field. In this computer study, the utilization of a strong static homogeneous magnetic field to increase PET resolution by reducing the effects of positron range and photon noncollinearity was investigated. The results reveal that significant enhancement of resolution can be attained. For example, an approximately 27% increase in resolution is predicted for a PET scanner incorporating a 10-Tesla magnetic field. Most of this gain in resolution is due to magnetic confinement of the emitted positrons. Although the magnetic field does mix some positronium states resulting in slightly less photon noncollinearity, this reduction does not significantly affect resolution. Photon noncollinearity remains as the fundamental limiting factor of large PET scanner resolution.

  15. MR-guided percutaneous biopsy of solitary pulmonary lesions using a 1.0-T open high-field MRI scanner with respiratory gating.

    PubMed

    Liu, Ming; Huang, Jie; Xu, Yujun; He, Xiangmeng; Li, Lei; Lü, Yubo; Liu, Qiang; Sequeiros, Roberto Blanco; Li, Chengli

    2017-04-01

    To prospectively evaluate the feasibility, safety and accuracy of MR-guided percutaneous biopsy of solitary pulmonary lesions using a 1.0-T open MR scanner with respiratory gating. Sixty-five patients with 65 solitary pulmonary lesions underwent MR-guided percutaneous coaxial cutting needle biopsy using a 1.0-T open MR scanner with respiratory gating. Lesions were divided into two groups according to maximum lesion diameters: ≤2.0 cm (n = 31) and >2.0 cm (n = 34). The final diagnosis was established in surgery and subsequent histology. Diagnostic accuracy, sensitivity and specificity were compared between the groups using Fisher's exact test. Accuracy, sensitivity and specificity of MRI-guided percutaneous pulmonary biopsy in diagnosing malignancy were 96.9 %, 96.4 % and 100 %, respectively. Accuracy, sensitivity and specificity were 96.8 %, 96.3 % and 100 % for lesions 2.0 cm or smaller and 97.1 %, 96.4 % and 100 %, respectively, for lesions larger than 2.0 cm. There was no significant difference between the two groups (P > 0.05). Biopsy-induced complications encountered were pneumothorax in 12.3 % (8/65) and haemoptysis in 4.6 % (3/65). There were no serious complications. MRI-guided percutaneous biopsy using a 1.0-T open MR scanner with respiratory gating is an accurate and safe diagnostic technique in evaluation of pulmonary lesions. • MRI-guided percutaneous lung biopsy using a 1.0-T open MR scanner is feasibility. • 96.9 % differentiation accuracy of malignant and benign lung lesions is possible. • No serious complications occurred in MRI-guided lung biopsy.

  16. Feasibility of imaging superficial palmar arch using micro-ultrasound, 7T and 3T magnetic resonance imaging

    PubMed Central

    Pruzan, Alison N; Kaufman, Audrey E; Calcagno, Claudia; Zhou, Yu; Fayad, Zahi A; Mani, Venkatesh

    2017-01-01

    AIM To demonstrate feasibility of vessel wall imaging of the superficial palmar arch using high frequency micro-ultrasound, 7T and 3T magnetic resonance imaging (MRI). METHODS Four subjects (ages 22-50 years) were scanned on a micro-ultrasound system with a 45-MHz transducer (Vevo 2100, VisualSonics). Subjects’ hands were then imaged on a 3T clinical MR scanner (Siemens Biograph MMR) using an 8-channel special purpose phased array carotid coil. Lastly, subjects’ hands were imaged on a 7T clinical MR scanner (Siemens Magnetom 7T Whole Body Scanner) using a custom built 8-channel transmit receive carotid coil. All three imaging modalities were subjectively analyzed for image quality and visualization of the vessel wall. RESULTS Results of this very preliminary study indicated that vessel wall imaging of the superficial palmar arch was feasible with a whole body 7T and 3T MRI in comparison with micro-ultrasound. Subjective analysis of image quality (1-5 scale, 1: poorest, 5: best) from B mode, ultrasound, 3T SPACE MRI and 7T SPACE MRI indicated that the image quality obtained at 7T was superior to both 3T MRI and micro-ultrasound. The 3D SPACE sequence at both 7T and 3T MRI with isotropic voxels allowed for multi-planar reformatting of images and allowed for less operator dependent results as compared to high frequency micro-ultrasound imaging. Although quantitative analysis revealed that there was no significant difference between the three methods, the 7T Tesla trended to have better visibility of the vessel and its wall. CONCLUSION Imaging of smaller arteries at the 7T is feasible for evaluating atherosclerosis burden and may be of clinical relevance in multiple diseases. PMID:28298968

  17. Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI.

    PubMed

    Meissnitzer, T; Seymer, A; Keinrath, P; Holzmannhofer, J; Pirich, C; Hergan, K; Meissnitzer, M W

    2015-07-01

    To prospectively analyse the diagnostic value of semi-quantitative breast-specific gamma imaging (BSGI) in the work-up of suspicious breast lesions compared with that of mammography (MG), breast ultrasound and MRI of the breast. Within a 15-month period, 67 patients with 92 breast lesions rated as Category IV or V according to the breast imaging reporting and data system detected with MG and/or ultrasound were included into the study. After the injection of 740-1110 MBq of Technetium-99m ((99m)Tc) SestaMIBI intravenously, scintigrams were obtained in two projections comparable to MG. The BSGI was analysed visually and semi-quantitatively by calculating a relative uptake factor (X). With the exception of two patients with cardiac pacemakers, all patients underwent 3-T breast MRI. Biopsy results were obtained as the reference standard in all patients. Sensitivity, specificity, positive- and negative-predictive values, accuracy and area under the curve were calculated for each modality. Among the 92 lesions, 67 (72.8%) were malignant. 60 of the 67 cancers of any size were detected by BSGI with an overall sensitivity of 90%, only exceeded by ultrasound with a sensitivity of 99%. The sensitivity of BSGI for lesions <1 cm declined significantly to 60%. Overall specificity of ultrasound was only 20%. Specificity, accuracy and positive-predictive value were the highest for BSGI (56%, 80% and 85%, respectively). X was significantly higher for malignant lesions (mean, 4.27) and differed significantly between ductal types (mean, 4.53) and the other histopathological entities (mean, 3.12). Semi-quantitative BSGI with calculation of the relative uptake factor (X) can help to characterize breast lesions. BSGI negativity may obviate the need for biopsy of breast lesions >1 cm with low or intermediate prevalence for malignancy. Compared with morphological imaging modalities, specificity, positive-predictive value for malignancy and accuracy were the highest for BSGI in our

  18. Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI

    PubMed Central

    Seymer, A; Keinrath, P; Holzmannhofer, J; Pirich, C; Hergan, K; Meissnitzer, M W

    2015-01-01

    Objective: To prospectively analyse the diagnostic value of semi-quantitative breast-specific gamma imaging (BSGI) in the work-up of suspicious breast lesions compared with that of mammography (MG), breast ultrasound and MRI of the breast. Methods: Within a 15-month period, 67 patients with 92 breast lesions rated as Category IV or V according to the breast imaging reporting and data system detected with MG and/or ultrasound were included into the study. After the injection of 740–1110 MBq of Technetium-99m (99mTc) SestaMIBI intravenously, scintigrams were obtained in two projections comparable to MG. The BSGI was analysed visually and semi-quantitatively by calculating a relative uptake factor (X). With the exception of two patients with cardiac pacemakers, all patients underwent 3-T breast MRI. Biopsy results were obtained as the reference standard in all patients. Sensitivity, specificity, positive- and negative-predictive values, accuracy and area under the curve were calculated for each modality. Results: Among the 92 lesions, 67 (72.8%) were malignant. 60 of the 67 cancers of any size were detected by BSGI with an overall sensitivity of 90%, only exceeded by ultrasound with a sensitivity of 99%. The sensitivity of BSGI for lesions <1 cm declined significantly to 60%. Overall specificity of ultrasound was only 20%. Specificity, accuracy and positive-predictive value were the highest for BSGI (56%, 80% and 85%, respectively). X was significantly higher for malignant lesions (mean, 4.27) and differed significantly between ductal types (mean, 4.53) and the other histopathological entities (mean, 3.12). Conclusion: Semi-quantitative BSGI with calculation of the relative uptake factor (X) can help to characterize breast lesions. BSGI negativity may obviate the need for biopsy of breast lesions >1 cm with low or intermediate prevalence for malignancy. Advances in knowledge: Compared with morphological imaging modalities, specificity, positive

  19. Cluster analysis of quantitative MRI T2 and T1ρ relaxation times of cartilage identifies differences between healthy and ACL-injured individuals at 3T.

    PubMed

    Monu, U D; Jordan, C D; Samuelson, B L; Hargreaves, B A; Gold, G E; McWalter, E J

    2017-04-01

    To identify focal lesions of elevated MRI T2 and T1ρ relaxation times in articular cartilage of an ACL-injured group using a novel cluster analysis technique. Eighteen ACL-injured patients underwent 3T MRI T2 and T1ρ relaxometry at baseline, 6 months and 1 year and six healthy volunteers at baseline, 1 day and 1 year. Clusters of contiguous pixels above or below T2 and T1ρ intensity and area thresholds were identified on a projection map of the 3D femoral cartilage surface. The total area of femoral cartilage plate covered by clusters (%CA) was split into areas above (%CA+) and below (%CA-) the thresholds and the differences in %CA(+ or -) over time in the ACL-injured group were determined using the Wilcoxon signed rank test. %CA+ was greater in the ACL-injured patients than the healthy volunteers at 6 months and 1 year with average %CA+ of 5.2 ± 4.0% (p = 0.0054) and 6.6 ± 3.7% (p = 0.0041) for T2 and 6.2 ± 7.1% (p = 0.063) and 8.2 ± 6.9% (p = 0.042) for T1ρ, respectively. %CA- at 6 months and 1 year was 3.0 ± 1.8% (p > 0.1) and 5.9 ± 5.0% (p > 0.1) for T2 and 4.4 ± 4.9% (p > 0.1) and 4.5 ± 4.6% (p > 0.1) for T1ρ, respectively. With the proposed cluster analysis technique, we have quantified cartilage lesion coverage and demonstrated that the ACL-injured group had greater areas of elevated T2 and T1ρ relaxation times as compared to healthy volunteers. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. Pulmonary MRI at 3T: Non-enhanced pulmonary magnetic resonance Imaging Characterization Quotients for differentiation of infectious and malignant lesions.

    PubMed

    Nagel, Sebastian Niko; Kim, Damon; Penzkofer, Tobias; Steffen, Ingo G; Wyschkon, Sebastian; Hamm, Bernd; Schwartz, Stefan; Elgeti, Thomas

    2017-04-01

    To investigate 3T pulmonary magnetic resonance imaging (MRI) for characterization of solid pulmonary lesions in immunocompromised patients and to differentiate infectious from malignant lesions. Thirty-eight pulmonary lesions in 29 patients were evaluated. Seventeen patients were immunocompromised (11 infections and 6 lymphomas) and 12 served as controls (4 bacterial pneumonias, 8 solid tumors). Ten of the 15 infections were acute. Signal intensities (SI) were measured in the lesion, chest wall muscle, and subcutaneous fat. Scaled SIs as Non-enhanced Imaging Characterization Quotients ((SILesion-SIMuscle)/(SIFat-SIMuscle)*100) were calculated from the T2-weighted images using the mean SI (T2-NICQmean) or the 90th percentile of SI (T2-NICQ90th) of the lesion. Simple quotients were calculated by dividing the SI of the lesion by the SI of chest wall muscle (e.g. T1-Qmean: SILesion/SIMuscle). Infectious pulmonary lesions showed a higher T2-NICQmean (40.1 [14.6-56.0] vs. 20.9 [2.4-30.1], p<0.05) and T2-NICQ90th (74.3 [43.8-91.6] vs. 38.5 [15.8-48.1], p<0.01) than malignant lesions. T1-Qmean was higher in malignant lesions (0.85 [0.68-0.94] vs. 0.93 [0.87-1.09], p<0.05). Considering infections only, T2-NICQ90th was lower when anti-infectious treatment was administered >24h prior to MRI (81.8 [71.8-97.6] vs. 41.4 [26.6-51.1], p<0.01). Using Youden's index (YI), the optimal cutoff to differentiate infectious from malignant lesions was 43.1 for T2-NICQmean (YI=0.42, 0.47 sensitivity, 0.95 specificity) and 55.5 for T2-NICQ90th (YI=0.61, 0.71 sensitivity, 0.91 specificity). Combining T2-NICQ90th and T1-Qmean increased diagnostic performance (YI=0.72, 0.77 sensitivity, 0.95 specificity). Considering each quotient alone, T2-NICQ90th showed the best diagnostic performance and could allow differentiation of acute infectious from malignant pulmonary lesions with high specificity. Combining T2-NICQ90th with T1-Qmean increased overall performance, especially regarding sensitivity

  1. A job interview in the MRI scanner: How does indirectness affect addressees and overhearers?

    PubMed

    Bašnáková, Jana; van Berkum, Jos; Weber, Kirsten; Hagoort, Peter

    2015-09-01

    In using language, people not only exchange information, but also navigate their social world - for example, they can express themselves indirectly to avoid losing face. In this functional magnetic resonance imaging study, we investigated the neural correlates of interpreting face-saving indirect replies, in a situation where participants only overheard the replies as part of a conversation between two other people, as well as in a situation where the participants were directly addressed themselves. We created a fictional job interview context where indirect replies serve as a natural communicative strategy to attenuate one's shortcomings, and asked fMRI participants to either pose scripted questions and receive answers from three putative job candidates (addressee condition) or to listen to someone else interview the same candidates (overhearer condition). In both cases, the need to evaluate the candidate ensured that participants had an active interest in comprehending the replies. Relative to direct replies, face-saving indirect replies increased activation in medial prefrontal cortex, bilateral temporo-parietal junction (TPJ), bilateral inferior frontal gyrus and bilateral middle temporal gyrus, in active overhearers and active addressees alike, with similar effect size, and comparable to findings obtained in an earlier passive listening study (Bašnáková et al., 2014). In contrast, indirectness effects in bilateral anterior insula and pregenual ACC, two regions implicated in emotional salience and empathy, were reliably stronger in addressees than in active overhearers. Our findings indicate that understanding face-saving indirect language requires additional cognitive perspective-taking and other discourse-relevant cognitive processing, to a comparable extent in active overhearers and addressees. Furthermore, they indicate that face-saving indirect language draws upon affective systems more in addressees than in overhearers, presumably because the addressee

  2. Exposure to static and time-varying magnetic fields from working in the static magnetic stray fields of MRI scanners: a comprehensive survey in the Netherlands.

    PubMed

    Schaap, Kristel; Christopher-De Vries, Yvette; Crozier, Stuart; De Vocht, Frank; Kromhout, Hans

    2014-11-01

    Clinical and research staff who work around magnetic resonance imaging (MRI) scanners are exposed to the static magnetic stray fields of these scanners. Although the past decade has seen strong developments in the assessment of occupational exposure to electromagnetic fields from MRI scanners, there is insufficient insight into the exposure variability that characterizes routine MRI work practice. However, this is an essential component of risk assessment and epidemiological studies. This paper describes the results of a measurement survey of shift-based personal exposure to static magnetic fields (SMF) (B) and motion-induced time-varying magnetic fields (dB/dt) among workers at 15 MRI facilities in the Netherlands. With the use of portable magnetic field dosimeters, >400 full-shift and partial shift exposure measurements were collected among various jobs involved in clinical and research MRI. Various full-shift exposure metrics for B and motion-induced dB/dt exposure were calculated from the measurements, including instantaneous peak exposure and time-weighted average (TWA) exposures. We found strong correlations between levels of static (B) and time-varying (dB/dt) exposure (r = 0.88-0.92) and between different metrics (i.e. peak exposure, TWA exposure) to express full-shift exposure (r = 0.69-0.78). On average, participants were exposed to MRI-related SMFs during only 3.7% of their work shift. Average and peak B and dB/dt exposure levels during the work inside the MRI scanner room were highest among technical staff, research staff, and radiographers. Average and peak B exposure levels were lowest among cleaners, while dB/dt levels were lowest among anaesthesiology staff. Although modest exposure variability between workplaces and occupations was observed, variation between individuals of the same occupation was substantial, especially among research staff. This relatively large variability between workers with the same job suggests that exposure classification

  3. Feasibility and Success Rate of a Fetal MRI and MR Spectroscopy Research Protocol Performed at Term Using a 3.0-Tesla Scanner.

    PubMed

    Sanz Cortes, Magdalena; Bargallo, Nuria; Arranz, Angela; Simoes, Rui; Figueras, Francesc; Gratacos, Eduard

    2017-01-01

    To report the feasibility and main factors affecting the success of a fetal magnetic resonance imaging (MRI) and MR spectroscopy (MRS) research protocol performed at term using a 3-tesla scanner. Pregnant patients at term underwent an MRI. Specific measures were taken to prevent maternal discomfort and distress, such as detailed counseling and maternal repositioning if needed. MRS data were acquired from the frontal lobe and basal ganglia, and processed applying quality control criteria. The mean gestational age at MRI was 37.4 ± 0.9 weeks. From a total of 245 patients that showed up for the MRI, 11 referred claustrophobia which prevented the test from starting, and 30 patients started the test but decided to discontinue due to discomfort. Thus, the examination was complete in 204 patients. MRS data could be obtained in 170 cases from the frontal lobe and 165 cases from the basal ganglia, of which 52.4 and 68.6%, respectively, complied with our defined quality criteria. The mean scanning time was 34:16 ± 9:30 min:s after excluding those cases presenting initial intolerance to the test. Minor abnormalities were described in 11 MRI reports. The fetal MRI/MRS protocol was feasible and generally well tolerated at term on a 3-tesla scanner, but a significant number of cases were lost to analysis. The rate of patients that eventually provided usable research information was 95.5% for anatomical examination and 52.4-68.6% for MRS. This information should be taken into account in the design of fetal brain MRI studies. © 2016 S. Karger AG, Basel.

  4. Diffusion tensor imaging of the cervical spinal cord in healthy adult population: normative values and measurement reproducibility at 3T MRI.

    PubMed

    Brander, Antti; Koskinen, Eerika; Luoto, Teemu M; Hakulinen, Ullamari; Helminen, Mika; Savilahti, Sirpa; Ryymin, Pertti; Dastidar, Prasun; Ohman, Juha

    2014-05-01

    Compared to diffusion tensor imaging (DTI) of the brain, there is a paucity of reports addressing the applicability of DTI in the evaluation of the spinal cord. Most normative data of cervical spinal cord DTI consist of relatively small and arbitrarily collected populations. Comprehensive normative data are necessary for clinical decision-making. To establish normal values for cervical spinal cord DTI metrics with region of interest (ROI)- and fiber tractography (FT)-based measurements and to assess the reproducibility of both measurement methods. Forty healthy adults underwent cervical spinal cord 3T MRI. Sagittal and axial conventional T2 sequences and DTI in the axial plane were performed. Whole cord fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were determined at different cervical levels from C2 to C7 using the ROI method. DTI metrics (FA, axial, and radial diffusivities based on eigenvalues λ1, λ2, and λ3, and ADC) of the lateral and posterior funicles were measured at C3 level. FA and ADC of the whole cord and the lateral and posterior funicles were also measured using quantitative tractography. Intra- and inter-observer variation of the measurement methods were assessed. Whole cord FA values decreased and ADC values increased in the rostral to caudal direction from C2 to C7. Between the individual white matter funicles no statistically significant difference for FA or ADC values was found. Both axial diffusivity and radial diffusivity of both lateral funicles differed significantly from those of the posterior funicle. Neither gender nor age correlated with any of the DTI metrics. Intra-observer variation of the measurements for whole cord FA and ADC showed almost perfect agreement with both ROI and tractography-based measurements. There was more variation in measurements of individual columns. Inter-observer agreement varied from moderate to strong for whole cord FA and ADC. Both ROI- and FT-based measurements are applicable

  5. Reproducibility of pulmonary blood flow measurements by phase-contrast MRI using different 1.5 T MR scanners at two institutions

    PubMed Central

    Iraha, Rin; Tsuchiya, Nanae; Yamashiro, Tsuneo; Iwasawa, Tae

    2017-01-01

    Background Magnetic resonance imaging (MRI) can be beneficial for diagnosis of disease by offering quantitative information. However, reproducibility can be a major problem when there is a numerical threshold in multi-institution, multi-vendor situations. Purpose To measure pulmonary blood flow with phase-contrast (PC) imaging using two different MR scanners (1.5 T) at different institutions in the same participants and to examine the reproducibility of the measurements. Material and Methods Participants were 10 healthy volunteers (5 men; age range, 27–36 years). The measurements included the mean and maximal blood velocities, the mean blood flow volume, and the acceleration time and volume (AT and AV), derived from the time-flow curve of the PC-MRI. Simultaneously obtained maximal, minimal, and mean areas from regions of interest set in the pulmonary artery were also calculated. In order to calculate the reproducibility of the quantitative variables, intra-class correlation coefficients (ICCs) were employed. When an adequate ICC was obtained, Bland–Altman analysis was conducted to identify any systematic bias. Results The ICCs were almost perfect for the mean blood flow volume and the AV (r = 0.82 and 0.80), and were substantial in the mean and maximal areas, and the AT (r = 0.63, 0.74, and 0.64, respectively). However, there was a fixed bias in the area measurement between the two scanners. Also, the AV had a proportional bias. Conclusion Our results reveal that various indices derived from PC-MRI on different MR scanners are promising as common indices for pulmonary flow assessment. Research and clinical use of PC-MRI for the pulmonary artery is expected to extend to multi-institution situations. PMID:28210495

  6. Pulmonary 3 T MRI with ultrashort TEs: influence of ultrashort echo time interval on pulmonary functional and clinical stage assessments of smokers.

    PubMed

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Seki, Shinichiro; Obara, Makoto; van Cauteren, Marc; Takahashi, Masaya; Sugimura, Kazuro

    2014-04-01

    To assess the influence of ultrashort TE (UTE) intervals on pulmonary magnetic resonance imaging (MRI) with UTEs (UTE-MRI) for pulmonary functional loss assessment and clinical stage classification of smokers. A total 60 consecutive smokers (43 men and 17 women; mean age 70 years) with and without COPD underwent thin-section multidetector row computed tomography (MDCT), UTE-MRI, and pulmonary functional measurements. For each smoker, UTE-MRI was performed with three different UTE intervals (UTE-MRI A: 0.5 msec, UTE-MRI B: 1.0 msec, UTE-MRI C: 1.5 msec). By using the GOLD guidelines, the subjects were classified as: "smokers without COPD," "mild COPD," "moderate COPD," and "severe or very severe COPD." Then the mean T2* value from each UTE-MRI and CT-based functional lung volume (FLV) were correlated with pulmonary function test. Finally, Fisher's PLSD test was used to evaluate differences in each index among the four clinical stages. Each index correlated significantly with pulmonary function test results (P < 0.05). CT-based FLV and mean T2* values obtained from UTE-MRI A and B showed significant differences among all groups except between "smokers without COPD" and "mild COPD" groups (P < 0.05). UTE-MRI has a potential for management of smokers and the UTE interval is suggested as an important parameter in this setting. Copyright © 2013 Wiley Periodicals, Inc.

  7. Gd-AAZTA-MADEC, an improved blood pool agent for DCE-MRI studies on mice on 1 T scanners.

    PubMed

    Longo, Dario Livio; Arena, Francesca; Consolino, Lorena; Minazzi, Paolo; Geninatti-Crich, Simonetta; Giovenzana, Giovanni Battista; Aime, Silvio

    2016-01-01

    A novel MRI blood-pool contrast agent (Gd-AAZTA-MADEC) has been compared with established blood pool agents for tumor contrast enhanced images and angiography. Synthesis, relaxometric properties, albumin binding affinity and pharmacokinetic profiles are reported. For in vivo studies, angiographic images and tumor contrast enhanced images were acquired on mice with benchtop 1T-MRI scanners and compared with MS-325, B22956/1 and B25716/1. The design of this contrast agent involved the elongation of the spacer between the targeting deoxycholic acid moiety and the Gd-AAZTA imaging reporting unit that drastically changed either the binding affinity to albumin (KA(HSA) = 8.3 × 10(5) M(-1)) and the hydration state of the Gd ion (q = 2) in comparison to the recently reported B25716/1. The very markedly high binding affinity towards mouse and human serum albumins resulted in peculiar pharmacokinetics and relaxometric properties. The NMRD profiles clearly indicated that maximum efficiency is attainable at magnetic field strength of 1 T. In vivo studies showed high enhancement of the vasculature and a prolonged accumulation inside tumor. The herein reported pre-clinical imaging studies show that a great benefit arises from the combination of a benchtop MRI scanner operating at 1 T and the albumin-binding Gd-AAZTA-MADEC complex, for pursuing enhanced angiography and improved characterization of tumor vascular microenvironment.

  8. Brain MRI with single-dose (0.1 mmol/kg) Gadobutrol at 1.5 T and 3 T: comparison with 0.15 mmol/kg Gadoterate meglumine.

    PubMed

    Kramer, Harald; Runge, Val M; Naul, L Gill; Loynachan, Alan T; Reiser, Maximilian F; Wintersperger, Bernd J

    2010-05-01

    The purpose of this article is to evaluate the efficacy of a single dose of gadobutrol (0.1 mmol/kg of body weight) compared with that of a substantially higher dose of gadoterate meglumine (0.15 mmol/kg of body weight) in a rat brain tumor model at 1.5 and 3 T. A cohort of 20 Fischer rats with a surgically implanted plastic brain cannula for glioma cell injection was divided into two groups. Group A underwent MRI at 1.5 T, and group B underwent MRI at 3 T. All rats were implanted with 10 microL of C6/lacZ glioma cells. Seven days after tumor cell implantation, MRI was performed with the first of two contrast agents in randomized order. Twenty-four hours later, MRI was performed with the second contrast agent. Both contrast agents were macrocyclic but differed in concentration. All rats were sacrificed after the second MRI scan was obtained, and brains were harvested for histopathologic assessment. For evaluation of image quality, signal-to-noise ratio, contrast-to-noise ratio, and lesion enhancement were evaluated. Two rats in each group died before the imaging protocol was completed. Thus, 16 rats could be evaluated. At both 1.5 and 3 T, no significant differences between the two contrast agents were found in terms of signal-to-noise ratio, contrast-to-noise ratio, and lesion enhancement, although the contrast agents were applied at substantially different dosages. The amount of gadobutrol needed to reach the same efficacy as gadoterate meglumine is substantially lower, which may be beneficial for patients with impaired renal function. In addition, increasing the dose of gadobutrol to 0.15 mmol/kg of body weight can potentially lead to better delineation of lesions.

  9. NOTE: Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept

    NASA Astrophysics Data System (ADS)

    Raaymakers, B. W.; Lagendijk, J. J. W.; Overweg, J.; Kok, J. G. M.; Raaijmakers, A. J. E.; Kerkhof, E. M.; van der Put, R. W.; Meijsing, I.; Crijns, S. P. M.; Benedosso, F.; van Vulpen, M.; de Graaff, C. H. W.; Allen, J.; Brown, K. J.

    2009-06-01

    At the UMC Utrecht, The Netherlands, we have constructed a prototype MRI accelerator. The prototype is a modified 6 MV Elekta (Crawley, UK) accelerator next to a modified 1.5 T Philips Achieva (Best, The Netherlands) MRI system. From the initial design onwards, modifications to both systems were aimed to yield simultaneous and unhampered operation of the MRI and the accelerator. Indeed, the simultaneous operation is shown by performing diagnostic quality 1.5 T MRI with the radiation beam on. No degradation of the performance of either system was found. The integrated 1.5 T MRI system and radiotherapy accelerator allow simultaneous irradiation and MR imaging. The full diagnostic imaging capacities of the MRI can be used; dedicated sequences for MRI-guided radiotherapy treatments will be developed. This proof of concept opens the door towards a clinical prototype to start testing MRI-guided radiation therapy (MRIgRT) in the clinic.

  10. Dynamic 1.5-T vs 3-T true fast imaging with steady-state precession (trueFISP)-MRI sequences for assessment of velopharyngeal function

    PubMed Central

    Sinko, K; Czerny, C; Jagsch, R; Baumann, A

    2015-01-01

    Objectives: To compare the image quality of MRI scans produced with 1.5- and 3.0-T devices during functional test condition. Methods: 65 MRI scans obtained with 1.5- (n = 43) or 3.0-T (n = 22) true fast imaging with steady-state precession (trueFISP) sequences from patients with a history of a cleft palate were evaluated. Two experts assessed the MRI scans, independently of each other, and blinded to the MRI technique used. Subjective ratings were entered on a five-point Likert scale. The median planes of three anatomical structures (velum, tongue and pharyngeal wall) were assessed in three functional states (at rest, during phonation of sustained “e” and during articulation of “kkk”). In addition, MRI scans taken during velopharyngeal closure were evaluated. Results: Under blinded conditions, both observers (radiologist and orthodontist) independently rated the quality of 1.5-T scans higher than that of 3.0 T. Statistical analysis of pooled data showed that the differences were highly significant (p < 0.009) in 4 out of 10 test conditions. The greatest differences in favour of 1.5 T were observed for MRI scans of the velum. Conclusions: 1.5 T used with trueFISP may be preferable over 3.0-T trueFISP for the evaluation of the velopharyngeal structures in the clinical routine. PMID:26090932

  11. Improving magnetic resonance imaging (MRI) examinations: Development and evaluation of an intervention to reduce movement in scanners and facilitate scan completion.

    PubMed

    Powell, Rachael; Ahmad, Mahadir; Gilbert, Fiona J; Brian, David; Johnston, Marie

    2015-09-01

    The movement of patients in magnetic resonance imaging (MRI) scanners results in motion artefacts which impair image quality. Non-completion of scans leads to delay in diagnosis and increased costs. This study aimed to develop and evaluate an intervention to enable patients to stay still in MRI scanners (reducing motion artefacts) and to enhance scan completion. Successful scan outcome was deemed to be completing the scan with no motion artefacts. Previous research indicated self-efficacy to predict successful scan outcome, and interviews with patients identified a need for procedural and sensory information to facilitate successful scan behaviour. A DVD intervention was developed which targeted self-efficacy and included procedural and sensory information. It was successfully piloted with 10 patients and then evaluated in a randomized controlled trial compared with the standard hospital information leaflet (intervention group N = 41; control group N = 42). The clinic radiographer, who was blind to group allocation, rated MRI scans for motion artefact and recorded whether the participant completed the scan; participants completed MRI self-efficacy and anxiety measures. Only one participant reported not finding the DVD useful. Thirty-five participants in the intervention group and 23 in the control group completed scans and had no motion artefacts, χ(2) (1, 83) = 7.84, p < .001 (relative risk of an unsatisfactory outcome in the control group/intervention group = 3.09). The intervention effect was mediated by self-efficacy. The DVD intervention was efficacious and warrants further research to examine generalizability. © 2015 The British Psychological Society.

  12. Role of 3T multiparametric-MRI with BOLD hypoxia imaging for diagnosis and post therapy response evaluation of postoperative recurrent cervical cancers.

    PubMed

    Mahajan, Abhishek; Engineer, Reena; Chopra, Supriya; Mahanshetty, Umesh; Juvekar, S L; Shrivastava, S K; Desekar, Naresh; Thakur, M H

    2016-01-01

    To assess the diagnostic value of multiparametric-MRI (MPMRI) with hypoxia imaging as a functional marker for characterizing and detecting vaginal vault/local recurrence following primary surgery for cervical cancer. With institutional review board approval and written informed consent 30 women (median age: 45 years) from October 2009 to March 2010 with previous operated carcinoma cervix and suspected clinical vaginal vault/local recurrence were examined with 3.0T-MRI. MRI imaging included conventional and MPMRI sequences [dynamic contrast enhanced (DCE), diffusion weighted (DW), 1H-MR spectroscopy (1HMRS), blood oxygen level dependent hypoxia imaging (BOLD)]. Two radiologists, blinded to pathologic findings, independently assessed the pretherapy MRI findings and then correlated it with histopathology findings. Sensitivity, specificity, positive predictive value, negative predictive value and their confidence intervals were calculated. The pre and post therapy conventional and MPMRI parameters were analyzed and correlated with response to therapy. Of the 30 patients, there were 24 recurrent tumors and 6 benign lesions. The accuracy of diagnosing recurrent vault lesions was highest at combined MPMRI and conventional MRI (100%) than at conventional-MRI (70%) or MPMRI (96.7%) alone. Significant correlation was seen between percentage tumor regression and pre-treatment parameters such as negative enhancement integral (NEI) (p = 0.02), the maximum slope (p = 0.04), mADC value (p = 0.001) and amount of hypoxic fraction on the pretherapy MRI (p = 0.01). Conventional-MR with MPMRI significantly increases the diagnostic accuracy for suspected vaginal vault/local recurrence. Post therapy serial MPMRI with hypoxia imaging follow-up objectively documents the response. MPMRI and BOLD hypoxia imaging provide information regarding tumor biology at the molecular, subcellular, cellular and tissue levels and this information may be used as an appropriate and reliable

  13. Significant Artifact Reduction at 1.5T and 3T MRI by the Use of a Cochlear Implant with Removable Magnet: An Experimental Human Cadaver Study.

    PubMed

    Wagner, Franca; Wimmer, Wilhelm; Leidolt, Lars; Vischer, Mattheus; Weder, Stefan; Wiest, Roland; Mantokoudis, Georgios; Caversaccio, Marco D

    2015-01-01

    Cochlear implants (CIs) are standard treatment for postlingually deafened individuals and prelingually deafened children. This human cadaver study evaluated diagnostic usefulness, image quality and artifacts in 1.5T and 3T magnetic resonance (MR) brain scans after CI with a removable magnet. Three criteria (diagnostic usefulness, image quality, artifacts) were assessed at 1.5T and 3T in five cadaver heads with CI. The brain magnetic resonance scans were performed with and without the magnet in situ. The criteria were analyzed by two blinded neuroradiologists, with focus on image distortion and limitation of the diagnostic value of the acquired MR images. MR images with the magnet in situ were all compromised by artifacts caused by the CI. After removal of the magnet, MR scans showed an unequivocal artifact reduction with significant improvement of the image quality and diagnostic usefulness, both at 1.5T and 3T. Visibility of the brain stem, cerebellopontine angle, and parieto-occipital lobe ipsilateral to the CI increased significantly after magnet removal. The results indicate the possible advantages for 1.5T and 3T MR scanning of the brain in CI carriers with removable magnets. Our findings support use of CIs with removable magnets, especially in patients with chronic intracranial pathologies.

  14. SU-F-R-08: Can Normalization of Brain MRI Texture Features Reduce Scanner-Dependent Effects in Unsupervised Machine Learning?

    SciTech Connect

    Ogden, K; O’Dwyer, R; Bradford, T; Cussen, L

    2016-06-15

    Purpose: To reduce differences in features calculated from MRI brain scans acquired at different field strengths with or without Gadolinium contrast. Methods: Brain scans were processed for 111 epilepsy patients to extract hippocampus and thalamus features. Scans were acquired on 1.5 T scanners with Gadolinium contrast (group A), 1.5T scanners without Gd (group B), and 3.0 T scanners without Gd (group C). A total of 72 features were extracted. Features were extracted from original scans and from scans where the image pixel values were rescaled to the mean of the hippocampi and thalami values. For each data set, cluster analysis was performed on the raw feature set and for feature sets with normalization (conversion to Z scores). Two methods of normalization were used: The first was over all values of a given feature, and the second by normalizing within the patient group membership. The clustering software was configured to produce 3 clusters. Group fractions in each cluster were calculated. Results: For features calculated from both the non-rescaled and rescaled data, cluster membership was identical for both the non-normalized and normalized data sets. Cluster 1 was comprised entirely of Group A data, Cluster 2 contained data from all three groups, and Cluster 3 contained data from only groups 1 and 2. For the categorically normalized data sets there was a more uniform distribution of group data in the three Clusters. A less pronounced effect was seen in the rescaled image data features. Conclusion: Image Rescaling and feature renormalization can have a significant effect on the results of clustering analysis. These effects are also likely to influence the results of supervised machine learning algorithms. It may be possible to partly remove the influence of scanner field strength and the presence of Gadolinium based contrast in feature extraction for radiomics applications.

  15. Comparison of prostate cancer detection at 3-T MRI with and without an endorectal coil: A prospective, paired-patient study.

    PubMed

    Costa, Daniel N; Yuan, Qing; Xi, Yin; Rofsky, Neil M; Lenkinski, Robert E; Lotan, Yair; Roehrborn, Claus G; Francis, Franto; Travalini, Debbie; Pedrosa, Ivan

    2016-06-01

    To compare the sensitivity of 2 different non-endorectal coil strategies vs. endorectal coil (ERC) magnetic resonance imaging (MRI) for detection of prostate cancer (PCa). In this prospective, single-center, paired-patient, paired-reader study, 49 men with a clinical indication for MRI underwent non-ERC (phased-array coil only) T2-weighted imaging and diffusion-weighted imaging followed by the same sequences using both ERC and phased-array coils (ERC Protocol). Patients were randomized into 1 of 2 arms: standard non-ERC protocol and augmented non-ERC protocol. Lesions with Likert score≥3 were defined as suspicious for cancer. Radical prostatectomy specimen or combined systematic plus targeted biopsies served as the standard of reference. Cancers were stratified into risk groups according to the National Comprehensive Cancer Network guidelines. Generalized estimating equations with Bonferroni correction were used for comparisons. The level of reader confidence was inferred by the Likert scores assigned to index lesions. The ERC protocol provided sensitivity (78%) superior to MRI without ERC for PCa detection, both with a standard (43%) (P<0.0001) or augmented (60%) (P<0.01) protocol. The ERC MRI missed less-intermediate or high-risk index lesions (4%) than standard non-ERC (42%) (P = 0.02) and augmented non-ERC MRI (25%), although the latter did not reach significance (P = 0.09). The ERC improved radiologist confidence for the detection of PCa (average Likert score = 4.2±1.4) compared to standard (2.3±2.3) and augmented (2.9±2.1) non-ERC (P = 0.001). The use of combined ERC and pelvic phased-array coil for T2-weighted imaging and diffusion-weighted imaging provides superior sensitivity for the detection of PCa compared to an examination performed without the ERC. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    PubMed

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  17. Simultaneous electroencephalography-functional MRI at 3 T: an analysis of safety risks imposed by performing anatomical reference scans with the EEG equipment in place.

    PubMed

    Nöth, Ulrike; Laufs, Helmut; Stoermer, Robert; Deichmann, Ralf

    2012-03-01

    To describe heating effects to be expected in simultaneous electroencephalography (EEG) and magnetic resonance imaging (MRI) when deviating from the EEG manufacturer's instructions; to test which anatomical MRI sequences have a sufficiently low specific absorption rate (SAR) to be performed with the EEG equipment in place; and to suggest precautions to reduce the risk of heating. Heating was determined in vivo below eight EEG electrodes, using both head and body coil transmission and sequences covering the whole range of SAR values. Head transmit coil: temperature increases were below 2.2°C for low SAR sequences, but reached 4.6°C (one subject, clavicle) for high SAR sequences; the equilibrium temperature T(eq) remained below 39°C. Body transmit coil: temperature increases were higher and more frequent over subjects and electrodes, with values below 2.6°C for low SAR sequences, reaching 6.9°C for high SAR sequences (T8 electrode) with T(eq) exceeding a critical level of 40°C. Anatomical imaging should be based on T1-weighted sequences (FLASH, MPRAGE, MDEFT) with an SAR below values for functional MRI sequences based on gradient echo planar imaging. Anatomical sequences with a high SAR can pose a significant risk, which is reduced by using head coil transmission. Copyright © 2011 Wiley-Liss, Inc.

  18. Radio frequency versus susceptibility effects of small conductive implants--a systematic MRI study on aneurysm clips at 1.5 and 3 T.

    PubMed

    Lauer, Ulrike A; Graf, Hansjorg; Berger, Alexander; Claussen, Claus D; Schick, Fritz

    2005-05-01

    Metallic implants cause enlarged artifacts in magnetic resonance (MR) images at higher magnetic fields, B0, due to their magnetic susceptibility. Interactions of conductive material with radio frequency (RF) pulses also change for higher field strengths, B0, due to the frequency dependence of resonance conditions. Systematic measurements on commercial aneurysm clips and simplified copper models were performed in order to investigate both phenomena at 1.5 and 3 T. Six different commercial aneurysm clips made of titanium, straight copper wires and bent copper models were examined in Gd-DTPA-doped water. RF-related effects were measured by adapted 2D and 3D spin-echo sequences. For reliable differentiation from susceptibility-related effects, variable transmitter voltages were applied. In addition, RF-induced heating was controlled by an infrared (IR) camera. At 3 T, a significant RF-induced electric response could be demonstrated for the copper samples and more moderate for one of the commercial clips, dependent on the geometrical structure determining possible resonant RF coupling. Related RF effects could be distinguished from susceptibility artifacts: a signal enhancement at reduced transmitter voltages indicated locally amplified B1-field amplitudes. No significant heating effect could be measured by IR measurements. MR imaging was used to analyze possible RF-induced effects. At 3 T, resonant RF coupling even of small metallic implants has to be considered carefully. Despite a local enhancement of the RF amplitude, no significant RF-induced heating inside the surrounding fluid was found. A direct thermal endangering of patients seems to be unlikely, but extremely high B1-field amplitudes might occur adjacent to the metallic surface with potential nonthermal affection of tissue.

  19. Preliminary evaluation of a monolithic detector module for integrated PET/MRI scanner with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Pani, R.; Gonzalez, A. J.; Bettiol, M.; Fabbri, A.; Cinti, M. N.; Preziosi, E.; Borrazzo, C.; Conde, P.; Pellegrini, R.; Di Castro, E.; Majewski, S.

    2015-06-01

    The proposal of Mindview European Project concerns with the development of a very high resolution and high efficiency brain dedicated PET scanner simultaneously working with a Magnetic Resonance scanner, that expects to visualize neurotransmitter pathways and their disruptions in the quest to better diagnose schizophrenia. On behalf of this project, we propose a low cost PET module for the first prototype, based on monolithic crystals, suitable to be integrated with a head Radio Frequency (RF) coil. The aim of the suggested module is to achieve high performances in terms of efficiency, planar spatial resolution (expected about 1 mm) and discrimination of gamma Depth Of Interaction (DOI) in order to reduce the parallax error. Our preliminary results are very promising: a DOI resolution of about 3 mm, a spatial resolution ranging from about 1 to 1.5 mm and a good position linearity.

  20. An approach for preoperative planning and performance of MR-guided interventions demonstrated with a manual manipulator in a 1.5T MRI scanner.

    PubMed

    Seimenis, Ioannis; Tsekos, Nikolaos V; Keroglou, Christoforos; Eracleous, Eleni; Pitris, Constantinos; Christoforou, Eftychios G

    2012-04-01

    The aim of this work was to develop and test a general methodology for the planning and performance of robot-assisted, MR-guided interventions. This methodology also includes the employment of software tools with appropriately tailored routines to effectively exploit the capabilities of MRI and address the relevant spatial limitations. The described methodology consists of: (1) patient-customized feasibility study that focuses on the geometric limitations imposed by the gantry, the robotic hardware, and interventional tools, as well as the patient; (2) stereotactic preoperative planning for initial positioning of the manipulator and alignment of its end-effector with a selected target; and (3) real-time, intraoperative tool tracking and monitoring of the actual intervention execution. Testing was performed inside a standard 1.5T MRI scanner in which the MR-compatible manipulator is deployed to provide the required access. A volunteer imaging study demonstrates the application of the feasibility stage. A phantom study on needle targeting is also presented, demonstrating the applicability and effectiveness of the proposed preoperative and intraoperative stages of the methodology. For this purpose, a manually actuated, MR-compatible robotic manipulation system was used to accurately acquire a prescribed target through alternative approaching paths. The methodology presented and experimentally examined allows the effective performance of MR-guided interventions. It is suitable for, but not restricted to, needle-targeting applications assisted by a robotic manipulation system, which can be deployed inside a cylindrical scanner to provide the required access to the patient facilitating real-time guidance and monitoring.

  1. An Approach for Preoperative Planning and Performance of MR-guided Interventions Demonstrated With a Manual Manipulator in a 1.5T MRI Scanner

    SciTech Connect

    Seimenis, Ioannis; Tsekos, Nikolaos V.; Keroglou, Christoforos; Eracleous, Eleni; Pitris, Constantinos; Christoforou, Eftychios G.

    2012-04-15

    Purpose: The aim of this work was to develop and test a general methodology for the planning and performance of robot-assisted, MR-guided interventions. This methodology also includes the employment of software tools with appropriately tailored routines to effectively exploit the capabilities of MRI and address the relevant spatial limitations. Methods: The described methodology consists of: (1) patient-customized feasibility study that focuses on the geometric limitations imposed by the gantry, the robotic hardware, and interventional tools, as well as the patient; (2) stereotactic preoperative planning for initial positioning of the manipulator and alignment of its end-effector with a selected target; and (3) real-time, intraoperative tool tracking and monitoring of the actual intervention execution. Testing was performed inside a standard 1.5T MRI scanner in which the MR-compatible manipulator is deployed to provide the required access. Results: A volunteer imaging study demonstrates the application of the feasibility stage. A phantom study on needle targeting is also presented, demonstrating the applicability and effectiveness of the proposed preoperative and intraoperative stages of the methodology. For this purpose, a manually actuated, MR-compatible robotic manipulation system was used to accurately acquire a prescribed target through alternative approaching paths. Conclusions: The methodology presented and experimentally examined allows the effective performance of MR-guided interventions. It is suitable for, but not restricted to, needle-targeting applications assisted by a robotic manipulation system, which can be deployed inside a cylindrical scanner to provide the required access to the patient facilitating real-time guidance and monitoring.

  2. Diffusion tensor imaging for anatomical localization of cranial nerves and cranial nerve nuclei in pontine lesions: initial experiences with 3T-MRI.

    PubMed

    Ulrich, Nils H; Ahmadli, Uzeyir; Woernle, Christoph M; Alzarhani, Yahea A; Bertalanffy, Helmut; Kollias, Spyros S

    2014-11-01

    With continuous refinement of neurosurgical techniques and higher resolution in neuroimaging, the management of pontine lesions is constantly improving. Among pontine structures with vital functions that are at risk of being damaged by surgical manipulation, cranial nerves (CN) and cranial nerve nuclei (CNN) such as CN V, VI, and VII are critical. Pre-operative localization of the intrapontine course of CN and CNN should be beneficial for surgical outcomes. Our objective was to accurately localize CN and CNN in patients with intra-axial lesions in the pons using diffusion tensor imaging (DTI) and estimate its input in surgical planning for avoiding unintended loss of their function during surgery. DTI of the pons obtained pre-operatively on a 3Tesla MR scanner was analyzed prospectively for the accurate localization of CN and CNN V, VI and VII in seven patients with intra-axial lesions in the pons. Anatomical sections in the pons were used to estimate abnormalities on color-coded fractional anisotropy maps. Imaging abnormalities were correlated with CN symptoms before and after surgery. The course of CN and the area of CNN were identified using DTI pre- and post-operatively. Clinical associations between post-operative improvements and the corresponding CN area of the pons were demonstrated. Our results suggest that pre- and post-operative DTI allows identification of key anatomical structures in the pons and enables estimation of their involvement by pathology. It may predict clinical outcome and help us to better understand the involvement of the intrinsic anatomy by pathological processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. [Cartilage quality in finger joints: delayed Gd(DTPA)²-enhanced MRI of the cartilage (dGEMRIC) at 3T].

    PubMed

    Miese, F R; Ostendorf, B; Wittsack, H-J; Reichelt, D C; Kröpil, P; Lanzman, R S; Mamisch, T C; Zilkens, C; Jellus, V; Quentin, M; Schneider, M; Scherer, A

    2010-10-01

    To evaluate the feasibility of molecular cartilage MRI in finger joints. Delayed Gd(DTPA)²-enhanced MRI of the cartilage (dGEMRIC) using a variable flip angle approach (VFA) was performed for the metacarpophalangeal (MCP) joints II and III in nine healthy volunteers and eighteen patients with rheumatoid arthritis (RA). The cartilage thickness was measured. Additionally, dGEMRIC was performed on proximal interphalangeal joints (PIP) in two patients with finger osteoarthritis (OA). the dGEMRIC index of the four evaluated cartilage areas was significantly decreased in RA patients compared to healthy subjects. The dGEMRIC index of MCP II phalangeal cartilage was 389.6 ± 85.5 msec vs. 558.7 ± 74.4 msec in healthy subjects. The metacarpal MCP II cartilage dGEMRIC index was 357.3 msec ± 97.1 msec vs. 490.0 ± 86.6 msec. The dGEMRIC indices of MCP III were: phalangeal 436.2 ± 113.6 msec in RA, 558.8 ± 115.5 msec in healthy subjects and metacarpal 398.0 ± 97.6 msec in RA and 529.6 ± 111.0 msec in healthy subjects. Age and cartilage thickness were not significantly different. In PIP joints of finger osteoarthritis patients, low dGEMRIC indices were noted, compared to the controls. The dGEMRIC of finger joints is feasible in patients with RA and finger OA. Morphologically normal cartilage shows significantly decreased dGEMRIC values in RA, pointing towards cartilage degeneration on a molecular level. Further studies are needed to establish the usefulness of this technique for early diagnosis, prognosis and therapy monitoring. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Enhanced sensitivity with fast three-dimensional blood-oxygen-level-dependent functional MRI: comparison of SENSE-PRESTO and 2D-EPI at 3 T.

    PubMed

    Neggers, Sebastiaan F W; Hermans, Erno J; Ramsey, Nick F

    2008-08-01

    A major impetus in functional MRI development is to enhance sensitivity to changes in neural activity. One way to improve sensitivity is to enhance contrast to noise ratio, for instance by increasing field strength or the number of receiving coils. If these parameters are fixed, there is still the possibility to optimize scans by altering speed or signal strength [signal-to-noise ratio (SNR)]. We here demonstrate a very fast whole-brain scan, by combining a three-dimensional (3D)-PRESTO (principle of echo shifting with a train of observations) pulse sequence with a commercial eight-channel head coil and sensitivity encoding (SENSE). 3D-PRESTO uses time optimally by means of echo shifting. Moreover, 3D scans can accommodate SENSE in two directions, reducing scan time proportionally. The present PRESTO-SENSE sequence achieves full brain coverage within 500 ms. We compared this with a two-dimensional (2D) echo planar imaging (EPI) scan with identical brain coverage on 10 volunteers. Resting-state temporal SNR in the blood-oxygen-level-dependent (BOLD) frequency range and T-statistics for thumb movement and visual checkerboard activations were compared. Results show improved temporal SNR across the brain for PRESTO-SENSE compared with EPI. The percentage signal change and relative standard deviation of the noise were smaller for PRESTO-SENSE. Sensitivity for brain activation, as reflected by T-values, was consistently higher for PRESTO, and this seemed to be mainly due to the increased number of observations within a fixed time period. We conclude that PRESTO accelerated with SENSE in two directions can be more sensitive to BOLD signal changes than the widely used 2D-EPI, when a fixed amount of time is available for functional MRI scanning. Copyright (c) 2008 John Wiley & Sons, Ltd.

  5. High-resolution STIR for 3-T MRI of the posterior fossa: visualization of the lower cranial nerves and arteriovenous structures related to neurovascular compression.

    PubMed

    Hiwatashi, Akio; Yoshiura, Takashi; Yamashita, Koji; Kamano, Hironori; Honda, Hiroshi

    2012-09-01

    Preoperative evaluation of small vessels without contrast material is sometimes difficult in patients with neurovascular compression disease. The purpose of this retrospective study was to evaluate whether 3D STIR MRI could simultaneously depict the lower cranial nerves--fifth through twelfth--and the blood vessels in the posterior fossa. The posterior fossae of 47 adults (26 women, 21 men) without gross pathologic changes were imaged with 3D STIR and turbo spin-echo heavily T2-weighted MRI sequences and with contrast-enhanced turbo field-echo MR angiography (MRA). Visualization of the cranial nerves on STIR images was graded on a 4-point scale and compared with visualization on T2-weighted images. Visualization of the arteries on STIR images was evaluated according to the segments in each artery and compared with that on MRA images. Visualization of the veins on STIR images was also compared with that on MRA images. Statistical analysis was performed with the Mann-Whitney U test. There were no significant differences between STIR and T2-weighted images with respect to visualization of the cranial nerves (p > 0.05). Identified on STIR and MRA images were 94 superior cerebellar arteries, 81 anteroinferior cerebellar arteries, and 79 posteroinferior cerebellar arteries. All veins evaluated were seen on STIR and MRA images. There were no significant differences between STIR and MRA images with respect to visualization of arteries and veins (p > 0.05). High-resolution STIR is a feasible method for simultaneous evaluation of the lower cranial nerves and the vessels in the posterior fossa without the use of contrast material.

  6. Cerebral correlates of heart rate variations during a spontaneous panic attack in the fMRI scanner.

    PubMed

    Spiegelhalder, Kai; Hornyak, Magdolna; Kyle, Simon David; Paul, Dominik; Blechert, Jens; Seifritz, Erich; Hennig, Jürgen; Tebartz van Elst, Ludger; Riemann, Dieter; Feige, Bernd

    2009-12-01

    We report the first published case study of a suddenly occurring panic attack in a patient with no prior history of panic disorder during combined functional magnetic resonance imaging (fMRI, 1.5 Tesla) and electrocardiogram (ECG) recording. The single case was a 46-year-old woman who developed a panic attack near the planned end of the fMRI acquisition session, which therefore had to be aborted. Correlational analysis of heart rate fluctuations and fMRI data revealed a significant negative association in the left middle temporal gyrus. Additionally, regions-of-interest (ROI) analyses indicated significant positive associations in the left amygdala, and trends towards significance in the right amygdala and left insula.

  7. Towards undistorted and noise-free speech in an MRI scanner: correlation subtraction followed by spectral noise gating.

    PubMed

    Inouye, Joshua M; Blemker, Silvia S; Inouye, David I

    2014-03-01

    Noise cancellation in an MRI environment is difficult due to the high noise levels that are in the spectral range of human speech. This paper describes a two-step method to cancel MRI noise that combines operations in both the time domain (correlation subtraction) and the frequency domain (spectral noise gating). The resulting filtered recording has a noise power suppression of over 100 dB, a significant improvement over previously described techniques on MRI noise cancellation. The distortion is lower and the noise suppression higher than using spectral noise gating in isolation. Implementation of this method will aid in detailed studies of speech in relation to vocal tract and velopharyngeal function.

  8. Attenuation correction methods suitable for brain imaging with a PET/MRI scanner: a comparison of tissue atlas and template attenuation map approaches.

    PubMed

    Malone, Ian B; Ansorge, Richard E; Williams, Guy B; Nestor, Peter J; Carpenter, T Adrian; Fryer, Tim D

    2011-07-01

    Modeled attenuation correction (AC) will be necessary for combined PET/MRI scanners not equipped with transmission scanning hardware. We compared 2 modeled AC approaches that use nonrigid registration with rotating (68)Ge rod-based measured AC for 10 subjects scanned with (18)F-FDG. Two MRI and attenuation map pairs were evaluated: tissue atlas-based and measured templates. The tissue atlas approach used a composite of the BrainWeb and Zubal digital phantoms, whereas the measured templates were produced by averaging spatially normalized measured MR image and coregistered attenuation maps. The composite digital phantom was manually edited to include 2 additional tissue classes (paranasal sinuses, and ethmoidal air cells or nasal cavity). In addition, 3 attenuation values for bone were compared. The MRI and attenuation map pairs were used to generate subject-specific attenuation maps via nonrigid registration of the MRI to the MR image of the subject. SPM2 and a B-spline free-form deformation algorithm were used for the nonrigid registration. To determine the accuracy of the modeled AC approaches, radioactivity concentration was assessed on a voxelwise and regional basis. The template approach produced better spatial consistency than the phantom-based atlas, with an average percentage error in radioactivity concentration across the regions, compared with measured AC, of -1.2% ± 1.2% and -1.5% ± 1.9% for B-spline and SPM2 registration, respectively. In comparison, the tissue atlas method with B-spline registration produced average percentage errors of 0.0% ± 3.0%, 0.9% ± 2.9%, and 2.9% ± 2.8% for bone attenuation values of 0.143 cm(-1), 0.152 cm(-1), and 0.172 cm(-1), respectively. The largest errors for the template AC method were found in parts of the frontal cortex (-3%) and the cerebellar vermis (-5%). Intersubject variability was higher with SPM2 than with B-spline. Compared with measured AC, template AC with B-spline and SPM2 achieved a correlation

  9. Using Gd-EOB-DTPA-enhanced 3-T MRI for the differentiation of infiltrative hepatocellular carcinoma and focal confluent fibrosis in liver cirrhosis.

    PubMed

    Park, Yang Shin; Lee, Chang Hee; Kim, Baek Hui; Lee, Jongmee; Choi, Jae Woong; Kim, Kyeong Ah; Ahn, Jeong Hwan; Park, Cheol Min

    2013-09-01

    The purpose of the study was to determine significant imaging features to differentiate between infiltrative hepatocellular carcinoma (HCC) and confluent fibrosis (CF) in liver cirrhosis using Gd-EOB-DTPA-enhanced 3-T magnetic resonance imaging. Nineteen infiltrative HCCs and eight CFs were included. We evaluated the difference in imaging findings and apparent diffusion coefficient (ADC) between the two entities. We compared T2-weighted image (WI) and hepatobiliary phase (HBP) in terms of the clarity of the lesion outer margin. Seventeen infiltrative HCCs showed lobulated margin, while focal CFs showed either straight (n=3) or irregular margins (n=5) (P=.001). All infiltrative HCCs had intact or bulging contours, and all focal CFs showed capsular retraction (P=.001). Fourteen infiltrative HCCs and two focal CFs showed arterial enhancement (P=.035). The ADC of infiltrative HCCs was significantly lower than that of CFs (P=.001). Satellite nodules were noted in 10 infiltrative HCCs. In terms of outer margin clarity, infiltrative HCCs showed a more distinct margin on HBP than on T2-WI (P=.005), while these two sequences were not significantly different in focal CFs (P=1.000). HBP improved the imaging characteristics of infiltrative HCC, allowing it to be distinguished from focal CF. Infiltrative HCC showed lower ADC values than focal CF. Lobular configuration, contour bulging, enhancement pattern, associated satellite nodules and portal vein thrombosis were still found to be highly suggestive MR findings for infiltrative HCC. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. 3T MRI and 128-slice dual-source CT cisternography images of the cranial nerves a brief pictorial review for clinicians.

    PubMed

    Roldan-Valadez, Ernesto; Martinez-Anda, Jaime J; Corona-Cedillo, Roberto

    2014-01-01

    There is a broad community of health sciences professionals interested in the anatomy of the cranial nerves (CNs): specialists in neurology, neurosurgery, radiology, otolaryngology, ophthalmology, maxillofacial surgery, radiation oncology, and emergency medicine, as well as other related fields. Advances in neuroimaging using high-resolution images from computed tomography (CT) and magnetic resonance (MR) have made highly-detailed visualization of brain structures possible, allowing normal findings to be routinely assessed and nervous system pathology to be detected. In this article we present an integrated perspective of the normal anatomy of the CNs established by radiologists and neurosurgeons in order to provide a practical imaging review, which combines 128-slice dual-source multiplanar images from CT cisternography and 3T MR curved reconstructed images. The information about the CNs includes their origin, course (with emphasis on the cisternal segments and location of the orifices at the skull base transmitting them), function, and a brief listing of the most common pathologies affecting them. The scope of the article is clinical anatomy; readers will find specialized texts presenting detailed information about particular topics. Our aim in this article is to provide a helpful reference for understanding the complex anatomy of the cranial nerves. Copyright © 2013 Wiley Periodicals, Inc.

  11. A multichannel, real-time MRI RF power monitor for independent SAR determination

    PubMed Central

    El-Sharkawy, AbdEl-Monem M.; Qian, Di; Bottomley, Paul A.; Edelstein, William A.

    2012-01-01

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing. PMID:22559603

  12. A multichannel, real-time MRI RF power monitor for independent SAR determination

    SciTech Connect

    El-Sharkawy, AbdEl-Monem M.; Qian Di; Bottomley, Paul A.; Edelstein, William A.

    2012-05-15

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing.

  13. The impact of simulated MRI scanner background noise on visual attention processes as measured by the EEG

    PubMed Central

    Kobald, S. Oliver; Getzmann, Stephan; Beste, Christian; Wascher, Edmund

    2016-01-01

    Environmental noise is known to affect personal well-being as well as cognitive processes. Besides daily life, environmental noise can also occur in experimental research settings, e.g. when being in a magnetic resonance scanner. Scanner background noise (SBN) might pose serious confounds for experimental findings, even when non-auditory settings are examined. In the current experiment we tested if SBN alters bottom-up and top-down related processes of selective visual attention mechanisms. Participants completed two blocks of a visual change detection task, one block in silence and one block under SBN exposure. SBN was found to decrease accuracy in measures of visual attention. This effect was modulated by the temporal occurrence of SBN. When SBN was encountered in the first block, it prevented a significant improvement of accuracy in the second block. When SBN appeared in the second block, it significantly decreased accuracy. Neurophysiological findings showed a strong frontal positivity shift only when SBN was present in the first block, suggesting an inhibitory process to counteract the interfering SBN. Common correlates of both top-down and bottom-up processes of selective visual attention were not specifically affected by SBN exposure. Further research appears necessary to entirely rule out confounds of SBN in assessing visual attention. PMID:27324456

  14. The impact of simulated MRI scanner background noise on visual attention processes as measured by the EEG.

    PubMed

    Kobald, S Oliver; Getzmann, Stephan; Beste, Christian; Wascher, Edmund

    2016-06-21

    Environmental noise is known to affect personal well-being as well as cognitive processes. Besides daily life, environmental noise can also occur in experimental research settings, e.g. when being in a magnetic resonance scanner. Scanner background noise (SBN) might pose serious confounds for experimental findings, even when non-auditory settings are examined. In the current experiment we tested if SBN alters bottom-up and top-down related processes of selective visual attention mechanisms. Participants completed two blocks of a visual change detection task, one block in silence and one block under SBN exposure. SBN was found to decrease accuracy in measures of visual attention. This effect was modulated by the temporal occurrence of SBN. When SBN was encountered in the first block, it prevented a significant improvement of accuracy in the second block. When SBN appeared in the second block, it significantly decreased accuracy. Neurophysiological findings showed a strong frontal positivity shift only when SBN was present in the first block, suggesting an inhibitory process to counteract the interfering SBN. Common correlates of both top-down and bottom-up processes of selective visual attention were not specifically affected by SBN exposure. Further research appears necessary to entirely rule out confounds of SBN in assessing visual attention.

  15. [MRI of the prostate: optimization of imaging protocols].

    PubMed

    Rouvière, O

    2006-02-01

    This article details the imaging protocols for prostate MRI and the influence on image quality of each particular setting: type of coils to be used (endorectal or external phased-array coils?), patient preparation, type of sequences, spatial resolution parameters. The principle and technical constraints of dynamic contrast-enhanced MRI are also presented, as well as the predictable changes due to the introduction of high-field strength (3T) scanners.

  16. The Guyon's canal in perspective: 3-T MRI assessment of the normal anatomy, the anatomical variations and the Guyon's canal syndrome.

    PubMed

    Pierre-Jerome, Claude; Moncayo, Valeria; Terk, Michael R

    2011-12-01

    (1) To revisit the anatomical boundaries of the canal, its contents and its two channels, (2) to describe the anatomical variations of the canal's borders and the variations of its contents, and (3) to discuss the clinical relevance of the Guyon's canal syndrome. Two hundred and fifty MR wrists examinations were reviewed. MR spin echo T1-weighted axial slices were used to analyze the Guyon's canal. The anatomical boundaries, the cross-sectional area and length of the canal were calculated. The anatomical variations of the canal's walls and contents and their prevalence were sought. Changes related to Guyon's canal syndrome were also evaluated. From the 250 wrists, the anatomy of the Guyon's canal was normal in 168 (67.2%) wrists; 73 (29.2%) wrists presented with anatomical variations; and 9 (3.6%) wrists had derangements causing Guyon's canal syndrome. The cross-sectional area of the canal was 33 ± 11 mm² proximally and 45 ± 19 mm² distally. The canal's length was approximately 40 ± 4 mm. Among the 73 wrists with anatomical variations, there were aberrant muscles in 39 (53.4%) wrists, multiple ulnar nerve branching in 22 (30%) cases, increased amount of fat tissue inside the canal in 9 (12.3%) cases and hypoplastic hamulus in 3 (4.1%) cases. There were 9 (3.6%) symptomatic wrists with clinical and radiological features attributed to Guyon's canal syndrome. MRI is an excellent modality for the evaluation of the Guyon's canal.

  17. A novel method to decrease electric field and SAR using an external high dielectric sleeve at 3 T head MRI: numerical and experimental results.

    PubMed

    Park, Bu S; Rajan, Sunder S; Guag, Joshua W; Angelone, Leonardo M

    2015-04-01

    Materials with high dielectric constant (HDC) have been used in high field MRI to decrease specific absorption rate (SAR), increase magnetic field intensity, and increase signal-to-noise ratio. In previous studies, the HDC materials were placed inside the RF coil decreasing the space available. This study describes an alternative approach that considers an HDC-based sleeve placed outside the RF coil. The effects of an HDC on the electromagnetic (EM) field were studied using numerical simulations with a coil unloaded and loaded with a human head model. In addition, experimental EM measurements at 128 MHz were performed inside a custom-made head coil, fitted with a distilled water sleeve. The numerical simulations showed up to 40% decrease in maximum 10 g-avg. SAR on the surface of the head model with an HDC material of barium titanate. Experimental measurements also showed up to 20% decrease of maximum electric field using an HDC material of distilled water. The proposed method can be incorporated in the design of high field transmit RF coils.

  18. Semi-Quantitative vs. Volumetric Determination of Endolymphatic Space in Menière’s Disease Using Endolymphatic Hydrops 3T-HR-MRI after Intravenous Gadolinium Injection

    PubMed Central

    Homann, Georg; Vieth, Volker; Weiss, Daniel; Nikolaou, Konstantin; Heindel, Walter; Notohamiprodjo, Mike; Böckenfeld, Yvonne

    2015-01-01

    Magnetic resonance imaging enhances the clinical diagnosis of Menière's disease. This is accomplished by in vivo detection of endolymphatic hydrops, which are graded using different semi-quantitative grading systems. We evaluated an established, semi-quantitative endolymphatic hydrops score and with a quantitative method for volumetric assessment of the endolymphatic size. 11 patients with Menière's disease and 2 healthy subjects underwent high resolution endolymphatic hydrops 3 Tesla MRI with highly T2 weighted FLAIR and T2DRIVE sequences. The degree of endolymphatic hydrops was rated semi-quantitatively and compared to the results of 3D-volumetry. Moreover, the grade of endolymphatic hydrops was correlated with pure tone audiometry. Semi-quantitative grading and volumetric evaluation of the endolymphatic hydrops are in accordance (r = 0.92) and the grade of endolymphatic hydrops correlates with pure tone audiometry. Patients with a sickness duration of ≥ 30 months showed a significant higher total labyrinth fluid volume (p = 0.03). Fast, semi-quantitative evaluation of endolymphatic hydrops is highly reliable compared to quantitative/volumetric assessment. Endolymphatic space is significantly higher in patients with longer sickness duration. PMID:25768940

  19. Three-dimensional ultrashort echo time imaging of solid polymers on a 3-Tesla whole-body MRI scanner.

    PubMed

    Springer, Fabian; Martirosian, Petros; Schwenzer, Nina F; Szimtenings, Michael; Kreisler, Peter; Claussen, Claus D; Schick, Fritz

    2008-11-01

    With the introduction of ultrashort echo time (UTE) sequences solid polymeric materials might become visible on clinical whole-body magnetic resonance (MR) scanners. The aim of this study was to characterize solid polymeric materials typically used for instruments in magnetic resonance guided interventions and implants. Relaxation behavior and signal yield were evaluated on a 3-Tesla whole-body MR unit. Nine different commonly used solid polymeric materials were investigated by means of a 3-dimensional (3D) UTE sequence with radial k-space sampling. The investigated polymeric samples with cylindrical shape (length, 150 mm; diameter, 30 mm) were placed in a commercial 8-channel knee coil. For assessment of transverse signal decay (T2*) images with variable echo times (TE) ranging from 0.07 milliseconds to 4.87 milliseconds were recorded. Spin-lattice relaxation time (T1) was calculated for all MR visible polymers with transverse relaxation times higher than T2* = 300 mus using an adapted method applying variable flip angles. Signal-to-noise ratio (SNR) was calculated at the shortest achievable echo time (TE = 0.07 milliseconds) for standardized sequence parameters. All relaxation times and SNR data are given as arithmetic mean values with standard deviations derived from 5 axially oriented slices placed around the isocenter of the coil and magnet. Six of the 9 investigated solid polymers were visible at TE = 0.07 milliseconds. Visible solid polymers showed markedly different SNR values, ie, polyethylene SNR = 1146 +/- 41, polypropylene SNR = 60 +/- 6. Nearly mono-exponential echo time dependent signal decay was observed: Transverse relaxation times differed from T2*=36 +/- 5 mus for polycarbonate to T2*=792 +/- 7 mus for polyvinylchloride (PVC). Two of the investigated solid polymers were applicable to T1 relaxation time calculation. Polyurethane had a spin-lattice relaxation time of T1 = 172 +/- 1 milliseconds, whereas PVC had T1 = 262 +/- 7 milliseconds

  20. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners

    PubMed Central

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this “Atlas-T1w-DUTE” approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the “silver standard”; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally. PMID:24753982

  1. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners.

    PubMed

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this "Atlas-T1w-DUTE" approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the "silver standard"; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally.

  2. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field.

    PubMed

    Raaymakers, B W; Raaijmakers, A J E; Kotte, A N T J; Jette, D; Lagendijk, J J W

    2004-09-07

    Integrating magnetic resonance imaging (MRI) functionality with a radiotherapy accelerator can facilitate on-line, soft-tissue based, position verification. A technical feasibility study, in collaboration with Elekta Oncology Systems and Philips Medical Systems, led to the preliminary design specifications of a MRI accelerator. Basically the design is a 6 MV accelerator rotating around a 1.5 T MRI system. Several technical issues and the clinical rational are currently under investigation. The aim of this paper is to determine the impact of the transverse 1.5 T magnetic field on the dose deposition. Monte Carlo simulations were used to calculate the dose deposition kernel in the presence of 1.5 T. This kernel in turn was used to determine the dose deposition for larger fields. Also simulations and measurements were done in the presence of 1.1 T. The pencil beam dose deposition is asymmetric. For larger fields the asymmetry persists but decreases. For the latter the distance to dose maximum is reduced by approximately 5 mm, the penumbra is increased by approximately 1 mm, and the 50% isodose line is shifted approximately 1 mm. The dose deposition in the presence of 1.5 T is affected, but the effect can be taken into account in a conventional treatment planning procedure. The impact of the altered dose deposition for clinical IMRT treatments is the topic of further research.

  3. Pre-clinical imaging of transgenic mouse models of neuroblastoma using a dedicated 3-element solenoid coil on a clinical 3T platform.

    PubMed

    Almeida, Gilberto S; Panek, Rafal; Hallsworth, Albert; Webber, Hannah; Papaevangelou, Efthymia; Boult, Jessica Kr; Jamin, Yann; Chesler, Louis; Robinson, Simon P

    2017-09-05

    The use of clinical MRI scanners to conduct pre-clinical research facilitates comparisons with clinical studies. Here the utility and sensitivity of anatomical and functional MRI data/biomarkers acquired from transgenic mouse models of neuroblastoma using a dedicated radiofrequency (RF) coil on a clinical 3T scanner was evaluated. Multiparametric MRI of transgenic mice bearing abdominal neuroblastomas was performed at 3T, and data cross-referenced to that acquired from the same mice on a pre-clinical 7T MRI system. T2-weighted imaging, quantitation of the native longitudinal relaxation time (T1) and the transverse relaxation rate (R2*), and dynamic contrast-enhanced (DCE)-MRI, was used to assess tumour volume, phenotype and response to cyclophosphamide or cabozantinib. Excellent T2-weighted image contrast enabled clear tumour delineation at 3T. Significant correlations of tumour volume (R=0.98, P<0.0001) and R2* (R=0.87, P<0.002) measured at 3 and 7T were established. Mice with neuroblastomas harbouring the anaplastic lymphoma kinase mutation exhibited a significantly slower R2* (P<0.001), consistent with impaired tumour perfusion. DCE-MRI was performed simultaneously on three transgenic mice, yielding estimates of K(trans) for each tumour (median K(trans) values of 0.202, 0.168 and 0.114 min(-1)). Cyclophosphamide elicited a significant reduction in both tumour burden (P<0.002) and native T1 (P<0.01), whereas cabozantinib induced significant (P<0.01) tumour growth delay. Simultaneous multiparametric MRI of multiple tumour-bearing animals using this coil arrangement at 3T can provide high efficiency/throughput for both phenotypic characterisation and evaluation of novel therapeutics, and facilitate the introduction of functional MRI biomarkers into aligned imaging-embedded clinical trials.

  4. Pre-clinical imaging of transgenic mouse models of neuroblastoma using a dedicated 3-element solenoid coil on a clinical 3T platform

    PubMed Central

    Almeida, Gilberto S; Panek, Rafal; Hallsworth, Albert; Webber, Hannah; Papaevangelou, Efthymia; Boult, Jessica KR; Jamin, Yann; Chesler, Louis; Robinson, Simon P

    2017-01-01

    Background: The use of clinical MRI scanners to conduct pre-clinical research facilitates comparisons with clinical studies. Here the utility and sensitivity of anatomical and functional MRI data/biomarkers acquired from transgenic mouse models of neuroblastoma using a dedicated radiofrequency (RF) coil on a clinical 3T scanner was evaluated. Methods: Multiparametric MRI of transgenic mice bearing abdominal neuroblastomas was performed at 3T, and data cross-referenced to that acquired from the same mice on a pre-clinical 7T MRI system. T2-weighted imaging, quantitation of the native longitudinal relaxation time (T1) and the transverse relaxation rate (R2*), and dynamic contrast-enhanced (DCE)-MRI, was used to assess tumour volume, phenotype and response to cyclophosphamide or cabozantinib. Results: Excellent T2-weighted image contrast enabled clear tumour delineation at 3T. Significant correlations of tumour volume (R=0.98, P<0.0001) and R2* (R=0.87, P<0.002) measured at 3 and 7T were established. Mice with neuroblastomas harbouring the anaplastic lymphoma kinase mutation exhibited a significantly slower R2* (P<0.001), consistent with impaired tumour perfusion. DCE-MRI was performed simultaneously on three transgenic mice, yielding estimates of Ktrans for each tumour (median Ktrans values of 0.202, 0.168 and 0.114 min−1). Cyclophosphamide elicited a significant reduction in both tumour burden (P<0.002) and native T1 (P<0.01), whereas cabozantinib induced significant (P<0.01) tumour growth delay. Conclusions: Simultaneous multiparametric MRI of multiple tumour-bearing animals using this coil arrangement at 3T can provide high efficiency/throughput for both phenotypic characterisation and evaluation of novel therapeutics, and facilitate the introduction of functional MRI biomarkers into aligned imaging-embedded clinical trials. PMID:28787429

  5. Main effect and interactions of brain regions and gender in the calculation of volumetric asymmetry indices in healthy human brains: ANCOVA analyses of in vivo 3T MRI data.

    PubMed

    Roldan-Valadez, Ernesto; Rios, Camilo; Suarez-May, Marcela A; Favila, Rafel; Aguilar-Castañeda, Erika

    2013-12-01

    Macroanatomical right-left hemispheric differences in the brain are termed asymmetries, although there is no clear information on the global influence of gender and brain-regions. The aim of this study was to evaluate the main effects and interactions of these variables on the measurement of volumetric asymmetry indices (VAIs). Forty-seven healthy young-adult volunteers (23 males, 24 females) agreed to undergo brain magnetic resonance imaging in a 3T scanner. Image post processing using voxel-based volumetry allowed the calculation of 54 VAIs from the frontal, temporal, parietal and occipital lobes, limbic system, basal ganglia, and cerebellum for each cerebral hemisphere. Multivariate ANCOVA analysis calculated the main effects and interactions on VAIs of gender and brain regions controlling the effect of age. The only significant finding was the main effect of brain regions (F (6, 9373.605) 44.369, P < .001; partial η2 = .101, and power of 1.0), with no significant interaction between gender and brain regions (F (6, 50.517) .239, P = .964). Volumetric asymmetries are present across all brain regions, with larger values found in the limbic system and parietal lobe. The absence of a significant influence of gender and age in the evaluation of the numerous measurements generated by multivariate analyses in this study should not discourage researchers to report and interpret similar results, as this topic still deserves further assessment. Copyright © 2013 Wiley Periodicals, Inc.

  6. Validation of highly accelerated real-time cardiac cine MRI with radial k-space sampling and compressed sensing in patients at 1.5T and 3T.

    PubMed

    Haji-Valizadeh, Hassan; Rahsepar, Amir A; Collins, Jeremy D; Bassett, Elwin; Isakova, Tamara; Block, Tobias; Adluru, Ganesh; DiBella, Edward V R; Lee, Daniel C; Carr, James C; Kim, Daniel

    2017-09-17

    To validate an optimal 12-fold accelerated real-time cine MRI pulse sequence with radial k-space sampling and compressed sensing (CS) in patients at 1.5T and 3T. We used two strategies to reduce image artifacts arising from gradient delays and eddy currents in radial k-space sampling with balanced steady-state free precession readout. We validated this pulse sequence against a standard breath-hold cine sequence in two patient cohorts: a myocardial infarction (n = 16) group at 1.5T and chronic kidney disease group (n = 18) at 3T. Two readers independently performed visual analysis of 68 cine sets in four categories (myocardial definition, temporal fidelity, artifact, noise) on a 5-point Likert scale (1 = nondiagnostic, 2 = poor, 3 = adequate or moderate, 4 = good, 5 = excellent). Another reader calculated left ventricular (LV) functional parameters, including ejection fraction. Compared with standard cine, real-time cine produced nonsignificantly different visually assessed scores, except for the following categories: 1) temporal fidelity scores were significantly lower (P = 0.013) for real-time cine at both field strengths, 2) artifacts scores were significantly higher (P = 0.013) for real-time cine at both field strengths, and 3) noise scores were significantly (P = 0.013) higher for real-time cine at 1.5T. Standard and real-time cine pulse sequences produced LV functional parameters that were in good agreement (e.g., absolute mean difference in ejection fraction <4%). This study demonstrates that an optimal 12-fold, accelerated, real-time cine MRI pulse sequence using radial k-space sampling and CS produces good to excellent visual scores and relatively accurate LV functional parameters in patients at 1.5T and 3T. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons.

    PubMed

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2005-04-07

    In the framework of the development of the integration of a MRI-scanner with a linear accelerator, the influence of a lateral, magnetic field on the dose distribution has to be determined. Dose increase is expected at tissue-air boundaries, due to the electron return effect (ERE): electrons entering air will describe a circular path and return into the phantom causing extra dose deposition. Using IMRT with many beam directions, this exit dose will not constitute a problem. Dose levels behind air cavities will decrease because of the absence of electrons crossing the cavity. The ERE has been demonstrated both by simulation and experiment. Monte Carlo simulations are performed with GEANT4, irradiating a water-air-water phantom in a lateral magnetic field. Also an air tube in water has been simulated, resulting in slightly twisted regions of dose increase and decrease. Experimental demonstration is achieved by film measurement in a perspex-air-perspex phantom in an electromagnet. Although the ERE causes dose increase before air cavities, relatively flat dose profiles can be obtained for the investigated cases using opposite beam configurations. More research will be necessary whether this holds for more realistic geometries with the use of IMRT and whether the ERE can be turned to our advantage when treating small tumour sites at air cavities.

  8. Mechanisms and prevention of thermal injury from gamma radiosurgery headframes during 3T MR imaging.

    PubMed

    Bennett, Marcus C; Wiant, David B; Gersh, Jacob A; Dolesh, Wendy; Ding, X; Best, Ryan C M; Bourland, J D

    2012-07-05

    Magnetic resonance imaging (MRI) is regularly used for stereotactic imaging of Gamma Knife (GK) radiosurgery patients for GK treatment planning. MRI-induced thermal injuries have occurred and been reported for GK patients with attached metallic headframes. Depending on the specific MR imaging and headframe conditions, a skin injury from MRI-induced heating can potentially occur where the four headframe screws contact the skin surface of the patient's head. Higher MR field strength has a greater heating potential. Two primary heating mechanisms, electromagnetic induction and the antenna effect, are possible. In this study, MRI-induced heating from a 3T clinical MRI scanner was investigated for stereotactic headframes used in gamma radiosurgery and neurosurgery. Using melons as head phantoms, optical thermometers were used to characterize the temperature profile at various points of the melon headframe composite as a function of two 3T MR pulse sequence protocols. Different combinations of GK radiosurgery headframe post and screw designs were tested to determine best and worst combinations for MRI-induced heating. Temperature increases were measured for all pulse sequences tested, indicating that the potential exists for MRI-induced skin heating and burns at the headframe attachment site. This heating originates with electromagnetic induction caused by the RF fields inducing current in a loop formed by the headframe, mounting screws, and the region of the patient's head located between any of the two screws. This induced current is then resistively dissipated, with the regions of highest resistance, located at the headframe screw-patient head interface, experiencing the most heating. Significant heating can be prevented by replacing the metallic threads holding the screw with electrically insulated nuts, which is the heating prevention and patient safety recommendation of the GK manufacturer. Our results confirm that the manufacturer's recommendation to use

  9. Mechanisms and prevention of thermal injury from gamma radiosurgery headframes during 3T MR imaging

    PubMed Central

    Bennett, Marcus C.; Wiant, David B.; Gersh, Jacob A.; Dolesh, Wendy; Ding, X.; Best, Ryan C. M.; Bourland, J. D.

    2016-01-01

    Magnetic resonance imaging (MRI) is regularly used for stereotactic imaging of Gamma Knife (GK) radiosurgery patients for GK treatment planning. MRI-induced thermal injuries have occurred and been reported for GK patients with attached metallic headframes. Depending on the specific MR imaging and headframe conditions, a skin injury from MRI-induced heating can potentially occur where the four headframe screws contact the skin surface of the patient’s head. Higher MR field strength has a greater heating potential. Two primary heating mechanisms, electromagnetic induction and the antenna effect, are possible. In this study, MRI-induced heating from a 3T clinical MRI scanner was investigated for stereotactic headframes used in gamma radiosurgery and neurosurgery. Using melons as head phantoms, optical thermometers were used to characterize the temperature profile at various points of the melon headframe composite as a function of two 3T MR pulse sequence protocols. Different combinations of GK radiosurgery headframe post and screw designs were tested to determine best and worst combinations for MRI-induced heating. Temperature increases were measured for all pulse sequences tested, indicating that the potential exists for MRI-induced skin heating and burns at the headframe attachment site. This heating originates with electromagnetic induction caused by the RF fields inducing current in a loop formed by the headframe, mounting screws, and the region of the patient’s head located between any of the two screws. This induced current is then resistively dissipated, with the regions of highest resistance, located at the headframe screw–patient head interface, experiencing the most heating. Significant heating can be prevented by replacing the metallic threads holding the screw with electrically insulated nuts, which is the heating prevention and patient safety recommendation of the GK manufacturer. Our results confirm that the manufacturer’s recommendation to use

  10. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.

    PubMed

    Gonzalez-Rosa, Javier J; Inuggi, Alberto; Blasi, Valeria; Cursi, Marco; Annovazzi, Pietro; Comi, Giancarlo; Falini, Andrea; Leocani, Letizia

    2013-07-01

    We investigated the neural correlates underlying response inhibition and conflict detection processes using ERPs and source localization analyses simultaneously acquired during fMRI scanning. ERPs were elicited by a simple reaction time task (SRT), a Go/NoGo task, and a Stroop-like task (CST). The cognitive conflict was thus manipulated in order to probe the degree to which information processing is shared across cognitive systems. We proposed to dissociate inhibition and interference conflict effects on brain activity by using identical Stroop-like congruent/incongruent stimuli in all three task contexts and while varying the response required. NoGo-incongruent trials showed a larger N2 and enhanced activations of rostral anterior cingulate cortex (ACC) and pre-supplementary motor area, whereas Go-congruent trials showed a larger P3 and increased parietal activations. Congruent and incongruent conditions of the CST task also elicited similar N2, P3 and late negativity (LN) ERPs, though CST-incongruent trials revealed a larger LN and enhanced prefrontal and ACC activations. Considering the stimulus probability and experimental manipulation of our study, current findings suggest that NoGo N2 and frontal NoGo P3 appear to be more associated to response inhibition rather than a specific conflict monitoring, whereas occipito-parietal P3 of Go and CST conditions may be more linked to a planned response competition between the prepared and required response. LN, however, appears to be related to higher level conflict monitoring associated with response choice-discrimination but not when the presence of cognitive conflict is associated with response inhibition. Copyright © 2013. Published by Elsevier B.V.

  11. Can the Neural Basis of Repression Be Studied in the MRI Scanner? New Insights from Two Free Association Paradigms

    PubMed Central

    Kessler, Henrik; Do Lam, Anne T. A.; Fell, Juergen; Schmidt, Anna-Christine; Axmacher, Nikolai

    2013-01-01

    Background The psychodynamic theory of repression suggests that experiences which are related to internal conflicts become unconscious. Previous attempts to investigate repression experimentally were based on voluntary, intentional suppression of stimulus material. Unconscious repression of conflict-related material is arguably due to different processes, but has never been studied with neuroimaging methods. Methods We used functional magnetic resonance imaging (fMRI) in addition with skin conductance recordings during two free association paradigms to identify the neural mechanisms underlying forgetting of freely associated words according to repression theory. Results In the first experiment, free association to subsequently forgotten words was accompanied by increases in skin conductance responses (SCRs) and reaction times (RTs), indicating autonomic arousal, and by activation of the anterior cingulate cortex. These findings are consistent with the hypothesis that these associations were repressed because they elicited internal conflicts. To test this idea more directly, we conducted a second experiment in which participants freely associated to conflict-related sentences. Indeed, these associations were more likely to be forgotten than associations to not conflict-related sentences and were accompanied by increases in SCRs and RTs. Furthermore, we observed enhanced activation of the anterior cingulate cortex and deactivation of hippocampus and parahippocampal cortex during association to conflict-related sentences. Conclusions These two experiments demonstrate that high autonomic arousal during free association predicts subsequent memory failure, accompanied by increased activation of conflict-related and deactivation of memory-related brain regions. These results are consistent with the hypothesis that during repression, explicit memory systems are down-regulated by the anterior cingulate cortex. PMID:23638050

  12. Can the neural basis of repression be studied in the MRI scanner? New insights from two free association paradigms.

    PubMed

    Schmeing, Jo-Birger; Kehyayan, Aram; Kessler, Henrik; Do Lam, Anne T A; Fell, Juergen; Schmidt, Anna-Christine; Axmacher, Nikolai

    2013-01-01

    The psychodynamic theory of repression suggests that experiences which are related to internal conflicts become unconscious. Previous attempts to investigate repression experimentally were based on voluntary, intentional suppression of stimulus material. Unconscious repression of conflict-related material is arguably due to different processes, but has never been studied with neuroimaging methods. We used functional magnetic resonance imaging (fMRI) in addition with skin conductance recordings during two free association paradigms to identify the neural mechanisms underlying forgetting of freely associated words according to repression theory. In the first experiment, free association to subsequently forgotten words was accompanied by increases in skin conductance responses (SCRs) and reaction times (RTs), indicating autonomic arousal, and by activation of the anterior cingulate cortex. These findings are consistent with the hypothesis that these associations were repressed because they elicited internal conflicts. To test this idea more directly, we conducted a second experiment in which participants freely associated to conflict-related sentences. Indeed, these associations were more likely to be forgotten than associations to not conflict-related sentences and were accompanied by increases in SCRs and RTs. Furthermore, we observed enhanced activation of the anterior cingulate cortex and deactivation of hippocampus and parahippocampal cortex during association to conflict-related sentences. These two experiments demonstrate that high autonomic arousal during free association predicts subsequent memory failure, accompanied by increased activation of conflict-related and deactivation of memory-related brain regions. These results are consistent with the hypothesis that during repression, explicit memory systems are down-regulated by the anterior cingulate cortex.

  13. Induced magnetic moment in stainless steel components of orthodontic appliances in 1.5 T MRI scanners

    PubMed Central

    Rollins, Nancy K.; Liang, Hui; Park, Yong Jong

    2015-01-01

    Purpose: Most orthodontic appliances are made of stainless steel materials and induce severe magnetic susceptibility artifacts in brain MRI. In an effort for correcting these artifacts, it is important to know the value of induced magnetic moments in all parts of orthodontic appliances. In this study, the induced magnetic moment of stainless steel orthodontic brackets, molar bands, and arch-wires from several vendors is measured. Methods: Individual stainless steel brackets, molar bands, and short segments of arch-wire were positioned in the center of spherical flask filled with water through a thin plastic rod. The induced magnetic moment at 1.5 T was determined by fitting the B0 map to the z-component of the magnetic dipole field using a computer routine. Results: The induced magnetic moment at 1.5 T was dominated by the longitudinal component mz, with a small contribution from the transverse components. The mz was insensitive to the orientation of the metal parts. The orthodontic brackets collectively dominated the magnetic dipole moment in orthodontic appliances. In brackets from six vendors, the total induced mz from 20 brackets for nonmolar teeth ranged from 0.108 to 0.158 (median 0.122) A ⋅ m2. The mz in eight molar bands with bracket attachment from two vendors ranged from 0.0004 to 0.0166 (median 0.0035) A ⋅ m2. Several full length arch wires had induced magnetic moment in the range of 0.006–0.025 (median 0.015) A ⋅ m2. Conclusions: Orthodontic brackets collectively contributed most to the total magnetic moment. Different types of brackets, molar bands, and arch wires all exhibit substantial variability in the induced magnetic moment. PMID:26429261

  14. Scanner Art

    ERIC Educational Resources Information Center

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  15. Scanner Art

    ERIC Educational Resources Information Center

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  16. Skin and proximity effects in the conductors of split gradient coils for a hybrid Linac-MRI scanner

    NASA Astrophysics Data System (ADS)

    Tang, Fangfang; Lopez, Hector Sanchez; Freschi, Fabio; Smith, Elliot; Li, Yu; Fuentes, Miguel; Liu, Feng; Repetto, Maurizio; Crozier, Stuart

    2014-05-01

    In magnetic resonance imaging (MRI), rapidly changing gradient fields are applied to encode the magnetic resonance signal with spatial position; however eddy currents are induced in the surrounding conducting structures depending on the geometry of the conductor and the excitation waveform. These alternating fields change the spatial profile of the current density within the coil track with the applied frequencies of the input waveform and by their proximity to other conductors. In this paper, the impact of the conductor width and the excited frequency over the parameters that characterise the performance of split transverse and longitudinal gradient coils are studied. Thirty x-gradient coils were designed using a “free-surface” coil design method and the track width was varied from 1 mm to 30 mm with an increment value of 1 mm; a frequency sweep analysis in the range of 100 Hz to 10 kHz was performed using the multi-layer integral method (MIM) and parameters such as power loss produced by the coil and generated in the cryostat, inductance, coil efficiency (field strength/operating current), magnetic field profile produced by the coil and the eddy currents were studied. An experimental validation of the theoretical model was performed on an example coil. Coils with filamentary conductor segments were also studied to compare the simulated parameters with those produced by coils with a finite track. There was found to be a significant difference between the parameters calculated using filamentary coils and those obtained when the coil is simulated using finite size tracks. A wider track width produces coil with superior efficiency and low resistance; however, due to the skin effect, the power loss increases faster in wider tracks than in those generated in coils with narrow tracks. It was demonstrated that rapidly changing current paths must be avoided in order to mitigate the power loss and the spatial asymmetry in the current density profile. The decision of

  17. Ratiometric MRI sensors based on core-shell nanoparticles for quantitative pH imaging.

    PubMed

    Okada, Satoshi; Mizukami, Shin; Sakata, Takao; Matsumura, Yutaka; Yoshioka, Yoshichika; Kikuchi, Kazuya

    2014-05-21

    Ratiometric MRI sensors consist of paramagnetic cores and pH-sensitive polymer shells. The core-shell nanostructure enables the coexistence of two incompatible NMR relaxation properties in one particle. The sensors show pH sensitivity in transverse relaxivity (r2 ), but not in longitudinal relaxivity (r1 ). Quantitative pH imaging is achieved by measuring the r2 /r1 value with a clinical 3 T MRI scanner.

  18. Effect of the static magnetic field of the MR-scanner on ERPs: evaluation of visual, cognitive and motor potentials.

    PubMed

    Assecondi, S; Vanderperren, K; Novitskiy, N; Ramautar, J R; Fias, W; Staelens, S; Stiers, P; Sunaert, S; Van Huffel, S; Lemahieu, I

    2010-05-01

    This work investigates the influence of the static magnetic field of the MR-scanner on ERPs extracted from simultaneous EEG-fMRI recordings. The quality of the ERPs after BallistoCardioGraphic (BCG) artifact removal, as well as the reproducibility of the waveforms in different environments is investigated. We consider a Detection, a Go-Nogo and a Motor task, eliciting peaks that differ in amplitude, latency and scalp topography, repeated in two situations: outside the scanner room (0T) and inside the MR-scanner but without gradients (3T). The BCG artifact is removed by means of three techniques: the Average Artifact Subtraction (AAS) method, the Optimal Basis Set (OBS) method and the Canonical Correlation Analysis (CCA) approach. The performance of the three methods depends on the amount of averaged trials. Moreover, differences are found on both amplitude and latency of ERP components recorded in two environments (0T vs 3T). We showed that, while ERPs can be extracted from simultaneous EEG-fMRI data at 3T, the static magnetic field might affect the physiological processes under investigation. The reproducibility of the ERPs in different recording environments (0T vs 3T) is a relevant issue that deserves further investigation to clarify the equivalence of cognitive processes in both behavioral and imaging studies. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Comparison of dynamic gadolinium-enhanced and ferumoxides-enhanced MRI of the liver on high- and low-field scanners.

    PubMed

    Limanond, Piyaporn; Raman, Steven S; Sayre, James; Lu, David S K

    2004-10-01

    To compare the performance of dynamic gadolinium-enhanced and ferumoxides-enhanced MRI in the detection and characterization of hepatic lesions, on 1.5-T and 0.2-T magnets In 41 patients (23 men, 18 women), 52 hepatic MR examinations were performed and retrospectively analyzed; 39 and 13 examinations were performed on 1.5-T and 0.2-T magnets, respectively. A total of 33 of 41 patients had known malignancies, and 31 of 33 patients had biopsy of at least one lesion. First, a combination of unenhanced T2-weighted sequences and gradient-echo T1-weighted sequences were performed. Then, dynamic gadolinium-enhanced (0.1 mmol/kg) T1 GRE sequences were obtained, followed by intravenous drip infusion of ferumoxides (10 micromol/kg). The T2-weighted sequences were then repeated. The unenhanced and gadolinium-enhanced images (the Gd set) were reviewed separately from the unenhanced and ferumoxides-enhanced images (the ferumoxides set) by two abdominal imagers. The reviewers were blinded to clinical history and reviewed the individual studies in each set randomly. Each detected lesion was scored on a five-point scale for characterization scores: nonsolid (1 or 2), indeterminate (3), or solid (4 or 5). A consensus review was then performed correlating all available pathology, imaging, clinical findings, and follow-up to act as a gold standard. Receiver-operating-characteristic (ROC) curves were generated and both area-under-the-curve (Az values) and sensitivity values were calculated. Significance of Az and sensitivity differences was assessed using standard Z-test and chi-square. Of 270 lesions detected by consensus, 211 were on 1.5-T and 59 were on 0.2-T scanners. The accuracy (Az values) of lesion detection overall, of both readers, was greater for the ferumoxides set than for the Gd set (reader 1: 0.95 vs. 0.89 (P < 0.05); reader 2: 0.91 vs. 0.78 (P < 0.05)). Az values for both readers were greater on the ferumoxides set for both the 1.5-T scans and the 0.2-T scans. Out of

  20. MRI Magnet for Human Brain

    NASA Astrophysics Data System (ADS)

    Urayama, Shin-Ichi

    Recent rapid demand increase and supply decrease for helium has raised the price in these years. Superconducting magnetic resonance imaging (MRI) magnets, which consume 20% of global production of helium as the cryogen, are therefore expected to be helium-free and high-temperature superconducting (HTS) materials are potent candidates to realize this. Because of the reason, we developed a cryogen-free 3T-MRI scanner for human brain research using Bi-2223 tapes. For scanning a subject in sitting position, a vertical bore was adopted. The magnet was designed for operating temperature of 20 K and for driven mode. Both target homogeneity and stability of the magnetic field in field of view (FOV) region were within 1 ppm. Not only the magnet but also the other important hard/softwares were produced by us. After the assembly, adjustments and imaging experiments with the scanner were carried out at 1.5 T successfully. Although ramp-up to 3 T succeeded three times, successive abnormal events happened for longer than ten minutes during the third ramp-down time, and finally the magnet got fatal damages. Here, we introduce the system and discuss on problems and potentials of HTS-MRI magnets.

  1. MRI compatibility of robot actuation techniques--a comparative study.

    PubMed

    Fischer, Gregory S; Krieger, Axel; Iordachita, Iulian; Csoma, Csaba; Whitcomb, Louis L; Gabor, Fichtinger

    2008-01-01

    This paper reports an experimental evaluation of the following three different MRI-compatible actuators: a Shinsei ultrasonic motor a Nanomotion ultrasonic motor and a pneumatic cylinder actuator. We report the results of a study comparing the effect of these actuators on the signal to noise ratio (SNR) of MRJ images under a variety of experimental conditions. Evaluation was performed with the controller inside and outside the scanner room and with both 1.5T and 3T MRI scanners. Pneumatic cylinders function with no loss of SNR with controller both inside and outside of the scanner room. The Nanomotion motor performs with moderate loss of SNR when moving during imaging. The Shinsei is unsuitable for motion during imaging. All may be used when motion is appropriately interleaved with imaging cycles.

  2. Cylindrical Scanner

    SciTech Connect

    Hall, Thomas E.

    1999-04-29

    The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to send data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.

  3. Molecular imaging probes spy on the body's inner workings: miniaturized microscopes, microbubbles, 7- and 15-T scanners, diffusion-tensor MRI, and other molecular-imaging technologies are pushing molecular imaging into the future.

    PubMed

    Mertz, Leslie

    2013-01-01

    Molecular imaging is one of the hot-button areas within medical imaging. This technology employs imaging techniques in concert with molecular probes, or biomarkers, that together noninvasively spy on cellular function and molecular processes. In some cases, this technology may be able to detect the very earliest stages of diseases and eliminate them on the spot. This paper discusses how miniaturized microscopes, microbubbles, 7T and 15T scanners, diffusion-tensor MRI and other molecular imaging technologies are pushing molecular imaging into the future.

  4. The pattern of exposure to static magnetic field of nurses involved in activities related to contrast administration into patients diagnosed in 1.5 T MRI scanners.

    PubMed

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-06-01

    Static magnetic fields (SMFs) and time-varying electromagnetic fields exposure is necessary to obtain the diagnostic information regarding the structure of patient's tissues, by the use of magnetic resonance imaging (MRI) scanners. A diagnostic procedure may also include the administration of pharmaceuticals called contrast, which are to be applied to a patient during the examination. The nurses involved in administering contrast into a patient during the pause in examination are approaching permanently active magnets of MRI scanners and are exposed to SMF. There were performed measurements of spatial distribution of SMF in the vicinity of MRI magnets and parameters of personal exposure of nurses (i.e. individual exposimetric profiles of variability in time of SMF affecting the nurse who is performing tasks in the vicinity of magnet, characterized by statistical parameters of recorded magnetic flux density affecting the nurse). The SMF exposure in the vicinity of various MRI magnets depends on both magnetic flux density of the main field B 0 (applicable to a patient) and the construction of the scanner, but the most important factor determining the workers' exposure is the work practice. In the course of a patient's routine examination in scanners of B₀ = 1.5 T, the nurses are present over ∼0.4-2.9 min in SMF exceeding 0.03% of B₀ (i.e. 0.5 mT), but only sometimes they are present in SMF exceeding 5% of B 0 (i.e. 75 mT). When patients need more attention because of their health status/condition, the nurses' exposure may be significantly longer--it may even exceed 10 min and 30% of B 0 (i.e. 500 mT). We have found that the level of exposure of nurses to SMF may vary from < 5% of the main field (a median value: 0.5-1.5%; inter-quartile range: 0.04-8.8%; max value: 1.3-12% of B₀) when a patient is moved from the magnets bore before contrast administration, up to the main field level (B₀) when a patient stays in the magnets bore and nurse is crawling into the

  5. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner

    PubMed Central

    Gutte, Henrik; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and 18F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13C-CO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of 13C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of 13C-pyruvate to 13C-lactate. In this study, we combined it with 18F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq 18F-FDG. 13C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized 13C-pyruvate. Peak heights of 13C-pyruvate and 13C-lactate were quantified using a general linear model. Anatomic 1H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased 13C-lactate production, which also corresponded to high 18F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high 18F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high 13C-lactate production. Accordingly, this clearly demonstrates how the Warburg Effect directly

  6. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner.

    PubMed

    Gutte, Henrik; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized (13)C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and (18)F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO2 ((13)C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of (13)C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of (13)C-pyruvate to (13)C-lactate. In this study, we combined it with (18)F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq (18)F-FDG. (13)C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized (13)C-pyruvate. Peak heights of (13)C-pyruvate and (13)C-lactate were quantified using a general linear model. Anatomic (1)H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased (13)C-lactate production, which also corresponded to high (18)F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high (18)F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high (13)C-lactate production. Accordingly, this clearly

  7. Reproducibility of Quantitative Structural and Physiological MRI Measurements

    DTIC Science & Technology

    2017-08-09

    three times over 5 days on a Siemens 3T Verio scanner equipped with a 32-channel phase array coil. Structural (T1, T2-weighted, and diffusion-weighted...in healthy subjects while controlling physiological and technical parameters. Methods: Twenty- five subjects were imaged three times over 5 days on a...environment with a consistently maintained meal time, sleep/wake time, and exercise program. Commencing 7 days prior to the first MRI and continuing

  8. Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts.

    PubMed

    Todd, Nick; Moeller, Steen; Auerbach, Edward J; Yacoub, Essa; Flandin, Guillaume; Weiskopf, Nikolaus

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies that require high-resolution whole-brain coverage have long scan times that are primarily driven by the large number of thin slices acquired. Two-dimensional multiband echo-planar imaging (EPI) sequences accelerate the data acquisition along the slice direction and therefore represent an attractive approach to such studies by improving the temporal resolution without sacrificing spatial resolution. In this work, a 2D multiband EPI sequence was optimized for 1.5mm isotropic whole-brain acquisitions at 3T with 10 healthy volunteers imaged while performing simultaneous visual and motor tasks. The performance of the sequence was evaluated in terms of BOLD sensitivity and false-positive activation at multiband (MB) factors of 1, 2, 4, and 6, combined with in-plane GRAPPA acceleration of 2× (GRAPPA 2), and the two reconstruction approaches of Slice-GRAPPA and Split Slice-GRAPPA. Sensitivity results demonstrate significant gains in temporal signal-to-noise ratio (tSNR) and t-score statistics for MB 2, 4, and 6 compared to MB 1. The MB factor for optimal sensitivity varied depending on anatomical location and reconstruction method. When using Slice-GRAPPA reconstruction, evidence of false-positive activation due to signal leakage between simultaneously excited slices was seen in one instance, 35 instances, and 70 instances over the ten volunteers for the respective accelerations of MB 2×GRAPPA 2, MB 4×GRAPPA 2, and MB 6×GRAPPA 2. The use of Split Slice-GRAPPA reconstruction suppressed the prevalence of false positives significantly, to 1 instance, 5 instances, and 5 instances for the same respective acceleration factors. Imaging protocols using an acceleration factor of MB 2×GRAPPA 2 can be confidently used for high-resolution whole-brain imaging to improve BOLD sensitivity with very low probability for false-positive activation due to slice leakage. Imaging protocols using higher acceleration factors (MB 3 or MB 4

  9. The Central Vein Sign in Multiple Sclerosis Lesions Is Present Irrespective of the T2* Sequence at 3 T.

    PubMed

    Samaraweera, Amal P R; Clarke, Margareta A; Whitehead, Amy; Falah, Yasser; Driver, Ian D; Dineen, Robert A; Morgan, Paul S; Evangelou, Nikos

    2017-01-01

    Previous T2*-weighted magnetic resonance imaging (MRI) studies have used white matter lesion (WML) central veins to distinguish multiple sclerosis (MS) from its mimics. To be clinically applicable, the "central vein sign" needs to be detectable across different T2* sequences. Our objective was to determine if the central vein sign is reliably present in MS and absent in patients with ischemic small vessel disease (SVD) across different T2* sequences at 3T MRI. Ten patients with MS and 10 with SVD were each scanned on a 3 T Philips and GE scanner. The MRI protocol included 3-dimensional (3D) T2* GRE, T2* with high echo planar imaging (EPI) factor and susceptibility-weighted angiography (SWAN). Total WML numbers, central vein numbers, and proportion of WMLs with central veins were calculated using each sequence. Three blinded raters identified a subset of six WMLs with central veins to diagnose MS or SVD. Irrespective of the sequence, MS patients were identified based on a higher proportion of WMLs with central veins. This proportion was dependent on the T2* sequence used. T2* with high EPI allowed the highest median proportion (69.6%) in MS patients; 6.1% in SVD patients (P < .0004). Rater reproducibility varied depending on the T2* sequence used. T2* with high EPI produced good agreement with the clinical diagnosis (Cohen's kappa range; .78-.89), as did SWAN imaging with some raters; ĸ = .69. The central vein sign can diagnose MS in the clinical setting of modern 3T scanners. However, variations in the T2* sequences need to be considered when defining a threshold for diagnosis. Copyright © 2016 by the American Society of Neuroimaging.

  10. Monitoring fractional anisotropy in developing rabbit brain using MR diffusion tensor imaging at 3T

    NASA Astrophysics Data System (ADS)

    Jao, Jo-Chi; Yang, Yu-Ting; Hsiao, Chia-Chi; Chen, Po-Chou

    2016-03-01

    The aim of this study was to investigate the factional anisotropy (FA) in various regions of developing rabbit brain using magnetic resonance diffusion tensor imaging (MR DTI) at 3 T. A whole-body clinical MR imaging (MRI) scanner with a 15-channel high resolution knee coil was used. An echo-planar-imaging (EPI)-DTI pulse sequence was performed. Five 5 week-old New Zealand white (NZW) rabbits underwent MRI once per week for 24 weeks. After scanning, FA maps were obtained. ROIs (regions of interests) in the frontal lobe, parietal & temporal lobe, and occipital lobe were measured. FA changes with time were evaluated with a linear regression analysis. The results show that the FA values in all lobes of the brain increased linearly with age. The ranking of FA values was FA(frontal lobe) < FA(parietal & temporal lobe) > FA(occipital lobe). There was significant difference (p < 0.05) among these lobes. FA values are associated with the nerve development and brain functions. The FA change rate could be a biomarker to monitor the brain development. Understanding the FA values of various lobes during development could provide helpful information to diagnosis the abnormal syndrome earlier and have a better treatment and prognosis. This study established a brain MR-DTI protocol for rabbits to investigate the brain anatomy during development using clinical MRI. This technique can be further applied to the pre-clinical diagnosis, treatment, prognosis and follow-up of brain lesions.

  11. Dynamic contrast-enhanced susceptibility-weighted perfusion MRI (DSC-MRI) in a glioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47 mm at a clinical 1.5 T scanner.

    PubMed

    Ulmer, Stephan; Reeh, Matthias; Krause, Joerg; Herdegen, Thomas; Heldt-Feindt, Janka; Jansen, Olav; Rohr, Axel

    2008-07-30

    Magnetic resonance (MR) imaging in animal models is usually performed in expensive dedicated small bore animal scanners of limited availability. In the present study a standard clinical 1.5 T MR scanner was used for morphometric and dynamic contrast-enhanced susceptibility-weighted MR imaging (DSC-MRI) of a glioma model of the rat brain. Ten male Wistar rats were examined with coronal T2-weighted, and T1-weighted images (matrix 128 x 128, FOV 64 mm) after implantation of an intracerebral tumor xenografts (C6) using a conventional surface coil. For DSC-MRI a T2*-weighted sequence (TR/TE=30/14 ms, matrix 64 x 64, FOV 90 mm; slice thickness of 1.5mm) was performed. Regions of interest were defined within the tumor and the non-affected contralateral hemisphere and the mean transit time (MTT) was determined. Tumor dimensions in MR predicted well its real size as proven by histology. The MTT of contrast agent passing through the brain was significantly decelerated in the tumor compared to the unaffected hemisphere (p<0.001, paired t-test), which is most likely due to the leakage of contrast agent through the disrupted blood brain barrier. This setup offers advanced MR imaging of small animals without the need for dedicated animal scanners or dedicated custom-made coils.

  12. Dynamic Color Scanner System

    DTIC Science & Technology

    1974-05-01

    wm^^mrmm JlilJJLUJJ.l, UM *•* ". «^^~mw^-r mmmmmmmem DYNAMIC COLOR SCANNER SYSTEM L. T. Hunkler ITT Aerospaco/Gpticai Division S Fort Wayne ...Division, a division of International Telephone and Tele- graph Corporation, Fort Wayne , Indiana, under contract F33615-72- C-2071 for research and...iliKriiBiröfiiii-1, ■ ^ii ■"»*-—™""tWi "!—i^^^P«^ ^3 <o lil r^ ■ i u o o 0) (0 n •H Q (U ri 0) l-i 3 tP •H 20 SO-Z^H •— ■■■■I

  13. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  14. Simultaneous MRI and PET imaging of a rat brain

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  15. Optimized magnetic resonance diffusion protocol for ex-vivo whole human brain imaging with a clinical scanner

    NASA Astrophysics Data System (ADS)

    Scherrer, Benoit; Afacan, Onur; Stamm, Aymeric; Singh, Jolene; Warfield, Simon K.

    2015-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a novel insight into the brain to facilitate our understanding of the brain connectivity and microstructure. While in-vivo DW-MRI enables imaging of living patients and longitudinal studies of brain changes, post-mortem ex-vivo DW-MRI has numerous advantages. Ex-vivo imaging benefits from greater resolution and sensitivity due to the lack of imaging time constraints; the use of tighter fitting coils; and the lack of movement artifacts. This allows characterization of normal and abnormal tissues with unprecedented resolution and sensitivity, facilitating our ability to investigate anatomical structures that are inaccessible in-vivo. This also offers the opportunity to develop today novel imaging biomarkers that will, with tomorrow's MR technology, enable improved in-vivo assessment of the risk of disease in an individual. Post-mortem studies, however, generally rely on the fixation of specimen to inhibit tissue decay which starts as soon as tissue is deprived from its blood supply. Unfortunately, fixation of tissues substantially alters tissue diffusivity profiles. In addition, ex-vivo DW-MRI requires particular care when packaging the specimen because the presence of microscopic air bubbles gives rise to geometric and intensity image distortion. In this work, we considered the specific requirements of post-mortem imaging and designed an optimized protocol for ex-vivo whole brain DW-MRI using a human clinical 3T scanner. Human clinical 3T scanners are available to a large number of researchers and, unlike most animal scanners, have a bore diameter large enough to image a whole human brain. Our optimized protocol will facilitate widespread ex-vivo investigations of large specimen.

  16. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.

    PubMed

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-04-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. © 2015 The Authors NMR in

  17. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain

    PubMed Central

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-01-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice–water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. © 2015 The Authors NMR in

  18. An 8-channel RF coil array for carotid artery MR imaging in humans at 3 T.

    PubMed

    Hu, Xiaoqing; Zhang, Lei; Zhang, Xiaoliang; Zhu, Huabin; Chen, Xiao; Zhang, Yongqin; Chung, Yiu-Cho; Liu, Xin; Zheng, Hairong; Li, Ye

    2016-04-01

    Carotid artery diseases due to plaque buildup at the carotid bifurcation are a leading cause of stroke. Accurate plaque quantification and characterization of plaque composition and morphology by magnetic resonance imaging (MRI) is essential to identifying high-risk patients. Difficulties in detecting plaque, which is physically small, and the unique physiological structure of the carotid artery make use of a radio frequency (RF) coil array with high resolution, large longitudinal coverage, and deep penetration ideal for clinical examinations. The goal of this project was to design and fabricate a sensitive RF coil array with sufficient imaging coverage and signal-to-noise ratio (SNR) for carotid artery imaging at 3 T. Based on clinical requirements and the anatomical structure of the human carotid artery, an 8-channel carotid coil array was designed and fabricated for 3 T MRI of the carotid artery in humans. The performance of the proposed 8-channel carotid coil array was validated through bench tests and MR imaging experiments on a 3 T whole body MRI scanner. Its performance was also compared experimentally to the performance of a commercial 4-channel phased array carotid coil designed by Machnet BV (Machnet BV coil, Roden, Netherlands). The 8-channel carotid coil array performed significantly better in imaging the carotid artery than the commercial 4-channel Machnet BV coil in terms of the SNR, coverage, and penetration depth. In parallel imaging, the proposed 8-channel carotid coil array demonstrated a much lower maximum value and average value of the geometry factor in the region of interest. Carotid artery images acquired in vivo using the proposed 8-channel carotid artery coil and the commercial 4-channel Machnet BV coil were also compared, demonstrating the former's potential for clinical diagnosis. Based on the analyses of phantom and in vivo imaging studies, the proposed 8-channel carotid coil array has the potential for use in clinical diagnosis

  19. MRI renaissance.

    PubMed

    Hensley, S

    1997-12-01

    A few years ago, magnetic resonance imaging was healthcare's version of a foreign sports car-flashy, expensive and impractical. Now, after years in the doldrums, sales of MRI systems are roaring back. An aging fleet of MRI scanners due for replacement and a hearty increase in doctors' use of the versatile imaging tools are combining to fuel the surge in demand, vendors and customers say.

  20. Dynamic Contrast-Enhanced MRI Parameters as Biomarkers in Assessing Head and Neck Lesions After Chemoradiotherapy Using a Wide-Bore 3 Tesla Scanner.

    PubMed

    Lerant, Gergely; Sarkozy, Peter; Takacsi-Nagy, Zoltan; Polony, Gabor; Tamas, Laszlo; Toth, Erika; Boer, Andras; Javor, Laszlo; Godeny, Maria

    2015-09-01

    Pilot studies have shown promising results in characterizing head and neck tumors (HNT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), differentiating between malignant and benign lesions and evaluating changes in response to chemoradiotherapy (CRT). Our aim was to find DCE-MRI parameters, biomarkers in evaluating the post-CRT status. Two hundred and five patients with head and neck lesions were examined with DCE-MRI sequences. The time intensity curves (TIC) were extracted and processed to acquire time-to-peak (TTP), relative maximum enhancement (RME), relative wash-out (RWO), and two new parameters attack and decay. These parameters were analyzed using univariate tests in SPSS (Statistical Package for the Social Sciences, version 17, SPSS Inc. Chicago, USA) to identify parameters that could be used to infer tumor malignancy and post-CRT changes. Multiple parameters of curve characteristics were significantly different between malignant tumors after CRT (MACRT) and changes caused by CRT. The best-performing biomarkers were the attack and the decay. We also found multiple significant (p < 0.05) parameters for both the benign and malignant status as well as pre- and post-CRT status. Our large cohort of data supports the increasing role of DCE-MRI in HNT differentiation, particularly for the assessment of post-CRT status along with accurate morphological imaging.

  1. SU-F-I-15: Evaluation of a New MR-Compatible Respiratory Motion Device at 3T

    SciTech Connect

    Soliman, A; Chugh, B; Keller, B; Sahgal, A; Song, W

    2016-06-15

    Purpose: Recent advances in MRI-guided radiotherapy has inspired the development of MRI-compatible motion devices that simulate patient periodic motion in the scanner, particularly respiratory motion. Most commercial devices rely on non MR-safe ferromagnetic stepper motors which are not practical for regular QA testing. This work evaluates the motion performance of a new fully MRI compatible respiratory motion device at 3T. Methods: The QUASAR™ MRI-compatible respiratory motion phantom has been recently developed by Modus QA Inc., London, ON, Canada. The prototype is constructed from diamagnetic materials with linear motion generated using MRI-compatible piezoelectric motors that can be safely inserted in the scanner bore. The tumor was represented by a fillable sphere and is attached to the linear motion generator. The spherical tumor-representative and its surroundings were filled with different concentrations of MnCl2 to produce realistic relaxation times. The motion was generated along the longitudinal (H/F) axis of the bore using sinusoidal reference waveform (amplitude = 15 mm, frequency 0.25 Hz). Imaging was then performed on 3T Philips Achieva using a 32-channel cardiac coil. Fast 2D spoiled gradient-echo was used with a spatial resolution of 1.8 × 1.8 mm{sup 2} and slice thickness of 4 mm. The motion waveform was then measured on the resultant image series by tracking the centroid of the sphere through the time series. This image-derived measured motion was compared to the software-generated reference waveform. Results: No visible distortions from the device were observed on the images. Excellent agreement between the measured and the reference waveforms were obtained. Negligible motion was observed in the lateral (R/L) direction. Conclusion: Our investigation demonstrates that this piezo-electric motor design is effective at simulating periodic motion and is a potential candidate for MRI-radiotherapy respiratory motion simulation. Future work should

  2. Continuous Rapid Quantification of Stroke Volume Using Magnetohydrodynamic Voltages in 3T Magnetic Resonance Imaging.

    PubMed

    Gregory, T Stan; Oshinski, John; Schmidt, Ehud J; Kwong, Raymond Y; Stevenson, William G; Ho Tse, Zion Tsz

    2015-12-01

    To develop a technique to noninvasively estimate stroke volume in real time during magnetic resonance imaging (MRI)-guided procedures, based on induced magnetohydrodynamic voltages (VMHD) that occur in ECG recordings during MRI exams, leaving the MRI scanner free to perform other imaging tasks. Because of the relationship between blood flow (BF) and VMHD, we hypothesized that a method to obtain stroke volume could be derived from extracted VMHD vectors in the vectorcardiogram (VCG) frame of reference (VMHDVCG). To estimate a subject-specific BF-VMHD model, VMHDVCG was acquired during a 20-s breath-hold and calibrated versus aortic BF measured using phase-contrast magnetic resonance in 10 subjects (n=10) and 1 subject diagnosed with premature ventricular contractions. Beat-to-beat validation of VMHDVCG-derived BF was performed using real-time phase-contrast imaging in 7 healthy subjects (n=7) during 15-minute cardiac exercise stress tests and 30 minutes after stress relaxation in 3T MRIs. Subject-specific equations were derived to correlate VMHDVCG with BF at rest and validated using real-time phase-contrast. An average error of 7.22% and 3.69% in stroke volume estimation, respectively, was found during peak stress and after complete relaxation. Measured beat-to-beat BF time history derived from real-time phase-contrast and VMHD was highly correlated using a Spearman rank correlation coefficient during stress tests (0.89) and after stress relaxation (0.86). Accurate beat-to-beat stroke volume and BF were estimated using VMHDVCG extracted from intra-MRI 12-lead ECGs, providing a means to enhance patient monitoring during MR imaging and MR-guided interventions. © 2015 American Heart Association, Inc.

  3. A direct modulated optical link for MRI RF receive coil interconnection.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, G X

    2007-11-01

    Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T.

  4. Comparisons between the 35 mm Quadrature Surface Resonator at 300 K and the 40 mm High-Temperature Superconducting Surface Resonator at 77 K in a 3T MRI Imager

    PubMed Central

    Song, Manli; Chen, Jyh-Horng; Chen, Ji; Lin, In-Tsang

    2015-01-01

    This study attempts to compare the signal-to-noise ratio (SNR) of the 40 mm High-Temperature Superconducting (HTS) surface resonator at 77 K and the 35 mm commercial quadrature (QD) surface resonator at 300 K in a 3 Tesla (T) MRI imager. To aquire images for the comparison, we implemented a phantom experiment using the 40 mm diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) HTS surface resonator, the 35 mm commercial QD surface resonator and the 40 mm professionally-made copper surface resonator. The HTS surface resonator at 77 K provided a 1.43-fold SNR gain over the QD surface resonator at 300 K and provided a 3.84-fold SNR gain over the professionally-made copper surface resonator at 300 K on phantom images. The results agree with the predictions, and the difference between the predicted SNR gains and measured SNR gains is 1%. Although the geometry of the HTS surface resonator is different from the QD surface resonator, its SNR is still higher. The results demonstrate that a higher image quality can be obtained with the HTS surface resonator at 77 K. With the HTS surface resonator, the SNR can be improved, suggesting that the HTS surface resonator is a potentially helpful diagnostic tool for MRI imaging in various applications. PMID:25812124

  5. High-resolution MRI of the intraparotid facial nerve based on a microsurface coil and a 3D reversed fast imaging with steady-state precession DWI sequence at 3T.

    PubMed

    Chu, J; Zhou, Z; Hong, G; Guan, J; Li, S; Rao, L; Meng, Q; Yang, Z

    2013-08-01

    3D high-resolution MR imaging can provide reliable information for defining the exact relationships between the intraparotid facial nerve and adjacent structures. The purpose of this study was to explore the clinical value of using a surface coil combined with a 3D-PSIF-DWI sequence in intraparotid facial nerve imaging. Twenty-one healthy volunteers underwent intraparotid facial nerve scanning at 3T by using the 3D-PSIF-DWI sequence with both the surface coil and the head coil. Source images were processed with MIP and MPR to better delineate the intraparotid facial nerve and its branches. In addition, the SIR of the facial nerve and parotid gland was calculated. The number of facial nerve branches displayed by these 2 methods was calculated and compared. The display rates of the main trunk, divisions (cervicofacial, temporofacial), and secondary branches of the intraparotid facial nerve were 100%, 97.6%, and 51.4% by head coil and 100%, 100%, and 83.8% by surface coil, respectively. The display rate of secondary branches of the intraparotid facial nerve by these 2 methods was significantly different (P < .05). The SIRs of the intraparotid facial nerve/parotid gland in these 2 methods were significantly different (P < .05) at 1.37 ± 1.06 and 1.89 ± 0.87, respectively. The 3D-PSIF-DWI sequence combined with a surface coil can better delineate the intraparotid facial nerve and its divisions than when it is combined with a head coil, providing better image contrast and resolution. The proposed protocol offers a potentially useful noninvasive imaging sequence for intraparotid facial nerve imaging at 3T.

  6. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  7. Multichannel compressive sensing MRI using noiselet encoding.

    PubMed

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding.

  8. MR-Guided Freehand Biopsy of Liver Lesions With Fast Continuous Imaging Using a 1.0-T Open MRI Scanner: Experience in 50 Patients

    SciTech Connect

    Fischbach, Frank; Bunke, Juergen; Thormann, Markus; Gaffke, Gunnar; Jungnickel, Kerstin; Smink, Jouke; Ricke, Jens

    2011-02-15

    The purpose of this study was to assess a new open system with a field-strength of 1.0 T for the feasibility of liver biopsy using the freehand technique with fast continuous imaging. Fifty patients with focal liver lesions measuring 5 to 30 mm in diameter were included in the study. Guidance and monitoring was performed using a 1.0-T open magnetic resonance (MR) scanner (Panorama HFO; Philips Healthcare, Best, The Netherlands). With fast continuous imaging using a T1-weighted (T1W) gradient echo (GRE) sequence after administration of gadolinium (Gd)-EOB-DTPA, the needle was placed into the lesion. An interface for interactive dynamic viewing in two perpendicular planes prevented needle deviations T2-weighted turbo spin echo (TSE) fat-suppressed sequence was added to rule out postinterventional hematoma or biloma. All lesions were visible on the interventional images. Biopsy was technically successful, and solid specimens were obtained in all cases. Forty-six patients showed a histopathologic pattern other than native liver tissue, thus confirming correct position of the needle. Time between determination of the lesion and performance of the control scan was on average 18 min. No major complications were recorded. MR guidance with the new 1-T open system must be considered an attractive alternative for liver punction. An interface for dynamic imaging of needle guidance and T1W-GRE imaging with administration of Gd-EOB-DTPA for contrast enhancement allows the pinpoint puncture of liver lesions.

  9. Measurement of creatine kinase reaction rate in human brain using magnetization transfer image-selected in vivo spectroscopy (MT-ISIS) and a volume ³¹P/¹H radiofrequency coil in a clinical 3-T MRI system.

    PubMed

    Jeong, Eun-Kee; Sung, Young-Hoon; Kim, Seong-Eun; Zuo, Chun; Shi, Xianfeng; Mellon, Eric A; Renshaw, Perry F

    2011-08-01

    High-energy phosphate metabolism, which allows the synthesis and regeneration of adenosine triphosphate (ATP), is a vital process for neuronal survival and activity. In particular, creatine kinase (CK) serves as an energy reservoir for the rapid buffering of ATP levels. Altered CK enzyme activity, reflecting compromised high-energy phosphate metabolism or mitochondrial dysfunction in the brain, can be assessed using magnetization transfer (MT) MRS. MT (31)P MRS has been used to measure the forward CK reaction rate in animal and human brain, employing a surface radiofrequency coil. However, long acquisition times and excessive radiofrequency irradiation prevent these methods from being used routinely for clinical evaluations. In this article, a new MT (31)P MRS method is presented, which can be practically used to measure the CK forward reaction rate constant in a clinical MRI system employing a volume head (31)P coil for spatial localization, without contamination from the scalp muscle, and an acquisition time of 30 min. Other advantages associated with the method include radiofrequency homogeneity within the regions of interest of the brain using a volume coil with image-selected in vivo spectroscopy localization, and reduction of the specific absorption rate using nonadiabatic radiofrequency pulses for MT saturation. The mean value of k(f) was measured as 0.320 ± 0.075 s(-1) from 10 healthy volunteers with an age range of 18-40 years. These values are consistent with those obtained using earlier methods, and the technique may be used routinely to evaluate energetic processes in the brain on a clinical MRI system. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Pneumatically Operated MRI-Compatible Needle Placement Robot for Prostate Interventions.

    PubMed

    Fischer, Gregory S; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Mewes, Philip W; Tempany, Clare M; Hata, Nobuhiko; Fichtinger, Gabor

    2008-06-13

    Magnetic Resonance Imaging (MRI) has potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. The strong magnetic field prevents the use of conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot performs needle insertion under real-time 3T MR image guidance; workspace requirements, MR compatibility, and workflow have been evaluated on phantoms. The paper explains the robot mechanism and controller design and presents results of preliminary evaluation of the system.

  11. SU-F-I-27: Measurement of SAR and Temperature Elevation During MRI Scans

    SciTech Connect

    Seo, Y

    2016-06-15

    Purpose: The poor reliability and repeatability of the manufacturer-reported SAR values on clinical MRI systems have been acknowledged. The purpose of this study is to not only measure SAR values, but also RF-induced temperature elevation at 1.5 and 3T MRI systems. Methods: SAR measurement experiment was performed at 1.5 and 3T. Three MRI RF sequences (T1w TSE, T1w inversion recovery, and T2w TSE) with imaging parameters were selected. A hydroxyl-ethylcelluose (HEC) gelled saline phantom mimicking human body tissue was made. Human torso phantom were constructed, based on Korean adult standard anthropometric reference data (Fig.1). FDTD method was utilized to calculate the SAR distribution using Sim4Life software. Based on the results of the simulation, 4 electrical field (E-field) sensors were located inside the phantom. 55 Fiber Bragg Grating (FBG) temperature sensors (27 sensors in upper and lower cover lids, and one sensor located in the center as a reference) were located inside the phantom to measure temperature change during MRI scan (Fig.2). Results: Simulation shows that SAR value is 0.4 W/kg in the periphery and 0.001 W/kg in the center (Fig.2). One 1.5T and one of two 3T MRI systems represent that the measured SAR values were lower than MRI scanner-reported SAR values. However, the other 3T MRI scanner shows that the averaged SAR values measured by probe 2, 3, and 4 are 6.83, 7.59, and 6.01 W/kg, compared to MRI scanner-reported whole body SAR value (<1.5 W/kg) for T2w TSE (Table 1). The temperature elevation measured by FBG sensors is 5.2°C in the lateral shoulder, 5.1°C in the underarm, 4.7°C in the anterior axilla, 4.8°C in the posterior axilla, and 4.8°C in the lateral waist for T2w TSE (Fig.3). Conclusion: It is essential to assess the safety of MRI system for patient by measuring accurate SAR deposited in the body during clinical MRI.

  12. Real-time motion- and B0-correction for LASER-localized spiral-accelerated 3D-MRSI of the brain at 3T.

    PubMed

    Bogner, Wolfgang; Hess, Aaron T; Gagoski, Borjan; Tisdall, M Dylan; van der Kouwe, Andre J W; Trattnig, Siegfried; Rosen, Bruce; Andronesi, Ovidiu C

    2014-03-01

    The full potential of magnetic resonance spectroscopic imaging (MRSI) is often limited by localization artifacts, motion-related artifacts, scanner instabilities, and long measurement times. Localized adiabatic selective refocusing (LASER) provides accurate B1-insensitive spatial excitation even at high magnetic fields. Spiral encoding accelerates MRSI acquisition, and thus, enables 3D-coverage without compromising spatial resolution. Real-time position- and shim/frequency-tracking using MR navigators correct motion- and scanner instability-related artifacts. Each of these three advanced MRI techniques provides superior MRSI data compared to commonly used methods. In this work, we integrated in a single pulse sequence these three promising approaches. Real-time correction of motion, shim, and frequency-drifts using volumetric dual-contrast echo planar imaging-based navigators were implemented in an MRSI sequence that uses low-power gradient modulated short-echo time LASER localization and time efficient spiral readouts, in order to provide fast and robust 3D-MRSI in the human brain at 3T. The proposed sequence was demonstrated to be insensitive to motion- and scanner drift-related degradations of MRSI data in both phantoms and volunteers. Motion and scanner drift artifacts were eliminated and excellent spectral quality was recovered in the presence of strong movement. Our results confirm the expected benefits of combining a spiral 3D-LASER-MRSI sequence with real-time correction. The new sequence provides accurate, fast, and robust 3D metabolic imaging of the human brain at 3T. This will further facilitate the use of 3D-MRSI for neuroscience and clinical applications.

  13. Minimum Field Strength Simulator for Proton Density Weighted MRI

    PubMed Central

    Chen, Weiyi; Nayak, Krishna S.

    2016-01-01

    Objective To develop and evaluate a framework for simulating low-field proton-density weighted MRI acquisitions based on high-field acquisitions, which could be used to predict the minimum B0 field strength requirements for MRI techniques. This framework would be particularly useful in the evaluation of de-noising and constrained reconstruction techniques. Materials and Methods Given MRI raw data, lower field MRI acquisitions can be simulated based on the signal and noise scaling with field strength. Certain assumptions are imposed for the simulation and their validity is discussed. A validation experiment was performed using a standard resolution phantom imaged at 0.35 T, 1.5 T, 3 T, and 7 T. This framework was then applied to two sample proton-density weighted MRI applications that demonstrated estimation of minimum field strength requirements: real-time upper airway imaging and liver proton-density fat fraction measurement. Results The phantom experiment showed good agreement between simulated and measured images. The SNR difference between simulated and measured was ≤ 8% for the 1.5T, 3T, and 7T cases which utilized scanners with the same geometry and from the same vendor. The measured SNR at 0.35T was 1.8- to 2.5-fold less than predicted likely due to unaccounted differences in the RF receive chain. The predicted minimum field strength requirements for the two sample applications were 0.2 T and 0.3 T, respectively. Conclusions Under certain assumptions, low-field MRI acquisitions can be simulated from high-field MRI data. This enables prediction of the minimum field strength requirements for a broad range of MRI techniques. PMID:27136334

  14. Safety of localizing epilepsy monitoring intracranial electroencephalograph electrodes using MRI: radiofrequency-induced heating.

    PubMed

    Carmichael, David W; Thornton, John S; Rodionov, Roman; Thornton, Rachel; McEvoy, Andrew; Allen, Philip J; Lemieux, Louis

    2008-11-01

    To investigate heating during postimplantation localization of intracranial electroencephalograph (EEG) electrodes by MRI. A phantom patient with a realistic arrangement of electrodes was used to simulate tissue heating during MRI. Measurements were performed using 1.5 Tesla (T) and 3T MRI scanners, using head- and body-transmit RF-coils. Two electrode-lead configurations were assessed: a "standard" condition with external electrode-leads physically separated and a "fault" condition with all lead terminations electrically shorted. Using a head-transmit-receive coil and a 2.4 W/kg head-average specific absorption rate (SAR) sequence, at 1.5T the maximum temperature change remained within safe limits (<1 degrees C). Under "standard" conditions, we observed greater heating (3T on one system and similar heating (<1 degrees C) on a second, compared with the 1.5T system. In all cases these temperature maxima occurred at the grid electrode. In the "fault" condition, larger temperature increases were observed at both field strengths, particularly for the depth electrodes. Conversely, with a body-transmit coil at 3T significant heating (+6.4 degrees C) was observed (same sequence, 1.2/0.5 W/kg head/body-average) at the grid electrode under "standard" conditions, substantially exceeding safe limits. These temperature increases neglect perfusion, a major source of heat dissipation in vivo. MRI for intracranial electrode localization can be performed safely at both 1.5T and 3T provided a head-transmit coil is used, electrode leads are separated, and scanner-reported SARs are limited as determined in advance for specific scanner models, RF coils and implant arrangements. Neglecting these restrictions may result in tissue injury. Copyright (c) 2008 Wiley-Liss, Inc.

  15. Objective Bayesian fMRI analysis—a pilot study in different clinical environments

    PubMed Central

    Magerkurth, Joerg; Mancini, Laura; Penny, William; Flandin, Guillaume; Ashburner, John; Micallef, Caroline; De Vita, Enrico; Daga, Pankaj; White, Mark J.; Buckley, Craig; Yamamoto, Adam K.; Ourselin, Sebastien; Yousry, Tarek; Thornton, John S.; Weiskopf, Nikolaus

    2015-01-01

    Functional MRI (fMRI) used for neurosurgical planning delineates functionally eloquent brain areas by time-series analysis of task-induced BOLD signal changes. Commonly used frequentist statistics protect against false positive results based on a p-value threshold. In surgical planning, false negative results are equally if not more harmful, potentially masking true brain activity leading to erroneous resection of eloquent regions. Bayesian statistics provides an alternative framework, categorizing areas as activated, deactivated, non-activated or with low statistical confidence. This approach has not yet found wide clinical application partly due to the lack of a method to objectively define an effect size threshold. We implemented a Bayesian analysis framework for neurosurgical planning fMRI. It entails an automated effect-size threshold selection method for posterior probability maps accounting for inter-individual BOLD response differences, which was calibrated based on the frequentist results maps thresholded by two clinical experts. We compared Bayesian and frequentist analysis of passive-motor fMRI data from 10 healthy volunteers measured on a pre-operative 3T and an intra-operative 1.5T MRI scanner. As a clinical case study, we tested passive motor task activation in a brain tumor patient at 3T under clinical conditions. With our novel effect size threshold method, the Bayesian analysis revealed regions of all four categories in the 3T data. Activated region foci and extent were consistent with the frequentist analysis results. In the lower signal-to-noise ratio 1.5T intra-operative scanner data, Bayesian analysis provided improved brain-activation detection sensitivity compared with the frequentist analysis, albeit the spatial extents of the activations were smaller than at 3T. Bayesian analysis of fMRI data using operator-independent effect size threshold selection may improve the sensitivity and certainty of information available to guide neurosurgery

  16. Objective Bayesian fMRI analysis-a pilot study in different clinical environments.

    PubMed

    Magerkurth, Joerg; Mancini, Laura; Penny, William; Flandin, Guillaume; Ashburner, John; Micallef, Caroline; De Vita, Enrico; Daga, Pankaj; White, Mark J; Buckley, Craig; Yamamoto, Adam K; Ourselin, Sebastien; Yousry, Tarek; Thornton, John S; Weiskopf, Nikolaus

    2015-01-01

    Functional MRI (fMRI) used for neurosurgical planning delineates functionally eloquent brain areas by time-series analysis of task-induced BOLD signal changes. Commonly used frequentist statistics protect against false positive results based on a p-value threshold. In surgical planning, false negative results are equally if not more harmful, potentially masking true brain activity leading to erroneous resection of eloquent regions. Bayesian statistics provides an alternative framework, categorizing areas as activated, deactivated, non-activated or with low statistical confidence. This approach has not yet found wide clinical application partly due to the lack of a method to objectively define an effect size threshold. We implemented a Bayesian analysis framework for neurosurgical planning fMRI. It entails an automated effect-size threshold selection method for posterior probability maps accounting for inter-individual BOLD response differences, which was calibrated based on the frequentist results maps thresholded by two clinical experts. We compared Bayesian and frequentist analysis of passive-motor fMRI data from 10 healthy volunteers measured on a pre-operative 3T and an intra-operative 1.5T MRI scanner. As a clinical case study, we tested passive motor task activation in a brain tumor patient at 3T under clinical conditions. With our novel effect size threshold method, the Bayesian analysis revealed regions of all four categories in the 3T data. Activated region foci and extent were consistent with the frequentist analysis results. In the lower signal-to-noise ratio 1.5T intra-operative scanner data, Bayesian analysis provided improved brain-activation detection sensitivity compared with the frequentist analysis, albeit the spatial extents of the activations were smaller than at 3T. Bayesian analysis of fMRI data using operator-independent effect size threshold selection may improve the sensitivity and certainty of information available to guide neurosurgery.

  17. Optimization of non-contrast-enhanced MR angiography of the renal artery with three-dimensional balanced steady-state free-precession and time-spatial labeling inversion pulse (time-SLIP) at 3T MRI, in relation to age and blood velocity.

    PubMed

    Kurata, Yasuhisa; Kido, Aki; Fujimoto, Koji; Kiguchi, Kayo; Takakura, Kyoko; Moribata, Yusaku; Shitano, Fuki; Himoto, Yuki; Fushimi, Yasutaka; Okada, Tomohisa; Togashi, Kaori

    2016-01-01

    To determine the optimal inversion time (TI) value of three-dimensional (3D) balanced steady-state free-precession time-spatial labeling inversion pulse (time-SLIP) technique for visualization of the renal artery at 3T MRI, and to assess whether the optimal TI is affected by the subject's age and blood velocity. Forty-two healthy volunteers (range 20-67 years) were enrolled in the study and subjected to non-contrast-enhanced renal MR angiography. Five different TI values (1200, 1400, 1600, 1800, and 2000 ms) were selected for evaluation. For quantitative evaluation, the relative signal intensity (SI) of the main renal artery was compared with that of the renal medulla (Vessel-to-Kidney ratio; VKR). Blood velocity of the abdominal aorta was measured using 2D phase contrast technique. For qualitative evaluation, two radiologists scored the depiction of the renal pelvis and the quality of visualization of the renal artery. VKR is the highest at TI = 1600 ms. A strong negative correlation between age and blood velocity was demonstrated. Regarding the qualitative evaluation, the overall image scores of renal arteries were the highest at a TI = 1800 ms for both readers. The optimal TI values in subjects below 50 years of age were 1600 and 1800 ms, whereas in subjects above 50 years of age, the optimal TI value was 1800 ms. The optimal TI value for the visualization of renal arteries using time-SLIP technique at 3T MRI was 1800 ms. Subjects' age affected optimal TI and this is likely due to differences in the blood velocity of the abdominal aorta.

  18. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field.

    PubMed

    Raaijmakers, A J E; Raaymakers, B W; van der Meer, S; Lagendijk, J J W

    2007-02-21

    At the UMC Utrecht, in collaboration with Elekta and Philips Research Hamburg, we are developing a radiotherapy accelerator with integrated MRI functionality. The radiation dose will be delivered in the presence of a lateral 1.5 T field. Although the photon beam is not affected by the magnetic field, the actual dose deposition is done by a cascade of secondary electrons and these electrons are affected by the Lorentz force. The magnetic field causes a reduced build-up distance: because the trajectory of the electrons between collisions is curved, the entrance depth in tissue decreases. Also, at tissue-air interfaces an increased dose occurs due to the so-called electron return effect (ERE): electrons leaving tissue will describe a circular path in air and re-enter the tissue yielding a local dose increase. In this paper the impact of a 1.5 T magnetic field on both the build-up distance and the dose increase due to the ERE will be investigated as a function of the angle between the surface and the incident beam. Monte Carlo simulations demonstrate that in the presence of a 1.5 T magnetic field, the surface dose, the build-up distance and the exit dose depend more heavily on the surface orientation than in the case without magnetic field. This is caused by the asymmetrical pointspread kernel in the presence of 1.5 T and the directional behaviour of the re-entering electrons. Simulations on geometrical phantoms show that ERE dose increase at air cavities can be avoided using opposing beams, also when the air-tissue boundary is not perpendicular to the beam. For the more general case in patient anatomies, more problems may arise. Future work will address the possibilities and limitations of opposing beams in combination with IMRT in a magnetic field.

  19. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Raaijmakers, A. J. E.; Raaymakers, B. W.; van der Meer, S.; Lagendijk, J. J. W.

    2007-02-01

    At the UMC Utrecht, in collaboration with Elekta and Philips Research Hamburg, we are developing a radiotherapy accelerator with integrated MRI functionality. The radiation dose will be delivered in the presence of a lateral 1.5 T field. Although the photon beam is not affected by the magnetic field, the actual dose deposition is done by a cascade of secondary electrons and these electrons are affected by the Lorentz force. The magnetic field causes a reduced build-up distance: because the trajectory of the electrons between collisions is curved, the entrance depth in tissue decreases. Also, at tissue-air interfaces an increased dose occurs due to the so-called electron return effect (ERE): electrons leaving tissue will describe a circular path in air and re-enter the tissue yielding a local dose increase. In this paper the impact of a 1.5 T magnetic field on both the build-up distance and the dose increase due to the ERE will be investigated as a function of the angle between the surface and the incident beam. Monte Carlo simulations demonstrate that in the presence of a 1.5 T magnetic field, the surface dose, the build-up distance and the exit dose depend more heavily on the surface orientation than in the case without magnetic field. This is caused by the asymmetrical pointspread kernel in the presence of 1.5 T and the directional behaviour of the re-entering electrons. Simulations on geometrical phantoms show that ERE dose increase at air cavities can be avoided using opposing beams, also when the air-tissue boundary is not perpendicular to the beam. For the more general case in patient anatomies, more problems may arise. Future work will address the possibilities and limitations of opposing beams in combination with IMRT in a magnetic field.

  20. Discrepancy between morphological findings in juvenile osteochondritis dissecans (OCD): a comparison of magnetic resonance imaging (MRI) and arthroscopy.

    PubMed

    Roßbach, Björn Peter; Paulus, Alexander Christoph; Niethammer, Thomas Richard; Wegener, Veronika; Gülecyüz, Mehmet Fatih; Jansson, Volkmar; Müller, Peter Ernst; Utzschneider, Sandra

    2016-04-01

    The aim of this study was to assess the reliability of preoperative MRI for the staging of osteochondritis dissecans (OCD) lesions of the knee and the talus in juvenile patients, using arthroscopy as the gold standard of diagnosis. Sixty-three juvenile patients (range 8-16 years) with an OCD of the knee or the talus underwent arthroscopy after MRI. In 54/9 out of 63 cases, 1.5/3 T MR scanners were used. The OCD stage was classified according the staging criteria of Dipaola et al. Arthroscopic findings were compared with MRI reports in each patient. From the 63 juvenile patients, MRI/arthroscopy revealed a stage I OCD in 4/19 patients, stage II in 31/22 patients, stage III in 22/9 patients and stage IV in 6/6 patients. No osteochondral pathology was evident in arthroscopy in seven out of 63 patients. The overall accuracy of preoperative MRI in staging an OCD lesion of the knee or the talus was 41.3%. In 33 out of 63 patients (52.4%), arthroscopy revealed a lower OCD stage than in the preoperative MRI grading, and in four out of 63 cases (6.4%), the intraoperative arthroscopic grading was worse than in preoperative MRI prior to surgery. The utilization of the 3 T MRI provided a correct diagnosis with 44.4%. Even with today's modern MRI scanners, it is not possible to predict an accurate OCD stage in children. The children's orthopaedist should not solely rely on the MRI when it comes to the decision to further conservative or surgical treatment of a juvenile OCD, but rather should take surgical therapy in consideration within persisting symptoms despite a low OCD stage provided by MRI. III.

  1. B1 homogeneity of breast MRI using RF shimming with individual specific values in volunteers simulating patients after mastectomy.

    PubMed

    Abe, Takayuki

    2016-11-01

    Background Magnetic resonance imaging (MRI) using a 3-T MRI scanner is now widely used for clinical examinations. However, B1 inhomogeneity becomes larger with MRI scanners using 3-T and higher. It especially becomes a problem in the breast. To improve B1 homogeneity, a RF shimming technique has been developed. Purpose To evaluate the B1 homogeneity of breast MRI using RF shimming with individual specific values for subjects after mastectomy. Material and Methods The subjects are healthy female volunteers who underwent normal breast imaging, followed by imaging of one breast while the other breast was bound tightly to the chest by bleached cotton cloths (simulating volunteers after mastectomy). B1 mappings were performed with RF shimming using two techniques: (i) optimized fixed value; and (ii) individual specific values using a 3-T MRI scanner. The means and standard deviations of the B1 maps for all slices in the breast were measured and compared between the fixed value and the individual specific value cases. Results For normal volunteers, the breast B1 variation was not statistically significantly different between the RF shimming techniques. For volunteers after simulated surgery, the breast B1 variation was (1.02 ± 0.29) with the fixed value and (0.98 ± 0.22) with the individual specific value ( P < 0.01). With the individual specific optimization, B1 variation for all slices in the breast was improved for volunteers after simulated surgery. Conclusion RF shimming with individual specific values has the potential to improve the B1 homogeneity of breast MRI in patients after mastectomy.

  2. A novel, general-purpose, MR-compatible, manually actuated robotic manipulation system for minimally invasive interventions under direct MRI guidance.

    PubMed

    Christoforou, Eftychios G; Seimenis, Ioannis; Andreou, Eleni; Eracleous, Eleni; Tsekos, Nikolaos V

    2014-03-01

    Performing minimally invasive interventions under direct MRI guidance offers significant advantages. Required accessibility to the patient inside the MRI scanner is fairly limited, and employment of robotic assistance has been proposed. The development of MR-compatible robotic systems entails engineering challenges related to geometric constraints and the magnetic nature of the scanning environment. A novel, general-purpose, MR-compatible robotic manipulation system has been developed for the performance of minimally invasive interventions inside a cylindrical scanner under direct MRI guidance. The system is endowed with five degrees of freedom (DOF), is characterized by a unique kinematics structure and is manually actuated. The prototype system was shown to exhibit the required MR-compatibility characteristics and a task-space positioning ability of approximately 5 mm. Needle targeting testing demonstrated a 93% success rate in acquiring a 5 mm spherical target. Phantom testing was performed inside a 3 T scanner and results are reported for an experimental study simulating MRI-guided, manipulator-assisted, MR arthrography. Robotic assistance provided by the developed manipulator may effectively facilitate the performance of various MRI-guided, minimally invasive interventions inside a cylindrical scanner. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Malformations of cortical development: 3T magnetic resonance imaging features

    PubMed Central

    Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa

    2015-01-01

    Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429

  4. In vivo conductivity imaging of canine male pelvis using a 3T MREIT system

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Jeong, W. C.; Kim, Y. T.; Minhas, A. S.; Lee, T. H.; Lim, C. Y.; Park, H. M.; Seo, J. K.; Woo, E. J.

    2010-04-01

    The prostate is an imaging area of growing concern related with aging. Prostate cancer and benign prostatic hyperplasia are the most common diseases and significant cause of death for elderly men. Hence, the conductivity imaging of the male pelvis is a challenging task with a clinical significance. In this study, we performed in vivo MREIT imaging experiments of the canine male pelvis using a 3T MRI scanner. Adopting carbon-hydrogel electrodes and a multi-echo pulse sequence, we could inject as much as 10 mA current in a form of 51 ms pulse into the pelvis. Collecting magnetic flux density data inside the pelvis subject to multiple injection currents, we reconstructed cross-sectional conductivity images using a MREIT software package CoReHA. Scaled conductivity images of the prostate show a clear contrast between the central and peripheral zones which are related with prostate diseases including cancer and benign prostatic hyperplasia. In our future work, we will focus on prostate cancer model animal experiments.

  5. Diagnosis of endolymphatic hydrops by means of 3T magnetic resonance imaging after intratympanic administration of gadolinium.

    PubMed

    Tuñón Gómez, M; Lobo Duro, D R; Brea Álvarez, B; García-Berrocal, J R

    To detect and graduate endolymphatic hydrops or endolymphatic space dilations in patients with suspected Meniere's disease or immune-mediated inner ear disease by magnetic resonance imaging. A prospective study was performed including all the patients with clinical suspicion of Meniere's disease or immune-mediated inner ear disease treated at the Otolaryngology department during a one year period. In all cases, magnetic resonance imaging (MRI) was performed in a 3T scanner. IR sequence was performed after 24 to 28h prior intratimpanic injection of gadolinium on both ears. Two neurorradiologist graduated endolymphatic space volume as agreed on normal, moderate and significant in the obtained images. The presence of hydrops was documented by MRI in six patients with definite or probable Meniere's disease. In two of the four cases without vertigo hydrops was not demonstrated. In the other two cases with a high clinical suspicion of immune-mediated disease but with negative autoimmune tests hydrops was proved. There was only disagreement on cochlear hydrops presence on two patients. The detection of endolymphatic hydrops in patients with definite or probable Meniere's disease served to confirm the final diagnosis. Moreover, hydrops was detected in patients with suspected immune-mediated inner ear disease, which could have an impact on the diagnosis and treatment of these patients. Therefore, we suggest that this test could be included for the diagnosis of these inner ear diseases. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. An MR-conditional high-torque pneumatic stepper motor for MRI-guided and robot-assisted intervention.

    PubMed

    Chen, Yue; Kwok, Ka-Wai; Tse, Zion Tsz Ho

    2014-09-01

    Magnetic resonance imaging allows for visualizing detailed pathological and morphological changes of soft tissue. MR-conditional actuations have been widely investigated for development of image-guided and robot-assisted surgical devices under the Magnetic resonance imaging (MRI). This paper presents a simple design of MR-conditional stepper motor which can provide precise and high-torque actuation without adversely affecting the MR image quality. This stepper motor consists of two MR-conditional pneumatic cylinders and the corresponding supporting structures. Alternating the pressurized air can drive the motor to rotate each step in 3.6° with the motor coupled to a planetary gearbox. Experimental studies were conducted to validate its dynamics performance. Maximum 800 mN m output torque is achieved. The motor accuracy independently varied by two factors: motor operating speed and step size, was also investigated. The motor was tested within a 3T Siemens MRI scanner (MAGNETOM Skyra, Siemens Medical Solutions, Erlangen, Germany) and a 3T GE MRI scanner (GE SignaHDx, GE Healthcare, Milwaukee, WI, USA). The image artifact and the signal-to-noise ratio (SNR) were evaluated for study of its MRI compliancy. The results show that the presented pneumatic stepper motor generated 2.35% SNR reduction in MR images. No observable artifact was presented besides the motor body itself. The proposed motor test also demonstrates a standard to evaluate the pneumatic motor capability for later incorporation with motorized devices used under MRI.

  7. Orbital and Intracranial Effects of Microgravity: 3T MRI Findings

    NASA Technical Reports Server (NTRS)

    Kramer, L. A.; Sargsyan, A.; Hasan, K. M.; Polk, J. D.; Hamilton, D. R.

    2012-01-01

    Goals and Objectives of this presentation are: 1. To briefly describe a newly discovered clinical entity related to space flight. 2. To describe normal anatomy and pathologic changes of the optic nerve, posterior globe, optic nerve sheath and pituitary gland related to exposure to microgravity. 3. To correlate imaging findings with known signs of intracranial hypertension.

  8. Standardized quantitative measurements of wrist cartilage in healthy humans using 3T magnetic resonance imaging

    PubMed Central

    Zink, Jean-Vincent; Souteyrand, Philippe; Guis, Sandrine; Chagnaud, Christophe; Fur, Yann Le; Militianu, Daniela; Mattei, Jean-Pierre; Rozenbaum, Michael; Rosner, Itzhak; Guye, Maxime; Bernard, Monique; Bendahan, David

    2015-01-01

    AIM: To quantify the wrist cartilage cross-sectional area in humans from a 3D magnetic resonance imaging (MRI) dataset and to assess the corresponding reproducibility. METHODS: The study was conducted in 14 healthy volunteers (6 females and 8 males) between 30 and 58 years old and devoid of articular pain. Subjects were asked to lie down in the supine position with the right hand positioned above the pelvic region on top of a home-built rigid platform attached to the scanner bed. The wrist was wrapped with a flexible surface coil. MRI investigations were performed at 3T (Verio-Siemens) using volume interpolated breath hold examination (VIBE) and dual echo steady state (DESS) MRI sequences. Cartilage cross sectional area (CSA) was measured on a slice of interest selected from a 3D dataset of the entire carpus and metacarpal-phalangeal areas on the basis of anatomical criteria using conventional image processing radiology software. Cartilage cross-sectional areas between opposite bones in the carpal region were manually selected and quantified using a thresholding method. RESULTS: Cartilage CSA measurements performed on a selected predefined slice were 292.4 ± 39 mm2 using the VIBE sequence and slightly lower, 270.4 ± 50.6 mm2, with the DESS sequence. The inter (14.1%) and intra (2.4%) subject variability was similar for both MRI methods. The coefficients of variation computed for the repeated measurements were also comparable for the VIBE (2.4%) and the DESS (4.8%) sequences. The carpus length averaged over the group was 37.5 ± 2.8 mm with a 7.45% between-subjects coefficient of variation. Of note, wrist cartilage CSA measured with either the VIBE or the DESS sequences was linearly related to the carpal bone length. The variability between subjects was significantly reduced to 8.4% when the CSA was normalized with respect to the carpal bone length. CONCLUSION: The ratio between wrist cartilage CSA and carpal bone length is a highly reproducible standardized

  9. Focusing laser scanner

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.

    1979-01-01

    Economical laser scanner assembled from commercially available components, modulates and scans focused laser beam over area up to 5.1 by 5.1 cm. Scanner gives resolution comparable to that of conventional television. Device is highly applicable to area of analog and digital storage and retrieval.

  10. Polygon scanners revisited

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael N.

    1997-07-01

    The demands for increased throughput, pixel density, and format size in the laser beam imaging field continue to challenge opto-mechanical scanning products and the electronics that drive them. The polygon line scanner has superior scan rate and scan efficiency among candidate mechanical scanners but, historically, has had inferior cross- scan and in-scan accuracy. To date, due to cost considerations, these limitations have excluded the polygon scanner from practical use in high resolution, flat field, large format commercial applications. This paper illustrates the tradeoffs among the three most common mechanical scanners; single reflection rotary scanner, resonant galvanometric scanner, and polygon scanner. The purpose of this discussion is to illustrate that the polygon scanner holds the best promise of advancing the state-of-art in reasonable cost, large format, high resolution, flat field imaging once the problems of cross-scan and in-scan errors are reconciled in the design of the system. Also introduced is a polygon scanning system that fulfills the requirements of an advanced flat field, large format line imaging platform.

  11. [3 Tesla MRI: successful results with higher field strengths].

    PubMed

    Schmitt, F; Grosu, D; Mohr, C; Purdy, D; Salem, K; Scott, K T; Stoeckel, B

    2004-01-01

    The recent development of 3 Tesla MRI (3T MRI) has been fueled by promise of increased signal-to-noise ratio(SNR). Many are excited about the opportunity to not only use the increased SNR for clearer images, but also the chance to exchange it for better resolution or faster scans. These possibilities have caused a rapid increase in the market for 3T MRI, where the faster scanning tips an already advantageous economic outlook in favor of the user. As a result, the global market for 3T has grown from a research only market just a few years ago to an ever-increasing clinically oriented customer base. There are, however, significant obstacles to 3T MRI presented by the physics at higher field strengths. For example, the T1 relaxation times are prolonged with increasing magnet field strength. Further, the increased RF-energy deposition (SAR), the larger the chemical shift and the stronger susceptibility effect have to be considered as challenges. It is critical that one looks at both the advantages and disadvantages of using 3T. While there are many issues to address aand a number of different methods for doing so, to properly tackle each of these concerns will take time and effort on the part od researchers and clinicians. The optimization of 3T MRI scanning will have to be a combined effort, though much of the work to date has been in neuroimaging. Multiple applications have been explored in addition to clinical anatomical imaging, where resolution is improved showing structure in the brain never seen before in human MRI. Body and cardiac imaging provide a great challenge but are also achievable at 3T. As an example, the full range of clinical applications currently achieved on today's state-of-the-art 1.5T cardiac MR scanners has also been demonstrated at 3T. In the body, the full range of contrast is available over large fields of view allowing whole liver studies in the clinic or, as needed, one may choose a smaller field of view for high-resolution imaging of the

  12. Apparent diffusion coefficient and sodium concentration measurements in human prostate tissue via hydrogen-1 and sodium-23 magnetic resonance imaging in a clinical setting at 3T.

    PubMed

    Hausmann, Daniel; Konstandin, Simon; Wetterling, Friedrich; Haneder, Stefan; Nagel, Armin M; Dinter, Dietmar J; Schönberg, Stefan O; Zöllner, Frank G; Schad, Lothar R

    2012-12-01

    Multiparametric magnetic resonance imaging (MRI) of the prostate involves morphologic and functional imaging techniques, which could potentially enable to distinguish between common benign prostate diseases, especially prostatitis and prostate cancer. The aim of this study was to determine the apparent diffusion coefficient (ADC) and the tissue sodium concentration (TSC) in 2 different regions of the human prostate, that is, the central gland (CG) and the peripheral gland (PG), by means of standard hydrogen-1 (H) MRI and quantitative sodium-23 (Na) MRI at 3 T to increase the spectrum of diagnostic parameters for prostate examinations. All measurements were performed on a 3-T clinical whole-body magnetic resonance (MR) scanner. Na MR images were acquired with density-adapted 3-dimensional radial sequence and isotropic voxel resolution of 5 × 5 × 5 mm. After approval by the institutional review board and informed consent were obtained, 8 healthy volunteers were included in this study. Diffusion-weighted imaging and T2-weighted images were also recorded and hence enabled the correlation of measured TSC values with current state-of-the-art H MRI techniques. The ADC in both subregions was measured to be at normal levels (CG, 1.19 [0.09] ×10 mm/s; PG, 1.54 [0.14] × 10 mm/s) in all 8 volunteers. Good spatial resolution of the Na images allowed for an easy identification of the same subregions from the Na MR images. In healthy adult volunteers (age, 29 [2] years), the TSC was measured lower in central (55 [15] mmol/L) and higher in peripheral (69 [16] mmol/L) prostate tissue. A correlation between the TSC and the ADC in the 2 subregions was found in the same volunteer group (Pearson correlation coefficient = 0.87). For the first time, TSC was spatially resolved in human prostate tissue by means of Na MRI. Interestingly, the herein found TSC values of ∼60 mmol/L were half as high as in a previously reported Na MRI study where prostate TSC was measured in 5-month

  13. Tunable Resonant Scanners

    NASA Astrophysics Data System (ADS)

    Montagu, Jean I.

    1987-01-01

    The most attractive features of resonant scanners are high reliability and eternal life as well as extremely low wobble and jitter. Power consumption is also low, electronic drive is simple, and the device is capable of handling large beams. All of these features are delivered at a low cost in a small package. The resonant scanner's use in numerous high precision applications, however, has been limited because of the difficulty in controlling its phase and resonant frequency. This paper introduces the concept of tunable/controllable resonant scanners, discusses their features, and offers a number of tuning techniques. It describes two angular scanner designs and presents data on tunable range and life tests. It also reviews applications for these new tunable resonant scanners that preserve the desirable features of earlier models while removing the old problems with synchronization or time base flexibility. The three major types of raster scanning applications where the tunable resonant scanner may be of benefit are: 1. In systems with multiple time bases such as multiple scanner networks or with scanners keyed to a common clock (the line frequency or data source) or a machine with multiple resonant scanners. A typical application is image and text transmission, also a printer with a large data base where a buffer is uneconomical. 2. In systems sharing data processing or laser equipment for reasons of cost or capacity, typically multiple work station manufacturing processes or graphic processes. 3. In systems with extremely precise time bases where the frequency stability of conventional scanners cannot be relied upon.

  14. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  15. Measurement of intervertebral disc pressure with T 1ρ MRI.

    PubMed

    Wang, Chenyang; Witschey, Walter; Elliott, Mark A; Borthakur, Arijitt; Reddy, Ravinder

    2010-12-01

    The aim of this study is to demonstrate T(1ρ) MRI's capability for measuring intervertebral disc osmotic pressure. Self-coregistered sodium and T(1ρ) -weighted MR images were acquired on ex vivo bovine intervertebral discs (N = 12) on a 3 T clinical MRI scanner. The sodium MR images were used to calculate effective nucleus pulposus fixed-charge-density (mean = 138.2 ± 27.6 mM) and subsequently osmotic pressure (mean = 0.53 ± 0.18 atm), whereas the T(1ρ) -weighted images were used to compute T(1ρ) relaxation maps. A significant linear correlation (R = 0.56, P < 0.01) between nucleus pulposus fixed-charge-density and T(1ρ) relaxation time constant was observed. More importantly, a significant power correlation (R = 0.72, P < 0.01) between nucleus pulposus osmotic pressure as predicted by sodium MRI and T(1ρ) relaxation time constant was also observed. The current clinical method for assessing disc pressure is discography, which is an invasive procedure that has been shown to have negative effects on disc biomechanical and biochemical properties. In contrast, T(1ρ) MRI is noninvasive and can be easily implemented in a clinical setting due to its superior signal-to-noise ratio compared with sodium MRI. Therefore, T(1ρ) MRI may serve as a noninvasive clinical tool for the longitudinal evaluation of disc osmotic pressure. Copyright © 2010 Wiley-Liss, Inc.

  16. BOLD contrast on a 3 T magnet: detectability of the motor areas.

    PubMed

    Nakai, T; Matsuo, K; Kato, C; Okada, T; Moriya, T; Isoda, H; Takehara, Y; Sakahara, H

    2001-01-01

    To predict the potential and the limitations of functional MRI (fMRI) with a very high field magnet, the detectability and reproducibility of activation were evaluated by comparing the activation induced by a sequential finger movement task at 1.5 T with that at 3 T. The detectability of the premotor area, supplementary motor area (SMA), and ipsilateral sensorimotor area (SM1) showed significant improvement at 3 T. On the other hand, the detectability of contralateral SM1 was not significantly different between 1.5 and 3 T. The degree of activation was proportional to task demand in the ipsilateral SM1 and SMA, whereas that in the contralateral SM1 and SMA was not. FMRI with a 3 T magnet has greater potential for detection of neuronal activation as a functional network. These observations indicated that task demand and static magnetic field strength should be considered in interpretation of fMRI data for clinical usage.

  17. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  18. Septal repair implants: evaluation of magnetic resonance imaging safety at 3 T.

    PubMed

    Shellock, Frank G; Valencerina, Samuel

    2005-12-01

    Specialized implants are used for transcatheter closure of septal defects, including atrial and ventricular septal defects, and patent foramen ovale. These metallic devices may pose a risk to patients undergoing magnetic resonance imaging (MRI) procedures especially if performed at 3 T. Therefore, this investigation evaluated MRI safety at 3 T for septal repair implants (CardioSEAL Septal Repair Implant and STARFlex Septal Repair Implant, NMT Medical, Boston, MA, USA) by characterizing magnetic field interactions, heating and artifacts. These implants exhibited minor magnetic field interactions; heating was not excessive (+0.5 degrees C); and artifacts will only create a problem if the area of interest is in the same area as or near these devices. Thus, the findings indicated that it would be safe for a patient with these implants to undergo MRI at 3 T or lower. Importantly, because of the minor magnetic field interactions, MRI may be performed immediately after implantation.

  19. Quantitative Susceptibility Mapping at 3 T and 1.5 T: Evaluation of Consistency and Reproducibility.

    PubMed

    Hinoda, Takuya; Fushimi, Yasutaka; Okada, Tomohisa; Fujimoto, Koji; Liu, Chunlei; Yamamoto, Akira; Okada, Tsutomu; Kido, Aki; Togashi, Kaori

    2015-08-01

    The aim of this study was to assess the consistency and reproducibility of quantitative susceptibility mapping (QSM) at 3-T and 1.5-T magnetic resonance (MR) scanners. This study was approved by institutional ethics committee, and written informed consent was obtained. Twenty-two healthy volunteers underwent 2 examinations on different days. Each examination consisted of MR imaging on both 3-T and 1.5-T MR scanners. The data from both scanners and examination days were obtained, and QSM was calculated with STI Suite using 2 different algorithms--harmonic phase removal using laplacian operator (HARPERELLA) and a sophisticated harmonic artifact reduction for phase data (SHARP) method with a variable radius of the spherical kernel at the brain boundary (V-SHARP). We evaluated consistency of QSM between 3 T and 1.5 T and the reproducibility between the first and second examinations using 2-phase processing methods (HARPERELLA and V-SHARP). Susceptibility values of regions of interests at 3 T were highly correlated with those at 1.5 T with good agreement (HARPERELLA, R2 = 0.838; V-SHARP, R2 = 0.898) (average difference, ±1.96 SD; HARPERELLA, -0.012 ± 0.046; V-SHARP, -0.002 ± 0.034). Reproducibility analysis demonstrated excellent correlation between the first and second examination at both 3 T and 1.5 T for both algorithms (HARPERELLA at 3 T, R2 = 0.921; 1.5 T, R2 = 0.891; V-SHARP at 3 T, R2 = 0.937; 1.5 T, R2 = 0.926). Bland-Altman analysis showed excellent reproducibility for HARPERELLA (3 T, -0.003 ± 0.032; 1.5 T, -0.003 ± 0.038) and V-SHARP (3 T, -0.003 ± 0.027; 1.5 T, -0.003 ± 0.029). Susceptibility values of these 2 algorithms were highly correlated with good agreement (3T, R2 = 0.961; 1.5 T, R = 0.931) (3 T, 0.009 ± 0.023; 1.5 T, -0.003 ± 0.049). Quantitative susceptibility mapping with HARPERELLA and V-SHARP demonstrated good reproducibility at 3 T and 1.5 T, and QSM with V-SHARP demonstrated good consistency at 3 T and 1.5 T.

  20. MRI of the Musculoskeletal System: Advanced Applications using High and Ultrahigh Field MRI.

    PubMed

    Alizai, Hamza; Chang, Gregory; Regatte, Ravinder R

    2015-09-01

    In vivo MRI has revolutionized the diagnosis and treatment of musculoskeletal disorders over the past 3 decades. Traditionally performed at 1.5 T, MRI at higher field strengths offers several advantages over lower field strengths including increased signal-to-noise ratio, higher spatial resolution, improved spectral resolution for spectroscopy, improved sensitivity for X-nucleus imaging, and decreased image acquisition times. However, the physics of imaging at higher field strengths also presents technical challenges. These include B0 and B1+ field inhomogeneity, design and construction of dedicated radiofrequency (RF) coils for use at high field, increased chemical shift and susceptibility artifacts, increased RF energy deposition (specific absorption rate), increased metal artifacts, and changes in relaxation times compared with the lower field scanners. These challenges were overcome in optimizing high-field (HF) (3 T) MRI over a decade ago. HF MRI systems have since gained universal acceptance for clinical musculoskeletal imaging and have also been widely utilized for the study of musculoskeletal anatomy and physiology. Recently there has been an increasing interest in exploring musculoskeletal applications of ultrahigh field (UHF) (7 T) systems. However, technical challenges similar to those encountered when moving from 1.5 T to 3 T have to be overcome to optimize 7 T musculoskeletal imaging. In this narrative review, we discuss the many potential opportunities and technical challenges presented by the HF and UHF MRI systems. We highlight recent developments in in vivo imaging of musculoskeletal tissues that benefit most from HF imaging including cartilage, skeletal muscle, and bone. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Directly detected (55)Mn MRI: application to phantoms for human hyperpolarized (13)C MRI development.

    PubMed

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B

    2014-12-01

    In this work we demonstrate for the first time directly detected manganese-55 ((55)Mn) magnetic resonance imaging (MRI) using a clinical 3T MRI scanner designed for human hyperpolarized (13)C clinical studies with no additional hardware modifications. Due to the similar frequency of the (55)Mn and (13)C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective "(13)C" MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, (55)Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical (13)C phantom MRI, at greatly reduced cost as compared with large (13)C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d=8 cm) containing concentrated aqueous sodium permanganate (2.7 M) was scanned rapidly by (55)Mn MRI in a human head coil tuned for (13)C, using a balanced steady state free precession acquisition. The requisite penetration of radiofrequency magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for (55)Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image signal-to-noise ratio of ~60 at 0.5 cm(3) spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP (13)C coils and methods designed for human studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Final Report: A CdZnTe detector for MRI-compatible SPECT Systems

    SciTech Connect

    Meng, Ling-Jian

    2012-12-27

    The key objective of this project is to develop the enabling technology for future MRI-compatible nuclear (e.g. SPECT) imaging system, and to demonstrate the feasibility of performing simultaneous MR and SPECT imaging studies of the same object. During the past three years, we have developed (a) a MRI-compatible ultrahigh resolution gamma ray detector and associated readout electronics, (b) a theoretical approach for modeling the effect of strong magnetic field on SPECT image quality, and (c) a maximum-likelihood (ML) based reconstruction routine with correction for the MR-induced distortion. With this support, we have also constructed a four-head MR-compatible SPECT system and tested the system inside a 3-T clinical MR-scanner located on UI campus. The experimental results obtained with this system have clearly demonstrated that sub-500um spatial resolution can be achieved with a SPECT system operated inside a 3-T MRI scanner. During the past three years, we have accomplished most of the major objectives outlined in the original proposal. These research efforts have laid out a solid foundation the development of future MR-compatible SPECT systems for both pre-clinical and clinical imaging applications.

  3. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement

    PubMed Central

    Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; DiMaio, Simon P.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor

    2010-01-01

    Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system. PMID:21057608

  4. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement.

    PubMed

    Fischer, Gregory S; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Dimaio, Simon P; Tempany, Clare M; Hata, Nobuhiko; Fichtinger, Gabor

    2008-06-01

    Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system.

  5. Volume Navigation Technique for Ultrasound-Guided Biopsy of Breast Lesions Detected Only at MRI.

    PubMed

    Aribal, Erkin; Tureli, Derya; Kucukkaya, Fikret; Kaya, Handan

    2017-06-01

    The purpose of this study is to assess the utility of a volume navigation technique (VNT) for ultrasound-guided biopsy of MRI-detected, but sonographically ambiguous or occult, breast lesions. Within a recruitment period of 13 months (January 1, 2014, through February 1, 2015), 22 patients with 26 BI-RADS category 4 or 5 lesions that were detected at MRI but missed at second-look ultrasound were reimaged using a rapid sequence and a flexible body coil in a 3-T MRI scanner. Patients were supine, with three skin markers placed on the breasts. MRI volume data were coregistered to real-time ultrasound in a dedicated platform, and MRI-detected lesions (six masses, 11 nonmass enhancements, eight foci, and one architectural distortion) were sought using VNT-guided ultrasound. Five needle biopsy specimens were obtained either from each sonographically detected lesion (n = 11) or from VNT-guided sonographically localized breast volume corresponding to the MRI-detected, but still ultrasound-occult, lesions (n = 15). Histopathologic analysis revealed 18 benign and six malignant lesions. The remaining two lesions, both of which appeared as masses at MRI, were high risk and were upgraded to carcinoma after excisional biopsy. All malignant lesions underwent curative surgery; the final histopathologic diagnoses remained unchanged. Of the six malignant lesions, one was a mass, three were nonmass enhancements, and two were enhancing foci at MRI. Three malignant lesions were occult at ultrasound, and three were discerned as subtle hypoechoic changes. No benign lesion was sonographically visualized as a mass, and none progressed, with 56% disappearing at MRI performed during the follow-up period (mean, 14 months). Coregistration of MRI and real-time ultrasound enables sonographic localization of breast lesions detected at MRI only. VNT is a feasible alternative to MRI-guided biopsy of ultrasound-occult breast lesions.

  6. Scalable multichannel MRI data acquisition system.

    PubMed

    Bodurka, Jerzy; Ledden, Patrick J; van Gelderen, Peter; Chu, Renxin; de Zwart, Jacco A; Morris, Doug; Duyn, Jeff H

    2004-01-01

    A scalable multichannel digital MRI receiver system was designed to achieve high bandwidth echo-planar imaging (EPI) acquisitions for applications such as BOLD-fMRI. The modular system design allows for easy extension to an arbitrary number of channels. A 16-channel receiver was developed and integrated with a General Electric (GE) Signa 3T VH/3 clinical scanner. Receiver performance was evaluated on phantoms and human volunteers using a custom-built 16-element receive-only brain surface coil array. At an output bandwidth of 1 MHz, a 100% acquisition duty cycle was achieved. Overall system noise figure and dynamic range were better than 0.85 dB and 84 dB, respectively. During repetitive EPI scanning on phantoms, the relative temporal standard deviation of the image intensity time-course was below 0.2%. As compared to the product birdcage head coil, 16-channel reception with the custom array yielded a nearly 6-fold SNR gain in the cerebral cortex and a 1.8-fold SNR gain in the center of the brain. The excellent system stability combined with the increased sensitivity and SENSE capabilities of 16-channel coils are expected to significantly benefit and enhance fMRI applications. Published 2003 Wiley-Liss, Inc.

  7. Dynamic diffusion tensor measurements in muscle tissue using Single Line Multiple Echo Diffusion Tensor Acquisition Technique at 3T

    PubMed Central

    Baete, Steven H.; Cho, Gene; Sigmund, Eric E.

    2015-01-01

    When diffusion biomarkers display transient changes, i.e. in muscle following exercise, traditional diffusion tensor imaging (DTI) methods lack temporal resolution to resolve the dynamics. This paper presents an MRI method for dynamic diffusion tensor acquisitions on a clinical 3T scanner. This method, SL-MEDITATE (Single Line Multiple Echo Diffusion Tensor Acquisition Technique) achieves a high temporal resolution (4s) (1) by rapid diffusion encoding through the acquisition of multiple echoes with unique diffusion sensitization and (2) by limiting the readout to a single line volume. The method is demonstrated in a rotating anisotropic phantom, in a flow phantom with adjustable flow speed, and in in vivo skeletal calf muscle of healthy volunteers following a plantar flexion exercise. The rotating and flow-varying phantom experiments show that SL-MEDITATE correctly identifies the rotation of the first diffusion eigenvector and the changes in diffusion tensor parameter magnitudes, respectively. Immediately following exercise, the in vivo mean diffusivity (MD) time-courses show, before the well-known increase, an initial decrease which is not typically observed in traditional DTI. In conclusion, SL-MEDITATE can be used to capture transient changes in tissue anisotropy in a single line. Future progress might allow for dynamic DTI when combined with appropriate k-space trajectories and compressed sensing reconstruction. PMID:25900166

  8. Simultaneous dual frequency 1H and 19F open coil imaging of arthritic rabbit knee at 3T.

    PubMed

    Hockett, Franklin D; Wallace, Kirk D; Schmieder, Anne H; Caruthers, Shelton D; Pham, Christine T N; Wickline, Samuel A; Lanza, Gregory M

    2011-01-01

    The combination of sensitive magnetic resonance techniques with a selective site-targeted nanoparticle contrast agent has a demonstrated utility for molecular imaging studies. By detecting a unique signature of the contrast agent, this approach can be employed to identify specific bio-molecular markers and observe cellular-level processes within a large and complex organism (e.g., in vivo rabbit). The objective of the present investigation was to design, fabricate and characterize a radio-frequency (RF) coil for the dual frequency ((1)H and (19)F) simultaneous collection of both nuclei images in a 3T field, in order to facilitate studies of arthritic knee degradation in rabbits. The coil supports both transmit and receive modes. The supporting activities included: 1) establishing a technical database for calculating the required coil parameters, 2) selection of a favorable coil geometry, and 3) adaption of existing RF measurement techniques to the design, development and electrical evaluation of the coil. The coil is used in conjunction with a Philips Medical Systems clinical MRI scanner, requiring all RF simultaneous dual frequency ((1)H and (19)F) coils to operate in both transmit and receive modes. A commercial version of SPICE (simulation program with integrated circuit emphasis) was used to estimate significant operational parameters prior to fabricating the imaging coil. Excellent images were obtained with the fabricated coil and no operational problems were observed that would limit the use of other coil geometries and field strengths.

  9. Optimized Three Dimensional Sodium Imaging of the Human Heart on a Clinical 3T scanner

    PubMed Central

    Gai, Neville D.; Rochitte, Carlos; Nacif, Marcelo S.; Bluemke, David A.

    2014-01-01

    Purpose Optimization of sequence and sequence parameters to allow 3D sodium imaging of the entire human heart in-vivo in a clinically reasonable time. Theory and Methods A stack of spirals pulse sequence was optimized for cardiac imaging by considering factors such as spoiling, nutation angles, repetition time, echo time, T1/T2 relaxation, off-resonance, data acquisition window, motion and segmented k-space acquisition. Simulations based on Bloch equations as well as the exact trajectory used for data acquisition provided the basis for choice of parameter combinations for sodium imaging. Sodium phantom scanning was used to validate the choice of parameters and for corroboration with simulations. In-vivo cardiac imaging in six volunteers was also done with an optimized sequence. Results Phantom studies showed good correlation with simulation results. Images obtained from human volunteers showed that the heart can be imaged with a nominal resolution of 5 × 5 × 10 mm3 and with SNR>15 (in the septum) in about 6-10 minutes. Long axis views of the reformatted human heart show true 3D imaging capability. Conclusion Optimization of the sequence and its parameters allowed in-vivo 3D sodium imaging of the entire human heart in a clinically reasonable time. PMID:24639022

  10. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  11. Biochip scanner device

    DOEpatents

    Perov, Alexander; Belgovskiy, Alexander I.; Mirzabekov, Andrei D.

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  12. A study on the magnetic resonance imaging (MRI)-based radiation treatment planning of intracranial lesions

    NASA Astrophysics Data System (ADS)

    Stanescu, T.; Jans, H.-S.; Pervez, N.; Stavrev, P.; Fallone, B. G.

    2008-07-01

    The aim of this study is to develop a magnetic resonance imaging (MRI)-based treatment planning procedure for intracranial lesions. The method relies on (a) distortion correction of raw magnetic resonance (MR) images by using an adaptive thresholding and iterative technique, (b) autosegmentation of head structures relevant to dosimetric calculations (scalp, bone and brain) using an atlas-based software and (c) conversion of MR images into computed tomography (CT)-like images by assigning bulk CT values to organ contours and dose calculations performed in Eclipse (Philips Medical Systems). Standard CT + MRI-based and MRI-only plans were compared by means of isodose distributions, dose volume histograms and several dosimetric parameters. The plans were also ranked by using a tumor control probability (TCP)-based technique for heterogeneous irradiation, which is independent of radiobiological parameters. For our 3 T Intera MRI scanner (Philips Medical Systems), we determined that the total maximum image distortion corresponding to a typical brain study was about 4 mm. The CT + MRI and MRI-only plans were found to be in good agreement for all patients investigated. Following our clinical criteria, the TCP-based ranking tool shows no significant difference between the two types of plans. This indicates that the proposed MRI-based treatment planning procedure is suitable for the radiotherapy of intracranial lesions.

  13. A 3T Sodium and Proton Composite Array Breast Coil

    PubMed Central

    Kaggie, Joshua D.; Hadley, J. Rock; Badal, James; Campbell, John R.; Park, Daniel J.; Parker, Dennis L.; Morrell, Glen; Newbould, Rexford D.; Wood, Ali F.; Bangerter, Neal K.

    2013-01-01

    Purpose The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3T. The secondary objective was to create acceptable proton images with the sodium phased array in place. Methods A novel composite array for combined proton/sodium 3T breast MRI is compared to a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multi-channel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. Results The composite array coil demonstrates a 2–5x improvement in SNR for sodium imaging and similar SNR for proton imaging when compared to a simple single-loop dual resonant design. Conclusion The improved SNR of the composite array gives breast sodium images of unprecedented quality in reasonable scan times. PMID:24105740

  14. MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI.

    PubMed

    Fan, Qiuyun; Witzel, Thomas; Nummenmaa, Aapo; Van Dijk, Koene R A; Van Horn, John D; Drews, Michelle K; Somerville, Leah H; Sheridan, Margaret A; Santillana, Rosario M; Snyder, Jenna; Hedden, Trey; Shaw, Emily E; Hollinshead, Marisa O; Renvall, Ville; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Buckner, Randy L; Wedeen, Van J; Wald, Lawrence L; Toga, Arthur W; Rosen, Bruce R

    2016-01-01

    The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing a magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnectomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography.

  15. 3T MR-Guided Brachytherapy for Gynecologic Malignancies

    PubMed Central

    Kapur, Tina; Egger, Jan; Damato, Antonio; Schmidt, Ehud J.; Viswanathan, Akila N.

    2012-01-01

    Gynecologic malignancies are a leading cause of death in women worldwide. Standard treatment for many primary and recurrent gynecologic cancer cases includes a combination of external beam radiation, followed by brachytherapy. Magnetic Resonance Imaging (MRI) is benefitial in diagnostic evaluation, in mapping the tumor location to tailor radiation dose, and in monitoring the tumor response to treatment. Initial studies of MR-guidance in gynecologic brachtherapy demonstrate the ability to optimize tumor coverage and reduce radiation dose to normal tissues, resulting in improved outcomes for patients. In this article we describe a methodology to aid applicator placement and treatment planning for 3 Tesla (3T) MR-guided brachytherapy that was developed specifically for gynecologic cancers. This has been used in 18 cases to date in the Advanced Multimodality Image Guided Operating suite at Brigham and Women’s Hospital. It is comprised of state of the art methods for MR imaging, image analysis, and treatment planning. An MR sequence using 3D-balanced steady state free precession in a 3T MR scan was identified as the best sequence for catheter identification with ballooning artifact at the tip. 3D treatment planning was performed using MR images. Item in development include a software module designed to support virtual needle trajectory planning that includes probabilistic bias correction, graph based segmentation, and image registration algorithms. The results demonstrate that 3T MR has a role in gynecologic brachytherapy. These novel developments improve targeted treatment to the tumor while sparing the normal tissues. PMID:22898699

  16. High Spatiotemporal Resolution Prostate MRI

    DTIC Science & Technology

    2016-09-01

    8 reconstruction of scans made of phantoms or of human subjects originating from multiple MRI scanners across Mayo. We are pleased with the...red lines are for the unenhanced test scans of the 32-Channel Prostate DCE- MRI June 1, 2016 Page 10 volunteer. The green shaded region shows...1 AD AWARD NUMBER: W81XWH-15-1-0341 TITLE: High Spatiotemporal Resolution Prostate MRI PRINCIPAL INVESTIGATOR: Stephen J. Riederer CONTRACTING

  17. Liquid-explosives scanners stand trial in airports

    SciTech Connect

    Matthews, Jermey N. A.

    2010-07-15

    Air passengers may once more be allowed to pack beverages, lotions, and hair spray in their carry-on luggage, if imaging technologies to detect liquid explosives can prove their worth. Several competing systems, including multi-energy x-ray systems and a low-field magnetic resonance imaging (MRI) scanner, are undergoing field tests at some airports worldwide.

  18. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  19. Hybrid dispersion laser scanner.

    PubMed

    Goda, K; Mahjoubfar, A; Wang, C; Fard, A; Adam, J; Gossett, D R; Ayazi, A; Sollier, E; Malik, O; Chen, E; Liu, Y; Brown, R; Sarkhosh, N; Di Carlo, D; Jalali, B

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points.

  20. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  1. Novel magnetomechanical MR compatible vibrational device for producing kinesthetic illusion during fMRI

    PubMed Central

    Carr, Sarah J.; Borreggine, Kristin; Heilman, Jeremiah; Griswold, Mark; Walter, Benjamin L.

    2013-01-01

    Purpose: Functional MRI (fMRI) can provide insights into the functioning of the sensorimotor system, which is of particular interest in studying people with movement disorders or chronic pain conditions. This creates a demand for manipulanda that can fit and operate within the environment of a MRI scanner. Here, the authors present a magnetomechanical device that delivers a vibrotactile sensation to the skin with a force of approximately 9 N. Methods: MRI compatibility of the device was tested in a 3 T scanner using a phantom to simulate the head. Preliminary investigation into the effectiveness of the device at producing cortical and subcortical activity was also conducted with a group of seven healthy subjects. The vibration was applied to the right extensor carpi ulnaris tendon to induce a kinesthetic illusion of flexion and extension of the wrist. Results: The MRI compatibility tests showed the device did not produce image artifacts and the generated electromagnetic field did not disrupt the static magnetic field of the scanner or its operation. The subject group results showed activity in the contralateral putamen, premotor cortex, and dorsal lateral prefrontal cortex. Ipsilaterally, there was increased activity in the superior and inferior parietal lobules. Areas that activated bilaterally included the thalamus, anterior cingulate, secondary somatosensory areas (S2), temporal lobes, and visual association areas. Conclusions: This device offers an effective tool with precise control over the vibratory stimulus, delivering higher forces than some other types of devices (e.g., piezoelectric actuators). It can be useful for investigating sensory systems and sensorimotor integration. PMID:24320459

  2. Scanner calibration revisited

    PubMed Central

    2010-01-01

    Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2.) reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides. PMID:20594322

  3. Scanner calibration revisited.

    PubMed

    Pozhitkov, Alexander E

    2010-07-01

    Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2.) reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  4. Initial tests of a prototype MRI-compatible PET imager

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .

  5. Investigation on Laser Scanners

    SciTech Connect

    Fuss, B.

    2004-09-30

    The study and purchase of a three-dimensional laser scanner for a number of diverse metrology tasks at SLAC will be covered. Specifications including range, accuracy, scan density, resolution, field of view and more are discussed and the results of field tests and demonstrations by four potential vendors is covered. This will include details on the scanning of accelerator components in a now defunct ring on site and how the instruments compare.

  6. High throughput optical scanner

    SciTech Connect

    Basiji, David A.; van den Engh, Gerrit J.

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  7. Bone Mineral Imaged In Vivo by 31P Solid State MRI of Human Wrists

    PubMed Central

    Wu, Yaotang; Reese, Timothy G.; Cao, Haihui; Hrovat, Mirko I.; Toddes, Steven P.; Lemdiasov, Rostislav A.; Ackerman, Jerome L.

    2011-01-01

    Purpose To implement solid state 31P MRI (31P SMRI) in a clinical scanner to visualize bone mineral. Materials and Methods Wrists of seven healthy volunteers were scanned. A quadrature wrist 31P transmit/receive coil provided strong B1 and good signal-to-noise ratio (SNR). A 1H-31P frequency converter was constructed to enable detection of the 31P signal via the 1H channel. Data points lost in the receiver dead time were recovered by a second acquisition with longer dwell time and lower gradient strength. Results Three dimensional 31P images, showing only bone mineral of the wrist, were obtained with a clinical 3T scanner. In the best overall case an image with isotropic resolution of ~5.1 mm and SNR of 30 was obtained in 37 min. 31P NMR properties (resonance line width 2 kHz and T1 17–19 s) of in vivo human bone mineral were measured. Conclusion In vivo 31P SMRI visualization of human wrist bone mineral with a clinical MR scanner is feasible with suitable modifications to circumvent the scanners’ limitations in reception of short-T2 signals. Frequency conversion methodology is useful for implementing 31P SMRI measurements on scanners which do not have multinuclear capability or for which the multinuclear receiver dead time is excessive. PMID:21761459

  8. "Eyes Open - Eyes Closed" EEG/fMRI data set including dedicated "Carbon Wire Loop" motion detection channels.

    PubMed

    van der Meer, Johan; Pampel, André; van Someren, Eus; Ramautar, Jennifer; van der Werf, Ysbrand; Gomez-Herrero, German; Lepsien, Jöran; Hellrung, Lydia; Hinrichs, Hermann; Möller, Harald; Walter, Martin

    2016-06-01

    This data set contains electroencephalography (EEG) data as well as simultaneous EEG with functional magnetic resonance imaging (EEG/fMRI) data. During EEG/fMRI, the EEG cap was outfitted with a hardware-based add-on consisting of carbon-wire loops (CWL). These yielded six extra׳CWL׳ signals related to Faraday induction of these loops in the main magnetic field "Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings" (Masterton et al., 2007) [1]. In this data set, the CWL data make it possible to do a direct regression approach to deal with the BCG and specifically He artifact. The CWL-EEG/fMRI data in this paper has been recorded on two MRI scanners with different Helium pump systems (4 subjects on a 3 T TIM Trio and 4 subjects on a 3T VERIO). Separate EEG/fMRI data sets have been recorded for the helium pump ON as well as the helium pump OFF conditions. The EEG-only data (same subjects) has been recorded for a motion artifact-free reference EEG signal outside of the scanner. This paper also links to an EEGlab "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis" (Delorme and Makeig, 2004) [2] plugin to perform a CWL regression approach to deal with the He pump artifact, as published in the main paper "Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections-A validation of a real-time simultaneous EEG/fMRI correction method" (van der Meer et al., 2016) [3].

  9. Comparison of SNR and CNR for in vivo mouse brain imaging at 3 and 7 T using well matched scanner configurations.

    PubMed

    DiFrancesco, M W; Rasmussen, J M; Yuan, W; Pratt, R; Dunn, S; Dardzinski, B J; Holland, S K

    2008-09-01

    Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for magnetic resonance microimaging were measured using two nearly identical magnetic resonance imaging (MRI) scanners operating at field strengths of 3 and 7 T. Six mice were scanned using two imaging protocols commonly applied for in vivo imaging of small animal brain: RARE and FLASH. An accounting was made of the field dependence of relaxation times as well as a small number of hardware disparities between scanner systems. Standard methods for relaxometry were utilized to measure T1 and T2 for two white matter (WM) and two gray matter (GM) regions in the mouse brain. An average increase in T1 between 3 and 7 T of 28% was observed in the brain. T2 was found to decrease by 27% at 7 T in agreement with theoretical models. The SNR was found to be uniform throughout the mouse brain, increasing at higher field by a factor statistically indistinguishable from the ratio of Larmor frequencies when imaging with either method. The CNR between GM and WM structures was found to adhere to the expe