Science.gov

Sample records for 3t3 fibroblast cells

  1. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    SciTech Connect

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  2. Trophic effect of a methanol yeast extract on 3T3 fibroblast cells.

    PubMed

    Gallo, Dominique; Dillemans, Monique; Allardin, David; Priem, Fabian; Van Nedervelde, Laurence

    2014-01-01

    With regard to the increase of human life expectancy, interest for topical treatments aimed to counteract skin aging is still growing. Hence, research for bioactive compounds able to stimulate skin fibroblast activity is an attractive topic. Having previously described the effects of a new methanol yeast extract on growth and metabolic activity of Saccharomyces cerevisiae, we studied its effects on 3T3 fibroblasts to evaluate its potential antiaging property. This investigation demonstrates that this extract increases proliferation as well as migration of 3T3 cells and decreases their entrance in senescence and apoptosis phases. Altogether, these results open new perspectives for the formulation of innovative antiaging topical treatments.

  3. Coculture with BJ fibroblast cells inhibits the adipogenesis and lipogenesis in 3T3-L1 cells

    SciTech Connect

    Jeong, Hyun Jeong; Park, Sahng Wook; Kim, Hojeong; Park, Sang-Kyu; Yoon, Dojun

    2010-02-19

    Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor {gamma}2, CCAAT/enhancer-binding protein alpha (C/EBP{alpha}), sterol regulatory element binding protein-1c, and Krueppel-like factor 15, but not those of C/EBP{beta} or C/EBP{delta}, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.

  4. A Partially Purified Acinetobacter baumannii Phage Preparation Exhibits no Cytotoxicity in 3T3 Mouse Fibroblast Cells.

    PubMed

    Henein, Alexandra E; Hanlon, Geoffrey W; Cooper, Callum J; Denyer, Stephen P; Maillard, Jean-Yves

    2016-01-01

    A surge in the level and scale of antibiotic resistance has prompted renewed interest in the application of bacteriophages to treat bacterial infections. However, concerns still exist over their efficacy and safety. Acinetobacter baumannii phage BS46, a member of the family Myoviridae, has previously been shown to be effective in murine models. The cytotoxic effect of this phage was evaluated in mouse fibroblast 3T3 cells using four different assays: trypan blue; staining with Hoechst and propidium iodide; lactate dehydrogenase release; and the MTS assay. The addition of phage concentrations up to 2 × 10(9) pfu/mL showed little to no impact on the viability of 3T3 cells after 24 h exposure using the different assays. This study demonstrates that phage BS46 is non-cytotoxic to 3T3 cells using four different assays and that appropriate quality assurance protocols for phage therapeutics are required. PMID:27536286

  5. A Partially Purified Acinetobacter baumannii Phage Preparation Exhibits no Cytotoxicity in 3T3 Mouse Fibroblast Cells

    PubMed Central

    Henein, Alexandra E.; Hanlon, Geoffrey W.; Cooper, Callum J.; Denyer, Stephen P.; Maillard, Jean-Yves

    2016-01-01

    A surge in the level and scale of antibiotic resistance has prompted renewed interest in the application of bacteriophages to treat bacterial infections. However, concerns still exist over their efficacy and safety. Acinetobacter baumannii phage BS46, a member of the family Myoviridae, has previously been shown to be effective in murine models. The cytotoxic effect of this phage was evaluated in mouse fibroblast 3T3 cells using four different assays: trypan blue; staining with Hoechst and propidium iodide; lactate dehydrogenase release; and the MTS assay. The addition of phage concentrations up to 2 × 109 pfu/mL showed little to no impact on the viability of 3T3 cells after 24 h exposure using the different assays. This study demonstrates that phage BS46 is non-cytotoxic to 3T3 cells using four different assays and that appropriate quality assurance protocols for phage therapeutics are required. PMID:27536286

  6. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6).

    PubMed

    Dormady, S P; Zhang, X M; Basch, R S

    2000-10-24

    Pluripotential hematopoietic stem cells grow in close association with bone marrow stromal cells, which play a critical role in sustaining hematopoiesis in long-term bone marrow cultures. The mechanisms through which stromal cells act to support pluripotential hematopoietic stem cells are largely unknown. This study demonstrates that growth arrest-specific gene-6 (GAS6) plays an important role in this process. GAS6 is a ligand for the Axl (Ufo/Ark), Sky (Dtk/Tyro3/Rse/Brt/Tif), and Mer (Eyk) family of tyrosine kinase receptors and binds to these receptors via tandem G domains at its C terminus. After translation, GAS6 moves to the lumen of the endoplasmic reticulum, where it is extensively gamma-carboxylated. The carboxylation process is vitamin K dependent, and current evidence suggests that GAS6 must be gamma-carboxylated to bind and activate any of the cognate tyrosine kinase receptors. Here, we show that expression of GAS6 is highly correlated with the capacity of bone marrow stromal cells to support hematopoiesis in culture. Nonsupportive stromal cell lines express little to no GAS6, whereas supportive cell lines express high levels of GAS6. Transfection of the cDNA encoding GAS6 into 3T3 fibroblasts is sufficient to render this previously nonsupportive cell line capable of supporting long-term hematopoietic cultures. 3T3 cells, genetically engineered to stably express GAS6 (GAS6-3T3), produce a stromal layer that supports the generation of colony-forming units in culture (CFU-c) for up to 6 wk. Hematopoietic support by genetically engineered 3T3 is not vitamin K dependent, and soluble recombinant GAS6 does not substitute for coculturing the hematopoietic progenitors with genetically modified 3T3 cells. PMID:11050245

  7. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    SciTech Connect

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y. )

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.

  8. Inhibitory effects of LPA1 on cell motile activities stimulated by hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone in fibroblast 3T3 cells.

    PubMed

    Hirane, Miku; Araki, Mutsumi; Dong, Yan; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-11-01

    Reactive oxygen species (ROS) are known to mediate a variety of biological responses, including cell motility. Recently, we indicated that lysophosphatidic acid (LPA) receptor-3 (LPA3) increased cell motile activity stimulated by hydrogen peroxide. In the present study, we assessed the role of LPA1 in the cell motile activity mediated by ROS in mouse fibroblast 3T3 cells. 3T3 cells were treated with hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) at concentrations of 0.1 and 1 μM for 48 h. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3 cells treated with hydrogen peroxide and DMNQ were significantly higher than those of untreated cells. 3T3 cells treated with hydrogen peroxide and DMNQ showed elevated expression levels of the Lpar3 gene, but not the Lpar1 and Lpar2 genes. To investigate the effects of LPA1 on the cell motile activity induced by hydrogen peroxide and DMNQ, Lpar1-overexpressing (3T3-a1) cells were generated from 3T3 cells and treated with hydrogen peroxide and DMNQ. The cell motile activities stimulated by hydrogen peroxide and DMNQ were markedly suppressed in 3T3-a1 cells. These results suggest that LPA signaling via LPA1 inhibits the cell motile activities stimulated by hydrogen peroxide and DMNQ in 3T3 cells.

  9. Increased NIH 3T3 fibroblast functions on cell culture dishes which mimic the nanometer fibers of natural tissues

    PubMed Central

    Bhardwaj, Garima; Webster, Thomas J

    2015-01-01

    Traditional flat tissue cell culture dishes have consisted of polystyrene treated with plasma gases for growing, subculturing, and studying cell behavior in vitro. However, increasingly it has been observed that mimicking natural tissue properties (such as chemistry, three-dimensional structure, mechanical properties, etc) in vitro can lead to a better correlation of in vitro to in vivo cellular functions. The following studies compared traditional NIH 3T3 fibroblasts’ functions on XanoMatrix scaffolds to standard tissue culture polystyrene. Results found significantly greater fibroblast adhesion and proliferation on XanoMatrix cell culture dishes which mimic the nanoscale geometry of natural tissue fibers with true, tortuous fiber beds creating a robust, consistent, and versatile growth platform. In this manner, this study supports that cell culture dishes which mimic features of natural tissues should be continually studied for a wide range of applications in which mimicking natural cellular functions are important. PMID:26345155

  10. Cytotoxic effect against 3T3 fibroblasts cells of saffron floral bio-residues extracts.

    PubMed

    Serrano-Díaz, Jéssica; Estevan, Carmen; Sogorb, M Ángel; Carmona, Manuel; Alonso, Gonzalo L; Vilanova, Eugenio

    2014-03-15

    For every kilogram of saffron spice produced, about 63 kg of floral bio-residues (FB) (tepals, stamens and styles) are thrown away. Extracts of these bio-residues in water (W1), water:HCl (100:1, v/v) (W2), ethanol (E3), ethanol:HCl (100:1, v/v) (E4), dichloromethane (D5) and hexane (H6) were prepared. Their composition in flavonols and anthocyanins, and their effect on cell viability were determined. W1 was the richest in kaempferol 3-sophoroside (30.34 mg/g dry FB) and delphinidin 3,5-diglucoside (15.98 mg/g dry FB). The highest tested concentration (900 μg/ml) of W1, W2, E4, D5 and H6 did not significantly decrease the cell viability. Only E3 at that concentration caused a significant decrease of 38% in the cell viability. Therefore, all extracts studied are not cytotoxic at concentrations lower than 900 μg/ml, and W1 is proposed as the optimal for food applications due to its greater contribution of phenolic compounds. PMID:24206685

  11. Inhibition of cell growth in NIH/3T3 fibroblasts by overexpression of manganese superoxide dismutase: mechanistic studies.

    PubMed

    Li, N; Oberley, T D; Oberley, L W; Zhong, W

    1998-06-01

    NIH/3T3 mouse fibroblasts were transfected with the cDNA for manganese superoxide dismutase (MnSOD), and two clones overexpressing MnSOD activity were subsequently characterized by comparison with parental and control plasmid-transfected cells. One clone with a 1.8-fold increase in MnSOD activity had a 1.5-fold increase in glutathione peroxidase (GPX) activity (increased GPX-adapted clone), while a second clone with a 3-fold increase in MnSOD activity had a 2-fold decrease in copper, zinc superoxide dismutase (CuZnSOD) activity (decreased CuZnSOD-adapted clone). Increased reactive oxygen species (ROS) levels compared with parental or control plasmid-transfected cells were observed in nonsynchronous cells in the increased GPX-adapted clone, but not in the decreased CuZnSOD-adapted clone. The two MnSOD-overexpressing clones showed different sensitivities to agents that generate oxidative stress. Flow cytometry analysis of the cell cycle showed altered cell cycle progression in both MnSOD-overexpressing clones. During logarithmic growth, both MnSOD-overexpressing clones showed increased mitochondrial membrane potential compared with parental and control plasmid-transfected cells. Both MnSOD-overexpressing clones showed a decrease in mitochondrial mass at the postconfluent phase of growth, suggesting that mitochondrial mass may be regulated by MnSOD and/or ROS levels. Our results indicate that adaptation of fibroblasts to overexpression of MnSOD can involve more than one mechanism, with the resultant cell phenotype dependent on the adaptation mechanism utilized by the cell.

  12. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  13. Growth stimulation of 3T3 fibroblasts by Cystatin

    SciTech Connect

    Quan Sun Beijing Medical Univ. )

    1989-01-01

    Treatment of cultures of mouse 3T3 fibroblasts with Cystatin C, a thiol-proteinase inhibitor isolated from chicken egg white, resulted in an enhanced rate of cell proliferation. This stimulation was demonstrated using two independent assay systems: (a) assessment of total cell number and (b) measurement of ({sup 3}H)thymidine incorporated into acid-precipitable DNA. In both assays, the dose-response curves of Cystatin stimulation showed a rising function that plateaued at a concentration of {approximately}120 {mu}g/ml. The addition of Cystatin to cultures of Kirsten murine sarcoma virus-transformed 3T3 cells also enhanced DNA synthesis in these target cells. Control experiments showed that the presence of Cystatin did not alter the level of binding of radioactively labeled epidermal growth factor and platelet derived growth factor to 3T3 cells. These results argue against the possibility that the observed growth stimulation by Cystatin was due to growth factor contamination of the Cystatin preparation.

  14. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line.

    PubMed

    Śmieszek, Agnieszka; Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marędziak, Monika; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  15. Cell competition in mouse NIH3T3 embryonic fibroblasts is controlled by the activity of Tead family proteins and Myc.

    PubMed

    Mamada, Hiroshi; Sato, Takashi; Ota, Mitsunori; Sasaki, Hiroshi

    2015-02-15

    Cell competition is a short-range communication originally observed in Drosophila. Relatively little is known about cell competition in mammals or in non-epithelial cells. Hippo signaling and its downstream transcription factors of the Tead family, control cell proliferation and apoptosis. Here, we established an in vitro model system that shows cell competition in mouse NIH3T3 embryo fibroblast cells. Co-culture of Tead-activity-manipulated cells with normal (wild-type) cells caused cell competition. Cells with reduced Tead activity became losers, whereas cells with increased Tead activity became super-competitors. Tead directly regulated Myc RNA expression, and cells with increased Myc expression also became super-competitors. At low cell density, cell proliferation required both Tead activity and Myc. At high cell density, however, reduction of either Tead activity or Myc was compensated for by an increase in the other, and this increase was sufficient to confer 'winner' activity. Collectively, NIH3T3 cells have cell competition mechanisms similar to those regulated by Yki and Myc in Drosophila. Establishment of this in vitro model system should be useful for analyses of the mechanisms of cell competition in mammals and in fibroblasts.

  16. Gadolinium promoted proliferation in mouse embryo fibroblast NIH3T3 cells through Rac and PI3K/Akt signaling pathways.

    PubMed

    Shen, Liming; Yang, Aochu; Yao, Pengwei; Sun, Xiaohong; Chen, Cheng; Mo, Cuiping; Shi, Lei; Chen, Youjiao; Liu, Qiong

    2014-08-01

    Nephrogenic systemic fibrosis (NSF) is a fibrosing disorder disease developed in patients with underlying renal insufficiency following exposure to gadolinium-based contrast agents (GBCAs). Previous studies have demonstrated that GdCl3 can promote NIH3T3 fibroblast cell proliferation, which provide a new clue to the role of GBCAs in the development of NSF. In the present study, we further clarify the molecular mechanism of Gd-promoted proliferation. The results showed that intervention with the Rac inhibitor NSC23766 abrogated Gd-promoted proliferation. The levels of active Rac1 significantly increased in Gd-treated cells detected by pull-down assays. In addition, the phosphorylation of Akt was significantly elevated in the treatment group, which was blocked by NSC23766. NSC23766 also reduced the migration of NIH3T3 cells enhanced by Gd. Moreover, the F-actin cytoskeleton was strengthened and the mitotic cell numbers was significantly increased after exposure to Gd. These results suggest that Rac and PI3K/Akt signaling pathways, as well as integrin-mediated signal pathway may play important roles in Gd-induced cell proliferation. In addition, under serum-free condition, Gd could decrease ROS accumulation and increase NIH3T3 cell survival.

  17. 3T3 fibroblasts induce cloned interleukin 3-dependent mouse mast cells to resemble connective tissue mast cells in granular constituency

    SciTech Connect

    Dayton, E.T.; Pharr, P.; Ogawa, M.; Serafin, W.E.; Austen, K.F.; Levi-Schaffer, F.; Stevens, R.L.

    1988-01-01

    As assessed by ultrastructure, histochemical staining, and T-cell dependency, in vitro-differentiated interleukin 3-dependent mouse mast cells are comparable to the mast cells that reside in the gastrointestinal mucosa but not in the skin or the serosal cavity of the mouse. The authors now demonstrate that when cloned interleukin 3-dependent mast cells are cocultured with mouse skin-derived 3T3 fibroblasts in the presence of WEHI-3 conditioned medium for 28 days, the mast cells acquire the ability to stain with safranin, increase their histamine content approx. 50-fold and their carboxypeptidase. A content approx. 100-fold, and augment approx. their biosynthesis of proteoglycans bearing /sup 35/S-labeled haparin relative to /sup 35/S-labeled chondroitin sulfate glycosaminoglycans. Thus, fibroblasts induce interleukin 3-dependent mouse mast cells to change phenotype from mucosal-like to connective tissue-like, indicating that the biochemical and functional characteristics of this mast cell type are strongly influenced by the connective tissue microenvironment.

  18. Interactions between Spider Silk and Cells – NIH/3T3 Fibroblasts Seeded on Miniature Weaving Frames

    PubMed Central

    Kuhbier, Joern W.; Allmeling, Christina; Reimers, Kerstin; Hillmer, Anja; Kasper, Cornelia; Menger, Bjoern; Brandes, Gudrun; Guggenheim, Merlin; Vogt, Peter M.

    2010-01-01

    Background Several materials have been used for tissue engineering purposes, since the ideal matrix depends on the desired tissue. Silk biomaterials have come to focus due to their great mechanical properties. As untreated silkworm silk has been found to be quite immunogenic, an alternative could be spider silk. Not only does it own unique mechanical properties, its biocompatibility has been shown already in vivo. In our study, we used native spider dragline silk which is known as the strongest fibre in nature. Methodology/Principal Findings Steel frames were originally designed and manufactured and woven with spider silk, harvesting dragline silk directly out of the animal. After sterilization, scaffolds were seeded with fibroblasts to analyse cell proliferation and adhesion. Analysis of cell morphology and actin filament alignment clearly revealed adherence. Proliferation was measured by cell count as well as determination of relative fluorescence each after 1, 2, 3, and 5 days. Cell counts for native spider silk were also compared with those for trypsin-digested spider silk. Spider silk specimens displayed less proliferation than collagen- and fibronectin-coated cover slips, enzymatic treatment reduced adhesion and proliferation rates tendentially though not significantly. Nevertheless, proliferation could be proven with high significance (p<0.01). Conclusion/Significance Native spider silk does not require any modification to its application as a biomaterial that can rival any artificial material in terms of cell growth promoting properties. We could show adhesion mechanics on intracellular level. Additionally, proliferation kinetics were higher than in enzymatically digested controls, indicating that spider silk does not require modification. Recent findings concerning reduction of cell proliferation after exposure could not be met. As biotechnological production of the hierarchical composition of native spider silk fibres is still a challenge, our study has a

  19. Correlations between radiation-induced double strand breaks, cell division delay, and cyclin-dependent signaling in x-irradiated NIH3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Cariveau, Mickael J.

    2005-07-01

    Molecular responses to radiation-induced DNA double strand breaks (DSB) are mediated by the phosphorylation of the histone variant H2AX which forms identifiable gamma-H2AX foci at the site of the DSB. This event is thought to be linked with the down-regulation of signaling proteins contributing to the checkpoints regulating cell cycle progression and, vis-a-vis , the induction of cell division delay. However, it is unclear whether this division delay is directly related to the number of DSB (gamma-H2AX foci) sustained by an irradiated cell and, if so, whether this number drives cells into cell cycle delay or apoptosis. For this reason, studies were conducted in the immortalized NIH/3T3 fibroblast cell in order to establish correlations between the temporal appearance of the gamma-H2AX foci (a DSB) and the expression of the cell cycle regulatory proteins, cyclin E, A, B1, and their cyclin kinase inhibitor, p21. Cell cycle kinetics and flow cytometry were used to establish radiation-induced division delay over a dose range of 1--6 Gy where a mitotic delay of 2.65 min/cGy was established. Correlations between the expression of cyclin E, A, B1, p21, and the generation of DSB were established in NIH/3T3 cells exposed to 2 or 4 Gy x-irradiation. The data suggest that the G1/S and S phase delay (cyclin E and cyclin A protein levels) are dependent on the dose of radiation while the G2/M (cyclin B1 protein levels) delay is dependent on the quantity of DSB sustained by the irradiated cell.

  20. ToF-SIMS depth profiling of cells: z-correction, 3D imaging, and sputter rate of individual NIH/3T3 fibroblasts.

    PubMed

    Robinson, Michael A; Graham, Daniel J; Castner, David G

    2012-06-01

    Proper display of three-dimensional time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging data of complex, nonflat samples requires a correction of the data in the z-direction. Inaccuracies in displaying three-dimensional ToF-SIMS data arise from projecting data from a nonflat surface onto a 2D image plane, as well as possible variations in the sputter rate of the sample being probed. The current study builds on previous studies by creating software written in Matlab, the ZCorrectorGUI (available at http://mvsa.nb.uw.edu/), to apply the z-correction to entire 3D data sets. Three-dimensional image data sets were acquired from NIH/3T3 fibroblasts by collecting ToF-SIMS images, using a dual beam approach (25 keV Bi(3)(+) for analysis cycles and 20 keV C(60)(2+) for sputter cycles). The entire data cube was then corrected by using the new ZCorrectorGUI software, producing accurate chemical information from single cells in 3D. For the first time, a three-dimensional corrected view of a lipid-rich subcellular region, possibly the nuclear membrane, is presented. Additionally, the key assumption of a constant sputter rate throughout the data acquisition was tested by using ToF-SIMS and atomic force microscopy (AFM) analysis of the same cells. For the dried NIH/3T3 fibroblasts examined in this study, the sputter rate was found to not change appreciably in x, y, or z, and the cellular material was sputtered at a rate of approximately 10 nm per 1.25 × 10(13) ions C(60)(2+)/cm(2). PMID:22530745

  1. Dehydrodiconiferyl Alcohol Isolated from Cucurbita moschata Shows Anti-adipogenic and Anti-lipogenic Effects in 3T3-L1 Cells and Primary Mouse Embryonic Fibroblasts*

    PubMed Central

    Lee, Junghun; Kim, Donghyun; Choi, Jonghyun; Choi, Hyounjeong; Ryu, Jae-Ha; Jeong, Jinhyun; Park, Eun-Jin; Kim, Seon-Hee; Kim, Sunyoung

    2012-01-01

    A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis. PMID:22262865

  2. Dehydrodiconiferyl alcohol isolated from Cucurbita moschata shows anti-adipogenic and anti-lipogenic effects in 3T3-L1 cells and primary mouse embryonic fibroblasts.

    PubMed

    Lee, Junghun; Kim, Donghyun; Choi, Jonghyun; Choi, Hyounjeong; Ryu, Jae-Ha; Jeong, Jinhyun; Park, Eun-Jin; Kim, Seon-Hee; Kim, Sunyoung

    2012-03-16

    A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis.

  3. The protective effects of guaraná extract (Paullinia cupana) on fibroblast NIH-3T3 cells exposed to sodium nitroprusside.

    PubMed

    Bittencourt, L S; Machado, D C; Machado, M M; Dos Santos, G F F; Algarve, T D; Marinowic, D R; Ribeiro, E E; Soares, F A A; Barbisan, F; Athayde, M L; Cruz, I B M

    2013-03-01

    The antioxidant effects of the hydro-alcoholic guaraná extract (Paullinia cupana var. sorbilis Mart.) on nitric oxide (NO) and other compounds generated from the degradation of sodium nitroprusside (SNP) in an embryonic fibroblast culture (NIH-3T3 cells) were evaluated. The guaraná bioactive compounds were initially determined by high-performance liquid chromatography: caffeine=12.240 mg/g, theobromine=6.733 mg/g and total catechins=4.336 mg/g. Cells were exposed to 10 μM SNP during a 6 h period because the cells exhibited >90% mortality at this concentration. Guaraná was added to the cultures in five concentrations (0.5, 1, 5, 10 and 20 mg/mL). The guaraná antioxidant effect was evaluated by viability assays, biochemical oxidation [lipid peroxidation, catalase and superoxide dismutase (SOD) activity] and genotoxicity (DNA Comet assay) analysis. Additionally, oxidative stress was evaluated by a 2,7-dihydrodichlorofluorescein diacetate fluorescence assay. Guaraná reverted the SNP toxicity mainly at lower concentrations (<5 mg), which decreased cell mortality, lipid peroxidation, DNA damage and cell oxidative stress as well as increased the SOD levels. These results demonstrate that guaraná has an antioxidant effect on NO metabolism in situations with higher cellular NO levels. PMID:23220610

  4. The protective effects of guaraná extract (Paullinia cupana) on fibroblast NIH-3T3 cells exposed to sodium nitroprusside.

    PubMed

    Bittencourt, L S; Machado, D C; Machado, M M; Dos Santos, G F F; Algarve, T D; Marinowic, D R; Ribeiro, E E; Soares, F A A; Barbisan, F; Athayde, M L; Cruz, I B M

    2013-03-01

    The antioxidant effects of the hydro-alcoholic guaraná extract (Paullinia cupana var. sorbilis Mart.) on nitric oxide (NO) and other compounds generated from the degradation of sodium nitroprusside (SNP) in an embryonic fibroblast culture (NIH-3T3 cells) were evaluated. The guaraná bioactive compounds were initially determined by high-performance liquid chromatography: caffeine=12.240 mg/g, theobromine=6.733 mg/g and total catechins=4.336 mg/g. Cells were exposed to 10 μM SNP during a 6 h period because the cells exhibited >90% mortality at this concentration. Guaraná was added to the cultures in five concentrations (0.5, 1, 5, 10 and 20 mg/mL). The guaraná antioxidant effect was evaluated by viability assays, biochemical oxidation [lipid peroxidation, catalase and superoxide dismutase (SOD) activity] and genotoxicity (DNA Comet assay) analysis. Additionally, oxidative stress was evaluated by a 2,7-dihydrodichlorofluorescein diacetate fluorescence assay. Guaraná reverted the SNP toxicity mainly at lower concentrations (<5 mg), which decreased cell mortality, lipid peroxidation, DNA damage and cell oxidative stress as well as increased the SOD levels. These results demonstrate that guaraná has an antioxidant effect on NO metabolism in situations with higher cellular NO levels.

  5. Transformation of human cells by DNAs ineffective in transformation of NIH 3T3 cells

    SciTech Connect

    Sutherland, B.M.; Bennett, P.B.; Freeman, A.G.; Moore, S.P.; Strickland, P.T.

    1985-04-01

    Neonatal human foreskin fibroblasts can be transformed to anchorage-independent growth by transfection with DNAs inefficient in transforming NIH 3T3 cells. Human cells transfected with DNA from GM 1312, a multiple myeloma cell line, or MOLT-4, a permanent lymphoblast line, grow without anchorage at a much higher frequency than do the parental cells and their DNAs can transform human cell recipients to anchorage-independent growth; they have extended but not indefinite life spans and are nontumorigenic. Human fibroblasts are also transformed by DNAs from two multiple myeloma lines that also transform 3T3 cells; however, restriction analysis suggests that different transforming genes in this DNA are acting in the human and murine systems. These results indicate that the human cell transfection system allows detection of transforming genes not effective in the 3T3 system and points out the possibility of detection of additional transforming sequences even in DNAs that do transform murine cells.

  6. Transforming growth factor beta 1 augments mitogen-induced prostaglandin synthesis and expression of the TIS10/prostaglandin synthase 2 gene both in Swiss 3T3 cells and in murine embryo fibroblasts.

    PubMed

    Gilbert, R S; Reddy, S T; Kujubu, D A; Xie, W; Luner, S; Herschman, H R

    1994-04-01

    Transforming growth factor-beta (TGF-beta), a potent cytokine, modulates a wide variety of biological responses. Among its actions, TGF-beta can augment prostaglandin synthesis in several cell types. Although TGF-beta alone has no effect on prostaglandin production in Swiss 3T3 cells, we find that TGF-beta augments the ability of tetradecanoyl phorbol acetate (TPA) or serum to stimulate PGE2 production. The TIS10 gene is a primary response gene encoding a second form of prostaglandin synthase (PGS), the rate-limiting enzyme in the biosynthesis of prostaglandins, thromboxanes, and prostacyclins from arachidonic acid. TIS10/PGS-2 expression is induced by mitogens in Swiss 3T3 cells. TGF-beta also augments mitogen-induced synthesis and accumulation of TIS10/PGS-2 protein and induction of TIS10/PGS-2 message in Swiss 3T3 cells. In contrast, TGF-beta has little or no effect on the level of PGS-1 (EC1.14.99.1) message, either alone or in concert with TPA or serum. TGF-beta concentrations in the range of 0.01-0.10 ng/ml (0.4-4.0 pM) maximally enhance mitogen induction of TIS10/PGS-2 message. TPA-induced accumulation of unspliced TIS10/PGS-2 transcript is augmented by TGF-beta, suggesting that this cytokine exerts its effect on expression of the TIS10/PGS-2 gene by transcriptional regulation. TGF-beta also augments TPA-induced prostaglandin production, TIS10/PGS-2 antigen accumulation, and TIS10/PGS-2 message induction in primary cultures of mouse embryo fibroblasts. Dexamethasone attenuates TGF-beta enhancement of all these mitogen-induced responses: PGE2 accumulation, appearance of TIS10/PGS-2 protein and message, and accumulation of TIS10/PGS-2 unprocessed transcript.

  7. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Kathirvel, Poonkodi; Ravi, Subban

    2012-01-01

    This study examines the chemical composition and in vitro anticancer activity of the essential oil from Ocimum basilicum Linn. (Lamiaceae), cultivated in the Western Ghats of South India. The chemical compositions of basil fresh leaves were identified by GC-MS: 11 components were identified. The major constituents were found to be methyl cinnamate (70.1%), linalool (17.5%), β-elemene (2.6%) and camphor (1.52%). The results revealed that this plant may belong to the methyl cinnamate and linalool chemotype. A methyl thiazol tetrazolium assay was used for in vitro cytotoxicity screening against the human cervical cancer cell line (HeLa), human laryngeal epithelial carcinoma cell line (HEp-2) and NIH 3T3 mouse embryonic fibroblasts. The IC(50) values obtained were 90.5 and 96.3 µg mL(-1), respectively, and the results revealed that basil oil has potent cytotoxicity.

  8. Regulation of p53 in NIH3T3 mouse fibroblasts following hyperosmotic stress

    PubMed Central

    Lambert, Ian Henry; Enghoff, Maria Stine; Brandi, Marie-Luise; Hoffmann, Else Kay

    2015-01-01

    The aim of this project was to analyze the regulation of p53 expression in NIH3T3 fibroblasts under the influence of increasing hyperosmotic stress. Expression of p53 showed a biphasic response pattern in NIH3T3 cells under increasing osmotic stress (337 mOsm to 737 mOsm) with a maximum at 587 mOsm. Under isotonic conditions p53 expression increased after addition of the proteasome inhibitor MG132 indicating that cellular p53 levels in unperturbed cells is kept low by proteasomal degradation. However, under hypertonic conditions p53 synthesis as well as p53 degradation were significantly reduced and it is demonstrated that the increase in p53 expression observed when tonicity is increased from 337 to 587 mOsm reflects that degradation is more inhibited than synthesis, whereas the decrease in p53 expression at higher tonicities reflects that synthesis is more inhibited than degradation. The activity of the p53 regulating proteins p38 MAP kinase and the ubiquitin ligase MDM2 were studied as a function of increasing osmolarity. MDM2 protein expression was unchanged at all osmolarities, whereas MDM2 phosphorylation (Ser166) increased at osmolarities up to 537 mOsm and remained constant at higher osmolarities. Phosphorylation of p38 increased at osmolarities up to 687 mOsm which correlated with an increased phosphorylation of p53 (Ser15) and the decreased p53 degradation. Caspase-3 activity increased gradually with hypertonicity and at 737 mOsm both Caspase-3 activity and annexin V binding are high even though p53 expression and activity are low, indicating that initiation of apoptosis under severe hypertonic conditions is not strictly controlled by p53. PMID:26056062

  9. Regulation of p53 in NIH3T3 mouse fibroblasts following hyperosmotic stress.

    PubMed

    Lambert, Ian Henry; Enghoff, Maria Stine; Brandi, Marie-Luise; Hoffmann, Else Kay

    2015-06-01

    The aim of this project was to analyze the regulation of p53 expression in NIH3T3 fibroblasts under the influence of increasing hyperosmotic stress. Expression of p53 showed a biphasic response pattern in NIH3T3 cells under increasing osmotic stress (337 mOsm to 737 mOsm) with a maximum at 587 mOsm. Under isotonic conditions p53 expression increased after addition of the proteasome inhibitor MG132 indicating that cellular p53 levels in unperturbed cells is kept low by proteasomal degradation. However, under hypertonic conditions p53 synthesis as well as p53 degradation were significantly reduced and it is demonstrated that the increase in p53 expression observed when tonicity is increased from 337 to 587 mOsm reflects that degradation is more inhibited than synthesis, whereas the decrease in p53 expression at higher tonicities reflects that synthesis is more inhibited than degradation. The activity of the p53 regulating proteins p38 MAP kinase and the ubiquitin ligase MDM2 were studied as a function of increasing osmolarity. MDM2 protein expression was unchanged at all osmolarities, whereas MDM2 phosphorylation (Ser(166)) increased at osmolarities up to 537 mOsm and remained constant at higher osmolarities. Phosphorylation of p38 increased at osmolarities up to 687 mOsm which correlated with an increased phosphorylation of p53 (Ser(15)) and the decreased p53 degradation. Caspase-3 activity increased gradually with hypertonicity and at 737 mOsm both Caspase-3 activity and annexin V binding are high even though p53 expression and activity are low, indicating that initiation of apoptosis under severe hypertonic conditions is not strictly controlled by p53. PMID:26056062

  10. Effect of botulinum neurotoxin type A (BoNTA) on the morphology and viability of 3T3 murine fibroblasts

    PubMed Central

    Bandala, Cindy; Terán-Melo, Juan Luis; Anaya-Ruiz, Maricruz; Mejía-Barradas, Cesar Miguel; Domínguez-Rubio, Rene; la Garza-Montano, Paloma De; Alfaro-Rodríguez, Alfonso; Lara-Padilla, Eleazar

    2015-01-01

    Aim: BoNTA is used in the treatment of ophthalmological disorders, muscular hyperactivity and pain. In recent years it has been described that BoNTA reduces cellular viability and induces apoptosis in prostate cells lines. Studies about the effect of BoNTA are no well known. There have been studies about the effect of BoNTA on the expression levels of collagenase in fibroblasts, but not on its morphological impact on these cells. The aim of this study was to determine the effect of BoNTA on the morphology and viability of the 3T3 fibroblast cell line. Material and methods: The 3T3 fibroblast cell line was cultured and the experimental group received 10 U BoNTA added to a 0.9% sterile saline solution in a reconstituted vial. The control group received saline solution only. Cultured cells were observed and photographed at 5, 10, 15 and 20 h. Cell viability was evaluated by means of the trypan blue test, and cell proliferation with the Proliferation Assay kit (PROMEGA). Results: The application of BoNTA to 3T3 fibroblast cells induced morphological changes, such as a loss of normal fibroblast morphology. Additionally, we observed the cytoplasmic retraction and spread phenomena. The nuclei showed other important changes with Giemsa staining. Conclusion: The results indicate that BoNTA induced a loss of spindle form, increase in cytoplasmic vesicles, and the presence of nuclear vesicles (compacted chromatin surrounded by a nuclear envelope). This suggests an apoptotic process and decreased cell viability. Further studies are needed to explore the mechanisms of these alterations. PMID:26464704

  11. Regulation of the Na,K-pump by leptin in 3T3-L1 fibroblasts.

    PubMed

    Sweeney, G; Niu, W; Kanani, R; Klip, A

    2000-03-01

    Leptin, the product of the obesity (ob) gene, controls energy intake and expenditure primarily by actions on the central nervous system. However, recently it has become apparent that leptin also elicits a growing and diverse array of effects on peripheral tissues. The Na,K-pump is an electrogenic plasma membrane protein which actively extrudes 3Na+ ions and imports 2K+ ions per molecule of ATP hydrolysed. The pump is responsible for the maintenance of the electrochemical potential of all cells, which in turn drives all ion-coupled transport mechanisms. In this study we use 3T3-L1 fibroblasts to show that leptin inhibits Na,K-pump activity, as assessed by ouabain-sensitive 86Rb+ uptake. Inhibition of the Na,K-pump correlated with increased serine phosphorylation of the catalytic Na,K-pump alpha1 subunit. Upon investigation of leptin-stimulated signalling pathways using specific pharmacological inhibitors, only wortmannin prevented inhibition of the Na,K-pump by leptin. Moreover, leptin stimulated phosphotyrosine-associated PI 3-kinase activity in these cells. In summary, leptin was found to inhibit Na,K-pump activity, likely via PI 3-kinase. We propose that this effect may have wide ranging cardiovascular and metabolic implications and perhaps explain physiological effects of the hormone such as natriuresis.

  12. Mitogenic stimuli and phosphatidylinositol (PI) turnover in cultured 3T3 fibroblasts

    SciTech Connect

    Kohler, C.; Petersen, R.

    1986-03-01

    The hydrolysis of PI and polyphosphoinositides by phopholipase C is an early and rapid response to cell activation by a variety of neurotransmitters, hormones, growth factors and pharmacological agonists. The authors have examined the role of PI turnover and the generation of second messengers (diacylglycerol and inositol trisphosphate) in the mitogenic response of cultured Balb/c and Swiss 3T3 cells to polypeptide growth factors. Cells were prelabelled with /sup 3/H inositol for 18-20 hours, washed and suspended in Herpes + Li/sup +/ buffer, and stimulated with platelet-derived growth factor (PDGF), vasopressin, insulin, and other growth factors. PI turnover was measured as the increase in total inositol phosphate (IP) production. IP1, IP2, and IP3 were characterized by sequential elution from a Dowex column. Partially purified PDGF produced a 2-4 fold stimulation of total IP production. This was seen as early as 30 seconds after stimulation and increased for up to 1-2 hours. Balb/c cells were more sensitive than Swiss cells to the mitogenic and PI effects of PDGF. Other mitogenic stimuli had differential effects on PI turnover. Vasopressin (4-400 ng/ml) markedly stimulated PI turnover (3-6 fold) in Swiss, but not Balb/c cells. Insulin (100 ng/ml - 10 ..mu..g/ml) increased total IP to a greater degree in Balb/c cells. Epidermal growth factor (10 ng/ml - 10 ..mu..g/ml) had no effect on PI turnover and fibroblast growth factor (10 ng/ml - 10 ..mu..g/ml) only stimulated at the higher concentrations in Swiss cells. Thrombin (1U/ml - 10 U/ml) produced a 1.5 - 2 fold stimulation in Balb/c cells. Thus, various polypeptide growth factors have differential effects on PI turnover depending on their mitogenic potential and the effector cell type.

  13. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity.

    PubMed

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography-Mass Spectrometry (GC-MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  14. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity.

    PubMed

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography-Mass Spectrometry (GC-MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer.

  15. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity

    PubMed Central

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography–Mass Spectrometry (GC–MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC–MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  16. RA induces the neural-like cells generated from epigenetic modified NIH/3T3 cells.

    PubMed

    Zhang, Xi-Mei; Li, Qiu-Ming; Su, Dong-Ju; Wang, Ning; Shan, Zhi-Yan; Jin, Lian-Hong; Lei, Lei

    2010-03-01

    Recently, differentiated somatic cells had been reprogrammed to pluripotential state in vitro, and various tissue cells had been elicited from those cells. Epigenetic modifications allow differentiated cells to perpetuate the molecular memory needed for the cells to retain their identity. DNA methylation and histone deacetylation are important patterns involved in epigenetic modification, which take critical roles in regulating DNA expression. In this study, we dedifferentiated NIH/3T3 fibroblasts by 5-aza-2-deoxycytidine (5-aza-dC) and Trichstatin A (TSA) combination, and detected gene expression pattern, DNA methylation level, and differentiation potential of reprogrammed cells. As the results, embryonic marker Sox2, klf4, c-Myc and Oct4 were expressed in reprogrammed NIH/3T3 fibroblasts. Total DNA methylation level was significant decreased after the treatment. Moreover, exposure of the reprogrammed cells to all trans-retinoic acid (RA) medium elicited the generation of neuronal class IIIbeta-tubulin-positive, neuron-specific enolase (NSE)-positive, nestin-positive, and neurofilament light chain (NF-L)-positive neural-like cells. PMID:19263240

  17. Characterization of hyaluronate binding proteins isolated from 3T3 and murine sarcoma virus transformed 3T3 cells

    SciTech Connect

    Turley, E.A.; Moore, D.; Hayden, L.J.

    1987-06-02

    A hyaluronic acid binding fraction was purified from the supernatant media of both 3T3 and murine sarcoma virus (MSV) transformed 3T3 cultures by hyaluronate and immunoaffinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved the hyaluronate affinity-purified fraction into three major protein bands of estimated molecular weight (M/sub r,e/) 70K, 66K, and 56K which contained hyaluronate binding activity and which were termed hyaluronate binding proteins (HABP). Hyaluronate affinity chromatography combined with immunoaffinity chromatography, using antibody directed against the larger HABP, allowed a 20-fold purification of HABP. Fractions isolated from 3T3 supernatant medium also contained additional binding molecules in the molecular weight range of 20K. This material was present in vanishingly small amounts and was not detected with a silver stain or with (/sup 35/S)methionine label. The three protein species isolated by hyaluronate affinity chromatography (M/sub r,e/ 70K, 66K, and 56K) were related to one another since they shared antigenic determinants and exhibited similar pI values. In isocratic conditions, HABP occurred as aggregates of up to 580 kilodaltons. Their glycoprotein nature was indicated by their incorporation of /sup 3/H-sugars. Enzyme-linked immunoadsorbent assay showed they were antigenically distinct from other hyaluronate binding proteins such as fibronectin, cartilage link protein, and the hyaluronate binding region of chondroitin sulfate proteoglycan. The results are discussed with regard both to the functional significance of hyaluronate-cell surface interactions in transformed as well as normal cells and to the relationship of HABP to other reported hyaluronate binding proteins.

  18. Changes in laser-induced fluorescence responses of 3T3 fibroblasts to repetitive thermal stress

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Dressler, C.; Zabarylo, U.; Minet, O.

    2009-04-01

    The combined experimental use of laser-induced autofluorescence of cellular metabolites and methodological fundamentals of systems biology will provide access to biological thermal stress analysis on a sub cellular level. A test setup incorporating a pulsed nitrogen laser was realized with which autofluorescence of the coenzyme NADH could be measured in living 3T3 cells. The cells were subjected to different temperature stress at repetitive time intervals. When subjected to a simple mathematical analysis, the NADH concentration change measured through autofluorescence in biological cells exhibited approximate concentration-equivalent balance curves. These results add up to the fundamental know-how about the dosimetry of thermally therapeutic methods.

  19. "Macrophage" nitric oxide synthase is a glucocorticoid-inhibitable primary response gene in 3T3 cells.

    PubMed

    Gilbert, R S; Herschman, H R

    1993-10-01

    Both nitric oxide and prostaglandins are potent paracrine mediators of intercellular communication. An endotoxin-lipopolysaccharide (LPS) inducible form of nitric oxide synthase (mac-NOS) has recently been cloned from murine macrophages. An inducible prostaglandin synthase (TIS10/PGS-2), cloned from 3T3 cells, is also induced in LPS-activated macrophage. Because of the wide range of ligands that induce primary response genes in 3T3 cells, the ease of studying chimeric promoter constructs in 3T3 cells, and the importance of both nitric oxide and prostaglandins as paracrine mediators, we examined expression of mac-NOS in 3T3 cells. Tetradecanoyl phorbol-13-acetate (TPA), forskolin, platelet-derived growth factor, fibroblast growth factor, and serum all induce mac-NOS expression in Swiss 3T3 cells. Thus the mac-NOS gene can respond to a far wider range of inducers than previously suspected. mac-NOS is a primary response gene; cycloheximide does not block induction. TPA-induced mac-NOS and TIS10/PGS-2 mRNA accumulation patterns are similar. LPS is a potent inducer of mac-NOS in Swiss 3T3 cells but cannot induce TIS10/PGS-2. In contrast, v-src expression induces TIS10/PGS-2 message, but not iNOS message in a BALB/c 3T3 cell line containing a temperature-sensitive v-src gene. Dexamethasone (DEX) prevents induction of TIS10/PGS-2, but not most other primary response genes. DEX also blocks mac-NOS induction in Swiss 3T3 cells. The inducible TIS10/PGS-2 and mac-NOS genes, responsible for the production of two distinct paracrine agents, appear to share many regulatory features in 3T3 cells.

  20. Effects of Lipophilic Extract of Viscum album L. and Oleanolic Acid on Migratory Activity of NIH/3T3 Fibroblasts and on HaCat Keratinocytes

    PubMed Central

    Kuonen, R.; Weissenstein, U.; Urech, K.; Kunz, M.; Hostanska, K.; Estko, M.; Heusser, P.; Baumgartner, S.

    2013-01-01

    Viscum album L. lipophilic extract (VALE) contains pharmacologically active pentacyclic triterpenes that are known to exhibit immunomodulatory, antitumor, and wound healing activity. Preliminary clinical observations indicate that VALE was able to influence cutaneous wound healing in vivo. The objective of this study was to investigate wound closure related properties of VALE in vitro. As measured in a wound healing assay, VALE and its predominant triterpene oleanolic acid (OA) significantly and dose dependently promoted the migration of NIH/3T3 fibroblasts in vitro, thereby leading to an enhanced wound closure. Compared to the negative control, maximal stimulation by 26.1% and 26.2%, respectively, was attained with 10 μg/mL VALE and 1 μg/mL OA. Stimulation of proliferation in NIH/3T3 fibroblasts by VALE and OA could be excluded. At higher concentrations both substances affected proliferation and viability of NIH/3T3 fibroblasts and HaCat keratinocytes. In the toxic range of concentrations of VALE and OA, migration of NIH/3T3 fibroblasts was suppressed. The extent of the stimulatory effect on cell migration of VALE quite closely corresponded to the effect expected by the concentrations of OA contained in the crude extract VALE. These data support the casual observation that Viscum album L. lipophilic extract might modulate wound healing related processes in vivo. PMID:24379890

  1. Induction of MAP kinase phosphatase 3 through Erk/MAP kinase activation in three oncogenic Ras (H-, K- and N-Ras)-expressing NIH/3T3 mouse embryonic fibroblast cell lines

    PubMed Central

    Koo, JaeHyung; Wang, Sen; Kang, NaNa; Hur, Sun Jin; Bahk, Young Yil

    2016-01-01

    Ras oncoproteins are small molecular weight GTPases known for their involvement in oncogenesis, which operate in a complex signaling network with multiple effectors. Approximately 25% of human tumors possess mutations in a member of this family. The Raf1/MEK/Erk1/2 pathway is one of the most intensively studied signaling mechanisms. Different levels of regulation account for the inactivation of MAP kinases by MAPK phosphatases in a cell type- and stimuli-dependent manner. In the present study, using three inducible Ras-expressing NIH/3T3 cell lines, we demonstrated that MKP3 upregulation requires the activation of the Erk1/2 pathway, which correlates with the shutdown of this pathway. We also demonstrated, by applying pharmacological inhibitors and effector mutants of Ras, that induction of MKP3 at the protein level is positively regulated by the oncogenic Ras/Raf/MEK/Erk1/2 signaling pathway. [BMB Reports 2016; 49(7): 370-375] PMID:26818088

  2. Cytotoxic and adhesion-associated response of NIH-3T3 fibroblasts to COOH-functionalized multi-walled carbon nanotubes.

    PubMed

    Zhao, Peipei; Chen, Lusi; Shao, Han; Zhang, Yongnu; Sun, Yuqiao; Ke, Yu; Ramakrishna, Seeram; He, Liumin; Xue, Wei

    2016-02-29

    As novel, promising, man-made nanomaterials with extraordinary properties, carbon nanotubes have been attracting massive attention in regenerative medicine. However, published reports on their potential cytotoxic effects are not concordant and are even conflicting. In the current study, the cytotoxic effects of carboxyl-modified multi-walled carbon nanotubes (COOH-MWCNTs), as well as their influences on the cell adhesion of NIH-3T3 fibroblasts, were thoroughly investigated. Live/dead cell viability assay and cell counting kit-8 assay both indicated that the viability of the NIH-3T3 cells exposed to COOH-MWCNTs in the culture medium was dependent on the latter's concentration. Cell viability increased at COOH-MWCNT concentrations below 50 μg ml(-1) and then decreased with increasing concentration. Scanning electron microscopy and immunofluorescent staining of the NIH-3T3 cells revealed that the cells were well adherent to the substrate after exposure to the COOH-MWCNTs for 48 h. Western blot demonstrated that COOH-MWCNT exposure enhanced the expression of adhesion-associated proteins compared with normal cells, peaking at an intermediate concentration. Our study showed that the cytotoxicity of COOH-MWCNTs, as well as their effects on NIH-3T3 fibroblast adhesion, was dose dependent. Therefore, COOH-MWCNT concentrations in the cell culture medium should be considered in the biomedical application of COOH-MWCNTs.

  3. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells

    SciTech Connect

    Zachary, I.; Gil, J.; Lehmann, W.; Sinnett-Smith, J.; Rozengurt, E. )

    1991-06-01

    The mitogenic neuropeptides bombesin and vasopressin markedly increased tyrosine and serine phosphorylation of multiple substrates in quiescent Swiss 3T3 fibroblasts, including two major bands of M{sub r} 90,000 and 115,000. Tyrosine phosphorylation of these proteins was increased as judged by immunoprecipitation of {sup 32}P{sub i}-labeled cells and immunoblotting of unlabeled cells with monoclonal antiphosphotyrosine antibodies, elution with phenyl phosphate, and phospho amino acid analysis. Phosphotyrosyl proteins generated by bombesin and vasopressin did not correspond either by apparent molecular weight or by immunological and biochemical criteria to several known tyrosine kinase substrates, including phospholipase C{sub {gamma}}, the microtubule-associated protein 2 kinase, GTPase-activating protein, or phosphatidylinositol kinase. The effect was rapid (within seconds), concentration dependent, and inhibited by specific receptor antagonists for both bombesin and vasopressin. The endothelin-related peptide, vasoactive intestinal contractor, also elicited a rapid and concentration-dependent tyrosine/serine phosphorylation of a similar set of substrates. These results demonstrate that neuropeptides, acting through receptors linked to GTP-binding proteins, stimulate tyrosine phosphorylation of a common set of substrates in quiescent Swiss 3T3 cells and suggest the existence of an additional signal transduction pathway in neuropeptide-induced mitogenesis.

  4. Regulation of Na+-H+ exchange in normal NIH-3T3 cells and in NIH-3T3 cells expressing the ras oncogene

    SciTech Connect

    Owen, N.E.; Knapik, J.; Strebel, F.; Tarpley, W.G.; Gorman, R.R.

    1989-04-01

    Our laboratory and others have demonstrated that Na+-H+ exchange can be regulated by two different pathways; one that is mediated by an inositol trisphosphate-stimulated increase in intracellular calcium activity, and one that is mediated by an increase in protein kinase C activity. To determine whether one of these pathways is more important than the other, or whether one pathway is physiologically relevant, we employed normal NIH-3T3 cells (3T3 cells) and NIH-3T3 cells expressing the EJ human bladder ras oncogene (EJ cells). The EJ cells were chosen because they provide a genetic model that does not exhibit serum- or platelet-derived growth factor (PDGF)-stimulated inositol trisphosphate release or Ca2+ mobilization. It was found that serum- or PDGF-stimulated Na+-H+ exchange was more pronounced in EJ cells than in control 3T3 cells. As expected, serum- or PDGF-stimulated Na+-H+ exchange in 3T3 cells was inhibited by chelating intracellular Ca2+ with the intracellular Ca2+ chelator quin2, by the intracellular Ca2+ antagonist 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), and by the calmodulin antagonist trifluoperazine. In contrast, these agents did not inhibit serum- or PDGF-stimulated Na+-H+ exchange in EJ cells. Activators of protein kinase C (e.g., 1-oleoyl-2-acetylglycerol or biologically active phorbol esters) were found to stimulate Na+-H+ exchange in EJ cells to the same extent as serum. However, these agents were considerably less effective than serum in control 3T3 cells. Despite these findings, PDGF did not stimulate diacylglycerol levels in EJ cells.

  5. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells.

    PubMed Central

    Wu, J; Issa, J P; Herman, J; Bassett, D E; Nelkin, B D; Baylin, S B

    1993-01-01

    Abnormal regional increases in DNA methylation, which have potential for causing gene inactivation and chromosomal instability, are consistently found in immortalized and tumorigenic cells. Increased DNA methyltransferase activity, which is also a characteristic of such cells, is a candidate to mediate these abnormal DNA methylation patterns. We now show that, in NIH 3T3 mouse fibroblasts, constitutive overexpression of an exogenous mouse DNA methyltransferase gene results in a marked increase in overall DNA methylation which is accompanied by tumorigenic transformation. These transformation changes can also be elicited by dexamethasone-inducible expression of an exogenous DNA methyltransferase gene. Our findings provide strong evidence that the increase in DNA methyltransferase activity associated with tumor progression could be a key step in carcinogenesis and provide a model system that can be used to further study this possibility. Images Fig. 1 Fig. 2 PMID:8415627

  6. Comparison of oxygen consumption rates in minimally transformed BALB/3T3 and virus-transformed 3T3B-SV40 cells.

    PubMed

    Leznev, E I; Popova, I I; Lavrovskaja, V P; Evtodienko, Y V

    2013-08-01

    In the recent years, bioenergetics of tumor cells and particularly cell respiration have been attracting great attention because of the involvement of mitochondria in apoptosis and growing evidence of the possibility to diagnose and treat cancer by affecting the system of oxidative phosphorylation in mitochondria. In the present work, a comparative study of oxygen consumption in 3T3B-SV40 cells transformed with oncovirus SV40 and parental BALB/3T3 cells was conducted. Such fractions of oxygen consumption as "phosphorylating" respiration coupled to ATP synthesis, "free" respiration not coupled to ATP synthesis, and "reserve" or hidden respiration observed in the presence of protonophore were determined. Maximal respiration was shown to be only slightly decreased in 3T3B-SV40 cells as compared to BALB/3T3. However, in the case of certain fractions of cellular respiration, the changes were significant. "Phosphorylating" respiration was found to be reduced to 54% and "reserve" respiration, on the contrary, increased up to 160% in virus-transformed 3T3B-SV40 cells. The low rate of "phosphorylating" respiration and high "reserve" respiration indicate that under normal incubation conditions the larger part of mitochondrial respiratory chains of the virus-transformed cells is in the resting state (i.e. there is no electron transfer to oxygen). The high "reserve" respiration is suggested to play an important role in preventing apoptosis of 3T3B-SV40 cells.

  7. Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells.

    PubMed

    Hou, Qingxia; Wang, Minglian; Wu, Shuicai; Ma, Xuemei; An, Guangzhou; Liu, Huan; Xie, Fei

    2015-03-01

    To investigate the potential adverse effects of mobile phone radiation, we studied reactive oxygen species (ROS), DNA damage and apoptosis in mouse embryonic fibroblasts (NIH/3T3) after intermittent exposure (5 min on/10 min off, for various durations from 0.5 to 8 h) to an 1800-MHz GSM-talk mode electromagnetic radiation (EMR) at an average specific absorption rate of 2 W/kg. A 2',7'-dichlorofluorescin diacetate fluorescence probe was used to detect intracellular ROS levels, immunofluorescence was used to detect γH2AX foci as a marker for DNA damage, and flow cytometry was used to measure apoptosis. Our results showed a significant increase in intracellular ROS levels after EMR exposure and it reached the highest level at an exposure time of 1 h (p < 0.05) followed by a slight decrease when the exposure continued for as long as 8 h. No significant effect on the number of γH2AX was detected after EMR exposure. The percentage of late-apoptotic cells in the EMR-exposed group was significantly higher than that in the sham-exposed groups (p < 0.05). These results indicate that an 1800-MHz EMR enhances ROS formation and promotes apoptosis in NIH/3T3 cells.

  8. Locomotory behavior, contact inhibition, and pattern formation of 3T3 and polyoma virus-transformed 3T3 cells in culture

    PubMed Central

    Bell, PB

    1977-01-01

    The social behavior of 3T3 cells and their polynoma virus-transformed derivative (Py3T3 cells) was examined by time-lapse cinemicrography in order to determine what factors are responsible for the marked differences in the patterns formed by the two cell lines in culture. Contrary to expectations, both cell types have been found to exhibit contact inhibition of cell locomotion. Therefore, the tendency of 3T3 cells to form monolayers and of Py3T3 cells to form crisscrossed multilayers cannot be explained on the basis of the presence versus the absence of contact inhibition. Morevover, with the exception of cell division control, the social behavior of the two cell types is qualitively similar. Both exhibit cell underlapping and, after contact between lamelliopodia, both show inhibition of locomotory activity and adhesion formation. Neither cell type was observed to migrate over the surface of another cell. The two cell types do show quantitative differences in the frequency of underlapping, the frequency with which contact results in inhibition of locomotion, and the proportion of the cell margin that adheres to the substratum. The increased frequency pf Py3T3 underlapping is correlated with the reduced frequency of substratum adhesions, which in turn favors underlapping. On the basis of these observations, it is concluded that the differences in culture patterns are the result of differences in the shapes of the individual cells, such that underlapping, and hence crisscrossing, is favored in Py3T3 cell interactions and discouraged in 3T3 cells. PMID:198414

  9. [Envelope protein of Jaagsiekte sheep retrovious expressed in NIH3T3 cells promotes cell proliferation].

    PubMed

    DU, Fangyuan; Chen, Dayong; Zhang, Yufei; Sun, Xiaolin; Guo, Wenqing; Liu, Shuying

    2016-09-01

    Objective To explore the influence of the exogenous Jaagsiekte sheep retrovious (exJSRV) envelope protein (Env) on NIH3T3 cell proliferation. Methods A recombinant plasmid pcDNA4/myc-His/exJSRV- env carrying exJSRV- env gene was constructed, and then the correctness of the recombinant plasmid was identified by PCR, restriction enzyme digestion and sequencing. The recombinant plasmid pcDNA4/myc-His/exJSRV- env was transiently transfected into NIH3T3 cells by Lipofectamine(TM) LTX. After the transfection of the recombinant plasmid, the expression of exJSRV- env was detected by reverse transcription PCR and Western blotting. The effect of Env on cell proliferation was investigated by CCK-8 assay and plate colony formation assay. Results The recombinant eukaryotic expression plasmid containing exJSRV- env was successfully constructed as identified by PCR, restriction enzyme identification and sequencing. After the recombinant plasmid was transiently transfected into NIH3T3 cells, reverse transcription PCR and Western blotting showed the expression of exJSRV- env , and Env promoted NIH3T3 cell proliferation significantly. Conclusion JSRV Env was expressed successfully in the NIH3T3 cells and promoted the proliferation of NIH3T3 cells. PMID:27609573

  10. The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts.

    PubMed

    Alam, Samer G; Lovett, David; Kim, Dae In; Roux, Kyle J; Dickinson, Richard B; Lele, Tanmay P

    2015-05-15

    Nuclear positioning is a crucial cell function, but how a migrating cell positions its nucleus is not understood. Using traction-force microscopy, we found that the position of the nucleus in migrating fibroblasts closely coincided with the center point of the traction-force balance, called the point of maximum tension (PMT). Positioning of the nucleus close to the PMT required nucleus-cytoskeleton connections through linker of nucleoskeleton-to-cytoskeleton (LINC) complexes. Although the nucleus briefly lagged behind the PMT following spontaneous detachment of the uropod during migration, the nucleus quickly repositioned to the PMT within a few minutes. Moreover, traction-generating spontaneous protrusions deformed the nearby nucleus surface to pull the nuclear centroid toward the new PMT, and subsequent retraction of these protrusions relaxed the nuclear deformation and restored the nucleus to its original position. We propose that the protruding or retracting cell boundary transmits a force to the surface of the nucleus through the intervening cytoskeletal network connected by the LINC complexes, and that these forces help to position the nucleus centrally and allow the nucleus to efficiently propagate traction forces across the length of the cell during migration.

  11. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts.

    PubMed

    Uboldi, Chiara; Urbán, Patricia; Gilliland, Douglas; Bajak, Edyta; Valsami-Jones, Eugenia; Ponti, Jessica; Rossi, François

    2016-03-01

    The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size.

  12. Transformation and apoptosis of NIH/3T3 cells treated with nickel-smelting fumes.

    PubMed

    Jin, Yan-Tao; Wu, Yong-Hui; Hu, Fu-Lan; Hu, Xue-Ying

    2009-01-01

    The purpose of this study was to investigate the transformation and apoptosis of NIH/3T3 cells treated with nickel (Ni) smelting fumes. Cytotoxicity of NIH/3T3 cells was detected with a methyl thiazolyl tetrazolium (MTT) colorimetric assay. The cell translation model was established by cell focus translation using two types of Ni-smelting fumes from a Ni smelting plant in China. The transformed focus was determined by soft agar culture assay. The apoptotic characteristics of NIH/3T3 cells treated with Ni-smelting fumes were detected by flow cytometry using Annexin V-FITC and PI as markers. The DNA fragment of apoptosis in NIH/3T3 cells treated with nickel smelting fumes was detected by observing agarose electrophoresis and morphological characteristics of cells under electron microscopy. With increase in exposure time, growth of NIH/3T3 cells was inhibited. The NIH/3T3 cell transformation model was established successfully using two Ni-smelting fumes, and the transformed cells grow in soft agar. No apoptosis peak was detected by flow cytometry. Apoptotic cells characterized by necrosis were observed using electron microscopy. There was no apparent "ladder" observed by DNA fragment analysis. Data indicated that Ni-smelting fumes produced cytotoxicity by mechanisms associated with necrosis but not apoptosis. PMID:19492236

  13. Transformation and apoptosis of NIH/3T3 cells treated with nickel-smelting fumes.

    PubMed

    Jin, Yan-Tao; Wu, Yong-Hui; Hu, Fu-Lan; Hu, Xue-Ying

    2009-01-01

    The purpose of this study was to investigate the transformation and apoptosis of NIH/3T3 cells treated with nickel (Ni) smelting fumes. Cytotoxicity of NIH/3T3 cells was detected with a methyl thiazolyl tetrazolium (MTT) colorimetric assay. The cell translation model was established by cell focus translation using two types of Ni-smelting fumes from a Ni smelting plant in China. The transformed focus was determined by soft agar culture assay. The apoptotic characteristics of NIH/3T3 cells treated with Ni-smelting fumes were detected by flow cytometry using Annexin V-FITC and PI as markers. The DNA fragment of apoptosis in NIH/3T3 cells treated with nickel smelting fumes was detected by observing agarose electrophoresis and morphological characteristics of cells under electron microscopy. With increase in exposure time, growth of NIH/3T3 cells was inhibited. The NIH/3T3 cell transformation model was established successfully using two Ni-smelting fumes, and the transformed cells grow in soft agar. No apoptosis peak was detected by flow cytometry. Apoptotic cells characterized by necrosis were observed using electron microscopy. There was no apparent "ladder" observed by DNA fragment analysis. Data indicated that Ni-smelting fumes produced cytotoxicity by mechanisms associated with necrosis but not apoptosis.

  14. Mitigative Effect of Erythromycin on PMMA Challenged Preosteoblastic MC3T3-E1 Cells

    PubMed Central

    Shen, Yi; Wang, Weili; Li, Xiaomiao; Markel, David C.; Ren, Weiping

    2014-01-01

    Background. Aseptic loosening (AL) is a major complication of total joint replacement. Recent approaches to limiting AL have focused on inhibiting periprosthetic inflammation and osteoclastogenesis. Questions/Purposes. The purpose of this study was to determine the effects of erythromycin (EM) on polymethylmethacrylate (PMMA) particle-challenged MC3T3 osteoblast precursor cells. Methods. MC3T3 cells were pretreated with EM (0–10 μg/mL) and then stimulated with PMMA (1 mg/mL). Cell viability was evaluated by both a lactate dehydrogenase (LDH) release assay and cell counts. Cell differentiation was determined by activity of alkaline phosphatase (ALP). Gene expression was measured via real-time quantitative RT-PCR. Results. We found that exposure to PMMA particles reduced cellular viability and osteogenetic potential in MC3T3 cell line. EM treatment mitigated the effects of PMMA particles on the proliferation, viability and differentiation of MC3T3 cells. PMMA decreased the gene expression of Runx2, osterix and osteocalcin, which can be partially restored by EM treatment. Furthermore, EM suppressed PMMA- induced increase of NF-κB gene expression. Conclusions. These data demonstrate that EM mitigates the effects of PMMA on MC3T3 cell viability and differentiation, in part through downregulation of NF-κB pathway. EM appeared to represent an anabolic agent on MC3T3 cells challenged with PMMA particles. PMID:25110723

  15. Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces

    PubMed Central

    Rejmontová, Petra; Capáková, Zdenka; Mikušová, Nikola; Maráková, Nela; Kašpárková, Věra; Lehocký, Marián; Humpolíček, Petr

    2016-01-01

    Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is. PMID:27649159

  16. Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces.

    PubMed

    Rejmontová, Petra; Capáková, Zdenka; Mikušová, Nikola; Maráková, Nela; Kašpárková, Věra; Lehocký, Marián; Humpolíček, Petr

    2016-01-01

    Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is. PMID:27649159

  17. Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces.

    PubMed

    Rejmontová, Petra; Capáková, Zdenka; Mikušová, Nikola; Maráková, Nela; Kašpárková, Věra; Lehocký, Marián; Humpolíček, Petr

    2016-09-15

    Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is.

  18. Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Maeda, Hayato; Hosokawa, Masashi; Sashima, Tokutake; Takahashi, Nobuyuki; Kawada, Teruo; Miyashita, Kazuo

    2006-07-01

    Fucoxanthin is a major carotenoid found in edible seaweed such as Undaria pinnatifida and Hijikia fusiformis. We investigated the suppressive effects of fucoxanthin and its metabolite, fucoxanthinol, on the differentiation of 3T3-L1 preadipocytes to adipocytes. Fucoxanthin inhibited intercellular lipid accumulation during adipocyte differentiation of 3T3-L1 cells. Furthermore, fucoxanthin was converted to fucoxanthinol in 3T3-L1 cells. Fucoxanthinol also exhibited suppressive effects on lipid accumulation and decreased glycerol-3-phosphate dehydrogenase activity, an indicator of adipocyte differentiation. The suppressive effect of fucoxanthinol was stronger than that of fucoxanthin. In addition, in 3T3-L1 cells treated with fucoxanthin and fucoxanthinol, peroxisome proliferator-activated receptor gamma (PPARgamma), which regulates adipogenic gene expression, was down-regulated in a dose-dependent manner. These results suggest that fucoxanthin and fucoxanthinol inhibit the adipocyte differentiation of 3T3-L1 cells through down-regulation of PPARgamma. Fucoxanthinol had stronger suppressive effects than fucoxanthin on adipocyte differentiation in 3T3-L1 cells. PMID:16786166

  19. Cloning and Expression of CD19, a Human B-Cell Marker in NIH-3T3 Cell Line

    PubMed Central

    Abbasi-Kenarsari, Hajar; Shafaghat, Farzaneh; Baradaran, Behzad; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Background CD19 is a pan B cell marker that is recognized as an attractive target for antibody-based therapy of B-cell disorders including autoimmune disease and hematological malignancies. The object of this study was to stably express the human CD19 antigen in the murine NIH-3T3 cell line aimed to be used as an immunogen in our future study. Methods Total RNA was extracted from Raji cells in which high expression of CD19 was confirmed by flow cytometry. Synthesized cDNA was used for CD19 gene amplification by conventional PCR method using Pfu DNA polymerase. PCR product was ligated to pGEM-T Easy vector and ligation mixture was transformed to DH5α competent bacteria. After blue/white selection, one positive white colony was subjected to plasmid extraction and direct sequencing. Then, CD19 cDNA was sub-cloned into pCMV6-Neo expression vector by double digestion using KpnI and HindIII enzymes. NIH-3T3 mouse fibroblast cell line was subsequently transfected by the construct using Jet-PEI transfection reagent. After 48 hours, surface expression of CD19 was confirmed by flow cytometry and stably transfected cells were selected by G418 antibiotic. Results Amplification of CD19 cDNA gave rise to 1701 bp amplicon confirmed by alignment to reference sequence in NCBI database. Flow cytometric analysis showed successful transient and stable expression of CD19 on NIH-3T3 cells (29 and 93%, respectively). Conclusion Stable cell surface expression of human CD19 antigen in a murine NIH-3T3 cell line may develop a proper immunogene which raises specific anti-CD19 antibody production in the mice immunized sera. PMID:25926951

  20. Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts.

    PubMed

    Hansen, Daniel Bloch; Friis, Martin Barfred; Hoffmann, Else Kay; Lambert, Ian Henry

    2012-02-01

    The present work was initiated to investigate regulation of the taurine transporter TauT by reactive oxygen species (ROS) and the tonicity-responsive enhancer binding protein (TonEBP) in NIH3T3 mouse fibroblasts during acute and long-term (4 h) exposure to low-sodium/hypo-osmotic stress. Taurine influx is reduced following reduction in osmolarity, keeping the extracellular Na(+) concentration constant. TonEBP activity is unaltered, whereas TauT transcription as well as TauT activity are significantly reduced under hypo-osmotic conditions. In contrast, TonEBP activity and TauT transcription are significantly increased following hyperosmotic exposure. Swelling-induced ROS production in NIH3T3 fibroblasts is generated by NOX4 and by increasing total ROS, by either exogenous application of H(2)O(2) or overexpressing NOX4, we demonstrate that TonEBP activity and taurine influx are regulated negatively by ROS under hypo-osmotic, low-sodium conditions, whereas the TauT mRNA level is unaffected. Acute exposure to ROS reduces taurine uptake as a result of modulated TauT transport kinetics. Thus, swelling-induced ROS production could account for the reduced taurine uptake under low-sodium/hypo-osmotic conditions by direct modulation of TauT. PMID:22383044

  1. Activated mutant of Galpha(12) enhances the hyperosmotic stress response of NIH3T3 cells.

    PubMed

    Dermott, J M; Wadsworth, S J; van Rossum, G D; Dhanasekaran, N

    2001-01-01

    Heterotrimeric G protein G12 stimulates diverse physiological responses including the activities of Na+/H+ exchangers and Jun kinases. We have observed that the expression of the constitutively activated, GTPase-deficient mutant of Galpha(12) (Galpha(12)QL) accelerates the hyperosmotic response of NIH3T3 cells as monitored by the hyperosmotic stress-stimulated activity of JNK1. The accelerated response appears to be partly due to the increased basal activity of JNK since cell lines-such as NIH3T3 cells expressing JNK1-in which JNK activity is elevated, show a similar response. NIH3T3 cells expressing Galpha(12)QL also display heightened sensitivity to hyperosmotic stress. This is in contrast to JNK1-NIH3T3 cells that failed to enhance sensitivity although they do exhibit an accelerated hyperosmotic response. Reasoning that the increased sensitivity seen in Galpha(12)QL cells is due to a signaling component other than JNK, the effect of dimethyamiloride, an inhibitor of Na+/H+ exchanger in this response, was assessed. Treatment of vector control NIH3T3 cells with 50 microM dimethylamiloride potently inhibited their hyperosmotic response whereas the response was only partially inhibited in Galpha(12)QL-NIH3T3 cells. These results, for the first time, identify that NHEs are upstream of the JNK module in the hyperosmotic stress-signaling pathway and that Galpha(12) can enhance this response by modulating either or both of these components namely, JNKs and NHEs in NIH3T3 cells. PMID:11180393

  2. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    SciTech Connect

    Papadopoulos, T.; Pfeifer, U. )

    1987-07-01

    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  3. Microinjected pBR322 stimulates cellular DNA synthesis in Swiss 3T3 cells.

    PubMed Central

    Hyland, J K; Hirschhorn, R R; Avignolo, C; Mercer, W E; Ohta, M; Galanti, N; Jonak, G J; Baserga, R

    1984-01-01

    When pBR322 is manually microinjected into the nuclei of quiescent Swiss 3T3 cells it stimulates the incorporation of [3H]thymidine into DNA. The evidence clearly shows that this increased incorporation that is detected by in situ autoradiography in microinjected cells represents cellular DNA synthesis and not DNA repair or plasmid replication. The effect is due to pBR322 and not due to impurities, mechanical perturbances due to the microinjection technique, or aspecific effects. This stimulation is striking in Swiss 3T3 cells. Some NIH 3T3 cells show a slight stimulation, but hamster cells, derived from baby hamster kidney (BHK) cells, are not stimulated when microinjected with pBR322. The preliminary evidence seems to indicate that the integrity of the pBR322 genome is important for the stimulation of cellular DNA synthesis in quiescent Swiss 3T3 cells. These results, although of a preliminary nature, are of interest because they indicate that a prokaryotic genome may alter the cell cycle of mammalian cells. From a practical point of view the stimulatory effect of microinjected pBR322 on cellular DNA synthesis has a more immediate interest, because pBR322 is the vector most commonly used for molecular cloning and 3T3 cells are very frequently used for gene transfer experiments. Images PMID:6582497

  4. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    SciTech Connect

    Lai, Jing; Liu, Gexiu; Yan, Guoyao; He, Dongmei; Zhou, Ying; Chen, Shengting

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  5. Effect of Biodegradable Shape-Memory Polymers on Proliferation of 3T3 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Shuo-Gui; Zhang, Peng; Zhu, Guang-Ming; Jiang, Ying-Ming

    2011-07-01

    This article evaluates the in vitro biocompatibility for biodegradable shape-memory polymers (BSMP) invented by the authors. 3T3 cells (3T3-Swiss albino GNM 9) of primary and passaged cultures were inoculated into two kinds of carriers: the BSMP carrier and the control group carrier. Viability, proliferation, and DNA synthesis (the major biocompatibility parameters), were measured and evaluated for both the BSMP and naked carrier via cell growth curve analysis, MTT colorimetry and addition of 3H-TdR to culture media. The results showed that there was no difference between the BSMP carrier and the control dish in terms of viability, proliferation, and metabolism of the 3T3 cells. Overall, the BSMP carrier provides good biocompatibility and low toxicity to cells in vitro, and could indicate future potential for this medium as a biological material for implants in vivo.

  6. Expression of Nanog gene promotes NIH3T3 cell proliferation

    SciTech Connect

    Zhang Jingyu; Wang Xia; Chen Bing; Suo Guangli; Zhao Yanhong; Duan Ziyuan; Dai Jianwu . E-mail: jwdai@genetics.ac.cn

    2005-12-16

    Cells are the functional elements in tissue engineering and regenerative medicine. A large number of cells are usually needed for these purposes. However, there are numbers of limitations for in vitro cell proliferation. Nanog is an important self-renewal determinant in embryonic stem cells. However, it remains unknown whether Nanog will influence the cell cycle and cell proliferation of mature cells. In this study, we expressed Nanog in NIH3T3 cells and showed that expression of Nanog in NIH3T3 promoted cells to enter into S phase and enhanced cell proliferation. This suggests that Nanog gene might function in a similar fashion in mature cells as in ES cells. In addition, it may provide an approach for in vitro cell expansion.

  7. Antiadopogenic effects of rice hull smoke extract in 3T3-L1 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigates the inhibitory effects of a rice hull smoke extract (RHSE) against adipogenesis in 3T3-L1 pre-adipocyte cells. At concentrations of 0.1% and 0.5% RHSE, MDI-induced cells were shown to reduce their cellular lipid content by about 72% and 88%, respectively, compared to ...

  8. Phorbol esters enhance attachment of NIH/3T3 cells to laminin and type IV collagen substrates

    SciTech Connect

    Kato, Shigemi; Ben, T.L.; De Luca, L.M. )

    1988-11-01

    The effect of phorbol esters on the adhesive properties of NIH/3T3 mouse fibroblasts was investigated using plastic substrates precoated with the extracellular matrix proteins fibronectin, collagen, and laminin. Treatment with phorbol 12-myristate 13-acetate (PMA) enhanced NIH/3T3 cell attachment to laminin and type IV collagen substrates but had little or no effect on attachment to fibronectin and type I collagen substrates. The effect of PMA in enhancing cell attachment to laminin and type IV collagen substrates was dose dependent between 10{sup {minus}9} and 10{sup {minus}7} M. PMA was effective as early as 30 min; the effect reached a maximum at 2 h and decreased gradually. Phorbol 12, 13-dibenzoate and phorbol 12, 13-diacetate were effective but to a lesser extent and phorbol 12-myristate and phorbol 13-acetate showed little or no effect. These results suggest that PMA may enhance NIH/3T3 cell adhesion through effects on laminin and type IV collagen receptors. Retinoic acid, which itself requires at least 6 h to show an effect on attachment, did not have any effect on cell attachment in 2 h and, if anything, slightly inhibited PMA-enhanced cell attachment to laminin and type IV collagen substrates.

  9. CLOCK promotes 3T3-L1 cell proliferation via Wnt signaling.

    PubMed

    Zhu, Zhu; Hua, Bingxuan; Xu, Lirong; Yuan, Gongsheng; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Lu, Chao; Qian, Ruizhe

    2016-07-01

    Circadian genes control most of the physiological functions including cell cycle. Cell proliferation is a critical factor in the differentiation of progenitor cells. However, the role of Clock gene in the regulation of cell cycle via wingless-type (Wnt) pathway and the relationship between Clock and adipogenesis are unclear. We found that the circadian locomotor output cycles kaput (Clock) regulated the proliferation and the adipogenesis of 3T3-L1 preadipocytes. We found that Clock attenuation inhibited the viability of 3T3-L1 preadipocytes in the cell counting kit 8. The expression of c-Myc and Cyclin D1 decreased dramatically in 3T3-L1 when Clock was silenced with short interfering RNA and was also decreased in fat tissue and adipose tissue-derived stem cells of Clock(Δ19) mice. Clock directly controls the expression of the components of Wnt signal transduction pathway, which was verified by serum shock, chromatin immunoprecipitation, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, IWR-1, a Wnt signal pathway inhibitor, inhibited the cell cycle promotion by CLOCK, which was detected by cell viability assay, flow cytometry, and qRT-PCR. Therefore, CLOCK transcription control of Wnt signaling promotes cell cycle progression in 3T3-L1 preadipocytes. Clock inhibited the adipogenesis on day 2 in 3T3-L1 cells via Oil Red O staining and qRT-PCR detection and probably related to cellular differentiation. These data provide evidence that the circadian gene Clock regulates the proliferation of preadipocytes and affects adipogenesis. © 2016 IUBMB Life, 68(7):557-568, 2016. PMID:27194636

  10. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    NASA Astrophysics Data System (ADS)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  11. Cranberries (Oxycoccus quadripetalus) inhibit adipogenesis and lipogenesis in 3T3-L1 cells.

    PubMed

    Kowalska, Katarzyna; Olejnik, Anna; Rychlik, Joanna; Grajek, Włodzimierz

    2014-04-01

    Cranberries (Oxycoccus quadripetalus) are a valuable source of bioactive substances with high antioxidant potential and well documented beneficial health properties. In the present study, the activity of cranberries, in terms of the inhibiting effects of adipogenesis, was investigated using the 3T3-L1 cell line. The obtained results showed that cranberries reduced proliferation and viability of 3T3-L1 preadipocytes in a dose-dependent manner. Treatment with cranberries decreased the number of adipocytes and reduced lipid accumulation in maturing 3T3-L1 preadipocytes, demonstrating an inhibitory effect on lipogenesis. Moreover, it was found that cranberries directly induced lipolysis in adipocytes and down-regulated the expression of major transcription factors of the adipogenesis pathway, such as PPARγ, C/EBPα and SREBP1. These findings indicate that cranberries are capable of suppressing adipogenesis and therefore they seem to be natural bioactive factors effective in adipose tissue mass modulation.

  12. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  13. Human c-fgr induces a monocyte-specific enzyme in NIH 3T3 cells

    SciTech Connect

    Inoue, Kazushi; Akiyama, Tetsu; Toyoshima, Kumao ); Wongsasant, Budsaba )

    1991-12-01

    The mutant c-fgr protein (p58{sup c-fgr/F523}) containing Phe-523 instead of Tyr-523 exhibited transforming activity in NIH 3T3 cells like other protein-tyrosine kinases of the src family, but normal p58{sup c-fgr} (p58{sup c-fgr/wt}) did not. The mutant protein showed tyrosine kinase activity threefold higher than that of the normal protein in vitro. Surprisingly, transfection of the normal c-fgr gene into NIH 3T3 cells resulted in induction of sodium fluoride (NaF)-sensitive {alpha}-naphthyl butyrate esterase ({alpha}-NBE), marker enzyme of cells of monocytic origin, which was not induced in v-src-, v-fgr-, or lyn-transfected NIH 3T3 cells. The NaF-sensitive {alpha}-NBE induced in c-fgr transfectants was shown by isoelectric focusing to have a pI of 5.2 to 5.4, a range which was the same as those for thioglycolate-induced murine peritoneal macrophages and 1{alpha}, 25-dihydroxyvitamin D{sub 3}-treated WEHI-3B cells. Immunoblotting studies with antophosphotyrosine antibodies revealed that 58-, 62-, 75-, 120-, 200-, and 230-kDa proteins were commonly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in cells transfected with the mutated c-fgr. These findings suggest that tyrosine phosphorylation of specific cellular substrate proteins is important in induction of NaF-sensitive {alpha}-NBE and cell transformation by p58{sup c-fgr}.

  14. ANTIGENIC PROPERTIES OF MURINE SARCOMA VIRUS-TRANSFORMED BALB/3T3 NONPRODUCER CELLS

    PubMed Central

    Stephenson, John R.; Aaronson, Stuart A.

    1972-01-01

    The isolation of clonal lines of murine sarcoma virus-transformed, non-producer BALB/3T3 cells has provided a model system for determining whether RNA tumor virus-transformed cells possess virus-specific transplantation antigens. MSV nonproducer cells (K-234) were clonally derived from an inbred mouse cell line, BALB/3T3. A parallel virus-producing cell line was obtained by infection of the MSV nonproducer cells with Rauscher leukemia virus. K-234 was much more tumorigenic than K-234(R). Preimmunization of syngeneic mice with either K-234(R) or with UV-inactivated Rauscher leukemia virus induced transplantation resistance to subsequent challenge with K-234(R), but not with K-234. In contrast, mice preimmunized with nonproducer cells were not made resistant to subsequent challenge with the homologous cells. Antisera prepared from mice immunized with K-234(R) were specifically cytotoxic and positive by fluorescent antibody staining for K-234(R) target cells, but not to either BALB/3T3 or K-234. The results show that MSV nonproducer cells lack detectable transplantation antigens and suggest that the transplantation resistance to the producing cells is attributable to maturing virus at the cell surface. PMID:4550769

  15. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers

    PubMed Central

    Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel

    2016-01-01

    To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes. PMID:27196306

  16. Effects of Berberine on Adipose Tissues and Kidney Function in 3T3-L1 Cells and Spontaneously Hypertensive Rats.

    PubMed

    Kishimoto, Aya; Dong, Shi-Fen; Negishi, Hiroko; Yasui, Naomi; Sun, Jian-Ning; Ikeda, Katsumi

    2015-09-01

    We aimed to investigate the effect of berberine on adipose tissues, as well as its effect on renal injury in 3T3-L1 cells and spontaneously hypertensive rats. 3T3-L1 cells were cultured and treated with berberine (5-20 pM) from days 3 to 8. Berberine added to the cultured medium could significantly down-regulate transcription factors, including CCAAT/enhancer binding protein β, CCAAT/enhancer binding protein a, and peroxisome pro liferator-activated receptor y, and suppress peroxisome proliferator-activated receptor target genes, such as adipocyte fatty acid binding protein and fatty acid synthase, and inhibit 3T3-Ll fibroblast differentiation to adipocytes. Male spontaneously hypertensive rats received either 150 mg/day of berberine or saline orally for 8 weeks. Compared with the control, berberine-treated rats exhibited significant reductions in body weight gain (p < 0.05), as well as retroperitoneal and mesenteric adipose tissues (p < 0.05). Berberine-treated rats significantly decreased urinary albumin excretion, a marker of renal injury (p < 0.05). Long-term treatment with berberine decreased the adipose tissues weight and attenuated renal injury in spontaneously hypertensive rats. Based on these results, berberine has an important role in regulating adipose tissues. These results suggest the protective effect of berberine on metabolic syndrome related diseases, such as renal injury.

  17. Alteration of glycolipids in ras-transfected NIH 3T3 cells

    SciTech Connect

    Matyas, G.R.; Aaronson, S.A.; Brady, R.O.; Fishman, P.H.

    1987-09-01

    Glycosphingolipid alterations upon viral transformation are well documented. Transformation of mouse 3T3 cells with murine sarcoma viruses results in marked decreases in the levels of gangliosides GM1 and GD1a and an increase in gangliotriaosylceramide. The transforming oncogenes of these viruses have been identified as members of the ras gene family. The authors analyzed NIH 3T3 cells transfected with human H-, K- and N-ras oncogenes for their glycolipid composition and expression of cell surface gangliosides. Using conventional thin-layer chromatographic analysis, they found that the level of GM3 was increased and that of GD1a was slightly decreased or unchanged, and GM1 was present but not in quantifiable levels. Cell surface levels of GM1 were determined by /sup 125/I-labeled cholera toxin binding to intact cells. GD1a was determined by cholera toxin binding to cells treated with sialidase prior to toxin binding. All ras-transfected cells had decreased levels of surface GM1 and GD1 as compared to logarithmically growing normal NIH 3T3 cells. Levels of GM1 and, to a lesser extent, GD1a increased as the latter cells became confluent. Using a monoclonal antibody assay, they found that gangliotriaosylceramide was present in all ras-transfected cells studied but not in logarithmically growing untransfected cells. These results indicated that ras oncogenes derived form human tumors are capable of inducing alterations in glycolipid composition.

  18. Ramie Leaf Extracts Suppresses Adipogenic Differentiation in 3T3-L1 Cells and Pig Preadipocytes

    PubMed Central

    Lee, Joomin; Kim, Ah-Ra; Lee, Jae-Joon

    2016-01-01

    The present study was carried out to evaluate the anti-obesity effect of different concentrations of extracts of hot air-dried ramie leaf (HR) and freeze-dried ramie leaf (FR) in 3T3-L1 cells and pig preadipocytes. To analyze the effect on cell proliferation, cells were treated with 25 μg/mL or 100 μg/mL HR or FR extract for 2 days. Cell differentiation was evaluated by measuring glycerol-3-phosphate dehydrogenase and lipoprotein lipase (LPL) activities and intracellular triglyceride content. Treatment with either HR or FR extracts inhibited the proliferation of 3T3-L1 cells and pig preadipocytes in a dose-dependent manner. HR extract treatment inhibited the differentiation of both cell types more effectively than FR treatment. The extent of triglyceride accumulation decreased significantly in both cells following either HR or FR treatment. Furthermore, LPL activity significantly decreased after treatment with HR or FR extract. These results indicated that HR and FR extracts may inhibit proliferation and differentiation of 3T3-L1 cells and pig preadipocytes. Further studies are needed to explore the anti-obesity effect of HR and FR extracts. PMID:26954122

  19. Regulation of the beta-adrenergic receptor-adenylate cyclase complex of 3T3-L1 fibroblasts by sodium butyrate

    SciTech Connect

    Stadel, J.M.; Poksay, K.S.; Nakada, M.T.; Crooke, S.T.

    1986-05-01

    Mouse 3T3-L1 fibroblasts contain beta-adrenergic receptors (BAR), predominantly of the B/sub 1/ subtype. Incubation of these cells with 2-10 mM sodium butyrate (SB) for 24-48 hr results in a switch in the BAR subtype from B/sub 1/ to B/sub 2/ and promotes a 1.5 to 2.5 fold increase in total BAR number. Other short chain acids were not as effective as SB in promoting changes in BAR. BAR were assayed in membranes prepared from the 3T3-L1 cells using the radiolabeled antagonist (/sup 125/I)-cyanopindolol and the B/sub 2/ selective antagonist ICI 118.551. BAR subtype switch was confirmed functionally by measuring cellular cAMP accumulation in response to agonists. The structure and amount of the alpha subunits of the guanine nucleotide regulatory proteins N/sub s/ and N/sub i/ were determined by ADP-ribosylation using /sup 32/P-NAD and either cholera toxin or pertussis toxin for labeling of the respective subunits. Preincubation of cells with 5 mM SB for 48 hr resulted in a 2-3 fold increase in the labeling of the alpha subunits of both N/sub s/ and N/sub i/. A protein of M/sub r/ = 44,000 showed enhanced labeling by cholera toxin following SB treatment of the cells. These data indicate SB concomitantly regulates expression of BAR subtype and components of the adenylate cyclase in 3T3-L1 cells.

  20. Ultrasound associated uptake of chitosan nanoparticles in MC3T3-E1 cells

    NASA Astrophysics Data System (ADS)

    Wu, Junyi

    Chitosan is a natural linear polysaccharide that has been well known for its applications in drug delivery system due to its unique physicochemical and biological properties. However, challenges still remain for it to become a fully realized therapeutic agent. In this study, we investigated the uptake of chitosan nanoparticles (CNP) under the ultrasound stimulation, using a model cell culture system (MC3T3-E1 mouse pre-osteoblasts). The CNP were fabricated by an ionic gelation method and were lyophilized prior to characterization and delivery to cells. Particle size and zeta potential were measured using Dynamic Light Scattering (DLS); the efficiency of chitosan complexation was measured using the ninhydrin assay. Cytotoxicity was examined by neutral red assay within 48 hours after delivery. The effect of ultrasound (US) on the efficiency of nanoparticle delivery to the MC3T3-E1 cells was examined at 1MHz and at either 1 or 2 W/cm2. Fluorescein isothiocyanate (FITC)-conjugated-CNP were used to visualize the internalized particles within the cytosol. The uptake of FITC-CNP exhibits a dose and time dependent effect, a strong FITC fluorescence was detected at the concentration of 500microg/mL under fluorescence microscope. Ultrasound assisted uptake of FITC-CNP performed a significant positive effect at 2W/cm2 with 60s of ultrasound exposure time. CNP displayed a slightly decrease in cell viability from 25microg/mL to 100microg/mL, while higher concentration of CNP facilitates the proliferation of MC3T3-E1 cells. Less than 10% of reduction in cell viability was observed for US at 1W/cm2 and 2W/cm2 with 30s and 60s of exposure time, which suggest a mild effect of US to MC3T3-E1 cell line.

  1. Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells

    SciTech Connect

    Yasumoto, S.; Burkhardt, A.L.; Doniger, J.; DiPaolo, J.A.

    1986-02-01

    A biological function for human papillomavirus 16 (HPV 16) DNA was demonstrated by transformation of NIH 3T3 cells. HPV 16 DNA has been found frequently in genital cancer and has been classified as a papillomavirus on the basis of DNA homology. A recombinant HPV 16 DNA (pSHPV16d), which contains a head-to-tail dimer of the full-length HPV 16 genome, induced morphologic transformation; the transformed cells were tumorigenic in nude mice. Expression of transforming activity was unique because of the long latency period (more than 4 weeks) required for induction of morphologic transformation and because the transfected DNA existed primarily in a multimeric form with some rearrangement. Furthermore, virus-specific RNAs were expressed in the transformants. The transformation of NIH 3T3 cells provides a model for analyzing the functions of HPV 16, which is associated with cervical carcinomas.

  2. Sclerostin Enhances Adipocyte Differentiation in 3T3-L1 Cells.

    PubMed

    Ukita, Mayumi; Yamaguchi, Taihiko; Ohata, Noboru; Tamura, Masato

    2016-06-01

    Sclerostin, a secreted protein encoded by the Sost gene, is produced by osteocytes and is inhibited by osteoblast differentiation and bone formation. Recently, a functional association between bone and fat tissue has been suggested, and a correlation between circulating sclerostin levels and lipid metabolism has been reported in humans. However, the effects of sclerostin on adipogenesis remain unexplored. In the present study, we examined the role of sclerostin in regulating adipocyte differentiation using 3T3-L1 preadipocytes. In these cells, sclerostin enhanced adipocyte-specific gene expression and the accumulation of lipid deposits. Sclerostin also upregulated CCAAT/enhancer binding protein β expression but not cell proliferation and caspase-3/7 activities. Sclerostin also attenuated canonical Wnt3a-inhibited adipocyte differentiation. Recently, the transcriptional modulator TAZ has been involved in the canonical Wnt signaling pathway. Sclerostin reduced TAZ-responsive transcriptional activity and TAZ-responsive gene expression. Transfection of 3T3-L1 cells with TAZ siRNA increased the lipid deposits and adipogenic gene expression. These results show that sclerostin upregulates adipocyte differentiation in 3T3-L1 cells, suggesting a possible role for the osteocyte-derived sclerostin as a regulator of fat metabolism and as a reciprocal regulator of bone and adipose tissues metabolism.

  3. Suppressive effects of the extracts of Japanese edible seaweeds on mutagen-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) and tumor promotor-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells.

    PubMed

    Okai, Y; Higashi-Okai, K; Nakamura, S; Yano, Y; Otani, S

    1994-11-25

    Some of epidemiological data indicated that ubiquitous consumption of seaweeds in Japan may be a possible protective factor against some types of tumor. To analyse this problem, the authors studied the antimutagenic and antitumor promotion activities in methanol-soluble extracts of typical edible seaweeds which showed suppressive effects on 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indol (Trp-P-1)-induced umu C gene expression in SOS response of Salmonella typhimurium (TA 1535/pSK 1002) and 12-O-tetradecanoylphorbol-13-acetate (TPA)-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells. Although eight varieties of edible seaweeds including chlorophyta, Phaenophyta and Rhodophyta showed significant antimutagenic and antipromotion activities, they expressed the activities different from each other. Among these seaweeds, Enteromorpha prolifera ('Sujiaonori' in Japanese) and Porphyra tenera ('Asakusanori') showed relatively strong suppressive activities in both antimutagenic and antipromotion assays compared with other seaweeds. These seaweeds contained considerable amounts of beta-carotene as a possible active principle with anticarcinogenic activity. This compound was partially associated with the antimutagenic activity in the seaweed extract, but did not contribute to the antipromotion activity of seaweed extract under our experimental conditions. These results strongly suggest that Japanese edible seaweeds have possible antimutagenic and antipromotion activities probably associated with antitumor activity. PMID:7954366

  4. A homeopathic remedy from arnica, marigold, St. John’s wort and comfrey accelerates in vitro wound scratch closure of NIH 3T3 fibroblasts

    PubMed Central

    2012-01-01

    Background Drugs of plant origin such as Arnica montana, Calendula officinalis or Hypericum perforatum have been frequently used to promote wound healing. While their effect on wound healing using preparations at pharmacological concentrations was supported by several in vitro and clinical studies, investigations of herbal homeopathic remedies on wound healing process are rare. The objective of this study was to investigate the effect of a commercial low potency homeopathic remedy Similasan® Arnica plus Spray on wound closure in a controlled, blind trial in vitro. Methods We investigated the effect of an ethanolic preparation composed of equal parts of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712–2), its succussed hydroalcoholic solvent (0712–1) and unsuccussed solvent (0712–3) on NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined “wound field”. All assays were performed in three independent controlled experiments. Results None of the three substances affected cell viability and none showed a stimulating effect on cell proliferation. Preparation (0712–2) exerted a stimulating effect on fibroblast migration (31.9%) vs 14.7% with succussed solvent (0712–1) at 1:100 dilutions (p < 0.001). Unsuccussed solvent (0712–3) had no influence on cell migration (6.3%; p > 0.05). Preparation (0712–2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p < 0.001) from succussed solvent (0712–1), which caused 22.1% wound closure. Conclusion Results of this study showed that the low potency homeopathic remedy (0712–2) exerted in vitro wound closure potential in NIH 3T3 fibroblasts. This effect resulted from stimulation of fibroblasts motility rather than of their mitosis. PMID:22809174

  5. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells

    SciTech Connect

    Masiello, Lisa M.; Fotos, Joseph S.; Galileo, Deni S.; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that has pleiotropic effects on a variety of cell types and enhances the migration of endothelial and cancer cells, but it is not known if this lipid can alter osteoblast motility. We performed transwell migration assays using MC3T3-E1 osteoblastic cells and found LPA to be a potent chemotactic agent. Quantitative time-lapse video analysis of osteoblast migration after wounds were introduced into cell monolayers indicated that LPA stimulated both migration velocity and the average migration distance per cell. LPA also elicited substantial changes in cell shape and actin cytoskeletal structure; lipid-treated cells contained fewer stress fibers and displayed long membrane processes that were enriched in F-actin. Quantitative RT-PCR analysis showed that MC3T3-E1 cells express all four known LPA-specific G protein-coupled receptors (LPA1-LPA4) with a relative mRNA abundance of LPA1 > LPA4 > LPA2 >> LPA3. LPA-induced changes in osteoblast motility and morphology were antagonized by both pertussis toxin and Ki16425, a subtype-specific blocker of LPA1 and LPA3 receptor function. Cell migration in many cell types is linked to changes in intracellular Ca2+. Ki16425 also inhibited LPA-induced Ca2+ signaling in a dose-dependent manner, suggesting a link between LPA-induced Ca2+ transients and osteoblast chemotaxis. Our data show that LPA stimulates MC3T3-E1 osteoblast motility via a mechanism that is linked primarily to the G protein-coupled receptor LPA1.

  6. Occurrence and control of sporadic proliferation in growth arrested Swiss 3T3 feeder cells.

    PubMed

    Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar

    2015-01-01

    Growth arrested Swiss mouse embryonic 3T3 cells are used as feeders to support the growth of epidermal keratinocytes and several other target cells. The 3T3 cells have been extensively subcultured owing to their popularity and wide distribution in the world and, as a consequence selective inclusion of variants is a strong possibility in them. Inadvertently selected variants expressing innate resistance to mitomycin C may continue to proliferate even after treatment with such growth arresting agents. The failure of growth arrest can lead to a serious risk of proliferative feeder contamination in target cell cultures. In this study, we passaged Swiss 3T3 cells (CCL-92, ATCC) by different seeding densities and incubation periods. We tested the resultant cultures for differences in anchorage-independent growth, resumption of proliferation after mitomycin C treatment and occurrence of proliferative feeder contaminants in an epidermal keratinocyte co-culture system. The study revealed subculture dependent differential responses. The cultures of a particular subculture procedure displayed unique cell size distribution and disintegrated completely in 6 weeks following mitomycin C treatment, but their repeated subculture resulted in feeder regrowth as late as 11 weeks after the growth arrest. In contrast, mitomycin C failed to inhibit cell proliferation in cultures of the other subculture schemes and also in a clone that was established from a transformation focus of super-confluent culture. The resultant proliferative feeder cells contaminated the keratinocyte cultures. The anchorage-independent growth appeared in late passages as compared with the expression of mitomycin C resistance in earlier passages. The feeder regrowth was prevented by identifying a safe subculture protocol that discouraged the inclusion of resistant variants. We advocate routine anchorage-independent growth assay and absolute confirmation of feeder disintegration to qualify feeder batches and

  7. Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1.

    PubMed

    Moser, G C; Fallon, R J; Meiss, H K

    1981-02-01

    Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cycle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH-stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells; position within the G1 period. Data are presented that deal with three interrelated topics: 1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. 2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum-starved and contact-inhibited cell nuclei had the highest intensity, hydroxyurea-treated ones had the lowest intensity, while that of isoleucine-deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1. 3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other.

  8. Poly(L-lactide) crystallization topography directs MC3T3-E1 cells response.

    PubMed

    Li, Wenqiang; Lu, Lu; Jiao, Yanpeng; Zhang, Chaowen; Zhou, Changren

    2016-09-01

    Biomaterial surface topography significantly influences cellular form and function. Using poly(L-lactic acid) films with normal spherulites, banded spherulites, and amorphous surfaces as model substrates, we conducted a systematic assessment of the role for polymer crystallization induced surface morphologies on cell growth and contact guidance. Microscopy and image analysis showed that the MC3T3-E1 cells spread out in a random fashion on the amorphous substrate. At 24 h post-seeding, MC3T3-E1 cells on both types of spherulite surfaces were elongated and aligned along the spherulite radius direction. For the banded spherulite surface with radial stripes and coupling annular grooves, the cell orientation and cell nuclear localization were related to the grooves structure. With increasing time, this orientation preference was weaker. These results demonstrate that the patterning of polymer crystallization structure provide important signals for guiding cells to exhibit characteristic orientation and morphology especially in the early stages of regeneration. PMID:27376548

  9. Regulation of pyruvate carboxylase in 3T3-L1 cells.

    PubMed Central

    Zhang, J; Xia, W L; Ahmad, F

    1995-01-01

    When 3T3-L1 fibroblasts differentiate to adipocytes, the specific activity of pyruvate carboxylase (PC) increases about 25-fold in parallel with its intracellular protein concentration. The increase in PC protein concentration is accompanied by a 9-10-fold increase in the relative abundance of 4.2 kb PC mRNA measured by Northern-blot analysis using a cDNA probe encoding a segment of the PC gene of 3T3-L1 adipocytes. The effects of cyclic AMP (cAMP) alone and together with insulin on levels of cellular protein, PC activity, PC protein and on the relative abundance of PC mRNA were examined in mature 3T3-L1 adipocytes. Adipocytes exposed to cAMP for 24 h exhibited a 25% decrease in cellular protein and marked decreases in enzyme activity (88%) and PC mRNA abundance (98%) compared with untreated adipocyte controls. After 48 h of exposure to cAMP, PC activity and PC mRNA diminished to levels approaching their detection limits. When exposed to medium containing cAMP plus insulin, adipocyte enzyme activity and PC mRNA declined more slowly during the first 24 h exposure (about 20% decrease) but after 48 h fell to values comparable with those of adipocytes exposed to cAMP alone. Despite these decreases in enzyme activity, the PC protein content of adipocytes treated with cAMP alone or cAMP plus insulin are nearly identical with that of control adipocytes. The inactivation of PC in cAMP-treated adipocytes does not involve loss of the prosthetic group from the holoenzyme. Cross-linking experiments suggest that the spatial arrangement of protomers in inactive PC may differ from that in the active tetrameric enzyme. Data presented suggest that, in addition to inducing inactivation, cAMP may also regulate adipocyte PC by decreasing transcription of the PC gene and/or enhancing the rate of degradation of PC mRNA. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7864811

  10. The aporphine alkaloid boldine induces adiponectin expression and regulation in 3T3-L1 cells.

    PubMed

    Yu, Bangning; Cook, Carla; Santanam, Nalini

    2009-10-01

    Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor (PPAR)-gamma, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H(2)O(2)) (100 microM) or tumor necrosis factor-alpha (TNFalpha) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5-100 microM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARgamma, and C/EBPalpha to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H(2)O(2) or TNFalpha and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5-25 microM) having a larger inductive effect compared to higher concentrations (50-100 microM). Boldine treatment alone in the absence of H(2)O(2) or TNFalpha was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease. PMID:19857072

  11. The Aporphine Alkaloid Boldine Induces Adiponectin Expression and Regulation in 3T3-L1 Cells

    PubMed Central

    Yu, Bangning; Cook, Carla

    2009-01-01

    Abstract Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor (PPAR)-γ, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H2O2) (100 μM) or tumor necrosis factor-α (TNFα) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5–100 μM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARγ, and C/EBPα to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H2O2 or TNFα and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5–25 μM) having a larger inductive effect compared to higher concentrations (50–100 μM). Boldine treatment alone in the absence of H2O2 or TNFα was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease. PMID:19857072

  12. Ultrasound stimulation increases proliferation of MC3T3-E1 preosteoblast-like cells

    PubMed Central

    2014-01-01

    Background Mechanical stimulation of bone increases bone mass and fracture healing, at least in part, through increases in proliferation of osteoblasts and osteoprogenitor cells. Researchers have previously performed in vitro studies of ultrasound-induced osteoblast proliferation but mostly used fixed ultrasound settings and have reported widely varying and inconclusive results. Here we critically investigated the effects of the excitation parameters of low-intensity pulsed ultrasound (LIPUS) stimulation on proliferation of MC3T3-E1 preosteoblastic cells in monolayer cultures. Methods We used a custom-designed ultrasound exposure system to vary the key ultrasound parameters—intensity, frequency and excitation duration. MC3T3-E1 cells were seeded in 12-well cell culture plates. Unless otherwise specified, treated cells, in groups of three, were excited twice for 10 min with an interval of 24 h in between after cell seeding. Proliferation rates of these cells were determined using BrdU and MTS assays 24 h after the last LIPUS excitation. All data are presented as the mean ± standard error. The statistical significance was determined using Student's two-sample two-tailed t tests. Results Using discrete LIPUS intensities ranging from 1 to 500 mW/cm2 (SATA, spatial average-temporal average), we found that approximately 75 mW/cm2 produced the greatest increase in osteoblast proliferation. Ultrasound exposures at higher intensity (approximately 465 mW/cm2) significantly reduced proliferation in MC3T3-E1 cells, suggesting that high-intensity pulsed ultrasound may increase apoptosis or loss of adhesion in these cells. Variation in LIPUS frequency from 0.5 MHz to 5 MHz indicated that osteoblast proliferation rate was not frequency dependent. We found no difference in the increase in proliferation rate if LIPUS was applied for 30 min/day or 10 min/day, indicating a habituation response. Conclusion This study concludes that a short-term stimulation with optimum intensity

  13. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3

    PubMed Central

    2013-01-01

    Background Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity. Methods The stimulatory effect of mushrooms on neurite outgrowth was assessed in differentiating mouse neuroblastoma (N2a) cells. Neurite length was measured using Image-Pro Insight processor system. Neuritogenesis activity was further validated by fluorescence immunocytochemical staining of neurofilaments. In vitro cytotoxicity was investigated by using mouse embryonic fibroblast (BALB/3T3) and N2a cells for any embryo- and neuro-toxic effects; respectively. Results Aqueous extracts of Ganoderma lucidum, Lignosus rhinocerotis, Pleurotus giganteus and Grifola frondosa; as well as an ethanol extract of Cordyceps militaris significantly (p < 0.05) promoted the neurite outgrowth in N2a cells by 38.4 ± 4.2%, 38.1 ± 2.6%, 33.4 ± 4.6%, 33.7 ± 1.5%, and 35.8 ± 3.4%; respectively. The IC50 values obtained from tetrazolium (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) release assays showed no toxic effects following 24 h exposure of N2a and 3T3 cells to mushroom extracts. Conclusion Our results indicate that G. lucidum, L. rhinocerotis, P. giganteus, G. frondosa and C. militaris may be developed as safe and healthy dietary supplements for brain and cognitive health. PMID:24119256

  14. Intracellular univalent cations and the regulation of the BALB/c-3T3 cell cycle

    PubMed Central

    1981-01-01

    Addition of serum to density-arrested BALB/c-3T3 cells causes a rapid increase in uptake of Na+ and K+, followed 12 h later by the onset of DNA synthesis. We explored the role of intracellular univalent cation concentrations in the regulation of BALB/c-3T3 cell growth by serum growth factors. As cells grew to confluence, intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) fell from 40 and 180 to 15 and 90 mmol/liter, respectively. Stimulation of growth of density-inhibited cells by the addition of serum growth factors increased [Na]i by 30% and [K+]i by 13-25% in early G0/G1, resulting in an increase in total univalent cation concentration. Addition of ouabain to stimulated cells resulted in a concentration-dependent steady decrease in [K+]i and increase in [Na+]i. Ouabain (100 microM) decreased [K+]i to approximately 60 mmol/liter by 12 h, and also prevented the serum- stimulated increase in 86Rb+ uptake. However, 100 microM ouabain did not inhibit DNA synthesis. A time-course experiment was done to determine the effect of 100 microM ouabain on [K+]i throughout G0/G1 and S phase. The addition of serum growth factors to density-inhibited cells stimulated equal rates of entry into the S phase in the presence or absence of 100 microM ouabain. However, in the presence of ouabain, there was a decrease in [K+]i. Therefore, an increase in [K+]i is not required for entry into S phase; serum growth factors do not regulate cell growth by altering [K+]i. The significance of increased total univalent cation concentration is discussed. PMID:7204489

  15. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells.

    PubMed Central

    Sakamuro, D; Furukawa, T; Takegami, T

    1995-01-01

    Clinical evidence suggests that hepatitis C virus (HCV) is etiologically involved in hepatic cancer and liver cirrhosis. To investigate whether the HCV nonstructural protein NS3 has oncogenic activity, NIH 3T3 cells were transfected with an expression vector containing cDNA for the 5'- or 3'-half sequence of the HCV genome segment encoding NS3. Only cells transfected with the 5'-half cDNA rapidly proliferated, lost contact inhibition, grew anchorage independently in soft agar, and formed tumors in nude mice. PCR analysis confirmed the presence of the 5'-half DNA in the transfectants. These results suggest that the 5' region of the HCV genome segment encoding NS3 is involved in cell transformation. PMID:7745741

  16. Single Synonymous Mutations in KRAS Cause Transformed Phenotypes in NIH3T3 Cells

    PubMed Central

    Waters, Andrew M.; Bagni, Rachel; Portugal, Franklin; Hartley, James L.

    2016-01-01

    Synonymous mutations in the KRAS gene are clustered at G12, G13, and G60 in human cancers. We constructed 9 stable NIH3T3 cell lines expressing KRAS, each with one of these synonymous mutations. Compared to the negative control cell line expressing the wild type human KRAS gene, all the synonymous mutant lines expressed more KRAS protein, grew more rapidly and to higher densities, and were more invasive in multiple assays. Three of the cell lines showed dramatic loss of contact inhibition, were more refractile under phase contrast, and their refractility was greatly reduced by treatment with trametinib. Codon usage at these glycines is highly conserved in KRAS compared to HRAS, indicating selective pressure. These transformed phenotypes suggest that synonymous mutations found in driver genes such as KRAS may play a role in human cancers. PMID:27684555

  17. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    PubMed

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development. PMID:27427305

  18. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    PubMed

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development.

  19. Flow cytometric analysis of intracellular pH in 3T3 cells.

    PubMed

    Gillies, R J; Cook, J; Fox, M H; Giuliano, K A

    1987-07-01

    Techniques to determine intracellular pH generally report the average pH of population and do not indicate whether or not there is significant variance among cells within the population. Population variance is important to ascribe pH changes on a per cell basis. The magnitude of the pH change in individual cells is important to ascribe physiological function to changes in pH. To determine the variability of cell responses, we have used dual wavelength fluorescence emission spectroscopy of intracellular dicyanohydroquinone monitored with flow cytometry to determine the pH of normal and transformed 3T3 cells in response to serum or serum components. All cells were mechanically harvested from subconfluent cultures. Large differences in pH were observed between serum-deprived and serum-conditioned normal, but not transformed, cells. Addition of serum caused cytosolic alkalinization, with the serum-deprived cells responding more slowly. Titration of cells with submaximal doses of serum indicate that the response of pH is graded, that all cells respond in similar manner, and that the relative affinity of transformed cells for the serum components causing the pH effect is about twice that of normal cells.

  20. PML suppresses oncogenic transformation of NIH/3T3 cells by activated neu

    PubMed Central

    1995-01-01

    The chromosomal translocation t(15;17)(q22;q12) is a consistent feature of acute promyelocytic leukemia (APL) that results in the disruption of genes for the zinc finger transcription factor PML and the retinoic acid receptor alpha (RAR alpha). We have previously shown that PML is a growth suppressor and is able to suppress transformation of NIH/3T3 by activated neu oncogene. In the study presented here, the full-length PML cDNA was transfected into B104-1-1 cells (NIH/3T3 cells transformed by the activated neu oncogene) by retrovirally mediated gene transfer. We found that expression of PML could reverse phenotypes of B104-1-1 including morphology, contact-limiting properties, and growth rate in both transient-expression and stable transfectants. We also demonstrated that PML is able to suppress clonogenicity of B104-1-1 in soft agar assay and tumorigenicity in nude mice. These results strongly support our previous finding that PML is a transformation or growth suppressor. Our results further demonstrate that expression of PML in B104-1-1 cells has little effect on cell cycle distribution. Western blot analysis demonstrated that suppression of neu expression in B104-1- 1 by PML was insignificant in the transient transfection experiment but significant in the PML stable transfectants. This study suggests that PML may suppress neu expression and block signaling events associated with activated neu. This study supports our hypothesis that disruption of the normal function of PML, a growth or transformation suppressor, is a critical event in APL leukomogenesis. PMID:7759992

  1. Melatonin Suppresses Autophagy Induced by Clinostat in Preosteoblast MC3T3-E1 Cells.

    PubMed

    Yoo, Yeong-Min; Han, Tae-Young; Kim, Han Sung

    2016-01-01

    Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation induced a significant time-dependent increase in the levels of the autophagosomal marker microtubule-associated protein light chain (LC3), suggesting that autophagy is induced by clinostat rotation in these cells. Melatonin treatment (100, 200 nM) significantly attenuated the clinostat-induced increases in LC3 II protein, and immunofluorescence staining revealed decreased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating a decrease in autophagosomes. The levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (Ser2448), phosphorylation of extracellular signal-regulated kinase (p-ERK), and phosphorylation of serine-threonine protein kinase (p-Akt) (Ser473) were significantly reduced by clinostat rotation. However, their expression levels were significantly recovered by melatonin treatment. Also, expression of the Bcl-2, truncated Bid, Cu/Zn- superoxide dismutase (SOD), and Mn-SOD proteins were significantly increased by melatonin treatment, whereas levels of Bax and catalase were decreased. The endoplasmic reticulum (ER) stress marker GRP78/BiP, IRE1α, and p-PERK proteins were significantly reduced by melatonin treatment. Treatment with the competitive melatonin receptor antagonist luzindole blocked melatonin-induced decreases in LC3 II levels. These results demonstrate that melatonin suppresses clinostat-induced autophagy through increasing the phosphorylation of the ERK/Akt/mTOR proteins. Consequently, melatonin appears to be a potential therapeutic agent for regulating microgravity-related bone loss or osteoporosis. PMID:27070587

  2. Melatonin Suppresses Autophagy Induced by Clinostat in Preosteoblast MC3T3-E1 Cells

    PubMed Central

    Yoo, Yeong-Min; Han, Tae-Young; Kim, Han Sung

    2016-01-01

    Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation induced a significant time-dependent increase in the levels of the autophagosomal marker microtubule-associated protein light chain (LC3), suggesting that autophagy is induced by clinostat rotation in these cells. Melatonin treatment (100, 200 nM) significantly attenuated the clinostat-induced increases in LC3 II protein, and immunofluorescence staining revealed decreased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating a decrease in autophagosomes. The levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (Ser2448), phosphorylation of extracellular signal-regulated kinase (p-ERK), and phosphorylation of serine-threonine protein kinase (p-Akt) (Ser473) were significantly reduced by clinostat rotation. However, their expression levels were significantly recovered by melatonin treatment. Also, expression of the Bcl-2, truncated Bid, Cu/Zn- superoxide dismutase (SOD), and Mn-SOD proteins were significantly increased by melatonin treatment, whereas levels of Bax and catalase were decreased. The endoplasmic reticulum (ER) stress marker GRP78/BiP, IRE1α, and p-PERK proteins were significantly reduced by melatonin treatment. Treatment with the competitive melatonin receptor antagonist luzindole blocked melatonin-induced decreases in LC3 II levels. These results demonstrate that melatonin suppresses clinostat-induced autophagy through increasing the phosphorylation of the ERK/Akt/mTOR proteins. Consequently, melatonin appears to be a potential therapeutic agent for regulating microgravity-related bone loss or osteoporosis. PMID:27070587

  3. Neoplastic transformation and tumorigenesis associated with overexpression of imup-1 and imup-2 genes in cultured NIH/3T3 mouse fibroblasts

    SciTech Connect

    Ryoo, Zae Young . E-mail: jaewoong64@hanmail.net; Jung, Boo Kyoung; Lee, Sang Ryeul; Kim, Myoung Ok; Kim, Sung Hyun; Kim, Hyo Jin; Ahn, Jung Yong; Lee, Tae-Hoon; Cho, Youl Hee; Park, Jae Hak; Kim, Jin Kyeoung

    2006-10-27

    Immortalization-upregulated protein 1 (IMUP-1) and immortalization-upregulated protein 2 (IMUP-2) genes have been recently cloned and are known to be involved in SV40-mediated immortalization. IMUP-1 and IMUP-2 genes were strongly expressed in various cancer cell lines and tumors, suggesting the possibility that they might be involved in tumorigenicity. To directly elucidate the functional role of IMUP-1 and IMUP-2 on neoplastic transformation and tumorigenicity, we stably transfected IMUP-1 and IMUP-2 into NIH/3T3 mouse fibroblast cells. Cellular characteristics of the neoplastic transformation were assessed by transformation foci, growth in soft agar, and tumor development in nude mice. We found that IMUP-1 and IMUP-2 overexpressing cells showed altered growth properties, anchorage-independent growth in soft agar and inducing tumor in nude mice. Furthermore, IMUP-1 and IMUP-2 transformants proliferated in reduced serum and shortened cell cycle. These results suggest that ectopic overexpression of IMUP-1 and IMUP-2 may play an important role in acquiring a transformed phenotype, tumorigenicity in vivo, and be related to cellular proliferation.

  4. MC3T3-E1 Cell Response to Pure Titanium, Zirconia and Nano-Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hwan; Han, Jung-Suk; Yang, Jae-Ho; Lee, Jai-Bong; Kim, Dae-Joon

    Titanium, zirconia and HAp were known as good biocompatible materials for tissue engineering. Osteblastic cell response is influence by the surface topography of material and its chemical composition as well. To evaluate the influence of different chemical compositions on osteoblast-like cells the specimens were polished until they have almost identical surface roughness. The commercially pure titanium, zirconia/alumina composite and nano-sized hydroxyapatite (HAp) specimens synthesized by hydrothermal method were used to evaluate the cell attachment, proliferation and differentiation. Confocal laser microscopy was used measurement of surface roughness, and flourescence microscopy and SEM were used to evaluate initial cell attachment and morphology after 3 hours. MTS assay was performed for cell proliferation after 1, 3, 7 days and ALP assay was used for cell differentiation after 7, 10, 14 days of cell culture period. Surface topography of nano-HAp specimen was almost identical compared with those of titanium and zirconia specimen. Under this condition, proliferation and differentiation of MC3T3-E1 cells was not significantly different with those on titanium and zirconia specimen. However, cells on Nano-HAp specimen showed quicker and more active cellular reaction for attachment when measured by the expression of adhesion proteins through confocal laser microscopy. The results suggested that the new nano-sized HAp can be applied as a suitable material for skeletal tissue engineering.

  5. Stimulation of protein phosphatase activity by insulin and growth factors in 3T3 cells

    SciTech Connect

    Chan, C.P.; McNall, S.J.; Krebs, E.G.; Fischer, E.H. )

    1988-09-01

    Incubation of Swiss mouse 3T3-D1 cells with physiological concentrations of insulin resulted in a rapid and transient activation of protein phosphatase activity as measure by using ({sup 32}P)phosphorylase {alpha} as substrate. Activation reached a maximum level (140% of control value) within 5 min of addition and returned to control levels within 20 min. The effect of insulin was dose-dependent with half-maximal activation occurring at {approx}5 nM insulin. This activity could be completely inhibited by addition of the heat-stable protein inhibitor 2, which suggests the presence of an activated type-1 phosphatase. Similar effects on phosphatase activity were seen when epidermal growth factor and platelet-derived growth factor were tested. These results suggest that some of the intracellular effects caused by insulin and growth factors are mediated through the activation of a protein phosphatase.

  6. Carcinogenic potential of metal nanoparticles in BALB/3T3 cell transformation assay.

    PubMed

    Sighinolfi, G L; Artoni, E; Gatti, A M; Corsi, L

    2016-05-01

    Metal-based nanoparticles (NPs), are currently used in many application fields including consumer products, pharmaceuticals, and biomedical treatments. In spite to their wide applications, an in-depth study of their potential toxic effects is still lacking. The aim of the present research was to investigate the potential initiator or promoter-like activity of different metallic NPs such as gold, iron, cobalt, and cerium using the Balb/3T3 two-stage transformation assay. The results indicated that all the selected metallic NPs, except for cobalt, when used as initiators did not induce any transformation in Balb/3T3 cell line. Moreover, Au and Fe3 O4 NPs, when used in place of the tumor promoter treatment TPA, increased significantly the number of Foci/dish as compared to the MCA treatment alone. The number of Foci/dish was 2.6 for Au NPs and 2.13 for Fe3 O4 ones, similar to those obtained by the positive control treatment (MCA + TPA), whereas 1.27 for MCA treatment alone. On the contrary, CeO2 NPs did not show any difference in the number of Foci/dish, as compared to MCA alone, but it decreased the number of foci by 65% in comparison to the positive control (MCA + TPA). As expected, cobalt NPs showed an increased cytotoxicity and only a few surviving cells were found at the time of analysis showing a number of Foci/dish of 0.13. For the first time, our data clearly showed that Au and Fe3 O4 NPs act as promoters in the two stage transformational assay, suggesting the importance to fully investigate the NPs carcinogenic potential with different models. PMID:25358123

  7. Notch-1 expression levels in 3T3-L1 cells influence ras signaling and transformation by oncogenic ras.

    PubMed

    Ruiz-Hidalgo, M J; Garcés, C; Laborda, J

    1999-04-01

    Notch proteins participate in interactions between several cell types involved on the specification of numerous cell fates during development. We previously showed that enforced downregulation of Notch-1 expression prevented adipogenesis of 3T3-L1 cells. Since adipogenesis of 3T3-L1 cells can be induced by oncogenic ras, we studied whether this was also the case in 3T3-L1 cells with decreased levels of Notch-1 expression. We found that oncogenic ras induces transformation and not differentiation of 3T3-L1 cells with diminished levels of Notch-1. This result suggests that Notch-1 is implicated in the interpretation of signals leading to activation of p21 Ras.

  8. Thermotolerance inhibits various stress-induced apoptosis in NIH3T3 cells.

    PubMed

    Park, J E; Lee, K J; Kim, C

    1998-02-01

    When NIH3T3 cells were exposed to mild heat and recovered at 37 degrees C for various time intervals, they were thermotolerant and resistant to subsequent stresses including heat, oxidative stresses, and antitumor drug methotrexate which are apoptotic inducers. The induction kinetics of apoptosis by stresses were determined by DNA fragmentation and protein synthesis using [35S]methionine pulse labeling. We investigated the hypothesis that thermotolerant cells were resistant to apoptotic cell death compared to control cells when both cells were exposed to various stresses inducing apoptosis. The cellular changes in thermotolerant cells were examined to determine which components are involved in this resistance. At first, the degree of resistance correlates with the extent of heat shock protein synthesis which were varied depending on the heating times at 45 degrees C and recovery times at 37 degrees C after heat shock. Secondly, membrane permeability change was observed in thermotolerant cells. When cells prelabeled with [3H]thymidine were exposed to various amounts of heat and recovered at 37 degrees C for 1/2 to 24 h, the permeability of cytosolic [3H]thymidine in thermotolerant cells was 4 fold higher than that in control cells. Thirdly, the protein synthesis rates in thermotolerant and control cells were measured after exposing the cells to the same extent of stress. It turned out that thermotolerant cells were less damaged to same amount of stress than control cells, although the recovery rates are very similar to each other. These results demonstrate that an increase of heat shock proteins and membrane changes in thermotolerant cells may protect the cells from the stresses and increase the resistance to apoptotic cell death, even though the exact mechanism should be further studied.

  9. Osmotic shrinkage elicits FAK- and Src phosphorylation and Src-dependent NKCC1 activation in NIH3T3 cells.

    PubMed

    Rasmussen, Line Jee Hartmann; Müller, Helene Steenkær Holm; Jørgensen, Bente; Pedersen, Stine Falsig; Hoffmann, Else Kay

    2015-01-15

    The mechanisms linking cell volume sensing to volume regulation in mammalian cells remain incompletely understood. Here, we test the hypothesis that activation of nonreceptor tyrosine kinases Src, focal adhesion kinase (FAK), and Janus kinase-2 (Jak2) occurs after osmotic shrinkage of NIH3T3 fibroblasts and contributes to volume regulation by activation of NKCC1. FAK phosphorylation at Tyr397, Tyr576/577, and Tyr861 was increased rapidly after exposure to hypertonic (575 mOsm) saline, peaking after 10 (Tyr397, Tyr576/577) and 10-30 min (Tyr861). Shrinkage-induced Src family kinase autophosphorylation (pTyr416-Src) was induced after 2-10 min, and immunoprecipitation indicated that this reflected phosphorylation of Src itself, rather than Fyn and Yes. Phosphorylated Src and FAK partly colocalized with vinculin, a focal adhesion marker, after hypertonic shrinkage. The Src inhibitor pyrazolopyrimidine-2 (PP2, 10 μM) essentially abolished shrinkage-induced FAK phosphorylation at Tyr576/577 and Tyr861, yet not at Tyr397, and inhibited shrinkage-induced NKCC1 activity by ∼50%. The FAK inhibitor PF-573,228 augmented shrinkage-induced Src phosphorylation, and inhibited shrinkage-induced NKCC1 activity by ∼15%. The apparent role of Src in NKCC1 activation did not reflect phosphorylation of myosin light chain kinase (MLC), which was unaffected by shrinkage and by PP2, but may involve Jak2, a known target of Src, which was rapidly activated by osmotic shrinkage and inhibited by PP2. Collectively, our findings suggest a major role for Src and possibly the Jak2 axis in shrinkage-activation of NKCC1 in NIH3T3 cells, whereas no evidence was found for major roles for FAK and MLC in this process. PMID:25377086

  10. Pharmaco-Phylogenetic Investigation of Methyl Gallate Isolated from Acacia nilotica (L.) Delile and Its Cytotoxic Effect on NIH3T3 Mouse Fibroblast.

    PubMed

    Mishra, Rohit K; Ramakrishna, M; Mishra, Vani; Pathak, Ashutosh; Rajesh, S; Sharma, Shivesh; Pandey, Avinash C; Nageswara Rao, G; Dikshit, Anupam

    2016-01-01

    Present exploration deals with the therapeutic perspective of methyl gallate isolated from the leaf extract of Acacia nilotica (L.) Delile in contrast to food-borne bacterial pathogen's viz., Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus with their evolutionary succession. The extract was subjected to phytochemical analysis and isolated compound was identified as methyl gallate using UV-vis, IR and NMR spectra. It was found most potent against K. pneumoniae with its minimum inhibition concentration (MIC) of 0.32 mg/ml and minimum bactericidal concentration (MBC) at 0.62 mg/ml. The correlation of MIC values with an evolutionary succession assists the relationship between their genetic and toxic properties. The cytotoxic pursuit of methyl gallate was additionally assessed over NIH3T3 mouse fibroblast by Neutral red (NR) uptake, MTT cell proliferation assay and did not disclose any relevant influence on cell viability as well as cell proliferation. As such, the methyl gallate extracted from the leaf of A. nilotica holds massive antibacterial aptitude and hands out towards a new paradigm for food and pharmaceutical industries. PMID:26813302

  11. In vitro BALB/3T3 cell transformation assay of nonoxynol-9 and 1,4-dioxane

    SciTech Connect

    Sheu, C.W.; Moreland, F.M.; Lee, J.K.; Dunkel, V.C.

    1988-01-01

    The spermicidal surfactant nonoxynol-9 (Igepal CO-630, GAF Corp.) and a potential impurity, 1,4-dioxane, were tested in the in vitro cell transformation assay using BALB/3T3 cells. Two treatment periods, 48 hr and 13 days, were used. Nonoxynol-9, tested at levels up to 10 /sup +/g/ml, did not induce transformation, whereas dioxane was very active in the induction type II foci in the cultured BALB/3T3 cells.

  12. Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation

    PubMed Central

    Wang, Yu; Cui, Haitao; Wu, Zhenxu; Wu, Naipeng; Wang, Zongliang; Chen, Xuesi; Wei, Yen; Zhang, Peibiao

    2016-01-01

    Electrical stimulation (ES) is therapeutic to many bone diseases, from promoting fracture regeneration to orthopedic intervention. The application of ES offers substantial therapeutic potential, while optimal ES parameters and the underlying mechanisms responsible for the positive clinical impact are poorly understood. In this study, we assembled an ES cell culture and monitoring device. Mc-3T3-E1 cells were subjected to different frequency to investigate the effect of osteogenesis. Cell proliferation, DNA synthesis, the mRNA levels of osteosis-related genes, the activity of alkaline phosphatase (ALP), and intracellular concentration of Ca2+ were thoroughly evaluated. We found that 100 Hz could up-regulate the mRNA levels of collagen I, collagen II and Runx2. On the contrary, ES could down-regulate the mRNA levels of osteopontin (OPN). ALP activity assay and Fast Blue RR salt stain showed that 100 Hz could accelerate cells differentiation. Compared to the control group, 100 Hz could promote cell proliferation. Furthermore, 1 Hz to 10 Hz could improve calcium deposition in the intracellular matrix. Overall, these results indicate that 100Hz ES exhibits superior potentialities in osteogenesis, which should be beneficial for the clinical applications of ES for the treatment of bone diseases. PMID:27149625

  13. Hierarchical polymeric scaffolds support the growth of MC3T3-E1 cells.

    PubMed

    Akbarzadeh, Rosa; Minton, Joshua A; Janney, Cara S; Smith, Tyler A; James, Paul F; Yousefi, Azizeh-Mitra

    2015-02-01

    Tissue engineering makes use of the principles of biology and engineering to sustain 3D cell growth and promote tissue repair and/or regeneration. In this study, macro/microporous scaffold architectures have been developed using a hybrid solid freeform fabrication/thermally induced phase separation (TIPS) technique. Poly(lactic-co-glycolic acid) (PLGA) dissolved in 1,4-dioxane was used to generate a microporous matrix by the TIPS method. The 3D-bioplotting technique was used to fabricate 3D macroporous constructs made of polyethylene glycol (PEG). Embedding the PEG constructs inside the PLGA solution prior to the TIPS process and subsequent extraction of PEG following solvent removal (1,4-dioaxane) resulted in a macro/microporous structure. These hierarchical scaffolds with a bimodal pore size distribution (<50 and >300 μm) contained orthogonally interconnected macro-channels generated by the extracted PEG. The diameter of the macro-channels was varied by tuning the dispensing parameters of the 3D bioplotter. The in vitro cell culture using murine MC3T3-E1 cell line for 21 days demonstrated that these scaffolds could provide a favorable environment to support cell adhesion and growth.

  14. ATF3 inhibits adipocyte differentiation of 3T3-L1 cells

    SciTech Connect

    Jang, Min Kyung; Kim, Cho Hee; Seong, Je Kyung; Jung, Myeong Ho

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Overexpression of ATF3 inhibits adipocyte differentiation in 3T3-L1 cells. Black-Right-Pointing-Pointer Overexpression of ATF3 represses C/EBP{alpha} expression. Black-Right-Pointing-Pointer ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Black-Right-Pointing-Pointer ATF3 may play a role in hypoxia-mediated inhibition of adipocyte differentiation. -- Abstract: ATF3 is a stress-adaptive gene that regulates proliferation or apoptosis under stress conditions. However, the role of ATF3 is unknown in adipocyte cells. Therefore, in this study, we investigated the functional role of ATF3 in adipocytes. Both lentivirus-mediated overexpression of ATF3 and stably-overexpressed ATF3 inhibited adipocyte differentiation in 3T3-L1 cells, as revealed by decreased lipid staining with oil red staining and reduction in adipogenic genes. Thapsigargin treatment and overexpression of ATF3 decreased C/EBP{alpha} transcript and repressed the activity of the 3.6-kb mouse C/EBP{alpha} promoter, demonstrating that ATF3 downregulates C/EBP{alpha} expression. Transfection studies using mutant constructs containing 5 Prime -deletions in the C/EBP{alpha} promoter revealed that a putative ATF/CRE element, GGATGTCA, is located between -1921 and -1914. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Both chemical hypoxia-mimetics or physical hypoxia led to reduce the C/EBP{alpha} mRNA and repress the promoter activity of the C/EBP{alpha} gene, whereas increase ATF3 mRNA, suggesting that ATF3 may contribute to the inhibition of adipocyte differentiation in hypoxia through downregulation of C/EBP{alpha} expression. Collectively, these results demonstrate that ATF3 represses the C/EBP{alpha} gene, resulting in inhibition of adipocyte differentiation, and thus plays a role in hypoxia-mediated inhibition

  15. Regulation of glucose transport by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts: Involvement of protein kinase C-dependent and -independent mechanisms

    SciTech Connect

    Dettori, C.; Meldolesi, J. )

    1989-05-01

    Glucose transport stimulation by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts was compared with the phosphoinositide hydrolysis effects of the same stimulants in a variety of experimental paradigms known to affect generation and/or functioning of intracellular second messengers: short- and long-term treatments with phorbol dibutyrate, that cause activation and down-regulation of protein kinase C, respectively; cell loading with high (quin2), that causes clamping of (Ca{sup 2+}){sub i} near the resting level; poisoning with pertussis toxin, that affects the GTP binding proteins of the Go/Gi class; treatment with Ca{sup 2+} ionophores. ({sup 14}C) glucose transport stimulation by maximal (insulin) was affected by neither pertussis toxin nor protein kinase C down-regulation. This result correlates with the lack of effect of insulin on phosphoinositide hydrolysis. In contrast, part of the glucose transport responses induced by bombesin and bradykinin appeared to be mediated by protein kinase C in proportion with the stimulation induced by these peptides on the phosphoinositide hydrolysis. The protein kinase C-independent portion of the response to bradykinin was found to be inhibitable by pertussis toxin. This latter result might suggest an interaction between the bradykinin receptor and a glucose transporter, mediated by a protein of the Go/Gi class.

  16. Poly(2-hydroxyethyl methacrylate)-b-poly(L-Lysine) cationic hybrid materials for non-viral gene delivery in NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Johnson, Renjith P; Uthaman, Saji; John, Johnson V; Heo, Min Seon; Park, In Kyu; Suh, Hongsuk; Kim, Il

    2014-09-01

    In order to develop efficient and nontoxic gene delivery vectors, a series of biocompatible block copolymers, poly[(2-hydroxyethyl methacrylate)40 -block-(L-lysine)n ] (n = 40, 80, 120, 150), are prepared by combining an atom transfer radical polymerization of 2-hydroxyethyl methacrylate with a ring-opening polymerization of N(ϵ) -(carbobenzoxy)-L-lysine N-carboxyanhydride. The block copolymers are successfully condensed with plasmid DNA (pDNA) into nanosized (<200 nm) polyplexes. As a representative sample, p(HEMA)40 -b-p(lys)150 is utilized to confirm the effective cellular and nuclear uptake of pDNA. The polymer/pDNA polyplexes exhibit very low cytotoxicity and enhanced transfection activity by being easily taken up into mouse embryonic fibroblast cell line (NIH 3T3). Thus, the chimeric block copolymers provide a means for developing versatile nonviral gene vectors harboring the ideal requirements of low cytotoxicity, good stability, and high transfection efficiency for gene therapy. PMID:24862905

  17. Isotopomer spectral analysis of triglyceride fatty acid synthesis in 3T3-L1 cells.

    PubMed

    Kharroubi, A T; Masterson, T M; Aldaghlas, T A; Kennedy, K A; Kelleher, J K

    1992-10-01

    A new analysis of stable isotope data for biosynthesis reaction, isotopomer spectral analysis (ISA), is demonstrated. ISA is theoretically applicable for polymerization biosynthesis where data are collected using selected ion-monitoring gas chromatography-mass spectrometry. ISA utilizes the discrete spectrum of isotopomer abundances and the multinomial distribution to estimate two key parameters related to the biosynthesis. These parameters are 1) the dilution of the precursor immediately before biosynthesis and 2) the dilution of the newly synthesized product in the sampled compartment. Differentiated 3T3-L1 cells incorporated 2 mM [1,2-13C]acetate into triglyceride palmitate, yielding a spectrum of mass isotopomers of palmitate. The set of equations for the first nine isotopomers were solved for the two parameters using nonlinear regression. We found that precursor dilutions for acetate and glucose were constant over time, whereas the product dilution parameter increased with time, as expected for cells accumulating triglyceride palmitate. Mathematical procedures are presented for calculating 1) the predicted isotopomer fractional abundance values and 2) the correction for atoms other than the tracer atom in the mass ion. PMID:1415685

  18. Cytotoxicity of folic acid conjugated hollow silica nanoparticles toward Caco2 and 3T3 cells, with and without encapsulated DOX.

    PubMed

    Patel, Kunal; Sundara Raj, Behin; Chen, Yan; Lou, Xia

    2016-04-01

    Hollow silica nanoparticles of two sizes with and without a folic acid targeting ligand were synthesized. Fickian diffusion of the antitumor drug doxorubicin hydrochloride (DOX) was demonstrated by the produced nanoparticles, achieving a cumulative release of 73% and 45% for 215 nm and 430 nm particles respectively over a period of 500 h. The hollow silica nanoparticles presented a time and dose dependent toxicity, selective to human epithelial colorectal adenocarcinoma (Caco2) cells, over mouse embryonic fibroblast (3T3) cells. At 24h Caco2 cell viability was reduced to 66% using pure hollow silica at a concentration of 50 μg mL(-1), while that of 3T3 cells remained at 94% under the same conditions. The selective cytotoxicity of hollow silica nanoparticles was further enhanced by conjugation of folic acid and incorporation of DOX: at 24h and an equivalent DOX concentration of 0.5 μg mL(-1), viable Caco2 cells were reduced to 45% while 3T3 cells were reduced to 83%. Interestingly the equivalent dose of free DOX was more toxic to 3T3 than to Caco2 cells, reducing the 3T3 viability to 72% and the Caco2 viability to 80%, which is likely due to the presence of the p-glycoprotein pumps in Caco2 cells. Folic acid conjugation served to enhance the viability of both cell lines in this work. Careful optimization of the folate content should further improve the cell specificity of the hollow silica nanoparticles, thus providing a viable targeting platform for cancer therapy.

  19. Substrate selectivity of diacylglycerol kinase in PDGF-stimulated 3T3 cells

    SciTech Connect

    MacDonald, M.L.; Mack, K.F.; Glomset, J.A.

    1987-05-01

    The authors investigated the properties of Diacylglycerol (DAG) Kinase in 3T3 cells. PDGF treatment caused an increase in DAG mass, an increase in incorporation of /sup 32/P into phosphatidic acid (PA) and phosphatidylinositol (PI), and an increase in the rate of phosphorylation of membrane DAG in vitro. The mechanism of enhanced phosphorylation of DAG was studied with dicaprylin (diC/sub 10/) as a probe. Cells were prelabeled with /sup 32/P and treated with PDGF or carrier. DiC/sub 10/ was added to the cell medium before harvesting. With PDGF treatment, the radioactivity in endogenous PA increased fourfold, whereas the radioactivity in PA/sub 10/ and PI/sub 10/ was consistently decreased. To verify that the PDGF effect on PA/sub 10/ formation in intact cells was due to reduced phosphorylation of diC/sub 10/ by DAG kinase, cells were treated with PDGF and/or diC/sub 10/, freeze-thawed, and then incubated with Mg(/sup 32/P)ATP. The rate of phosphorylation of cell-associated diC/sub 10/ was decreased 50% by PDGF treatment. This effect could not be explained by decreased intracellular levels of diC/sub 10/, or by saturation of DAG kinase with endogenous DAGs. Therefore, it seemed that endogenous DAGs, derived from PI, might be better substrates for DAG kinase than is diC/sub 10/. In studies of the properties of DAG kinase with pure DAGs in mixed detergent micelles, they found that the enzyme phosphorylated arachidonoyl-DAG more readily than diC/sub 10/. The selectivity of DAG kinase may play a key role in the formation of arachidonoyl species of PI.

  20. Induction of Adipocyte Differentiation by Polybrominated Diphenyl Ethers (PBDEs) in 3T3-L1 Cells

    PubMed Central

    Tung, Emily W. Y.; Boudreau, Adèle; Wade, Michael G.; Atlas, Ella

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX). A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2) and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis. PMID:24722056

  1. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells.

    PubMed

    Kim, Sang Chon; Kim, Yoo Hoon; Son, Sung Wook; Moon, Eun-Yi; Pyo, Suhkneung; Um, Sung Hee

    2015-11-27

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a naturally found flavonol in many fruits and vegetables and is known to have anti-aging, anti-cancer and anti-viral effects. However, the effects of fisetin on early adipocyte differentiation and the epigenetic regulator controlling adipogenic transcription factors remain unclear. Here, we show that fisetin inhibits lipid accumulation and suppresses the expression of PPARγ in 3T3-L1 cells. Fisetin suppressed early stages of preadipocyte differentiation, and induced expression of Sirt1. Depletion of Sirt1 abolished the inhibitory effects of fisetin on intracellular lipid accumulation and on PPARγ expression. Mechanistically, fisetin facilitated Sirt1-mediated deacetylation of PPARγ and FoxO1, and enhanced the association of Sirt1 with the PPARγ promoter, leading to suppression of PPARγ transcriptional activity, thereby repressing adipogenesis. Lowering Sirt1 levels reversed the effects of fisetin on deacetylation of PPARγ and increased PPARγ transactivation. Collectively, our results suggest the effects of fisetin in increasing Sirt1 expression and in epigenetic control of early adipogenesis.

  2. Five-parameter fluorescence imaging: wound healing of living Swiss 3T3 cells

    PubMed Central

    1987-01-01

    Cellular functions involve the temporal and spatial interplay of ions, metabolites, macromolecules, and organelles. To define the mechanisms responsible for completing cellular functions, we used methods that can yield both temporal and spatial information on multiple physiological parameters and chemical components in the same cell. We demonstrated that the combined use of selected fluorescent probes, fluorescence microscopy, and imaging methods can yield information on at least five separate cellular parameters and components in the same living cell. Furthermore, the temporal and spatial dynamics of each of the parameters and/or components can be correlated with one or more of the others. Five parameters were investigated by spectrally isolating defined regions of the ultraviolet, visible, and near-infrared spectrum based on five distinct fluorescent probes. The parameters included nuclei (Hoechst 33342), mitochondria (diIC1-[5] ), endosomes (lissamine rhodamine B-dextran), actin (fluorescein), and the cell volume Cy7- dextran). Nonmotile, confluent Swiss 3T3 cells did not show any detectable polarity of cell shape, or distribution of nuclei, endosomes, or mitochondria. These cells also organized a large percentage of the actin into stress fibers. In contrast, cells migrating into an in vitro wound exhibited at least two stages of reorganization of organelles and cytoplasm. During the first 3 h after wounding, the cells along the edge of the wound assumed a polarized shape, carried the nuclei in the rear of the cells, excluded endosomes and mitochondria from the lamellipodia, and lost most of the highly organized stress fibers. The cell showed a dramatic change between 3 and 7 h after producing the wound. The cells became highly elongated and motile; both the endosomes and the mitochondria penetrated into the lamellipodia, while the nuclei remained in the rear and the actin remained in less organized structures. Defining the temporal and spatial dynamics and

  3. Induction of mutagenesis and transformation in BALB/c-3T3 clone A31-1 cells by diverse chemical carcinogens

    SciTech Connect

    Lubet, R.A. ); Kouri, R.E.; Curren, R.A.; Putman, D.L.; Schechtman, L.M. )

    1990-01-01

    BALB/c-3T3 cells were employed to examine the genotoxic potential of a variety of known chemical carcinogens. BALB/c-3T3 cells displayed a dose-dependent transformation response to a variety of carcinogens (polycyclic hydrocarbons, methylating agents, ethylating agents, aflatoxin B{sub 1} (AFT{sub 1}), and 4-nitroquinoline-N-oxide (4-NQO)). When the ability of these compounds to induce mutagenesis to resistance to the cardiac glycoside ouabain (OUA{sup R}) was examined, the authors found the short chain alkylating agents to be particularly effective mutagens, causing biologic effects at doses below those necessary to induce a transformation response. In contrast, the polycyclic hydrocarbons which were potent transforming agents were weaker, albeit significant, mutagens for the OUA{sup R} locus in this system, while AFB{sub 1} was quite weak. Further studies were performed with 5-azacytidine (5-AZA) and the nongenotoxic carcinogen cinnamyl anthranilate (CIN). 5-AZA was a potent transforming agent, but failed to cause mutagenesis. CIN similarly caused in vitro transformation. When a series of eight structurally diverse compounds were examined in both the BALB/c-3T3 and C3H10T1/2 mouse fibroblast transformation systems, the BALB/c-3T3 system was shown to be sensitive to a wide variety of potential carcinogens, whereas the C3H10T1/2 system proved routinely sensitive only to the polycyclic hydrocarbons.

  4. Sphingosine kinase is induced in mouse 3T3-L1 cells and promotes adipogenesiss⃞

    PubMed Central

    Hashimoto, Takeshi; Igarashi, Junsuke; Kosaka, Hiroaki

    2009-01-01

    Sphingosine 1-phosphate (S1P) is a lysophospholipid mediator that exerts numerous biological activities both as a receptor ligand and as an intracellular second messenger. In the present study, we explored roles of sphingosine kinase (SphK), an S1P-producing enzyme, in adipose tissue. We utilized mouse 3T3-L1 cells as an in vitro model of adipogenesis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. Real-time quantitative PCR (qRT-PCR) assays revealed that the expression levels of transcripts encoding both isoforms of SphK-1 and SphK-2 are up-regulated during adipogenesis (37.6- and 6.6-fold vs. basal, P < 0.05, respectively). Concomitantly, SphK-1/SphK-2 protein abundance and S1P contents of these cells increased at 3 days after hormonal stimulation. Loss-of-function approaches by pharmacological inhibition of SphK activity as well as by transfection with small interfering RNA (siRNA) against SphK-1 led to significant attenuation of lipid droplet accumulation and adipocyte marker gene expression. We detected marked elevation of SphK-1 mRNA in adipose tissue derived from 13-week-old ob/ob mice with obese phenotype than their lean littermates. These results suggest that increased expression of SphK, an S1P-producing enzyme, plays a significant role during adipogenesis, potentially providing a novel point of control in adipose tissue. PMID:19020339

  5. Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Butters, R. R. Jr; Sugimoto, T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Osteoblasts appear at sites of osteoclastic bone resorption during bone remodeling in the "reversal" phase following osteoclastic resorption and preceding bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for osteoblasts in the vicinity, leading us to determine whether such osteoblasts express the CaR. In this study, we used the mouse osteoblastic, clonal cell line MC3T3-E1. Both immunocytochemistry and Western blot analysis, using an antiserum specific for the CaR, detected CaR protein in MC3T3-E1 cells. We also identified CaR transcripts in MC3T3-E1 cells by Northern analysis using a CaR-specific riboprobe and by reverse transcription-polymerase chain reaction with CaR-specific primers, followed by nucleotide sequencing of the amplified products. Exposure of MC3T3-E1 cells to high Ca2+o (up to 4.8 mM) or the polycationic CaR agonists, neomycin and gadolinium (Gd3+), stimulated both chemotaxis and DNA synthesis in MC3T3-E1 cells. Therefore, taken together, our data strongly suggest that the osteoblastic cell line MC3T3-E1 possesses both CaR protein and mRNA very similar, if not identical, to those in parathyroid and kidney. Furthermore, the CaR in these osteoblasts could play a key role in regulating bone turnover by stimulating the proliferation and migration of such cells to sites of bone resorption as a result of local release of Ca2+o.

  6. Shp2 suppresses the adipogenic differentiation of preadipocyte 3T3-L1 cells at an early stage

    PubMed Central

    Tao, J; Zheng, L; Meng, M; Li, Y; Lu, Z

    2016-01-01

    Tyrosine phosphatase protein Shp2 is a potential therapeutic target for obesity. However, the mechanism of Shp2 during adipogenesis is not fully understood. The present study investigated the role of Shp2 in the terminal differentiation of preadipocytes. The results showed that Shp2 suppressed adipocyte differentiation in 3T3-L1 cells; overexpression of Shp2 reduced lipid droplet production in 3T3-L1 cells, whereas Shp2 knockdown increased lipid droplet production in 3T3-L1 cells. Furthermore, inhibition of Shp2 activity also enhanced adipocyte differentiation. Interestingly, Shp2 expression was specifically decreased early during differentiation in response to stimulation with the dexamethasone–methylisobutylxanthine–insulin (DMI) hormone cocktail. During the first 2 days of differentiation, Shp2 overexpression impaired the DMI-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in 3T3-L1 cells and blocked the peak expression of CCAAT/enhancer-binding proteins β and δ during preadipocyte differentiation. In conclusion, Shp2 downregulated the early stages of hormone-induced differentiation of 3T3-L1 cells and inhibited the expression of the first wave of transcription factors by suppressing the DMI-induced STAT3 signaling pathway. These discoveries point to a novel role of Shp2 during adipogenesis and support the hypothesis that Shp2 could be a therapeutic target for the control of obesity. PMID:27551539

  7. A new lectin in red kidney beans called PvFRIL stimulates proliferation of NIH 3T3 cells expressing the Flt3 receptor.

    PubMed

    Moore, J G; Fuchs, C A; Hata, Y S; Hicklin, D J; Colucci, G; Chrispeels, M J; Feldman, M

    2000-07-26

    A new legume lectin has been identified by its ability to specifically stimulate proliferation of NIH 3T3 fibroblasts expressing the Flt3 tyrosine kinase receptor. The lectin was isolated from conditioned medium harvested from human peripheral blood mononuclear cells activated to secrete cytokines by a crude red kidney bean extract containing phytohemagglutinin (PHA). Untransfected 3T3 cells and 3T3 cells transfected with the related Fms tyrosine kinase receptor do not respond to this lectin, which we called PvFRIL (Phaseolus vulgaris Flt3 receptor-interacting lectin). When tested on cord blood mononuclear cells enriched for Flt3-expressing progenitors, purified PvFRIL fractions maintained a small population of cells that continued to express CD34 after 2 weeks in suspension cultures containing IL3. These cultures did not show the effects of IL3's strong induction of proliferation and differentiation (high cell number and exhausted medium); instead, low cell number at the end of the culture period resulted in persistence of cells in the context of cell death. These observations led to the hypothesis that PvFRIL acts in a dominant manner to preserve progenitor viability and prevent proliferation and differentiation.

  8. A new lectin in red kidney beans called PvFRIL stimulates proliferation of NIH 3T3 cells expressing the Flt3 receptor.

    PubMed

    Moore, J G; Fuchs, C A; Hata, Y S; Hicklin, D J; Colucci, G; Chrispeels, M J; Feldman, M

    2000-07-26

    A new legume lectin has been identified by its ability to specifically stimulate proliferation of NIH 3T3 fibroblasts expressing the Flt3 tyrosine kinase receptor. The lectin was isolated from conditioned medium harvested from human peripheral blood mononuclear cells activated to secrete cytokines by a crude red kidney bean extract containing phytohemagglutinin (PHA). Untransfected 3T3 cells and 3T3 cells transfected with the related Fms tyrosine kinase receptor do not respond to this lectin, which we called PvFRIL (Phaseolus vulgaris Flt3 receptor-interacting lectin). When tested on cord blood mononuclear cells enriched for Flt3-expressing progenitors, purified PvFRIL fractions maintained a small population of cells that continued to express CD34 after 2 weeks in suspension cultures containing IL3. These cultures did not show the effects of IL3's strong induction of proliferation and differentiation (high cell number and exhausted medium); instead, low cell number at the end of the culture period resulted in persistence of cells in the context of cell death. These observations led to the hypothesis that PvFRIL acts in a dominant manner to preserve progenitor viability and prevent proliferation and differentiation. PMID:10913819

  9. Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells.

    PubMed

    Kamon, Masayoshi; Zhao, Ran; Sakamoto, Kazuichi

    2009-12-16

    Recently, various physiological effects of the tea polyphenol catechin for alleviating diseases such as cancer, arteriosclerosis, hyperlipidaemia and osteoporosis have been reported. However, the physiological effect of catechin on bone metabolism remains unclear. We examined the physiological effect of EGCG [(-)-epigallocatechin-3-gallate], which is the main component of green tea catechin, on osteoblast development using the precursor cell line of osteoblasts, MC3T3-E1, and co-culture of the osteoblasts from mouse newborn calvaria and mouse bone marrow cells. Although EGCG did not affect the viability and proliferation of MC3T3-E1 cells, EGCG inhibited the osteoblast differentiation. Furthermore, EGCG did not affect the mineralization of differentiated MC3T3-E1 cells, and reduced osteoclast formation in co-culture. These results suggest that EGCG can effectively suppress bone resorption, and can be used as an effective medicine in the treatment of the symptoms of osteoporosis.

  10. Effect of Black Soybean Koji Extract on Glucose Utilization and Adipocyte Differentiation in 3T3-L1 Cells

    PubMed Central

    Huang, Chi-Chang; Huang, Wen-Ching; Hou, Chien-Wen; Chi, Yu-Wei; Huang, Hui-Yu

    2014-01-01

    Adipocyte differentiation and the extent of subsequent fat accumulation are closely related to the occurrence and progression of diseases such as insulin resistance and obesity. Black soybean koji (BSK) is produced by the fermentation of black soybean with Aspergilllus awamori. Previous study indicated that BSK extract has antioxidative and multifunctional bioactivities, however, the role of BSK in the regulation of energy metabolism is still unclear. We aimed to investigate the effect of glucose utilization on insulin-resistant 3T3-L1 preadipocytes and adipogenesis-related protein expression in differentiated adipocytes with BSK treatment. Cytoxicity assay revealed that BSK did not adversely affect cell viability at levels up to 200 μg/mL. The potential for glucose utilization was increased by increased glucose transporter 1 (GLUT1), GLUT4 and protein kinase B (AKT) protein expression in insulin-resistant 3T3-L1 cells in response to BSK treatment. Simultaneously, BSK inhibited lipid droplet accumulation in differentiated 3T3-L1 cells. The inhibitory effect of adipogenesis was associated with downregulated peroxisome proliferator-activated receptor γ (PPARγ) level and upregulated Acrp30 protein expression. Our results suggest that BSK extract could improve glucose uptake by modulating GLUT1 and GLUT4 expression in a 3T3-L1 insulin-resistance cell model. In addition, BSK suppressed differentiation and lipid accumulation in mature 3T3-L1 adipocytes, which may suggest its potential for food supplementation to prevent obesity and related metabolic abnormalities. PMID:24821545

  11. A Swiss 3T3 variant cell line resistant to the effects of tumor promoters cannot be transformed by src.

    PubMed Central

    Nori, M; Shawver, L K; Weber, M J

    1990-01-01

    To study the relationship between oncogenesis by v-src and normal cellular signalling pathways, we determined the effects of v-src on 3T3-TNR9 cells, a Swiss 3T3 variant which does not respond mitogenically to tumor promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We found that src was unable to transform these variant cells, whether the oncogene was introduced by infection with a murine retrovirus vector or by transfection with plasmid DNA. 3T3-TNR9 cells were not inherently resistant to transformation, since infection with similar recombinant retroviruses containing either v-ras or v-abl did induce transformation. Further analysis of Swiss 3T3 and 3T3-TNR9 cell populations infected with the v-src-containing retrovirus revealed that although the amount of v-src DNA in each was approximately the same, the level of the v-src message and protein and the overall level of phosphotyrosine expressed in the infected variants was much less than in infected parental cells. Cotransfection experiments using separate v-src and neo plasmids revealed a decrease in the number of G418-resistant colonies when transfections of TNR9 cells occurred in the presence of the src-containing plasmid, suggesting a growth inhibitory effect of v-src on 3T3-TNR9 cells, as has also been found for TPA itself. Since v-src cannot transform this variant cell line, which does not respond mitogenically to the protein kinase C agonist TPA, we suggest that src makes use of the protein kinase C pathway as part of its signalling activities. Images PMID:2115120

  12. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    SciTech Connect

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2014-02-15

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  13. A role for cortactin in Listeria monocytogenes invasion of NIH 3T3 cells, but not in its intracellular motility.

    PubMed

    Barroso, Consuelo; Rodenbusch, Stacia E; Welch, Matthew D; Drubin, David G

    2006-04-01

    Cortactin is an F-actin binding protein that binds to the Arp2/3 complex, stimulates its actin nucleation activity, and inhibits actin filament debranching. Using RNA interference directed against cortactin, we explored the importance of cortactin for several processes involving dynamic actin assembly. Silencing cortactin expression was efficiently achieved in HeLa and NIH 3T3 cells, with less than 5% of cortactin expression in siRNA-treated cells. Surprisingly, endocytosis in HeLa and NIH 3T3 cells, and cell migration rates, were not altered by RNAi-mediated cortactin silencing. Listeria utilizes actin-based motility to move within and spread among mammalian host cells; its actin-clouds and tails recruit cortactin. We explored the role of cortactin during the Listeria life cycle in cortactin "knockdown" NIH 3T3 cells. Interestingly, cortactin siRNA-treated cells showed a significant reduction in the efficiency of the bacteria invasion in NIH 3T3 cells. However, cortactin depletion did not interfere with assembly of Listeria actin clouds or actin tails, or Listeria intracellular motility or speed. Therefore, our findings suggest that cortactin plays a role in Listeria internalization, but not in the formation of actin clouds and tails, or in bacteria intracellular motility.

  14. Rubi Fructus (Rubus coreanus) Inhibits Differentiation to Adipocytes in 3T3-L1 Cells.

    PubMed

    Jeong, Mi-Young; Kim, Hye-Lin; Park, Jinbong; An, Hyo-Jin; Kim, Sung-Hoon; Kim, Su-Jin; So, Hong-Seob; Park, Raekil; Um, Jae-Young; Hong, Seung-Heon

    2013-01-01

    Rubi Fructus (RF) is known to exert several pharmacological effects including antitumor, antioxidant, and anti-inflammatory activities. However, its antiobesity effect has not been reported yet. This study was focused on the antidifferentiation effect of RF extract on 3T3-L1 preadipocytes. When 3T3-L1 preadipocytes were differentiating into adipocytes, 10-100  μ g/mL of RF was added. Next, the lipid contents were quantified by Oil Red O staining. RF significantly reduced lipid accumulation and downregulated the expression of peroxisome proliferator-activated receptor γ (PPAR γ ), CCAAT0-enhancer-binding proteins α (C/EBP α ), adipocyte fatty acid-binding protein 2 (aP2), resistin, and adiponectin in ways that were concentration dependent. Moreover, RF markedly upregulated liver kinase B1 and AMP-activated protein kinase (AMPK). Interestingly, pretreatment with AMPK α siRNA and RF downregulated the expression of PPAR γ and C/EBP α protein as well as the adipocyte differentiation. Our study shows that RF is capable of inhibiting the differentiation of 3T3-L1 adipocytes through the modulation of PPAR γ , C/EBP α , and AMPK, suggesting that it has a potential for therapeutic application in the treatment or prevention of obesity.

  15. Determination of the differentiation capacities of murines' primary mononucleated cells and MC3T3-E1 cells

    PubMed Central

    2010-01-01

    Background The main morphological features of primitive cells, such as stem and progenitor cells, are that these cells consists only one nucleus. The main purpose of this study was to determine the differentiation capacities of stem and progenitor cells. This study was performed using mononucleated cells originated from murine peripheral blood and MC3T3-E1 cells. Three approaches were used to determine their differentiation capacities: 1) Biochemical assays, 2) Gene expression analysis, and 3) Morphological observations. Results We found that both cells were able to differentiate into mature osteoblasts, as assayed by ALP activity. RT-PCR analysis showed the activation of the Opn gene after osteoblast differentiation. Morphological observations of both cells revealed the formation of black or dark-brown nodules after von Kossa staining. Nevertheless, only mononucleated cells showed the significant increase in TRAP activity characteristic of mature osteoclasts. The osteoclast-specific CatK gene was only upregulated in mononucleated cells. Morphological observations indicated the existence of multinucleated osteoclasts. Sca-1 was activated only in undifferentiated mononucleated cells, indicating that the cells were hematopoietic stem cells. In both cell lines, the housekeeping Gapdh gene was activated before and after differentiation. Conclusion The isolated mononucleated cells were able to differentiate into both osteoblasts and osteoclasts; indicating that they are stem cells. On the other hand, MC3T3-E1 cells can only differentiate into osteoblasts; a characteristic of progenitor cells. PMID:20979664

  16. Antiproliferative activity of flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the MCF7, KB, and NIH/3T3 cell lines.

    PubMed

    Nedel, Fernanda; Begnini, Karine; Carvalho, Pedro Henrique de Azambuja; Lund, Rafael Guerra; Beira, Fátima T A; Del Pino, Francisco Augusto B

    2012-11-01

    This study assessed the antiproliferative effect in vitro of the flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the human breast adenocarcinoma (MCF-7), human mouth epidermal carcinoma (KB), and mouse embryonic fibroblast (NIH 3T3) cell lines, using sulforhodamine B (SRB) assay. A cell density of 2×10(4)/well was seeded in 96-well plates, and samples at different concentrations ranging from 10 to 500 mg/mL were tested. The optical density was determined in an ELISA multiplate reader (Thermo Plate TP-Reader). Results demonstrated that the hexane extract presented antiproliferative activity against both the tumor cell lines KB and MCF-7, presenting a GI(50) (MCF-7=13.09 mg/mL), TGI (KB=37.76 mg/mL), and IL(50) (KB=291.07 mg/mL). Also, the hexane extract presented antiproliferative activity toward NIH 3T3 cells GI(50) (183.65 mg/mL), TGI (280.54 mg/mL), and IL(50) (384.59 mg/mL). The results indicate that the flower hexane extract obtained from M. spicata associated with M. rotundifolia presents an antineoplastic activity against KB and MCF-7, although an antiproliferative effect at a high concentration of the extract was observed toward NIH 3T3.

  17. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    SciTech Connect

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan; Cui, Rong-Rong; Yuan, Ling-Qing Liao, Er-Yuan

    2013-11-01

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T3-E1

  18. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells

    SciTech Connect

    Sagara, Chiaki; Takahashi, Katsuhiko; Kagechika, Hiroyuki; Takahashi, Noriko

    2013-03-29

    Highlights: ► We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ► 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ► A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ► This antagonist had no effects on RXRα and PPARγ levels in 9-cis-RA-treated cells. ► 9-cis-RA-induced decrease in both RXRα and PPARγ was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA’s inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner.

  19. 6-gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells.

    PubMed

    Tzeng, Thing-Fong; Liu, I-Min

    2013-04-15

    6-Gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) is one of the pungent constituents of Zingiber zerumbet (L) Smith (Zingiberaceae family). In this study, we investigated the effects of 6-gingerol on the inhibition of adipogenesis in 3T3-L1 cells. After treatment with 6-gingerol in differentiation medium for 4 or 8 days, the 3T3-L1 cells were lysed for experimental analysis. Cells were stained with Oil-Red-O to detect oil droplets in adipocytes. The 3T3-L1 cells were lysed and measured for triglyceride contents. The protein expression of adipogenesis-related transcription factor was evaluated by Western blot analysis. 6-Gingerol suppressed oil droplet accumulation and reduced the droplet size in a concentration (5-15 μg/ml)- and time-dependent manner. Treatment of 3T3-L1 cells with 6-gingerol reduced the protein levels of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α. Additionally, the protein levels of fatty acid synthase (FAS) and adipocyte-specific fatty acid binding protein (aP2) decreased upon treatment with 6-gingerol. Meanwhile, 6-gingerol diminished the insulin-stimulated serine phosphorylation of Akt (Ser473) and GSK3β (Ser9). These results suggest that 6-gingerol effectively suppresses adipogenesis and that it exerts its role mainly through the significant down-regulation of PPARγ and C/EBPα and subsequently inhibits FAS and aP2 expression. 6-Gingerol also inhibited differentiation in 3T3-L1 cells by attenuating the Akt/GSK3β pathway. Our findings provide important insights into the mechanisms underlying the anti-adipogenic activity of 6-gingerol. PMID:23369342

  20. Averrhoa carambola L. peel extract suppresses adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Rashid, Asyifah Mohamed; Lu, Kaihui; Yip, Yew Mun; Zhang, Dawei

    2016-02-01

    Obesity is associated with an increased risk of many chronic diseases. Recently, a growing body of evidence has shown that phytochemicals may inhibit adipogenesis and obesity. In this study, we report for the first time, the ability of Averrhoa carambola L. peel extract commonly known as star fruit (SFP) to effectively suppress adipocyte differentiation in 3T3-L1 preadipocytes and therefore, address it as a potential candidate to treat obesity and its related diseases. (-)-Epicatechin was identified as a bioactive compound likely responsible for this suppression. As the genetic expression studies revealed that the adipogenic activity of SFP extract was due to the simultaneous downregulation of the C/EBPα and PPARγ as well as the upregulation of PPARα receptor genes, a detailed computational docking study was also elucidated to reveal the likely binding mode of (-)-epicatechin to the receptor of interest, accounting for the likely mechanism that results in the overall suppression of adipocyte differentiation.

  1. Proinsulin C-peptide stimulates a PKC/IkappaB/NF-kappaB signaling pathway to activate COX-2 gene transcription in Swiss 3T3 fibroblasts.

    PubMed

    Kitazawa, Masashi; Shibata, Yasutaka; Hashimoto, Seiichi; Ohizumi, Yasushi; Yamakuni, Tohru

    2006-06-01

    Proinsulin C-peptide causes multiple molecular and physiological effects, and improves renal and neuronal dysfunction in patients with diabetes. However, whether C-peptide controls the inhibitor kappaB (IkappaB)/NF-kappaB-dependent transcription of genes, including inflammatory genes is unknown. Here we showed that 1 nM C-peptide increased the expression of cyclooxygenase-2 (COX-2) mRNA and its protein in Swiss 3T3 fibroblasts. Consistently, C-peptide enhanced COX-2 gene promoter-activity, which was inhibited by GF109203X and Go6976, specific PKC inhibitors, and BAY11-7082, a specific nuclear factor-kappaB (NF-kappaB) inhibitor, accompanied by increased phosphorylation and degradation of IkappaB. These results suggest that C-peptide stimulates the transcription of inflammatory genes via activation of a PKC/IkappaB/NF-kappaB signaling pathway.

  2. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko; Nishio, Hiroaki

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  3. Nickel-Refining Fumes Induced DNA Damage and Apoptosis of NIH/3T3 Cells via Oxidative Stress

    PubMed Central

    Wang, Yue; Wang, Sheng-Yuan; Jia, Li; Zhang, Lin; Ba, Jing-Chong; Han, Dan; Yu, Cui-Ping; Wu, Yong-Hui

    2016-01-01

    Although there have been numerous studies examining the toxicity and carcinogenicity of nickel compounds in humans and animals, its molecular mechanisms of action are not fully elucidated. In our research, NIH/3T3 cells were exposed to nickel-refining fumes at the concentrations of 0, 6.25, 12.50, 25, 50 and 100 μg/mL for 24 h. Cell viability, cell apoptosis, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) assay, the level of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) level were detected. The exposure of NIH/3T3 cells to nickel-refining fumes significantly reduced cell viability and induced cell apoptotic death in a dose-dependent manner. Nickel-refining fumes significantly increased ROS levels and induced DNA damage. Nickel-refining fumes may induce the changes in the state of ROS, which may eventually initiate oxidative stress, DNA damage and apoptosis of NIH/3T3 cells. PMID:27347984

  4. Nickel-Refining Fumes Induced DNA Damage and Apoptosis of NIH/3T3 Cells via Oxidative Stress.

    PubMed

    Wang, Yue; Wang, Sheng-Yuan; Jia, Li; Zhang, Lin; Ba, Jing-Chong; Han, Dan; Yu, Cui-Ping; Wu, Yong-Hui

    2016-01-01

    Although there have been numerous studies examining the toxicity and carcinogenicity of nickel compounds in humans and animals, its molecular mechanisms of action are not fully elucidated. In our research, NIH/3T3 cells were exposed to nickel-refining fumes at the concentrations of 0, 6.25, 12.50, 25, 50 and 100 μg/mL for 24 h. Cell viability, cell apoptosis, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) assay, the level of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) level were detected. The exposure of NIH/3T3 cells to nickel-refining fumes significantly reduced cell viability and induced cell apoptotic death in a dose-dependent manner. Nickel-refining fumes significantly increased ROS levels and induced DNA damage. Nickel-refining fumes may induce the changes in the state of ROS, which may eventually initiate oxidative stress, DNA damage and apoptosis of NIH/3T3 cells. PMID:27347984

  5. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    SciTech Connect

    Kim, Soon-hee; Park, Hee-Sook; Lee, Myoung-su; Cho, Yong-Jin; Kim, Young-Sup; Hwang, Jin-Taek; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young

    2008-07-18

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPAR{gamma} expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression, while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest.

  6. Two new approaches to improve the analysis of BALB/c 3T3 cell transformation assay data.

    PubMed

    Hoffmann, Sebastian; Hothorn, Ludwig A; Edler, Lutz; Kleensang, André; Suzuki, Masaya; Phrakonkham, Pascal; Gerhard, Daniel

    2012-04-11

    Validation activities of the BALB/c 3T3 cell transformation assay (CTA) - a test method used for the assessment of the carcinogenic potential of compounds - have revealed the need for statistical analysis tailored to specific features of BALB/c 3T3 CTA data. Whereas a standard statistical approach for the Syrian hamster embryo (SHE) CTA was considered sufficient, an international expert group was gathered by the European Centre for the Validation of Alternative Methods (ECVAM) to review commonly applied statistical approaches for BALB/c 3T3 CTA. As it was concluded that none of the commonly applied approaches is entirely appropriate, two novel statistical approaches were found to be recommended for the evaluation of BALB/c 3T3 CTA data accounting for possible non-monotone concentration-response relationship and variance heterogeneity: a negative binomial generalised linear model with William's-type downturn-protected trend tests and a normalisation of the data by a specific transformation allowing for application of a general linear model that estimates effects assuming a normal distribution with William's-type protected tests. Both approaches are described in this article and their performance and the quality of the results they generate is demonstrated using exemplary data. Our work confirmed that both approaches are suitable for the statistical analysis of BALB/c 3T3 CTA data and that each of them is superior to commonly used methods. Furthermore, a procedure dichotomising data into negatives and positives is proposed which allows re-testing in cases where inconclusive data are encountered. The scripts of the statistical evaluation programs written in R - a freely available statistical software - are appended including exemplary outputs (Appendix A).

  7. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity.

    PubMed

    Hammer, Bruce E; Kidder, Louis S; Williams, Philip C; Xu, Wayne Wenzhong

    2009-11-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed. PMID:20052306

  8. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity.

    PubMed

    Hammer, Bruce E; Kidder, Louis S; Williams, Philip C; Xu, Wayne Wenzhong

    2009-11-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed.

  9. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity

    PubMed Central

    Kidder, Louis S.; Williams, Philip C.; Xu, Wayne Wenzhong

    2009-01-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed. PMID:20052306

  10. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    PubMed

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription.

  11. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells.

    PubMed

    Sagara, Chiaki; Takahashi, Katsuhiko; Kagechika, Hiroyuki; Takahashi, Noriko

    2013-03-29

    Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA's inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner. PMID:23485459

  12. Collagen-derived dipeptide prolyl-hydroxyproline promotes differentiation of MC3T3-E1 osteoblastic cells

    SciTech Connect

    Kimira, Yoshifumi; Ogura, Kana; Taniuchi, Yuri; Kataoka, Aya; Inoue, Naoki; Sugihara, Fumihito; Nakatani, Sachie; Shimizu, Jun; Wada, Masahiro; Mano, Hiroshi

    2014-10-24

    Highlights: • Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization. • Pro-Hyp significantly increased alkaline phosphatase activity. • Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. - Abstract: Prolyl-hydroxyproline (Pro-Hyp) is one of the major constituents of collagen-derived dipeptides. The objective of this study was to investigate the effects of Pro-Hyp on the proliferation and differentiation of MC3T3-E1 osteoblastic cells. Addition of Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization but alkaline phosphatase activity was significantly increased. Furthermore, cells treated with Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. These results indicate that Pro-Hyp promotes osteoblast differentiation. This study demonstrates for the first time that Pro-Hyp has a positive effect on osteoblast differentiation with upregulation of Runx2, Osterix, and Collα1 gene expression.

  13. Novel ATP-binding heat-inducible protein of Mr = 37,000 that is sensitive to transformation in BALB/3T3 cells.

    PubMed

    Nakai, A; Hirayama, C; Ohtsuka, K; Hirayoshi, K; Nagata, K

    1990-06-01

    Using affinity chromatography on ATP-agarose, we have identified a major ATP-binding protein in Nonidet P-40 extracts of avian and mammalian cells labeled with [35S]methionine. After washing ATP-agarose beads with high-ionic-strength buffer (0.4 M NaCl), the 37-kD protein was shown to be one of the major ATP-binding proteins while p72 and grp78, which are members of the hsp70 family, also bound to ATP-agarose. This protein consisted of several spots on two-dimensional gel electrophoresis. The isoelectric point of the most basic spot was approximately 9.2 in chick embryo fibroblasts, whereas it was about 8.8 in mouse 3T3 cells. The identities of these proteins in mouse and chick cells were confirmed by peptide mapping. After heat-shock treatment of BALB/3T3 cells, the major heat-shock protein, hsp70, was shown to be induced very rapidly after heat shock and was recovered in the ATP-binding fraction. Besides hsp70, a 37-kD protein was also found to be induced by heat shock. This protein was drastically induced by treating the cells with alpha,alpha'-dipyridyl, an iron chelating reagent, but not with sodium arsenite, calcium ionophore, or tunicamycin. The synthesis and the total amount of this ATP-binding protein increased in mouse 3T3 cells transformed by simian virus 40, methylcholanthrene, or activated c-Ha-ras oncogene compared to their normal counterparts. The incorporation of [32P]orthophosphate was not detected in either normal or transformed cells. These studies established that a major ATP-binding protein of Mr = 37,000 is a heat-inducible protein and that the synthesis of this protein is regulated by malignant transformation.

  14. Novel ATP-binding heat-inducible protein of Mr = 37,000 that is sensitive to transformation in BALB/3T3 cells

    SciTech Connect

    Nakai, A.; Hirayama, C.; Ohtsuka, K.; Hirayoshi, K.; Nagata, K. )

    1990-06-01

    Using affinity chromatography on ATP-agarose, we have identified a major ATP-binding protein in Nonidet P-40 extracts of avian and mammalian cells labeled with (35S)methionine. After washing ATP-agarose beads with high-ionic-strength buffer (0.4 M NaCl), the 37-kD protein was shown to be one of the major ATP-binding proteins while p72 and grp78, which are members of the hsp70 family, also bound to ATP-agarose. This protein consisted of several spots on two-dimensional gel electrophoresis. The isoelectric point of the most basic spot was approximately 9.2 in chick embryo fibroblasts, whereas it was about 8.8 in mouse 3T3 cells. The identities of these proteins in mouse and chick cells were confirmed by peptide mapping. After heat-shock treatment of BALB/3T3 cells, the major heat-shock protein, hsp70, was shown to be induced very rapidly after heat shock and was recovered in the ATP-binding fraction. Besides hsp70, a 37-kD protein was also found to be induced by heat shock. This protein was drastically induced by treating the cells with alpha,alpha'-dipyridyl, an iron chelating reagent, but not with sodium arsenite, calcium ionophore, or tunicamycin. The synthesis and the total amount of this ATP-binding protein increased in mouse 3T3 cells transformed by simian virus 40, methylcholanthrene, or activated c-Ha-ras oncogene compared to their normal counterparts. The incorporation of (32P)orthophosphate was not detected in either normal or transformed cells. These studies established that a major ATP-binding protein of Mr = 37,000 is a heat-inducible protein and that the synthesis of this protein is regulated by malignant transformation.

  15. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells

    PubMed Central

    2012-01-01

    Background Obesity is a health hazard that is associated with a number of diseases and metabolic abnormalities, such as type-2 diabetes, hypertension, dyslipidemia, and coronary heart disease. In the current study, we investigated the effects of Citrus aurantium flavonoids (CAF) on the inhibition of adipogenesis and adipocyte differentiation in 3T3-L1 cells. Methods During adipocyte differentiation, 3T3-L1 cells were treated with 0, 10, and 50 μg/ml CAF, and then the mRNA and protein expression of adipogenesis-related genes was assayed. We examined the effect of CAF on level of phosphorylated Akt in 3T3-L1 cells treated with CAF at various concentrations during adipocyte differentiation. Results The insulin-induced expression of C/EBPβ and PPARγ mRNA and protein were significantly down-regulated in a dose-dependent manner following CAF treatment. CAF also dramatically decreased the expression of C/EBPα, which is essential for the acquisition of insulin sensitivity by adipocytes. Moreover, the expression of the aP2 and FAS genes, which are involved in lipid metabolism, decreased dramatically upon treatment with CAF. Interestingly, CAF diminished the insulin-stimulated serine phosphorylation of Akt (Ser473) and GSK3β (Ser9), which may reduce glucose uptake in response to insulin and lipid accumulation. Furthermore, CAF not only inhibited triglyceride accumulation during adipogenesis but also contributed to the lipolysis of adipocytes. Conclusions In the present study, we demonstrate that CAF suppressed adipogenesis in 3T3-L1 adipocytes. Our results indicated that CAF down-regulates the expression of C/EBPβ and subsequently inhibits the activation of PPARγ and C/EBPα. The anti-adipogenic activity of CAF was mediated by the inhibition of Akt activation and GSK3β phosphorylation, which induced the down-regulation of lipid accumulation and lipid metabolizing genes, ultimately inhibiting adipocyte differentiation. PMID:22471389

  16. Magnetic Beads Enhance Adhesion of NIH 3T3 Fibroblasts: A Proof-of-Principle In Vitro Study for Implant-Mediated Long-Term Drug Delivery to the Inner Ear

    PubMed Central

    Aliuos, Pooyan; Schulze, Jennifer; Schomaker, Markus; Reuter, Günter; Stolle, Stefan R. O.; Werner, Darja; Ripken, Tammo; Lenarz, Thomas; Warnecke, Athanasia

    2016-01-01

    Introduction Long-term drug delivery to the inner ear may be achieved by functionalizing cochlear implant (CI) electrodes with cells providing neuroprotective factors. However, effective strategies in order to coat implant surfaces with cells need to be developed. Our vision is to make benefit of electromagnetic field attracting forces generated by CI electrodes to bind BDNF-secreting cells that are labelled with magnetic beads (MB) onto the electrode surfaces. Thus, the effect of MB-labelling on cell viability and BDNF production were investigated. Materials and Methods Murine NIH 3T3 fibroblasts—genetically modified to produce BDNF—were labelled with MB. Results Atomic force and bright field microscopy illustrated the internalization of MB by fibroblasts after 24 h of cultivation. Labelling cells with MB did not expose cytotoxic effects on fibroblasts and allowed adhesion on magnetic surfaces with sufficient BDNF release. Discussion Our data demonstrate a novel approach for mediating enhanced long-term adhesion of BDNF-secreting fibroblasts on model electrode surfaces for cell-based drug delivery applications in vitro and in vivo. This therapeutic strategy, once transferred to cells suitable for clinical application, may allow the biological modifications of CI surfaces with cells releasing neurotrophic or other factors of interest. PMID:26918945

  17. 4-Hydroxyderricin, as a PPARγ Agonist, Promotes Adipogenesis, Adiponectin Secretion, and Glucose Uptake in 3T3-L1 Cells.

    PubMed

    Li, Yongjia; Goto, Tsuyoshi; Yamakuni, Kanae; Takahashi, Haruya; Takahashi, Nobuyuki; Jheng, Huei-Fen; Nomura, Wataru; Taniguchi, Masahiko; Baba, Kimiye; Murakami, Shigeru; Kawada, Teruo

    2016-07-01

    Adipocyte differentiation plays a pivotal role in maintaining the production of small-size adipocytes with insulin sensitivity, and impaired adipogenesis is implicated in insulin resistance. 4-Hydroxyderricin (4-HD), a phytochemical component of Angelica keiskei, possesses diverse biological properties such as anti-inflammatory, antidiabetic, and antitumor. In the present study, we investigated the effects of 4-HD on adipocyte differentiation. 4-HD promoted lipid accumulation in 3T3-L1 cells, upregulated both peroxisome proliferator-activated receptor (PPAR)-γ mRNA and protein expression, and acted as a ligand for PPARγ in the luciferase assay. Moreover, 4-HD increased the mRNA and protein expression levels of adiponectin. Additionally, it promoted insulin-dependent glucose uptake into 3T3-L1 adipocytes and increased Akt phosphorylation and glucose transporter (GLUT) 4 mRNA expression. In summary, these findings suggest that 4-HD, which promoted adipogenesis and insulin sensitivity in 3T3-L1 cells, might be a phytochemical with potent insulin-sensitizing effects. PMID:27098252

  18. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    SciTech Connect

    Whittaker, J.; Okamoto, A.K.; Thys, R.; Bell, G.I.; Steiner, D.F.; Hofmann, C.A.

    1987-08-01

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 10/sup 6/ receptors per cell. The cell line with the highest /sup 125/I-insulin binding (NIH 3T3 HIR3.5) had 6 x 10/sup 6/ receptors with a K/sub d/ of 10/sup -9/ M. This level was not dependent on exposure to metals but could be increased further to 2 x 10/sup 7/ receptors per cell by addition of sodium butyrate to the culture medium. The ..cap alpha.. and ..beta.. subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the ..cap alpha.. and ..beta.. subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  19. Changes in chromatin structure in NIH 3T3 cells induced by valproic acid and trichostatin A.

    PubMed

    Felisbino, Marina Barreto; Gatti, Maria Silvia Viccari; Mello, Maria Luiza S

    2014-11-01

    Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.

  20. Isoflavones in Chickpeas Inhibit Adipocyte Differentiation and Prevent Insulin Resistance in 3T3-L1 Cells.

    PubMed

    Gao, Yue; Yao, Yang; Zhu, Yinging; Ren, Guixing

    2015-11-11

    Diabetes mellitus is a metabolic disease characterized by hyperglycemia arising from defects in insulin secretion. This study investigated the effects of isoflavones in chickpea sprouts germinated in light (IGL) and isoflavones in chickpea seeds (ICS) on insulin resistance through their role in suppression of 3T3-L1 adipocyte differentiation. Results showed that IGL and ICS inhibit the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, and the suppressive effect of IGL was stronger (p < 0.05) than that of ICS, evidenced by a decrease of Oil Red O staining and intracellular triacylglycerol content in the mature adipocytes. IGL and ICS also stimulated glucose uptake significantly (p < 0.05). Besides, IGL and ICS treatment caused a significant decrease in mRNA and protein expression levels of adipogenesis-related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα). Furthermore, the mRNA and protein expression levels of adipocyte fatty acid-binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose transporter 4 (Glut4) in 3T3-L1 cells were also markedly down-regulated (p < 0.05).

  1. Restoration of murine femoral segmental defect using CTGF-overexpressing MC3T3-E1 cells

    PubMed Central

    Huang, Xiangyu; Li, Yanqiu; Xu, Jiantao; Liu, Kai; Yu, Xin; Cheng, Xin; Xu, Dongdong; Li, Zubing

    2016-01-01

    Connective tissue growth factor (CTGF) is a member of the CCN super family and is reported to widely participate in bone development and regeneration. This study aimed to restore murine femoral segmental defect using CTGF-overexpressing MC3T3-E1 cells. MC3T3-E1 cells were transinfected by lenti-CTGF (LvCTGF) and lenti-negative control (LvNC) virus to obtain stably transinfected cells. Real-time PCR, Western blot, alkaline phosphatase activity assay, and alizarin red staining demonstrated that the overexpression of CTGF enhanced osteogenesis in vitro. Cell migration assay results showed that LvCTGF cells expressed higher migration ability than LvNC cells, while CCK-8 assay revealed no significant difference in cell proliferation. The LvCTGF and LvNC cells were then seeded into a chitosan/β-TCP scaffold and were used to restore a murine femoral segmental defect. Samples were harvested by the end of 2 and 5 weeks respectively. Micro-CT analysis and Masson’s trichrome staining results showed that the LvCTGF-scaffold group expressed better bone healing compared with the LvNC-scaffold and scaffold-only groups. CTGF-overexpressed cells serve as an efficient source of seeding cells for bone regeneration. PMID:27186279

  2. Liraglutide attenuates the osteoblastic differentiation of MC3T3-E1 cells by modulating AMPK/mTOR signaling

    PubMed Central

    Hu, Xiong-Ke; Yin, Xin-Hua; Zhang, Hong-Qi; Guo, Chao-Feng; Tang, Ming-Xing

    2016-01-01

    Liraglutide, a synthetic analogue of glucagon-like peptide-1, is utilized in the treatment of type 2 diabetes and obesity. Liraglutide has been previously demonstrated to prevent osteoblastic differentiation of human vascular smooth muscle cells, resulting in the slowing of arterial calcification, however, its effect on bone formation remains unclear. The present study investigated the effect of liraglutide on osteoblastic differentiation using Alizarin Red S staining, and examined the molecular mechanisms underlying the regulatory effect by western blot analysis. The present study demonstrated that protein expression levels of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were downregulated in MC3T3-E1 cells during osteoblastic differentiation in commercial osteogenic differentiation medium, whereas protein expression levels of transforming growth factor-β (TGF-β) and phosphorylated mammalian target of rapamycin (p-mTOR) increased. Liraglutide was subsequently demonstrated to dose-dependently attenuate the osteoblastic differentiation of MC3T3-E1 cells, to upregulate p-AMPK, and downregulate p-mTOR and TGF-β protein expression levels. Treatment with an AMPK-specific inhibitor, Compound C, eradicated the effect of liraglutide on osteoblastic differentiation, and p-mTOR and TGF-β downregulation. An mTOR activator, MHY1485, also abolished the inhibitory effect of liraglutide on osteoblastic differentiation, and resulted in p-mTOR and TGF-β downregulation, but did not attenuate the liraglutide-induced increase in p-AMPK protein expression levels. The results of the present study demonstrate that liraglutide attenuates osteoblastic differentiation of MC3T3-E1 cells via modulation of AMPK/mTOR signaling. The present study revealed a novel function of liraglutide, which contributes to the understanding of its pharmacological and physiological effects in clinical settings. PMID:27600753

  3. Cell density and growth-dependent down-regulation of both intracellular calcium responses to agonist stimuli and expression of smooth-surfaced endoplasmic reticulum in MC3T3-E1 osteoblast-like cells.

    PubMed

    Koizumi, Toshiyuki; Hikiji, Hisako; Shin, Wee Soo; Takato, Tsuyoshi; Fukuda, Satoru; Abe, Takahiro; Koshikiya, Noboru; Iwasawa, Kuniaki; Toyo-oka, Teruhiko

    2003-02-21

    A two-dimensional intracellular Ca(2+) ([Ca(2+)](i)) imaging system was used to examine the relationship between [Ca(2+)](i) handling and the proliferation of MC3T3-E1 osteoblast-like cells. The resting [Ca(2+)](i) level in densely cultured cells was 1.5 times higher than the [Ca(2+)](i) level in sparsely cultured cells or in other cell types (mouse fibroblasts, rat vascular smooth muscle cells, and bovine endothelial cells). A high resting [Ca(2+)](i) level may be specific for MC3T3-E1 cells. MC3T3-E1 cells were stimulated with ATP (10 microM), caffeine (10 mM), thapsigargin (1 microM), or ionomycin (10 microM), and the effect on the [Ca(2+)](i) level of MC3T3-E1 cells was studied. The percentage of responding cells and the degree of [Ca(2+)](i) elevation were high in the sparsely cultured cells and low in densely cultured cells. The rank order for the percentage of responding cells and magnitude of the Ca(2+) response to the stimuli was ionomycin > thapsigargin = ATP > caffeine and suggests the existence of differences among the various [Ca(2+)](i) channels. All Ca(2+) responses in the sparsely cultured MC3T3-E1 cells, unlike in other cell types, disappeared after the cells reached confluence. Heptanol treatment of densely cultured cells restored the Ca(2+) response, suggesting that cell-cell contact is involved with the confluence-dependent disappearance of the Ca(2+) response. Immunohistological analysis of type 1 inositol trisphosphate receptors and electron microscopy showed distinct expression of inositol trisphosphate receptor proteins and smooth-surfaced endoplasmic reticulum in sparsely cultured cells but reduced levels in densely cultured cells. These results indicate that the underlying basis of confluence-dependent [Ca(2+)](i) regulation is down-regulation of smooth-surfaced endoplasmic reticulum by cell-cell contacts.

  4. Regulation of plasminogen activator in 3T3 cells: effect of phorbol myristate acetate on subcellular distribution and molecular weight

    PubMed Central

    1981-01-01

    The tumor promoter, phorbol myristate acetate (PMA), stimulates plasminogen activator production and extracellular release in confluent Swiss 3T3 cells. Coordinated with the increased extracellular release is a redistribution of the activity into plasma membrane-enriched fractions and a shift in the predominant molecular weight species from 75,000 to 49,000 daltons. The evidence suggests that PMA induces the formation of the 49,000 dalton species which is preferentially located in plasma membrane-enriched fractions. PMID:7197280

  5. Characterization of RNA from Noninfectious Virions Produced by Sarcoma Positive-Leukemia Negative Transformed 3T3 Cells

    PubMed Central

    Phillips, Leo A.; Hollis, Vincent W.; Bassin, Robert H.; Fischinger, Peter J.

    1973-01-01

    RNA from noninfectious virions produced by two established clonal lines of sarcoma positive-leukemia negative (S+L-)-transformed 3T3 cells has been characterized. RNA from virions or nucleoids of S+L--(C243) cells consisted of three to four sizes: ±44 S (6%), 28 S (17%), 18 S (38%), and <18 S (39%). 28S virion RNA contained some virus-specific information demonstrable by RNA·DNA hybridization with a DNA probe derived from the RNA-directed DNA polymerase product of murine sarcoma-leukemia virus, while parallel studies indicated that 28S ribosomal RNA from ribosomal subunits of transformed and nontransformed 3T3 cells did not contain virus-specific information. In contrast to the S+L-(C243) virions, RNA from virions or nucleoids of S+L-(D56) cells consisted of five sizes: 80 S (6%), 68 S (8%), 56 S (5%), 28 S (28%), and <28 S (53%). Thermal dissociation studies suggested that this S+L- genome is comprised of 28S RNA subunits. From these studies we postulate that the 28S viral RNA is most probably the monomeric genome of S+L- virions. PMID:4355380

  6. Ionic responses rapidly elicited by activation of protein kinase C in quiescent Swiss 3T3 cells

    SciTech Connect

    Vara, F.; Schneider, J.A.; Rozengurt, E.

    1985-04-01

    Diacylglycerol and phorbol esters activate protein kinase C in intact cells. The authors report here that addition of the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) to quiescent cultures of Swiss 3T3 cells caused a marked increase in the rate of ouabain-sensitive YWRb uptake, a measure of the activity of the Na /K pump. The effect was dose-dependent and could be detected after 1 min of exposure to the diacylglycerol. OAG stimulated Na influx via an amiloride-sensitive pathway and increased intracellular pH by 0.15 pH unit. Phorbol 12,13-dibutyrate (PBt2) also enhanced ouabain sensitive YWRb uptake and amiloride-sensitive SSNa influx. Prolonged treatment (40 hr) of 3T3 cells with PBt2 at a saturating dose, which reduces the number of PBt2 binding sites and protein kinase C activity, abolished the ionic response of the cells to a subsequent addition of either OAG or PBt2. They suggest that activation of protein kinase C elicits, either directly or indirectly, enhanced Na /H antiport activity, which, in turn, leads to Na influx, intracellular pH modulation, and stimulation of the Na /K pump.

  7. Effects of Scytosiphon lomentaria on osteoblastic proliferation and differentiation of MC3T3-E1 cells

    PubMed Central

    Park, Mi Hwa; Kim, Seoyeon; Cheon, Jihyeon; Lee, Juyeong; Kim, Bo Kyung; Lee, Sang-Hyeon; Kong, Changsuk; Kim, Yuck Yong

    2016-01-01

    BACKGROUND/OBJECTIVES Bone formation and bone resorption continuously occur in bone tissue to prevent the accumulation of old bone, this being called bone remodeling. Osteoblasts especially play a crucial role in bone formation through the differentiation and proliferation. Therefore, in this study, we investigated the effects of Scytosiphon lomentaria extract (SLE) on osteoblastic proliferation and differentiation in MC3T3-E1 cells. MATERIALS/METHODS A cell proliferation assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and protein expression analysis of osteoblastic genes were carried out to assess the osteoblastic proliferation and differentiation. RESULTS The results indicated that treatment of SLE promoted the proliferation of MC3T3-E1 cells and improved ALP activity. And, SLE treatment significantly promoted mineralized nodule formation compared with control. In addition, cells treated with SLE significantly upregulated protein expression of ALP, type 1 collagen, bone morphogenetic protein 2, runt-related transcription factor 2, osterix, and osteoprotegerin. CONCLUSIONS The results demonstrate that SLE promote differentiation inducement and proliferation of osteoblasts and, therefore may help to elucidate the transcriptional mechanism of bone formation and possibly lead to the development of bone-forming drugs. PMID:27087897

  8. Interaction of wild-type and variant mouse 3T3 cells with lectins from Bandeiraea simplicifolia seeds.

    PubMed Central

    Stanley, W S; Peters, B P; Blake, D A; Yep, D; Chu, E H; Goldstein, I J

    1979-01-01

    An isolectin (BS I-B4) derived from Bandeiraea simplicifolia seeds and specific for terminal alpha-D-galactopyranosyl groups was found to be cytotoxic to Swiss 3T3 mouse cells. After mutagenesis and selection with BS I-B4, a variant clonal cell line resistant to both this isolectin and the alpha-D- and beta-D-galactose-binding lectin abrin was isolated. The parental cell line showed homogeneous and noninteracting binding sites for BS I-B4, whereas the variant cells exhibited a curved plot with a reduced number of binding regions. Another lectin, BS II, which is derived from the same seeds by specific for terminal N-acetyl-D-glucosaminyl groups, was cytotoxic to the variant but not the parental cells. These results suggest a possible lesion in the biosynthesis of cell surface structures resulting in the exposure of subterminal N-acetyl-D-glucosaminyl moieties in the variant line. Images PMID:284346

  9. Cell(MC3T3-E1)-printed poly(ϵ-caprolactone)/alginate hybrid scaffolds for tissue regeneration.

    PubMed

    Lee, Hyeongjin; Ahn, SeungHyun; Bonassar, Lawrence J; Kim, GeunHyung

    2013-01-25

    A new cell-printed scaffold consisting of poly(ϵ-caprolactone) (PCL) and cell-embedded alginate struts is designed. The PCL and alginate struts are stacked in an interdigitated pattern in successive layers to acquire a three-dimensional (3D) shape. The hybrid scaffold exhibits a two-phase structure consisting of cell (MC3T3-E1)-laden alginate struts able to support biological activity and PCL struts able to provide controllable mechanical support of the cell-laden alginate struts. The hybrid scaffolds exhibit an impressive increase in tensile modulus and maximum strength compared to pure alginate scaffolds. Laden cells are homogeneously distributed throughout the alginate struts and the entire scaffold, resulting in cell viability of approximately 84%.

  10. Gas6-mediated survival in NIH3T3 cells activates stress signalling cascade and is independent of Ras.

    PubMed

    Goruppi, S; Ruaro, E; Varnum, B; Schneider, C

    1999-07-22

    Gas6 is a growth factor membrane of the vitamin K-dependent family of proteins which is preferentially expressed in quiescent cells. Gas6 was identified as the ligand for Axl tyrosine kinase receptor family. Consistent with this, Gas6 was previously reported to induce cell cycle re-entry of serum-starved NIH3T3 cells and to prevent cell death after complete growth factor withdrawal, the survival effect being uncoupled from Gas6-induced mitogenesis. We have previously demonstrated that both Gas6 mitogenic and survival effects are mediated by Src and the phosphatidylinositol3-OH kinase (PI3K). Here we report that Ras is required for Gas6 mitogenesis but is dispensable for its survival effect. Gas6-induced survival requires the activity of the small GTPases of the Rho family, Rac and Rho, together with the downstream kinase Pak. Overexpression of the respective dominant negative constructs abrogates Gas6-mediated survival functions. Addition of Gas6 to serum starved cells results in the activation of AKT/PKB and in the phosphorylation of the Bcl-2 family member, Bad. By ectopic expression of a catalytically inactive form of AKT/PKB, we demonstrate that AKT/PKB is necessary for Gas6-mediated survival functions. We further show evidence that Gas6 stimulation of serum starved NIH3T3 cells results in a transient ERK, JNK/SAPK and p38 MAPK activation. Blocking ERK activation did not influence Gas6-induced survival, suggesting that such pathway is not involved in Gas6 protection from cell death. On the contrary we found that the late constitutive increase of p38 MAPK activity associated with cell death was downregulated in Gas6-treated NIH3T3 cells thus suggesting that Gas6 might promote survival by interfering with this pathway. Taken together the evidence here provided identity elements involved in Gas6 signalling more specifically elucidating the pathway responsible for Gas6-induced cell survival under conditions that do not allow cell proliferation.

  11. Transformation of BALB/c 3T3 cells in vitro by the fungicides captan, captafol and folpet.

    PubMed

    Perocco, P; Colacci, A; Del Ciello, C; Grilli, S

    1995-10-01

    Cytotoxic and cell-transforming activities of the three fungicides, captan, captafol and folpet, have been studied in an experimental in vitro model by exposing BALB/c 3T3 cells to the chemicals with or without S-9 mix-induced bioactivation. Cytotoxicity of the three compounds was reduced in the presence of the metabolizing system. Each assayed pesticide displayed cell-transforming ability in the presence of the metabolizing system. The relative efficiency was: captafol > captan > folpet. Cell transformation was considered to be due to carcinogenesis-promoting activity. These data, obtained in a medium-term (6-8 weeks) experimental model, contribute to a better understanding of the action of the three pesticides in the multistep carcinogenesis process and provide more information concerning the oncogenic risk of these xenobiotic compounds for humans.

  12. Cirsium brevicaule A. GRAY leaf inhibits adipogenesis in 3T3-L1 cells and C57BL/6 mice

    PubMed Central

    2013-01-01

    Background Various flavonoids obtained from the genus Cirsium have been reported to exhibit beneficial effects on health. The present study evaluated the antiobesity effects of Cirsium brevicaule A. GRAY leaf (CL) by using 3T3-L1 cells and C57BL/6 mice that were fed a high-fat diet (HFD). Methods Dried CL powder was serially extracted with solvents of various polarities, and these extracts were tested for antiadipogenic activity using 3T3-L1 adipocytes. Mice were fed experimental HFD supplemented with dried CL powder for 4 wk. Lipid levels and mRNA levels of genes related to lipid metabolism were determined in 3T3-L1 adipocytes and the white adipose tissue (WAT) and liver of mice fed on a HFD. Results Treatment of 3T3-L1 adipocytes with a hexane extract of CL significantly reduced cellular lipid accumulation and expression of the fatty acid synthase (FASN) gene. Dietary CL reduced the serum levels of non-esterified fatty acids in HFD-fed mice. Significant decreases in subcutaneous WAT weight and associated FASN gene expression were observed in the mice fed the experimental CL diet. Dietary CL also reduced the hepatic lipid and serum levels of a hepatopathic indicator in the HFD-fed mice. A significant reduction in mRNA levels of FASN and HMG-CoA reductase were observed in the livers of the CL-diet group. Dietary CL, on the other hand, increased in the hepatic mRNA levels of genes related to β-oxidation, namely peroxisome proliferator-activated receptor α, calnitine palmitoyltrasferase 1A, and uncoupling protein 2. Expression of the insulin receptor gene was also significantly increased in the livers of mice-fed the CL diet. Conclusions The present study therefore demonstrated that CL suppresses lipid accumulation in the WAT and liver partly through inhibiting mRNA levels of FASN gene and enhancing the lipolysis-related gene expression. PMID:23945333

  13. A Novel Regulatory Function of Sweet Taste-Sensing Receptor in Adipogenic Differentiation of 3T3-L1 Cells

    PubMed Central

    Masubuchi, Yosuke; Nakagawa, Yuko; Ma, Jinhui; Sasaki, Tsutomu; Kitamura, Tadahiro; Yamamoto, Yoritsuna; Kurose, Hitoshi; Kojima, Itaru; Shibata, Hiroshi

    2013-01-01

    Background Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. Methodology/Principal Findings In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. Conclusions 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism. PMID:23336004

  14. The anti-obesity effect of Lethariella cladonioides in 3T3-L1 cells and obese mice

    PubMed Central

    Sung, Ju-Hyun; Chon, Jeong-Woo; Lee, Mi-Ae; Park, Jin-Kyung; Woo, Jeong-Taek

    2011-01-01

    The aim of this study was to investigate whether a water extract of L. cladonioides (LC) has an anti-obesity effect in 3T3-L1 cells and obese mice. Treatment of differentiated 3T3-L1 adipocytes with LC caused a significant increase in glycerol release and reduced the protein expression of the adipogenic transcription factors, PPARγ and C/EBPα. In an animal model, obese mice were artificially induced by a high fat diet for 10 weeks. Experimental groups were treated with LC (100 mg/kg/day) by gavage for the next 10 weeks. At the end of experiment, the body weight of the LC group mice was reduced by 14.2% compared to the high fat diet (HFD) group. The treatment also decreased liver (31.0%), epididymal (18.0%) and retroperitoneal (19.3%) adipose tissue, and kidney (6.7%) weights, respectively, compared with those of the HFD group. LC prevented diet-induced increases in the serum level of TC (22.6%), TG (11.6%), and glucose (35.0%), respectively, compared with the HFD group. However, the HDL-C level was higher in the LC group (26.1%) than the HFD group. The results of this study thus suggest that LC suppressed lipid accumulation and expression of adipogenic transcription factors, and increased the amount of glycerol release. LC also indicated an anti-obese and anti-hyperlipidemic effect. PMID:22259674

  15. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells

    PubMed Central

    Kanazawa, Ippei; Yamaguchi, Toru; Yano, Shozo; Yamauchi, Mika; Yamamoto, Masahiro; Sugimoto, Toshitsugu

    2007-01-01

    Background Adiponectin is a key mediator of the metabolic syndrome that is caused by visceral fat accumulation. Adiponectin and its receptors are known to be expressed in osteoblasts, but their actions with regard to bone metabolism are still unclear. In this study, we investigated the effects of adiponectin on the proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. Results Adiponectin receptor type 1 (AdipoR1) mRNA was detected in the cells by RT-PCR. The adenosine monophosphate-activated protein kinase (AMP kinase) was phosphorylated by both adiponectin and a pharmacological AMP kinase activator, 5-amino-imidazole-4-carboxamide-riboside (AICAR), in the cells. AdipoR1 small interfering RNA (siRNA) transfection potently knocked down the receptor mRNA, and the effect of this knockdown persisted for as long as 10 days after the transfection. The transfected cells showed decreased expressions of type I collagen and osteocalcin mRNA, as determined by real-time PCR, and reduced ALP activity and mineralization, as determined by von Kossa and Alizarin red stainings. In contrast, AMP kinase activation by AICAR (0.01–0.5 mM) in wild-type MC3T3-E1 cells augmented their proliferation, differentiation, and mineralization. BrdU assay showed that the addition of adiponectin (0.01–1.0 μg/ml) also promoted their proliferation. Osterix, but not Runx-2, appeared to be involved in these processes because AdipoR1 siRNA transfection and AICAR treatments suppressed and enhanced osterix mRNA expression, respectively. Conclusion Taken together, this study suggests that adiponectin stimulates the proliferation, differentiation, and mineralization of osteoblasts via the AdipoR1 and AMP kinase signaling pathways in autocrine and/or paracrine fashions. PMID:18047638

  16. Municipal wastewater affects adipose deposition in male mice and increases 3T3-L1 cell differentiation.

    PubMed

    Biasiotto, Giorgio; Zanella, Isabella; Masserdotti, Alice; Pedrazzani, Roberta; Papa, Matteo; Caimi, Luigi; Di Lorenzo, Diego

    2016-04-15

    Trace concentration of EDs (endocrine disrupting compounds) in water bodies caused by wastewater treatment plant effluents is a recognized problem for the health of aquatic organisms and their potential to affect human health. In this paper we show that continuous exposure of male mice from early development to the adult life (140 days) to unrestricted drinking of wastewater collected from a municipal sewage treatment plant, is associated with an increased adipose deposition and weight gain during adulthood because of altered body homeostasis. In parallel, bisphenol A (BPA) at the administration dose of 5 μg/kg/body weight, shows an increasing effect on total body weight and fat mass. In vitro, a solid phase extract (SPE) of the wastewater (eTW), caused stimulation of 3T3-L1 adipocyte differentiation at dilutions of 0.4 and 1 % in the final culture medium which contained a concentration of BPA of 40 nM and 90 nM respectively. Pure BPA also promoted adipocytes differentiation at the concentration of 50 and 80 μM. BPA effect in 3T3-L1 cells was associated to the specific activation of the estrogen receptor alpha (ERα) in undifferentiated cells and the estrogen receptor beta (ERβ) in differentiated cells. BPA also activated the Peroxisome Proliferator Activated Receptor gamma (PPARγ) upregulating a minimal 3XPPARE luciferase reporter and the PPARγ-target promoter of the aP2 gene in adipose cells, while it was not effective in preadipocytes. The pure estrogen receptor agonist diethylstilbestrol (DES) played an opposite action to that of BPA inhibiting PPARγ activity in adipocytes, preventing cell differentiation, activating ERα in preadipocytes and inhibiting ERα and ERβ regulation in adipocytes. The results of this work show that the drinking of chemically-contaminated wastewater promotes fat deposition in male mice and that EDs present in sewage are likely responsible for this effect through a nuclear receptor-mediated mechanism. PMID:26944108

  17. Stimulation of sugar uptake and thymidine incorporation in mouse 3T3 cells by calcium phosphate and other extracellular particles.

    PubMed Central

    Barnes, D W; Colowick, S P

    1977-01-01

    Evidence is presented that the marked stimulation of sugar uptake and thymidine incorporation by addition of extra Ca2+ to stationary phase mouse 3T3 cells in culture is phosphate dependent and due to the action of the calcium phosphate precipitate formed in the medium. The cells are similarly stimulated by a variety of particulate materials, including calcium pyrophosphate, barium sulfate, kaolin, and polystrene beads. The precipitate effects on sugar uptake are of the same magnitude as those seen with certain hormones (insulin, epidermal growth factor) or with fresh 10% calf serum. The effect of barium sulfate on thymidine incorporation is also of the same magnitude as seen with these hormones, but much less than half that found with fresh calf serum. The stimulation by barium sulfate or hormones of thymidine incorporation is not phosphate dependent. PMID:202958

  18. Stimulation of sugar uptake and thymidine incorporation in mouse 3T3 cells by calcium phosphate and other extracellular particles.

    PubMed

    Barnes, D W; Colowick, S P

    1977-12-01

    Evidence is presented that the marked stimulation of sugar uptake and thymidine incorporation by addition of extra Ca2+ to stationary phase mouse 3T3 cells in culture is phosphate dependent and due to the action of the calcium phosphate precipitate formed in the medium. The cells are similarly stimulated by a variety of particulate materials, including calcium pyrophosphate, barium sulfate, kaolin, and polystrene beads. The precipitate effects on sugar uptake are of the same magnitude as those seen with certain hormones (insulin, epidermal growth factor) or with fresh 10% calf serum. The effect of barium sulfate on thymidine incorporation is also of the same magnitude as seen with these hormones, but much less than half that found with fresh calf serum. The stimulation by barium sulfate or hormones of thymidine incorporation is not phosphate dependent. PMID:202958

  19. Ivy gourd (Coccinia grandis L. Voigt) root suppresses adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2014-01-01

    Background Ivy gourd (Coccinia grandis L. Voigt) is a tropical plant widely distributed throughout Asia, Africa, and the Pacific Islands. The anti-obesity property of this plant has been claimed but still remains to be scientifically proven. We therefore investigated the effects of ivy gourd leaf, stem, and root on adipocyte differentiation by employing cell culture model. Methods Dried roots, stems, and leaves of ivy gourd were separately extracted with ethanol. Each extract was then applied to 3T3-L1 pre-adipocytes upon induction with a mixture of insulin, 3-isobutyl-1-methylxanthine, and dexamethasone, for anti-adipogenesis assay. The active extract was further fractionated by a sequential solvent partitioning method, and the resulting fractions were examined for their abilities to inhibit adipogenesis in 3T3-L1 cells. Differences in the expression of adipogenesis-related genes between the treated and untreated cells were determined from their mRNA and protein levels. Results Of the three ivy gourd extracts, the root extract exhibited an anti-adipogenic effect. It significantly reduced intracellular fat accumulation during the early stages of adipocyte differentiation. Together with the suppression of differentiation, expression of the genes encoding PPARγ, C/EBPα, adiponectin, and GLUT4 were down-regulated. Hexane-soluble fraction of the root extract also inhibited adipocyte differentiation and decreased the mRNA levels of various adipogenic genes in the differentiating cells. Conclusions This is the first study to demonstrate that ivy gourd root may prevent obesity based mainly on the ability of its active constituent(s) to suppress adipocyte differentiation in vitro. Such an inhibitory effect is mediated by at least down-regulating the expression of PPARγ-the key transcription factor of adipogenesis in pre-adipocytes during their early differentiation processes. PMID:24884680

  20. DMSO is a strong inducer of DNA hydroxymethylation in pre-osteoblastic MC3T3-E1 cells

    PubMed Central

    Thaler, Roman; Spitzer, Silvia; Karlic, Heidrun; Klaushofer, Klaus; Varga, Franz

    2012-01-01

    Artificial induction of active DNA demethylation appears to be a possible and useful strategy in molecular biology research and therapy development. Dimethyl sulfoxide (DMSO) was shown to cause phenotypic changes in embryonic stem cells altering the genome-wide DNA methylation profiles. Here we report that DMSO increases global and gene-specific DNA hydroxymethylation levels in pre-osteoblastic MC3T3-E1 cells. After 1 day, DMSO increased the expression of genes involved in DNA hydroxymethylation (TET) and nucleotide excision repair (GADD45) and decreased the expression of genes related to DNA methylation (Dnmt1, Dnmt3b, Hells). Already 12 hours after seeding, before first replication, DMSO increased the expression of the pro-apoptotic gene Fas and of the early osteoblastic factor Dlx5, which proved to be Tet1 dependent. At this time an increase of 5-methyl-cytosine hydroxylation (5-hmC) with a concomitant loss of methyl-cytosines on Fas and Dlx5 promoters as well as an increase in global 5-hmC and loss in global DNA methylation was observed. Time course-staining of nuclei suggested euchromatic localization of DMSO induced 5-hmC. As consequence of induced Fas expression, caspase 3/7 and 8 activities were increased indicating apoptosis. After 5 days, the effect of DMSO on promoter- and global methylation as well as on gene expression of Fas and Dlx5 and on caspases activities was reduced or reversed indicating down-regulation of apoptosis. At this time, up regulation of genes important for matrix synthesis suggests that DMSO via hydroxymethylation of the Fas promoter initially stimulates apoptosis in a subpopulation of the heterogeneous MC3T3-E1 cell line, leaving a cell population of extra-cellular matrix producing osteoblasts.  PMID:22507896

  1. Induction of cell proliferation in quiescent NIH 3T3 cells by oncogenic c-Raf-1.

    PubMed Central

    Kerkhoff, E; Rapp, U R

    1997-01-01

    The c-Raf-1 kinase is activated by different mitogenic stimuli and has been shown to be an important mediator of growth factor responses. Fusion of the catalytic domain of the c-Raf-1 kinase with the hormone binding domain of the estrogen receptor (deltaRaf-ER) provides a hormone-regulated form of oncogenic activated c-Raf-1. We have established NIH 3T3 cells stably expressing a c-Raf-1 deletion mutant-estrogen receptor fusion protein (c-Raf-1-BxB-ER) (N-BxB-ER cells). The transformed morphology of these cells is dependent on the presence of the estrogen antagonist 4-hydroxytamoxifen. Addition of 4-hydroxytamoxifen to N-BxB-ER cells arrested by density or serum starvation causes reentry of these cells into cell proliferation. Increases in the cell number are obvious by 24 h after activation of the oncogenic c-Raf-1 protein in confluent cells. The onset of proliferation in serum-starved cells is further delayed and takes about 48 h. In both cases, the proliferative response of the oncogenic c-Raf-1-induced cell proliferation is weaker than the one mediated by serum and does not lead to exponential growth. This is reflected in a markedly lower expression of the late-S- and G2/M-phase-specific cyclin B protein and a slightly lower expression of the cyclin A protein being induced at the G1/S transition. Oncogenic activation of c-Raf-1 induces the expression of the heparin binding epidermal growth factor. The Jnk1 kinase is putatively activated by the action of the autocrine growth factor. The kinetics of Jnk1 kinase activity is delayed and occurs by a time when we also detect DNA synthesis and the expression of the S-phase-specific cyclin A protein. This finding indicates that oncogenic activation of the c-Raf-1 protein can trigger the entry into the cell cycle without the action of the autocrine growth factor loop. The activation of the c-Raf-1-BxB-ER protein leads to an accumulation of high levels of cyclin D1 protein and a repression of the p27Kip1 cyclin

  2. Characterization of the respiration of 3T3 cells by laser-induced fluorescence during a cyclic heating process

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Dressler, C.; Zabarylo, U.; Minet, O.

    2010-04-01

    The use of lasers in the near infrared spectral range for laser-induced tumor therapy (LITT) demands a new understanding of the thermal responses to repetitive heat stress. The analysis of laser-induced fluorescence during vital monitoring offers an excellent opportunity to solve many of the related issues in this field. The laser-induced fluorescence of the cellular coenzyme NADH was investigated for its time and intensity behavior under heat stress conditions. Heat was applied to vital 3T3 cells (from 22°C to 50°C) according to a typical therapeutical time regime. A sharp increase in temperature resulted in non-linear time behavior when the concentration of this vital coenzyme changed. There are indications that biological systems have a delayed reaction on a cellular level. These results are therefore important for further dosimetric investigations.

  3. Reactive oxygen species regulatory mechanisms associated with rapid response of MC3T3-E1 cells for vibration stress.

    PubMed

    Zhang, Ling; Gan, Xueqi; Zhu, Zhuoli; Yang, Yang; He, Yuting; Yu, Haiyang

    2016-02-12

    Although many previous studies have shown that refractory period-dependent memory effect of vibration stress is anabolic for skeletal homeostasis, little is known about the rapid response of osteoblasts simply derived from vibration itself. In view of the potential role of reactive oxygen species (ROS) in mediating differentiated activity of osteoblasts, whether and how ROS regulates the rapid effect of vibration deserve to be demonstrated. Our findings indicated that MC3T3-E1 cells underwent decreased gene expression of Runx2, Col-I and ALP and impaired ALP activity accompanied by increased mitochondrial fission immediately after vibration loading. Moreover, we also revealed the involvement of ERK-Drp1 signal transduction in ROS regulatory mechanisms responsible for the rapid effect of vibration stress.

  4. Reactive oxygen species regulatory mechanisms associated with rapid response of MC3T3-E1 cells for vibration stress.

    PubMed

    Zhang, Ling; Gan, Xueqi; Zhu, Zhuoli; Yang, Yang; He, Yuting; Yu, Haiyang

    2016-02-12

    Although many previous studies have shown that refractory period-dependent memory effect of vibration stress is anabolic for skeletal homeostasis, little is known about the rapid response of osteoblasts simply derived from vibration itself. In view of the potential role of reactive oxygen species (ROS) in mediating differentiated activity of osteoblasts, whether and how ROS regulates the rapid effect of vibration deserve to be demonstrated. Our findings indicated that MC3T3-E1 cells underwent decreased gene expression of Runx2, Col-I and ALP and impaired ALP activity accompanied by increased mitochondrial fission immediately after vibration loading. Moreover, we also revealed the involvement of ERK-Drp1 signal transduction in ROS regulatory mechanisms responsible for the rapid effect of vibration stress. PMID:26802466

  5. Inhibition of ribonucleic acid efflux from isolated SV40-3T3 cell nuclei by 3'-deoxyadenosine (cordycepin).

    PubMed

    Agutter, P S; McCaldin, B

    1979-05-15

    The effect of 3'-deoxyadenosine (cordycepin) on mRNA efflux from isolated SV40-3T3 cell nuclei has been studied and compared with its effect on the nucleoside triphosphatase activity in the isolated nuclear envelope. Inhibition of mRNA efflux occurs rapidly, but is dependent on the presence of ATP. Half-maximal inhibition occurs with 40 microM-cordycepin. The effect is not simulated by 2'-deoxyadenosine or by actinomycin D, and adenosine provides a substantial degree of protection against it. Cordycepin does not directly inhibit the nucleoside triphosphatase. The stimulation of this enzyme by poly(A) is not affected unless the poly(A) and cordycepin are incubated together with nuclear lysate in the presence of ATP; in this case the stimulation is significantly reduced. Possible interpretations of these results and their relevance for understanding the system in vivo for nucleo-cytoplasmic messenger transport are discussed.

  6. Inhibition of ribonucleic acid efflux from isolated SV40-3T3 cell nuclei by 3'-deoxyadenosine (cordycepin).

    PubMed Central

    Agutter, P S; McCaldin, B

    1979-01-01

    The effect of 3'-deoxyadenosine (cordycepin) on mRNA efflux from isolated SV40-3T3 cell nuclei has been studied and compared with its effect on the nucleoside triphosphatase activity in the isolated nuclear envelope. Inhibition of mRNA efflux occurs rapidly, but is dependent on the presence of ATP. Half-maximal inhibition occurs with 40 microM-cordycepin. The effect is not simulated by 2'-deoxyadenosine or by actinomycin D, and adenosine provides a substantial degree of protection against it. Cordycepin does not directly inhibit the nucleoside triphosphatase. The stimulation of this enzyme by poly(A) is not affected unless the poly(A) and cordycepin are incubated together with nuclear lysate in the presence of ATP; in this case the stimulation is significantly reduced. Possible interpretations of these results and their relevance for understanding the system in vivo for nucleo-cytoplasmic messenger transport are discussed. PMID:226073

  7. Human Dynactin-Associated Protein Transforms NIH3T3 Cells to Generate Highly Vascularized Tumors with Weak Cell-Cell Interaction.

    PubMed

    Kunoh, Tatsuki; Wang, Weixiang; Kobayashi, Hiroaki; Matsuzaki, Daisuke; Togo, Yuki; Tokuyama, Masahiro; Hosoi, Miho; Koseki, Koichi; Wada, Shu-Ichi; Nagai, Nobuo; Nakamura, Toshinobu; Nomura, Shintaro; Hasegawa, Makoto; Sasaki, Ryuzo; Mizukami, Tamio

    2015-01-01

    Human dynactin-associated protein (dynAP) is a transmembrane protein that promotes AktSer473 phosphorylation. Here, we report the oncogenic properties of dynAP. In contrast to control NIH3T3 cells expressing LacZ (NIH3T3LacZ), NIH3T3dynAP cells vigorously formed foci in two-dimensional culture, colonies on soft agar, and spheroids in anchorage-deficient three-dimensional culture. NIH3T3dynAP cells injected into nude mice produced tumors with abundant blood vessels and weak cell-cell contacts. Expression of dynAP elevated the level of rictor (an essential subunit of mTORC2) and promoted phosphorylation of FOXO3aSer253. FOXO3a is a transcriptional factor that stimulates expression of pro-apoptotic genes and phosphorylation of FOXO3a abrogates its function, resulting in promoted cell survival. Knockdown of rictor in NIH3T3dynAP cells reduced AktSer473 phosphorylation and formation of foci, colony in soft agar and spheroid, indicating that dynAP-induced activation of the mTORC2/AktSer473 pathway for cell survival contributes to cell transformation. E-cadherin and its mRNA were markedly reduced upon expression of dynAP, giving rise to cells with higher motility, which may be responsible for the weak cell-cell adhesion in tumors. Thus, dynAP could be a new oncoprotein and a target for cancer therapy. PMID:26284361

  8. Expression of human epidermal growth factor precursor cDNA in transfected mouse NIH 3T3 cells.

    PubMed Central

    Mroczkowski, B; Reich, M; Whittaker, J; Bell, G I; Cohen, S

    1988-01-01

    Stable cell lines expressing the human epidermal growth factor (EGF) precursor have been prepared by transfection of mouse NIH 3T3 cells with a bovine papillomavirus-based vector in which the human kidney EGF precursor cDNA has been placed under the control of the inducible mouse metallothionein I promoter. Synthesis of the EGF precursor can be induced by culturing the cells in 5 mM butyric acid or 100 microM ZnCl2. The EGF precursor synthesized by these cells appears to be membrane associated; none is detectable in the cytoplasm. The size of the EGF precursor expressed by these cells is approximately 150-180 kDa, which is larger than expected from its amino acid sequence, suggesting that it is posttranslationally modified, presumably by glycosylation. The EGF precursor was also detected in the conditioned medium from these cells, indicating that some fraction of the EGF precursor synthesized by these transfected cells may be secreted. Preliminary data suggest that this soluble form of the EGF precursor may compete with 125I-labeled EGF for binding to the EGF receptor. These cell lines should be useful for studying the processing of the EGF precursor to EGF as well as determining the properties and possible functions of the EGF precursor itself. Images PMID:3257563

  9. MC3T3-E1 cell response to stainless steel 316L with different surface treatments.

    PubMed

    Zhang, Hongyu; Han, Jianmin; Sun, Yulong; Huang, Yongling; Zhou, Ming

    2015-11-01

    In the present study, stainless steel 316L samples with polishing, aluminum oxide blasting, and hydroxyapatite (HA) coating were prepared and characterized through a scanning electron microscope (SEM), optical interferometer (surface roughness, Sq), contact angle, surface composition and phase composition analyses. Osteoblast-like MC3T3-E1 cell adhesion on the samples was investigated by cell morphology using a SEM (4h, 1d, 3d, 7d), and cell proliferation was assessed by MTT method at 1d, 3d, and 7d. In addition, adsorption of bovine serum albumin on the samples was evaluated at 1h. The polished sample was smooth (Sq: 1.8nm), and the blasted and HA coated samples were much rougher (Sq: 3.2μm and 7.8μm). Within 1d of incubation, the HA coated samples showed the best cell morphology (e.g., flattened shape and complete spread), but there was no significant difference after 3d and 7d of incubation for all the samples. The absorbance value for the HA coated samples was the highest after 1d and 3d of incubation, indicating better cell viability. However, it reduced to the lowest value at 7d. Protein adsorption on the HA coated samples was the highest at 1h. The results indicate that rough stainless steel surface improves cell adhesion and morphology, and HA coating contributes to superior cell adhesion, but inhibits cell proliferation.

  10. Expression of human epidermal growth factor pressures cDNA in transfected mouse NIH 3T3 cells

    SciTech Connect

    Mroczkowski, B.; Reich, M.; Whittaker, J.; Bell, G.I.; Cohen, S.

    1988-01-01

    Stable cell lines expressing the human epidermal growth factor (EGF) precursor have been prepared by transfection of mouse NIH 3T3 cells with a bovine papillomavirus-based vector in which the human kidney EGF precursor cDNA has been placed under the control of the inducible mouse metallothionein I promoter. Synthesis of the EGF precursor can be induced by culturing the cells in 5 mM butyric acid or 100 ..mu..M ZnCl/sub 2/. The EGF precursor synthesized by these cells appears to be membrane associated; none is detectable in the cytoplasm. The size of the EGF precursor expressed by these cells is approx. = 150-180 kDa, which is larger than expected from its amino acid sequence, suggesting that it is posttranslationally modified, presumably by glycosylation. The EGF precursor was also detected in the conditioned medium from these cells, indicating that some fraction of the EGF precursor synthesized by these transfected cells may be secreted. Preliminary data suggest that this soluble form of the EGF precursor may compete with /sup 125/I-labeled EGF for binding to the EGF receptor. These cell lines should be useful for studying the processing of the EGF precursor to EGF as well as determining the properties and possible functions of the EGF precursor itself.

  11. Human Dynactin-Associated Protein Transforms NIH3T3 Cells to Generate Highly Vascularized Tumors with Weak Cell-Cell Interaction

    PubMed Central

    Kunoh, Tatsuki; Wang, Weixiang; Kobayashi, Hiroaki; Matsuzaki, Daisuke; Togo, Yuki; Tokuyama, Masahiro; Hosoi, Miho; Koseki, Koichi; Wada, Shu-ichi; Nagai, Nobuo; Nakamura, Toshinobu; Nomura, Shintaro; Hasegawa, Makoto; Sasaki, Ryuzo; Mizukami, Tamio

    2015-01-01

    Human dynactin-associated protein (dynAP) is a transmembrane protein that promotes AktSer473 phosphorylation. Here, we report the oncogenic properties of dynAP. In contrast to control NIH3T3 cells expressing LacZ (NIH3T3LacZ), NIH3T3dynAP cells vigorously formed foci in two-dimensional culture, colonies on soft agar, and spheroids in anchorage-deficient three-dimensional culture. NIH3T3dynAP cells injected into nude mice produced tumors with abundant blood vessels and weak cell—cell contacts. Expression of dynAP elevated the level of rictor (an essential subunit of mTORC2) and promoted phosphorylation of FOXO3aSer253. FOXO3a is a transcriptional factor that stimulates expression of pro-apoptotic genes and phosphorylation of FOXO3a abrogates its function, resulting in promoted cell survival. Knockdown of rictor in NIH3T3dynAP cells reduced AktSer473 phosphorylation and formation of foci, colony in soft agar and spheroid, indicating that dynAP-induced activation of the mTORC2/AktSer473 pathway for cell survival contributes to cell transformation. E-cadherin and its mRNA were markedly reduced upon expression of dynAP, giving rise to cells with higher motility, which may be responsible for the weak cell-cell adhesion in tumors. Thus, dynAP could be a new oncoprotein and a target for cancer therapy. PMID:26284361

  12. Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system: results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen.

    PubMed

    Li, Albert P; Uzgare, Aarti; LaForge, Yumiko S

    2012-07-30

    The integrated discrete multiple organ co-culture system (IdMOC) allows the co-culturing of multiple cell types as physically separated cells interconnected by a common overlying medium. We report here the application of IdMOC with two cell types: the metabolically competent primary human hepatocytes, and a metabolically incompetent cell line, mouse 3T3 fibroblasts, in the definition of the role of hepatic metabolism on the cytotoxicity of three model toxicants: cyclophosphamide (CPA), aflatoxin B1 (AFB) and tamoxifen (TMX). The presence of hepatic metabolism in IdMOC with human hepatocytes was demonstrated by the metabolism of the P450 isoform 3A4 substrate, luciferin-IPA. The three model toxicants showed three distinct patterns of cytotoxic profile: TMX was cytotoxic to 3T3 cells in the absence of hepatocytes, with slightly lower cytotoxicity towards both 3T3 cells and hepatocytes in the IdMOC. AFB was selective toxic towards the human hepatocytes and relatively noncytotoxic towards 3T3 cells both in the presence and absence of the hepatocytes. CPA cytotoxicity to the 3T3 cells was found to be significantly enhanced by the presence of the hepatocytes, with the cytotoxicity dependent of the number of hepatocytes, and with the cytotoxicity attenuated by the presence of a non-specific P450 inhibitor, 1-aminobenzotriazole. We propose here the following classification of toxicants based on the role of hepatic metabolism as defined by the human hepatocyte-3T3 cell IdMOC assay: type I: direct-acting cytotoxicants represented by TMX as indicated by cytotoxicity in 3T3 cells in the absence of hepatocytes; type II: metabolism-dependent cytotoxicity represented by AFB1 with effects localized within the site of metabolic activation (i. e. hepatocytes); and type III: metabolism-dependent cytotoxicity with metabolites that can diffuse out of the hepatocytes to cause toxicity in cells distal from the site of metabolism, as exemplified by CPA.

  13. Attachment of 3T3 and MDBK cells onto poly(EGDMA/HEMA) based microbeads and their biologically modified forms.

    PubMed

    Ayhan, H; Gürhan, I; Pişkin, E

    2000-03-01

    Poly(EGDMA/HEMA) based microbeads were prepared by suspension polymerization. A comonomer, i.e., 2-hydroxyethylmethacrylate (HEMA) was included in the recipe in order to have functional hydroxyl groups on the microbead surfaces. Toluene was used in the polymerization formulations to introduce porosity into the matrix. Hydroxyl groups were first oxidized with NaIO4, and then two biological molecules, namely collagen and fibronectin were immobilized by using glutaraldehyde. A spacer-arm, i.e., hexamethylene diamine, was also used in some cases. More protein molecules were immobilized onto more swellable microbeads using spacer-arm. Higher amounts of collagen were immobilized, more than fibronectin immobilization. Attachment of two cell lines (i.e., 3T3 and MDBK cell lines) on these microbeads with a wide variety of surface properties was studied in vitro culture media. Attachments of both cells even onto the plain microbeads were significant. More cells did attach to more swellable microbeads. Introducing both fibronectin and collagen onto the microbeads caused significant increase in the cell attachment. More cells attached to the microbeads carrying fibronectin covalently attached onto the microbeads through the spacer-arm molecules. Fibronectine was better than collagen for high attachment values. The mathematical model proposed successfully simulated attachment kinetics.

  14. Widening the mutation spectrum of EVC and EVC2: ectopic expression of Weyer variants in NIH 3T3 fibroblasts disrupts Hedgehog signaling.

    PubMed

    Valencia, Maria; Lapunzina, Pablo; Lim, Derek; Zannolli, Raffaella; Bartholdi, Deborah; Wollnik, Bernd; Al-Ajlouni, Othman; Eid, Suhair S; Cox, Helen; Buoni, Sabrina; Hayek, Joseph; Martinez-Frias, Maria L; Antonio, Perez-Aytes; Temtamy, Samia; Aglan, Mona; Goodship, Judith A; Ruiz-Perez, Victor L

    2009-12-01

    Autosomal recessive Ellis-van Creveld syndrome and autosomal dominant Weyer acrodental dysostosis are allelic conditions caused by mutations in EVC or EVC2. We performed a mutation screening study in 36 EvC cases and 3 cases of Weyer acrodental dysostosis, and identified pathogenic changes either in EVC or in EVC2 in all cases. We detected 40 independent EVC/EVC2 mutations of which 29 were novel changes in Ellis-van Creveld cases and 2 were novel mutations identified in Weyer pedigrees. Of interest one EvC patient had a T>G nucleotide substitution in intron 7 of EVC (c.940-150T>G), which creates a new donor splice site and results in the inclusion of a new exon. The T>G substitution is at nucleotide +5 of the novel 5' splice site. The three Weyer mutations occurred in the final exon of EVC2 (exon 22), suggesting that specific residues encoded by this exon are a key part of the protein. Using murine versions of EVC2 exon 22 mutations we demonstrate that the expression of a Weyer variant, but not the expression of a truncated protein that mimics an Ellis-van Creveld syndrome mutation, impairs Hedgehog signal transduction in NIH 3T3 cells in keeping with its dominant effect.

  15. Chlamydia Induces Anchorage Independence in 3T3 Cells and Detrimental Cytological Defects in an Infection Model

    PubMed Central

    Knowlton, Andrea E.; Fowler, Larry J.; Patel, Rahul K.; Wallet, Shannon M.; Grieshaber, Scott S.

    2013-01-01

    Chlamydia are Gram negative, obligate intracellular bacterial organisms with different species causing a multitude of infections in both humans and animals. Chlamydia trachomatis is the causative agent of the sexually transmitted infection (STI) Chlamydia, the most commonly acquired bacterial STI in the United States. Chlamydial infections have also been epidemiologically linked to cervical cancer in women co-infected with the human papillomavirus (HPV). We have previously shown chlamydial infection results in centrosome amplification and multipolar spindle formation leading to chromosomal instability. Many studies indicate that centrosome abnormalities, spindle defects, and chromosome segregation errors can lead to cell transformation. We hypothesize that the presence of these defects within infected dividing cells identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation. Here we demonstrate that infection with Chlamydia trachomatis is able to transform 3T3 cells in soft agar resulting in anchorage independence and increased colony formation. Additionally, we show for the first time Chlamydia infects actively replicating cells in vivo. Infection of mice with Chlamydia results in significantly increased cell proliferation within the cervix, and in evidence of cervical dysplasia. Confocal examination of these infected tissues also revealed elements of chlamydial induced chromosome instability. These results contribute to a growing body of data implicating a role for Chlamydia in cervical cancer development and suggest a possible molecular mechanism for this effect. PMID:23308295

  16. Improvement of the BALB/c-3T3 cell transformation assay: a tool for investigating cancer mechanisms and therapies

    PubMed Central

    Poburski, Doerte; Thierbach, René

    2016-01-01

    The identification of cancer preventive or therapeutic substances as well as carcinogenic risk assessment of chemicals is nowadays mostly dependent on animal studies. In vitro cell transformation assays mimic different stages of the in vivo neoplastic process and represent an excellent alternative to study carcinogenesis and therapeutic options. In the BALB/c-3T3 two-stage transformation assay cells are chemically transformed by treatment with MCA and TPA, along with the final Giemsa staining of morphological aberrant foci. In addition to the standard method we can show, that it is possible to apply other chemicals in parallel to identify potential preventive or therapeutic substances during the transformation process. Furthermore, we successfully combined the BALB/c cell transformation assay with several endpoint applications for protein analysis (immunoblot, subcellular fractionation and immunofluorescence) or energy parameter measurements (glucose and oxygen consumption) to elucidate cancer mechanisms in more detail. In our opinion the BALB/c cell transformation assay proves to be an excellent model to investigate alterations in key proteins or energy parameters during the different stages of transformation as well as therapeutic substances and their mode of action. PMID:27611302

  17. Improvement of the BALB/c-3T3 cell transformation assay: a tool for investigating cancer mechanisms and therapies.

    PubMed

    Poburski, Doerte; Thierbach, René

    2016-01-01

    The identification of cancer preventive or therapeutic substances as well as carcinogenic risk assessment of chemicals is nowadays mostly dependent on animal studies. In vitro cell transformation assays mimic different stages of the in vivo neoplastic process and represent an excellent alternative to study carcinogenesis and therapeutic options. In the BALB/c-3T3 two-stage transformation assay cells are chemically transformed by treatment with MCA and TPA, along with the final Giemsa staining of morphological aberrant foci. In addition to the standard method we can show, that it is possible to apply other chemicals in parallel to identify potential preventive or therapeutic substances during the transformation process. Furthermore, we successfully combined the BALB/c cell transformation assay with several endpoint applications for protein analysis (immunoblot, subcellular fractionation and immunofluorescence) or energy parameter measurements (glucose and oxygen consumption) to elucidate cancer mechanisms in more detail. In our opinion the BALB/c cell transformation assay proves to be an excellent model to investigate alterations in key proteins or energy parameters during the different stages of transformation as well as therapeutic substances and their mode of action. PMID:27611302

  18. Improvement of the BALB/c-3T3 cell transformation assay: a tool for investigating cancer mechanisms and therapies.

    PubMed

    Poburski, Doerte; Thierbach, René

    2016-01-01

    The identification of cancer preventive or therapeutic substances as well as carcinogenic risk assessment of chemicals is nowadays mostly dependent on animal studies. In vitro cell transformation assays mimic different stages of the in vivo neoplastic process and represent an excellent alternative to study carcinogenesis and therapeutic options. In the BALB/c-3T3 two-stage transformation assay cells are chemically transformed by treatment with MCA and TPA, along with the final Giemsa staining of morphological aberrant foci. In addition to the standard method we can show, that it is possible to apply other chemicals in parallel to identify potential preventive or therapeutic substances during the transformation process. Furthermore, we successfully combined the BALB/c cell transformation assay with several endpoint applications for protein analysis (immunoblot, subcellular fractionation and immunofluorescence) or energy parameter measurements (glucose and oxygen consumption) to elucidate cancer mechanisms in more detail. In our opinion the BALB/c cell transformation assay proves to be an excellent model to investigate alterations in key proteins or energy parameters during the different stages of transformation as well as therapeutic substances and their mode of action.

  19. Low molecular weight molecules of oyster nacre induce mineralization of the MC3T3-E1 cells.

    PubMed

    Rousseau, Marthe; Boulzaguet, Hélène; Biagianti, Julie; Duplat, Denis; Milet, Christian; Lopez, Evelyne; Bédouet, Laurent

    2008-05-01

    The nacre layer from the pearl oyster shell is considered as a promising osteoinductive biomaterial. Nacre contains one or more signal molecules capable of stimulating bone formation. The identity and the mode of action of these molecules on the osteoblast differentiation were analyzed. Water-soluble molecules from nacre were fractionated according to dialysis, solvent extraction, and reversed-phase HPLC. The activity of a fraction composed of low molecular weight molecules in the mineralization of the MC3T3-E1 extracellular matrix was investigated. Mineralization of the preosteoblast cells was monitored according to alizarin red staining, Raman spectroscopy, scanning electron microscopy, and quantitative RT-PCR. Molecules isolated from nacre, ranging from 50 to 235 Da, induced a red alizarin staining of the preosteoblasts extracellular matrix after 16 days of culture. Raman spectroscopy demonstrated the presence of hydroxyapatite (HA) in samples treated with these molecules. Scanning electron microscopy pictures showed at the surface of the treated cells the occurrence of clusters of spherical particles resembling to HA. The treatment of cells with nacre molecules accelerated expression of collagen I and increased the mRNA expression of Runx2 and osteopontin. This study indicated that the nacre molecules efficient in bone cell differentiation are certainly different from proteins, and could be useful for in vivo bone repair.

  20. Lysosome-associated membrane proteins (LAMPs) regulate intracellular positioning of mitochondria in MC3T3-E1 cells.

    PubMed

    Rajapakshe, Anupama R; Podyma-Inoue, Katarzyna A; Terasawa, Kazue; Hasegawa, Katsuya; Namba, Toshimitsu; Kumei, Yasuhiro; Yanagishita, Masaki; Hara-Yokoyama, Miki

    2015-02-01

    The intracellular positioning of both lysosomes and mitochondria meets the requirements of degradation and energy supply, which are respectively the two major functions for cellular maintenance. The positioning of both lysosomes and mitochondria is apparently affected by the nutrient status of the cells. However, the mechanism coordinating the positioning of the organelles has not been sufficiently elucidated. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) are highly glycosylated proteins that are abundant in lysosomal membranes. In the present study, we demonstrated that the siRNA-mediated downregulation of LAMP-1, LAMP-2 or their combination enhanced the perinuclear localization of mitochondria, in the pre-osteoblastic cell line MC3T3-E1. On the other hand, in the osteocytic cell line MLO-Y4, in which both the lysosomes and mitochondria originally accumulate in the perinuclear region and mitochondria also fill dendrites, the effect of siRNA of LAMP-1 or LAMP-2 was barely observed. LAMPs are not directly associated with mitochondria, and there do not seem to be any accessory molecules commonly required to recruit the motor proteins to lysosomes and mitochondria. Our results suggest that LAMPs may regulate the positioning of lysosomes and mitochondria. A possible mechanism involving the indirect and context-dependent action of LAMPs is discussed.

  1. Retinol encapsulated into amorphous Ca(2+) polyphosphate nanospheres acts synergistically in MC3T3-E1 cells.

    PubMed

    Müller, Werner E G; Tolba, Emad; Schröder, Heinz C; Diehl-Seifert, Bärbel; Wang, Xiaohong

    2015-06-01

    Both the quality and quantity of collagen, the major structural component of the skin, decrease in aging skin. We succeeded to encapsulate retinol into amorphous inorganic polyphosphate (polyP) nanoparticles together with calcium ions ("aCa-polyP-NP"), under formation of amorphous Ca-polyP/retinol nanospheres ("retinol/aCa-polyP-NS"). The globular nanospheres are not cytotoxic, show an almost uniform size of ≈ 45 nm and have a retinol content of around 25%. Both components of those nanospheres, retinol and the aCa-polyP-NP, if administered together, caused a strong increase in proliferation of mouse calvaria MC3T3 cells. The expressions of collagen types I, II and III genes, but not the expression of collagen type V gene, were significantly enhanced if retinol is added together with aCa-polyP-NP. This synergistic effect was especially pronounced for the expression of the collagen type III gene. We propose that the synergistic effect of the retinol/aCa-polyP-NS on cell growth and collagen type III expression is induced via two routes, first through cellular uptake of the 45 nm nanospheres by clathrin-mediated endocytosis and second through extracellular disintegration of the nanospheres resulting in the release of retinol which is then taken up into the cells after binding to the retinal binding protein receptor.

  2. Inhibition of mitotic clonal expansion mediates fisetin-exerted prevention of adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Lee, Youngyi; Bae, Eun Ju

    2013-11-01

    Adipocytes are the key player in adipose tissue inflammation and subsequent systemic insulin resistance and its development involves complex process of proliferation and differentiation of preadipocytes. Fistein, a polyphenol flavonoid, is known to exert anti-inflammatory, anti-carcinogenic and anti-diabetic effects. In this study, we aimed to investigate the effect of fisetin on adipocyte proliferation and differentiation in 3T3-L1 preadipocyte cell line and its mechanism of action. We found that fisetin inhibits adipocyte differentiation in a concentration dependent manner, which were evidenced by Oil Red O staining and the protein expression of mature adipocyte marker genes fatty acid synthase and peroxisome proliferator-activated receptor γ. Moreover, the proliferation of preadipocytes was also markedly suppressed by treatment of fisetin for 24 and 48 h in the differentiation medium. We also found that fisetin inhibition of adipocyte differentiation was largely due to the effect on mitotic clonal expansion. Fisetin suppression of preadipocyte proliferation at early stage of differentiation was accompanied by the changes of expression of a series of cell cycle regulatory proteins. Altogether, our results suggest that the inhibition of adipocyte differentiation by fisetin may be at least in part mediated by cell cycle arrest during adipogenesis.

  3. Objective scoring of transformed foci in BALB/c 3T3 cell transformation assay by statistical image descriptors.

    PubMed

    Urani, C; Corvi, R; Callegaro, G; Stefanini, F M

    2013-09-01

    In vitro cell transformation assays (CTAs) have been shown to model important stages of in vivo carcinogenesis and have the potential to predict carcinogenicity in humans. Advantages of CTAs are their ability of revealing both genotoxic and non-genotoxic carcinogens while reducing both experimental costs and the number of animals used. The endpoint of the CTA is foci formation, and requires classification under light microscopy based on morphology. Thus current limitations for the wide adoption of the assay partially depend on a fair degree of subjectivity in foci scoring. An objective evaluation may be obtained after separating foci from background monolayer in the digital image, and quantifying values of statistical descriptors which are selected to capture eye-scored morphological features. The aim of this study was to develop statistical descriptors to be applied to transformed foci of BALB/c 3T3, which cover foci size, multilayering and invasive cell growth into the background monolayer. Proposed descriptors were applied to a database of 407 foci images to explore the numerical features, and to illustrate open problems and potential solutions.

  4. Objective scoring of transformed foci in BALB/c 3T3 cell transformation assay by statistical image descriptors.

    PubMed

    Urani, C; Corvi, R; Callegaro, G; Stefanini, F M

    2013-09-01

    In vitro cell transformation assays (CTAs) have been shown to model important stages of in vivo carcinogenesis and have the potential to predict carcinogenicity in humans. Advantages of CTAs are their ability of revealing both genotoxic and non-genotoxic carcinogens while reducing both experimental costs and the number of animals used. The endpoint of the CTA is foci formation, and requires classification under light microscopy based on morphology. Thus current limitations for the wide adoption of the assay partially depend on a fair degree of subjectivity in foci scoring. An objective evaluation may be obtained after separating foci from background monolayer in the digital image, and quantifying values of statistical descriptors which are selected to capture eye-scored morphological features. The aim of this study was to develop statistical descriptors to be applied to transformed foci of BALB/c 3T3, which cover foci size, multilayering and invasive cell growth into the background monolayer. Proposed descriptors were applied to a database of 407 foci images to explore the numerical features, and to illustrate open problems and potential solutions. PMID:23820182

  5. PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse swiss 3T3 and human skin fibroblasts

    SciTech Connect

    Sturani, E.; Vicentini, L.M.; Zippel, R.; Toschi, L.; Pandiella-Alonso, A.; Comoglio, P.M.; Meldolesi, J.

    1986-05-29

    Short (1-10 min) pretreatment of intact cells with activators of protein kinase C (e.g. phorbol-12 myristate, 13-acetate, PMA) affects the activity of a variety of surface receptors (for growth factors, hormones and neurotransmitters), with inhibition of transmembrane signal generation. In two types of fibroblasts it is demonstrated that the PDGF receptor is unaffected by PMA. Exposure to PMA at concentrations up to 100 nM for 10 min failed to inhibit either one of the agonist-induced, receptor-coupled responses of PDGF: the autophosphorylation of receptor molecules at tyrosine residues, and the hydrolysis of membrane polyphosphoinositides. In contrast, the EGF receptor autophosphorylation (in A 431 cells) and the bombesin-induced phosphoinositide hydrolysis were readily inhibited by PMA.

  6. The Effect of OSM on MC3T3-E1 Osteoblastic Cells in Simulated Microgravity with Radiation

    PubMed Central

    Goyden, Jake; Tawara, Ken; Hedeen, Danielle; Willey, Jeffrey S.; Thom Oxford, Julia; Jorcyk, Cheryl L.

    2015-01-01

    Bone deterioration is a challenge in long-term spaceflight with significant connections to patients experiencing disuse bone loss. Prolonged unloading and radiation exposure, defining characteristics of space travel, have both been associated with changes in inflammatory signaling via IL-6 class cytokines in bone. While there is also evidence for perturbed IL-6 class signaling in spaceflight, there has been scant examination of the connections between microgravity, radiation, and inflammatory stimuli in bone. Our lab and others have shown that the IL-6 class cytokine oncostatin M (OSM) is an important regulator of bone remodeling. We hypothesize that simulated microgravity alters osteoblast OSM signaling, contributing to the decoupling of osteolysis and osteogenesis in bone homeostasis. To test this hypothesis, we induced OSM signaling in murine MC3T3-E1 pre-osteoblast cells cultured in modeled microgravity using a rotating wall vessel bioreactor with and without exposure to radiation typical of a solar particle event. We measured effects on inflammatory signaling, osteoblast activity, and mineralization. Results indicated time dependent interactions among all conditions in the regulation of IL-6 production. Furthermore, OSM induced the transcription of OSM receptor ß, IL 6 receptor α subunits, collagen α1(I), osteocalcin, sclerostin, RANKL, and osteoprotegerin. Measurements of osteoid mineralization suggest that the spatial organization of the osteoblast environment is an important consideration in understanding bone formation. Taken together, these results support a role for altered OSM signaling in the mechanism of microgravity-induced bone loss. PMID:26030441

  7. Aurantio-obtusin stimulates chemotactic migration and differentiation of MC3T3-E1 osteoblast cells.

    PubMed

    Vishnuprasad, Chethala N; Tsuchiya, Tomoko; Kanegasaki, Shiro; Kim, Joon Ho; Han, Sung Soo

    2014-05-01

    Osteoporosis is one of the major metabolic bone diseases and is among the most challenging noncommunicable diseases to treat. Although there is an increasing interest in identifying bioactive molecules for the prevention and management of osteoporosis, such studies principally focus only on differentiation and mineralization of osteoblasts or inhibition of osteoclast activity. Stimulation of osteoblast migration must be a promising osteoanabolic strategy for improved metabolic bone disease therapy. In this study, we show that an anthraquinone derivative, aurantio-obtusin, stimulated chemotactic migration of MC3T3-E1 osteoblast cells in a concentration-dependent manner. The use of a real-time chemotaxis analyzing system, TAXIScan, facilitated the evaluation of both velocity and directionality of osteoblast migration in response to the compound. Besides migration, the compound stimulated osteoblast differentiation and mineralization. Taken together, the data presented in this paper demonstrate that aurantio-obtusin is a promising osteoanabolic compound of natural origin with potential therapeutic applications in the prevention of osteoporosis and other metabolic bone diseases.

  8. Adipogenesis, lipogenesis and lipolysis is stimulated by mild but not severe hypoxia in 3T3-L1 cells.

    PubMed

    Weiszenstein, Martin; Musutova, Martina; Plihalova, Andrea; Westlake, Katerina; Elkalaf, Moustafa; Koc, Michal; Prochazka, Antonin; Pala, Jan; Gulati, Sumeet; Trnka, Jan; Polak, Jan

    2016-09-16

    In-vitro investigation of the effects of hypoxia is limited by physical laws of gas diffusion and cellular O2 consumption, making prolonged exposures to stable O2 concentrations impossible. Using a gas-permeable cultureware, chronic effects of mild and severe hypoxia on triglyceride accumulation, lipid droplet size distribution, spontaneous lipolysis and gene expression of adipocyte-specific markers were assessed. 3T3-L1 cells were differentiated under 20%, 4% or 1% O2 using a gas-permeable cultureware. Triglyceride accumulation, expression of genes characteristic for advanced adipocyte differentiation and involvement of key lipogenesis enzymes were assessed after exposures. Lipogenesis increased by 375% under mild hypoxia, but dropped by 43% in severe hypoxia. Mild, but not severe, hypoxia increased formation of large lipid droplets 6.4 fold and strongly induced gene expression of adipocyte-specific markers. Spontaneous lipolysis increased by 488% in mild, but only by 135% in severe hypoxia. Inhibition of ATP-dependent citrate lyase suppressed hypoxia-induced lipogenesis by 81% and 85%. Activation of HIF inhibited lipogenesis by 59%. Mild, but not severe, hypoxia stimulates lipolysis and promotes adipocyte differentiation, probably through excess of acetyl-CoA originating from tricarboxylic acid cycle independently of HIF activation.

  9. The Effect of OSM on MC3T3-E1 Osteoblastic Cells in Simulated Microgravity with Radiation.

    PubMed

    Goyden, Jake; Tawara, Ken; Hedeen, Danielle; Willey, Jeffrey S; Oxford, Julia Thom; Jorcyk, Cheryl L

    2015-01-01

    Bone deterioration is a challenge in long-term spaceflight with significant connections to patients experiencing disuse bone loss. Prolonged unloading and radiation exposure, defining characteristics of space travel, have both been associated with changes in inflammatory signaling via IL-6 class cytokines in bone. While there is also evidence for perturbed IL-6 class signaling in spaceflight, there has been scant examination of the connections between microgravity, radiation, and inflammatory stimuli in bone. Our lab and others have shown that the IL-6 class cytokine oncostatin M (OSM) is an important regulator of bone remodeling. We hypothesize that simulated microgravity alters osteoblast OSM signaling, contributing to the decoupling of osteolysis and osteogenesis in bone homeostasis. To test this hypothesis, we induced OSM signaling in murine MC3T3-E1 pre-osteoblast cells cultured in modeled microgravity using a rotating wall vessel bioreactor with and without exposure to radiation typical of a solar particle event. We measured effects on inflammatory signaling, osteoblast activity, and mineralization. Results indicated time dependent interactions among all conditions in the regulation of IL-6 production. Furthermore, OSM induced the transcription of OSM receptor ß, IL 6 receptor α subunits, collagen α1(I), osteocalcin, sclerostin, RANKL, and osteoprotegerin. Measurements of osteoid mineralization suggest that the spatial organization of the osteoblast environment is an important consideration in understanding bone formation. Taken together, these results support a role for altered OSM signaling in the mechanism of microgravity-induced bone loss.

  10. Adipogenesis, lipogenesis and lipolysis is stimulated by mild but not severe hypoxia in 3T3-L1 cells.

    PubMed

    Weiszenstein, Martin; Musutova, Martina; Plihalova, Andrea; Westlake, Katerina; Elkalaf, Moustafa; Koc, Michal; Prochazka, Antonin; Pala, Jan; Gulati, Sumeet; Trnka, Jan; Polak, Jan

    2016-09-16

    In-vitro investigation of the effects of hypoxia is limited by physical laws of gas diffusion and cellular O2 consumption, making prolonged exposures to stable O2 concentrations impossible. Using a gas-permeable cultureware, chronic effects of mild and severe hypoxia on triglyceride accumulation, lipid droplet size distribution, spontaneous lipolysis and gene expression of adipocyte-specific markers were assessed. 3T3-L1 cells were differentiated under 20%, 4% or 1% O2 using a gas-permeable cultureware. Triglyceride accumulation, expression of genes characteristic for advanced adipocyte differentiation and involvement of key lipogenesis enzymes were assessed after exposures. Lipogenesis increased by 375% under mild hypoxia, but dropped by 43% in severe hypoxia. Mild, but not severe, hypoxia increased formation of large lipid droplets 6.4 fold and strongly induced gene expression of adipocyte-specific markers. Spontaneous lipolysis increased by 488% in mild, but only by 135% in severe hypoxia. Inhibition of ATP-dependent citrate lyase suppressed hypoxia-induced lipogenesis by 81% and 85%. Activation of HIF inhibited lipogenesis by 59%. Mild, but not severe, hypoxia stimulates lipolysis and promotes adipocyte differentiation, probably through excess of acetyl-CoA originating from tricarboxylic acid cycle independently of HIF activation. PMID:27498031

  11. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells.

    PubMed

    Hsin, Yi-Hong; Chen, Chun-Feng; Huang, Shing; Shih, Tung-Sheng; Lai, Ping-Shan; Chueh, Pin Ju

    2008-07-10

    Nanomaterials and nanoparticles have received considerable attention recently because of their unique properties and diverse biotechnology and life sciences applications. Nanosilver products, which have well-known antimicrobial properties, have been used extensively in a range of medical settings. Despite the widespread use of nanosilver products, relatively few studies have been undertaken to determine the biological effects of nanosilver exposure. The purpose of this study was to evaluate the toxicity of nanosilver and to elucidate possible molecular mechanisms underlying the biological effects of nanosilver. Here, we show that nanosilver is cytotoxic, inducing apoptosis in NIH3T3 fibroblast cells. Treatment with nanosilver induced the release of cytochrome c into the cytosol and translocation of Bax to mitochondria, indicating that nanosilver-mediated apoptosis is mitochondria-dependent. Nanosilver-induced apoptosis was associated with the generation of reactive oxygen species (ROS) and JNK activation, and inhibition of either ROS or JNK attenuated nanosilver-induced apoptosis. In nanosilver-resistant HCT116 cells, up-regulation of the anti-apoptotic proteins, Bcl-2 appeared to be associated with a diminished apoptotic response. Taken together, our results provide the first evidence for a molecular mechanism of nanosilver cytotoxicity, showing that nanosilver acts through ROS and JNK to induce apoptosis via the mitochondrial pathway.

  12. Cytotoxicity of zinc oxide nanoparticles on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells.

    PubMed

    Pandurangan, Muthuraman; Veerappan, Muthuviveganandavel; Kim, Doo Hwan

    2015-02-01

    The present study was aimed to investigate the dose-dependent effect of zinc oxide (ZnO) nanoparticles on antioxidant enzyme activities and messenger RNA (mRNA) expression in the cocultured C2C12 and 3T3-L1 cells. Coculturing experiments are 3D and more reliable compared to mono-culture (2D) experiment. Even though, there are several studies on ZnO nanoparticle-mediated cytotoxicity, but there are no studies on the effect of ZnO nanoparticle on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. A cytotoxicity assay was carried out to determine the effect of ZnO nanoparticles on the C2C12 and 3T3-L1 cell viability. At higher concentration of ZnO nanoparticles, C2C12 and 3T3-L1 cells almost die. ZnO nanoparticles increased reactive oxygen species (ROS) and lipid peroxidation and reduced glutathione (GSH) levels in a dose-dependent manner in the C2C12 and 3T3-L1 cells. In addition, ZnO nanoparticles increased antioxidant enzyme activities and their mRNA expression in the C2C12 and 3T3-L1 cells. In conclusion, the present study showed that ZnO nanoparticles increased oxidative stress, antioxidant enzyme activities, and their mRNA expression in the cocultured C2C12 and 3T3-L1 cells. PMID:25380643

  13. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    SciTech Connect

    Kang, Seong-Il; Ko, Hee-Chul; Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk; Lee, Nam-Ho; Kim, Se-Jae

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  14. Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways.

    PubMed

    Son, Jang-Ho; Cho, Yeong-Cheol; Sung, Iel-Yong; Kim, In-Ryoung; Park, Bong-Soo; Kim, Yong-Deok

    2014-11-01

    Osteoblastic differentiation and bone-forming capacity are known to be suppressed under hypoxic conditions. Melatonin has been shown to influence cell differentiation. A number of in vitro and in vivo studies have suggested that melatonin also has an anabolic effect on bone, by promoting osteoblastic differentiation. However, the precise mechanisms and the signaling pathways involved in this process, particularly under hypoxic conditions, are unknown. This study investigated whether melatonin could promote osteoblastic differentiation and mineralization of preosteoblastic MC3T3-E1 cells under hypoxic conditions. Additionally, we examined the molecular signaling pathways by which melatonin mediates this process. We found that melatonin is capable of promoting differentiation and mineralization of MC3T3-E1 cells cultured under hypoxic conditions. Melatonin upregulated ALP activity and mRNA levels of Alp, Osx, Col1, and Ocn in a time- and concentration-dependent manner. Alizarin red S staining showed that the mineralized matrix in hypoxic MC3T3-E1 cells formed in a manner that was dependent on melatonin concentration. Moreover, melatonin stimulated phosphorylation of p38 Mapk and Prkd1 in these MC3T3-E1 cells. We concluded that melatonin promotes osteoblastic differentiation of MC3T3-E1 cells under hypoxic conditions via the p38 Mapk and Prkd1 signaling pathways. PMID:25250639

  15. Phytic acid and myo-inositol support adipocyte differentiation and improve insulin sensitivity in 3T3-L1 cells.

    PubMed

    Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2014-08-01

    Phytic acid, also known as myo-inositol hexaphosphate, has been shown to lower blood glucose levels and to improve insulin sensitivity in rodents. We investigated the effects of phytic acid and myo-inositol on differentiation, insulin-stimulated glucose uptake, and lipolysis of adipocytes to test the hypothesis that the antidiabetic properties of phytic acid and myo-inositol are mediated directly through adipocytes. 3T3-L1 cells were treated with 10, 50, or 200 μmol/L of phytic acid or myo-inositol. Oil Red O staining and an intracellular triacylglycerol assay were used to determine lipid accumulation during adipocyte differentiation. Immunoblotting and real-time polymerase chain reaction (PCR) were performed to evaluate expression of transcription factors, a target protein, and insulin signaling molecules. Phytic acid and myo-inositol exposures increased lipid accumulation in a dose-dependent manner (P < .01). The expression of key transcription factors associated with adipocyte differentiation, such as peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein 1c, and the expression of fatty acid synthase increased upon treatments with phytic acid and myo-inositol (P < .05). Insulin-stimulated glucose uptake in mature adipocytes increased with phytic acid and myo-inositol treatments (P < .01). In addition, mRNA levels of insulin receptor substrate 1 (IRS1), mRNA levels of glucose transporter 4, and phosphorylation of tyrosine in IRS1 increased upon phytic acid and myo-inositol treatments. In fully differentiated adipocytes, phytic acid and myo-inositol reduced basal lipolysis dose dependently (P < .01). These results suggest that phytic acid and myo-inositol increase insulin sensitivity in adipocytes by increasing lipid storage capacity, improving glucose uptake, and inhibiting lipolysis.

  16. Controlled release of simvastatin from in situ forming hydrogel triggers bone formation in MC3T3-E1 cells.

    PubMed

    Park, Yoon Shin; David, Allan E; Park, Kyung Min; Lin, Chia-Ying; Than, Khoi D; Lee, Kyuri; Park, Jun Beom; Jo, Inho; Park, Ki Dong; Yang, Victor C

    2013-04-01

    Simvastatin (SIM), a drug commonly administered for the treatment of hypercholesterolemia, has been recently reported to induce bone regeneration/formation. In this study, we investigated the properties of hydrogel composed of gelatin-poly(ethylene glycol)-tyramine (GPT) as an efficient SIM delivery vehicle that can trigger osteogenic differentiation. Sustained delivery of SIM was achieved through its encapsulation in an injectable, biodegradable GPT-hydrogel. Cross-linking of the gelatin-based GPT-hydrogel was induced by the reaction of horse radish peroxidase and H(2)O(2). GPT-hydrogels of three different matrix stiffness, 1,800 (GPT-hydrogel1), 5,800 (GPT-hydrogel2), and 8,400 Pa (GPT-hydrogel3) were used. The gelation/degradation time and SIM release profiles of hydrogels loaded with two different concentrations of SIM, 1 and 3 mg/ml, were also evaluated. Maximum swelling times of GPT-hydrogel1, GPT-hydrogel2, and GPT-hydrogel3 were observed to be 6, 12, and 20 days, respectively. All GPT-hydrogels showed complete degradation within 55 days. The in vitro SIM release profiles, investigated in PBS buffer (pH 7.4) at 37°C, exhibited typical biphasic release patterns with the initial burst being more rapid with GPT-hydrogel1 compared with GPT-hydrogel3. Substantial increase in matrix metalloproteinase-13, osteocalcin expression levels, and mineralization were seen in osteogenic differentiation system using MC3T3-E1 cells cultured with GPT-hydrogels loaded with SIM in a dose-dependent manner. This study demonstrated that controlled release of SIM from a biodegradable, injectable GPT-hydrogel had a promising role for long-term treatment of chronic degenerative diseases such as disc degenerative disease. PMID:23250670

  17. Differentiation of 3T3-L1 preadipocytes with 3-isobutyl-1-methylxanthine and dexamethasone stimulates cell-associated and soluble chondroitin 4-sulfate proteoglycans

    SciTech Connect

    Calvo, J.C.; Rodbard, D.; Katki, A.; Chernick, S.; Yanagishita, M. )

    1991-06-15

    The proteoglycans (cell-associated and culture media) in 3T3-L1 preadipocytes in culture were analyzed before and during differentiation into adipocytes. Cells were metabolically labeled with (35S)sulfate and (3H) glucosamine for 24 h and then extracted and analyzed. There was a 1.68 {plus minus} 0.07-fold increase in the 35S in medium proteoglycan during differentiation, whereas cell-associated proteoglycan radioactivity showed no increase. Analyses of radiolabeled molecules using ion-exchange chromatography, gel filtration, and high performance liquid chromatography after enzymatic or alkaline digestion indicated that all of the 35S label was recovered as two major species of chondroitin 4-sulfate proteoglycans (CSPG-I and CSPG-II) and 7% as heparan sulfate proteoglycan. CSPG-I has a mass of {approximately} 970 kDa with multiple chondroitin sulfate chains (average of 50 kDa each) and a core protein of {approximately} 370 kDa including oligosaccharides. CSPG-II has a mass of 140 kDa with one or two chondroitin sulfate chains (average of 68 kDa each) and a core protein of 41 kDa including oligosaccharides. CSPG-I appears to be similar to versican, whereas CSPG-II is similar to decorin and/or biglycan, found in other fibroblastic cells. Cell differentiation was associated with a specific increase in CSPG-I (4.0 {plus minus} 0.2-fold in media and 3.2 {plus minus} 0.5-fold in the cell-associated form). This system should facilitate study of the functional roles of proteoglycans during growth and differentiation.

  18. The dynamic distribution of fluorescent analogues of actin and myosin in protrusions at the leading edge of migrating Swiss 3T3 fibroblasts

    PubMed Central

    1988-01-01

    The formation of protrusions at the leading edge of the cell is an essential step in fibroblast locomotion. Using fluorescent analogue cytochemistry, ratio imaging, multiple parameter analysis, and fluorescence photobleaching recovery, the distribution of actin and myosin was examined in the same protrusions at the leading edge of live, locomoting cells during wound-healing in vitro. We have previously defined two temporal stages of the formation of protrusions: (a) initial protrusion and (b) established protrusion (Fisher et al., 1988). Actin was slightly concentrated in initial protrusions, while myosin was either totally absent or present at extremely low levels at the base of the initial protrusions. In contrast, established protrusions contained diffuse actin and actin microspikes, as well as myosin in both diffuse and structured forms. Actin and myosin were also localized along concave transverse fibers near the base of initial and established protrusions. The dynamics of myosin penetration into a relatively stable, established protrusion was demonstrated by recording sequential images over time. Myosin was shown to be absent from an initial protrusion, but diffuse and punctate myosin was detected in the same protrusion within 1-2 min. Fluorescence photobleaching recovery indicated that myosin was 100% immobile in the region behind the leading edge containing transverse fibers, in comparison to the 21% immobile fraction detected in the perinuclear region. Possible explanations of the delayed penetration of myosin into established protrusions and the implications on the mechanism of protrusion are discussed. PMID:3204122

  19. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structure-function correlations at the molecular level.

    PubMed

    Halevas, E; Tsave, O; Yavropoulou, M P; Hatzidimitriou, A; Yovos, J G; Psycharis, V; Gabriel, C; Salifoglou, A

    2015-06-01

    Among the various roles of vanadium in the regulation of intracellular signaling, energy metabolism and insulin mimesis, its exogenous activity stands as a contemporary challenge currently under investigation and a goal to pursue as a metallodrug against Diabetes mellitus II. In this regard, the lipogenic activity of vanadium linked to the development of well-defined anti-diabetic vanadodrugs has been investigated through: a) specifically designing and synthesizing Schiff base organic ligands L, bearing a variable number of terminal alcohols, b) a series of well-defined soluble binary V(V)-L compounds synthesized and physicochemically characterized, c) a study of their cytotoxic effect and establishment of adipogenic activity in 3T3-L1 fibroblasts toward mature adipocytes, and d) biomarker examination of a closely-linked molecular target involving or influenced by the specific V(V) forms, cumulatively delineating factors involved in potential pathways linked to V(V)-induced insulin-like activity. Collectively, the results a) project the importance of specific structural features in Schiff ligands bound to V(V), thereby influencing the emergence of its (a)toxicity and for the first time its insulin-like activity in pre-adipocyte differentiation, b) contribute to the discovery of molecular targets influenced by the specific vanadoforms seeking to induce glucose uptake, and c) indicate an interplay of V(V) structural speciation and cell-differentiation biological activity, thereby gaining insight into vanadium's potential as a future metallodrug in Diabetes mellitus.

  20. The Role of Nuclear Factor-E2-Related Factor 1 in the Oxidative Stress Response in MC3T3-E1 Osteoblastic Cells

    PubMed Central

    Kim, Sung Hoon; Yoon, Hyun Koo; Yim, Chang Hoon

    2016-01-01

    Background Reactive oxygen species (ROS) and antioxidants are associated with maintenance of cellular function and metabolism. Nuclear factor-E2-related factor 1 (NFE2L1, Nrf1) is known to regulate the expression of a number of genes involved in oxidative stress and inflammation. The purpose of this study was to examine the effects of NFE2L1 on the response to oxidative stress in osteoblastic MC3T3-E1 cells. Methods The murine calvaria-derived MC3T3-E1 cell line was exposed to lipopolysaccharide (LPS) for oxidative stress induction. NFE2L1 effects were evaluated using small interfering RNA (siRNA) for NFE2L1 mRNA. ROS generation and the levels of known antioxidant enzyme genes were assayed. Results NFE2L1 expression was significantly increased 2.4-fold compared to the control group at 10 µg/mL LPS in MC3T3-E1 cells (P<0.05). LPS increased formation of intracellular ROS in MC3T3-E1 cells. NFE2L1 knockdown led to an additional increase of ROS (20%) in the group transfected with NFE2L1 siRNA compared with the control group under LPS stimulation (P<0.05). RNA interference of NFE2L1 suppressed the expression of antioxidant genes including metallothionein 2, glutamatecysteine ligase catalytic subunit, and glutathione peroxidase 1 in LPS-treated MC3T3-E1 cells. Conclusion Our results suggest that NFE2L1 may have a distinct role in the regulation of antioxidant enzymes under inflammation-induced oxidative stress in MC3T3-E1 osteoblastic cells. PMID:27118276

  1. Co-culture with periodontal ligament stem cells enhanced osteoblastic differentiation of MC3T3-E1 cells and osteoclastic differentiation of RAW264.7 cells

    PubMed Central

    Chen, Shulan; Ye, Xin; Yu, Xinbo; Xu, Quanchen; Pan, Keqing; Lu, Shulai; Yang, Pishan

    2015-01-01

    Objectives: Periodontal ligament stem cells (PDLSCs) are characterized by having multipotential differentiation and immunoregulatory properties, which are the main mechanisms of PDLSCs-mediated periodontal regeneration. Periodontal or bone regeneration requires coordination of osteoblast and osteoclast, however, very little is known about the interactions between PDLSCs and osteoblast-like cells or osteoclast precursors. In this study, the indirect co-culture approach was introduced to preliminarily elucidate the effects of PDLSCs on differentiation of osteoblast-like cells and osteoclast precursors in vitro. Materials and methods: Human PDLSCs were obtained from premolars extracted and their stemness was identified in terms of their colony-forming ability, proliferative capacity, cell surface epitopes and multi-lineage differentiation potentials. A noncontact co-culture system of PDLSCs and preosteoblastic cell line MC3T3-E1 or osteoclast precursor cell line RAW264.7 was established, and osteoblastic differentiation of MC3T3-E1 and osteoclastic differentiation of RAW264.7 were evaluated. Results: PDLSCs exhibited features of mesenchymal stem cells. Further investigation through indirect co-culture system showed that PDLSCs enhanced ALP activity, expressions of ALP, Runx2, BSP, OPN mRNA and BSP, OPN proteins and mineralization matrix deposition in MC3T3-E1. Meanwhile, they improved maturation of osteoclasts and expressions of TRAP, CSTK, TRAF6 mRNA and TRAP, TRAF6 proteins in RAW264.7. Conclusions: PDLSCs stimulates osteoblastic differentiation of osteoblast precursors and osteoclastic differentiation of osteoclast precursors, at least partially, in a paracrine fasion. PMID:26823783

  2. Aspirin Breaks the Crosstalk between 3T3-L1 Adipocytes and 4T1 Breast Cancer Cells by Regulating Cytokine Production.

    PubMed

    Hsieh, Chia-Chien; Huang, Yu-Shan

    2016-01-01

    Breast cancer is one of the most common cancers in women worldwide. The obesity process is normally accompanied by chronic, low-grade inflammation. Infiltration by inflammatory cytokines and immune cells provides a favorable microenvironment for tumor growth, migration, and metastasis. Epidemiological evidence has shown that aspirin is an effective agent against several types of cancer. The aim of this study is to investigate the anti-inflammatory and anti-cancer effects of aspirin on 3T3-L1 adipocytes, 4T1 murine breast cancer cells, and their crosstalk. The results showed that aspirin treatment inhibited differentiation and lipid accumulation by 3T3-L1 preadipocytes, and decreased the secretion of the inflammatory adipokine MCP-1 after stimulation with tumor necrosis factor (TNF)-α or conditioned medium from RAW264.7 cells. In 4T1 cells, treatment with aspirin decreased cell viability and migration, possibly by suppressing MCP-1 and VEGF secretion. Subsequently, culture of 4T1 cells in 3T3-L1 adipocyte-conditioned medium (Ad-CM) and co-culture of 3T3-L1 and 4T1 cells using a transwell plate were performed to clarify the relationship between these two cell lines. Aspirin exerted its inhibitory effects in the transwell co-culture system, as well as the conditioned-medium model. Aspirin treatment significantly inhibited the proliferation of 4T1 cells, and decreased the production of MCP-1 and PAI-1 in both the Ad-CM model and co-culture system. Aspirin inhibited inflammatory MCP-1 adipokine production by 3T3-L1 adipocytes and the cell growth and migration of 4T1 cells. It also broke the crosstalk between these two cell lines, possibly contributing to its chemopreventive properties in breast cancer. This is the first report that aspirin's chemopreventive activity supports the potential application in auxiliary therapy against obesity-related breast cancer development. PMID:26794215

  3. Aspirin Breaks the Crosstalk between 3T3-L1 Adipocytes and 4T1 Breast Cancer Cells by Regulating Cytokine Production.

    PubMed

    Hsieh, Chia-Chien; Huang, Yu-Shan

    2016-01-01

    Breast cancer is one of the most common cancers in women worldwide. The obesity process is normally accompanied by chronic, low-grade inflammation. Infiltration by inflammatory cytokines and immune cells provides a favorable microenvironment for tumor growth, migration, and metastasis. Epidemiological evidence has shown that aspirin is an effective agent against several types of cancer. The aim of this study is to investigate the anti-inflammatory and anti-cancer effects of aspirin on 3T3-L1 adipocytes, 4T1 murine breast cancer cells, and their crosstalk. The results showed that aspirin treatment inhibited differentiation and lipid accumulation by 3T3-L1 preadipocytes, and decreased the secretion of the inflammatory adipokine MCP-1 after stimulation with tumor necrosis factor (TNF)-α or conditioned medium from RAW264.7 cells. In 4T1 cells, treatment with aspirin decreased cell viability and migration, possibly by suppressing MCP-1 and VEGF secretion. Subsequently, culture of 4T1 cells in 3T3-L1 adipocyte-conditioned medium (Ad-CM) and co-culture of 3T3-L1 and 4T1 cells using a transwell plate were performed to clarify the relationship between these two cell lines. Aspirin exerted its inhibitory effects in the transwell co-culture system, as well as the conditioned-medium model. Aspirin treatment significantly inhibited the proliferation of 4T1 cells, and decreased the production of MCP-1 and PAI-1 in both the Ad-CM model and co-culture system. Aspirin inhibited inflammatory MCP-1 adipokine production by 3T3-L1 adipocytes and the cell growth and migration of 4T1 cells. It also broke the crosstalk between these two cell lines, possibly contributing to its chemopreventive properties in breast cancer. This is the first report that aspirin's chemopreventive activity supports the potential application in auxiliary therapy against obesity-related breast cancer development.

  4. A Small Molecule Swertisin from Enicostemma littorale Differentiates NIH3T3 Cells into Islet-Like Clusters and Restores Normoglycemia upon Transplantation in Diabetic Balb/c Mice.

    PubMed

    Dadheech, Nidheesh; Soni, Sanket; Srivastava, Abhay; Dadheech, Sucheta; Gupta, Shivika; Gopurappilly, Renjitha; Bhonde, Ramesh R; Gupta, Sarita

    2013-01-01

    Aim. Stem cell therapy is one of the upcoming therapies for the treatment of diabetes. Discovery of potent differentiating agents is a prerequisite for increasing islet mass. The present study is an attempt to screen the potential of novel small biomolecules for their differentiating property into pancreatic islet cells using NIH3T3, as representative of extra pancreatic stem cells/progenitors. Methods. To identify new agents that stimulate islet differentiation, we screened various compounds isolated from Enicostemma littorale using NIH3T3 cells and morphological changes were observed. Characterization was performed by semiquantitative RT-PCR, Q-PCR, immunocytochemistry, immunoblotting, and insulin secretion assay for functional response in newly generated islet-like cell clusters (ILCC). Reversal of hyperglycemia was monitored after transplanting ILCC in STZ-induced diabetic mice. Results. Among various compounds tested, swertisin, an isolated flavonoid, was the most effective in differentiating NIH3T3 into endocrine cells. Swertisin efficiently changed the morphology of NIH3T3 cells from fibroblastic to round aggregate cell cluster in huge numbers. Dithizone (DTZ) stain primarily confirmed differentiation and gene expression studies signified rapid onset of differentiation signaling cascade in swertisin-induced ILCC. Molecular imaging and immunoblotting further confirmed presence of islet specific proteins. Moreover, glucose induced insulin release (in vitro) and decreased fasting blood glucose (FBG) (in vivo) in transplanted diabetic BALB/c mice depicted functional maturity of ILCC. Insulin and glucagon expression in excised islet grafts illustrated survival and functional integrity. Conclusions. Rapid induction for islet differentiation by swertisin, a novel herbal biomolecule, provides low cost and readily available differentiating agent that can be translated as a therapeutic tool for effective treatment in diabetes. PMID:23662125

  5. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    SciTech Connect

    An, Lei; Pang, Yun-Wei; Gao, Hong-Mei; Tao, Li; Miao, Kai; Wu, Zhong-Hong; and others

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  6. Estrogen stimuli promote osteoblastic differentiation via the subtilisin-like proprotein convertase PACE4 in MC3T3-E1 cells.

    PubMed

    Kim, Hyejin; Tabata, Atsushi; Tomoyasu, Toshifumi; Ueno, Tomomi; Uchiyama, Shigeto; Yuasa, Keizo; Tsuji, Akihiko; Nagamune, Hideaki

    2015-01-01

    Estrogenic compounds include endogenous estrogens such as estradiol as well as soybean isoflavones, such as daidzein and its metabolite equol, which are known phytoestrogens that prevent osteoporosis in postmenopausal women. Indeed, mineralization of MC3T3-E1 cells, a murine osteoblastic cell line, was significantly decreased in medium containing fetal bovine serum treated with charcoal-dextran to deplete endogenous estrogens, but estradiol and these soybean isoflavones dose-dependently restored the differentiation of MC3T3-E1 cells; equol was tenfold more effective than daidzein. These differentiation-promoting effects were inhibited by the addition of fulvestrant, which is a selective downregulator of estrogen receptors. Analysis of the expression pattern of bone-related genes by reverse transcription PCR (RT-PCR)/quantitative real-time PCR (qRT-PCR), which focused on responsiveness to the estrogen stimuli, revealed that the transcription of PACE4, a subtilisin-like proprotein convertase, was tightly linked with the differentiation of MC3T3-E1 cells induced by estrogen stimuli. Moreover, treatment with RNAi of PACE4 in MC3T3-E1 cells resulted in a drastic decrease of mineralization in the presence of estrogen stimuli. These results strongly suggest that PACE4 participates in bone formation at least in osteoblast differentiation, and estrogen receptor-mediated stimuli induce osteoblast differentiation through the upregulation of PACE4 expression. PMID:24557631

  7. Effect of Thymosin beta4 on the Differentiation and Mineralization of MC3T3-E1 Cell on a Titanium Surface.

    PubMed

    Jeong, Soon-Jeong; Jeong, Moon-Jin

    2016-02-01

    Osteoblasts are responsible for the synthesis of bone matrix through the secretion of collagenous and non-collagenous proteins with mineralization. Thymosin beta4 (Tbeta4) is an actin-sequestering peptide that is involved in the regulation of cell proliferation, differentiation and motility. A recent study reported that the inhibition of Tbeta4 mRNA synthesis strongly decreases the level of gene expression of bone sialoprotein (BSP), dentin sialophosphoprotein (DSPP), osteocalcin (OCN), osteonectin (ON) and collagen type I (Col I) with mineralization during differentiation in odontoblasts. Titanium (Ti) is used commonly as an implant material for dental implants, which have strong mechanical potential and good biocompatibility with bone. This study examined whether Tbeta4 can be a potential molecule for promoting the differentiation and mineralization of MC3T3-E1 cells on a Ti surface. Tbeta4 increased the viability of MC3T3-E1 cells during differentiation on Ti discs compared to that of the control. The expression of Tbeta4 mRNA and protein in the Tbeta4-treated MC3T3-E1 cells was higher than the control during differentiation on the Ti discs. In addition, Tbeta4 increased the formation of mineralization nodules and the mRNA expression of alkaline phosphatase (ALP), DSPP, dentin matrix protein1 (DMP1), BSP and Col I compared to that of the control in MC3T3-E1 cells during differentiation on Ti discs. From the results, Tbeta4 increased the viability and promoted the differentiation and mineralization of MC3T3-E1 cells on Ti discs. This highlights the potential use of Tbeta4 for increasing osseointegration through osteoblast differentiation and mineralization on Ti discs. PMID:27433712

  8. In vitro mineralization of MC3T3-E1 osteoblast-like cells on collagen/nano-hydroxyapatite scaffolds coated carbon/carbon composites.

    PubMed

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2016-02-01

    Collagen/nano-hydroxyapatite (collagen/nHA) scaffolds were successfully prepared on carbon/carbon composites as bioactive films using the layer-by-layer coating method. Surface characterizations of collagen/nHA scaffolds were detected by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Compressive strengths of the scaffolds were evaluated by a universal test machine. In vitro biological performances were determined using scaffolds seeded with MC3T3-E1 osteoblasts-like cells and cultured in mineralization medium for up to 21 days. In addition, cellular morphologies and several related gene expressions of MC3T3-E1 cells in the scaffolds were also evaluated. Chemical and morphological analysis showed that the scaffolds had uniform pore sizes and unified phase composition. Mechanical testing indicated that the collagen/nHA scaffolds had the highest compressive strength in 50% of strain condition when the proportion of collagen and nano-hydroxyapatite was 1:3. Cellular morphology observations and cytology tests indicated that MC3T3-E1 cells were adhered on these scaffolds and proliferated. SEM photographs and gene expressions showed that mineralized MC3T3-E1 cells and newly formed extra cellular matrix (ECM) filled up the pores of the scaffolds after the 3-week mineralization inducement. Nano-sized apatite particles were secreted from MC3T3-E1 cells and combined with the reconstructed ECM. Collectively, collagen/nHA scaffolds provided C/C composites with a biomimetic surface for cell adhesion, proliferation and mineralized extra cellular matrices formation.

  9. Effect of Thymosin beta4 on the Differentiation and Mineralization of MC3T3-E1 Cell on a Titanium Surface.

    PubMed

    Jeong, Soon-Jeong; Jeong, Moon-Jin

    2016-02-01

    Osteoblasts are responsible for the synthesis of bone matrix through the secretion of collagenous and non-collagenous proteins with mineralization. Thymosin beta4 (Tbeta4) is an actin-sequestering peptide that is involved in the regulation of cell proliferation, differentiation and motility. A recent study reported that the inhibition of Tbeta4 mRNA synthesis strongly decreases the level of gene expression of bone sialoprotein (BSP), dentin sialophosphoprotein (DSPP), osteocalcin (OCN), osteonectin (ON) and collagen type I (Col I) with mineralization during differentiation in odontoblasts. Titanium (Ti) is used commonly as an implant material for dental implants, which have strong mechanical potential and good biocompatibility with bone. This study examined whether Tbeta4 can be a potential molecule for promoting the differentiation and mineralization of MC3T3-E1 cells on a Ti surface. Tbeta4 increased the viability of MC3T3-E1 cells during differentiation on Ti discs compared to that of the control. The expression of Tbeta4 mRNA and protein in the Tbeta4-treated MC3T3-E1 cells was higher than the control during differentiation on the Ti discs. In addition, Tbeta4 increased the formation of mineralization nodules and the mRNA expression of alkaline phosphatase (ALP), DSPP, dentin matrix protein1 (DMP1), BSP and Col I compared to that of the control in MC3T3-E1 cells during differentiation on Ti discs. From the results, Tbeta4 increased the viability and promoted the differentiation and mineralization of MC3T3-E1 cells on Ti discs. This highlights the potential use of Tbeta4 for increasing osseointegration through osteoblast differentiation and mineralization on Ti discs.

  10. St. John's wort promotes adipocyte differentiation and modulates NF-κB activation in 3T3-L1 cells.

    PubMed

    Hatano, Tomoko; Sameshima, Yuka; Kawabata, Mami; Yamada, Shizuo; Shinozuka, Kazumasa; Nakabayashi, Toshikatsu; Mizuno, Hideya

    2014-01-01

    St. John's wort (SJW), or Hypericum perforatum, is a perennial herb that has been used in the treatment of depression in several countries. Though its therapeutic effect on depression has been extensively studied, its influence on metabolic syndrome is yet to be fully characterized. Therefore, we investigated the effect of SJW extract on adipocyte differentiation and its anti-inflammatory effects by using 3T3-L1 preadipocytes. Oil Red O staining indicated that SJW promotes adipocyte differentiation, while immunoblots indicated that SJW increases the expression of peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor regulating adipocyte differentiation, and adiponectin, an anti-inflammatory adipokine. Furthermore, the anti-inflammatory activity of SJW was demonstrated by its inhibition of the activation of nuclear factor-κB (NF-κB), an inflammatory transcription factor. Stimulation of mature 3T3-L1 adipocytes by tumor necrosis factor-α (TNF-α) decreased the expression of the NF-κB inhibitor IκBα, and increased its phosphorylation. Treatment with SJW further decreased the TNF-α-induced perturbation in IκBα expression and phosphorylation, which indicated that SJW mediated the inhibition of NF-κB activation. In addition, SJW decreased the TNF-α-induced increase in the mRNA levels of pro-inflammatory adipokines, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). Collectively, our results indicate that SJW treatment could promote adipocyte differentiation probably through its anti-inflammatory activity, which in turn suggests that SJW has the potential to minimize the risk factors of metabolic syndrome.

  11. Roles of insulinlike growth factor 1 (IGF-1) and the IGF-1 receptor in epidermal growth factor-stimulated growth of 3T3 cells.

    PubMed Central

    Pietrzkowski, Z; Sell, C; Lammers, R; Ullrich, A; Baserga, R

    1992-01-01

    BALB/c3T3 cells are exquisitely growth regulated and require platelet-derived growth factor, epidermal growth factor (EGF), and insulinlike growth factor 1 (IGF-1) for growth. When BALB/c3T3 cells are transfected with plasmids constitutively expressing both EGF and the human IGF-1 receptor mRNAs, the cells are capable of growing in serum-free medium without the addition of any exogenous growth factor. These cells, called p5 cells, can grow for prolonged periods in serum-free medium. BALB/c3T3 cells transfected with only the IGF-1 receptor expression plasmid (p6 cells) do not grow in serum-free medium but do grow if IGF-1 (or insulin in supraphysiological concentrations) is added. p6 cells also grow in response to EGF, confirming that the combination of EGF and an overexpressed IGF-1 receptor is sufficient for the growth of 3T3 cells. We have found that in EGF-stimulated p6 cells there is an increase in the expression of IGF-1 mRNA, that IGF-1 is secreted into the medium, and that the growth of p5 cells and EGF-stimulated p6 cells is inhibited by exposure to antisense oligodeoxynucleotides to IGF-1 receptor RNA. Finally, while cells constitutively expressing both EGF and EGF receptor RNAs grow, albeit modestly, in serum-free medium, their growth is also inhibited by an antisense oligodeoxynucleotide to IGF-1 receptor RNA. In contrast, in cells overexpressing the IGF-1 receptor, IGF-1-mediated cell growth occurs independently of the platelet-derived growth factor and EGF receptors (Z. Pietrzkowski, R. Lammers, G. Carpenter, A. M. Soderquist, M. Limardo, P. D. Phillips, A. Ullrich, and R. Baserga, Cell Growth Differ. 3:199-205, 1992, and this paper). These data indicate that an important role for EGF is participation in the activation of an autocrine loop based on the IGF-1-IGF-1 receptor interaction, which is obligatory for the proliferation of 3T3 cells. Images PMID:1324408

  12. Shikonin stimulates MC3T3-E1 cell proliferation and differentiation via the BMP-2/Smad5 signal transduction pathway.

    PubMed

    Fang, Tao; Wu, Qianqian; Mu, Shuai; Yang, Liyu; Liu, Shengye; Fu, Qin

    2016-08-01

    Shikonin, the predominant naphthoquinone pigment isolated from the Chinese plant Lithospermum erythrorhizon, is anti‑inflammatory, antiviral and exerts anticancer effects, amongst other biological activities. However, it is unknown whether shikonin affects bone formation. In the present study, the role of shikonin on cell proliferation was assessed via MTT assay, and shikonin was identified to markedly promote cell growth in a time‑ and dose‑dependent manner in the MC3T3‑E1 cell line. In addition, flow cytometric analysis was performed to evaluate the effect of shikonin on the cell cycle, and it was observed that shikonin markedly increased the percentage of S‑phase MC3T3‑E1 cells to accelerate the G1/S transition. To investigate the potential molecular mechanism by which shikonin enhances bone formation, the changes in bone morphogenic protein‑2 (BMP‑2), SMAD family member 5 (Smad5), runt related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteocalcin (OC) expression levels induced by shikonin were investigated using western blot analysis and quantitative polymerase chain reaction. The results indicated that shikonin increased the BMP‑2 and Smad5 mRNA levels, and upregulated Smad5 and Runx2 protein expression levels to promote osteoblast differentiation. Furthermore, ALP staining was performed, and revealed that shikonin enhanced ALP activity. These results indicate that shikonin promotes cell proliferation and differentiation of MC3T3-E1 cells via the BMP-2/Smad5 signaling pathway.

  13. A quantitative study of MC3T3-E1 cell adhesion, morphology and biomechanics on chitosan-collagen blend films at single cell level.

    PubMed

    Wang, Chuang; Xie, Xu-dong; Huang, Xun; Liang, Zhi-hong; Zhou, Chang-ren

    2015-08-01

    The interaction between cells and biomaterials plays a key role in cell proliferation and differentiation in tissue engineering. However, a quantitative analysis of those interactions has been less well studied. The objective of this study was to quantitative recapitulate the difference of MC3T3-E1 cell adhesion, morphological and biomechanical properties on chitosan-collagen films in terms of chemical composition. Here, the unbinding force between MC3T3-E1 cell and a series of chitosan-collagen films was probed by a real-time and in situ atomic force microscopy-single cell force spectroscopy (AFM-SCFS). Meanwhile, changes in cell morphology and Young's modulus on different chitosan-collagen films were detected by AFM. The cell area and CCK-8 results showed that cell spreading and proliferation increased with increasing collagen content. AFM observations clearly showed cell height decreased and pseudopod fusion with the collagen content increased. Cell adhesive force increased from 0.76±0.17 nN to 1.70±0.19 nN. On the contrary, cells Young's modulus, which reflected biophysical changes of cells decreased from 11.94±3.19 kPa to 1.81±0.52 kPa, respectively. It suggested that stronger cell-substrate interactions benefit cell adhesion, and better cell flexibility improve cell spreading. The findings indicate that cell morphology, adhesive force and Young's modulus are significant affected by various chitosan-collagen substrates. Those methods and quantitative results have guiding significance for investigating the mechanism of chitosan and/or collagen based cell-targeting drug carrier and the preparation of chitosan-collagen composite biomaterials.

  14. β₂ adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

    PubMed

    Yamada, Takayuki; Ezura, Yoichi; Hayata, Tadayoshi; Moriya, Shuichi; Shirakawa, Jumpei; Notomi, Takuya; Arayal, Smriti; Kawasaki, Makiri; Izu, Yayoi; Harada, Kiyoshi; Noda, Masaki

    2015-06-01

    β adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of β2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

  15. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue.

    PubMed

    Kujubu, D A; Fletcher, B S; Varnum, B C; Lim, R W; Herschman, H R

    1991-07-15

    TIS10 is a primary response gene whose cDNA was cloned as a result of its rapid, superinducible expression in Swiss 3T3 cells in response to 12-O-Tetradecanoylphorbol-13-acetate. The 5'-untranslated region of the 3.9-kilobase TIS10 message contains only 124 nucleotides, whereas the 3'-untranslated region is almost 2 kilobases in length. Within this long 3' region, there are multiple repeats of the sequence ATTTA, a sequence often present in rapidly degraded mRNA species. Primer extension revealed that the TIS10 cDNA begins 16 base pairs downstream of the transcription start site for the TIS10 gene. The TIS10 cDNA encodes a predicted protein of 604 amino acids. A computer search identified striking similarities between the predicted TIS10 protein product and the murine, sheep, and human prostaglandin synthase/cyclooxygenase proteins. The TIS10 protein has many of the same conserved amino acids that are thought to be important for cyclooxygenase function. TIS10 mRNA is undetectable by Northern analysis in quiescent 3T3 cells. The TIS10 gene is rapidly and transiently induced by forskolin and serum, as well as by 12-O-tetradecanoylphorbol-13-acetate, in Swiss 3T3 cells. These agents elicit far more dramatic changes in TIS10 mRNA levels than in cyclooxygenase mRNA levels. The expression of the TIS10 gene appears to be highly cell type-restricted in cultured cell lines; of 12 cell lines tested under superinducing conditions, only the rodent embryonic Swiss 3T3 and Rat1 cell lines expressed TIS10 gene.

  16. Depletion of c-myc with specific antisense sequences reverses the transformed phenotype in ras oncogene-transformed NIH 3T3 cells.

    PubMed Central

    Sklar, M D; Thompson, E; Welsh, M J; Liebert, M; Harney, J; Grossman, H B; Smith, M; Prochownik, E V

    1991-01-01

    ras oncogene-transformed NIH 3T3 cells expressing glucocorticoid-inducible antisense c-myc cDNA transcripts at levels sufficient to deplete c-myc protein lost their transformed morphology and the ability to grow in soft agar; their ability to form tumors in nude mice was also impaired. These changes were dependent on the continuous expression of the antisense sequences. No major effects on plating efficiencies, growth rates in monolayer culture, or immortalization were observed in the revertant cells, indicating that the observed effects were not a toxic consequence of c-myc protein depletion. Transfection with the same vector expressing c-myc in the sense orientation or other control vectors had no effect on transformation. These results suggest that a certain minimum level of expression of c-myc is required for the maintenance of ras transformation in NIH 3T3 cells. Images PMID:2046673

  17. Effects of modified Shu-Gan-Liang-Xue decoction combined with anastrozole on osteoblastic proliferation and differentiation of MC3T3-E1 cells.

    PubMed

    Zhou, Fei; Han, Shuyan; Zhou, Ning; Zheng, Wenxian; Li, Pingping

    2015-03-01

    Aromatase inhibitors (AIs) are widely used in the treatment of hormone‑dependent breast cancer and as a result, aromatase inhibitor‑associated bone loss (AIBL) has become a major concern amongst patients receiving AI treatment. Modified Shu‑Gan‑Liang‑Xue decoction (mSGLXD), a clinical prescription, has been used for ameliorating AIBL in patients with breast cancer for decades and has achieved good clinical efficacy. However, the mechanism underlying how mSGLXD influences bone homeostasis and alleviates AIBL has remained elusive. In the present study, mSGLXD was supplemented with Rhizoma Drynariae containing phytoestrogens, and the safety of mSGLXD was evaluated. mSGLXD did not possess estrogenic activity and significantly inhibited the proliferation of estrogen receptor‑positive breast cancer cell line MCF‑7, which suggested that mSGLXD was safe for postmenopausal patients with breast cancer. Subsequently, the effects of mSGLXD alone or in combination with anastrozole on osteoblastic MC3T3‑E1 cell proliferation and differentiation were investigated. Cell counting kit‑8, reverse transcription‑polymerase chain reaction and biochemical methods, such as ELISA and alizarin red S staining, were used in the present study. It was revealed that mSGLXD not only stimulated MC3T3‑E1 cell proliferation, but also upregulated alkaline phosphatase and osteocalcin gene and protein expression levels. High concentrations of anastrozole (10 or 100 µmol/l) markedly inhibited MC3T3‑E1 cell proliferation, but this inhibitory effect was attenuated by mSGLXD. Furthermore, mSGLXD increased MC3T3‑E1 cell mineralization following β‑glycerophosphate and ascorbic acid induction. Therefore, the results of the present study suggested that mSGLXD may be a promising adjuvant therapy, with high safety and efficacy, for the prevention and treatment of AIBL in patients with breast cancer who receive AI treatment.

  18. The requirements for viral entry differ from those for virally induced syncytium formation in NIH 3T3/DTras cells exposed to Moloney murine leukemia virus.

    PubMed Central

    Wilson, C A; Marsh, J W; Eiden, M V

    1992-01-01

    Moloney murine leukemia virus (Mo-MuLV) has the unique ability to infect different cells via either a low-pH-dependent or a pH-independent entry pathway. Only the pH-independent mechanism of Mo-MuLV entry has been associated with Mo-MuLV-induced syncytium formation. We have now identified a transformed cell line (NIH 3T3/DTras) which efficiently forms syncytia when exposed to Mo-MuLV, yet is low pH dependent for Mo-MuLV entry. Treatment of NIH 3T3/DTras cells with chloroquine, an agent which raises endosomal pH, blocks Mo-MuLV entry, but not Mo-MuLV-induced syncytium formation. This demonstrates that fusion which accompanies viral entry and fusion which is responsible for syncytium formation occur as independent processes in these cells. In addition, we determined that neither inherent differences in the Mo-MuLV receptor nor reduced affinity for Mo-MuLV gp70 can account for resistance of NIH 3T3 cells to Mo-MuLV-induced syncytium formation. Images PMID:1433518

  19. Anti-Adipogenic Effects of Ethanol Extracts Prepared from Selected Medicinal Herbs in 3T3-L1 Cells

    PubMed Central

    Park, Min-Jun; Song, Ji-Hye; Shon, Myung-Soo; Kim, Hae Ok; Kwon, O Jun; Roh, Seong-Soo; Kim, Choon Young; Kim, Gyo-Nam

    2016-01-01

    Obesity is a major risk factor for various metabolic diseases such as cardiovascular disease, hypertension, and type 2 diabetes mellitus. In this study, we prepared ethanol extracts from Agastache rugosa (ARE), Chrysanthemum zawadskii (CZE), Mentha arvensis (MAE), Perilla frutescens (PFE), Leonurus sibiricus (LSE), Gardenia jasminoides (GJE), and Lycopus coreanus (LCE). The anti-oxidant and anti-adipogenic effects were evaluated. The IC50 values for ascorbic acid and LCE against 2,2-diphenyl-1-picrylhydrazyl radicals were 246.2 μg/mL and 166.2 μg/mL, respectively, followed by ARE (186.6 μg/mL), CZE (198.6 μg/mL), MAE (337.1 μg/mL), PFE (415.3 μg/mL), LSE (548.2 μg/mL), and GJE (626.3 μg/mL). In non-toxic concentration ranges, CZE had a strong inhibitory effect against 3T3-L1 adipogenes (84.5%) than those of the other extracts. Furthermore, the anti-adipogenic effect of CZE is largely limited in the early stage of adipogenesis, and we revealed that the inhibitory role of CZE in adipogenesis is required for the activation of Wnt signaling. Our results provide scientific evidence that the anti-adipogenic effect of CZE can be applied as an ingredient for the development of functional foods and nutri-cosmetics for obesity prevention. PMID:27752499

  20. Relationship between exposure to TPA and appearance of transformed cells in MNNG-initiated transformation of BALB/c 3T3 cells.

    PubMed

    Tsuchiya, T; Umeda, M

    1997-10-01

    In the BALB/c-3T3-cell transformation system, the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) exposure on the appearance of transformed cells was examined in order to investigate the mechanisms of in vitro tumor promotion. Optimal duration of TPA exposure on N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)-initiated cells was at least 11 days. To investigate the effect of transformation frequencies of altering inoculating cell density at the replating of MNNG-exposed cells and of altering the time of starting TPA exposure, MNNG-exposed cells were replated at various inoculum sizes. With lower inoculum sizes (1 x 10(3) to 3 x 10(4) cells/dish), maximum TPA-induced transformation occurred for TPA commencement at confluence, while with higher inoculum size (1 x 10(5) cells/dish), maximum transformation frequency was observed when TPA exposure was started on day 7 after replating, being some 2 days after confluence. This may suggest that there are different mechanisms involved, depending on inoculum size, and that these may involve cell-cell interactions (at lower inoculum) and mutation expression periods (at higher inoculum). By means of redispersion experiments, it was demonstrated that the appearance of transformed cells begins on about day 7 after replating at a cell density of 1 x 10(4) cells/dish. These results suggest the usefulness of the replating method for optimizing transformation in the BALB/c-3T3-cell transformation assay, and provide insight into the time frame of expression of MNNG-initiated transformants and TPA-induced expansion of these transformants.

  1. The β-SiC nanowires (~100 nm) induce apoptosis via oxidative stress in mouse osteoblastic cell line MC3T3-E1.

    PubMed

    Xie, Weili; Xie, Qi; Jin, Meishan; Huang, Xiaoxiao; Zhang, Xiaodong; Shao, Zhengkai; Wen, Guangwu

    2014-01-01

    Silicon carbide (SiC), a compound of silicon and carbon, with chemical formula SiC, the beta modification ( β-SiC), with a zinc blende crystal structure (similar to diamond), is formed at temperature below 1700°C. β-SiC will be the most suitable ceramic material for the future hard tissue replacement, such as bone and tooth. The in vitro cytotoxicity of β-SiC nanowires was investigated for the first time. Our results indicated that 100 nm long SiC nanowires could significantly induce the apoptosis in MC3T3-E1 cells, compared with 100 μm long SiC nanowires. And 100 nm long SiC nanowires increased oxidative stress in MC3T3-E1 cells, as determined by the concentrations of MDA (as a marker of lipid peroxidation) and 8-OHdG (indicator of oxidative DNA damage). Moreover, transmission electron microscopy (TEM) was performed to evaluate the morphological changes of MC3T3-E1 cells. After treatment with 100 nm long SiC nanowires, the mitochondria were swelled and disintegrated, and the production of ATP and the total oxygen uptake were also decreased significantly. Therefore, β-SiC nanowires may have limitations as medical material.

  2. Regulation of Adipogenesis and Key Adipogenic Gene Expression by 1, 25-Dihydroxyvitamin D in 3T3-L1 Cells

    PubMed Central

    Ji, Shuhan; Doumit, Matthew E.; Hill, Rodney A.

    2015-01-01

    The functions of 1, 25-dihydroxyvitamin D (1, 25-(OH)2D3) in regulating adipogenesis, adipocyte differentiation and key adipogenic gene expression were studied in 3T3-L1 preadipocytes. Five concentrations (0.01, 0.1, 1, 10, 100nM) of 1, 25-(OH)2D3 were studied and lipid accumulation measured by Oil Red O staining and expression of adipogenic genes quantified using quantitative real-time PCR. Adipogenic responses to 1, 25-(OH)2D3 were determined on 6, and 12 h, and days 1-10 after induction of adipogenesis by a hormonal cocktail with or without 1, 25-(OH)2D3. In response to 1, 25-(OH)2D3 (1, 10, and 100 nM), lipid accumulation and the expression of PPARγ, C/EBPα, FABP4 and SCD-1 were inhibited through day 10, and vitamin D receptor expression was inhibited in the early time points. The greatest inhibitory effect was upon expression of FABP4. Expression of SREBP-1c was only affected on day 2. The lowest concentrations of 1, 25-(OH)2D3 tested did not affect adipocyte differentiation or adipogenic gene expression. The C/EBPα promoter activity response to 1, 25-(OH)2D3 was also tested, with no effect detected. These results indicate that 1, 25-(OH)2D3 inhibited adipogenesis via suppressing adipogenic-specific genes, and is invoked either during PPARγ activation or immediately up-stream thereof. Gene expression down-stream of PPARγ especially FABP4 was strongly inhibited, and we suggest that the role of 1, 25-(OH)2D3 in regulating adipogenesis will be informed by further studies of adipogenic-specific gene promoter activity. PMID:26030589

  3. Stimulation by 1,25-dihydroxyvitamin D3 of in vitro mineralization induced by osteoblast-like MC3T3-E1 cells

    SciTech Connect

    Matsumoto, T.; Igarashi, C.; Takeuchi, Y.; Harada, S.; Kikuchi, T.; Yamato, H.; Ogata, E. )

    1991-01-01

    Although vitamin D is essential for mineralization of bone, it is as yet unclear whether vitamin D has a direct stimulatory effect on the bone mineralization process. In the present study, the effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on in vitro mineralization mediated by osteoblast-like MC3T3-E1 cells was examined. MC3T3-E1 cells continued to grow after they reached confluency, and DNA content and alkaline phosphatase activity increased linearly until about 16 days of culture, whereas 45Ca accumulation into cell and matrix layer remained low. After this period, DNA content plateaued, and 45Ca accumulation increased sharply. Histological examination by von Kossa staining revealed that calcium was accumulated into extracellular matrix. In addition, needle-shaped mineral crystals similar to hydroxyapatite crystals could be demonstrated in between collagen fibrils by electron microscopy. Thus, MC3T3-E1 cells differentiate in vitro into cells with osteoblastic phenotype and exhibit mineralization. When MC3T3-E1 cells were treated with 1,25(OH)2D3 at this stage of culture, there was a dose-dependent stimulation of 45Ca accumulation by 1,25(OH)2D3, and a significant stimulation of 45Ca accumulation was observed with 3 x 10(-10) M 1,25(OH)2D3. Although 1,25(OH)2D3 enhanced alkaline phosphatase activity and collagen synthesis at the early phase of culture, it did not affect any of these parameters at the late phase when 1,25(OH)2D3 stimulated mineralization. Neither 24,25-dihydroxyvitamin D3 nor human PTH(1-34) affected mineralization in the presence or absence of 1,25(OH)2D3. These results demonstrate that 1,25(OH)2D3 stimulates matrix mineralization induced by osteoblastic MC3T3-E1 cells, and are consistent with the possibility that 1,25(OH)2D3 has a direct stimulatory effect on bone mineralization process.

  4. Titanium Immobilized with an Antimicrobial Peptide Derived from Histatin Accelerates the Differentiation of Osteoblastic Cell Line, MC3T3-E1

    PubMed Central

    Makihira, Seicho; Shuto, Takahiro; Nikawa, Hiroki; Okamoto, Keishi; Mine, Yuichi; Takamoto, Yuko; Ohara, Masaru; Tsuji, Koichiro

    2010-01-01

    The objective of this study was to evaluate the effect of titanium immobilized with a cationic antimicrobial peptide (JH8194) derived from histatin on the biofilm formation of Porphyromonas gingivalis and differentiation of osteoblastic cells (MC3T3-E1). The titanium specimens (Ti) were immobilized with JH8194, according to the method previously described. The colonization of P. gingivalis on JH8194-Ti was significantly lower than that on control- and blocking-Ti. JH8194-Ti enhanced the mRNA expressions of Runx2 and OPN, and ALPase activity in the MC3T3-E1, as compared with those of control- and blocking-Ti. These results, taken together, suggested the possibility that JH8194-Ti may be a potential aid to shorten the period of acquiring osseointegration. PMID:20480030

  5. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages

    PubMed Central

    Morrison, Shona; McGee, Sean L

    2015-01-01

    Differentiated 3T3-L1 adipocytes are a widely used in vitro model of white adipocytes. In addition to classical white and brown adipocytes that are derived from different cell lineages, beige adipocytes have also been identified, which have characteristics of both white and brown adipocytes. Here we show that 3T3-L1 adipocytes display features of multiple adipocytes lineages. While the gene expression profile and basal bioenergetics of 3T3-L1 adipocytes was typical of white adipocytes, they responded acutely to catecholamines by increasing oxygen consumption in an UCP1-dependent manner, and by increasing the expression of genes enriched in brown but not beige adipocytes. Chronic exposure to catecholamines exacerbated this phenotype. However, a beige adipocyte differentiation procedure did not induce a beige adipocyte phenotype in 3T3-L1 fibroblasts. These multiple lineage features should be considered when interpreting data from experiments utilizing 3T3-L1 adipocytes. PMID:26451286

  6. Amaranth lunasin-like peptide internalizes into the cell nucleus and inhibits chemical carcinogen-induced transformation of NIH-3T3 cells.

    PubMed

    Maldonado-Cervantes, Enrique; Jeong, Hyung Jin; León-Galván, Fabiola; Barrera-Pacheco, Alberto; De León-Rodríguez, Antonio; González de Mejia, Elvira; de Lumen, Ben O; Barba de la Rosa, Ana P

    2010-09-01

    Because an unbalanced diet is an important risk factor for several illnesses, interest has increased in finding novel health-promoting foods. Amaranth produces seeds that not only have substantial nutritional properties but that also contain phytochemical compounds as rutin and nicotiflorin and peptides with antihypertensive and anticarcinogenic activities. We report that a cancer-preventive peptide in amaranth has activities similar to those of soybean lunasin. The amaranth lunasin-like peptide, however, requires less time than the soybean lunasin to internalize into the nucleus of NIH-3T3 cells, and inhibits histone acetylation (H(3) and H(4) in a 70 and 77%, respectively). The amaranth lunasin-like peptide inhibited the transformation of NIH-3T3 cells to cancerous foci. The open reading frame (ORF) of amaranth lunasin corresponds to a bifunctional inhibitor/lipid-transfer protein (LTP). LTPs are a family of proteins that in plants are implicated in different functions, albeit all linked to developmental processes and biotic and abiotic stress resistance. Our results open new intriguing questions about the function of lunasin in plants and support that amaranth is a food alternative containing natural peptides with health-promoting benefits.

  7. A growth factor-responsive gene of murine BALB/c 3T3 cells encodes a protein homologous to human tissue factor

    SciTech Connect

    Hartzell, S.; Ryder, K.; Lanahan, A.; Nathans, D.; Lau, L.F.

    1989-06-01

    Polypeptide growth factors rapidly induce the transcription of a set of genes that appear to mediate cell growth. The authors report that one of the genes induced in BALB/c mouse 3T3 cells encodes a transmembrane protein (mTF) homologous to human tissue factor, which is involved in the proteolytic activation of blood clotting. mTF mRNA is present in many murine tissues and cell lines. The authors' results raise the possibility that mTF may also play a role in cell growth.

  8. Isolation of genes specifically expressed in flat revertant cells derived from activated ras-transformed NIH 3T3 cells by treatment with azatyrosine.

    PubMed Central

    Krzyzosiak, W J; Shindo-Okada, N; Teshima, H; Nakajima, K; Nishimura, S

    1992-01-01

    We previously reported that mouse NIH 3T3 cells transformed by transfection of activated human c-Ha-ras become apparently normal upon treatment with the antibiotic azatyrosine. The revertant cells maintain their normal phenotype during prolonged culture in the absence of azatyrosine, although activated p21ras is still expressed. The normal phenotype induced by azatyrosine could be due to activation of expression of some cellular gene(s) in the cells that results in suppression of ras function. To identify the genes with increased expression in the revertant cells, we adopted differential screening of recombinants from a phage cDNA library made from mRNA of the revertant cells, hybridized with 32P-labeled cDNAs made from mRNAs of the ras-transformed NIH 3T3 cells and the revertant cells. Two clones thus isolated were found to be almost identical to the ras recision gene (rrg), which was identified as a tumor-suppressor gene by Contente et al. [Contente, S., Kenyon, K., Rimoldi, D. & Friedman, R. M. (1990) Science 249, 796-798]. Other genes identified were the collagen type III and rhoB genes. Approximately half the clones were found to contain a sequence corresponding to that of the murine retrovirus-like intracisternal A particle. We speculate that azatyrosine activates several cellular genes in the ras-transformed cells and that some of these genes, including rrg, act cooperatively to counteract ras function, resulting in reversion of the ras-transformed cells to the normal phenotype. Images PMID:1594588

  9. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2013-01-01

    Background The naphthoquinone pigment, shikonin, is a major component of Lithospermum erythrorhizon and has been shown to have various biological functions, including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we investigated the effect of shikonin on adipocyte differentiation and its mechanism of action in 3T3-L1 cells. Methods To investigate the effects of shikonin on adipocyte differentiation, 3T3-L1 cells were induced to differentiate using 3-isobutyl-1-methylzanthine, dexamethasone, and insulin (MDI) for 8 days in the presence of 0–2 μM shikonin. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the anti-adipogenic mechanism of shikonin, adipogenic transcription factors, the phosphorylation levels of ERK, and adipogenic gene expression were analyzed by Western blotting and quantitative real-time PCR. To further confirm that shikonin inhibits adipogenic differentiation through downregulation of ERK 1/2 activity, 3T3-L1 cells were treated with shikonin in the presence of FGF-2, an activator, or PD98059, an inhibitor, of the ERK1/2 signaling pathway. Results Shikonin effectively suppressed adipogenesis and downregulated the protein levels of 2 major transcription factors, PPARγ and C/EBPα, as well as the adipocyte specific gene aP2 in a dose-dependent manner. qRT-PCR analysis revealed that shikonin inhibited mRNA expression of adipogenesis-related genes, such as PPARγ, C/EBPα, and aP2. Adipocyte differentiation was mediated by ERK 1/2 phosphorylation, which was confirmed by pretreatment with PD98059 (an ERK 1/2 inhibitor) or FGF-2 (an ERK 1/2 activator). The phosphorylation of ERK1/2 during the early stages of adipogenesis in 3T3-L1 cells was inhibited by shikonin. We also confirmed that FGF-2-stimulated ERK 1/2 activity was attenuated by shikonin. Conclusions These results demonstrate that shikonin inhibits adipogenic differentiation via suppression of the ERK signaling pathway

  10. Phenotypic and genotypic characteristics of novel mouse cell line (NIH/3T3)-adapted human enterovirus 71 strains (EV71:TLLm and EV71:TLLmv).

    PubMed

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Chow, Vincent T K; Chua, Kaw Bing

    2014-01-01

    Since its identification in 1969, Enterovirus 71 (EV71) has been causing periodic outbreaks of infection in children worldwide and most prominently in the Asia-Pacific Region. Understanding the pathogenesis of Enterovirus 71 (EV71) is hampered by the virus's inability to infect small animals and replicate in their derived in vitro cultured cells. This manuscript describes the phenotypic and genotypic characteristics of two selected EV71 strains (EV71:TLLm and EV71:TLLmv), which have been adapted to replicate in mouse-derived NIH/3T3 cells, in contrast to the original parental virus which is only able to replicate in primate cell lines. The EV71:TLLm strain exhibited productive infection in all primate and rodent cell lines tested, while EV71:TLLmv exhibited greater preference for mouse cell lines. EV71:TLLmv displayed higher degree of adaptation and temperature adaptability in NIH/3T3 cells than in Vero cells, suggesting much higher fitness in NIH/3T3 cells. In comparison with the parental EV71:BS strain, the adapted strains accumulated multiple adaptive mutations in the genome resulting in amino acid substitutions, most notably in the capsid-encoding region (P1) and viral RNA-dependent RNA polymerase (3D). Two mutations, E167D and L169F, were mapped to the VP1 canyon that binds the SCARB2 receptor on host cells. Another two mutations, S135T and K140I, were located in the VP2 neutralization epitope spanning amino acids 136-150. This is the first report of human EV71 with the ability to productively infect rodent cell lines in vitro.

  11. Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells.

    PubMed

    Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning

    2014-10-01

    The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.

  12. Insulin stimulates mitogen-activated protein kinase by a Ras-independent pathway in 3T3-L1 adipocytes.

    PubMed

    Carel, K; Kummer, J L; Schubert, C; Leitner, W; Heidenreich, K A; Draznin, B

    1996-11-29

    To characterize tissue-specific differences in insulin signaling, we compared the mechanisms of mitogen-activated protein (MAP) kinase activation by insulin in the mitogenically active 3T3-L1 fibroblasts with the metabolically active 3T3-L1 adipocytes. In both cell lines, insulin significantly increased p21(ras).GTP loading (1.5-2-fold) and MAP kinase activity (5-8-fold). Inhibition of Ras farnesylation with lovastatin blocked activation of p21(ras) and Raf-1 kinase in both 3T3-L1 fibroblasts and 3T3-L1 adipocytes. In 3T3-L1 fibroblasts, this was accompanied by an inhibition of the stimulatory effect of insulin on MAP kinase. In contrast, in 3T3-L1 adipocytes, despite an inhibition of activation of p21(ras) and Raf-1 by lovastatin, insulin continued to stimulate MAP kinase activity. Fractionation of the cell lysates on the FPLC Mono-Q column revealed that lovastatin inhibited insulin stimulation of ERK2 (and, to a lesser extent, ERK1) in 3T3-L1 fibroblasts and had no effect on the insulin-stimulated ERK2 in 3T3-L1 adipocytes. These results demonstrate an important distinction between the mechanism of insulin signaling in the metabolically and mitogenically active cells. Insulin activates MAP kinase by the Ras-dependent pathway in the 3T3-L1 fibroblasts and by the Ras-independent pathway in the 3T3-L1 adipocytes.

  13. The long-term effects of red light-emitting diode irradiation on the proliferation and differentiation of osteoblast-like MC3T3-E1 cells.

    PubMed

    Asai, Tomoko; Suzuki, Hiroaki; Kitayama, Midori; Matsumoto, Kousuke; Kimoto, Akira; Shigeoka, Manabu; Komori, Takahide

    2014-06-18

    Low level laser therapy (LLLT) affects various biological processes, and it is said that the non-coherent light of the light-emitting diode (LED) has a similar action. The purpose of this study was to examine the effects of LED light on the proliferation and differentiation of osteoblasts-like MC3T3-E1 cells cultured in osteogenic differentiation medium (ODM) over the long term. Cells were irradiated with red LED light of 630 nm at three doses; 0.5J/cm², 1.5J/cm² or 3.0J/cm² for the cell proliferation activity assay, and at 0.5J/cm² for the osteogenic differentiation activity assay. The former activity was checked by counting the number of viable cells using Trypan blue dye. The latter activity was evaluated by alkaline phosphatase (ALP) staining and examining the mRNA expression of the osteopontin (OPN) gene using real-time quantitative PCR. The number of viable MC3T3-E1 cells showed a tendency to increase after the irradiation at all three energy densities in comparison with a non-irradiation group (control group). In particular, there was a remarkable 3.34-fold increase in the group irradiated with 3.0J/cm² on day 7 after starting the culture. On culture day 15, there was a tendency for the red LED irradiation group (0.5 J/cm²) to exhibit more staining for ALP than the control group, and the expression of OPN was significantly higher in the irradiation group on culture day 16. In conclusion, low level red LED light can enhance MC3T3-E1 cell proliferation and osteogenic differentiation when the cells are cultured for a relatively long time.

  14. Effects of nickel-smelting fumes on the regulation of NIH/3T3 cell viability, necrosis, and expression of hMLH1 and RASSF1A.

    PubMed

    Wang, Jun; Yu, Cui-Ping; Hu, Xue-Ying; Wu, Yong-Hui

    2014-01-01

    Nickel is widely used and distributed in various industries. This study investigated the effect of nickel-smelting fumes on the regulation of NIH/3T3 cell viability, apoptosis, and necrosis and the expression of the tumor suppressor genes hMLH1 and RASSF1A. Cell viability was determined using a methylthiazolyl tetrazolium colorimetric assay. NIH/3T3 cell viability was reduced after exposure to different concentrations of nickel-smelting fumes, but cell apoptosis and necrosis were induced. Moreover, cell morphology changed significantly after exposure to different concentrations of nickel-smelting fumes, as determined using an inverted microscope or transmission electron microscope. Real-time RT-PCR and Western blot analyses showed that exposure of cells to concentrations of ≥100 µg/mL of nickel-smelting fumes upregulated the expression of hMLH1 and RASSF1A compared to the negative controls. These data suggest that nickel-smelting fumes could be toxic to cells, upregulating the expression of hMLH1 and RASSF1A and in turn inducing cell apoptosis and necrosis. PMID:24579805

  15. Effects of nickel-smelting fumes on the regulation of NIH/3T3 cell viability, necrosis, and expression of hMLH1 and RASSF1A.

    PubMed

    Wang, Jun; Yu, Cui-Ping; Hu, Xue-Ying; Wu, Yong-Hui

    2014-01-01

    Nickel is widely used and distributed in various industries. This study investigated the effect of nickel-smelting fumes on the regulation of NIH/3T3 cell viability, apoptosis, and necrosis and the expression of the tumor suppressor genes hMLH1 and RASSF1A. Cell viability was determined using a methylthiazolyl tetrazolium colorimetric assay. NIH/3T3 cell viability was reduced after exposure to different concentrations of nickel-smelting fumes, but cell apoptosis and necrosis were induced. Moreover, cell morphology changed significantly after exposure to different concentrations of nickel-smelting fumes, as determined using an inverted microscope or transmission electron microscope. Real-time RT-PCR and Western blot analyses showed that exposure of cells to concentrations of ≥100 µg/mL of nickel-smelting fumes upregulated the expression of hMLH1 and RASSF1A compared to the negative controls. These data suggest that nickel-smelting fumes could be toxic to cells, upregulating the expression of hMLH1 and RASSF1A and in turn inducing cell apoptosis and necrosis.

  16. Sustained release of Semaphorin 3A from α-tricalcium phosphate based cement composite contributes to osteoblastic differentiation of MC3T3-E1 cells

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Ning; Pi, Bin; Wang, Peng; Li, Xue-Feng; Yang, Hui-Lin; Zhu, Xue-Song

    2015-09-01

    The reinforcement of calcium phosphate materials with silk fibroin (SF) has been one of the strategies to overcome the brittleness. However, the lack of osteoinductivity may still restrict their further use. This study aimed to investigate the biocompatibility and osteogenesis capacity of a novel Semaphorin 3A-loaded chitosan microspheres/SF/α-tricalcium phosphate composite (Sema3A CMs/SF/α-TCP) in vitro. Sema3A was first incorporated into CMs, and the Sema3A CMs/SF/α-TCP composite was then prepared. The morphology of the CMs was observed using SEM. The in vitro release kinetics, cytotoxicity, and cell compatibility were evaluated, and the real-time quantitative polymerase chain reaction (RT-qPCR) and activity of alkaline phosphatase (ALP) were used to evaluate the osteogenesis capacity of the composite. The in vitro release of Sema3A from the Sema3A CMs/SF/α-TCP composite showed a temporally controlled manner. The extract of the Sema3A CMs/SF/α-TCP composite presented no obvious side effect on the MC3T3-E1 cell proliferation, nor promote cell proliferation. The MC3T3-E1 cells were well-spread and presented an elongated shape on the Sema3A CMs/SF/α-TCP composite surface; the ALP activity and the osteogenic-related gene expression were higher than those seeded on the surface of the CMs/SF/α-TCP and SF/α-TCP composites. In conclusion, Sema3A CMs/SF/α-TCP has excellent biocompatibility and contributes to the osteoblastic differentiation of MC3T3-E1 cells.

  17. Electrochemical characterization of MC3T3-E1 cells cultured on γTiAl and Ti-6Al-4V alloys.

    PubMed

    Bueno-Vera, J A; Torres-Zapata, I; Sundaram, P A; Diffoot-Carlo, N; Vega-Olivencia, C A

    2015-12-01

    Electrochemical impedance spectroscopy (EIS) was used to study the behavior of MC3T3-E1 cells cultured in an αMEM+FBS solution on two Ti-based alloys (Ti-6Al-4V and γTiAl) for 4, 7 and 14 days. EIS measurements were carried out at an open-circuit potential in a 1 mHz to 100 kHz frequency range. Results indicate a general increase in impedance on the Ti alloy surfaces with cells as a function of time. Bode plots indicate changes corresponding to the passive oxide film, adsorption of proteins and cell tissue on surfaces with the passage of time. Normal cellular activity based on the polygonal morphology, with long and fine cytoplasmic prolongations of the cells on Ti-6Al-4V and γTiAl was observed from SEM images. Similarly, mineralization nodules corresponding to cell differentiation associated with the osseogenetic process were observed confirmed by Alizarin Red S staining. Immunofluorescence analysis to detect the presence of collagen Type I showed an increase in the segregation of collagen as a function of time. The impedance values obtained from EIS testing are indicative of the corrosion protection offered to the Ti alloy substrates by the cell layer. This study shows that γTiAl has better corrosion resistance than that of Ti-6Al-4V in the αMEM+FBS environment in the presence of MC3T3-E1 cells.

  18. PAPSS2 Promotes Alkaline Phosphates Activity and Mineralization of Osteoblastic MC3T3-E1 Cells by Crosstalk and Smads Signal Pathways

    PubMed Central

    Wang, Weizhuo; Li, Fang; Wang, Kunzheng; Cheng, Bin; Guo, Xiong

    2012-01-01

    Several studies have indicated that PAPSS2 (3′-phosphoadenosine-5′-phosphosulfate synthetase 2) activity is important to normal skeletal development. Mouse PAPSS2 is predominantly expressed during the formation of the skeleton and cartilaginous elements of the mouse embryo and in newborn mice. However, the role and mechanism of PAPSS2 in bone formation remains largely unidentified. By analyzing the expression pattern of the PAPSS2 gene, we have found that PAPSS2 is expressed in bone tissue and bone formation. PAPSS2 transcripts increase during osteoblast differentiation and are in less level in RANKL-induced osteoclast like cells. By using lentivirus-mediated RNA interference (RNAi) technology, we knocked down PAPSS2 expression in MC3T3-E1 osteoblast. Silencing of PAPSS2 expression significantly decreases ALP activity and cell mineralization, inhibits expression of osteoblast marker osteopontin (OPN) and collagen I. Conversely, overexpression of PAPSS2 promotes the MC3T3-E1 to differentiate into osteoblast and mineralization. Moreover, compared to that in the control cells, the mRNA level and protein expression of phosphorylated Smad 2/3, which is a key transcriptional factor in the Smad osteoblast differentiation pathway, showed significant decreases in PAPSS2-silenced cells and increases in PAPSS2-overexpression cells. These results suggest that PAPSS2 might regulate osteoblast ALP activity and cell mineralization, probably through Smads signal pathways. PMID:22916269

  19. Involvement of JNK/NFκB Signaling Pathways in the Lipopolysaccharide-Induced Modulation of Aquaglyceroporin Expression in 3T3-L1 Cells Differentiated into Adipocytes

    PubMed Central

    Chiadak, Jeanne Durendale; Arsenijevic, Tatjana; Gregoire, Francoise; Bolaky, Nargis; Delforge, Valerie; Perret, Jason; Delporte, Christine

    2016-01-01

    Aquaglyceroporins, belonging to the family of aquaporins (AQPs), are integral plasma membrane proteins permeable to water and glycerol that have emerged as key players in obesity. The aim of this study was to investigate the expression profile of AQPs in undifferentiated and differentiated 3T3-L1 cells and to investigate the changes in expression of aquaglyceroporins in 3T3-L1 cells differentiated into adipocytes and subjected to lipopolysaccharide (LPS) mimicking inflammation occurring during obesity. Furthermore, the study aimed at identifying the signaling cascade involved in the regulation of aquaglyceroporins expression upon LPS stimulation. 3T3-L1 cells were grown as undifferentiated cells (UDC; preadipocytes) or cells differentiated into adipocytes (DC, adipocytes). DC were incubated in the presence or absence of LPS with or without inhibitors of various protein kinases. AQPs mRNA expression levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). AQP1, AQP2, AQP3, AQP9 and AQP11 mRNA were expressed in both UDC and DC, whereas AQP4, AQP7 and AQP8 mRNA were expressed only in DC. In DC, LPS up-regulated AQP3 mRNA levels (p < 0.05) compared to control; these effects were inhibited by CLI095, SP600125 and BAY11-7082 (p < 0.05). LPS decreased both AQP7 and AQP11 mRNA levels (p < 0.01) in DC as compared to control; this decrease was inhibited by CLI095 and BAY11-7082 (p < 0.05) and additionally by SP00125 for AQP7 (p < 0.05). SB203580 had no effect on LPS-induced AQP3, AQP7 and AQP11 mRNA levels modulations. In conclusion, our results clearly show that many AQPs are expressed in murine 3T3-L1 adipocytes. Moreover, in DCs, LPS led to decreased AQP7 and AQP11 mRNA levels but to increased AQP3 mRNA levels, resulting from the Toll-like receptor 4 (TLR4)-induced activation of JNK and/or NFκB pathway. PMID:27763558

  20. Tangeritin inhibits adipogenesis by down-regulating C/EBPα, C/EBPβ, and PPARγ expression in 3T3-L1 fat cells.

    PubMed

    He, Y F; Liu, F Y; Zhang, W X

    2015-10-29

    The treatment of obese patients is a topic investigated by an increasing number of researchers. This study aimed to elucidate the possible inhibitory effect of tangeritin on the development and function of fat cells. 3T3-L1 fat cells were grown to confluence and subjected to different concentrations of tangeritin. The most effective tangeritin inhibition concentration was determined by the MTT assay. The treated cells were subjected to real-time reverse transcriptase PCR and western blot analysis, to detect changes in the CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ, and peroxisome proliferator activated receptor (PPAR)γ expression levels. The MTT assay revealed that the fat cell growth was inhibited at a 20 ng/mL concentration of tangeritin. The results of real-time PCR revealed a significant decrease in the expression of C/EBPα, C/EBPβ, and PPARγ mRNA, following the treatment with tangeritin. Western blot analysis also presented similar results at a protein level. Therefore, we concluded that tangeritin inhibits adipogenesis via the down-regulation of C/EBPα, C/EBPβ, and PPARγ mRNA and protein expression in 3T3-L1 cells.

  1. Increased proliferation and differentiation of pre-osteoblasts MC3T3-E1 cells on nanostructured polypyrrole membrane under combined electrical and mechanical stimulation.

    PubMed

    Liu, Lizhen; Li, Ping; Zhou, Gang; Wang, Menghang; Jia, Xiaoling; Liu, Meili; Niu, Xufeng; Song, Wei; Liu, Haifeng; Fan, Yubo

    2013-09-01

    Polypyrrole (PPy), as an electrical conductive polymer, has been widely investigated in biomedical fields. In this study, PPy membrane at nanoscale was electrically deposited on indium-tin oxide glass slide with sodium p-toluenesulfonate as supporting electrolyte. Electropolymerization of PPy was performed under a constant 800 mV voltage for 10 seconds. Chemical compositions and morphology were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results showed that the nanoscaled PPy particles distributed uniformly and the average diameter of PPy particles was 62 nm. Since bone cells can respond to both electrical and mechanical stimulation in vivo, pre-osteoblasts MC3T3-E1 cells were cultured ort nanostructured PPy membrane under the combined electrical and mechanical stimulation. The nano-PPy membrane was conducive to transferring uniform electrical stimulation and applying steady mechanical stimulation. It is suggested that the combined stimulation did not affect cells morphologies significantly. However, cell proliferation tested by MTT, alkaline phosphatase activities, and gene expression of Collagen-I indicated that combined stimulation can enhance the proliferation and differentiation of MC3T3-E1 cells more efficiently than single electrical stimulation or single mechanical stimulation. The combined stimulation through a nano-PPy membrane may provide a highly potential stimulated method in bone tissue engineering.

  2. Expression of chimeric tRNA-driven antisense transcripts renders NIH 3T3 cells highly resistant to Moloney murine leukemia virus replication.

    PubMed Central

    Sullenger, B A; Lee, T C; Smith, C A; Ungers, G E; Gilboa, E

    1990-01-01

    NIH 3T3 cells infected with Moloney murine leukemia virus (MoMLV) express high levels of virus-specific RNA. To inhibit replication of the virus, we stably introduced chimeric tRNA genes encoding antisense templates into NIH 3T3 cells via a retroviral vector. Efficient expression of hybrid tRNA-MoMLV antisense transcripts and inhibition of MoMLV replication were dependent on the use of a particular type of retroviral vector, the double-copy vector, in which the chimeric tRNA gene was inserted in the 3' long terminal repeat. MoMLV replication was inhibited up to 97% in cells expressing antisense RNA corresponding to the gag gene and less than twofold in cells expressing antisense RNA corresponding to the pol gene. RNA and protein analyses suggest that inhibition was exerted at the level of translation. These results suggest that RNA polymerase III-based antisense inhibition systems can be used to inhibit highly expressed viral genes and render cells resistant to viral replication via intracellular immunization strategies. Images PMID:2247070

  3. Effects of long-term 50Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells.

    PubMed

    An, Guang-Zhou; Xu, Hui; Zhou, Yan; Du, Le; Miao, Xia; Jiang, Da-Peng; Li, Kang-Chu; Guo, Guo-Zhen; Zhang, Chen; Ding, Gui-Rong

    2015-01-01

    Power-line frequency electromagnetic field (PF-EMF) was reported as a human carcinogen by some epidemiological research, but the conclusion is lack of robust experiment evidence. To identify the effects of long-term PF-EMF exposure on cell behavior, Balb/c 3T3 cells in exponential growth phase were exposed or sham-exposed to 50 Hertz (Hz) PF-EMF at 2.3 mT for 2 hours (h) one day, 5 days every week. After 11 weeks exposure, cells were collected instantly. Cell morphology was observed under invert microscope and Giemsa staining, cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and apoptosis was examined by flow cytometry, the protein level of Proliferating Cell Nuclear Antigen (PCNA) and CyclinD1 was detected by western blot, cell transformation was examined by soft agar clone assay and plate clone forming test, and cell migration ability was observed by scratch adhesion test. It was found that after PF-EMF exposure, cell morphology, apoptosis, cell migration ability and cell transformation didn't change. However, compared with sham group, cell viability obviously decreased and cell cycle distribution also changed after 11 weeks PF-EMF exposure. Meanwhile, the protein level of PCNA and CyclinD1 significantly decreased after PF-EMF exposure. These data suggested that although long-term 50Hz PF-EMF exposure under this experimental condition had no effects on apoptosis, cell migration ability and cell transformation, it could affect cell proliferation and cell cycle by down-regulation the expression of PCNA and CyclinD1 protein.

  4. Regulation of collagenase-3 and osteocalcin gene expression by collagen and osteopontin in differentiating MC3T3-E1 cells

    NASA Technical Reports Server (NTRS)

    D'Alonzo, Richard C.; Kowalski, Aaron J.; Denhardt, David T.; Nickols, G. Allen; Partridge, Nicola C.

    2002-01-01

    Both collagenase-3 and osteocalcin mRNAs are expressed maximally during the later stages of osteoblast differentiation. Here, we demonstrate that collagenase-3 mRNA expression in differentiating MC3T3-E1 cells is dependent upon the presence of ascorbic acid, is inhibited in the presence of the collagen synthesis inhibitor, 3,4-dehydroproline, and is stimulated by growth on collagen in the absence of ascorbic acid. Transient transfection studies show that collagenase-3 promoter activity increases during cell differentiation and requires the presence of ascorbic acid. Additionally, we show that, in differentiating MC3T3-E1 cells, collagenase-3 gene expression increases in the presence of an anti-osteopontin monoclonal antibody that binds near the RGD motif of this protein, whereas osteocalcin expression is inhibited. Furthermore, an RGD peptidomimetic compound, designed to block interaction of ligands to the alpha(v) integrin subunit, increases osteocalcin expression and inhibits collagenase-3 expression, suggesting that the RGD peptidomimetic initiates certain alpha(v) integrin signaling in osteoblastic cells. Overall, these studies demonstrate that stimulation of collagenase-3 expression during osteoblast differentiation requires synthesis of a collagenous matrix and that osteopontin and alpha(v) integrins exert divergent regulation of collagenase-3 and osteocalcin expression during osteoblast differentiation.

  5. Piperine, a component of black pepper, decreases eugenol-induced cAMP and calcium levels in non-chemosensory 3T3-L1 cells.

    PubMed

    Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

    2015-01-01

    This study investigated the effects of an ethanol extract of black pepper and its constituent, piperine, on odorant-induced signal transduction in non-chemosensory cells. An ethanol extract of black pepper decreased eugenol-induced cAMP and calcium levels in preadipocyte 3T3-L1 cells with no toxicity. Phosphorylation of CREB (cAMP response element-binding protein) was down-regulated by the black pepper extract. The concentration (133.8 mg/g) and retention time (5.5 min) of piperine in the ethanol extract were quantified using UPLC-MS/MS. Pretreatment with piperine decreased eugenol-induced cAMP and calcium levels in 3T3-L1 cells. Piperine also decreased the phosphorylation of CREB, which is up-regulated by eugenol. These results suggest that piperine inhibits the eugenol-induced signal transduction pathway through modulation of cAMP and calcium levels and phosphorylation of CREB in non-chemosensory cells. PMID:25685661

  6. Piperine, a component of black pepper, decreases eugenol-induced cAMP and calcium levels in non-chemosensory 3T3-L1 cells.

    PubMed

    Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

    2015-01-01

    This study investigated the effects of an ethanol extract of black pepper and its constituent, piperine, on odorant-induced signal transduction in non-chemosensory cells. An ethanol extract of black pepper decreased eugenol-induced cAMP and calcium levels in preadipocyte 3T3-L1 cells with no toxicity. Phosphorylation of CREB (cAMP response element-binding protein) was down-regulated by the black pepper extract. The concentration (133.8 mg/g) and retention time (5.5 min) of piperine in the ethanol extract were quantified using UPLC-MS/MS. Pretreatment with piperine decreased eugenol-induced cAMP and calcium levels in 3T3-L1 cells. Piperine also decreased the phosphorylation of CREB, which is up-regulated by eugenol. These results suggest that piperine inhibits the eugenol-induced signal transduction pathway through modulation of cAMP and calcium levels and phosphorylation of CREB in non-chemosensory cells.

  7. Expression of a cDNA for the catalytic subunit of skeletal-muscle phosphorylase kinase in transfected 3T3 cells.

    PubMed Central

    Cawley, K C; Akita, C G; Walsh, D A

    1989-01-01

    Phosphorylase kinase is a multimeric enzyme of composition (alpha, beta, gamma, delta)4 whose catalytic activity resides in the gamma-subunit. As an approach to understand further its regulation, a cDNA for the gamma-subunit of phosphorylase kinase (gamma PhK) has been cloned into a mammalian expression vector behind the mouse metallothionein-1 promoter. NIH 3T3 cells were co-transfected with this construct (pEV gamma PhK) and pSV2neo, G418-resistant clones were selected, and several were found to have stably incorporated the gamma-subunit cDNA into their genomic DNA. Phosphorylase kinase activity was clearly present in extracts from cultures of pEV gamma PhK-transformed cells and increased several-fold after 24 h of incubation with Zn2+, whereas it was undetectable in the parent 3T3 cells. A significant, but variable, proportion (15-70%) of the activity was Ca2+-dependent. We conclude that the phosphorylase kinase activity expressed by the cells transformed with pEV gamma PhK is due to free gamma-subunit and gamma-subunit associated with cellular calmodulin, which replaces the delta-subunit normally associated with the gamma-subunit in the holoenzyme. Images Fig. 1. Fig. 2. Fig. 3. PMID:2481439

  8. Nϵ‐Carboxymethyllysine Increases the Expression of miR‐103/143 and Enhances Lipid Accumulation in 3T3‐L1 Cells

    PubMed Central

    Holik, Ann‐Katrin; Lieder, Barbara; Kretschy, Nicole; Somoza, Mark M.; Held, Sandra

    2016-01-01

    ABSTRACT Advanced glycation endproducts, formed in vivo, but also by the Maillard reaction upon thermal treatment of foods, have been associated with the progression of pathological conditions such as diabetes mellitus. In addition to the accumulation with age, exogenous AGEs are introduced into the circulation from dietary sources. In this study, we investigated the effects of addition of free Nϵ‐carboxymethyllysine (CML), a well‐characterized product of the Maillard reaction, on adipogenesis in 3T3‐L1 preadipocytes. Treatment with 5, 50, or 500 μM CML resulted in increased lipid accumulation to similar extents, by 11.5 ± 12.6%, 12.9 ± 8.6%, and 12.8 ± 8.5%, respectively. Long‐term treatment with 500 μM CML during adipogenesis resulted in increases in miR‐103 and miR‐143 levels, two miRNAs described to be involved in impaired glucose homeostasis and increased lipid accumulation. Furthermore, the expression of genes associated with these miRNAs, consisting of Akt1, PI3k, and Cav1 was regulated by CML. Short‐term treatment of mature 3T3‐L1 adipocytes with CML resulted in decreased basal glucose uptake. These results, indicate that the addition of protein‐free CML to 3T3‐L1 cells influence parameters associated with adipogenesis and glucose homeostasis at transcriptional, and functional level; this indicates that free CML derived from exogenous sources, in addition to protein‐bound CML may be relevant in this context. J. Cell. Biochem. 117: 2413–2422, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:27137869

  9. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells

    PubMed Central

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  10. Green Tea (-)-Epigallotocatechin-3-Gallate Induces PGC-1α Gene Expression in HepG2 Cells and 3T3-L1 Adipocytes.

    PubMed

    Lee, Mak-Soon; Lee, Seohyun; Doo, Miae; Kim, Yangha

    2016-03-01

    Green tea (Camellia sinensis) is one of the most popular beverages in the world and has been acknowledged for centuries as having significant health benefits. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea, and it has been reported to have health benefit effects. Peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a crucial regulator of mitochondrial biogenesis and hepatic gluconeogenesis. The objective of this study was to investigate whether EGCG from green tea can affect the ability of transcriptional regulation on PGC-1α mRNA expression in HepG2 cells and 3T3-L1 adipocytes. To study the molecular mechanism that allows EGCG to control PGC-1α expression, the promoter activity levels of PGC-1α were examined. The PGC-1α mRNA level was measured using quantitative real-time PCR. The -970/+412 bp of PGC-1α promoter was subcloned into the pGL3-Basic vector that includes luciferase as a reporter gene. EGCG was found to up-regulate the PGC-1α mRNA levels significantly with 10 μmol/L of EGCG in HepG2 cells and differentiated 3T3-L1 adipocytes. PGC-1α promoter activity was also increased by treatment with 10 μmol/L of EGCG in both cells. These results suggest that EGCG may induce PGC-1α gene expression, potentially through promoter activation. PMID:27069908

  11. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  12. Enhancement of growth and osteogenic differentiation of MC3T3-E1 cells via facile surface functionalization of polylactide membrane with chitooligosaccharide based on polydopamine adhesive coating

    NASA Astrophysics Data System (ADS)

    Li, Huihua; Luo, Chuang; Luo, Binghong; Wen, Wei; Wang, Xiaoying; Ding, Shan; Zhou, Changren

    2016-01-01

    To develop a chitooligosaccharide(COS)-functionalized poly(D,L-lactide) (PDLLA) membrane to enhance growth and osteogenic differentiation of MC3T3-E1 cells, firstly a thin polydopamine (PDOPA) layer was adhered to the PDLLA membrane via the self-polymerization and strong adhesion behavior of dopamine. Subsequently, COS was immobilized covalently on the resultant PDLLA/PDOPA composite membrane by coupling with PDOPA active coating. The successful immobilization of the PDOPA and COS was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) results indicated that the surface topography and roughness of the membranes were changed, and the root mean square increased from 0.613 nm to 6.96 and 7.12 nm, respectively after coating PDOPA and COS. Water contact angle and surface energy measurements revealed that the membrane hydrophilicity was remarkably improved by surface modification. In vitro cells culture results revealed that the PDOPA- and COS-functionalized surfaces showed a significant increase in MC3T3-E1 cells adhesion, proliferation, osteogenic differentiation and alkaline phosphate activity compared to the pristine PDLLA substrate. Furthermore the COS-functionalized PDLLA membrane was more effectively at enhancing osteoblast activity than the PDOPA-functionalized PDLLA membrane.

  13. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-05-06

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration.

  14. Green Tea (−)-Epigallotocatechin-3-Gallate Induces PGC-1α Gene Expression in HepG2 Cells and 3T3-L1 Adipocytes

    PubMed Central

    Lee, Mak-Soon; Lee, Seohyun; Doo, Miae; Kim, Yangha

    2016-01-01

    Green tea (Camellia sinensis) is one of the most popular beverages in the world and has been acknowledged for centuries as having significant health benefits. (−)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea, and it has been reported to have health benefit effects. Peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a crucial regulator of mitochondrial biogenesis and hepatic gluconeogenesis. The objective of this study was to investigate whether EGCG from green tea can affect the ability of transcriptional regulation on PGC-1α mRNA expression in HepG2 cells and 3T3-L1 adipocytes. To study the molecular mechanism that allows EGCG to control PGC-1α expression, the promoter activity levels of PGC-1α were examined. The PGC-1α mRNA level was measured using quantitative real-time PCR. The −970/+412 bp of PGC-1α promoter was subcloned into the pGL3-Basic vector that includes luciferase as a reporter gene. EGCG was found to up-regulate the PGC-1α mRNA levels significantly with 10 μmol/L of EGCG in HepG2 cells and differentiated 3T3-L1 adipocytes. PGC-1α promoter activity was also increased by treatment with 10 μmol/L of EGCG in both cells. These results suggest that EGCG may induce PGC-1α gene expression, potentially through promoter activation. PMID:27069908

  15. Effects of different fatty acids and dietary lipids on adiponectin gene expression in 3T3-L1 cells and C57BL/6J mice adipose tissue.

    PubMed

    Bueno, Allain Amador; Oyama, Lila Missae; de Oliveira, Cristiane; Pisani, Luciana Pelegrini; Ribeiro, Eliane Beraldi; Silveira, Vera Lucia Flor; Oller do Nascimento, Cláudia Maria

    2008-01-01

    Obesity is positively correlated to dietary lipid intake, and the type of lipid may play a causal role in the development of obesity-related pathologies. A major protein secreted by adipose tissue is adiponectin, which has antiatherogenic and antidiabetic properties. The aim of this study was to evaluate the effects of four different high-fat diets (enriched with soybean oil, fish oil, coconut oil, or lard) on adiponectin gene expression and secretion by the white adipose tissue (WAT) of mice fed on a selected diet for either 2 (acute treatment) or 60 days (chronic treatment). Additionally, 3T3-L1 adipocytes were treated for 48 h with six different fatty acids: palmitic, linoleic, eicosapentaenoic (EPA), docosahexaenoic (DHA), lauric, or oleic acid. Serum adiponectin concentration was reduced in the soybean-, coconut-, and lard-enriched diets in both groups. Adiponectin gene expression was lower in retroperitoneal WAT after acute treatment with all diets. The same reduction in levels of adiponectin gene expression was observed in epididymal adipose tissue of animals chronically fed soybean and coconut diets and in 3T3-L1 cells treated with palmitic, linoleic, EPA, and DHA acids. These results indicate that the intake of certain fatty acids may affect serum adiponectin levels in mice and adiponectin gene expression in mouse WAT and 3T3-L1 adipocytes. The effects appear to be time dependent and depot specific. It is postulated that the downregulation of adiponectin expression by dietary enrichment with soybean oil or coconut oil may contribute to the development of insulin resistance and atherosclerosis.

  16. Adipogenesis stimulates the nuclear localization of EWS with an increase in its O-GlcNAc glycosylation in 3T3-L1 cells

    SciTech Connect

    Li, Qiang; Kamemura, Kazuo

    2014-07-18

    Highlights: • The majority of EWS localizes stably in the cytosol in 3T3-L1 preadipocytes. • Adipogenic stimuli induce the nuclear localization of EWS. • Adipogenesis promotes O-GlcNAcylation of EWS. • O-GlcNAcylation stimulates the recruitment of EWS to the nuclear periphery. - Abstract: Although the Ewing sarcoma (EWS) proto-oncoprotein is found in the nucleus and cytosol and is associated with the cell membrane, the regulatory mechanisms of its subcellular localization are still unclear. Here we found that adipogenic stimuli induce the nuclear localization of EWS in 3T3-L1 cells. Tyrosine phosphorylation in the C-terminal PY-nuclear localization signal of EWS was negative throughout adipogenesis. Instead, an adipogenesis-dependent increase in O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of EWS was observed. Pharmacological inactivation of O-GlcNAcase in preadipocytes promoted perinuclear localization of EWS. Our findings suggest that the nuclear localization of EWS is partly regulated by the glycosylation.

  17. High-Speed Microdialysis-Capillary Electrophoresis Assays for Measuring Branched Chain Amino Acid Uptake in 3T3-L1 cells.

    PubMed

    Harstad, Rachel K; Bowser, Michael T

    2016-08-16

    We have developed a high-throughput microdialysis-capillary electrophoresis (MD-CE) assay for monitoring branched chain amino acid (BCAA) uptake/release dynamics in 3T3-L1 cells. BCAAs (i.e., isoleucine, leucine, and valine) and their downstream metabolites (i.e., alanine, glutamine, and glutamate) are important indicators of adipocyte lipogenesis. To perform an analysis, amino acids were sampled using microdialysis, fluorescently labeled in an online reaction, separated using CE, and detected using laser-induced fluorescence (LIF) in a sheath flow cuvette. Separation conditions were optimized for the resolution of the BCAAs isoleucine, leucine, and valine, as well as 13 other amino acids, including ornithine, alanine, glutamine, and glutamate. CE separations were performed in <30 s, and the temporal resolution of the online MD-CE assay was <60 s. Limits of detection (LOD) were 400, 200, and 100 nM for isoleucine, leucine, and valine, respectively. MD-CE dramatically improved throughput in comparison to traditional offline CE methods, allowing 8 replicates of 15 samples (i.e., 120 analyses) to be assayed in <120 min. The MD-CE assay was used to assess the metabolism dynamics of 3T3-L1 cells over time, confirming the utility of the assay. PMID:27398773

  18. Ca/sup 2 +/-mobilizing actions of platelet-derived growth factor differ from those of bombesin and vasopressin in Swiss 3T3 mouse cells

    SciTech Connect

    Lopez-Rivas, A.; Mendoza, S.A.; Nanberg, E.; Sinnett-Smith, J.; Rozengurt, E.

    1987-08-01

    Addition of the mitogenic peptides bombesin and vasopressin to quiescent Swiss 3T3 mouse cells increased the cytosolic Ca/sup 2 +/ concentration without any measurable delay. In contrast, there was a significant lag period (16 +/- 1.2 s) before platelet-derived growth factor (PDGF) increased cytosolic Ca/sup 2 +/ concentration. This lag was not diminished at high concentrations of either porcine or human PDGF. Similar results were obtained in 3T3 cells loaded with quin-2 or fura-2. The differences in the effects of bombesin, vasopressin, and PDGF on Ca/sup 2 +/ movements were also substantiated by measurements of /sup 45/Ca/sup 2 +/ efflux and of cellular /sup 45/Ca/sup 2 +/ content. Activation of protein kinase C by phorbol esters inhibited Ca/sup 2 +/ mobilization induced by either bombesin or vasopressin. In contrast, phorbol esters had no effect on PDGF-induced cytosolic Ca/sup 2 +/ concentration increase or acceleration of /sup 45/Ca/sup 2 +/ efflux. Finally, bombesin and vasopressin caused a rapid increase in the production of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate, whereas PDGF, even at a saturating concentration, exerted only a small effect. These results indicate that the signal transduction pathway activated by PDGF that lead to Ca/sup 2 +/ mobilization can be distinguished form those utilized by bombesin and vasopressin.

  19. Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells.

    PubMed

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N; Dietzgen, Ralf G; Roberts-Thomson, Sarah J; Gidley, Michael J; Monteith, Gregory R

    2013-02-26

    Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.

  20. 31P NMR analysis of intracellular pH of Swiss Mouse 3T3 cells: effects of extracellular Na+ and K+ and mitogenic stimulation.

    PubMed

    Civan, M M; Williams, S R; Gadian, D G; Rozengurt, E

    1986-01-01

    Swiss mouse 3T3 cells grown on microcarrier beads were superfused with electrolyte solution during continuous NMR analysis. Conventional 31P and 19F probes of intracellular pH (pHc) were found to be impracticable. Cells were therefore superfused with 1 to 4 mM 2-deoxyglucose, producing a large intracellular, pH-sensitive signal of 2-deoxyglucose phosphate (2DGP). The intracellular incorporation of 2DGP inhibited the Embden-Meyerhof pathway. However, intracellular ATP was at least in part retained and the cellular responsivity to changes in extracellular ionic composition and to the application of growth factors proved intact. Transient replacement of external Na+ with choline or K+ reversibly acidified the intracellular fluids. Quiescent cells and mitogenically stimulated cells displayed the same dependence of shifts in pHc on external Na+ concentration (CoNa). PHc also depended on intracellular Na+ concentration (CcNa). Increasing ccNa by withdrawing external K+ (thereby inhibiting the Na,K-pump) caused reversible intracellular acidification; subsequently reducing CoNa produced a larger acid shift in pHc than with external K+ present. Comparison of separate preparations indicated that pHc was higher in stimulated than in quiescent cells. Transient administration of mitogens also reversibly alkalinized quiescent cells studied continuously. This study documents the feasibility of monitoring pHc of Swiss mouse 3T3 cells using 31P NMR analysis of 2DGP. The results support the concept of a Na/H antiport operative in these cells, both in quiescence and after mitogenic stimulation. The data document by an independent technique that cytoplasmic alkalinization is an early event in mitogenesis, and that full activity of the Embden-Meyerhof pathway is not required for the expression of this event.

  1. Cytotoxicity of Agaricus sylvaticus in non-tumor cells (NIH/3T3) and tumor (OSCC-3) using tetrazolium (MTT) assay.

    PubMed

    Orsine, Joice Vinhal Costa; Marques Brito, Luíssa; Silva, Renata Carvalho; Santos Almeida, Maria de Fátima Menezes; Novaes, Maria Rita Carvalho Garbi

    2013-01-01

    The purpose of this study was to assess the cytotoxic effect of the non-fractionated aqueous extract of A. sylvaticus mushroom in cultures of non-tumor cells (NIH3T3) and tumor cells (OSCC-3). The cells were maintained in DMEN cell culture medium added of 10% of fetal bovine serum and 1% antibiotic. For the cytotoxicity test we prepared the aqueous mushroom extract at concentrations of 0.01 mg.ml⁻¹, 0.02 mg.ml⁻¹, 0.04 mg.ml⁻¹, 0.08 mg.ml⁻¹, 0.16 mg.ml⁻¹, and 0.32 mg.ml⁻¹. For the culture, 2 x 10⁵ cells/ml was deposited in 96-well microplates during 24 hour incubation with subsequent exchange of medium by another containing the mushroom concentrations. After 24 hour incubation the medium was discarded and 100 ml of tetrazolium blue (MTT) was added at a concentration of 5 mg.ml⁻¹. The microplates were incubated for 2 h at 37° C. Spectrophotometric analysis was performed using 570 nm wavelength. From the values of the optical densities we determined the drug concentration capable of reducing cell viability by 50%. Therefore, the mushroom A. sylvaticus, at all concentrations tested, did not show cytotoxic effects, once the inhibitory concentration (IC₅₀) obtained for tumor cells OSCC-3 was 0.06194 mg.ml⁻¹, and the IC₅₀ checked for non-tumor cells NIH3T3 was 0,06468 mg.ml⁻¹. This test made it possible to determine that A. sylvaticus mushroom has no cytotoxic effects, suggesting its use safe for human consumption.

  2. (-)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells.

    PubMed

    Cho, Si Young; Park, Pil Joon; Shin, Hyun Jung; Kim, Young-Kyung; Shin, Dong Wook; Shin, Eui Seok; Lee, Hyoung Ho; Lee, Byeong Gon; Baik, Joo-Hyun; Lee, Tae Ryong

    2007-04-01

    Adiponectin is an adipocyte-specific secretory hormone that can increase insulin sensitivity and promote adipocyte differentiation. Administration of adiponectin to obese or diabetic mice reduces plasma glucose and free fatty acid levels. Green tea polyphenols possess many pharmacological activities such as antioxidant, anti-inflammatory, antiobesity, and antidiabetic activities. To investigate whether green tea polyphenols have an effect on the regulation of adiponectin, we measured expression and secretion levels of adiponectin protein after treatment of each green tea polyphenols in 3T3-L1 adipocytes. We found that (-)-catechin enhanced the expression and secretion of adiponectin protein in a dose- and time-dependent manner. Furthermore, treatment of (-)-catechin increased insulin-dependent glucose uptake in differentiated adipocytes and augmented the expression of adipogenic marker genes, including PPARgamma, CEBPalpha, FAS, and SCD-1, when (-)-catechin was treated during adipocyte differentiation. In search of the molecular mechanism responsible for inducible effect of (-)-catechin on adiponectin expression, we found that (-)-catechin markedly suppresses the expression of Kruppel-like factor 7 (KLF7) protein, which has recently been reported to inhibit the expression of adiponectin and other adipogenesis related genes, including leptin, PPARgamma, C/EBPalpha, and aP2 in adipocytes. KLF7 is a transcription factor in adipocyte and plays an important role in the pathogenesis of type 2 diabetes. Taken together, these data suggest that the upregulation of adiponectin protein by (-)-catechin may involve, at least in part, suppression of KLF7 in 3T3-L1 cells.

  3. miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D.

    PubMed

    Li, Meihang; Liu, Zhenjiang; Zhang, Zhenzhen; Liu, Guannv; Sun, Shiduo; Sun, Chao

    2015-03-01

    MicroRNAs are small non-coding RNAs that partially bind to the 3' untranslated (3'UTR) regions of target genes in animals and regulate protein production of the target transcripts. MiR-103 has been confirmed to play a critical role in lipid metabolism, however, the target genes and signaling pathway regulated by miR-103 is still unclear. In our experiment, we observed a positive function of miR-103 on the adipogenic differentiation of 3T3-L1 pre-adipocyte. Furthermore, we proved that this function of miR-103 worked through activating AKT/mTOR signal pathway and impairing target gene MEF2D. By inhibiting and over-expressing the MEF2D gene, we found that MEF2D had a negative role in regulating adipocyte key genes, and this function of MEF2D could be impaired by miR-103. In conclusion, we found that miR-103 can promote 3T3-L1 cells differentiation by targeting MEF2D and activating AKT/mTOR signal pathway. These results will shed a light on further study of microRNAs. PMID:25400071

  4. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells.

    PubMed

    An, Lei; Pang, Yun-Wei; Gao, Hong-Mei; Tao, Li; Miao, Kai; Wu, Zhong-Hong; Tian, Jian-Hui

    2012-11-23

    In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs. PMID:23103373

  5. Exposure to bioaccumulative organochlorine compounds alters adipogenesis, fatty acid uptake, and adipokine production in NIH3T3-L1 cells.

    PubMed

    Howell, George; Mangum, Lauren

    2011-02-01

    Exposure to the organochlorine compounds p,p'-dichlorodiphenyldichloroethylene (DDE) and oxychlordane have been associated with an increased prevalence of diabetes. Although the exact etiology of diabetes, especially type 2 diabetes, is not known, it is thought that adipose dysfunction plays a vital role in the progression of this disease. Thus, the present study examined whether exposure to these bioaccumulative compounds promotes adipocyte dysfunction including alterations in adipogenesis, fatty acid storage, and adipokine production within the adipocyte. We employed the NIH3T3-L1 cell line as a model for adipogenesis and mature adipocyte function. Exposure to DDE or oxychlordane prior to and throughout differentiation did not affect adipogenesis. In mature NIH3T3-L1 adipocytes, exposure to oxychlordane, DDE, or dieldrin had no effect on insulin-stimulated fatty acid uptake but did increase basal fatty acid uptake over a 24 h period. There was no observed effect of exposure to these compounds on lipolysis. Exposure to DDE significantly increased the release of leptin, resistin, and adiponectin from mature adipocytes with corresponding increases in expression of resistin and adiponectin. Taken together, the current data suggest that exposure to these compounds, especially DDE, may promote some aspects of adipocyte dysfunction that are commonly associated with obesity and type 2 diabetes.

  6. Substance P antagonist also inhibits specific binding and mitogenic effects of vasopressin and bombesin-related peptides in Swiss 3T3 cells

    SciTech Connect

    Zachary, I.; Rozengurt, E.

    1986-05-29

    While vasopressin and peptides of the bombesin family bind to different receptors in quiescent Swiss 3T3 cells, the antagonist (D-Arg/sup 1/,D-Pro/sup 2/,D-Trp/sup 7,9/,Leu/sup 11/) substance P blocks the specific binding of both (/sup 3/H) vasopressin and /sup 125/I-gastrin-releasing peptide to these cells. In addition, the antagonist inhibits the mobilization of Ca/sup 2 +/ and induction of DNA synthesis by vasopressin. These results indicate that (D-Arg/sup 1/,D-Pro,D-Trp/sup 7,9/,Leu/sup 11/) substance P has the ability to interact with the receptors for three structurally unrelated peptide hormones.

  7. Vasoactive intestinal peptide synergistically stimulates DNA synthesis in mouse 3T3 cells: Role of cAMP, Ca sup 2+ , and protein kinase C

    SciTech Connect

    Zurier, B.B.; Kozma, M.; Sinnett-Smith, J.; Rozengurt, E. )

    1988-05-01

    Vasoactive intestinal peptide synergistically stimulated initiation of DNA synthesis in Swiss 3T3 cells. The peptide stimulated ({sup 3}H)thymidine incorporation in the presence of insulin and either forskolin or an inhibitor of cAMP phosphodiesterase in a concentration-dependent manner. Half-maximal effect was obtained at 1 nM. At mitogenic concentrations, VIP stimulated a marked accumulation (eightfold) of cAMP. In contrast to other growth-promoting neuropeptides, VIP did not induce an increase in cytosolic free Ca{sup 2+} or the activation of protein kinase C. The authors conclude that neuropeptides can modulate long-term cell proliferation through multiple signaling pathways.

  8. Molecular cloning and characterization of the human dbl proto-oncogene: evidence that its overexpression is sufficient to transform NIH/3T3 cells.

    PubMed Central

    Ron, D; Tronick, S R; Aaronson, S A; Eva, A

    1988-01-01

    We isolated cDNA clones representing the human dbl proto-oncogene transcript. Nucleotide sequence analysis revealed an open reading frame encoding a predicted protein of 925 amino acids. Using peptide antisera directed against specific proto-dbl peptides, a 115-kd protein was detected in COS cells transfected with an expression vector containing the entire coding region of proto-dbl. This mol. wt is consistent with that predicted from the open reading frame. We have previously shown that the dbl oncogene was generated by substitution of the 5' portion of proto-dbl with an unrelated human sequence. In this study we show that this rearrangement resulted in the loss of the 497 amino-terminal codons of the dbl proto-oncogene. Under the influence of a strong promoter proto-dbl could readily transform NIH/3T3 cells but its transforming activity was less than that of the dbl oncogene driven by the same promoter. Proto-dbl overexpression is, therefore, sufficient to transform NIH/3T3 cells, but specific structural alterations of its coding region significantly enhance its transforming activity. No apparent similarity was detected between the predicted proto-dbl product and other known proto-oncogenes. However, a stretch of 300 amino acids within the N-terminal half of proto-dbl showed structural similarity to the intermediate filament vimentin. This region in proto-dbl contains a heptad repeat motif characteristic of an alpha-helical coiled-coil structure. Taken together, these findings indicate that the human proto-dbl represents a new class of cellular oncogenes that may be related to cytoskeletal elements of the cell. Images PMID:3056717

  9. The response of osteoblastic MC3T3-E1 cells to micro- and nano-textured, hydrophilic and bioactive titanium surfaces.

    PubMed

    Lumetti, S; Manfredi, E; Ferraris, S; Spriano, S; Passeri, G; Ghiacci, G; Macaluso, G; Galli, C

    2016-04-01

    The aim of the present work was to investigate the morphology and activity of the murine osteoblastic cell line MC3T3 on control smooth (Machined), commercially available rough (ZT) titanium discs, and on titanium samples obtained by modifying the ZT treatment protocol, and herein labelled as ZTF, ZTM and ZTFM. Cells were evaluated at SEM and immunofluorescence for morphology and cell-to-cell interactions and by MTT assay and real time PCR for cell growth and function. Microscopy showed that ZT modified protocols could differently affect cell shape and distribution. All the tested surfaces showed good biocompatibility by viability assay. However, cells on smoother surfaces appeared to express higher levels of transcript for Collagen 1a1, the main component of extracellular matrix, by real time PCR. Expression of the early differentiation marker Alkaline Phosphatase was higher on ZTF surfaces and ZTM enhanced the expression of later osteoblastic markers Osteoprotegerin and Osteocalcin. Noteworthy, the expression of Connexin 43, a component of cell-to-cell contacts and hemichannels, followed a similar pattern to differentiation marker genes and was higher in cells on ZTM surfaces, consistently with the microscopic observation of cell clusters. Taken together, this data showed that ZTF and ZTM treatment protocols appeared to improve the basal sand-blasting/acid-etching ZT procedure with ZTM surfaces promoting the most mature stage of differentiation.

  10. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells.

    PubMed

    Yang, Zhi-Gang; Matsuzaki, Keiichi; Takamatsu, Satoshi; Kitanaka, Susumu

    2011-07-19

    A new arylbenzofuran, 3',5'-dihydroxy-6-methoxy-7-prenyl-2-arylbenzofuran (1), and 25 known compounds, including moracin R (2), moracin C (3), moracin O (4), moracin P (5), artoindonesianin O (6), moracin D (7), alabafuran A (8), mulberrofuran L (9), mulberrofuran Y (10), kuwanon A (11), kuwanon C (12), kuwanon T (13), morusin (14), kuwanon E (15), sanggenon F (16), betulinic acid (17), uvaol (18), ursolic acid (19), β-sitosterol (20), oxyresveratrol 2-O-β-D-glucopyranoside (21), mulberroside A (22), mulberroside B (23), 5,7-dihydroxycoumarin 7-O-β-D-glucopyranoside (24), 5,7-dihydroxycoumarin 7-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside (25) and adenosine (26), were isolated from Morus alba var. multicaulis Perro. (Moraceae). Their structures were determined by spectroscopic methods. The prenyl-flavonoids 11-14, 16, triterpenoids 17,18 and 20 showed significant inhibitory activity towards the differentiation of 3T3-L1 adipocytes. The arylbenzofurans 1-10 and prenyl-flavonoids 11-16 also showed significant nitric oxide (NO) production inhibitory effects in RAW264.7 cells.

  11. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells.

    PubMed

    Yang, Zhi-Gang; Matsuzaki, Keiichi; Takamatsu, Satoshi; Kitanaka, Susumu

    2011-01-01

    A new arylbenzofuran, 3',5'-dihydroxy-6-methoxy-7-prenyl-2-arylbenzofuran (1), and 25 known compounds, including moracin R (2), moracin C (3), moracin O (4), moracin P (5), artoindonesianin O (6), moracin D (7), alabafuran A (8), mulberrofuran L (9), mulberrofuran Y (10), kuwanon A (11), kuwanon C (12), kuwanon T (13), morusin (14), kuwanon E (15), sanggenon F (16), betulinic acid (17), uvaol (18), ursolic acid (19), β-sitosterol (20), oxyresveratrol 2-O-β-D-glucopyranoside (21), mulberroside A (22), mulberroside B (23), 5,7-dihydroxycoumarin 7-O-β-D-glucopyranoside (24), 5,7-dihydroxycoumarin 7-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside (25) and adenosine (26), were isolated from Morus alba var. multicaulis Perro. (Moraceae). Their structures were determined by spectroscopic methods. The prenyl-flavonoids 11-14, 16, triterpenoids 17,18 and 20 showed significant inhibitory activity towards the differentiation of 3T3-L1 adipocytes. The arylbenzofurans 1-10 and prenyl-flavonoids 11-16 also showed significant nitric oxide (NO) production inhibitory effects in RAW264.7 cells. PMID:21772233

  12. Bezafibrate prevents palmitate-induced apoptosis in osteoblastic MC3T3-E1 cells through the NF-κB signaling pathway.

    PubMed

    Zhong, Xing; Xiu, Lingling; Wei, Guohong; Pan, Tianrong; Liu, Yuanyuan; Su, Lei; Li, Yanbing; Xiao, Haipeng

    2011-10-01

    Osteoporosis is a bone condition defined by low bone mass and increase of fracture risk due to imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Low bone mass is likely to be due to the alteration of the osteoclast and osteoblast lifespan through regulated apoptosis. Saturated fatty acid (SFA) intake is negatively associated with bone mineral density (BMD). Furthermore, SFA induces apoptosis in osteoblastic cell lines. Bezafibrate could increase bone mass in intact male rats principally through increasing periosteal bone formation. At present, it is unknown whether bezafibrate attenuates palmitate-induced apoptosis in MC3T3-E1 cells. In the present study, we found that palmitate stimulated the degradation of IκBα and NF-κB translocation, as well as up-regulation of NF-κB-mediated Fas expression in obsteoblastic MC3T3-E1 cells. Furthermore, the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) could restore palmitate-induced caspase-3 decrease and inhibit palmitate-induced cleaved caspase-3 increase. We observed that bezafibrate, a dual ligand for the peroxisome proliferator-activated receptors α (PPARα) and PPARδ, significantly attenuated the palmitate-induced cytotoxicity as determined by the MTT assay and inhibited the palmitate-induced apoptosis as determined by a flow cytometry assay using Annexin V-FITC/PI and assessment of the activity of caspase-3. Pre-treatment of bezafibrate prevented palmitate-induced NF-κB activation. Therefore, these findings indicate that bezafibrate inbibits palmitate-induced apoptosis via the NF-κB signaling pathway. Our results point to bezafibrate as a new strategy to attenuate bone loss associated with high fat diet beyond its lipid-lowering actions. PMID:21687928

  13. Ionomycin induces prostaglandin E2 formation in murine osteoblastic MC3T3-E1 cells via mechanisms independent of its ionophoric nature.

    PubMed

    Leis, Hans Jörg; Windischhofer, Werner

    2016-06-01

    Ionomycin and A23187 are divalent cation ionophores with a marked preference for calcium. Studies using these ionophores have almost exclusively interpreted their results in the light of calcium elevation. It was the aim of this study to investigate the effects of ionomycin in osteoblatic MC3T3-E1 cells that are not attributable to its ionophoric properties. Thus, we have found that in contrast to A23187, ionomycin shows similar effects on prostaglandin E2 formation as bradykinin and endothelin-1, being potentiated by extracellular nickel and inhibited by cholera toxin and pertussis toxin. Our data strongly suggest that inomycin, at least in part, exerts its effects via specific binding to a G-protein coupled receptor, thereby evoking downstream cellular events like arachidonate release with subsequent prostaglandin formation. PMID:27065246

  14. The edible red alga, Gracilaria verrucosa, inhibits lipid accumulation and ROS production, but improves glucose uptake in 3T3-L1 cells.

    PubMed

    Woo, Mi-Seon; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2013-07-01

    Gracilaria verrucosa is a red alga that is widely distributed in seaside areas of many countries. We examined the effect of G. verrucosa extract on adipogenesis, reactive oxygen species (ROS) production, and glucose uptake in 3T3-L1 cells. Oil red O staining and a nitroblue tetrazolium assay showed that G. verrucosa extract inhibited lipid accumulation and ROS production, respectively. mRNA levels of adipogenic transcription factors, peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, as well as of their target gene, adipocyte protein 2, were reduced upon treatment with G. verrucosa extract. However, G. verrucosa extract increased glucose uptake, glucose transporter-4 expression, and AMP-activated protein kinaseα (AMPKα) phosphorylation compared to the control. Our results suggest that the anti-adipogenic and insulin-sensitive effects of G. verrucosa extract can be recapitulated to activation of AMPKα.

  15. Characterization of the pharmacology, signal transduction and internalization of the fluorescent PACAP ligand, fluor-PACAP, on NIH/3T3 cells expressing PAC1.

    PubMed

    Germano, P M; Stalter, J; Le, S V; Wu, M; Yamaguchi, D J; Scott, D; Pisegna, J R

    2001-06-01

    Fluor-PACAP, a fluorescent derivative of PACAP-27, has been confirmed to share a high affinity for PAC1 receptors transfected into NIH/3T3 cells and to have comparable pharmacological characteristics to the unconjugated, native form. Through competitive binding with 125I-PACAP-27, the two ligands exhibited similar dose- dependent inhibition. Additional examination of the efficacy of activating adenylyl cyclase revealed that both ligands analogously stimulated the production of cyclic AMP. Furthermore, PAC1 internalization visualized by our Fluor-PACAP, is compareable to that performed with the radioligand, 125I-PACAP-27, with maximal internalization achieved within thirty minutes. Thus, Fluor-PACAP exhibits intracellular signaling abilities homologous to the native ligand.

  16. T24 HRAS transformed NIH/3T3 mouse cells (GhrasT-NIH/3T3) in serial tumorigenic in vitro/in vivo passages give rise to increasingly aggressive tumorigenic cell lines T1-A and T2-A and metastatic cell lines T3-HA and T4-PA.

    PubMed

    Ray, Durwood B; Merrill, Gerald A; Brenner, Frederic J; Lytle, Laurie S; Lam, Tan; McElhinney, Aaron; Anders, Joel; Rock, Tara Tauber; Lyker, Jennifer Kier; Barcus, Scott; Leslie, Kara Hust; Kramer, Jill M; Rubenstein, Eric M; Pryor Schanz, Karen; Parkhurst, Amy J; Peck, Michelle; Good, Kimberly; Granath, Kristi Lemke; Cifra, Nicole; Detweiler, Jessalee Wantz; Stevens, Laura; Albertson, Richard; Deir, Rachael; Stewart, Elisabeth; Wingard, Katherine; Richardson, Micah Rose; Blizard, Sarah B; Gillespie, Lauren E; Kriley, Charles E; Rzewnicki, Daniel I; Jones, David H

    2016-01-01

    Cancer cells often arise progressively from "normal" to "pre-cancer" to "transformed" to "local metastasis" to "metastatic disease" to "aggressive metastatic disease". Recent whole genome sequencing (WGS) and spectral karyotyping (SKY) of cancer cells and tumorigenic models have shown this progression involves three major types of genome rearrangements: ordered small step-wise changes, more dramatic "punctuated evolution" (chromoplexy), and large catastrophic steps (chromothripsis) which all occur in random combinations to generate near infinite numbers of stochastically rearranged metastatic cancer cell genomes. This paper describes a series of mouse cell lines developed sequentially to mimic this type of progression. This starts with the new GhrasT-NIH/Swiss cell line that was produced from the NIH/3T3 cell line that had been transformed by transfection with HRAS oncogene DNA from the T24 human bladder carcinoma. These GhrasT-NIH/Swiss cells were injected s.c. into NIH/Swiss mice to produce primary tumors from which one was used to establish the T1-A cell line. T1-A cells injected i.v. into the tail vein of a NIH/Swiss mouse produced a local metastatic tumor near the base of the tail from which the T2-A cell line was established. T2-A cells injected i.v. into the tail vein of a nude NIH/Swiss mouse produced metastases in the liver and one lung from which the T3-HA (H=hepatic) and T3-PA (P=pulmonary) cell lines were developed, respectively. T3-HA cells injected i.v. into a nude mouse produced a metastasis in the lung from which the T4-PA cell line was established. PCR analysis indicated the human T24 HRAS oncogene was carried along with each in vitro/in vivo transfer step and found in the T2-A and T4-PA cell lines. Light photomicrographs indicate that all transformed cells are morphologically similar. GhrasT-NIH/Swiss cells injected s.c. produced tumors in 4% of NIH/Swiss mice in 6-10 weeks; T1-A cells injected s.c. produced tumors in 100% of NIH/Swiss mice in 7

  17. Enhancing effect of daidzein on the differentiation and mineralization in mouse osteoblast-like MC3T3-E1 cells.

    PubMed

    Ge, Yuebin; Chen, Dawei; Xie, Liping; Zhang, Rongqing

    2006-08-01

    The effect of daidzein, an important isoflavone, on the differentiation and mineralization in MC3T3-E1 cells, a mouse calvaria osteoblast-like cell line, was investigated. The MTT assay, the alizarin red S and von Kossa staining, the measurement of calcium (Ca) and phosphorus (P) concentrations by inductively coupled plasma-atomic emission spectrometry and the nitrophenol liberation method were used to determine the cell proliferation, mineralization and intracellular alkaline phosphatase (ALP) activity, respectively. Daidzein enhanced the cell proliferation after the culture for 2 days and the effect reached maximum on day 6. ALP activity and cellular Ca and P contents were increased time- and dose-dependently when the cells were treated with daidzein in the presence of disodium beta-glycerophosphate and L-ascorbic acid. Differentiation of the cells to the mature osteoblasts was prompted under incubation in the presence of daidzein for 21 days, by the time the mineralized nodules formed. The calcium depositions of the cells by alizarin red S staining were increased significantly after the culture with daidzein as long as 28 days. It has been demonstrated that daidzein may be able to enhance the bone differentiation and mineralization and prompt the bone formation in the early growing stage and the late growing stage of osteoblasts. PMID:16880723

  18. Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying.

    PubMed

    Ahn, SeungHyun; Lee, HyeongJin; Bonassar, Lawrence J; Kim, GeunHyung

    2012-09-10

    In this study, we propose a new cell encapsulation method consisting of a dispensing method and an aerosol-spraying method. The aerosol spray using a cross-linking agent, calcium chloride (CaCl(2)), was used to control the surface gelation of dispensed alginate struts during dispensing. To show the feasibility of the method, we used preosteoblast (MC3T3-E1) cells. By changing the relationship between the various dispensing/aerosol-spraying conditions and cell viability, we could determine the optimal cell-dispensing process: a nozzle size (240 μm) and an aerosol spray flow rate (0.93 ± 0.12 mL min(-1)), 10 mm s(-1) nozzle moving speed, a 10 wt % concentration of CaCl(2) in the aerosol solution, and 2 wt % concentration of CaCl(2) in the second cross-linking process. Based on these optimized process conditions, we successfully fabricated a three-dimensional, pore-structured, cell-laden alginate scaffold of 20 × 20 × 4.6 mm(3) and 84% cell viability. During long cell culture periods (16, 25, 33, and 45 days), the preosteoblasts in the alginate scaffold survived and proliferated well.

  19. Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells

    PubMed Central

    Cheng, Xinxin; Shao, Mingming; Wu, Chen; Wang, Suhan; Li, Hongmin; Wei, Lixuan; Gao, Yanning; Tan, Wen; Cheng, Shujun; Wu, Tangchun; Yu, Dianke; Lin, Dongxin

    2015-01-01

    Long-term exposure to airborne PM2.5 is associated with increased lung cancer risk but the underlying mechanism remains unclear. We characterized global microRNA and mRNA expression in human bronchial epithelial cells exposed to PM2.5 organic extract and integrally analyzed microRNA-mRNA interactions. Foci formation and xenograft tumorigenesis in mice with NIH3T3 cells expressing genes targeted by microRNAs were performed to explore the oncogenic potential of these genes. We also detected plasma levels of candidate microRNAs in subjects exposed to different levels of air PM2.5 and examined the aberrant expression of genes targeted by these microRNAs in human lung cancer. Under our experimental conditions, treatment of cells with PM2.5 extract resulted in downregulation of 138 microRNAs and aberrant expression of 13 mRNAs (11 upregulation and 2 downregulation). In silico and biochemical analyses suggested SLC30A1, SERPINB2 and AKR1C1, among the upregulated genes, as target for miR-182 and miR-185, respectively. Ectopic expression of each of these genes significantly enhanced foci formation in NIH3T3 cells. Following subcutaneous injection of these cells into nude mice, fibrosarcoma were formed from SLC30A1- or SERPINB2-expressing cells. Reduced plasma levels of miR-182 were detected in subjects exposed to high level of PM2.5 than in those exposed to low level of PM2.5 (P = 0.043). Similar results were seen for miR-185 although the difference was not statistically significant (P = 0.328). Increased expressions of SLC30A1, SERPINB2 and AKR1C1 were detected in human lung cancer. These results suggest that modulation of miR-182 and miR-185 and their target genes may contribute to lung carcinogenesis attributable to PM2.5 exposure. PMID:26338969

  20. Expression of cell adhesion and differentiation related genes in MC3T3 osteoblasts plated on titanium alloys: role of surface properties.

    PubMed

    Sista, Subhash; Wen, Cuie; Hodgson, Peter D; Pande, Gopal

    2013-04-01

    It is important to understand the cellular and molecular events that take place at the cell-material interface of implants used for bone repair. An understanding of the mechanisms involved in the initial stages of osteoblast interactions with the surface of the implant material is fundamental in deciding the fate of the cells that come in contact with it. In this study, we compared the relative gene expression of markers that are known to be associated with cell adhesion and differentiation in MC3T3 osteoblast cells, at various time points after plating the cells on surfaces of titanium (Ti) and its two alloys, titanium-zirconium (TiZr) and titanium-niobium (TiNb) by using Quantitative Real Time Polymerase Chain Reaction (RT-PCR). Our analysis indicated that expression of adhesion supporting genes was higher on TiZr surface as compared to Ti and TiNb. The behavior of these genes is possibly driven by a higher surface energy of TiZr. However no significant difference in the expression of differentiation related genes could be seen between the two alloys, although on both substrates it was higher as compared to unalloyed Ti. We propose that substrate composition of the alloys can influence the adhesion and differentiation related gene expression and that Ti alloys are better substrates for inducing osteogenesis as compared to unalloyed Ti.

  1. Sulfonate groups grafted on Ti6Al4V favor MC3T3-E1 cell performance in serum free medium conditions.

    PubMed

    Felgueiras, Helena; Migonney, Véronique

    2014-06-01

    Ten years ago, we synthesized "bioactive model polymers" bearing sulfonate groups and proposed a mechanism of their modulation effect at different steps of the cell response. Then, we set up the grafting of polymers bearing sulfonate on Ti6Al4V surfaces by a grafting "from" technique making sure of the creation of covalent bonds between the grafted polymer and the Ti6Al4V surface. We have checked and confirmed the positive effect of grafted sulfonate groups on the osteoblastic cell response in vivo and in vitro but we did not elucidate the mechanism. The aim of this basic work consists first in investigating the role of sulfonate groups in the presence and in the absence of proteins at early stages of the osteointegration process on poly(sodium styrene sulfonate) poly(NaSS) grafted and ungrafted Ti6Al4V surfaces, in vitro. To understand the role of poly(NaSS) grafted chains on osteoblast-like cell response and to confirm/elucidate the importance of fetal bovine serum (FBS) proteins in the culture medium, MC3T3-E1 cells were seeded onto poly(NaSS) grafted and non-grafted Ti6Al4V surfaces. Cultures were carried out in a complete (10% FBS) and in a non-complete medium (without FBS). Cell viability assay, cell attachment number and cell adhesion strength were followed up to 3days of culture. The presence of proteins enhanced cell growth and development whatever the surface and the presence of sulfonate groups enhanced the cell attachment even in the absence of proteins, which suggests and confirms that the sulfonate groups can modify the activity of cells such as the secretion of binding proteins. Statistical differences were found in the attachment strength tests on poly(NaSS) grafted and ungrafted surfaces and showed that the sulfonate groups play an important role in the cell resistance to shear stress. PMID:24863216

  2. Intracellular production of virus particles and viral components in NIH/3T3 cells chronically infected with Moloney murine leukemia virus: effect of interferon.

    PubMed Central

    Aboud, M; Kimchi, R; Bakhanashvili, M; Salzberg, S

    1981-01-01

    The effect of interferon on the biochemical properties and the maturation process of intracellular viral particles isolated from the cytoplasmic fraction of NIH/3T3 cells chronically infected with Moloney murine leukemia virus was investigated. By labeling these virions with either [35S]methionine or [3H]glucosamine, we demonstrated that they contain the same viral proteins and glycoproteins found in extracellular virions. Interferon treatment was found to reduce the rate of intracellular virus assembly. This effect was not a consequence of an interferon inhibition of viral RNA synthesis or its translation or a consequence of an interference with the posttranslational cleavage processing of viral precursor proteins, since all of these steps were not affected by interferon. However, the reduced rate of virus assembly could be attributed to the inhibition of viral protein glycosylation observed in interferon-treated cells. Nevertheless, despite this reduced rate, virus particles accumulated in interferon-treated cells. This accumulation was probably due to the strong inhibition of their final release from such cells. PMID:6172601

  3. Influence of sodium hypochlorite treatment of electropolished and magnetoelectropolished nitinol surfaces on adhesion and proliferation of MC3T3 pre-osteoblast cells.

    PubMed

    Rokicki, Ryszard; Haider, Waseem; Hryniewicz, Tadeusz

    2012-09-01

    The influence of 6 % sodium hypochlorite (NaClO) treatment on adhesion and proliferation of MC3T3 pre-osteoblast cells seeded on electropolished (EP) and magnetoelectropolished (MEP) nitinol surfaces were investigated. The chemistry, topography, roughness, surface energy, wettability of EP and MEP nitinol surfaces before and after NaClO treatment were studied with X-ray photoelectron spectroscopy (XPS), profilometry, and contact angle meter. In vitro interaction of osteoblast cell and NaClO treated EP and MEP nitinol surfaces were assessed after 3 days of incubation by scanning electron microscopy. The XPS analysis shows that NaClO treatment increases oxygen content especially in subsurface oxide layer of EP and MEP nitinol. The changes of both basic components of nitinol, namely nickel and titanium in oxide layer, were negligible. The NaClO treatment did not influence physico-morphological surface properties of EP and MEP nitinol to a big extent. The osteoblast cells show remarkable adherence and proliferation improvement on NaClO treated EP and MEP nitinol surfaces. After 3 days of incubation they show almost total confluence on both NaClO treated surfaces. The present study shows that NaClO treatment of EP and MEP nitinol surfaces alters oxide layer by enriching it in oxygen and by this improves bone cell-nitinol interaction.

  4. α-Mangostin Improves Glucose Uptake and Inhibits Adipocytes Differentiation in 3T3-L1 Cells via PPARγ, GLUT4, and Leptin Expressions

    PubMed Central

    Taher, Muhammad; Mohamed Amiroudine, Mohamed Zaffar Ali; Tengku Zakaria, Tengku Muhamad Faris Syafiq; Ichwan, Solachuddin J. A.; Kaderi, Mohd Arifin; Ahmed, Qamar Uddin; Zakaria, Zainul Amiruddin

    2015-01-01

    Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[3H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P < 0.05) with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA) released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future. PMID:25873982

  5. Nonivamide Enhances miRNA let‐7d Expression and Decreases Adipogenesis PPARγ Expression in 3T3‐L1 Cells

    PubMed Central

    Rohm, Barbara; Holik, Ann‐Katrin; Kretschy, Nicole; Somoza, Mark M.; Ley, Jakob P.; Widder, Sabine; Krammer, Gerhard E.; Marko, Doris

    2015-01-01

    ABSTRACT Red pepper and its major pungent principle, capsaicin (CAP), have been shown to be effective anti‐obesity agents by reducing energy intake, enhancing energy metabolism, decreasing serum triacylglycerol content, and inhibiting adipogenesis via activation of the transient receptor potential cation channel subfamily V member 1 (TRPV1). However, the binding of CAP to the TRPV1 receptor is also responsible for its pungent sensation, strongly limiting its dietary intake. Here, the effects of a less pungent structural CAP‐analog, nonivamide, on adipogenesis and underlying mechanisms in 3T3‐L1 cells were studied. Nonivamide was found to reduce mean lipid accumulation, a marker of adipogenesis, to a similar extent as CAP, up to 10.4% (P < 0.001). Blockage of the TRPV1 receptor with the specific inhibitor trans‐tert‐butylcyclohexanol revealed that the anti‐adipogenic activity of nonivamide depends, as with CAP, on TRPV1 receptor activation. In addition, in cells treated with nonivamide during adipogenesis, protein levels of the pro‐adipogenic transcription factor peroxisome‐proliferator activated receptor γ (PPARγ) decreased. Results from miRNA microarrays and digital droplet PCR analysis demonstrated an increase in the expression of the miRNA mmu‐let‐7d‐5p, which has been associated with decreased PPARγ levels. J. Cell. Biochem. 116: 1153–1163, 2015. © 2015 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc. PMID:25704235

  6. Structure, MC3T3-E1 cell response, and osseointegration of macroporous titanium implants covered by a bioactive microarc oxidation coating with microporous structure.

    PubMed

    Zhou, Rui; Wei, Daqing; Cheng, Su; Feng, Wei; Du, Qing; Yang, Haoyue; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2014-04-01

    Macroporous Ti with macropores of 50-400 μm size is prepared by sintering Ti microbeads with different diameters of 100, 200, 400, and 600 μm. Bioactive microarc oxidation (MAO) coatings with micropores of 2-5 μm size are prepared on the macroporous Ti. The MAO coatings are composed of a few TiO2 nanocrystals and lots of amorphous phases with Si, Ca, Ti, Na, and O elements. Compared to compact Ti, the MC3T3-E1 cell attachment is prolonged on macroporous Ti without and with MAO coatings; however, the cell proliferation number increases. These results are contributed to the effects of the space structure of macroporous Ti and the surface chemical feature and element dissolution of the MAO coatings during the cell culture. Macroporous Ti both without and with MAO coatings does not cause any adverse effects in vivo. The new bone grows well into the macropores and micropores of macroporous Ti with MAO coatings, showing good mechanical properties in vivo compared to Ti, MAO-treated Ti, and macroporous Ti because of its excellent osseointegration. Moreover, the MAO coatings not only show a high interface bonding strength with new bones but also connect well with macroporous Ti. Furthermore, the pushing out force for macroporous Ti with MAO coatings increases significantly with increasing microbead diameter. PMID:24579697

  7. Accumulation and breakdown of RNA-deficient intracellular virus particles in interferon-treated NIH 3T3 cells chronically producing Moloney murine leukemia virus.

    PubMed Central

    Aboud, M; Hassan, Y

    1983-01-01

    Interferon treatment of NIH 3T3 cells chronically infected with Moloney murine leukemia virus inhibited about 95% of virus release. This inhibition was accompanied by a three- to twofold accumulation of intracellular virions. However, this accumulation could be demonstrated only be exogenous reverse transcriptase reaction assay or radioactive labeling of the assembled viral proteins. It could not be shown by the endogenous reverse transcriptase reaction assay, which depended on endogenous viral RNA, or by labeling the encapsidated viral RNA. It was therefore evident that most of the intracellular virions accumulated in interferon-treated cells were RNA deficient. Hybridization analysis revealed that these virions were deficient of genomic viral RNA, whereas size analysis by gel electrophoresis suggested that the deficiency of 4S RNA normally packaged in Moloney murine leukemia virus was even stronger. Our data also suggested that this RNA deficiency was not due to degradation of the encapsidated RNA, but more likely to a defect in virus assembly. RNA-lacking intracellular virions were unstable; they were found to collapse before being released. PMID:6187933

  8. In Vitro and In Vivo Enhancement of Adipogenesis by Italian Ryegrass (Lolium multiflorum) in 3T3-L1 Cells and Mice

    PubMed Central

    Kim, Da Hye; Gun Roh, Sang; Lee, Jeong-Chae; Choi, Ki Choon

    2014-01-01

    Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM) confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR)-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals. PMID:24454838

  9. Viral-cellular junction fragment from a human papillomavirus type 16-positive tumor is competent in transformation of NIH 3T3 cells

    SciTech Connect

    Le, J.Y.; Defendi, V.

    1988-11-01

    A 4.4-kilobase DNA fragment (T4.4) from a human tumor was found to be competent to fully transform NIH 3T3 cells. This competency resides in the whole hybrid DNA fragment, since the separate viral or cellular DNA sequences were not active. Abundant E6-E7 transcripts were found in the transformed cells. When the cellular fragments were substituted with polyadenylation sequences from polyomavirus or simian virus 40 DNA, little or no restoration of transforming activity was observed. In experiments in which an exogenous reporting gene, that for chloramphenicol acetyltransferase, was used, the possibility was excluded that the cellular flanking sequences act as a traditional enhancer; yet, when the cellular sequences were placed downstream of a cloramphenicol acetyltransferase expression vector (pSV2 CAT), activity of the reference gene was clearly enhanced. These results indicate that DNA containing human papillomavirus type 16 open reading frames E6 and E7 isolated from the genome of a human tumor has transforming potential, but this potential is realized when the viral DNA is joined to cellular sequences, and that the cellular sequences function in a more complex way than by simply providing polyadenylation signals.

  10. Buddleja officinalis Maximowicz extract inhibits lipid accumulation on adipocyte differentiation in 3T3-L1 cells and high-fat mice.

    PubMed

    Roh, Changhyun; Park, Min-Kyoung; Shin, Hee-June; Jung, Uhee; Kim, Jin-Kyu

    2012-07-23

    Obesity is a global health problem. It is also known to be a risk factor for the development of metabolic disorders, type 2 diabetes, systemic hypertension, cardiovascular disease, dyslipidemia, and atherosclerosis. In this study, we elucidated that Buddleja officinalis Maximowicz extract significantly inhibited lipid accumulation during 3T3-L1 adipocyte differentiation. Furthermore, Buddleja officinalis Maximowicz extract reduced the body weight gain induced through feeding a high-fat diet to C57BL/6 mice. The treatment of Buddleja officinalis Maximowicz extract significantly reduced the adipose tissue weight to 2.7/100 g of body weight in high-fat mice. When their adipose tissue morphology was investigated for histochemical staining, the distribution of cell size in the high-fat diet groups was hypertrophied compared with those from Buddleja officinalis Maximowicz extract-treated mice. In addition, in Buddleja officinalis Maximowicz extract-treated mice, a significant reduction of serum triglyceride and T-cholesterol was observed at to 21% and 17%, respectively. The discovery of bioactive compounds from diet or dietary supplementation is one of possible ways to control obesity and to prevent or reduce the risks of various obesity-related diseases. These results support that Buddleja officinalis Maximowicz extract is expected to create the therapeutic interest with respect to the treatment of obesity.

  11. Effects of an AMP-activated protein kinase inhibitor, compound C, on adipogenic differentiation of 3T3-L1 cells.

    PubMed

    Gao, Ye; Zhou, Yi; Xu, Aimin; Wu, Donghai

    2008-09-01

    The role of AMP-activated protein kinase (AMPK) in adipocyte differentiation is not completely understood. Here we reported that an AMPK inhibitor, compound C, significantly inhibited adipogenic differentiation of 3T3-L1 cells in a dose dependent manner, and this inhibitory effect was primarily effective in the initial stage of differentiation. Compound C prevented the mitotic clonal expansion (MCE) of preadipocytes, probably by inhibiting expression of CCAAT/enhancer-binding protein (C/EBP)beta and delta, and subsequently blocked the expression of C/EBPalpha and peroxisome proliferator-activated receptor (PPAR)gamma and transcriptional activation of genes that produce the adipocyte phenotype. AMPK activity was also suppressed by compound C treatment during the early phase of adipogenic differentiation, which indicated that suppressed activation of AMPK by compound C may inhibit the MCE process of preadipocytes. Our results suggest that compound C might serve as a useful molecule in both basic and clinical research on adipogenesis and as a potential lead compound for the treatment of obesity. PMID:18758065

  12. Muscarinic receptors transform NIH 3T3 cells through a Ras-dependent signalling pathway inhibited by the Ras-GTPase-activating protein SH3 domain.

    PubMed Central

    Mattingly, R R; Sorisky, A; Brann, M R; Macara, I G

    1994-01-01

    Expression of certain subtypes of human muscarinic receptors in NIH 3T3 cells provides an agonist-dependent model of cellular transformation by formation of foci in response to carbachol. Although focus formation correlates with the ability of the muscarinic receptors to activate phospholipase C, the actual mitogenic signal transduction pathway is unknown. Through cotransfection experiments and measurement of the activation state of native and epitope-tagged Ras proteins, the contributions of Ras and Ras GTPase-activating protein (Ras-GAP) to muscarinic receptor-dependent transformation were defined. Transforming muscarinic receptors were able to activate Ras, and such activation was required for transformation because focus formation was inhibited by coexpression of either Ras with a dominant-negative mutation or constructs of Ras-GAP that include the catalytic domain. Coexpression of the N-terminal region of GAP or of its isolated SH3 (Src homology 3) domain, but not its SH2 domain, was also sufficient to suppress muscarinic receptor-dependent focus formation. Point mutations at conserved residues in the Ras-GAP SH3 domain reversed its action, leading to an increase in carbachol-dependent transformation. The inhibitory effect of expression of the Ras-GAP SH3 domain occurs proximal to Ras activation and is selective for the mitogenic pathway activated by carbachol, as cellular transformation by either v-Ras or trkA/nerve growth factor is unaffected. Images PMID:7969134

  13. Traditional medicine yanggyuksanhwa-tang inhibits adipogenesis and suppresses proliferator-activated receptor-gamma expression in 3T3-L1 cells

    PubMed Central

    Jeong, Soo-Jin; Yoo, Sae-Rom; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2015-01-01

    Background: Yanggyuksanhwa-tang (YGSHT) is a specific traditional Korean herbal formula for Soyangin according to Sasang constitutional philosophy. Although its biological activities against inflammation and cerebral infarction have been reporting, there is no information about the adipogenic activity of YGSHT. In the present study, we investigated the anti-adipogenic activity of YGSHT to evaluate effects of YGSHT on adipogenesis in vitro. Materials and Methods: Using 3T3-L1 preadipocytes, we induced the cellular differentiation into adipocytes by adding insulin. Anti-adipogenic activity of YGSHT was measured by oil red O staining, triglyceride assay, glycerol-3-phosphate dehydrogenase (GPDH) activity test, and leptin assay. Results: YGSHT extract had no significant cytotoxicity in preadipocytes or differentiated adipocytes. YGSHT reduced the number of lipid droplets and content of triglyceride in adipose cells. YGSHT also significantly inhibited GPDH activity and decreased leptin production compared with control adipocytes. Down-regulation of peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression at the messenger RNA level was observed in YGSHT-treated adipocytes. Conclusion: Taken together, our data suggest that YGSHT has potential as an anti-obesity drug candidate. PMID:26246724

  14. Proliferation and osteogenic response of MC3T3-E1 pre-osteoblastic cells on porous zirconia ceramics stabilized with magnesia or yttria.

    PubMed

    Hadjicharalambous, Chrystalleni; Mygdali, Evdokia; Prymak, Oleg; Buyakov, Ales; Kulkov, Sergei; Chatzinikolaidou, Maria

    2015-11-01

    Dense zirconia ceramics are used in bone applications due to their mechanical strength and biocompatibility, but lack osseointegration. A porous interface in contact with bone tissue may lead to better bone bonding but the biological properties of porous zirconia are not widely explored. The present study focuses on the manufacturing of an yttria- (YSZ) and a magnesia-stabilized (MgSZ) porous zirconia, and on their in vitro biological investigation. The sintered ceramics had similar characteristics of porosity, pore size and interconnectivity. Their elastic moduli and compressive strength values were within the range of the values of human cortical bone. MC3T3-E1 pre-osteoblasts were used to investigate the proliferation, alkaline phosphatase (ALP) activity, collagen deposition and expression profile of four genes involved in bone metabolism of cells on porous ceramics. Scanning electron and fluorescence microscopy were employed to visualize cell morphology and growth. Pre-osteoblasts adhered well on both ceramics but cell numbers on YSZ were higher. Cells exhibited an increase in ALP activity and collagen deposition after 14 days on both MgSZ and YSZ, with higher levels on YSZ. Real-time quantitative polymerase chain reaction (qPCR) showed that the expression of bone sialoprotein (Bsp) and collagen type I (col1aI) were significantly higher on YSZ. No significant differences were found in their ability to regulate the early gene expression of Runx2 and Alp. Nevertheless, the biomineralized calcium content was similar on both ceramics after 21 days, indicating that despite chemical differences, both scaffolds direct the pre-osteoblasts toward a mature state capable of mineralizing the extracellular matrix.

  15. Tension Force Downregulates Matrix Metalloproteinase Expression and Upregulates the Expression of Their Inhibitors through MAPK Signaling Pathways in MC3T3-E1 cells

    PubMed Central

    Karasawa, Yoko; Tanaka, Hideki; Nakai, Kumiko; Tanabe, Natsuko; Kawato, Takayuki; Maeno, Masao; Shimizu, Noriyoshi

    2015-01-01

    Objective: Matrix metalloproteinases (MMPs), produced by osteoblasts, catalyze the turnover of extracellular matrix (ECM) molecules in osteoid, and the regulation of MMP activity depends on interactions between MMPs and tissue inhibitors of metalloproteinases (TIMPs). We focused on the degradation process of ECM in osteoid that was exposed to mechanical strain, and conducted an in vitro study using MC3T3-E1 osteoblastic cells to examine the effects of tension force (TF) on the expression of MMPs and TIMPs, and activation of mitogen-activated protein kinase (MAPK) pathways. Design: Cells were incubated on flexible-bottomed culture plates and stimulated with or without cyclic TF for 24 hours. The expression of MMPs and TIMPs was examined at mRNA and protein levels by real-time RT-PCR and Western blotting, respectively. The phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, and stress-activated protein kinases/c-jun N-terminal kinases (SAPK/JNK) were examined by Western blotting. Results: TF decreased the expression of MMP-1, -3, -13 and phosphorylated ERK1/2. In contrast, TF increased the expression of TIMP-2, -3 and phosphorylated SAPK/JNK. The expression of MMP-2, -14, TIMP-1, -4 and phosphorylated p38 MAPK was unaffected by TF. MMP-1, -3 and -13 expression decreased in cells treated with the ERK inhibitor PD98059 compared with untreated control cells. The JNK inhibitor SP600125 inhibited the TF-induced upregulation of TIMP-2 and -3. Conclusions: The results suggest that TF suppresses the degradation process that occurs during ECM turnover in osteoid via decreased production of MMP-1, -3 and -13, and increased production of TIMP-2 and -3 through the MAPK signaling pathways in osteoblasts. PMID:26640410

  16. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies.

    PubMed

    Severino, Patrícia; Chaud, Marco V; Shimojo, Andrea; Antonini, Danilo; Lancelloti, Marcelo; Santana, Maria Helena A; Souto, Eliana B

    2015-05-01

    Polymyxins are a group of antibiotics with a common structure of a cyclic peptide with a long hydrophobic tail. Polymyxin B sulphate (PLX) has cationic charge, which is an obstacle for the efficient loading into Solid Lipid Nanoparticles (SLN). In the present paper, we describe an innovative method to load PLX into SLN to achieve the sustained release of the drug. PLX was firstly cross-linked with sodium alginate (SA) at different ratios (1:1, 1:2 and 1:3 SA/PLX), and loaded into SLN produced by high pressure homogenization (HPH). Optimized SLN were produced applying 500bar pressure and 5 homogenization cycles. The best results were obtained with SA/PLX (1:1), recording 99.08±1.2% for the association efficiency of the drug with SA, 0.99±10g for the loading capacity and 212.07±5.84% degree of swelling. The rheological profile of aqueous SA solution followed the typical behaviour of concentrated polymeric solutions, whereas aqueous SA/PLX solution exhibited a gel-like dynamic behaviour. Micrographs show that SA/PLX depicted a porous and discontinuous amorphous phase in different ratios. The encapsulation efficiency of SA/PLX (1:1) in SLN, the mean particle diameter, polydispersity index and zeta potential were, respectively, 82.7±5.5%; 439.5±20.42nm, 0.241±0.050 and -34.8±0.55mV. The effect of SLN on cell viability was checked in HaCat and NIH/3T3 cell lines, and the minimal inhibitory concentrations (MIC) were determined in Pseudomonas aeruginosa strains. SA/PLX-loaded SLN were shown to be less toxic than free PLX. Minimal inhibitory concentrations (MIC) showed the presence of the cross-linker polymer-drug complex, and SLN were shown to enhance MIC in the evaluated strains.

  17. Resveratrol inhibits lipogenesis of 3T3-L1 and SGBS cells by inhibition of insulin signaling and mitochondrial mass increase.

    PubMed

    Li, Shuijie; Bouzar, Célia; Cottet-Rousselle, Cécile; Zagotta, Ivana; Lamarche, Frédéric; Wabitsch, Martin; Tokarska-Schlattner, Malgorzata; Fischer-Posovszky, Pamela; Schlattner, Uwe; Rousseau, Denis

    2016-06-01

    Resveratrol is attracting much interest because of its potential to decrease body weight and increase life span, influencing liver and muscle function by increasing mitochondrial mass and energy expenditure. Even though resveratrol was already shown to reduce the adipose tissue mass in animal models, its effects on mitochondrial mass and network structure in adipocytes have not yet been studied. For this purpose, we investigated the effect of resveratrol on mitochondrial mass increase and remodeling during adipogenic differentiation of two in vitro models of adipocyte biology, the murine 3T3-L1 cell line and the human SGBS cell strain. We confirm that resveratrol inhibits lipogenesis in differentiating adipocytes, both mouse and human. We further show that this is linked to inhibition of the normally observed mitochondrial mass increase and mitochondrial remodeling. At the molecular level, the anti-lipogenic effect of resveratrol seems to be mediated by a blunted expression increase and an inhibition of acetyl-CoA carboxylase (ACC). This is one of the consequences of an inhibited insulin-induced signaling via Akt, and maintained signaling via AMP-activated protein kinase. The anti-lipogenic effect of resveratrol is further modulated by expression levels of mitochondrial ATAD3, consistent with the emerging role of this protein as an important regulator of mitochondrial biogenesis and lipogenesis. Our data suggest that resveratrol acts on differentiating preadipocytes by inhibiting insulin signaling, mitochondrial biogenesis, and lipogenesis, and that resveratrol-induced reduction of mitochondrial biogenesis and lipid storage contribute to adipose tissue weight loss in animals and humans.

  18. Effect of imposed serum deprivation on growth of the mouse 3T3 cell. Dissociation from changes in potassium ion transport as measured from [36Rb]rubidium ion uptake

    PubMed Central

    Tupper, Joseph T.; Zografos, Linda

    1978-01-01

    Decreased serum concentrations that substantially alter the growth of normal 3T3 cells alter neither the active and non-active components of unidirectional 86Rb+ influx nor the intracellular K+ content when compared with cells in exponential growth. Thus the changes in K+ transport (measured with 86Rb+ as an analogue for K+ movements) that occur on density-dependent growth inhibition of the mouse 3T3 cell are not mimicked by serum deprivation of the cells before density inhibition. PMID:728075

  19. Glycerol Production from Glucose and Fructose by 3T3-L1 Cells: A Mechanism of Adipocyte Defense from Excess Substrate.

    PubMed

    Romero, María del Mar; Sabater, David; Fernández-López, José Antonio; Remesar, Xavier; Alemany, Marià

    2015-01-01

    Cultured adipocytes (3T3-L1) produce large amounts of 3C fragments; largely lactate, depending on medium glucose levels. Increased glycolysis has been observed also in vivo in different sites of rat white adipose tissue. We investigated whether fructose can substitute glucose as source of lactate, and, especially whether the glycerol released to the medium was of lipolytic or glycolytic origin. Fructose conversion to lactate and glycerol was lower than that of glucose. The fast exhaustion of medium glucose was unrelated to significant changes in lipid storage. Fructose inhibited to a higher degree than glucose the expression of lipogenic enzymes. When both hexoses were present, the effects of fructose on gene expression prevailed over those of glucose. Adipocytes expressed fructokinase, but not aldolase b. Substantive release of glycerol accompanied lactate when fructose was the substrate. The mass of cell triacylglycerol (and its lack of change) could not justify the comparatively higher amount of glycerol released. Consequently, most of this glycerol should be derived from the glycolytic pathway, since its lipolytic origin could not be (quantitatively) sustained. Proportionally (with respect to lactate plus glycerol), more glycerol was produced from fructose than from glucose, which suggests that part of fructose was catabolized by the alternate (hepatic) fructose pathway. Earlier described adipose glycerophophatase activity may help explain the glycolytic origin of most of the glycerol. However, no gene is known for this enzyme in mammals, which suggests that this function may be carried out by one of the known phosphatases in the tissue. Break up of glycerol-3P to yield glycerol, may be a limiting factor for the synthesis of triacylglycerols through control of glycerol-3P availability. A phosphatase pathway such as that described may have a potential regulatory function, and explain the production of glycerol by adipocytes in the absence of lipolytic

  20. Effects and mechanisms of 8-prenylnaringenin on osteoblast MC3T3-E1 and osteoclast-like cells RAW264.7

    PubMed Central

    Luo, Dan; Kang, Lumei; Ma, Yuhui; Chen, Hongping; Kuang, Haibin; Huang, Qiren; He, Ming; Peng, Weijie

    2014-01-01

    8-Prenylnaringenin (8-PN) is a phytoestrogen with the highest estrogenic activity. The objective of the present study was to confirm the superiority of 8-PN on bone metabolisms and the estrogen receptor (ER) subtype mediating effects of 8-PN. The osteoblast MC3T3-E1 and osteoclast-like cell line RAW264.7 were treated with 17β-estradiol (10−8 mol/L), genistein (10−5 mol/L), daidzein (10−5 mol/L), 8-PN (10−5 mol/L) alone or in the presence of ERα antagonist MPP (10−7 mol/L) and ERβ antagonist PTHPP (1.5 × 10−7 mol/L). It has been found that 8-PN did not affect osteoblast proliferation, and that 8-PN increased alkaline phosphatase (ALP) activity, osteocalcin (OCN) concentrations, and the mineralized nodules. 8-PN inhibited RAW264.7 differentiating into osteoclasts and reduced the pit area of bone resorption. 8-PN could also inhibit the protein and mRNA expression of receptor activator of nuclear factor-κB ligand (RANKL) in osteoblasts, and conversely promote the expression of osteoprotegerin (OPG). These effects of 8-PN were mainly inhibited not by PTHPP but by MPP and they were weaker than estrogen's effects but stronger than those of genistein and daidzein. In conclusion, the effects of 8-PN on promoting osteoblastic bone formation and inhibiting osteoclastic bone resorption were mediated by ERα instead of ERβ and the efficacy was more potent than that of the two classic phytoestrogens: genistein and daidzein. PMID:25473491

  1. Heat or radiofrequency plasma glow discharge treatment of a titanium alloy stimulates osteoblast gene expression in the MC3T3 osteoprogenitor cell line

    PubMed Central

    Rapuano, Bruce E.; Hackshaw, Kyle

    2012-01-01

    Purpose The purpose of this study was to determine whether increasing the Ti6Al4V surface oxide negative charge through heat (600℃) or radiofrequency plasma glow discharge (RFGD) pretreatment, with or without a subsequent coating with fibronectin, stimulated osteoblast gene marker expression in the MC3T3 osteoprogenitor cell line. Methods Quantitative real-time polymerase chain reaction was used to measure changes over time in the mRNA levels for osteoblast gene markers, including alkaline phosphatase, bone sialoprotein, collagen type I (α1), osteocalcin, osteopontin and parathyroid hormone-related peptide (PTH-rP), and the osteoblast precursor genes Runx2 and osterix. Results Osteoprogenitors began to differentiate earlier on disks that were pretreated with heat or RFGD. The pretreatments increased gene marker expression in the absence of a fibronectin coating. However, pretreatments increased osteoblast gene expression for fibronectin-coated disks more than uncoated disks, suggesting a surface oxide-mediated specific enhancement of fibronectin's bioactivity. Heat pretreatment had greater effects on the mRNA expression of genes for PTH-rP, alkaline phosphatase and osteocalcin while RFGD pretreatment had greater effects on osteopontin and bone sialoprotein gene expression. Conclusions The results suggest that heat and RFGD pretreatments of the Ti6Al4V surface oxide stimulated osteoblast differentiation through an enhancement of (a) coated fibronectin's bioactivity and (b) the bioactivities of other serum or matrix proteins. The quantitative differences in the effects of the two pretreatments on osteoblast gene marker expression may have arisen from the unique physico-chemical characteristics of each resultant oxide surface. Therefore, engineering the Ti6Al4V surface oxide to become more negatively charged can be used to accelerate osteoblast differentiation through fibronectin-dependent and independent mechanisms. PMID:22803011

  2. Flavonol acylglycosides from flower of Albizia julibrissin and their inhibitory effects on lipid accumulation in 3T3-L1 cells.

    PubMed

    Yahagi, Tadahiro; Daikonya, Akihiro; Kitanaka, Susumu

    2012-01-01

    Obesity is a serious health problem worldwide. We investigated the anti-obesity effect of the flower of Albizia julibrissin DURAZZ. (Leguminosae). A 90% EtOH extract of the flower inhibited adipogenesis in 3T3-L1 preadipocytes, as well as the activity of glycerol-3-phosphate dehydrogenase (GPDH) activity. New flavonol acylglycosides (1-4) and eighteen known compounds (5-22) were isolated by bioassay-directed fractionation. These new glycosides were elucidated to be 3″-(E)-p-coumaroylquercitrin (1), 3″-(E)-feruloylquercitrin (2), 3″-(E)-cinnamoylquercitrin (3), and 2″-(E)-cinnamoylquercitrin (4) on the basis of spectroscopic and chemical analysis. These compounds inhibited adipogenesis in 3T3-L1 preadipocytes. In particular, 2 exhibited potent inhibitory effects on triglyceride accumulation. Furthermore, GPDH activity was inhibited by 2. Additionally, 2 inhibited glucose uptake in 3T3-L1 adipocytes. These results indicate that the 90% EtOH extract and compounds isolated from the flower of A. julibrissin inhibit adipogenesis in 3T3-L1 preadipocytes and may have anti-obesity effect through the inhibition of preadipocyte differentiation. PMID:22223384

  3. Cellular Zn depletion by metal ion chelators (TPEN, DTPA and chelex resin) and its application to osteoblastic MC3T3-E1 cells

    PubMed Central

    Cho, Young-Eun; Lomeda, Ria-Ann R.; Ryu, Sang-Hoon; Lee, Jong-Hwa; Beattie, John H.

    2007-01-01

    Trace mineral studies involving metal ion chelators have been conducted in investigating the response of gene and protein expressions of certain cell lines but a few had really focused on how these metal ion chelators could affect the availability of important trace minerals such as Zn, Mn, Fe and Cu. The aim of the present study was to investigate the availability of Zn for the treatment of MC3T3-E1 osteoblast-like cells and the availability of some trace minerals in the cell culture media components after using chelexing resin in the FBS and the addition of N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN, membrane-permeable chelator) and diethylenetriaminepentaacetic acid (DTPA, membrane-impermeable chelator) in the treatment medium. Components for the preparation of cell culture medium and Zn-treated medium have been tested for Zn, Mn, Fe and Cu contents by atomic absorption spectrophotometer or inductively coupled plasma spectrophotometer. Also, the expression of bone-related genes (ALP, Runx2, PTH-R, ProCOL I, OPN and OC) was measured on the cellular Zn depletion such as chelexing or TPEN treatment. Results have shown that using the chelexing resin in FBS would significantly decrease the available Zn (p<0.05) (39.4 ± 1.5 µM vs 0.61 ± 10.15 µM) and Mn (p<0.05) (0.74 ± 0.01 µM vs 0.12 ± 0.04 µM). However, levels of Fe and Cu in FBS were not changed by chelexing FBS. The use of TPEN and DTPA as Zn-chelators did not show significant difference on the final concentration of Zn in the treatment medium (0, 3, 6, 9, 12 µM) except for in the addition of higher 15 µM ZnCl2 which showed a significant increase of Zn level in DTPA-chelated treatment medium. Results have shown that both chelators gave the same pattern for the expression of the five bone-related genes between Zn- and Zn+, and TPEN-treated experiments, compared to chelex-treated experiment, showed lower bone-related gene expression, which may imply that TPEN would be a stronger chelator

  4. Transformation of BALB/c-3T3 cells: V. Transformation responses of 168 chemicals compared with mutagenicity in Salmonella and carcinogenicity in rodent bioassays.

    PubMed

    Matthews, E J; Spalding, J W; Tennant, R W

    1993-07-01

    This report describes the activities of 168 chemicals tested in a standard transformation assay using A-31-1-13 BALB/c-3T3 cells. The data set includes 84 carcinogens, 77 noncarcinogens, and 7 research chemicals. Carcinogens included 49 mutagens and 35 nonmutagens; noncarcinogens included 24 mutagens and 53 nonmutagens. The transformation assay did not use an exogenous activation system, thus, all chemical responses depended on the inherent target cell metabolic capacity where metabolic activation was required. The upper dose limit was 100 milli-osmolar because the assay could not discriminate active and inactive chemicals tested above this concentration. Certain physicochemical properties resulted in technical problems that affected chemical biological activity. For example, chemicals that reacted with plastic were usually nonmutagenic carcinogens. Similarly, chemicals that were insoluble in medium, or bound metals, were usually nonmutagenic and nontransforming. Multifactorial data analyses revealed that the transformation assay discriminated between nonmutagenic carcinogens and noncarcinogens; it detected 64% of the carcinogens and only 26% of the noncarcinogens. In contrast, the transformation assay detected most mutagenic chemicals, including 94% of the mutagenic carcinogens and 70% of the mutagenic noncarcinogens. Thus, transformation or Salmonella typuimurium mutagenicity assays could not discriminate mutagenic carcinogens from mutagenic noncarcinogens. Data analyses also revealed that mutagenic chemicals were more cytotoxic than nonmutagenic chemicals; 88% of the mutagens had an LD50 < 5 mM, whereas half of the nonmutagens had an LD50 > 5 mM. Binary data analyses of the same data set revealed that the transformation assay and rodent bioassay had a concordance of 71%, a sensitivity for carcinogens of 80.0%, and a specificity for detecting noncarcinogens of 60%. In contrast, Salmonella mutagenicity assays and rodent bioassays had a concordance of 63%, a

  5. Inhibition of O-GlcNAcase Using a Potent and Cell-Permeable Inhibitor Does Not Induce Insulin Resistance in 3T3-L1 Adipocytes

    PubMed Central

    Macauley, Matthew S.; He, Yuan; Gloster, Tracey M.; Stubbs, Keith A.; Davies, Gideon J.; Vocadlo, David J.

    2010-01-01

    Summary To probe increased O-GlcNAc levels as an independent mechanism governing insulin resistance in 3T3-L1 adipocytes, a new class of O-GlcNAcase (OGA) inhibitor was studied. 6-Acetamido-6-deoxy-castanospermine (6-Ac-Cas) is a potent inhibitor of OGA. The structure of 6-Ac-Cas bound in the active site of an OGA homolog reveals structural features contributing to its potency. Treatment of 3T3-L1 adipocytes with 6-Ac-Cas increases O-GlcNAc levels in a dose-dependent manner. These increases in O-GlcNAc levels do not induce insulin resistance functionally, measured using a 2-deoxyglucose (2-DOG) uptake assay, or at the molecular level, determined by evaluating levels of phosphorylated IRS-1 and Akt. These results, and others described, provide a structural blueprint for improved inhibitors and collectively suggest that increased O-GlcNAc levels, brought about by inhibition of OGA, does not by itself cause insulin resistance in 3T3-L1 adipocytes. PMID:20851343

  6. Chito-oligosaccharide inhibits the de-methylation of a 'CpG' island within the leptin (LEP) promoter during adipogenesis of 3T3-L1 cells.

    PubMed

    Bahar, Bojlul; O'Doherty, John V; O'Doherty, Alan M; Sweeney, Torres

    2013-01-01

    Chito-oligosaccharide (COS) is a natural bioactive compound, which has been shown to suppress lipid metabolic genes and lipid accumulation in differentiating adipocytes. Leptin has been identified as a key regulator of energy homeostasis and is known to be under epigenetic regulation during adipogenesis. Hence, the first objective of this experiment was to compare leptin gene (LEP) expression and leptin secretion during the different stages of adipogenesis and to investigate the effect of COS on these processes. As COS inhibited LEP expression during adipogenesis, the second aim was to investigate the methylation dynamics of a 'CpG' island in the proximal region of the LEP promoter during adipogenesis and to determine the effect of COS on this process. Mouse 3T3-L1 cells were stimulated to differentiate in the absence or presence of COS and the levels of leptin mRNA and protein were evaluated on days 0, 2, 4 and 6 post-induction of differentiation (PID). The extent of de-methylation of six CpG sites was evaluated. LEP mRNA transcript and protein could not be detected on either day 0PID or 2PID. In contrast, both were detected on day 4PID (P<0.05) and 6PID (P<0.001) and both were inhibited by COS (P<0.001). Of the six CpG sites analyzed, CpG_52, CpG_62 and CpG_95 became 11.5, 5.0 and 5.0% de-methylated between day 2PID and 6PID, respectively. COS blocked this de-methylation event at CpG_52 (P<0.001), CpG_62 (P<0.01) and CpG_95 (P<0.01) on day 6PID. These data suggest that COS can have an epigenetic effect on differentiating adipocytes, a novel biological function of COS which has potential applications for the manipulation of leptin gene expression, adipogenesis, and conditions within the metabolic syndrome spectrum.

  7. In vitro cytotoxicity analysis of doxorubicin-loaded/superparamagnetic iron oxide colloidal nanoassemblies on MCF7 and NIH3T3 cell lines

    PubMed Central

    Tomankova, Katerina; Polakova, Katerina; Pizova, Klara; Binder, Svatopluk; Havrdova, Marketa; Kolarova, Mary; Kriegova, Eva; Zapletalova, Jana; Malina, Lukas; Horakova, Jana; Malohlava, Jakub; Kolokithas-Ntoukas, Argiris; Bakandritsos, Aristides; Kolarova, Hana; Zboril, Radek

    2015-01-01

    One of the promising strategies for improvement of cancer treatment is based on magnetic drug delivery systems, thus avoiding side effects of standard chemotherapies. Superparamagnetic iron oxide (SPIO) nanoparticles have ideal properties to become a targeted magnetic drug delivery contrast probes, named theranostics. We worked with SPIO condensed colloidal nanocrystal clusters (MagAlg) prepared through a new soft biomineralization route in the presence of alginate as the polymeric shell and loaded with doxorubicin (DOX). The aim of this work was to study the in vitro cytotoxicity of these new MagAlg–DOX systems on mouse fibroblast and breast carcinoma cell lines. For proper analysis and understanding of cell behavior after administration of MagAlg–DOX compared with free DOX, a complex set of in vitro tests, including production of reactive oxygen species, comet assay, cell cycle determination, gene expression, and cellular uptake, were utilized. It was found that the cytotoxic effect of MagAlg–DOX system is delayed compared to free DOX in both cell lines. This was attributed to the different mechanism of internalization of DOX and MagAlg–DOX into the cells, together with the fact that the drug is strongly bound on the drug nanocarriers. We discovered that nanoparticles can attenuate or even inhibit the effect of DOX, particularly in the tumor MCF7 cell line. This is a first comprehensive study on the cytotoxic effect of DOX-loaded SPIO compared with free DOX on healthy and cancer cell lines, as well as on the induced changes in gene expression. PMID:25673990

  8. Glabridin Alleviates the Toxic Effects of Methylglyoxal on Osteoblastic MC3T3-E1 Cells by Increasing Expression of the Glyoxalase System and Nrf2/HO-1 Signaling and Protecting Mitochondrial Function.

    PubMed

    Choi, Eun Mi; Suh, Kwang Sik; Kim, Yu Jin; Hong, Soo Min; Park, So Yong; Chon, Suk

    2016-01-13

    Methylglyoxal (MG) contributes to the pathogenesis of age- and diabetes-associated complications. The present study investigated the effects of glabridin on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. MC3T3-E1 cells were treated with glabridin in the presence of MG, and markers of mitochondrial function and oxidative damage were examined. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin prevented MG-induced cell death, the production of intracellular reactive oxygen species and mitochondrial superoxides, cardiolipin peroxidation, and the production of inflammatory cytokines. The soluble form of receptor for advanced glycation end products (sRAGEs)/RAGE ratio increased upon MG treatment, but less so after pretreatment with glabridin, which also increased the level of reduced glutathione and the activities of glyoxalase I and heme oxygenase-1, all of which were reduced by MG. In addition, glabridin elevated the level of nuclear factor erythroid 2-related factor 2. These findings suggest that glabridin protects against MG-induced cell damage by inhibiting oxidative stress and increasing MG detoxification. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin reduced MG-induced mitochondrial dysfunction. Additionally, the nitric oxide level significantly increased upon glabridin pretreatment. Together, these data show that glabridin may potentially serve to prevent the development of diabetic bone disease associated with MG-induced oxidative stress.

  9. The relative cytotoxicity of personal care preservative systems in Balb/C 3T3 clone A31 embryonic mouse cells and the effect of selected preservative systems upon the toxicity of a standard rinse-off formulation.

    PubMed

    Smith, C N; Alexander, B R

    2005-10-01

    Biocide chemicals are commonly used as preservatives for cosmetic and personal care products and the conditions for their use are stipulated in Annex VI of the Cosmetics Directive. In these studies the cytotoxicity (EC50 and EC90) of a range of preservatives including the isothiazolinone family, formaldehyde donors, parabens mixtures and organic acids have been established in the Balb/C 3T3 clone A31 fibroblast cell-line following a 1h exposure. Cell viability was established using the neutral red uptake assay 24h after exposure. The potency of the preservatives spanned several orders of magnitude from the isothiazolinones (EC50<10ppm) to the organic acids (EC50>10,000ppm). Although these values are directly proportional to the anti-microbial efficacy of the actives, they do not reflect the addition levels commonly used to preserve formulations, which are intended to provide prolonged protection against a wide spectrum of spoilage organisms. In a further study, the cytotoxic profile of an unpreserved standard rinse-off body wash formulation was assessed. Two concentrations of the formulation were selected: 0.1% v/v (EC98) and 0.15% v/v (EC82) to study the effects of selected preservative chemicals at recommended addition levels upon the cytotoxicity of the formulation. At 0.1%, only preservation with benzoate/sorbate at the highest addition level increased the toxicity, whereas at 0.15%, preservation with 2-bromo-2-nitro-propane-1,3-diol increased the cytotoxicity of the formulation. No other preservatives, including isothiazolinones and formaldehyde donors affected the basal cytotoxicity of the formulation. Theses studies have provided a standardised assessment of the cytotoxicity of cosmetic preservatives and demonstrated that preservation of a rinse-off formulation at recommended addition levels is unlikely to affect the cytotoxic profile.

  10. Flavonoids from persimmon (Diospyros kaki) leaves (FPL) attenuate H2O2-induced apoptosis in MC3T3-E1 cells via the NF-κB pathway.

    PubMed

    Sun, Lijun; Zhang, Jianbao; Fang, Kun; Ding, Yan; Zhang, Liyu; Zhang, Yali

    2014-03-01

    The leaves of persimmon (Diospyros kaki L.) have long been used in Chinese medicine for the treatment of paralysis, frostbite, burns, and to stop bleeding. Flavonoids of persimmon leaves (FPL) are known for their antioxidant activity in murine osteoblast MC3T3-E1 cells, but their mechanisms in osteoblast cells injured by oxidative stress are unknown. In this study, the effects of FPL on oxidative damage were investigated by addressing their potential therapeutic or toxic effects on H2O2-stimulated MC3T3-E1 cells. MC3T3-E1 cells were pretreated with FPL (1.25, 2.5 and 5 μg mL(-1)) for 24 h and were then exposed to 250 μM H2O2 for an additional 6 h. FPL pre-incubated with MC3T3-E1 cells did not present any cytotoxicity, instead they increased cell viability and ΔΨm in a dose-dependent manner when challenged with H2O2. Treatment with this pro-incubated FPL also significantly suppressed the production of MDA and NO and the activity of iNOS. The mRNA expression of iNOS, COX-2, Bax, Bcl-2, and caspase-3 and the protein expression of NF-κB/p65 showed that FPL significantly inhibited apoptosis in H2O2-stimulated MC3T3-E1 cells. These results suggest that the molecular mechanism of FPL in anti-apoptosis was associated with the suppression of the translocation of NF-κB/p65 into the nucleus. The protective effect of FPL could provide a promising approach for the treatment of osteoporosis.

  11. Neoplastic transformation of BALB/3T3 cells and cell cycle of HL-60 cells are inhibited by mango (Mangifera indica L.) juice and mango juice extracts.

    PubMed

    Percival, Susan S; Talcott, Stephen T; Chin, Sherry T; Mallak, Anne C; Lounds-Singleton, Angela; Pettit-Moore, Jennifer

    2006-05-01

    The mango, Mangifera indica L., is a fruit with high levels of phytochemicals, suggesting that it might have chemopreventative properties. In this study, whole mango juice and juice extracts were screened for antioxidant and anticancer activity. Antioxidant activity of the mango juice and juice extracts was measured by 3 standard in vitro methods. The results of the 3 methods were in general agreement, although different radicals were measured in each. Anticancer activity was measured by examining the effect on cell cycle kinetics and the ability to inhibit chemically induced neoplastic transformation of mammalian cell lines. Incubation of HL-60 cells with whole mango juice and mango juice fractions resulted in an inhibition of the cell cycle in the G(0)/G(1) phase. A fraction of the eluted mango juice with low peroxyl radical scavenging ability was most effective in arresting cells in the G(0)/G(1) phase. Whole mango juice was effective in reducing the number of transformed foci in the neoplastic transformation assay in a dose-dependent manner. These techniques provide valuable screening tools for health benefits derived from mango phytochemicals.

  12. 4,4'-Dichlorodiphenyltrichloroethane (DDT) and 4,4'-dichlorodiphenyldichloroethylene (DDE) promote adipogenesis in 3T3-L1 adipocyte cell culture.

    PubMed

    Kim, Jonggun; Sun, Quancai; Yue, Yiren; Yoon, Kyong Sup; Whang, Kwang-Youn; Marshall Clark, J; Park, Yeonhwa

    2016-07-01

    4,4'-Dichlorodiphenyltrichloroethane (DDT), a chlorinated hydrocarbon insecticide, was extensively used in the 1940s and 1950s. DDT is mainly metabolically converted into 4,4'-dichlorodiphenyldichloroethylene (DDE). Even though most countries banned DDT in the 1970s, due to the highly lipophilic nature and very stable characteristics, DDT and its metabolites are present ubiquitously in the environment, including food. Recently, there are publications on relationships between exposure to insecticides, including DDT and DDE, and weight gain and altered glucose homeostasis. However, there are limited reports regarding DDT or DDE and adipogenesis, thus we investigated effects of DDT and DDE on adipogenesis using 3T3-L1 adipocytes. Treatment of DDT or DDE resulted in increased lipid accumulation accompanied by increased expression of CCAAT/enhancer-binding protein α (C/EBPα), peroxisome-proliferator activated receptor-γ (PPARγ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), adipose triglyceride lipase, and leptin. Moreover, treatment of DDT or DDE increased protein levels of C/EBPα, PPARγ, AMP-activated protein kinase-α (AMPKα), and ACC, while significant decrease of phosphorylated forms of AMPKα and ACC were observed. These finding suggest that increased lipid accumulation caused by DDT and DDE may mediate AMPKα pathway in 3T3-L1 adipocytes. PMID:27265825

  13. Distribution of fibroblast growth factors and their roles in skin fibroblast cell migration.

    PubMed

    Song, Yong Huan; Zhu, Yu Ting; Ding, Jian; Zhou, Fei Ya; Xue, Ji Xin; Jung, Jin Hee; Li, Zhi Jie; Gao, Wei Yang

    2016-10-01

    Fibroblast growth factor (FGF)2/basic FGF is a member of the fibroblast growth factor family. Its function in skin wound healing has been well-characterized. However, the function of other FGFs in skin tissues remains to be elucidated. In the present study, FGF expression patterns in heart, liver, skin and kidney tissues were analyzed. Notably, in contrast to other tissues, only four FGFs, FGF2, 7, 10 and 21, were dominant in the skin. To examine FGF function in the wound healing process, mouse NIH3T3 fibroblast cells were treated with FGF2, FGF10 and FGF21, and cell migration was monitored. The results revealed that FGF treatment promoted cell migration, which is an important step in wound healing. In addition, FGF treatment enhanced the activity of c-Jun N-terminal kinase (JNK), a key regulator of fibroblast cell migration. To analyze its role in cell migration, FGF7 was overexpressed in fibroblast cells via a lentivirus system; however, this did not change cell migration speed. FGF2, 7, 10 and 21 were highly expressed in skin tissue, and all except FGF7 regulated fibroblast cell migration and activated JNK. The results of the present study increase our understanding of the role of FGFs in skin wound healing. PMID:27572477

  14. The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells.

    PubMed

    Lamolle, Sébastien F; Monjo, Marta; Rubert, Marina; Haugen, Håvard J; Lyngstadaas, Ståle P; Ellingsen, Jan E

    2009-02-01

    Fluoride-modification of dental titanium (Ti) implants is used to improve peri-implant bone growth and bone-to-implant contact and adhesion strength. In this study, the surface topography, chemistry and biocompatibility of polished Ti surfaces treated with hydrofluoric acid solution (HF) were studied. Murine osteoblasts (MC3T3-E1) were cultured on the different groups of Ti surfaces. Surfaces treated with HF had higher roughness, lower cytotoxicity level and better biocompatibility than controls. For short treatment times (40 and 90 s), fluorine was detected only within the first 5 nm of the surface layer (X-ray Photoemission Spectroscopy, XPS), whereas longer treatment time (120 and 150 s) caused fluoride ions to penetrate deeper (Secondary Ion Mass Spectrometry, SIMS). These results suggest that submerging Ti implants in a weak HF solution instigate time-dependant specific surface changes that are linked to the improved biocompatibility of these surfaces.

  15. Functional study of the upregulation of miRNA-27a and miRNA-27b in 3T3-L1 cells in response to berberine.

    PubMed

    Wu, Yue-Yue; Huang, Xin-Mei; Liu, Jun; Cha, Ying; Chen, Zao-Ping; Wang, Fang; Xu, Jiong; Sheng, Li; Ding, He-Yuang

    2016-09-01

    Berberine is the major active component of Rhizoma Coptidis derived from a traditional Chinese herbal medicine and is known to regulate micro (mi)RNA levels, although the mechanism for this action remains unknown. The present study confirmed that treatment of 3T3‑L1 cells with berberine inhibited cell viability and differentiation in a dose‑ and time‑dependent manner, and significantly increased the mRNA expression levels of miRNA‑27a and miRNA‑27b. In addition, in 3T3‑L1 cells treated with berberine, overexpression of miRNA‑27a and miRNA‑27b improved the berberine-mediated inhibition of cell differentiation and reduction of triglyceride contents. By contrast, miRNA‑27a and miRNA‑27b inhibitors attenuated the berberine‑mediated inhibition of cell differentiation and reduction of triglyceride contents. Additionally, peroxisome proliferator‑activated receptors (PPAR)‑γ was confirmed to be a target of miRNA‑27a in the 3T3‑L1 cells. A dual‑luciferase reporter assay indicated that the expression of PPAR‑γ was negatively regulated by miRNA-27a. These findings may provide novel mechanistic insight into the antiobesity effects of certain compounds in traditional Chinese herbal medicine. PMID:27484069

  16. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    SciTech Connect

    Nobe, Koji; Nobe, Hiromi; Yoshida, Hiroko; Kolodney, Michael S.; Paul, Richard J.; Honda, Kazuo

    2010-08-20

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibers and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.

  17. Suppression of Adipogenesis by 5-Hydroxy-3,6,7,8,3',4'-Hexamethoxyflavone from Orange Peel in 3T3-L1 Cells.

    PubMed

    Wang, Yu; Lee, Pei-Sheng; Chen, Yi-Fen; Ho, Chi-Tang; Pan, Min-Hsiung

    2016-09-01

    We reported previously that hydroxylated polymethoxyflavones (HPMFs) effectively suppressed obesity in high-fat-induced mouse. In this study, we further investigated the molecular mechanism of action of 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5-OH-HxMF), one of major HPMFs in orange peel. Treatment of 5-OH-HxMF effectively inhibited lipid accumulation by 55-60% in a dose-dependent manner. The 5-OH-HxMF attenuated adipogenesis through downregulating adipogenesis-related transcription factors such as peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding proteins (C/EBPs), as well as downstream target fatty acid synthase and acetyl-CoA carboxylase (ACC). 5-OH-HxMF activated adenosine monophosphate-activated protein kinase signaling and silent mating type information regulation 1 (SIRTUIN 1 or SIRT1) in 3T3-L1 adipocytes to decrease lipid accumulation. In addition, the inhibition rate of lipid accumulation was compared between 5-OH-HxMF and 3,5,6,7,8,3',4'-heptamethoxyflavone (HpMF). 5-OH-HxMF inhibited lipid accumulation 15-20% more than HpMF did, indicating that hydroxyl group at position 5 can be a key factor in the suppression of adipogenesis. PMID:27542074

  18. New vinegar produced by tomato suppresses adipocyte differentiation and fat accumulation in 3T3-L1 cells and obese rat model.

    PubMed

    Lee, Ju-Hye; Cho, Hyun-Dong; Jeong, Ji-Hye; Lee, Mi-Kyung; Jeong, Yong-Ki; Shim, Ki-Hwan; Seo, Kwon-Il

    2013-12-01

    There is an increasing surplus of tomatoes that are abandoned due to their failure to meet customer standards. Therefore, to allow both value additions and the effective reuse of surplus tomatoes, we developed tomato vinegar (TV) containing phytochemicals and evaluated its anti-obesity effects in vitro and in vivo. TV inhibited adipocyte differentiation of 3T3-L1 preadipocyte and lipid accumulation during differentiation. TV supplementation in rats fed a high-fat diet (HFD) markedly decreased visceral fat weights without changing the food and calories intakes. TV significantly decreased hepatic triglyceride and cholesterol levels compared to the HFD group. Furthermore, TV lowered plasma LDL-cholesterol level and antherogenic index compared to the HFD group, whereas elevated HDL-cholesterol to total cholesterol ratio. These results show that TV prevented obesity by suppressing visceral fat and lipid accumulation in adipocyte and obese rats, and suggest that TV can be used as an anti-obesity therapeutic agent or functional food. PMID:23871083

  19. Uncarboxylated osteocalcin inhibits high glucose-induced ROS production and stimulates osteoblastic differentiation by preventing the activation of PI3K/Akt in MC3T3-E1 cells.

    PubMed

    Liu, Jingli; Yang, Jianhong

    2016-01-01

    Uncarboxylated osteocalcin, an osteoblast-derived protein, plays an important role in the regulation of glucose metabolism. It has previously been demonstrated that high glucose levels inhibit osteoblast proliferation and differentiation. However, the mechanisms through which uncarboxylated osteocalcin regulates osteoblast proliferation and differentiation under high glucose conditions remain unclear. Thus, in the present study, we aimed to examine the effects of uncarboxylated osteocalcin on the proliferation and differentiation of MC3T3-E1 cells under high glucose conditions. We demonstrated that high glucose levels induced the production of reactive oxygen species (ROS) in MC3T3-E1 cells, and this production was inhibited by treatment with uncarboxylated osteocalcin and N-acetyl-L-cysteine (NAC), a ROS scavenger. In addition, we found that uncarboxylated osteocalcin reduced high glucose‑induced oxidative stress and increased the mRNA expression of the osteogenic markers, runt-related transcription factor 2 (Runx2), osterix and osteocalcin, as well as the formation of mineralized nodules; it also inhibited adipogenic differentiation, as shown by a decrease in the mRNA expression of the adipogenic markers, peroxisome proliferator‑activated receptor γ (PPARγ), adipocyte fatty acid-binding protein (adipocyte protein 2; aP2) and fatty acid synthase (FAS), and reduced lipid drop accumulation. Furthermore, we found that uncarboxylated osteocalcin inhibited PI3K/Akt signaling which was induced by ROS and facilitated the osteogenic differentiation of MC3T3-E1 cells under high glucose conditions. Taken together and to the best of ou knowledge, our results demonstrate for the first time that uncarboxylated osteocalcin inhibits high glucose-induced ROS production and stimulates osteoblastic differentiation by inhibiting the activation of PI3K/Akt in MC3T3-E1 cells. Therefore, we suggest that uncarboxylated osteocalcin may be a potential therapeutic agent for diabetes

  20. 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells

    SciTech Connect

    Jeong, Jin Boo; Jeong, Hyung Jin

    2010-10-01

    Research highlights: {yields} 2M4VP activated the expression of p21 and p15 protein, and down-regulated the expression of cyclin D1 and cyclin E. {yields} 2M4VP inhibited hyper-phosphorylation of Rb protein. {yields} 2M4VP induced cell cycle arrest from G1 to S. {yields} 2M4VP inhibited hyper-proliferation of the cells in BaP-treated cells. {yields} 2M4VP induces growth arrest of BaP-treated cells by blocking hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins. -- Abstract: Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.

  1. Effects of Corroded and Non-Corroded Biodegradable Mg and Mg Alloys on Viability, Morphology and Differentiation of MC3T3-E1 Cells Elicited by Direct Cell/Material Interaction

    PubMed Central

    Mostofi, Sepideh; Bonyadi Rad, Ehsan; Wiltsche, Helmar; Fasching, Ulrike; Szakacs, Gabor; Ramskogler, Claudia; Srinivasaiah, Sriveena; Ueçal, Muammer; Willumeit, Regine; Weinberg, Annelie-Martina; Schaefer, Ute

    2016-01-01

    This study investigated the effect of biodegradable Mg and Mg alloys on selected properties of MC3T3-E1 cells elicited by direct cell/material interaction. The chemical composition and morphology of the surface of Mg and Mg based alloys (Mg2Ag and Mg10Gd) were analysed by scanning electron microscopy (SEM) and EDX, following corrosion in cell culture medium for 1, 2, 3 and 8 days. The most pronounced difference in surface morphology, namely crystal formation, was observed when Pure Mg and Mg2Ag were immersed in cell medium for 8 days, and was associated with an increase in atomic % of oxygen and a decrease of surface calcium and phosphorous. Crystal formation on the surface of Mg10Gd was, in contrast, negligible at all time points. Time-dependent changes in oxygen, calcium and phosphorous surface content were furthermore not observed for Mg10Gd. MC3T3-E1 cell viability was reduced by culture on the surfaces of corroded Mg, Mg2Ag and Mg10Gd in a corrosion time-independent manner. Cells did not survive when cultured on 3 day pre-corroded Pure Mg and Mg2Ag, indicating crystal formation to be particular detrimental in this regard. Cell viability was not affected when cells were cultured on non-corroded Mg and Mg alloys for up to 12 days. These results suggest that corrosion associated changes in surface morphology and chemical composition significantly hamper cell viability and, thus, that non-corroded surfaces are more conducive to cell survival. An analysis of the differentiation potential of MC3T3-E1 cells cultured on non-corroded samples based on measurement of Collagen I and Runx2 expression, revealed a down-regulation of these markers within the first 6 days following cell seeding on all samples, despite persistent survival and proliferation. Cells cultured on Mg10Gd, however, exhibited a pronounced upregulation of collagen I and Runx2 between days 8 and 12, indicating an enhancement of osteointegration by this alloy that could be valuable for in vivo orthopedic

  2. Effects of Corroded and Non-Corroded Biodegradable Mg and Mg Alloys on Viability, Morphology and Differentiation of MC3T3-E1 Cells Elicited by Direct Cell/Material Interaction.

    PubMed

    Mostofi, Sepideh; Bonyadi Rad, Ehsan; Wiltsche, Helmar; Fasching, Ulrike; Szakacs, Gabor; Ramskogler, Claudia; Srinivasaiah, Sriveena; Ueçal, Muammer; Willumeit, Regine; Weinberg, Annelie-Martina; Schaefer, Ute

    2016-01-01

    This study investigated the effect of biodegradable Mg and Mg alloys on selected properties of MC3T3-E1 cells elicited by direct cell/material interaction. The chemical composition and morphology of the surface of Mg and Mg based alloys (Mg2Ag and Mg10Gd) were analysed by scanning electron microscopy (SEM) and EDX, following corrosion in cell culture medium for 1, 2, 3 and 8 days. The most pronounced difference in surface morphology, namely crystal formation, was observed when Pure Mg and Mg2Ag were immersed in cell medium for 8 days, and was associated with an increase in atomic % of oxygen and a decrease of surface calcium and phosphorous. Crystal formation on the surface of Mg10Gd was, in contrast, negligible at all time points. Time-dependent changes in oxygen, calcium and phosphorous surface content were furthermore not observed for Mg10Gd. MC3T3-E1 cell viability was reduced by culture on the surfaces of corroded Mg, Mg2Ag and Mg10Gd in a corrosion time-independent manner. Cells did not survive when cultured on 3 day pre-corroded Pure Mg and Mg2Ag, indicating crystal formation to be particular detrimental in this regard. Cell viability was not affected when cells were cultured on non-corroded Mg and Mg alloys for up to 12 days. These results suggest that corrosion associated changes in surface morphology and chemical composition significantly hamper cell viability and, thus, that non-corroded surfaces are more conducive to cell survival. An analysis of the differentiation potential of MC3T3-E1 cells cultured on non-corroded samples based on measurement of Collagen I and Runx2 expression, revealed a down-regulation of these markers within the first 6 days following cell seeding on all samples, despite persistent survival and proliferation. Cells cultured on Mg10Gd, however, exhibited a pronounced upregulation of collagen I and Runx2 between days 8 and 12, indicating an enhancement of osteointegration by this alloy that could be valuable for in vivo orthopedic

  3. Comparison of actin and cell surface dynamics in motile fibroblasts

    PubMed Central

    1992-01-01

    We have investigated the dynamic behavior of actin in fibroblast lamellipodia using photoactivation of fluorescence. Activated regions of caged resorufin (CR)-labeled actin in lamellipodia of IMR 90 and MC7 3T3 fibroblasts were observed to move centripetally over time. Thus in these cells, actin filaments move centripetally relative to the substrate. Rates were characteristic for each cell type; 0.66 +/- 0.27 microns/min in IMR 90 and 0.36 +/- 0.16 microns/min in MC7 3T3 cells. In neither case was there any correlation between the rate of actin movement and the rate of lamellipodial protrusion. The half-life of the activated CR-actin filaments was approximately 1 min in IMR 90 lamellipodia, and approximately 3 min in MC7 3T3 lamellipodia. Thus continuous filament turnover accompanies centripetal movement. In both cell types, the length of time required for a section of the actin meshwork to traverse the lamellipodium was several times longer than the filament half-life. The dynamic behavior of the dorsal surface of the cell was also observed by tracking lectin-coated beads on the surface and phase-dense features within lamellipodia of MC7 3T3 cells. The movement of these dorsal features occurred at rates approximately three times faster than the rate of movement of the underlying bulk actin cytoskeleton, even when measured in the same individual cells. Thus the transport of these dorsal features must occur by some mechanism other than simple attachment to the moving bulk actin cytoskeleton. PMID:1400580

  4. Construction of Plasmid Insulin Gene Vector Containing Metallothionein IIA (pcDNAMTChIns) and Carbohydrate Response Element (ChoRE), and Its Expression in NIH3T3 Cell Line

    PubMed Central

    Piri, Hossein; Kazemi, Bahram; Rezaei, Mohsen; Bandehpour, Mojgan; Khodadadi, Iraj; Hassanzadeh, Taghi; Karimi, Jamshid; Yarian, Fatemeh; Peirovi, Habibollah; Tavakoli, Amir Hossein; Goodarzi, Mohammad Taghi

    2012-01-01

    Background Type 1 diabetes mellitus is one of the metabolic diseases that cause insulin-producing pancreatic ß cells be destroyed by immune system self-reactive T cells. Recent­ly, new treatment methods have been developed including use of the stem cells, ß islet cells transplantation and gene therapy by viral and non-viral gene constructs. Objectives The aim of this project was preparing the non-viral vector containing the glucose inducible insulin gene and using it in the NIH3T3 cell line. Materials and Methods Cloning was carried out by standard methods. Total RNA was extracted from pancreatic tissue, RNA was converted to cDNA using RT-PCR reaction and preproinsulin gene was amplified using specific primers. PNMTCH plasmid was extract­ed and digested by NotI, HindIII, and MTIIA and ChoRE genes were purified and cloned into pcDNA3.1 (-) plasmid and named pcDNAMTCh. Finally, the preproinsulin genes were cloned into pcDNA3.1 (-) plasmid and pcDNAMTChIns was built. Results The cloned gene constructs were evaluated by restriction enzyme digestion and RT-PCR. The NIH3T3 cells were transfected by plasmid naked DNA containing preproinsu­lin gene and expression was confirmed by Reverse Transcriptase PCR and Western Blot­ting Techniques. Conclusions Gel electrophoresis of PCR products confirmed that cloning was per­formed correctly. The expression of preproinsulin gene in recombinant plasmid in NI­H3T3 cell line was observed for the first time. The findings in this study can be the basis of further research on diabetes mellitus type 1 gene therapy on animals. PMID:23843817

  5. Extracellular calcium-sensing-receptor (CaR)-mediated opening of an outward K(+) channel in murine MC3T3-E1 osteoblastic cells: evidence for expression of a functional CaR

    NASA Technical Reports Server (NTRS)

    Ye, C. P.; Yamaguchi, T.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    The existence in osteoblasts of the G-protein-coupled extracellular calcium (Ca(o)(2+))-sensing receptor (CaR) that was originally cloned from parathyroid and kidney remains controversial. In our recent studies, we utilized multiple detection methods to demonstrate the expression of CaR transcripts and protein in several osteoblastic cell lines, including murine MC3T3-E1 cells. Although we and others have shown that high Ca(o)(2+) and other polycationic CaR agonists modulate the function of MC3T3-E1 cells, none of these actions has been unequivocally shown to be mediated by the CaR. Previous investigations using neurons and lens epithelial cells have shown that activation of the CaR stimulates Ca(2+)-activated K(+) channels. Because osteoblastic cells express a similar type of channel, we have examined the effects of specific "calcimimetic" CaR activators on the activity of a Ca(2+)-activated K(+) channel in MC3T3-E1 cells as a way of showing that the CaR is not only expressed in those cells but is functionally active. Patch-clamp analysis in the cell-attached mode showed that raising Ca(o)(2+) from 0.75 to 2.75 mmol/L elicited about a fourfold increase in the open state probability (P(o)) of an outward K(+) channel with a conductance of approximately 92 pS. The selective calcimimetic CaR activator, NPS R-467 (0.5 micromol/L), evoked a similar activation of the channel, while its less active stereoisomer, NPSS-467 (0.5 micromol/L), did not. Thus, the CaR is not only expressed in MC3T3-E1 cells, but is also functionally coupled to the activity of a Ca(2+)-activated K(+) channel. This receptor, therefore, could transduce local or systemic changes in Ca(o)(2+) into changes in the activity of this ion channel and related physiological processes in these and perhaps other osteoblastic cells.

  6. Identification of Human Fibroblast Cell Lines as a Feeder Layer for Human Corneal Epithelial Regeneration

    PubMed Central

    Lu, Rong; Bian, Fang; Lin, Jing; Su, Zhitao; Qu, Yangluowa; Pflugfelder, Stephen C.; Li, De-Quan

    2012-01-01

    There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5–14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1×104 in a 35-mm dish (9.6 cm2) grew to confluence (about 1.87–2.41×106 cells) in 12–14 days, representing 187–241 fold expansion with over 7–8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction. PMID:22723892

  7. Scaffold-free formation of a millimeter-scale multicellular spheroid with an internal cavity from magnetically levitated 3T3 cells that ingested iron oxide-containing microspheres.

    PubMed

    Lee, Joon Ho; Hur, Won

    2014-05-01

    This report describes fabrication of a millimeter-scale three-dimensional (3D) multicellular structure with a central cavity based on magnetic levitation of 3T3 cells that had ingested Fe3 O4 -containing microcapsules. Magnetically levitated cells initially formed a disc-shaped cell cluster at the air-medium interface and transformed into a spheroid (up to 2.8 mm in diameter) after 10-day incubation under a magnet. Hematoxylin-and-eosin-stained section revealed that an eosinophilic shell of cells enclosed a pale-staining core of the spheroid. Mitotic or elongated and aligned cells were found at the outer periphery of the shell, while Fe3 O4 deposits were distributed in the inner part of the shell. Surgical dissection indicated that the spheroid had a hollow interior filled with a fluid-state cell suspension. Accordingly, it was demonstrated that magnetically levitated 3T3 cells organized themselves into a tissue-like spheroid, resulting in core cell death. The spheroid can be used as a 3D tissue model and as building blocks that fused to form a more complicated structure. PMID:24254251

  8. Involvement of up-regulated Necl-5/Tage4/PVR/CD155 in the loss of contact inhibition in transformed NIH3T3 cells

    SciTech Connect

    Minami, Yukiko . E-mail: ytakai@molbio.med.osaka-u.ac.jp

    2007-01-26

    Normal cells show contact inhibition of cell movement and proliferation, but this is lost following transformation. We found that Necl-5, originally identified as a poliovirus receptor and up-regulated in many cancer cells, enhances growth factor-induced cell movement and proliferation. We showed that when cells contact other cells, Necl-5 interacts in trans with nectin-3 and is removed by endocytosis from the cell surface, resulting in a reduction of cell movement and proliferation. We show here that up-regulation of the gene encoding Necl-5 by the oncogene V12-Ki-Ras causes enhanced cell movement and proliferation. Upon cell-cell contact, de novo synthesis of Necl-5 exceeds the rate of Necl-5 endocytosis, eventually resulting in a net increase in the amount of Necl-5 at the cell surface. In addition, expression of the gene encoding nectin-3 is markedly reduced in transformed cells. Thus, up-regulation of Necl-5 following transformation contributes to the loss of contact inhibition in transformed cells.

  9. Insulin-like synergistic stimulation of DNA synthesis in Swiss 3T3 cells by the BSC-1 cell-derived growth inhibitor related to transforming growth factor type. beta

    SciTech Connect

    Brown, K.D.; Holley, R.W.

    1987-06-01

    A cell growth inhibitor (GI), purified from BSC-1 cell-conditioned medium, has little if any effect on DNA synthesis when added alone to monolayer cultures of quiescent Swiss mouse 3T3 cells in serum-free medium. However, the inhibitor, which is closely related to transforming growth factor type ..beta.. (TGF-..beta..), exhibits a pronounced synergistic stimulation of DNA synthesis in combination with certain peptide (bombesin, vasopressin) or polypeptide (platelet-derived growth factor) mitogens. /sup 125/I-EGF binding was measured and the efflux of /sup 45/Ca/sup 2 +/ was measured in response to mitogen stimulation. A similar synergistic response has been demonstrated for TGF-..beta.. purified from human platelets. In the presence of 3 nM bombesin, a half-maximal stimulation of DNA synthesis was obtained at a GI concentration of approximately 60 pg/ml, with a maximal response at approximately 600 pg/ml. The synergistic interactions demonstrated by GI or TGF-..beta.. in stimulating Swiss 3T3 cells closely resemble those previously shown for insulin, and the authors have observed that GI does not synergize with insulin to stimulate DNA synthesis in these cells. Like insulin, and in contrast to bombesin, vasopressin, and platelet-derived growth factor, GI does not activate cellular inositolphospholipid hydrolysis, calcium mobilization, or cross-regulation of epidermal growth factor receptor affinity. These results raise the possibility that the biochemical pathways activated by GI/TGF-..beta.. and insulin converge at a post-receptor stage.

  10. Contrasting signaling pathways of alpha1A- and alpha1B-adrenergic receptor subtype activation of phosphatidylinositol 3-kinase and Ras in transfected NIH3T3 cells.

    PubMed

    Hu, Z W; Shi, X Y; Lin, R Z; Hoffman, B B

    1999-01-01

    Activation of protein kinases is an important intermediate step in signaling pathways of many G protein-coupled receptors including alpha1-adrenergic receptors. The present study was designed to investigate the capacity of the three cloned subtypes of human alpha1-receptors, namely, alpha1A, alpha1B and alpha1D to activate phosphatidylinositol 3-kinase (PI 3-kinase) and p21ras in transfected NIH3T3 cells. Norepinephrine activated PI 3-kinase in cells expressing human alpha1A and alpha1B via pertussis toxin-insensitive G proteins; alpha1D-receptors did not detectably activate this kinase. Transient transfection of NIH 3T3 cells with the alpha-subunit of the G protein transducin (alpha(t)) a scavenger of betagamma-subunits released from activated G proteins, inhibited alpha1B-receptor but not alpha1A-receptor-stimulated PI 3-kinase activity. Stimulation of both alpha1A- and alpha1B-receptors activated p21ras and stimulated guanine nucleotide exchange on Ras protein. Overexpression of a dominant negative mutant of p21ras attenuated alpha1B-receptor but not alpha1A-receptor activation of PI 3-kinase. Overexpression of a dominant negative mutant of PI 3-kinase attenuated alpha1A- but not alpha1B-receptor-stimulated mitogen-activated protein kinase activity. These results demonstrate the capacity for heterologous signaling of the alpha1-adrenergic receptor subtypes in promoting cellular responses in NIH3T3 cells.

  11. Mechanism of the antiadipogenic-antiobesity effects of a rice hull smoke extract in 3T3-L1 preadipocyte cells and in mice on a high-fat diet.

    PubMed

    Kim, Sung Phil; Nam, Seok Hyun; Friedman, Mendel

    2015-09-01

    The present study investigated the inhibitory effects of a rice hull smoke extract (RHSE) against adipogenesis in 3T3-L1 preadipocyte cells and in mice fed high fat (HFD) and normal (ND) diets. At concentrations of 0.1% and 0.5%, RHSE was shown to reduce the cellular lipid content in MDI-induced 3T3-L1 cells by about 72% and 88%, respectively, compared to that in control cells without RHSE, indicating a strong antiadipogenic effect. This result was supported by the finding that the expression of the adipocyte differentiation marker adiponectin was suppressed. MTT and lactate dehydrogenase (LDH) release assays showed that RHSE doses of up to 0.5% (v/v) were not cytotoxic to the 3T3-L1 cells. RHSE activates AMP-activated protein kinase (AMPK) through raising the phosphorylated ratio during the early phase of cell differentiation, and western blot analysis showed that it dose-dependently inhibited the expression of the peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT-enhancer binding protein (C/EBPα), and sterol regulatory element-binding protein 1c (SREBP-1c) at the late stage of differentiation. The antiadipogenic properties of RHSE were confirmed in vivo using experimental obese mice on a high-fat diet. Dietary supplementations of 0.5% and 1% RHSE resulted in a reduction at the end of the 7-week feeding study of body weight gain of 66.9% and 72.5%, respectively, a reduction of epididymal white adipose tissue weight by up to 87.9%, restoration of elevated total cholesterol and triglyceride levels in plasma and liver to those observed in the ND-fed mice, normalization of distorted serum leptin and adiponectin levels, and restoration of liver weight and glutamate oxaloacetate transaminase/glutamate pyruvate transaminase (GOT/GPT) enzymes, blood urea, and serum creatinine to the normal control levels observed in the ND-fed mice. As was found in the 3T3-L1 cells, RHSE up-regulated AMPK phosphorylation and down-regulated PPARγ, C/EBPα and SREBP-1c protein

  12. Pre-osteoblastic MC3T3-E1 promote breast cancer cell growth in bone in a murine xenograft model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bones are the most common sites of breast cancer metastasis. Upon arrival within the bone microenvironment, breast cancer cells coordinate the activities of stromal cells, resulting in an increase in osteoclast activity and bone matrix degradation. In late stages of bone metastasis, breast cance...

  13. Fisetin Suppresses Lipid Accumulation in Mouse Adipocytic 3T3-L1 Cells by Repressing GLUT4-Mediated Glucose Uptake through Inhibition of mTOR-C/EBPα Signaling.

    PubMed

    Watanabe, Marina; Hisatake, Mitsuhiro; Fujimori, Ko

    2015-05-27

    3,7,3',4'-Tetrahydroxyflavone (fisetin) is a flavonoid found in vegetables and fruits having broad biological activities. Here the effects of fisetin on adipogenesis and its regulatory mechanism in mouse adipocytic 3T3-L1 cells are studied. Fisetin inhibited the accumulation of intracellular lipids and lowered the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein (C/EBP) α and fatty acid-binding protein 4 (aP2) during adipogenesis. Moreover, the mRNA levels of genes such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase involved in the fatty acid biosynthesis (lipogenesis) were reduced by the treatment with fisetin. The expression level of the glucose transporter 4 (GLUT4) gene was also decreased by fisetin, resulting in down-regulation of glucose uptake. Furthermore, fisetin inhibited the phosphorylation of the mammalian target of rapamycin (mTOR) and that of p70 ribosomal S6 kinase, a target of the mTOR complex, the inhibition of which was followed by a decreased mRNA level of the C/EBPα gene. The results obtained from a chromatin immunoprecipitation assay demonstrated that the ability of C/EBPα to bind to the GLUT4 gene promoter was reduced by the treatment with fisetin, which agreed well with those obtained when 3T3-L1 cells were allowed to differentiate into adipocytes in medium in the presence of rapamycin, an inhibitor for mTOR. These results indicate that fisetin suppressed the accumulation of intracellular lipids by inhibiting GLUT4-mediated glucose uptake through inhibition of the mTOR-C/EBPα signaling in 3T3-L1 cells.

  14. DNA microarray analysis reveals a role for lysophosphatidic acid in the regulation of anti-inflammatory genes in MC3T3-E1 cells

    SciTech Connect

    Waters, Katrina M.; Tan, Ruimin; Genetos, Damian C.; Verma, Seema; Yellowley, Clare E.; Karin, Norm J.

    2007-11-01

    DNA microarray analysis revealed that treatment of bone cells with a lipid growth factor led to extensive changes in gene expression. Particular relevance to fracture healing and inflammation was revealed.

  15. Suitability of human Tenon's fibroblasts as feeder cells for culturing human limbal epithelial stem cells.

    PubMed

    Scafetta, Gaia; Tricoli, Eleonora; Siciliano, Camilla; Napoletano, Chiara; Puca, Rosa; Vingolo, Enzo Maria; Cavallaro, Giuseppe; Polistena, Andrea; Frati, Giacomo; De Falco, Elena

    2013-12-01

    Corneal epithelial regeneration through ex vivo expansion of limbal stem cells (LSCs) on 3T3-J2 fibroblasts has revealed some limitations mainly due to the corneal microenvironment not being properly replicated, thus affecting long term results. Insights into the feeder cells that are used to expand LSCs and the mechanisms underlying the effects of human feeder cells have yet to be fully elucidated. We recently developed a standardized methodology to expand human Tenon's fibroblasts (TFs). Here we aimed to investigate whether TFs can be employed as feeder cells for LSCs, characterizing the phenotype of the co-cultures and assessing what human soluble factors are secreted. The hypothesis that TFs could be employed as alternative human feeder layer has not been explored yet. LSCs were isolated from superior limbus biopsies, co-cultured on TFs, 3T3-J2 or dermal fibroblasts (DFs), then analyzed by immunofluorescence (p63α), colony-forming efficiency (CFE) assay and qPCR for a panel of putative stem cell and epithelial corneal differentiation markers (KRT3). Co-cultures supernatants were screened for a set of soluble factors. Results showed that the percentage of p63α(+)LSCs co-cultured onto TFs was significantly higher than those on DFs (p = 0.032) and 3T3-J2 (p = 0.047). Interestingly, LSCs co-cultures on TFs exhibited both significantly higher CFE and mRNA expression levels of ΔNp63α than on 3T3-J2 and DFs (p < 0.0001), showing also significantly greater levels of soluble factors (IL-6, HGF, b-FGF, G-CSF, TGF-β3) than LSCs on DFs. Therefore, TFs could represent an alternative feeder layer to both 3T3-J2 and DFs, potentially providing a suitable microenvironment for LSCs culture. PMID:23832306

  16. Inhibitory effect of chemical constituents from Artemisia scoparia Waldst. et Kit. on triglyceride accumulation in 3T3-L1 cells and nitric oxide production in RAW 264.7 cells.

    PubMed

    Yahagi, Tadahiro; Yakura, Naoyuki; Matsuzaki, Keiichi; Kitanaka, Susumu

    2014-04-01

    We investigated the anti-obesity effect of the aerial part of Artemisia scoparia Waldst. et Kit. (Compositae). An 80 % aqueous EtOH extract of the aerial part inhibited triglyceride (TG) accumulation and the nitric oxide (NO) production activity. A new chromane derivative was isolated from the aerial part of A. scoparia Waldst. et Kit. along with 18 known compounds. The structure of the new chromane, scopariachromane (1), was elucidated by spectroscopic analyses. The inhibitory effects of the compounds on TG accumulation activity were examined. Among these, cirsiliol (11) inhibited TG accumulation in 3T3-L1 preadipocytes. Jaceosidin (12) inhibited NO production in a murine macrophage-like cell line (RAW 264.7). These results indicate that the 80 % aqueous EtOH extract and compounds isolated from the aerial part of A. scoparia Waldst. et Kit. may improve obesity-related insulin resistance. PMID:24142543

  17. Increased methotrexate resistance and dhfr gene amplification as a consequence of induced Ha-ras expression in NIH 3T3 cells.

    PubMed

    Wani, M A; Xu, X; Stambrook, P J

    1994-05-01

    Oncogene activation and loss of tumor suppressor genes are known to play a role in tumor initiation as well as its progression. The potential roles of these genes in perturbation of genome stability has become a major interest. To better understand the relationship between expression of an oncogene and genetic instability, we have studied a cell line expressing an activated human Ha-ras under the control of bacterial lactose operon regulatory elements for changes in methotrexate resistance and dihydrofolate reductase (dhfr) gene amplification following mutant Ha-ras induction. In these cells mutant Ha-ras is directed by an inducible SV40 promoter containing a bacterial lac operator sequence which is repressed due to constitutive expression of bacterial lac repressor gene. The expression of this Ha-ras is specifically induced by the addition of isopropyl-1-thio-beta-D-galactopyranoside (IPTG), a lactose analogue, to the culture medium. During single-step methotrexate selection, these cells showed an increased frequency of methotrexate resistance in the presence of IPTG. More than 60% of the methotrexate-resistant colonies showed a 2-6-fold amplification of the dhfr gene. One clone with rearranged dhfr had about 100-fold amplification of the gene. The increased capacity to amplify DNA in response to mutant Ha-ras induction was not locus specific since cells also displayed an increased frequency of resistance to N-(phosphonacetyl)-L-aspartic acid in the presence of ITPG. Four of the methotrexate-resistant clones with amplified dhfr gene were cultured further in the presence or absence of IPTG and subsequently compared for their ability to grow in soft agar as a measure of transformation. In medium containing methotrexate but no IPTG, the clones were unable to grow in soft agar, indicating that methotrexate resistance due to gene amplification is separable from transformation. PMID:8162600

  18. 2,4,6-Trihydroxybenzaldehyde, a potential anti-obesity treatment, suppressed adipocyte differentiation in 3T3-L1 cells and fat accumulation induced by high-fat diet in C57BL/6 mice.

    PubMed

    Kim, Kil-Nam; Kang, Min-Cheol; Kang, Nalae; Kim, Seo-Young; Hyun, Chang-Gu; Roh, Seong Woon; Ko, Eun-Yi; Cho, Kichul; Jung, Won-Kyo; Ahn, Ginnae; Jeon, You-Jin; Kim, Daekyung

    2015-03-01

    In the present study, 2,4,6-trihydroxybenzaldehyde (THB) was evaluated for inhibitory effects on adipocyte differentiation in 3T3-L1 cells and anti-obesity effects in mice with high-fat diet (HFD)-induced obesity. Lipid accumulation measurement indicated that THB markedly inhibited adipogenesis, and this involved down-regulation of the expression of the adipogenesis-related proteins, CCAAT/enhancer-binding protein α (C/EBPα), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c), in 3T3-L1 pre-adipocyte cells. In a mouse model of HFD-induced obesity, oral administration of THB (5 and 25mg/kg for 13 weeks) reduced the HFD-induced increase in weight gain. THB administration also reduced serum levels of glucose, triglycerides, and total cholesterol. A reduction in the hypertrophy of white adipose tissue was also observed. Furthermore, THB administration inhibited HFD-induced hepatic steatosis. These results provided evidence that administration of THB alleviated HFD-induced obesity in C57BL/6 mice and revealed the potential of THB as a nutraceutical to help prevent or treat obesity and the associated metabolic disorders.

  19. Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway.

    PubMed

    Hao, Yuhui; Liu, Cong; Huang, Jiawei; Gu, Ying; Li, Hong; Yang, Zhangyou; Liu, Jing; Wang, Weidong; Li, Rong

    2016-01-01

    Depleted uranium (DU) mainly accumulates in the bone over the long term. Osteoblast cells are responsible for the formation of bone, and they are sensitive to DU damage. However, studies investigating methods of reducing DU damage in osteoblasts are rarely reported. Ghrelin is a stomach hormone that stimulates growth hormones released from the hypothalamic-pituitary axis, and it is believed to play an important physiological role in bone metabolism. This study evaluates the impact of ghrelin on DU-induced apoptosis of the osteoblast MC3T3-E1 and investigates its underlying mechanisms. The results show that ghrelin relieved the intracellular oxidative stress induced by DU, eliminated reactive oxygen species (ROS) and reduced lipid peroxidation by increasing intracellular GSH levels; in addition, ghrelin effectively suppressed apoptosis, enhanced mitochondrial membrane potential, and inhibited cytochrome c release and caspase-3 activation after DU exposure. Moreover, ghrelin significantly reduced the expression of DU-induced phosphorylated p38-mitogen-activated protein kinase (MAPK). A specific inhibitor (SB203580) or specific siRNA of p38-MAPK could significantly suppress DU-induced apoptosis and related signals, whereas ROS production was not affected. In addition, ghrelin receptor inhibition could reduce the anti-apoptosis effect of ghrelin on DU and reverse the effect of ghrelin on intracellular ROS and p38-MAPK after DU exposure. These results suggest that ghrelin can suppress DU-induced apoptosis of MC3T3-E1 cells, reduce DU-induced oxidative stress by interacting with its receptor, and inhibit downstream p38-MAPK activation, thereby suppressing the mitochondrial-dependent apoptosis pathway.

  20. Effects of metal ions on fibroblasts and spiral ganglion cells.

    PubMed

    Paasche, G; Ceschi, P; Löbler, M; Rösl, C; Gomes, P; Hahn, A; Rohm, H W; Sternberg, K; Lenarz, T; Schmitz, K-P; Barcikowski, S; Stöver, T

    2011-04-01

    Degeneration of spiral ganglion cells (SGC) after deafness and fibrous tissue growth around the electrode carrier after cochlear implantation are two of the major challenges in current cochlear implant research. Metal ions are known to possess antimicrobial and antiproliferative potential. The use of metal ions could therefore provide a way to reduce tissue growth around the electrode array after cochlear implantation. Here, we report on in vitro experiments with different concentrations of metal salts with antiproliferative and toxic effects on fibroblasts, PC-12 cells, and freshly isolated spiral ganglion cells, the target cells for electrical stimulation by a cochlear implant. Standard cell lines (NIH/3T3 and L-929 fibroblasts and PC-12 cells) and freshly isolated SGC were incubated with concentrations of metal ions between 0.3 μmol/liter and 10 mmol/liter for 48 hr. Cell survival was investigated by neutral red uptake, CellQuantiBlue assay, or counting of stained surviving neurons. Silver ions exhibited distinct thresholds for proliferating and confluent cells. For zinc ions, the effective concentration was lower for fibroblasts than for PC-12 cells. SGC showed comparable thresholds for reduced cell survival not only for silver and zinc ions but also for copper(II) ions, indicating that these ions might be promising for reducing tissue growth on the surface of CI electrode arrays. These effects were also observed when combinations of two of these ions were investigated. PMID:21312225

  1. Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent

    PubMed Central

    1994-01-01

    Directional cellular locomotion is thought to involve localized intracellular calcium changes and the lateral transport of cell surface molecules. We have examined the roles of both calcium and cell surface glycoprotein redistribution in the directional migration of two murine fibroblastic cell lines, NIH 3T3 and SV101. These cell types exhibit persistent, cathode directed motility when exposed to direct current electric fields. Using time lapse phase contrast microscopy and image analysis, we have determined that electric field-directed locomotion in each cell type is a calcium independent process. Both exhibit cathode directed motility in the absence of extracellular calcium, and electric fields cause no detectable elevations or gradients of cytosolic free calcium. We find evidence suggesting that galvanotaxis in these cells involves the lateral redistribution of plasma membrane glycoproteins. Electric fields cause the lateral migration of plasma membrane concanavalin A receptors toward the cathode in both NIH 3T3 and SV101 fibroblasts. Exposure of directionally migrating cells to Con A inhibits the normal change of cell direction following a reversal of electric field polarity. Additionally, when cells are plated on Con A- coated substrata so that Con A receptors mediate cell-substratum adhesion, cathode-directed locomotion and a cathodal accumulation of Con A receptors are observed. Immunofluorescent labeling of the fibronectin receptor in NIH 3T3 fibroblasts suggests the recruitment of integrins from large clusters to form a more diffuse distribution toward the cathode in field-treated cells. Our results indicate that the mechanism of electric field directed locomotion in NIH 3T3 and SV101 fibroblasts involves the lateral redistribution of plasma membrane glycoproteins involved in cell-substratum adhesion. PMID:7929557

  2. Procollagen mRNA metabolism during the fibroblast cell cycle and its synthesis in transformed cells.

    PubMed

    Parker, I; Fitschen, W

    1980-06-25

    Procollagen mRNA was isolated from mouse embryos and used for the synthesis of a highly labelled cDNA probe complementary to collagen mRNA. This probe was used for the investigation of procollagen mRNA metabolism during the cell cycle of 3T6 mouse embryo fibroblasts in culture. Titration hybridization experiments revealed that procollagen mRNA was present throughout the cell cycle following stumulation of confluent monolayers. Procollagen mRNA levels of sparse cultures appeared similar to those of unstimulated monolayers. The fluctuating levels of collagen synthesis during the cell cycle can be ascribed to changes in the amount of collagen mRNA present. In mouse sarcoma virus transformed 3T3 cells only 20--30% of the amount of procollagen mRNA in 3T3 cells is present indicating that the decline in collagen synthesis is due to mRNA availability.

  3. Salicortin-derivatives from Salix pseudo-lasiogyne twigs inhibit adipogenesis in 3T3-L1 cells via modulation of C/EBPα and SREBP1c dependent pathway.

    PubMed

    Lee, Mina; Lee, Sang Hoon; Kang, Jimmy; Yang, Heejung; Jeong, Eun Ju; Kim, Hong Pyo; Kim, Young Choong; Sung, Sang Hyun

    2013-08-30

    Obesity is reported to be associated with excessive growth of adipocyte mass tissue as a result of increases in the number and size of adipocytes differentiated from preadipocytes. To search for anti-adipogenic phytochemicals, we screened for inhibitory activities of various plant sources on adipocyte differentiation in 3T3-L1 preadipocytes. Among the sources, a methanolic extract of Salix pseudo-lasiogyne twigs (Salicaceae) reduced lipid accumulation in a concentration-dependent manner. During our search for anti-adipogenic constituents from S. pseudo-lasiogyne, five salicortin derivatives isolated from an EtOAc fraction of this plant and bearing 1-hydroxy-6-oxo-2-cyclohexene-carboxylate moieties, namely 2',6'-O-acetylsalicortin (1), 2'-O-acetylsalicortin (2), 3'-O-acetylsalicortin (3), 6'-O-acetylsalicortin (4), and salicortin (5), were found to significantly inhibit adipocyte differentiation in 3T3-L1 cells. In particular, 2',6'-O-acetylsalicortin (1) had the most potent inhibitory activity on adipocyte differentiation, with an IC₅₀ value of 11.6 μM, and it significantly down-regulated the expressions of CCAAT/enhancer binding protein α (C/EBPα) and sterol regulatory element binding protein 1 (SREBP1c). Furthermore, 2',6'-O-acetylsalicortin (1) suppressed mRNA expression levels of C/EBPβ during the early stage of adipocyte differentiation and stearoyl coenzyme A desaturase 1 (SCD-1), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) expression, target genes of SREBP1c. In the present study, we demonstrate that the anti-adipogenesis mechanism of 2',6'-O-acetylsalicortin (1) may be mediated via down-regulation of C/EBPα and SREBP1c dependent pathways. Through their anti-adipogenic activity, salicortin derivatives may be potential novel therapeutic agents against obesity.

  4. MC3T3-E1 Cell Response to Ti1-xAgx and Ag-TiNx Electrodes Deposited on Piezoelectric Poly(vinylidene fluoride) Substrates for Sensor Applications.

    PubMed

    Marques, S M; Rico, P; Carvalho, I; Gómez Ribelles, J L; Fialho, L; Lanceros-Méndez, S; Henriques, M; Carvalho, S

    2016-02-17

    In the sensors field, titanium based coatings are being used for the acquisition/application of electrical signals from/to piezoelectric materials. In this particular case, sensors are used to detect dynamic mechanical loads at early stages after intervention of problems associated with prostheses implantation. The aim of this work is to select an adequate electrode for sensor applications capable, in an initial stage to avoid bone cell adhesion, but at a long stage, permit osteointegration and osteoinduction. This work reports on the evaluation of osteoblast MC3T3-E1 cells behavior in terms of proliferation, adhesion and long-term differentiation of two different systems used as sensor electrodes: Ti1-xAgx and Ag-TiNx deposited by d.c. and pulsed magnetron sputtering at room temperature on poly(vinylidene fluoride) (PVDF). The results indicated an improved effect of Ag-TiNx electrodes compared with Ti1-xAgx and TiN, in terms of diminished cell adhesion and proliferation at an initial cell culture stage. Nevertheless, when cell culture time is longer, cells grown onto Ag-TiNx electrodes are capable to proliferate and also differentiate at proper rates, indicating the suitability of this coating for sensor application in prostheses devices. Thus, the Ag-TiNx system was considered the most promising electrode for tissue engineering applications in the design of sensors for prostheses to detect dynamic mechanical loads.

  5. MC3T3-E1 Cell Response to Ti1-xAgx and Ag-TiNx Electrodes Deposited on Piezoelectric Poly(vinylidene fluoride) Substrates for Sensor Applications.

    PubMed

    Marques, S M; Rico, P; Carvalho, I; Gómez Ribelles, J L; Fialho, L; Lanceros-Méndez, S; Henriques, M; Carvalho, S

    2016-02-17

    In the sensors field, titanium based coatings are being used for the acquisition/application of electrical signals from/to piezoelectric materials. In this particular case, sensors are used to detect dynamic mechanical loads at early stages after intervention of problems associated with prostheses implantation. The aim of this work is to select an adequate electrode for sensor applications capable, in an initial stage to avoid bone cell adhesion, but at a long stage, permit osteointegration and osteoinduction. This work reports on the evaluation of osteoblast MC3T3-E1 cells behavior in terms of proliferation, adhesion and long-term differentiation of two different systems used as sensor electrodes: Ti1-xAgx and Ag-TiNx deposited by d.c. and pulsed magnetron sputtering at room temperature on poly(vinylidene fluoride) (PVDF). The results indicated an improved effect of Ag-TiNx electrodes compared with Ti1-xAgx and TiN, in terms of diminished cell adhesion and proliferation at an initial cell culture stage. Nevertheless, when cell culture time is longer, cells grown onto Ag-TiNx electrodes are capable to proliferate and also differentiate at proper rates, indicating the suitability of this coating for sensor application in prostheses devices. Thus, the Ag-TiNx system was considered the most promising electrode for tissue engineering applications in the design of sensors for prostheses to detect dynamic mechanical loads. PMID:26840928

  6. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells.

    PubMed

    Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

    2015-12-10

    Limonin, one of the major components in dictamni radicis cortex (DRC), has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST) has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST pathway in non-neuronal cells. We investigated odorant-stimulated increases in Ca(2+) and cAMP, major second messengers in the OST pathway, in non-neuronal 3T3-L1 cells pretreated with limonin and ethanol extracts of DRC. Limonin and the extracts significantly decreased eugenol-induced Ca(2+) and cAMP levels and upregulated phosphorylation of CREB and PKA. Our results demonstrated that limonin and DRC extract inhibit the OST pathway in non-neuronal cells by modulating Ca(2+) and cAMP levels and phosphorylation of CREB.

  7. N-acetyl cysteine inhibits H2O2-mediated reduction in the mineralization of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway.

    PubMed

    Lee, Daewoo; Kook, Sung-Ho; Ji, Hyeok; Lee, Seung-Ah; Choi, Ki-Choon; Lee, Kyung-Yeol; Lee, Jeong-Chae

    2015-11-01

    There are controversial findings regarding the roles of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway on bone metabolism under oxidative stress. We investigated how Nrf2/HO-1 pathway affects osteoblast differentiation of MC3T3-E1 cells in response to hydrogen peroxide (H2O2), N-acetyl cysteine (NAC), or both. Exposing the cells to H2O2 decreased the alkaline phosphatase activity, calcium accumulation, and expression of osteoblast markers, such as osteocalcin and runt-related transcription factor-2. In contrast, H2O2 treatment increased the expression of Nrf2 and HO-1 in the cells. Treatment with hemin, a chemical HO-1 inducer, mimicked the inhibitory effect of H2O2 on osteoblast differentiation by increasing the HO-1 expression and decreasing the osteogenic marker genes. Pretreatment with NAC restored all changes induced by H2O2 to near normal levels in the cells. Collectively, our findings suggest that H2O2-mediated activation of Nrf2/HO-1 pathway negatively regulates the osteoblast differentiation, which is inhibited by NAC. PMID:26303969

  8. Integration of the simian virus 40 genome into cellular DNA in temperature-sensitive (N) and temperature-insensitive (A) transformants of 3T3 rat and Chinese hamster lung cells.

    PubMed Central

    Chepelinsky, A B; Seif, R; Martin, R G

    1980-01-01

    We studied the pattern of integration of the simian virus 40 (SV40) genome into the cellular DNA of N-transformants (temperature sensitive) and A-transformants (temperature insensitive) derived from 3T3-Fisher rat and Chinese hamster lung cells. The SV40 DNA was covalently linked to the cellular DNA in both types of transformants. In the rat cells, most N-transformants contained SV40 sequences integrated at a single site; most A-transformants contained SV40 sequences integrated at two to five sites. In the Chinese hamster cells, no significant correlation between the number of integration sites and the phenotype of the transformant was found; one of three integration sites were observed for both the N- and A-transformants. Single copies and tandem repeats of SV40 sequences were observed in A- and N-transformants derived from rat cells. A-transformants arise neither by amplification of the SV40 genome nor by integration at a unique site. Images PMID:6251267

  9. Vaspin promotes 3T3-L1 preadipocyte differentiation

    PubMed Central

    Liu, Ping; Wu, Jine; Zhou, Xin; Wang, Liping; Han, Wenqi; Lv, Ying; Sun, Chaofeng

    2015-01-01

    Vaspin, a novel adipocyte factor secreted from visceral adipose tissues, is associated with obesity and insulin resistance and can regulate glucose and lipid metabolism, increase insulin sensitivity, and suppress inflammation; however, the underlying mechanisms remain unknown. Proliferation and maladaptive differentiation are important pathological mechanisms underlying obesity. This study aimed to evaluate the effects of vaspin on the proliferation and differentiation of preadipocyte 3T3-L1 cells and to explore the likely mechanisms responsible for 3T3-L1 differentiation. Vaspin was added to cultured 3T3-L1 cells, and the differentiation of adipocytes was evaluated using Oil Red O staining. The AKT signaling pathway and specific differentiation factors related to the differentiation of preadipocyte 3T3-L1 cells, peroxisome proliferator-activated γ and the CCAAT/enhancer-binding protein (C/EBP) family, were evaluated using reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses during the early phase of differentiation. Additionally, adiponectin mRNA, interleukin-6 mRNA (IL-6 mRNA), and glucose transporter-4 (GLUT4) protein levels were measured in the differentiated adipocytes. The results indicated that vaspin promotes the intracellular accumulation of lipids and increases differentiation-related factors, including peroxisome proliferator-activated receptor γ, C/EBPα, and free fatty acid-binding protein 4 (FABP4), in a dose-dependent manner. Additionally, vaspin (200 ng/mL) increased the mRNA and protein levels of C/EBPβ, peroxisome proliferator-activated γ, C/EBPα, and FABP4. Moreover, compared with the control, significantly smaller eight-day differentiated adipocytes were observed, and these cells exhibited decreased IL-6 mRNA and increased GLUT4 mRNA levels; these results also indicated the potential of vaspin to promote the insulin-mediated AKT signaling pathway during the early phase of differentiation. In conclusion

  10. Insulin regulation of lipoprotein lipase activity in 3T3-L1 adipocytes is mediated at posttranscriptional and posttranslational levels.

    PubMed

    Semenkovich, C F; Wims, M; Noe, L; Etienne, J; Chan, L

    1989-05-25

    Insulin is a major regulator of lipoprotein lipase (LPL) activity. The molecular events associated with LPL regulation by insulin in 3T3-L1 adipocytes were studied by determining LPL enzyme activity, mRNA levels, protein synthetic rate, and transcription run-off activity. Adipocytes treated with insulin (10(-6) M for 48 h) had substantially higher LPL activity (mean difference compared to carrier-treated cells 146%) with little difference in LPL mRNA levels (mean level 109% of control). Insulin regulation of LPL activity was dose-dependent but changes in LPL mRNA were not. Within 2 h of hormone addition, LPL activity was higher in insulin-treated versus carrier-treated adipocytes although their LPL mRNA levels were similar. In [35S]methionine pulse-labeled adipocytes, insulin decreased LPL protein synthetic rate measured by immunoprecipitation 42-48%, although increases (75-340%) in heparin-releasable LPL activity were detected in the same cells. In contrast, during differentiation of 3T3-L1 fibroblasts to the adipocyte state, 5-80-fold increases of heparin-releasable LPL activity were closely associated with similar (8-60-fold) increases in LPL mRNA levels. LPL synthetic rate was 16-fold greater, and LPL gene transcription initiation measured by transcriptional run-off was 10-fold higher in adipocytes than in undifferentiated cells. Differentiation of 3T3-L1 fibroblasts increases transcription of the LPL gene leading to increased LPL mRNA, protein synthetic rate, and enzyme activity. Insulin regulation of LPL activity in 3T3-L1 adipocytes, however, is mediated entirely at posttranscriptional and posttranslational levels.

  11. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    PubMed

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-01

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016.

  12. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    PubMed

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-01

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016. PMID:27094023

  13. Interactions of 1D- and 2D-layered inorganic nanoparticles with fibroblasts and human mesenchymal stem cells

    PubMed Central

    Rashkow, Jason Thomas; Talukdar, Yahfi; Lalwani, Gaurav; Sitharaman, Balaji

    2015-01-01

    Aim This study investigates the effects of tungsten disulfide nanotubes (WSNTs) and molybdenum disulfide nanoplatelets (MSNPs) on fibroblasts (NIH-3T3) and mesenchymal stem cells (MSCs) to determine safe dosages for potential biomedical applications. Materials & methods Cytotoxicity of MSNPs and WSNTs (5–300 µg/ml) on NIH-3T3 and MSCs was assessed at 6, 12 or 24 h. MSC differentiation to adipocytes and osteoblasts was assessed following treatment for 24 h. Results Only NIH-3T3 cells treated with MSNPs showed dose or time dependent increase in cytotoxicity. Differentiation markers of MSCs in treated groups were unaffected compared with untreated controls. Conclusion MSNPs and WSNTs at concentrations less than 50 µg/ml are potentially safe for treatment of fibroblasts or MSCs for up to 24 h. PMID:26080694

  14. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line

    SciTech Connect

    Chang, Young-Chae; Cho, Hyun-Ji

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Ascofuranone increases expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Inhibitors for MEK and JNK increased the expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Ascofuranone significantly suppressed phosho-ERK, while increasing phospho-p38. -- Abstract: Ascofuranone, an isoprenoid antibiotic, was originally isolated as a hypolipidemic substance from a culture broth of the phytopathogenic fungus, Ascochyta visiae. Adiponectin is mainly synthesized by adipocytes. It relieves insulin resistance by decreasing the plasma triglycerides and improving glucose uptake, and has anti-atherogenic properties. Here, we found that ascofuranone increases expression of adiponectin and PPAR{gamma}, a major transcription factor for adiponectin, in 3T3-L1, murine pre-adipocytes cell line, without promoting accumulation of lipid droplets. Ascofuranone induced expression of adiponectin, and increases the promoter activity of adiponectin and PPRE, PPAR response element, as comparably as a PPAR{gamma} agonist, rosiglitazone, that stimulates lipid accumulation in the preadipocyte cell line. Moreover, inhibitors for MEK and JNK, like ascofuranone, considerably increased the expression of adiponectin and PPAR{gamma}, while a p38 inhibitor significantly suppressed. Ascofuranone significantly suppressed ERK phosphorylation, while increasing p38 phosphorylation, during adipocyte differentiation program. These results suggest that ascofuranone regulates the expression of adiponectin and PPAR{gamma} through the modulation of MAP kinase family members.

  15. Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells.

    PubMed

    Jeon, Hui-Jeon; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2014-11-01

    Gelidium elegans is an edible red alga native to the intertidal area of northeastern Asia. We investigated the effect of G. elegans extract and its main flavonoids, rutin and hesperidin, on lipid accumulation and the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 3T3-L1 and RAW264.7 cells. Our data show that G. elegans extract decreased lipid accumulation and ROS/RNS production in a dose-dependent manner. The extract also inhibited the mRNA expression of adipogenic transcription factors, such as peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, while enhancing the protein expression of the antioxidant enzymes superoxide dismutases 1 and 2, glutathione peroxidase, and glutathione reductase compared with controls. In addition, lipopolysaccharide-induced nitric oxide production was significantly reduced in G. elegans extract-treated RAW264.7 cells. In analysis of the effects of G. elegans flavonoids on lipid accumulation and ROS/RNS production, only hesperidin showed an inhibitory effect on lipid accumulation and ROS production; rutin did not affect adipogenesis and ROS status. The antiadipogenic effect of hesperidin was evidenced by the downregulation of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and fatty acid binding protein 4 gene expression. Collectively, our data suggest that G. elegans is a potential food source containing antiobesity and antioxidant constituents.

  16. Topiramate effects lipolysis in 3T3-L1 adipocytes

    PubMed Central

    MARTINS, GABRIELA POLTRONIERI CAMPAGNARO; SOUZA, CAMILA OLIVEIRA; MARQUES, SCHEROLIN; LUCIANO, THAIS FERNANDES; DA SILVA PIERI, BRUNO LUIZ; ROSA, JOSÉ CÉSAR; DA SILVA, ADELINO SANCHEZ RAMOS; PAULI, JOSÉ RODRIGO; CINTRA, DENNYS ESPER; ROPELLE, EDUARDO ROCHETE; RODRIGUES, BRUNO; DE LIRA, FABIO SANTOS; DE SOUZA, CLAUDIO TEODORO

    2015-01-01

    Studies have shown that topiramate (TPM)-induced weight loss can be dependent on the central nervous system (CNS). However, the direct action of TPM on adipose tissue has not been tested previously. Thus, the present study aimed to examine whether TPM modulates lipolysis in 3T3-L1. The 3T3-L1 cells were incubated in 50 µM TPM for 30 min. The β-adrenergic stimulator, isoproterenol, was used as a positive control. The release of lactate dehydrogenase, non-esterified fatty acid, glycerol and incorporation of 14C-palmitate to lipid were analyzed. The phosphorylation of protein kinase A (PKA), hormone-sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL) and perilipin A, as well as the protein levels of comparative genetic identification 58 (CGI-58) were assessed. The levels of glycerol and non-esterified fatty acid increased markedly when the cells were treated with TPM. The TPM effects were similar to the isoproterenol positive control. Additionally, TPM reduced lipogenesis. These results were observed without any change in cell viability. Finally, the phosphorylation of PKA, HSL, ATGL and perilipin A, as well as the protein levels of CGI-58 were increased compared to the control cells. These results were similar to those observed in the cells treated with isoproterenol. The present results show that TPM increased the phosphorylation of pivotal lipolytic enzymes, which induced lipolysis in 3T3-L1 adipocytes, suggesting that this drug may act directly in the adipose tissue independent from its effect on the CNS. PMID:26623024

  17. Involvement of matrix metalloproteinases in the adipose conversion of 3T3-L1 preadipocytes.

    PubMed Central

    Croissandeau, Gilles; Chrétien, Michel; Mbikay, Majambu

    2002-01-01

    When mouse 3T3-L1 preadipocytes are induced to differentiate into adipocytes, they change from an extended fibroblast-like morphology to a rounded one. This change most likely occurs through extracellular matrix remodelling, a process known to be mediated in part by matrix metalloproteinases (MMPs). In this study, we have shown by semi-quantitative reverse transcriptase-PCR, zymographic and immunoblot analysis that MMP-2, MMP-9 and membrane type 1 (MT1)-MMP are regulated during adipose conversion. To assess the importance of MMPs for adipocytic differentiation we have used MMP-specific inhibitors as well as neutralizing antibodies. Treatment of 3T3-L1 preadipocytes with the broad MMP inhibitor Ilomastat or the more restricted MMP-2 Inhibitor I prevented their differentiation into adipocytes in a dose-dependent manner, as evidenced by absence of triglyceride accumulation. Inhibitor treatment prevented the fibronectin-network degradation, as well as the induction of the genes for peroxisome-proliferator-activated receptor gamma and adipsin, two adipocyte phenotype markers. Inhibitor treatment was effective when applied during the early stages of adipocytic conversion, whereas inhibitor treatment during later stages had little effect. Inhibitor treatment did not inhibit clonal mitotic expansion; nor did it affect the expression pattern of the adipogenic transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) or its nuclear translocation. It did, however, markedly reduce C/EBPbeta DNA-binding capacity. Taken together, these results suggest that MMPs, and notably MMP-2 and MMP-9, may be necessary mediators of adipocytic differentiation of 3T3-L1 cells. PMID:12049638

  18. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

    PubMed Central

    Li, Lin-Jie; Kim, So-Nam

    2016-01-01

    PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies. PMID:27350860

  19. Milk-Derived Tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) Promote Adipocyte Differentiation and Inhibit Inflammation in 3T3-F442A Cells

    PubMed Central

    Chakrabarti, Subhadeep; Wu, Jianping

    2015-01-01

    Milk derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) have shown promise as anti-hypertensive agents due to their inhibitory effects on angiotensin converting enzyme (ACE). Due to the key inter-related roles of hypertension, chronic inflammation and insulin resistance in the pathogenesis of metabolic syndrome, there is growing interest in investigating established anti-hypertensive agents for their effects on insulin sensitivity and inflammation. In this study, we examined the effects of IPP and VPP on 3T3-F442A murine pre-adipocytes, a widely used model for studying metabolic diseases. We found that both IPP and VPP induced beneficial adipogenic differentiation as manifested by intracellular lipid accumulation, upregulation of peroxisome proliferator-activated receptor gamma (PPARγ) and secretion of the protective lipid hormone adiponectin by these cells. The observed effects were similar to those induced by insulin, suggesting potential benefits in the presence of insulin resistance. IPP and VPP also inhibited cytokine induced pro-inflammatory changes such as reduction in adipokine levels and activation of the nuclear factor kappa B (NF-κB) pathway. Taken together, our findings suggest that IPP and VPP exert insulin-mimetic adipogenic effects and prevent inflammatory changes in adipocytes, which may offer protection against metabolic disease. PMID:25714093

  20. Wnt/β-catenin signaling plays an important role in the protective effects of FDP-Sr against oxidative stress induced apoptosis in MC3T3-E1 cell.

    PubMed

    Qi, Huan-Huan; Bao, Jun; Zhang, Qi; Ma, Bo; Gu, Gui-Ying; Zhang, Peng-Ling; Ou-Yang, Gang; Wu, Zi-Mei; Ying, Han-Jie; Ou-Yang, Ping-Kai

    2016-10-01

    Strontium fructose 1,6-diphosphate (FDP-Sr) is a new strontium-containing compound. The primary aim of this study was to clarify whether the structure component of FDP-Sr, FDP could benefit the protective effect of Sr (II) against oxidative stress induced apoptosis, and meanwhile to further explore the important role of Wnt/β-catenin signaling in the anti-apoptosis effect of FDP-Sr in response to oxidative stress induced by H2O2 in an osteoblastic MC3T3-E1 cell line. Results showed that FDP-Sr could improve the osteoblastic differentiation under oxidative stress with induced cell proliferation and improved mineralization. The inhibition effect of FDP-Sr on cell apoptosis induced by H2O2 was proved by reduced reactive oxygen species production and activated caspase3. Under oxidative stress, mRNA and protein levels of phospho-β-catenin reduced, while β-catenin increased in the FDP-Sr treatment cell, leaded to the up-regulations of Runx2 and OPG at both mRNA and protein levels, finally improved the differentiation of osteoblasts. By the engagement of Wnt/β-catenin pathway's inhibitor (XAV-939), the protective effects of FDP-Sr on osteoblastic differentiation against oxidative stress were repressed along with inhibited wnt/β-catenin signaling and reduced mRNA and protein levels of Runx2 and OPG. In conclusion, FDP-Sr was demonstrated to protect osteoblast differentiation from oxidative damage induced by H2O2 through up-regulation of Wnt/β-catenin signaling, and FDP in FDP-Sr was able to directly improve the oxidative stress injury through its ROS scavenging ability. PMID:27575480

  1. Wnt/β-catenin signaling plays an important role in the protective effects of FDP-Sr against oxidative stress induced apoptosis in MC3T3-E1 cell.

    PubMed

    Qi, Huan-Huan; Bao, Jun; Zhang, Qi; Ma, Bo; Gu, Gui-Ying; Zhang, Peng-Ling; Ou-Yang, Gang; Wu, Zi-Mei; Ying, Han-Jie; Ou-Yang, Ping-Kai

    2016-10-01

    Strontium fructose 1,6-diphosphate (FDP-Sr) is a new strontium-containing compound. The primary aim of this study was to clarify whether the structure component of FDP-Sr, FDP could benefit the protective effect of Sr (II) against oxidative stress induced apoptosis, and meanwhile to further explore the important role of Wnt/β-catenin signaling in the anti-apoptosis effect of FDP-Sr in response to oxidative stress induced by H2O2 in an osteoblastic MC3T3-E1 cell line. Results showed that FDP-Sr could improve the osteoblastic differentiation under oxidative stress with induced cell proliferation and improved mineralization. The inhibition effect of FDP-Sr on cell apoptosis induced by H2O2 was proved by reduced reactive oxygen species production and activated caspase3. Under oxidative stress, mRNA and protein levels of phospho-β-catenin reduced, while β-catenin increased in the FDP-Sr treatment cell, leaded to the up-regulations of Runx2 and OPG at both mRNA and protein levels, finally improved the differentiation of osteoblasts. By the engagement of Wnt/β-catenin pathway's inhibitor (XAV-939), the protective effects of FDP-Sr on osteoblastic differentiation against oxidative stress were repressed along with inhibited wnt/β-catenin signaling and reduced mRNA and protein levels of Runx2 and OPG. In conclusion, FDP-Sr was demonstrated to protect osteoblast differentiation from oxidative damage induced by H2O2 through up-regulation of Wnt/β-catenin signaling, and FDP in FDP-Sr was able to directly improve the oxidative stress injury through its ROS scavenging ability.

  2. Effect of copper-doped silicate 13-93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo.

    PubMed

    Lin, Yinan; Xiao, Wei; Bal, B Sonny; Rahaman, Mohamed N

    2016-10-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13-93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0-2.0wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8wt.% CuO in the glass but they were significantly reduced by 2.0wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6weeks in rat calvarial defects (46±8%) was not significantly affected by 0.4 or 0.8wt.% CuO in the glass whereas it was significantly inhibited (0.8±0.7%) in the scaffolds doped with 2.0wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13-93 glass scaffolds with up to 0.8wt.% CuO did not affect their biocompatibility whereas 2.0wt.% CuO was toxic to cells and detrimental to bone regeneration.

  3. Fluid shear stress suppresses TNF-α-induced apoptosis in MC3T3-E1 cells: Involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways.

    PubMed

    Bin, Geng; Bo, Zhang; Jing, Wang; Jin, Jiang; Xiaoyi, Tan; Cong, Chen; Liping, An; Jinglin, Ma; Cuifang, Wang; Yonggang, Chen; Yayi, Xia

    2016-05-01

    TNF-α is known to induce osteoblasts apoptosis, whereas mechanical stimulation has been shown to enhance osteoblast survival. In the present study, we found that mechanical stimulation in the form of fluid shear stress (FSS) suppresses TNF-α induced apoptosis in MC3T3-E1 cells. Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family that has been implicated in cell survival. We also demonstrated that FSS imposed by flow chamber in vitro leads to a markedly activation of ERK5, which was shown to be protective against TNF-α-induced apoptosis, whereas the transfection of siRNA against ERK5 (ERK5-siRNA) reversed the FSS-medicated anti-apoptotic effects. An initial FSS-mediated activation of ERK5 that phosphorylates AKT to increase its activity, and a following forkhead box O 3a (FoxO3a) was phosphorylated by activated AKT. Phosphorylated FoxO3a is sequestered in the cytoplasm, and prevents it from translocating to nucleus where it can increase the expression of FasL and Bim. The inhibition of AKT-FoxO3a signalings by a PI3K (PI3-kinase)/AKT inhibitor (LY294002) or the transfection of ERK5-siRNA led to the nuclear translocation of non-phosphorylated FoxO3a, and increased the protein expression of FasL and Bim. In addition, the activation of caspase-3 by TNF-α was significantly inhibited by aforementioned FSS-medicated mechanisms. In brief, the activation of ERK5-AKT-FoxO3a signaling pathways by FSS resulted in a decreased expression of FasL and Bim and an inhibition of caspase-3 activation, which exerts a protective effect that prevents osteoblasts from apoptosis.

  4. Application of the improved BALB/c 3T3 cell transformation assay to the examination of the initiating and promoting activities of chemicals: the second interlaboratory collaborative study by the non-genotoxic carcinogen study group of Japan.

    PubMed

    Tsuchiya, Toshiyuki; Umeda, Makoto; Tanaka, Noriho; Sakai, Ayako; Nishiyama, Hiroshi; Yoshimura, Isao; Ajimi, Syozo; Asada, Shin; Asakura, Masumi; Baba, Hiroshi; Dewa, Yasuaki; Ebe, Youji; Fushiwaki, Yuichi; Hagiwara, Yuji; Hamada, Shuichi; Hamamura, Tetsuo; Iwase, Yumiko; Kajiwara, Yoshitsugu; Kasahara, Yasushi; Kato, Yukihiko; Kawabata, Masayoshi; Kitada, Emiko; Kaneko, Kazuko; Kizaki, Yuko; Kubo, Kinya; Miura, Daisaku; Mashiko, Kaori; Mizuhashi, Fukutaro; Muramatsu, Dai; Nakajima, Madoka; Nakamura, Tetsu; Oishi, Hidetoshi; Sasaki, Toshiaki; Shimada, Sawako; Takahashi, Chitose; Takeda, Yuko; Wakuri, Sinobu; Yajima, Nobuhiro; Yajima, Satoshi; Yatsushiro, Tomoko

    2010-03-01

    The Non-genotoxic Carcinogen Study Group in the Environmental Mutagen Society of Japan organised the second step of the inter-laboratory collaborative study on one-stage and two-stage cell transformation assays employing BALB/c 3T3 cells, with the objective of confirming whether the respective laboratories could independently produce results relevant to initiation or promotion. The method was modified to use a medium consisting of DMEM/F12 supplemented with 2% fetal bovine serum and a mixture of insulin, transferrin, ethanolamine and sodium selenite, at the stationary phase of cell growth. Seventeen laboratories collaborated in this study, and each chemical was tested by three to five laboratories. Comparison between the one-stage and two-stage assays revealed that the latter method would be beneficial in the screening of chemicals. In the test for initiating activity with the two-stage assay (post-treated with 0.1microg/ml 12-O-tetradecanoylphorbol-13-acetate), the relevant test laboratories all obtained positive results for benzo[a]pyrene and methylmethane sulphonate, and negative results for phenanthrene. Of those laboratories assigned phenacetin for the initiation phase, two returned positive results and two returned negative results, where the latter laboratories tested up to one dose lower than the maximum dose used by the former laboratories. In the exploration of promoting activity with the twostage assay (pretreated with 0.2microg/ml 3-methylcholanthrene), the relevant test laboratories obtained positive results for mezerein, sodium orthovanadate and TGF-beta1, and negative results for anthralin, phenacetin and phorbol. Two results returned for phorbol 12,13-didecanoate were positive, but one result was negative - again, the maximum dose to achieve the latter result was lower than that which produced the former results. These results suggest that this modified assay method is relevant, reproducible and transferable, provided that dosing issues, such as the

  5. A Comparison of Epithelial Cells, Fibroblasts, and Osteoblasts in Dental Implant Titanium Topographies

    PubMed Central

    Teng, Fu-Yuan; Ko, Chia-Ling; Kuo, Hsien-Nan; Hu, Jin-Jia; Lin, Jia-Horng; Lou, Ching-Wen; Hung, Chun-Cheng; Wang, Yin-Lai; Cheng, Cheng-Yi; Chen, Wen-Cheng

    2012-01-01

    The major challenge for dental implants is achieving optimal esthetic appearance and a concept to fulfill this criterion is evaluated. The key to an esthetically pleasing appearance lies in the properly manage the soft tissue profile around dental implants. A novel implant restoration technique on the surface was proposed as a way to augment both soft- and hard-tissue profiles at potential implant sites. Different levels of roughness can be attained by sandblasting and acid etching, and a tetracalcium phosphate was used to supply the ions. In particular, the early stage attaching and repopulating abilities of bone cell osteoblasts (MC3T3-E1), fibroblasts (NIH 3T3), and epithelial cells (XB-2) were evaluated. The results showed that XB-2 cell adhesive qualities of a smooth surface were better than those of the roughened surfaces, the proliferative properties were reversed. The effects of roughness on the characteristics of 3T3 cells were opposite to the result for XB-2 cells. E1 proliferative ability did not differ with any statistical significance. These results suggest that a rougher surface which provided calcium and phosphate ions have the ability to enhance the proliferation of osteoblast and the inhibition of fibroblast growth that enhance implant success ratios. PMID:22287942

  6. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    SciTech Connect

    Lai, Peng-Yeh; Tsai, Chong-Bin; Tseng, Min-Jen

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  7. Culture of human limbal epithelial stem cells on tenon's fibroblast feeder-layers: a translational approach.

    PubMed

    Scafetta, Gaia; Siciliano, Camilla; Frati, Giacomo; De Falco, Elena

    2015-01-01

    The coculture technique is the standard method to expand ex vivo limbal stem cells (LSCs) by using inactivated embryonic murine feeder layers (3T3). Although alternative techniques such as amniotic membranes or scaffolds have been proposed, feeder layers are still considered to be the best method, due to their ability to preserve some critical properties of LSCs such as cell growth and viability, stemness phenotype, and clonogenic potential. Furthermore, clinical applications of LSCs cultured on 3T3 have taken place. Nevertheless, for an improved Good Manufacturing Practice (GMP) compliance, the use of human feeder-layers as well as a fine standardization of the process is strictly encouraged. Here, we describe a translational approach in accordance with GMP regulations to culture LSCs onto human Tenon's fibroblasts (TFs). In this chapter, based on our experience we identify and analyze issues that often are encountered by researchers and discuss solutions to common problems. PMID:25063497

  8. Culture of human limbal epithelial stem cells on tenon's fibroblast feeder-layers: a translational approach.

    PubMed

    Scafetta, Gaia; Siciliano, Camilla; Frati, Giacomo; De Falco, Elena

    2015-01-01

    The coculture technique is the standard method to expand ex vivo limbal stem cells (LSCs) by using inactivated embryonic murine feeder layers (3T3). Although alternative techniques such as amniotic membranes or scaffolds have been proposed, feeder layers are still considered to be the best method, due to their ability to preserve some critical properties of LSCs such as cell growth and viability, stemness phenotype, and clonogenic potential. Furthermore, clinical applications of LSCs cultured on 3T3 have taken place. Nevertheless, for an improved Good Manufacturing Practice (GMP) compliance, the use of human feeder-layers as well as a fine standardization of the process is strictly encouraged. Here, we describe a translational approach in accordance with GMP regulations to culture LSCs onto human Tenon's fibroblasts (TFs). In this chapter, based on our experience we identify and analyze issues that often are encountered by researchers and discuss solutions to common problems.

  9. The 3T3-L1 adipocyte glycogen proteome

    PubMed Central

    2013-01-01

    Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle. PMID:23521774

  10. Comparison of murine fibroblast cell response to fluor-hydroxyapatite composite, fluorapatite and hydroxyapatite by eluate assay.

    PubMed

    Jantová, Sona; Letasiová, Silvia; Theiszová, Marica; Palou, M

    2009-03-01

    Fluorapatite (FA) is one of the inorganic constituents of bone or teeth used for hard tissue repairs and replacements. Fluor-hydroxyapatite (FHA) is a new synthetic composite that contains the same molecular concentration of OH(-) groups and F(-) ions. The aim of this experiment was to evaluate the cellular responses of murine fibroblast NIH-3T3 cells in vitro to solid solutions of FHA and FA and to compare them with the effect of hydroxyapatite (HA). We studied 24, 48 and 72 h effects of biomaterials on cell morphology, proliferation and cell cycle of NIH-3T3 cells by eluate assay. Furthermore, we examined the ability of FHA, FA and HA to induce cell death and DNA damage. Our cytotoxic/antiproliferative studies indicated that any of tested biomaterials did not cause the total inhibition of cell division. Biomaterials induced different antiproliferative effects increasing in the order HA < FHA < FA which were time- and concentration-dependent. None of the tested biomaterials induced necrotic/apoptotic death of NIH-3T3 cells. On the other hand, after 72 h we found that FHA and FA induced G0/G1 arrest of NIH-3T3 cells, while HA did not affect any cell cycle phases. Comet assay showed that while HA demonstrated weaker genotoxicity, DNA damage induced by FHA and FA caused G0/G1 arrest of NIH-3T3 cells. Fluoridation of hydroxyapatite and different FHA and FA structure caused different cell response of NIH-3T3 cells to biomaterials.

  11. ErbB2 and EGFR are downmodulated during the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Pagano, Eleonora; Calvo, Juan Carlos

    2003-10-15

    The expression of receptors belonging to the epidermal growth factor receptor subfamily has been largely studied these last years in epithelial cells mainly as involved in cell proliferation and malignant progression. Although much work has focused on the role of these growth factor receptors in the differentiation of a variety of tissues, there is little information in regards to normal stromal cells. We investigated erbB2 expression in the murine fibroblast cell line Swiss 3T3L1, which naturally or hormonally induced undergoes adipocyte differentiation. We found that the Swiss 3T3-L1 fibroblasts express erbB2, in addition to EGFR, and in a quantity comparable to or even greater than the breast cancer cell line T47D. Proliferating cells increased erbB2 and EGFR levels when reaching confluence up to 4- and 10-fold, respectively. This expression showed a significant decrease when growth-arrested cells were stimulated to differentiate with dexamethasone and isobutyl-methylxanthine. Differentiated cells presented a decreased expression of both erbB2 and EGFR regardless of whether the cells were hormonally or spontaneously differentiated. EGF stimulation of serum-starved cells increased erbB2 tyrosine phosphorylation and retarded erbB2 migration in SDS-PAGE, suggesting receptor association and activation. Heregulin-alpha1 and -beta1, two EGF related factors, had no effect on erbB2 or EGFR phosphorylation. Although 3T3-L1 cells expressed heregulin, its specific receptors, erbB3 and erbB4, were not found. This is the first time in which erbB2 is reported to be expressed in an adipocytic cell line which does not depend on non EGF family growth factors (thyroid hormone, growth hormone, etc.) to accomplish adipose differentiation. Since erbB2 and EGFR expression were downmodulated as differentiation progressed it is conceivable that a mechanism of switching from a mitogenic to a differentiating signaling pathway may be involved, through regulation of the expression of these

  12. Assessment of the phototoxic hazard of some essential oils using modified 3T3 neutral red uptake assay.

    PubMed

    Dijoux, Nathalie; Guingand, Yannick; Bourgeois, Caroline; Durand, Sandrine; Fromageot, Claude; Combe, Corinne; Ferret, Pierre-Jacques

    2006-06-01

    When substances are developed in the aim to be a constituent of personal care products, and to be applied on the skin, it is necessary to carry out an assessment of potential phototoxic hazard. Phototoxicity is skin reaction caused by concurrent topical or systemic exposure to specific molecule and ultraviolet radiation. Most phototoxic compounds absorb energy particularly from UVA light leading to the generation of activated derivatives which can induce cellular damage. This type of adverse cutaneous response can be reproduced in vitro using different models of phototoxicity such as the validated 3T3 Neutral Red Uptake (NRU) phototoxicity assay. In the present study we utilised two different cell lines (the murine fibroblastic cell line 3T3 and the rabbit cornea derived cell line SIRC) to compare the photo-irritation potential of a strong phototoxic compound, chlorpromazine, to a weaker composite, such as 8-methoxypsoralen and Bergamot oil. After comparison of the different systems, five other essential oils were tested with both cell lines. Cellular damage was evaluated by the NRU cytotoxicity test or by MTT conversion test.

  13. Transformer 2β homolog (Drosophila) (TRA2B) regulates protein kinase C δI (PKCδI) splice variant expression during 3T3L1 preadipocyte cell cycle.

    PubMed

    Patel, Rekha S; Carter, Gay; Cooper, Denise R; Apostolatos, Hercules; Patel, Niketa A

    2014-11-14

    Obesity is characterized by adipocyte hyperplasia and hypertrophy. We previously showed that PKCδ expression is dysregulated in obesity (Carter, G., Apostolatos, A., Patel, R., Mathur, A., Cooper, D., Murr, M., and Patel, N. A. (2013) ISRN Obes. 2013, 161345). Using 3T3L1 preadipocytes, we studied adipogenesis in vitro and showed that expression of PKCδ splice variants, PKCδI and PKCδII, have different expression patterns during adipogenesis (Patel, R., Apostolatos, A., Carter, G., Ajmo, J., Gali, M., Cooper, D. R., You, M., Bisht, K. S., and Patel, N. A. (2013) J. Biol. Chem. 288, 26834-26846). Here, we evaluated the role of PKCδI splice variant during adipogenesis. Our results indicate that PKCδI expression level is high in preadipocytes and decreasing PKCδI accelerated terminal differentiation. Our results indicate that PKCδI is required for mitotic clonal expansion of preadipocytes. We next evaluated the splice factor regulating the expression of PKCδI during 3T3L1 adipogenesis. Our results show TRA2B increased PKCδI expression. To investigate the molecular mechanism, we cloned a heterologous splicing PKCδ minigene and showed that inclusion of PKCδ exon 9 is increased by TRA2B. Using mutagenesis and a RNA-immunoprecipitation assay, we evaluated the binding of Tra2β on PKCδI exon 9 and show that its association is required for PKCδI splicing. These results provide a better understanding of the role of PKCδI in adipogenesis. Determination of this molecular mechanism of alternative splicing presents a novel therapeutic target in the management of obesity and its co-morbidities.

  14. Role of non-genomic androgen signalling in suppressing proliferation of fibroblasts and fibrosarcoma cells.

    PubMed

    Castoria, G; Giovannelli, P; Di Donato, M; Ciociola, A; Hayashi, R; Bernal, F; Appella, E; Auricchio, F; Migliaccio, A

    2014-12-04

    The functions of androgen receptor (AR) in stromal cells are still debated in spite of the demonstrated importance of these cells in organ development and diseases. Here, we show that physiological androgen concentration (10 nM R1881 or DHT) fails to induce DNA synthesis, while it consistently stimulates cell migration in mesenchymal and transformed mesenchymal cells. Ten nanomolar R1881 triggers p27 Ser10 phosphorylation and its stabilization in NIH3T3 fibroblasts. Activation of Rac and its downstream effector DYRK 1B is responsible for p27 Ser10 phosphorylation and cell quiescence. Ten nanomolar androgen also inhibits transformation induced by oncogenic Ras in NIH3T3 fibroblasts. Overexpression of an AR mutant unable to interact with filamin A, use of a small peptide displacing AR/filamin A interaction, and filamin A knockdown indicate that the androgen-triggered AR/filamin A complex regulates the pathway leading to p27 Ser10 phosphorylation and cell cycle arrest. As the AR/filamin A complex is also responsible for migration stimulated by 10 nM androgen, our report shows that the androgen-triggered AR/filamin A complex controls, through Rac 1, the decision of cells to halt cell cycle and migration. This study reveals a new and unexpected role of androgen/AR signalling in coordinating stromal cell functions.

  15. Irradiated Human Dermal Fibroblasts Are as Efficient as Mouse Fibroblasts as a Feeder Layer to Improve Human Epidermal Cell Culture Lifespan

    PubMed Central

    Bisson, Francis; Rochefort, Éloise; Lavoie, Amélie; Larouche, Danielle; Zaniolo, Karine; Simard-Bisson, Carolyne; Damour, Odile; Auger, François A.; Guérin, Sylvain L.; Germain, Lucie

    2013-01-01

    A fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties. Keratinocytes were grown either with or without a feeder layer in serum-containing medium. Our results showed that keratinocytes grown either on an irradiated human feeder layer or irradiated 3T3 cells (i3T3) can be cultured for a comparable number of passages. The average epithelial cell size and morphology were also similar. On the other hand, keratinocytes grown without a feeder layer showed heavily bloated cells at early passages and stop proliferating after only a few passages. On the molecular aspect, the expression level of the transcription factor Sp1, a useful marker of keratinocytes lifespan, was maintained and stabilized for a high number of passages in keratinocytes grown with feeder layers whereas Sp1 expression dropped quickly without a feeder layer. Furthermore, gene profiling on microarrays identified potential target genes whose expression is differentially regulated in the absence or presence of an i3T3 feeder layer and which may contribute at preserving the growth characteristics of these cells. Irradiated human dermal fibroblasts therefore provide a good human feeder layer for an effective expansion of keratinocytes in vitro that are to be used for clinical purposes. PMID:23443166

  16. Insulin-Mimetic Action of Rhoifolin and Cosmosiin Isolated from Citrus grandis (L.) Osbeck Leaves: Enhanced Adiponectin Secretion and Insulin Receptor Phosphorylation in 3T3-L1 Cells

    PubMed Central

    Rao, Yerra Koteswara; Lee, Meng-Jen; Chen, Keru; Lee, Yi-Ching; Wu, Wen-Shi; Tzeng, Yew-Min

    2011-01-01

    Citrus grandis (L.) Osbeck (red wendun) leaves have been used in traditional Chinese medicine to treat several illnesses including diabetes. However, there is no scientific evidence supporting these actions and its active compounds. Two flavone glycosides, rhoifolin and cosmosiin were isolated for the first time from red wendun leaves and, identified these leaves are rich source for rhoifolin (1.1%, w/w). In differentiated 3T3-L1 adipocytes, rhoifolin and cosmosiin showed dose-dependent response in concentration range of o.oo1–5 μM and 1–20 μM, respectively, in biological studies beneficial to diabetes. Particularly, rhoifolin and cosmosiin at 0.5 and 20 μM, respectively showed nearly similar response to that 10 nM of insulin, on adiponectin secretion level. Furthermore, 5 μM of rhoifolin and 20 μM of cosmosiin showed equal potential with 10 nM of insulin to increase the phosphorylation of insulin receptor-β, in addition to their positive effect on GLUT4 translocation. These findings indicate that rhoifolin and cosmosiin from red wendun leaves may be beneficial for diabetic complications through their enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and GLUT4 translocation. PMID:20008903

  17. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP).

    PubMed Central

    Ron, D; Brasier, A R; McGehee, R E; Habener, J F

    1992-01-01

    Tumor necrosis factor (TNF)-treated 3T3-L1 adipocytes were used as a model for studying the effects of systemic inflammation on adipose tissue. Lipopolysaccharide-treated monocyte-conditioned medium or recombinant human TNF alpha induced morphological dedifferentiation of the adipocytes and led to loss of adipocyte specific gene expression. Gel shift, Southwestern and Western immunoblot analysis demonstrated that dedifferentiation was preceded by a decrease in the DNA binding activity and protein level of the transcription factor CCAAT/enhancer binding protein (C/EBP). Liver activating protein, a related protein that binds identical DNA sequences, increased during cytokine treatment. Both proteins activate specific enhancer elements located in the promoter region of many genes whose transcription is altered during systemic inflammation. Pulse-chase labeling followed by immunoprecipitation demonstrated that C/EBP is a rapidly turning over protein in adipocytes and that cytokine treatment led to a specific, time dependent decrease in its rate of synthesis. Because C/EBP binding sites have been shown to play an important role in regulating the expression of genes involved in adipocyte metabolism, we propose that the TNF-induced changes in the complement of transcription factors binding those sites may be important in the pathogenesis of inflammation-induced atrophy of adipose tissue. Images PMID:1729273

  18. Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats

    PubMed Central

    Uteza, Yves; Rouillot, Jean-Sébastien; Kobetz, Alexandra; Marchant, Dominique; Pecqueur, Sèverine; Arnaud, Emmanuelle; Prats, Hervé; Honiger, Jiri; Dufier, Jean-Louis; Abitbol, Marc; Neuner-Jehle, Martin

    1999-01-01

    We developed an experimental approach with genetically engineered and encapsulated mouse NIH 3T3 fibroblasts to delay the progressive degeneration of photoreceptor cells in dark-eyed Royal College of Surgeons rats. These xenogeneic fibroblasts can survive in 1.5-mm-long microcapsules made of the biocompatible polymer AN69 for at least 90 days under in vitro and in vivo conditions because of their stable transfection with the gene for the 18-kDa form of the human basic fibroblast growth factor (hFGF-2). Furthermore, when transferred surgically into the vitreous cavity of 21-day-old Royal College of Surgeons rats, the microencapsulated hFGF-2-secreting fibroblasts provoked a local delay of photoreceptor cell degeneration, as seen at 45 days and 90 days after transplantation. This effect was limited to 2.08 mm2 (45 days) and 0.95 mm2 (90 days) of the retinal surface. In both untreated eyes and control globes with encapsulated hFGF-2-deficient fibroblasts, the rescued area (of at most 0.08 mm2) was significantly smaller at both time points. Although, in a few ocular globes, surgical trauma induced a reorganization of the retinal cytoarchitecture, neither microcapsule rejection nor hFGF-2-mediated tumor formation were detected in any treated eyes. These findings indicate that encapsulated fibroblasts secreting hFGF-2 or perhaps other agents can be applied as potential therapeutic tools to treat retinal dystrophies. PMID:10077648

  19. DNA Methylation Suppresses Leptin Gene in 3T3-L1 Adipocytes

    PubMed Central

    Kuroda, Masashi; Tominaga, Ayako; Nakagawa, Kasumi; Nishiguchi, Misa; Sebe, Mayu; Miyatake, Yumiko; Kitamura, Tadahiro; Tsutsumi, Rie; Harada, Nagakatsu; Nakaya, Yutaka; Sakaue, Hiroshi

    2016-01-01

    Leptin is a key regulator of energy intake and expenditure. This peptide hormone is expressed in mouse white adipose tissue, but hardly expressed in 3T3-L1 adipocytes. Using bisulfite sequencing, we found that CpG islands in the leptin promoter are highly methylated in 3T3-L1cells. 5-azacytidine, an inhibitor of DNA methyltransferase, markedly increased leptin expression as pre-adipocytes matured into adipocytes. Remarkably, leptin expression was stimulated by insulin in adipocytes derived from precursor cells exposed to 5-azacytidine, but suppressed by thiazolidinedione and dexamethasone. In contrast, adipocytes derived from untreated precursor cells were unresponsive to both 5-azacytidine and hormonal stimuli, although lipid accumulation was sufficient to boost leptin expression in the absence of demethylation. Taken together, the results suggest that leptin expression in 3T3-L1 cells requires DNA demethylation prior to adipogenesis, transcriptional activation during adipogenesis, and lipid accumulation after adipogenesis. PMID:27494408

  20. The effect of myostatin on proliferation and lipid accumulation in 3T3-L1 preadipocytes.

    PubMed

    Zhu, Hui Juan; Pan, Hui; Zhang, Xu Zhe; Li, Nai Shi; Wang, Lin Jie; Yang, Hong Bo; Gong, Feng Ying

    2015-06-01

    Myostatin is a critical negative regulator of skeletal muscle development, and has been reported to be involved in the progression of obesity and diabetes. In the present study, we explored the effects of myostatin on the proliferation and differentiation of 3T3-L1 preadipocytes by using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide spectrophotometry, intracellular triglyceride (TG) assays, and real-time quantitative RT-PCR methods. The results indicated that recombinant myostatin significantly promoted the proliferation of 3T3-L1 preadipocytes and the expression of proliferation-related genes, including Cyclin B2, Cyclin D1, Cyclin E1, Pcna, and c-Myc, and IGF1 levels in the medium of 3T3-L1 were notably upregulated by 35.2, 30.5, 20.5, 33.4, 51.2, and 179% respectively (all P<0.01) in myostatin-treated 3T3-L1 cells. Meanwhile, the intracellular lipid content of myostatin-treated cells was notably reduced as compared with the non-treated cells. Additionally, the mRNA levels of Pparγ, Cebpα, Gpdh, Dgat, Acs1, Atgl, and Hsl were significantly downregulated by 22-76% in fully differentiated myostatin-treated adipocytes. Finally, myostatin regulated the mRNA levels and secretion of adipokines, including Adiponectin, Resistin, Visfatin, and plasminogen activator inhibitor-1 (PAI-1) in 3T3-L1 adipocytes (all P<0.001). Above all, myostatin promoted 3T3-L1 proliferation by increasing the expression of cell-proliferation-related genes and by stimulating IGF1 secretion. Myostatin inhibited 3T3-L1 adipocyte differentiation by suppressing Pparγ and Cebpα expression, which consequently deceased lipid accumulation in 3T3-L1 cells by inhibiting the expression of critical lipogenic enzymes and by promoting the expression of lipolytic enzymes. Finally, myostatin modulated the expression and secretion of adipokines in fully differentiated 3T3-L1 adipocytes. PMID:25878062

  1. Epac, not PKA catalytic subunit, is required for 3T3-L1 preadipocyte differentiation

    PubMed Central

    Ji, Zhenyu; Mei, Fang C.; Cheng, Xiaodong

    2009-01-01

    Cyclic AMP plays a critical role in adipocyte differentiation and maturation. However, it is not clear which of the two intracellular cAMP receptors, exchange protein directly activated by cAMP/cAMP-regulated guanine nucleotide exchange factor or protein kinase A/cAMP-dependent protein kinase, is essential for cAMP-mediated adipocyte differentiation. In this study, we utilized a well-defined adipose differentiation model system, the murine preadipocyte line 3T3-L1, to address this issue. We showed that knocking down Epac expression in 3T3-L1 cells using lentiviral based small hairpin RNAs down-regulated peroxisome proliferator-activated receptor gamma expression and dramatically inhibited adipogenic conversion of 3T3-L1 cells while inhibiting PKA catalytic subunit activity by two mechanistically distinct inhibitors, heat stable protein kinase inhibitor and H89, had no effect on 3T3-L1 adipocyte differentiation. Moreover, cAMP analog selectively activating Epac was not able to stimulate adipogenic conversion. Our study demonstrated that while PKA catalytic activity is dispensable, activation of Epac is necessary but not sufficient for adipogenic conversion of 3T3-L1 cells. PMID:20036887

  2. PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells.

    PubMed

    Feng, Ru; Desbordes, Sabrina C; Xie, Huafeng; Tillo, Ester Sanchez; Pixley, Fiona; Stanley, E Richard; Graf, Thomas

    2008-04-22

    Earlier work has shown that the transcription factor C/EBPalpha induced a transdifferentiation of committed lymphoid precursors into macrophages in a process requiring endogenous PU.1. Here we have examined the effects of PU.1 and C/EBPalpha on fibroblasts, a cell type distantly related to blood cells and akin to myoblasts, adipocytes, osteoblasts, and chondroblasts. The combination of the two factors, as well as PU.1 and C/EBPbeta, induced the up-regulation of macrophage/hematopoietic cell surface markers in a large proportion of NIH 3T3 cells. They also up-regulated these markers in mouse embryo- and adult skin-derived fibroblasts. Based on cell morphology, activation of macrophage-associated genes, and extinction of fibroblast-associated genes, cell lines containing an attenuated form of PU.1 and C/EBPalpha acquired a macrophage-like phenotype. The lines also display macrophage functions: They phagocytose small particles and bacteria, mount a partial inflammatory response, and exhibit strict CSF-1 dependence for growth. The myeloid conversion is primarily induced by PU.1, with C/EBPalpha acting as a modulator of macrophage-specific gene expression. Our data suggest that it might become possible to induce the transdifferentiation of skin-derived fibroblasts into cell types desirable for tissue regeneration.

  3. Effect of Gambisan on the Inhibition of Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Kang, Jung Won; Nam, Dongwoo; Kim, Kun Hyung; Huh, Jeong-Eun; Lee, Jae-Dong

    2013-01-01

    This study was conducted to explore the antiadipogenic effect and possible mechanism of Gambisan on 3T3-L1 cells. For quality control, Gambisan was standardized by HPLC and the standard compounds ephedrine, epigallocatechin-3-gallate, and caffeine were screened. Cultured 3T3-L1 cells that had been induced to differentiate were treated with various concentrations of Gambisan or its major component extracts (Ephedra intermedia Schrenk, Atractylodes lancea DC., and Thea sinensis L.) for 72 hours for MTT assay to determine cell viability or 10 days for LDH assay, triglyceride assay, DNA content measurement, Oil red O staining, RT-PCR, and western blot. Gambisan significantly inhibited adipogenesis in 3T3-L1 cells by reducing triglyceride contents and lipid accumulation in a dose-dependent manner without obvious cytotoxicity. Viability and DNA content in 3T3-L1 cells treated with Gambisan were significantly higher than cells treated with the major component extracts at every concentration. The anti-adipogenic effects of Gambisan appeared to be mediated by a significant downregulation of the expression of lipoprotein lipase mRNA and PPARγ, C/EBPα, and SREBP-1 protein apart from the expression of hormone-sensitive lipase. Gambisan could act as a possible therapeutic agent for obesity. However, further studies including in vivo assays and clinical trials are needed to confirm the efficacy, safety and mechanisms of the antiobesity effects of Gambisan. PMID:24069055

  4. Microinjection of fos-specific antibodies blocks DNA synthesis in fibroblast cells

    SciTech Connect

    Riabowol, K.T.; Vosatka, R.J.; Ziff, E.B.; Lamb, N.J.; Feramisco, J.R.

    1988-04-01

    Transcription of the protooncogene c-fos is increased >10-fold within minutes of treatment of fibroblasts with serum or purified growth factors. Recent experiments with mouse 3T3 cell lines containing inducible fos antisense RNA constructs have shown that induced fos antisense RNA transcripts cause either a marked inhibition of growth in continuously proliferating cells or, conversely, a minimal effect except during the transition from a quiescent (G/sub o/) state into the cell cycle. Since intracellular production of large amounts of antisense RNA does not completely block gene expression, the authors microinjected affinity-purified antibodies raised against fos to determine whether and when during the cell cycle c-fos expression was required for cell proliferation. Using this independent method, they found that microinjected fos antibodies efficiently blocked serum-stimulated DNA synthesis when injected up to 6 to 8 h after serum stimulation of quiescent REF-52 fibroblasts. Furthermore, when fos antibodies were injected into asynchronously growing cells, a consistently greater number of cells was prevented from synthesizing DNA than when cells were injected with nonspecific immunoglobulins. Thus, whereas the activity of c-fos may be necessary for transition of fibroblasts from G/sub o/ to G/sub 1/ of the cell cycle, its function is also required during the early G/sub 1/ portion of the cell cycle to allow subsequent DNA synthesis.

  5. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.

    PubMed

    Sinlapabodin, Salita; Amornsudthiwat, Phakdee; Damrongsakkul, Siriporn; Kanokpanont, Sorada

    2016-01-01

    In cell culture, a perfusion bioreactor provides effective transportation of nutrients, oxygen, and waste removal to and from the core of the scaffold. In addition, it provides mechanical stimuli for enhancing osteogenic differentiation. In this study, we used an axial distribution of cell numbers, alkaline phosphatase (ALP) enzyme activity, and calcium content across 4 cross-sections of 10mm thick scaffold, made of Thai silk fibroin (SF)/gelatin (G)/hydroxyapatite (HA), as a tool to evaluate the suitable perfusion flow rate. These evaluations cover all cellular developmental phases starting from seeding, to proliferation, and later osteogenic differentiation. Mouse pre-osteoblastic MC3T3-E1 cell lines were used as a cell model during seeding and proliferation. The bioreactor seeded scaffold provided more uniform cell distribution across the scaffold compared to centrifugal and agitation seeding, while the overall number of adhered cells from bioreactor seeding was slightly lower than agitation seeding. The dynamic culture using 1 ml/min perfusion flow rate (initial shear stress of 0.1 dyn/cm(2)) enabled statistically higher MC3T3-E1 proliferation, ALP activity, and calcium deposition than those observed in the static-culturing condition. However, the perfusion flow rate of 1 ml/min seemed not to be enough for enhancing ALP expression across all sections of the scaffold. Rat bone marrow derived stromal cells (rMSC) were used in the detachment test and osteogenic differentiation. It was found that perfusion flow rate of 5 ml/min caused statistically higher cell detachment than that of 1 and 3 ml/min. The perfusion flow rate of 3 ml/min gave the highest rMSC osteogenic differentiation on a SF/G/HA scaffold than other flow rates, as observed from the significantly highest number of ALP enzyme activity and the calcium content without any significant cell growth. In addition, all of these parameters were evenly distributed across all scaffold sections. PMID:26478392

  6. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.

    PubMed

    Sinlapabodin, Salita; Amornsudthiwat, Phakdee; Damrongsakkul, Siriporn; Kanokpanont, Sorada

    2016-01-01

    In cell culture, a perfusion bioreactor provides effective transportation of nutrients, oxygen, and waste removal to and from the core of the scaffold. In addition, it provides mechanical stimuli for enhancing osteogenic differentiation. In this study, we used an axial distribution of cell numbers, alkaline phosphatase (ALP) enzyme activity, and calcium content across 4 cross-sections of 10mm thick scaffold, made of Thai silk fibroin (SF)/gelatin (G)/hydroxyapatite (HA), as a tool to evaluate the suitable perfusion flow rate. These evaluations cover all cellular developmental phases starting from seeding, to proliferation, and later osteogenic differentiation. Mouse pre-osteoblastic MC3T3-E1 cell lines were used as a cell model during seeding and proliferation. The bioreactor seeded scaffold provided more uniform cell distribution across the scaffold compared to centrifugal and agitation seeding, while the overall number of adhered cells from bioreactor seeding was slightly lower than agitation seeding. The dynamic culture using 1 ml/min perfusion flow rate (initial shear stress of 0.1 dyn/cm(2)) enabled statistically higher MC3T3-E1 proliferation, ALP activity, and calcium deposition than those observed in the static-culturing condition. However, the perfusion flow rate of 1 ml/min seemed not to be enough for enhancing ALP expression across all sections of the scaffold. Rat bone marrow derived stromal cells (rMSC) were used in the detachment test and osteogenic differentiation. It was found that perfusion flow rate of 5 ml/min caused statistically higher cell detachment than that of 1 and 3 ml/min. The perfusion flow rate of 3 ml/min gave the highest rMSC osteogenic differentiation on a SF/G/HA scaffold than other flow rates, as observed from the significantly highest number of ALP enzyme activity and the calcium content without any significant cell growth. In addition, all of these parameters were evenly distributed across all scaffold sections.

  7. Anti-Obesity Effects of Starter Fermented Kimchi on 3T3-L1 Adipocytes

    PubMed Central

    Lee, Kyung-Hee; Song, Jia-Le; Park, Eui-Seong; Ju, Jaehyun; Kim, Hee-Young; Park, Kun-Young

    2015-01-01

    The anti-obesity effects of starter (Leuconostoc mesenteroides+Lactobacillus plantarum) fermented kimchi on 3T3-L1 adipocyte were studied using naturally fermented kimchi (NK), a functional kimchi (FK, NK supplemented with green tea), and FK supplemented with added starters (FKS). Oil red O staining and cellular levels of triglyceride (TG) and glycerol were used to evaluate the in vitro anti-obesity effects of these kimchis in 3T3-L1 cells. The expressions of adipogenesis/lipogenesis-related genes of peroxisome proliferator-active receptor (PPAR)-γ, CCAAT/enhance-binding protein (C/EBP)-α, and fatty acid synthase (FAS) were determined by RT-PCR. Kimchis, especially FKS, markedly decreased TG levels and increased levels of intracellular glycerol and lipid lipolysis. In addition, FKS also reduced the mRNA levels of PPAR-γ, C/EBP-α, and FAS, which are related to adipogenesis/lipogenesis in 3T3-L1 cells. These results suggest the anti-obesity effects of FKS were to due to enhanced lipolysis and reduced adipogenesis/lipogenesis in 3T3-L1 adipocytes. PMID:26770918

  8. Resistin regulates the expression of plasminogen activator inhibitor-1 in 3T3-L1 adipocytes.

    PubMed

    Ikeda, Yoshito; Tsuchiya, Hiroyuki; Hama, Susumu; Kajimoto, Kazuaki; Kogure, Kentaro

    2014-05-30

    Resistin and plasminogen activator inhibitor-1 (PAI-1) are adipokines, which are secreted from adipocytes. Increased plasma resistin and PAI-1 levels aggravate metabolic syndrome through exacerbation of insulin resistance and induction of chronic inflammation. However, the relationship between resistin and PAI-1 gene expression remains unclear. Previously, we found that resistin regulates lipid metabolism via carbohydrate responsive element-binding protein (ChREBP) during adipocyte maturation (Ikeda et al., 2013) [6]. In this study, to clarify the relationship between expression of resistin and PAI-1, PAI-1 expression in differentiated 3T3-L1 adipocytes was measured after transfection with anti-resistin siRNA. We found that PAI-1 gene expression and secreted PAI-1 protein were significantly decreased by resistin knockdown. Furthermore, phosphorylation of Akt, which can inhibit PAI-1 expression, was accelerated and the activity of protein phosphatase 2A (PP2A) was suppressed in resistin knockdown 3T3-L1 adipocytes. In addition, the expression of glucose transporter type 4, a ChREBP target gene, was reduced and was associated with inhibition of PP2A. The addition of culture medium collected from COS7 cells transfected with a resistin expression plasmid rescued the suppression of PAI-1 expression in resistin knockdown 3T3-L1 adipocytes. Our findings suggest that resistin regulates PAI-1 expression in 3T3-L1 adipocytes via Akt phosphorylation.

  9. Raspberry ketone increases both lipolysis and fatty acid oxidation in 3T3-L1 adipocytes.

    PubMed

    Park, Kyoung Sik

    2010-10-01

    Raspberry ketone (RK) is a natural phenolic compound of the red raspberry. The dietary administration of RK to male mice has been reported to prevent high-fat diet-induced elevation in body weight and to increase lipolysis in white adipocytes. To elucidate a possible mechanism for the antiobesity action of RK, its effects on the expression and the secretion of adiponectin, lipolysis, and fatty acid oxidation in 3T3-L1 were investigated. Treatment with 10 µM of RK increased lipolysis significantly in differentiated 3T3-L1 cells. An immunoassay showed that RK increased both the expression and the secretion of adiponectin, an adipocytokine mainly expressed and secreted by adipose tissue. In addition, treatment with 10 µM of RK increased the fatty acid oxidation and suppressed lipid accumulation in 3T3-L1 adipocytes. These findings suggest that RK holds great promise as an herbal medicine since its biological activities alter the lipid metabolism in 3T3-L1 adipocytes.