Science.gov

Sample records for 3t3 mouse fibroblasts

  1. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    SciTech Connect

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  2. A Partially Purified Acinetobacter baumannii Phage Preparation Exhibits no Cytotoxicity in 3T3 Mouse Fibroblast Cells.

    PubMed

    Henein, Alexandra E; Hanlon, Geoffrey W; Cooper, Callum J; Denyer, Stephen P; Maillard, Jean-Yves

    2016-01-01

    A surge in the level and scale of antibiotic resistance has prompted renewed interest in the application of bacteriophages to treat bacterial infections. However, concerns still exist over their efficacy and safety. Acinetobacter baumannii phage BS46, a member of the family Myoviridae, has previously been shown to be effective in murine models. The cytotoxic effect of this phage was evaluated in mouse fibroblast 3T3 cells using four different assays: trypan blue; staining with Hoechst and propidium iodide; lactate dehydrogenase release; and the MTS assay. The addition of phage concentrations up to 2 × 10(9) pfu/mL showed little to no impact on the viability of 3T3 cells after 24 h exposure using the different assays. This study demonstrates that phage BS46 is non-cytotoxic to 3T3 cells using four different assays and that appropriate quality assurance protocols for phage therapeutics are required. PMID:27536286

  3. A Partially Purified Acinetobacter baumannii Phage Preparation Exhibits no Cytotoxicity in 3T3 Mouse Fibroblast Cells

    PubMed Central

    Henein, Alexandra E.; Hanlon, Geoffrey W.; Cooper, Callum J.; Denyer, Stephen P.; Maillard, Jean-Yves

    2016-01-01

    A surge in the level and scale of antibiotic resistance has prompted renewed interest in the application of bacteriophages to treat bacterial infections. However, concerns still exist over their efficacy and safety. Acinetobacter baumannii phage BS46, a member of the family Myoviridae, has previously been shown to be effective in murine models. The cytotoxic effect of this phage was evaluated in mouse fibroblast 3T3 cells using four different assays: trypan blue; staining with Hoechst and propidium iodide; lactate dehydrogenase release; and the MTS assay. The addition of phage concentrations up to 2 × 109 pfu/mL showed little to no impact on the viability of 3T3 cells after 24 h exposure using the different assays. This study demonstrates that phage BS46 is non-cytotoxic to 3T3 cells using four different assays and that appropriate quality assurance protocols for phage therapeutics are required. PMID:27536286

  4. Regulation of p53 in NIH3T3 mouse fibroblasts following hyperosmotic stress

    PubMed Central

    Lambert, Ian Henry; Enghoff, Maria Stine; Brandi, Marie-Luise; Hoffmann, Else Kay

    2015-01-01

    The aim of this project was to analyze the regulation of p53 expression in NIH3T3 fibroblasts under the influence of increasing hyperosmotic stress. Expression of p53 showed a biphasic response pattern in NIH3T3 cells under increasing osmotic stress (337 mOsm to 737 mOsm) with a maximum at 587 mOsm. Under isotonic conditions p53 expression increased after addition of the proteasome inhibitor MG132 indicating that cellular p53 levels in unperturbed cells is kept low by proteasomal degradation. However, under hypertonic conditions p53 synthesis as well as p53 degradation were significantly reduced and it is demonstrated that the increase in p53 expression observed when tonicity is increased from 337 to 587 mOsm reflects that degradation is more inhibited than synthesis, whereas the decrease in p53 expression at higher tonicities reflects that synthesis is more inhibited than degradation. The activity of the p53 regulating proteins p38 MAP kinase and the ubiquitin ligase MDM2 were studied as a function of increasing osmolarity. MDM2 protein expression was unchanged at all osmolarities, whereas MDM2 phosphorylation (Ser166) increased at osmolarities up to 537 mOsm and remained constant at higher osmolarities. Phosphorylation of p38 increased at osmolarities up to 687 mOsm which correlated with an increased phosphorylation of p53 (Ser15) and the decreased p53 degradation. Caspase-3 activity increased gradually with hypertonicity and at 737 mOsm both Caspase-3 activity and annexin V binding are high even though p53 expression and activity are low, indicating that initiation of apoptosis under severe hypertonic conditions is not strictly controlled by p53. PMID:26056062

  5. Regulation of p53 in NIH3T3 mouse fibroblasts following hyperosmotic stress.

    PubMed

    Lambert, Ian Henry; Enghoff, Maria Stine; Brandi, Marie-Luise; Hoffmann, Else Kay

    2015-06-01

    The aim of this project was to analyze the regulation of p53 expression in NIH3T3 fibroblasts under the influence of increasing hyperosmotic stress. Expression of p53 showed a biphasic response pattern in NIH3T3 cells under increasing osmotic stress (337 mOsm to 737 mOsm) with a maximum at 587 mOsm. Under isotonic conditions p53 expression increased after addition of the proteasome inhibitor MG132 indicating that cellular p53 levels in unperturbed cells is kept low by proteasomal degradation. However, under hypertonic conditions p53 synthesis as well as p53 degradation were significantly reduced and it is demonstrated that the increase in p53 expression observed when tonicity is increased from 337 to 587 mOsm reflects that degradation is more inhibited than synthesis, whereas the decrease in p53 expression at higher tonicities reflects that synthesis is more inhibited than degradation. The activity of the p53 regulating proteins p38 MAP kinase and the ubiquitin ligase MDM2 were studied as a function of increasing osmolarity. MDM2 protein expression was unchanged at all osmolarities, whereas MDM2 phosphorylation (Ser(166)) increased at osmolarities up to 537 mOsm and remained constant at higher osmolarities. Phosphorylation of p38 increased at osmolarities up to 687 mOsm which correlated with an increased phosphorylation of p53 (Ser(15)) and the decreased p53 degradation. Caspase-3 activity increased gradually with hypertonicity and at 737 mOsm both Caspase-3 activity and annexin V binding are high even though p53 expression and activity are low, indicating that initiation of apoptosis under severe hypertonic conditions is not strictly controlled by p53. PMID:26056062

  6. Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts.

    PubMed

    Hansen, Daniel Bloch; Friis, Martin Barfred; Hoffmann, Else Kay; Lambert, Ian Henry

    2012-02-01

    The present work was initiated to investigate regulation of the taurine transporter TauT by reactive oxygen species (ROS) and the tonicity-responsive enhancer binding protein (TonEBP) in NIH3T3 mouse fibroblasts during acute and long-term (4 h) exposure to low-sodium/hypo-osmotic stress. Taurine influx is reduced following reduction in osmolarity, keeping the extracellular Na(+) concentration constant. TonEBP activity is unaltered, whereas TauT transcription as well as TauT activity are significantly reduced under hypo-osmotic conditions. In contrast, TonEBP activity and TauT transcription are significantly increased following hyperosmotic exposure. Swelling-induced ROS production in NIH3T3 fibroblasts is generated by NOX4 and by increasing total ROS, by either exogenous application of H(2)O(2) or overexpressing NOX4, we demonstrate that TonEBP activity and taurine influx are regulated negatively by ROS under hypo-osmotic, low-sodium conditions, whereas the TauT mRNA level is unaffected. Acute exposure to ROS reduces taurine uptake as a result of modulated TauT transport kinetics. Thus, swelling-induced ROS production could account for the reduced taurine uptake under low-sodium/hypo-osmotic conditions by direct modulation of TauT. PMID:22383044

  7. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  8. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts.

    PubMed

    Uboldi, Chiara; Urbán, Patricia; Gilliland, Douglas; Bajak, Edyta; Valsami-Jones, Eugenia; Ponti, Jessica; Rossi, François

    2016-03-01

    The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size.

  9. Cell competition in mouse NIH3T3 embryonic fibroblasts is controlled by the activity of Tead family proteins and Myc.

    PubMed

    Mamada, Hiroshi; Sato, Takashi; Ota, Mitsunori; Sasaki, Hiroshi

    2015-02-15

    Cell competition is a short-range communication originally observed in Drosophila. Relatively little is known about cell competition in mammals or in non-epithelial cells. Hippo signaling and its downstream transcription factors of the Tead family, control cell proliferation and apoptosis. Here, we established an in vitro model system that shows cell competition in mouse NIH3T3 embryo fibroblast cells. Co-culture of Tead-activity-manipulated cells with normal (wild-type) cells caused cell competition. Cells with reduced Tead activity became losers, whereas cells with increased Tead activity became super-competitors. Tead directly regulated Myc RNA expression, and cells with increased Myc expression also became super-competitors. At low cell density, cell proliferation required both Tead activity and Myc. At high cell density, however, reduction of either Tead activity or Myc was compensated for by an increase in the other, and this increase was sufficient to confer 'winner' activity. Collectively, NIH3T3 cells have cell competition mechanisms similar to those regulated by Yki and Myc in Drosophila. Establishment of this in vitro model system should be useful for analyses of the mechanisms of cell competition in mammals and in fibroblasts.

  10. 3T3 fibroblasts induce cloned interleukin 3-dependent mouse mast cells to resemble connective tissue mast cells in granular constituency

    SciTech Connect

    Dayton, E.T.; Pharr, P.; Ogawa, M.; Serafin, W.E.; Austen, K.F.; Levi-Schaffer, F.; Stevens, R.L.

    1988-01-01

    As assessed by ultrastructure, histochemical staining, and T-cell dependency, in vitro-differentiated interleukin 3-dependent mouse mast cells are comparable to the mast cells that reside in the gastrointestinal mucosa but not in the skin or the serosal cavity of the mouse. The authors now demonstrate that when cloned interleukin 3-dependent mast cells are cocultured with mouse skin-derived 3T3 fibroblasts in the presence of WEHI-3 conditioned medium for 28 days, the mast cells acquire the ability to stain with safranin, increase their histamine content approx. 50-fold and their carboxypeptidase. A content approx. 100-fold, and augment approx. their biosynthesis of proteoglycans bearing /sup 35/S-labeled haparin relative to /sup 35/S-labeled chondroitin sulfate glycosaminoglycans. Thus, fibroblasts induce interleukin 3-dependent mouse mast cells to change phenotype from mucosal-like to connective tissue-like, indicating that the biochemical and functional characteristics of this mast cell type are strongly influenced by the connective tissue microenvironment.

  11. Dehydrodiconiferyl Alcohol Isolated from Cucurbita moschata Shows Anti-adipogenic and Anti-lipogenic Effects in 3T3-L1 Cells and Primary Mouse Embryonic Fibroblasts*

    PubMed Central

    Lee, Junghun; Kim, Donghyun; Choi, Jonghyun; Choi, Hyounjeong; Ryu, Jae-Ha; Jeong, Jinhyun; Park, Eun-Jin; Kim, Seon-Hee; Kim, Sunyoung

    2012-01-01

    A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis. PMID:22262865

  12. Dehydrodiconiferyl alcohol isolated from Cucurbita moschata shows anti-adipogenic and anti-lipogenic effects in 3T3-L1 cells and primary mouse embryonic fibroblasts.

    PubMed

    Lee, Junghun; Kim, Donghyun; Choi, Jonghyun; Choi, Hyounjeong; Ryu, Jae-Ha; Jeong, Jinhyun; Park, Eun-Jin; Kim, Seon-Hee; Kim, Sunyoung

    2012-03-16

    A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis.

  13. Growth stimulation of 3T3 fibroblasts by Cystatin

    SciTech Connect

    Quan Sun Beijing Medical Univ. )

    1989-01-01

    Treatment of cultures of mouse 3T3 fibroblasts with Cystatin C, a thiol-proteinase inhibitor isolated from chicken egg white, resulted in an enhanced rate of cell proliferation. This stimulation was demonstrated using two independent assay systems: (a) assessment of total cell number and (b) measurement of ({sup 3}H)thymidine incorporated into acid-precipitable DNA. In both assays, the dose-response curves of Cystatin stimulation showed a rising function that plateaued at a concentration of {approximately}120 {mu}g/ml. The addition of Cystatin to cultures of Kirsten murine sarcoma virus-transformed 3T3 cells also enhanced DNA synthesis in these target cells. Control experiments showed that the presence of Cystatin did not alter the level of binding of radioactively labeled epidermal growth factor and platelet derived growth factor to 3T3 cells. These results argue against the possibility that the observed growth stimulation by Cystatin was due to growth factor contamination of the Cystatin preparation.

  14. Neoplastic transformation and tumorigenesis associated with overexpression of imup-1 and imup-2 genes in cultured NIH/3T3 mouse fibroblasts

    SciTech Connect

    Ryoo, Zae Young . E-mail: jaewoong64@hanmail.net; Jung, Boo Kyoung; Lee, Sang Ryeul; Kim, Myoung Ok; Kim, Sung Hyun; Kim, Hyo Jin; Ahn, Jung Yong; Lee, Tae-Hoon; Cho, Youl Hee; Park, Jae Hak; Kim, Jin Kyeoung

    2006-10-27

    Immortalization-upregulated protein 1 (IMUP-1) and immortalization-upregulated protein 2 (IMUP-2) genes have been recently cloned and are known to be involved in SV40-mediated immortalization. IMUP-1 and IMUP-2 genes were strongly expressed in various cancer cell lines and tumors, suggesting the possibility that they might be involved in tumorigenicity. To directly elucidate the functional role of IMUP-1 and IMUP-2 on neoplastic transformation and tumorigenicity, we stably transfected IMUP-1 and IMUP-2 into NIH/3T3 mouse fibroblast cells. Cellular characteristics of the neoplastic transformation were assessed by transformation foci, growth in soft agar, and tumor development in nude mice. We found that IMUP-1 and IMUP-2 overexpressing cells showed altered growth properties, anchorage-independent growth in soft agar and inducing tumor in nude mice. Furthermore, IMUP-1 and IMUP-2 transformants proliferated in reduced serum and shortened cell cycle. These results suggest that ectopic overexpression of IMUP-1 and IMUP-2 may play an important role in acquiring a transformed phenotype, tumorigenicity in vivo, and be related to cellular proliferation.

  15. Poly(2-hydroxyethyl methacrylate)-b-poly(L-Lysine) cationic hybrid materials for non-viral gene delivery in NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Johnson, Renjith P; Uthaman, Saji; John, Johnson V; Heo, Min Seon; Park, In Kyu; Suh, Hongsuk; Kim, Il

    2014-09-01

    In order to develop efficient and nontoxic gene delivery vectors, a series of biocompatible block copolymers, poly[(2-hydroxyethyl methacrylate)40 -block-(L-lysine)n ] (n = 40, 80, 120, 150), are prepared by combining an atom transfer radical polymerization of 2-hydroxyethyl methacrylate with a ring-opening polymerization of N(ϵ) -(carbobenzoxy)-L-lysine N-carboxyanhydride. The block copolymers are successfully condensed with plasmid DNA (pDNA) into nanosized (<200 nm) polyplexes. As a representative sample, p(HEMA)40 -b-p(lys)150 is utilized to confirm the effective cellular and nuclear uptake of pDNA. The polymer/pDNA polyplexes exhibit very low cytotoxicity and enhanced transfection activity by being easily taken up into mouse embryonic fibroblast cell line (NIH 3T3). Thus, the chimeric block copolymers provide a means for developing versatile nonviral gene vectors harboring the ideal requirements of low cytotoxicity, good stability, and high transfection efficiency for gene therapy. PMID:24862905

  16. Pharmaco-Phylogenetic Investigation of Methyl Gallate Isolated from Acacia nilotica (L.) Delile and Its Cytotoxic Effect on NIH3T3 Mouse Fibroblast.

    PubMed

    Mishra, Rohit K; Ramakrishna, M; Mishra, Vani; Pathak, Ashutosh; Rajesh, S; Sharma, Shivesh; Pandey, Avinash C; Nageswara Rao, G; Dikshit, Anupam

    2016-01-01

    Present exploration deals with the therapeutic perspective of methyl gallate isolated from the leaf extract of Acacia nilotica (L.) Delile in contrast to food-borne bacterial pathogen's viz., Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus with their evolutionary succession. The extract was subjected to phytochemical analysis and isolated compound was identified as methyl gallate using UV-vis, IR and NMR spectra. It was found most potent against K. pneumoniae with its minimum inhibition concentration (MIC) of 0.32 mg/ml and minimum bactericidal concentration (MBC) at 0.62 mg/ml. The correlation of MIC values with an evolutionary succession assists the relationship between their genetic and toxic properties. The cytotoxic pursuit of methyl gallate was additionally assessed over NIH3T3 mouse fibroblast by Neutral red (NR) uptake, MTT cell proliferation assay and did not disclose any relevant influence on cell viability as well as cell proliferation. As such, the methyl gallate extracted from the leaf of A. nilotica holds massive antibacterial aptitude and hands out towards a new paradigm for food and pharmaceutical industries. PMID:26813302

  17. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line.

    PubMed

    Śmieszek, Agnieszka; Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marędziak, Monika; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  18. Gadolinium promoted proliferation in mouse embryo fibroblast NIH3T3 cells through Rac and PI3K/Akt signaling pathways.

    PubMed

    Shen, Liming; Yang, Aochu; Yao, Pengwei; Sun, Xiaohong; Chen, Cheng; Mo, Cuiping; Shi, Lei; Chen, Youjiao; Liu, Qiong

    2014-08-01

    Nephrogenic systemic fibrosis (NSF) is a fibrosing disorder disease developed in patients with underlying renal insufficiency following exposure to gadolinium-based contrast agents (GBCAs). Previous studies have demonstrated that GdCl3 can promote NIH3T3 fibroblast cell proliferation, which provide a new clue to the role of GBCAs in the development of NSF. In the present study, we further clarify the molecular mechanism of Gd-promoted proliferation. The results showed that intervention with the Rac inhibitor NSC23766 abrogated Gd-promoted proliferation. The levels of active Rac1 significantly increased in Gd-treated cells detected by pull-down assays. In addition, the phosphorylation of Akt was significantly elevated in the treatment group, which was blocked by NSC23766. NSC23766 also reduced the migration of NIH3T3 cells enhanced by Gd. Moreover, the F-actin cytoskeleton was strengthened and the mitotic cell numbers was significantly increased after exposure to Gd. These results suggest that Rac and PI3K/Akt signaling pathways, as well as integrin-mediated signal pathway may play important roles in Gd-induced cell proliferation. In addition, under serum-free condition, Gd could decrease ROS accumulation and increase NIH3T3 cell survival.

  19. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Kathirvel, Poonkodi; Ravi, Subban

    2012-01-01

    This study examines the chemical composition and in vitro anticancer activity of the essential oil from Ocimum basilicum Linn. (Lamiaceae), cultivated in the Western Ghats of South India. The chemical compositions of basil fresh leaves were identified by GC-MS: 11 components were identified. The major constituents were found to be methyl cinnamate (70.1%), linalool (17.5%), β-elemene (2.6%) and camphor (1.52%). The results revealed that this plant may belong to the methyl cinnamate and linalool chemotype. A methyl thiazol tetrazolium assay was used for in vitro cytotoxicity screening against the human cervical cancer cell line (HeLa), human laryngeal epithelial carcinoma cell line (HEp-2) and NIH 3T3 mouse embryonic fibroblasts. The IC(50) values obtained were 90.5 and 96.3 µg mL(-1), respectively, and the results revealed that basil oil has potent cytotoxicity.

  20. PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse swiss 3T3 and human skin fibroblasts

    SciTech Connect

    Sturani, E.; Vicentini, L.M.; Zippel, R.; Toschi, L.; Pandiella-Alonso, A.; Comoglio, P.M.; Meldolesi, J.

    1986-05-29

    Short (1-10 min) pretreatment of intact cells with activators of protein kinase C (e.g. phorbol-12 myristate, 13-acetate, PMA) affects the activity of a variety of surface receptors (for growth factors, hormones and neurotransmitters), with inhibition of transmembrane signal generation. In two types of fibroblasts it is demonstrated that the PDGF receptor is unaffected by PMA. Exposure to PMA at concentrations up to 100 nM for 10 min failed to inhibit either one of the agonist-induced, receptor-coupled responses of PDGF: the autophosphorylation of receptor molecules at tyrosine residues, and the hydrolysis of membrane polyphosphoinositides. In contrast, the EGF receptor autophosphorylation (in A 431 cells) and the bombesin-induced phosphoinositide hydrolysis were readily inhibited by PMA.

  1. Coculture with BJ fibroblast cells inhibits the adipogenesis and lipogenesis in 3T3-L1 cells

    SciTech Connect

    Jeong, Hyun Jeong; Park, Sahng Wook; Kim, Hojeong; Park, Sang-Kyu; Yoon, Dojun

    2010-02-19

    Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor {gamma}2, CCAAT/enhancer-binding protein alpha (C/EBP{alpha}), sterol regulatory element binding protein-1c, and Krueppel-like factor 15, but not those of C/EBP{beta} or C/EBP{delta}, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.

  2. Trophic effect of a methanol yeast extract on 3T3 fibroblast cells.

    PubMed

    Gallo, Dominique; Dillemans, Monique; Allardin, David; Priem, Fabian; Van Nedervelde, Laurence

    2014-01-01

    With regard to the increase of human life expectancy, interest for topical treatments aimed to counteract skin aging is still growing. Hence, research for bioactive compounds able to stimulate skin fibroblast activity is an attractive topic. Having previously described the effects of a new methanol yeast extract on growth and metabolic activity of Saccharomyces cerevisiae, we studied its effects on 3T3 fibroblasts to evaluate its potential antiaging property. This investigation demonstrates that this extract increases proliferation as well as migration of 3T3 cells and decreases their entrance in senescence and apoptosis phases. Altogether, these results open new perspectives for the formulation of innovative antiaging topical treatments.

  3. Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system: results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen.

    PubMed

    Li, Albert P; Uzgare, Aarti; LaForge, Yumiko S

    2012-07-30

    The integrated discrete multiple organ co-culture system (IdMOC) allows the co-culturing of multiple cell types as physically separated cells interconnected by a common overlying medium. We report here the application of IdMOC with two cell types: the metabolically competent primary human hepatocytes, and a metabolically incompetent cell line, mouse 3T3 fibroblasts, in the definition of the role of hepatic metabolism on the cytotoxicity of three model toxicants: cyclophosphamide (CPA), aflatoxin B1 (AFB) and tamoxifen (TMX). The presence of hepatic metabolism in IdMOC with human hepatocytes was demonstrated by the metabolism of the P450 isoform 3A4 substrate, luciferin-IPA. The three model toxicants showed three distinct patterns of cytotoxic profile: TMX was cytotoxic to 3T3 cells in the absence of hepatocytes, with slightly lower cytotoxicity towards both 3T3 cells and hepatocytes in the IdMOC. AFB was selective toxic towards the human hepatocytes and relatively noncytotoxic towards 3T3 cells both in the presence and absence of the hepatocytes. CPA cytotoxicity to the 3T3 cells was found to be significantly enhanced by the presence of the hepatocytes, with the cytotoxicity dependent of the number of hepatocytes, and with the cytotoxicity attenuated by the presence of a non-specific P450 inhibitor, 1-aminobenzotriazole. We propose here the following classification of toxicants based on the role of hepatic metabolism as defined by the human hepatocyte-3T3 cell IdMOC assay: type I: direct-acting cytotoxicants represented by TMX as indicated by cytotoxicity in 3T3 cells in the absence of hepatocytes; type II: metabolism-dependent cytotoxicity represented by AFB1 with effects localized within the site of metabolic activation (i. e. hepatocytes); and type III: metabolism-dependent cytotoxicity with metabolites that can diffuse out of the hepatocytes to cause toxicity in cells distal from the site of metabolism, as exemplified by CPA.

  4. Inhibitory effects of LPA1 on cell motile activities stimulated by hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone in fibroblast 3T3 cells.

    PubMed

    Hirane, Miku; Araki, Mutsumi; Dong, Yan; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-11-01

    Reactive oxygen species (ROS) are known to mediate a variety of biological responses, including cell motility. Recently, we indicated that lysophosphatidic acid (LPA) receptor-3 (LPA3) increased cell motile activity stimulated by hydrogen peroxide. In the present study, we assessed the role of LPA1 in the cell motile activity mediated by ROS in mouse fibroblast 3T3 cells. 3T3 cells were treated with hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) at concentrations of 0.1 and 1 μM for 48 h. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3 cells treated with hydrogen peroxide and DMNQ were significantly higher than those of untreated cells. 3T3 cells treated with hydrogen peroxide and DMNQ showed elevated expression levels of the Lpar3 gene, but not the Lpar1 and Lpar2 genes. To investigate the effects of LPA1 on the cell motile activity induced by hydrogen peroxide and DMNQ, Lpar1-overexpressing (3T3-a1) cells were generated from 3T3 cells and treated with hydrogen peroxide and DMNQ. The cell motile activities stimulated by hydrogen peroxide and DMNQ were markedly suppressed in 3T3-a1 cells. These results suggest that LPA signaling via LPA1 inhibits the cell motile activities stimulated by hydrogen peroxide and DMNQ in 3T3 cells.

  5. Induction of MAP kinase phosphatase 3 through Erk/MAP kinase activation in three oncogenic Ras (H-, K- and N-Ras)-expressing NIH/3T3 mouse embryonic fibroblast cell lines

    PubMed Central

    Koo, JaeHyung; Wang, Sen; Kang, NaNa; Hur, Sun Jin; Bahk, Young Yil

    2016-01-01

    Ras oncoproteins are small molecular weight GTPases known for their involvement in oncogenesis, which operate in a complex signaling network with multiple effectors. Approximately 25% of human tumors possess mutations in a member of this family. The Raf1/MEK/Erk1/2 pathway is one of the most intensively studied signaling mechanisms. Different levels of regulation account for the inactivation of MAP kinases by MAPK phosphatases in a cell type- and stimuli-dependent manner. In the present study, using three inducible Ras-expressing NIH/3T3 cell lines, we demonstrated that MKP3 upregulation requires the activation of the Erk1/2 pathway, which correlates with the shutdown of this pathway. We also demonstrated, by applying pharmacological inhibitors and effector mutants of Ras, that induction of MKP3 at the protein level is positively regulated by the oncogenic Ras/Raf/MEK/Erk1/2 signaling pathway. [BMB Reports 2016; 49(7): 370-375] PMID:26818088

  6. Regulation of the Na,K-pump by leptin in 3T3-L1 fibroblasts.

    PubMed

    Sweeney, G; Niu, W; Kanani, R; Klip, A

    2000-03-01

    Leptin, the product of the obesity (ob) gene, controls energy intake and expenditure primarily by actions on the central nervous system. However, recently it has become apparent that leptin also elicits a growing and diverse array of effects on peripheral tissues. The Na,K-pump is an electrogenic plasma membrane protein which actively extrudes 3Na+ ions and imports 2K+ ions per molecule of ATP hydrolysed. The pump is responsible for the maintenance of the electrochemical potential of all cells, which in turn drives all ion-coupled transport mechanisms. In this study we use 3T3-L1 fibroblasts to show that leptin inhibits Na,K-pump activity, as assessed by ouabain-sensitive 86Rb+ uptake. Inhibition of the Na,K-pump correlated with increased serine phosphorylation of the catalytic Na,K-pump alpha1 subunit. Upon investigation of leptin-stimulated signalling pathways using specific pharmacological inhibitors, only wortmannin prevented inhibition of the Na,K-pump by leptin. Moreover, leptin stimulated phosphotyrosine-associated PI 3-kinase activity in these cells. In summary, leptin was found to inhibit Na,K-pump activity, likely via PI 3-kinase. We propose that this effect may have wide ranging cardiovascular and metabolic implications and perhaps explain physiological effects of the hormone such as natriuresis.

  7. Mitogenic stimuli and phosphatidylinositol (PI) turnover in cultured 3T3 fibroblasts

    SciTech Connect

    Kohler, C.; Petersen, R.

    1986-03-01

    The hydrolysis of PI and polyphosphoinositides by phopholipase C is an early and rapid response to cell activation by a variety of neurotransmitters, hormones, growth factors and pharmacological agonists. The authors have examined the role of PI turnover and the generation of second messengers (diacylglycerol and inositol trisphosphate) in the mitogenic response of cultured Balb/c and Swiss 3T3 cells to polypeptide growth factors. Cells were prelabelled with /sup 3/H inositol for 18-20 hours, washed and suspended in Herpes + Li/sup +/ buffer, and stimulated with platelet-derived growth factor (PDGF), vasopressin, insulin, and other growth factors. PI turnover was measured as the increase in total inositol phosphate (IP) production. IP1, IP2, and IP3 were characterized by sequential elution from a Dowex column. Partially purified PDGF produced a 2-4 fold stimulation of total IP production. This was seen as early as 30 seconds after stimulation and increased for up to 1-2 hours. Balb/c cells were more sensitive than Swiss cells to the mitogenic and PI effects of PDGF. Other mitogenic stimuli had differential effects on PI turnover. Vasopressin (4-400 ng/ml) markedly stimulated PI turnover (3-6 fold) in Swiss, but not Balb/c cells. Insulin (100 ng/ml - 10 ..mu..g/ml) increased total IP to a greater degree in Balb/c cells. Epidermal growth factor (10 ng/ml - 10 ..mu..g/ml) had no effect on PI turnover and fibroblast growth factor (10 ng/ml - 10 ..mu..g/ml) only stimulated at the higher concentrations in Swiss cells. Thrombin (1U/ml - 10 U/ml) produced a 1.5 - 2 fold stimulation in Balb/c cells. Thus, various polypeptide growth factors have differential effects on PI turnover depending on their mitogenic potential and the effector cell type.

  8. Inhibition of cell growth in NIH/3T3 fibroblasts by overexpression of manganese superoxide dismutase: mechanistic studies.

    PubMed

    Li, N; Oberley, T D; Oberley, L W; Zhong, W

    1998-06-01

    NIH/3T3 mouse fibroblasts were transfected with the cDNA for manganese superoxide dismutase (MnSOD), and two clones overexpressing MnSOD activity were subsequently characterized by comparison with parental and control plasmid-transfected cells. One clone with a 1.8-fold increase in MnSOD activity had a 1.5-fold increase in glutathione peroxidase (GPX) activity (increased GPX-adapted clone), while a second clone with a 3-fold increase in MnSOD activity had a 2-fold decrease in copper, zinc superoxide dismutase (CuZnSOD) activity (decreased CuZnSOD-adapted clone). Increased reactive oxygen species (ROS) levels compared with parental or control plasmid-transfected cells were observed in nonsynchronous cells in the increased GPX-adapted clone, but not in the decreased CuZnSOD-adapted clone. The two MnSOD-overexpressing clones showed different sensitivities to agents that generate oxidative stress. Flow cytometry analysis of the cell cycle showed altered cell cycle progression in both MnSOD-overexpressing clones. During logarithmic growth, both MnSOD-overexpressing clones showed increased mitochondrial membrane potential compared with parental and control plasmid-transfected cells. Both MnSOD-overexpressing clones showed a decrease in mitochondrial mass at the postconfluent phase of growth, suggesting that mitochondrial mass may be regulated by MnSOD and/or ROS levels. Our results indicate that adaptation of fibroblasts to overexpression of MnSOD can involve more than one mechanism, with the resultant cell phenotype dependent on the adaptation mechanism utilized by the cell.

  9. Effect of botulinum neurotoxin type A (BoNTA) on the morphology and viability of 3T3 murine fibroblasts

    PubMed Central

    Bandala, Cindy; Terán-Melo, Juan Luis; Anaya-Ruiz, Maricruz; Mejía-Barradas, Cesar Miguel; Domínguez-Rubio, Rene; la Garza-Montano, Paloma De; Alfaro-Rodríguez, Alfonso; Lara-Padilla, Eleazar

    2015-01-01

    Aim: BoNTA is used in the treatment of ophthalmological disorders, muscular hyperactivity and pain. In recent years it has been described that BoNTA reduces cellular viability and induces apoptosis in prostate cells lines. Studies about the effect of BoNTA are no well known. There have been studies about the effect of BoNTA on the expression levels of collagenase in fibroblasts, but not on its morphological impact on these cells. The aim of this study was to determine the effect of BoNTA on the morphology and viability of the 3T3 fibroblast cell line. Material and methods: The 3T3 fibroblast cell line was cultured and the experimental group received 10 U BoNTA added to a 0.9% sterile saline solution in a reconstituted vial. The control group received saline solution only. Cultured cells were observed and photographed at 5, 10, 15 and 20 h. Cell viability was evaluated by means of the trypan blue test, and cell proliferation with the Proliferation Assay kit (PROMEGA). Results: The application of BoNTA to 3T3 fibroblast cells induced morphological changes, such as a loss of normal fibroblast morphology. Additionally, we observed the cytoplasmic retraction and spread phenomena. The nuclei showed other important changes with Giemsa staining. Conclusion: The results indicate that BoNTA induced a loss of spindle form, increase in cytoplasmic vesicles, and the presence of nuclear vesicles (compacted chromatin surrounded by a nuclear envelope). This suggests an apoptotic process and decreased cell viability. Further studies are needed to explore the mechanisms of these alterations. PMID:26464704

  10. Changes in laser-induced fluorescence responses of 3T3 fibroblasts to repetitive thermal stress

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Dressler, C.; Zabarylo, U.; Minet, O.

    2009-04-01

    The combined experimental use of laser-induced autofluorescence of cellular metabolites and methodological fundamentals of systems biology will provide access to biological thermal stress analysis on a sub cellular level. A test setup incorporating a pulsed nitrogen laser was realized with which autofluorescence of the coenzyme NADH could be measured in living 3T3 cells. The cells were subjected to different temperature stress at repetitive time intervals. When subjected to a simple mathematical analysis, the NADH concentration change measured through autofluorescence in biological cells exhibited approximate concentration-equivalent balance curves. These results add up to the fundamental know-how about the dosimetry of thermally therapeutic methods.

  11. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6).

    PubMed

    Dormady, S P; Zhang, X M; Basch, R S

    2000-10-24

    Pluripotential hematopoietic stem cells grow in close association with bone marrow stromal cells, which play a critical role in sustaining hematopoiesis in long-term bone marrow cultures. The mechanisms through which stromal cells act to support pluripotential hematopoietic stem cells are largely unknown. This study demonstrates that growth arrest-specific gene-6 (GAS6) plays an important role in this process. GAS6 is a ligand for the Axl (Ufo/Ark), Sky (Dtk/Tyro3/Rse/Brt/Tif), and Mer (Eyk) family of tyrosine kinase receptors and binds to these receptors via tandem G domains at its C terminus. After translation, GAS6 moves to the lumen of the endoplasmic reticulum, where it is extensively gamma-carboxylated. The carboxylation process is vitamin K dependent, and current evidence suggests that GAS6 must be gamma-carboxylated to bind and activate any of the cognate tyrosine kinase receptors. Here, we show that expression of GAS6 is highly correlated with the capacity of bone marrow stromal cells to support hematopoiesis in culture. Nonsupportive stromal cell lines express little to no GAS6, whereas supportive cell lines express high levels of GAS6. Transfection of the cDNA encoding GAS6 into 3T3 fibroblasts is sufficient to render this previously nonsupportive cell line capable of supporting long-term hematopoietic cultures. 3T3 cells, genetically engineered to stably express GAS6 (GAS6-3T3), produce a stromal layer that supports the generation of colony-forming units in culture (CFU-c) for up to 6 wk. Hematopoietic support by genetically engineered 3T3 is not vitamin K dependent, and soluble recombinant GAS6 does not substitute for coculturing the hematopoietic progenitors with genetically modified 3T3 cells. PMID:11050245

  12. The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts.

    PubMed

    Alam, Samer G; Lovett, David; Kim, Dae In; Roux, Kyle J; Dickinson, Richard B; Lele, Tanmay P

    2015-05-15

    Nuclear positioning is a crucial cell function, but how a migrating cell positions its nucleus is not understood. Using traction-force microscopy, we found that the position of the nucleus in migrating fibroblasts closely coincided with the center point of the traction-force balance, called the point of maximum tension (PMT). Positioning of the nucleus close to the PMT required nucleus-cytoskeleton connections through linker of nucleoskeleton-to-cytoskeleton (LINC) complexes. Although the nucleus briefly lagged behind the PMT following spontaneous detachment of the uropod during migration, the nucleus quickly repositioned to the PMT within a few minutes. Moreover, traction-generating spontaneous protrusions deformed the nearby nucleus surface to pull the nuclear centroid toward the new PMT, and subsequent retraction of these protrusions relaxed the nuclear deformation and restored the nucleus to its original position. We propose that the protruding or retracting cell boundary transmits a force to the surface of the nucleus through the intervening cytoskeletal network connected by the LINC complexes, and that these forces help to position the nucleus centrally and allow the nucleus to efficiently propagate traction forces across the length of the cell during migration.

  13. Sphingosine kinase is induced in mouse 3T3-L1 cells and promotes adipogenesiss⃞

    PubMed Central

    Hashimoto, Takeshi; Igarashi, Junsuke; Kosaka, Hiroaki

    2009-01-01

    Sphingosine 1-phosphate (S1P) is a lysophospholipid mediator that exerts numerous biological activities both as a receptor ligand and as an intracellular second messenger. In the present study, we explored roles of sphingosine kinase (SphK), an S1P-producing enzyme, in adipose tissue. We utilized mouse 3T3-L1 cells as an in vitro model of adipogenesis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. Real-time quantitative PCR (qRT-PCR) assays revealed that the expression levels of transcripts encoding both isoforms of SphK-1 and SphK-2 are up-regulated during adipogenesis (37.6- and 6.6-fold vs. basal, P < 0.05, respectively). Concomitantly, SphK-1/SphK-2 protein abundance and S1P contents of these cells increased at 3 days after hormonal stimulation. Loss-of-function approaches by pharmacological inhibition of SphK activity as well as by transfection with small interfering RNA (siRNA) against SphK-1 led to significant attenuation of lipid droplet accumulation and adipocyte marker gene expression. We detected marked elevation of SphK-1 mRNA in adipose tissue derived from 13-week-old ob/ob mice with obese phenotype than their lean littermates. These results suggest that increased expression of SphK, an S1P-producing enzyme, plays a significant role during adipogenesis, potentially providing a novel point of control in adipose tissue. PMID:19020339

  14. Increased NIH 3T3 fibroblast functions on cell culture dishes which mimic the nanometer fibers of natural tissues

    PubMed Central

    Bhardwaj, Garima; Webster, Thomas J

    2015-01-01

    Traditional flat tissue cell culture dishes have consisted of polystyrene treated with plasma gases for growing, subculturing, and studying cell behavior in vitro. However, increasingly it has been observed that mimicking natural tissue properties (such as chemistry, three-dimensional structure, mechanical properties, etc) in vitro can lead to a better correlation of in vitro to in vivo cellular functions. The following studies compared traditional NIH 3T3 fibroblasts’ functions on XanoMatrix scaffolds to standard tissue culture polystyrene. Results found significantly greater fibroblast adhesion and proliferation on XanoMatrix cell culture dishes which mimic the nanoscale geometry of natural tissue fibers with true, tortuous fiber beds creating a robust, consistent, and versatile growth platform. In this manner, this study supports that cell culture dishes which mimic features of natural tissues should be continually studied for a wide range of applications in which mimicking natural cellular functions are important. PMID:26345155

  15. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    SciTech Connect

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y. )

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.

  16. Regulation of the beta-adrenergic receptor-adenylate cyclase complex of 3T3-L1 fibroblasts by sodium butyrate

    SciTech Connect

    Stadel, J.M.; Poksay, K.S.; Nakada, M.T.; Crooke, S.T.

    1986-05-01

    Mouse 3T3-L1 fibroblasts contain beta-adrenergic receptors (BAR), predominantly of the B/sub 1/ subtype. Incubation of these cells with 2-10 mM sodium butyrate (SB) for 24-48 hr results in a switch in the BAR subtype from B/sub 1/ to B/sub 2/ and promotes a 1.5 to 2.5 fold increase in total BAR number. Other short chain acids were not as effective as SB in promoting changes in BAR. BAR were assayed in membranes prepared from the 3T3-L1 cells using the radiolabeled antagonist (/sup 125/I)-cyanopindolol and the B/sub 2/ selective antagonist ICI 118.551. BAR subtype switch was confirmed functionally by measuring cellular cAMP accumulation in response to agonists. The structure and amount of the alpha subunits of the guanine nucleotide regulatory proteins N/sub s/ and N/sub i/ were determined by ADP-ribosylation using /sup 32/P-NAD and either cholera toxin or pertussis toxin for labeling of the respective subunits. Preincubation of cells with 5 mM SB for 48 hr resulted in a 2-3 fold increase in the labeling of the alpha subunits of both N/sub s/ and N/sub i/. A protein of M/sub r/ = 44,000 showed enhanced labeling by cholera toxin following SB treatment of the cells. These data indicate SB concomitantly regulates expression of BAR subtype and components of the adenylate cyclase in 3T3-L1 cells.

  17. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3

    PubMed Central

    2013-01-01

    Background Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity. Methods The stimulatory effect of mushrooms on neurite outgrowth was assessed in differentiating mouse neuroblastoma (N2a) cells. Neurite length was measured using Image-Pro Insight processor system. Neuritogenesis activity was further validated by fluorescence immunocytochemical staining of neurofilaments. In vitro cytotoxicity was investigated by using mouse embryonic fibroblast (BALB/3T3) and N2a cells for any embryo- and neuro-toxic effects; respectively. Results Aqueous extracts of Ganoderma lucidum, Lignosus rhinocerotis, Pleurotus giganteus and Grifola frondosa; as well as an ethanol extract of Cordyceps militaris significantly (p < 0.05) promoted the neurite outgrowth in N2a cells by 38.4 ± 4.2%, 38.1 ± 2.6%, 33.4 ± 4.6%, 33.7 ± 1.5%, and 35.8 ± 3.4%; respectively. The IC50 values obtained from tetrazolium (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) release assays showed no toxic effects following 24 h exposure of N2a and 3T3 cells to mushroom extracts. Conclusion Our results indicate that G. lucidum, L. rhinocerotis, P. giganteus, G. frondosa and C. militaris may be developed as safe and healthy dietary supplements for brain and cognitive health. PMID:24119256

  18. Effects of Lipophilic Extract of Viscum album L. and Oleanolic Acid on Migratory Activity of NIH/3T3 Fibroblasts and on HaCat Keratinocytes

    PubMed Central

    Kuonen, R.; Weissenstein, U.; Urech, K.; Kunz, M.; Hostanska, K.; Estko, M.; Heusser, P.; Baumgartner, S.

    2013-01-01

    Viscum album L. lipophilic extract (VALE) contains pharmacologically active pentacyclic triterpenes that are known to exhibit immunomodulatory, antitumor, and wound healing activity. Preliminary clinical observations indicate that VALE was able to influence cutaneous wound healing in vivo. The objective of this study was to investigate wound closure related properties of VALE in vitro. As measured in a wound healing assay, VALE and its predominant triterpene oleanolic acid (OA) significantly and dose dependently promoted the migration of NIH/3T3 fibroblasts in vitro, thereby leading to an enhanced wound closure. Compared to the negative control, maximal stimulation by 26.1% and 26.2%, respectively, was attained with 10 μg/mL VALE and 1 μg/mL OA. Stimulation of proliferation in NIH/3T3 fibroblasts by VALE and OA could be excluded. At higher concentrations both substances affected proliferation and viability of NIH/3T3 fibroblasts and HaCat keratinocytes. In the toxic range of concentrations of VALE and OA, migration of NIH/3T3 fibroblasts was suppressed. The extent of the stimulatory effect on cell migration of VALE quite closely corresponded to the effect expected by the concentrations of OA contained in the crude extract VALE. These data support the casual observation that Viscum album L. lipophilic extract might modulate wound healing related processes in vivo. PMID:24379890

  19. Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Butters, R. R. Jr; Sugimoto, T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Osteoblasts appear at sites of osteoclastic bone resorption during bone remodeling in the "reversal" phase following osteoclastic resorption and preceding bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for osteoblasts in the vicinity, leading us to determine whether such osteoblasts express the CaR. In this study, we used the mouse osteoblastic, clonal cell line MC3T3-E1. Both immunocytochemistry and Western blot analysis, using an antiserum specific for the CaR, detected CaR protein in MC3T3-E1 cells. We also identified CaR transcripts in MC3T3-E1 cells by Northern analysis using a CaR-specific riboprobe and by reverse transcription-polymerase chain reaction with CaR-specific primers, followed by nucleotide sequencing of the amplified products. Exposure of MC3T3-E1 cells to high Ca2+o (up to 4.8 mM) or the polycationic CaR agonists, neomycin and gadolinium (Gd3+), stimulated both chemotaxis and DNA synthesis in MC3T3-E1 cells. Therefore, taken together, our data strongly suggest that the osteoblastic cell line MC3T3-E1 possesses both CaR protein and mRNA very similar, if not identical, to those in parathyroid and kidney. Furthermore, the CaR in these osteoblasts could play a key role in regulating bone turnover by stimulating the proliferation and migration of such cells to sites of bone resorption as a result of local release of Ca2+o.

  20. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    SciTech Connect

    Whittaker, J.; Okamoto, A.K.; Thys, R.; Bell, G.I.; Steiner, D.F.; Hofmann, C.A.

    1987-08-01

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 10/sup 6/ receptors per cell. The cell line with the highest /sup 125/I-insulin binding (NIH 3T3 HIR3.5) had 6 x 10/sup 6/ receptors with a K/sub d/ of 10/sup -9/ M. This level was not dependent on exposure to metals but could be increased further to 2 x 10/sup 7/ receptors per cell by addition of sodium butyrate to the culture medium. The ..cap alpha.. and ..beta.. subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the ..cap alpha.. and ..beta.. subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  1. Cytotoxic and adhesion-associated response of NIH-3T3 fibroblasts to COOH-functionalized multi-walled carbon nanotubes.

    PubMed

    Zhao, Peipei; Chen, Lusi; Shao, Han; Zhang, Yongnu; Sun, Yuqiao; Ke, Yu; Ramakrishna, Seeram; He, Liumin; Xue, Wei

    2016-02-29

    As novel, promising, man-made nanomaterials with extraordinary properties, carbon nanotubes have been attracting massive attention in regenerative medicine. However, published reports on their potential cytotoxic effects are not concordant and are even conflicting. In the current study, the cytotoxic effects of carboxyl-modified multi-walled carbon nanotubes (COOH-MWCNTs), as well as their influences on the cell adhesion of NIH-3T3 fibroblasts, were thoroughly investigated. Live/dead cell viability assay and cell counting kit-8 assay both indicated that the viability of the NIH-3T3 cells exposed to COOH-MWCNTs in the culture medium was dependent on the latter's concentration. Cell viability increased at COOH-MWCNT concentrations below 50 μg ml(-1) and then decreased with increasing concentration. Scanning electron microscopy and immunofluorescent staining of the NIH-3T3 cells revealed that the cells were well adherent to the substrate after exposure to the COOH-MWCNTs for 48 h. Western blot demonstrated that COOH-MWCNT exposure enhanced the expression of adhesion-associated proteins compared with normal cells, peaking at an intermediate concentration. Our study showed that the cytotoxicity of COOH-MWCNTs, as well as their effects on NIH-3T3 fibroblast adhesion, was dose dependent. Therefore, COOH-MWCNT concentrations in the cell culture medium should be considered in the biomedical application of COOH-MWCNTs.

  2. Interaction of wild-type and variant mouse 3T3 cells with lectins from Bandeiraea simplicifolia seeds.

    PubMed Central

    Stanley, W S; Peters, B P; Blake, D A; Yep, D; Chu, E H; Goldstein, I J

    1979-01-01

    An isolectin (BS I-B4) derived from Bandeiraea simplicifolia seeds and specific for terminal alpha-D-galactopyranosyl groups was found to be cytotoxic to Swiss 3T3 mouse cells. After mutagenesis and selection with BS I-B4, a variant clonal cell line resistant to both this isolectin and the alpha-D- and beta-D-galactose-binding lectin abrin was isolated. The parental cell line showed homogeneous and noninteracting binding sites for BS I-B4, whereas the variant cells exhibited a curved plot with a reduced number of binding regions. Another lectin, BS II, which is derived from the same seeds by specific for terminal N-acetyl-D-glucosaminyl groups, was cytotoxic to the variant but not the parental cells. These results suggest a possible lesion in the biosynthesis of cell surface structures resulting in the exposure of subterminal N-acetyl-D-glucosaminyl moieties in the variant line. Images PMID:284346

  3. Stimulation of sugar uptake and thymidine incorporation in mouse 3T3 cells by calcium phosphate and other extracellular particles.

    PubMed Central

    Barnes, D W; Colowick, S P

    1977-01-01

    Evidence is presented that the marked stimulation of sugar uptake and thymidine incorporation by addition of extra Ca2+ to stationary phase mouse 3T3 cells in culture is phosphate dependent and due to the action of the calcium phosphate precipitate formed in the medium. The cells are similarly stimulated by a variety of particulate materials, including calcium pyrophosphate, barium sulfate, kaolin, and polystrene beads. The precipitate effects on sugar uptake are of the same magnitude as those seen with certain hormones (insulin, epidermal growth factor) or with fresh 10% calf serum. The effect of barium sulfate on thymidine incorporation is also of the same magnitude as seen with these hormones, but much less than half that found with fresh calf serum. The stimulation by barium sulfate or hormones of thymidine incorporation is not phosphate dependent. PMID:202958

  4. Stimulation of sugar uptake and thymidine incorporation in mouse 3T3 cells by calcium phosphate and other extracellular particles.

    PubMed

    Barnes, D W; Colowick, S P

    1977-12-01

    Evidence is presented that the marked stimulation of sugar uptake and thymidine incorporation by addition of extra Ca2+ to stationary phase mouse 3T3 cells in culture is phosphate dependent and due to the action of the calcium phosphate precipitate formed in the medium. The cells are similarly stimulated by a variety of particulate materials, including calcium pyrophosphate, barium sulfate, kaolin, and polystrene beads. The precipitate effects on sugar uptake are of the same magnitude as those seen with certain hormones (insulin, epidermal growth factor) or with fresh 10% calf serum. The effect of barium sulfate on thymidine incorporation is also of the same magnitude as seen with these hormones, but much less than half that found with fresh calf serum. The stimulation by barium sulfate or hormones of thymidine incorporation is not phosphate dependent. PMID:202958

  5. Overexpression of the short form of the growth hormone receptor in 3T3-L1 mouse preadipocytes

    SciTech Connect

    Bick, T.; Frick, G.P.; Leonard, D.

    1994-12-31

    In rodents, the gene for the growth hormone receptor (GHR) gives rise to two mRNA transcripts encoding two proteins: a larger membrane spanning receptor (GHR{sub L}) and a smaller isoform, GHR{sub S} that consists of the extracellular domain and a unique hydrophillic carboxyl terminus. We examined the hypothesis that GHR{sub S} may contribute to cellular binding of GH and play a role in growth hormone (GH) signaling. Rat cDNA encoding GHR{sub S} was ligated into the mammalian expression vector pcDNA-I/neo and stably transfected into mouse 3T3-L1 preadipocytes which have endogenous GH receptors and, when differentiated into adipocytes, have the biochemical machinery to express the various GH effects. Sixteen of 24 neomycin resistant clones secreted at least twice as much GHR{sub s} in the growth medium as cells transfected with the vector alone, and in nine of these, GH binding was increased 2- to 4-fold. The amount of GHR{sub L} in extracts of these cells was unchanged, indicating that increased binding could not be accounted for by effects on formation or degradation of GHR{sub L}. The transfected cDNA for GHR{sub S} directs the synthesis of a 50 kDa protein. We conclude that GHR{sub S} contributes to GH binding and may therefore be a functional receptor. In addition, overexpression of GHR{sub S} in 3T3-L1 cells altered cell function in the absence of GH. 20 refs., 4 figs.

  6. Expression of human epidermal growth factor precursor cDNA in transfected mouse NIH 3T3 cells.

    PubMed Central

    Mroczkowski, B; Reich, M; Whittaker, J; Bell, G I; Cohen, S

    1988-01-01

    Stable cell lines expressing the human epidermal growth factor (EGF) precursor have been prepared by transfection of mouse NIH 3T3 cells with a bovine papillomavirus-based vector in which the human kidney EGF precursor cDNA has been placed under the control of the inducible mouse metallothionein I promoter. Synthesis of the EGF precursor can be induced by culturing the cells in 5 mM butyric acid or 100 microM ZnCl2. The EGF precursor synthesized by these cells appears to be membrane associated; none is detectable in the cytoplasm. The size of the EGF precursor expressed by these cells is approximately 150-180 kDa, which is larger than expected from its amino acid sequence, suggesting that it is posttranslationally modified, presumably by glycosylation. The EGF precursor was also detected in the conditioned medium from these cells, indicating that some fraction of the EGF precursor synthesized by these transfected cells may be secreted. Preliminary data suggest that this soluble form of the EGF precursor may compete with 125I-labeled EGF for binding to the EGF receptor. These cell lines should be useful for studying the processing of the EGF precursor to EGF as well as determining the properties and possible functions of the EGF precursor itself. Images PMID:3257563

  7. Expression of human epidermal growth factor pressures cDNA in transfected mouse NIH 3T3 cells

    SciTech Connect

    Mroczkowski, B.; Reich, M.; Whittaker, J.; Bell, G.I.; Cohen, S.

    1988-01-01

    Stable cell lines expressing the human epidermal growth factor (EGF) precursor have been prepared by transfection of mouse NIH 3T3 cells with a bovine papillomavirus-based vector in which the human kidney EGF precursor cDNA has been placed under the control of the inducible mouse metallothionein I promoter. Synthesis of the EGF precursor can be induced by culturing the cells in 5 mM butyric acid or 100 ..mu..M ZnCl/sub 2/. The EGF precursor synthesized by these cells appears to be membrane associated; none is detectable in the cytoplasm. The size of the EGF precursor expressed by these cells is approx. = 150-180 kDa, which is larger than expected from its amino acid sequence, suggesting that it is posttranslationally modified, presumably by glycosylation. The EGF precursor was also detected in the conditioned medium from these cells, indicating that some fraction of the EGF precursor synthesized by these transfected cells may be secreted. Preliminary data suggest that this soluble form of the EGF precursor may compete with /sup 125/I-labeled EGF for binding to the EGF receptor. These cell lines should be useful for studying the processing of the EGF precursor to EGF as well as determining the properties and possible functions of the EGF precursor itself.

  8. Interactions between Spider Silk and Cells – NIH/3T3 Fibroblasts Seeded on Miniature Weaving Frames

    PubMed Central

    Kuhbier, Joern W.; Allmeling, Christina; Reimers, Kerstin; Hillmer, Anja; Kasper, Cornelia; Menger, Bjoern; Brandes, Gudrun; Guggenheim, Merlin; Vogt, Peter M.

    2010-01-01

    Background Several materials have been used for tissue engineering purposes, since the ideal matrix depends on the desired tissue. Silk biomaterials have come to focus due to their great mechanical properties. As untreated silkworm silk has been found to be quite immunogenic, an alternative could be spider silk. Not only does it own unique mechanical properties, its biocompatibility has been shown already in vivo. In our study, we used native spider dragline silk which is known as the strongest fibre in nature. Methodology/Principal Findings Steel frames were originally designed and manufactured and woven with spider silk, harvesting dragline silk directly out of the animal. After sterilization, scaffolds were seeded with fibroblasts to analyse cell proliferation and adhesion. Analysis of cell morphology and actin filament alignment clearly revealed adherence. Proliferation was measured by cell count as well as determination of relative fluorescence each after 1, 2, 3, and 5 days. Cell counts for native spider silk were also compared with those for trypsin-digested spider silk. Spider silk specimens displayed less proliferation than collagen- and fibronectin-coated cover slips, enzymatic treatment reduced adhesion and proliferation rates tendentially though not significantly. Nevertheless, proliferation could be proven with high significance (p<0.01). Conclusion/Significance Native spider silk does not require any modification to its application as a biomaterial that can rival any artificial material in terms of cell growth promoting properties. We could show adhesion mechanics on intracellular level. Additionally, proliferation kinetics were higher than in enzymatically digested controls, indicating that spider silk does not require modification. Recent findings concerning reduction of cell proliferation after exposure could not be met. As biotechnological production of the hierarchical composition of native spider silk fibres is still a challenge, our study has a

  9. Proinsulin C-peptide stimulates a PKC/IkappaB/NF-kappaB signaling pathway to activate COX-2 gene transcription in Swiss 3T3 fibroblasts.

    PubMed

    Kitazawa, Masashi; Shibata, Yasutaka; Hashimoto, Seiichi; Ohizumi, Yasushi; Yamakuni, Tohru

    2006-06-01

    Proinsulin C-peptide causes multiple molecular and physiological effects, and improves renal and neuronal dysfunction in patients with diabetes. However, whether C-peptide controls the inhibitor kappaB (IkappaB)/NF-kappaB-dependent transcription of genes, including inflammatory genes is unknown. Here we showed that 1 nM C-peptide increased the expression of cyclooxygenase-2 (COX-2) mRNA and its protein in Swiss 3T3 fibroblasts. Consistently, C-peptide enhanced COX-2 gene promoter-activity, which was inhibited by GF109203X and Go6976, specific PKC inhibitors, and BAY11-7082, a specific nuclear factor-kappaB (NF-kappaB) inhibitor, accompanied by increased phosphorylation and degradation of IkappaB. These results suggest that C-peptide stimulates the transcription of inflammatory genes via activation of a PKC/IkappaB/NF-kappaB signaling pathway.

  10. ToF-SIMS depth profiling of cells: z-correction, 3D imaging, and sputter rate of individual NIH/3T3 fibroblasts.

    PubMed

    Robinson, Michael A; Graham, Daniel J; Castner, David G

    2012-06-01

    Proper display of three-dimensional time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging data of complex, nonflat samples requires a correction of the data in the z-direction. Inaccuracies in displaying three-dimensional ToF-SIMS data arise from projecting data from a nonflat surface onto a 2D image plane, as well as possible variations in the sputter rate of the sample being probed. The current study builds on previous studies by creating software written in Matlab, the ZCorrectorGUI (available at http://mvsa.nb.uw.edu/), to apply the z-correction to entire 3D data sets. Three-dimensional image data sets were acquired from NIH/3T3 fibroblasts by collecting ToF-SIMS images, using a dual beam approach (25 keV Bi(3)(+) for analysis cycles and 20 keV C(60)(2+) for sputter cycles). The entire data cube was then corrected by using the new ZCorrectorGUI software, producing accurate chemical information from single cells in 3D. For the first time, a three-dimensional corrected view of a lipid-rich subcellular region, possibly the nuclear membrane, is presented. Additionally, the key assumption of a constant sputter rate throughout the data acquisition was tested by using ToF-SIMS and atomic force microscopy (AFM) analysis of the same cells. For the dried NIH/3T3 fibroblasts examined in this study, the sputter rate was found to not change appreciably in x, y, or z, and the cellular material was sputtered at a rate of approximately 10 nm per 1.25 × 10(13) ions C(60)(2+)/cm(2). PMID:22530745

  11. A homeopathic remedy from arnica, marigold, St. John’s wort and comfrey accelerates in vitro wound scratch closure of NIH 3T3 fibroblasts

    PubMed Central

    2012-01-01

    Background Drugs of plant origin such as Arnica montana, Calendula officinalis or Hypericum perforatum have been frequently used to promote wound healing. While their effect on wound healing using preparations at pharmacological concentrations was supported by several in vitro and clinical studies, investigations of herbal homeopathic remedies on wound healing process are rare. The objective of this study was to investigate the effect of a commercial low potency homeopathic remedy Similasan® Arnica plus Spray on wound closure in a controlled, blind trial in vitro. Methods We investigated the effect of an ethanolic preparation composed of equal parts of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712–2), its succussed hydroalcoholic solvent (0712–1) and unsuccussed solvent (0712–3) on NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined “wound field”. All assays were performed in three independent controlled experiments. Results None of the three substances affected cell viability and none showed a stimulating effect on cell proliferation. Preparation (0712–2) exerted a stimulating effect on fibroblast migration (31.9%) vs 14.7% with succussed solvent (0712–1) at 1:100 dilutions (p < 0.001). Unsuccussed solvent (0712–3) had no influence on cell migration (6.3%; p > 0.05). Preparation (0712–2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p < 0.001) from succussed solvent (0712–1), which caused 22.1% wound closure. Conclusion Results of this study showed that the low potency homeopathic remedy (0712–2) exerted in vitro wound closure potential in NIH 3T3 fibroblasts. This effect resulted from stimulation of fibroblasts motility rather than of their mitosis. PMID:22809174

  12. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes

    PubMed Central

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-01-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea PMID:26833256

  13. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes.

    PubMed

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-02-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea.

  14. Pinctada fucata mantle gene 3 (PFMG3) promotes differentiation in mouse osteoblasts (MC3T3-E1).

    PubMed

    Wang, Xiaoyan; Liu, Shangfeng; Xie, Liping; Zhang, Rongqing; Wang, Zhao

    2011-02-01

    Nacre is secreted from the mantle of pearl oysters. In vivo and in vitro experiments have demonstrated that water-soluble extracts of nacre stimulate osteoblast differentiation and matrix mineralization, but the component responsible for this activity is unclear. It was reported that Pinctada fucata mantle gene 3 (PFMG3) with an N-terminal signal peptide could be secreted into the nacre of P. fucata. Here we report that PFMG3 is specifically expressed at the outer fold of the mantle and could promote calcium carbonate crystal formation in vitro. Consistent with this observation, we found that matrix mineralization of MC3T3-E1 cells, a murine osteoblast cell line, is accelerated upon treatment with PFMG3. Intriguingly, we observed that alkaline phosphatase activity and cell viability are increased after treating MC3T3-E1 cell with PFMG3. mRNA levels of osteoblast-specific marker genes osteocalcin and osteopontin are also increased. We conclude that PFMG3 from the mantle of P. fucata promotes MC3T3-E1 osteoblast cell differentiation, matrix mineralization, and calcium carbonate deposition in vitro. Our findings provide new evidence that PFMG3 may be used as a potential therapeutic molecule for the treatment of osteoporosis.

  15. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes.

    PubMed

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-01-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea. PMID:26833256

  16. Correlations between radiation-induced double strand breaks, cell division delay, and cyclin-dependent signaling in x-irradiated NIH3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Cariveau, Mickael J.

    2005-07-01

    Molecular responses to radiation-induced DNA double strand breaks (DSB) are mediated by the phosphorylation of the histone variant H2AX which forms identifiable gamma-H2AX foci at the site of the DSB. This event is thought to be linked with the down-regulation of signaling proteins contributing to the checkpoints regulating cell cycle progression and, vis-a-vis , the induction of cell division delay. However, it is unclear whether this division delay is directly related to the number of DSB (gamma-H2AX foci) sustained by an irradiated cell and, if so, whether this number drives cells into cell cycle delay or apoptosis. For this reason, studies were conducted in the immortalized NIH/3T3 fibroblast cell in order to establish correlations between the temporal appearance of the gamma-H2AX foci (a DSB) and the expression of the cell cycle regulatory proteins, cyclin E, A, B1, and their cyclin kinase inhibitor, p21. Cell cycle kinetics and flow cytometry were used to establish radiation-induced division delay over a dose range of 1--6 Gy where a mitotic delay of 2.65 min/cGy was established. Correlations between the expression of cyclin E, A, B1, p21, and the generation of DSB were established in NIH/3T3 cells exposed to 2 or 4 Gy x-irradiation. The data suggest that the G1/S and S phase delay (cyclin E and cyclin A protein levels) are dependent on the dose of radiation while the G2/M (cyclin B1 protein levels) delay is dependent on the quantity of DSB sustained by the irradiated cell.

  17. Transforming growth factor beta 1 augments mitogen-induced prostaglandin synthesis and expression of the TIS10/prostaglandin synthase 2 gene both in Swiss 3T3 cells and in murine embryo fibroblasts.

    PubMed

    Gilbert, R S; Reddy, S T; Kujubu, D A; Xie, W; Luner, S; Herschman, H R

    1994-04-01

    Transforming growth factor-beta (TGF-beta), a potent cytokine, modulates a wide variety of biological responses. Among its actions, TGF-beta can augment prostaglandin synthesis in several cell types. Although TGF-beta alone has no effect on prostaglandin production in Swiss 3T3 cells, we find that TGF-beta augments the ability of tetradecanoyl phorbol acetate (TPA) or serum to stimulate PGE2 production. The TIS10 gene is a primary response gene encoding a second form of prostaglandin synthase (PGS), the rate-limiting enzyme in the biosynthesis of prostaglandins, thromboxanes, and prostacyclins from arachidonic acid. TIS10/PGS-2 expression is induced by mitogens in Swiss 3T3 cells. TGF-beta also augments mitogen-induced synthesis and accumulation of TIS10/PGS-2 protein and induction of TIS10/PGS-2 message in Swiss 3T3 cells. In contrast, TGF-beta has little or no effect on the level of PGS-1 (EC1.14.99.1) message, either alone or in concert with TPA or serum. TGF-beta concentrations in the range of 0.01-0.10 ng/ml (0.4-4.0 pM) maximally enhance mitogen induction of TIS10/PGS-2 message. TPA-induced accumulation of unspliced TIS10/PGS-2 transcript is augmented by TGF-beta, suggesting that this cytokine exerts its effect on expression of the TIS10/PGS-2 gene by transcriptional regulation. TGF-beta also augments TPA-induced prostaglandin production, TIS10/PGS-2 antigen accumulation, and TIS10/PGS-2 message induction in primary cultures of mouse embryo fibroblasts. Dexamethasone attenuates TGF-beta enhancement of all these mitogen-induced responses: PGE2 accumulation, appearance of TIS10/PGS-2 protein and message, and accumulation of TIS10/PGS-2 unprocessed transcript.

  18. The protective effects of guaraná extract (Paullinia cupana) on fibroblast NIH-3T3 cells exposed to sodium nitroprusside.

    PubMed

    Bittencourt, L S; Machado, D C; Machado, M M; Dos Santos, G F F; Algarve, T D; Marinowic, D R; Ribeiro, E E; Soares, F A A; Barbisan, F; Athayde, M L; Cruz, I B M

    2013-03-01

    The antioxidant effects of the hydro-alcoholic guaraná extract (Paullinia cupana var. sorbilis Mart.) on nitric oxide (NO) and other compounds generated from the degradation of sodium nitroprusside (SNP) in an embryonic fibroblast culture (NIH-3T3 cells) were evaluated. The guaraná bioactive compounds were initially determined by high-performance liquid chromatography: caffeine=12.240 mg/g, theobromine=6.733 mg/g and total catechins=4.336 mg/g. Cells were exposed to 10 μM SNP during a 6 h period because the cells exhibited >90% mortality at this concentration. Guaraná was added to the cultures in five concentrations (0.5, 1, 5, 10 and 20 mg/mL). The guaraná antioxidant effect was evaluated by viability assays, biochemical oxidation [lipid peroxidation, catalase and superoxide dismutase (SOD) activity] and genotoxicity (DNA Comet assay) analysis. Additionally, oxidative stress was evaluated by a 2,7-dihydrodichlorofluorescein diacetate fluorescence assay. Guaraná reverted the SNP toxicity mainly at lower concentrations (<5 mg), which decreased cell mortality, lipid peroxidation, DNA damage and cell oxidative stress as well as increased the SOD levels. These results demonstrate that guaraná has an antioxidant effect on NO metabolism in situations with higher cellular NO levels. PMID:23220610

  19. Regulation of glucose transport by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts: Involvement of protein kinase C-dependent and -independent mechanisms

    SciTech Connect

    Dettori, C.; Meldolesi, J. )

    1989-05-01

    Glucose transport stimulation by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts was compared with the phosphoinositide hydrolysis effects of the same stimulants in a variety of experimental paradigms known to affect generation and/or functioning of intracellular second messengers: short- and long-term treatments with phorbol dibutyrate, that cause activation and down-regulation of protein kinase C, respectively; cell loading with high (quin2), that causes clamping of (Ca{sup 2+}){sub i} near the resting level; poisoning with pertussis toxin, that affects the GTP binding proteins of the Go/Gi class; treatment with Ca{sup 2+} ionophores. ({sup 14}C) glucose transport stimulation by maximal (insulin) was affected by neither pertussis toxin nor protein kinase C down-regulation. This result correlates with the lack of effect of insulin on phosphoinositide hydrolysis. In contrast, part of the glucose transport responses induced by bombesin and bradykinin appeared to be mediated by protein kinase C in proportion with the stimulation induced by these peptides on the phosphoinositide hydrolysis. The protein kinase C-independent portion of the response to bradykinin was found to be inhibitable by pertussis toxin. This latter result might suggest an interaction between the bradykinin receptor and a glucose transporter, mediated by a protein of the Go/Gi class.

  20. The protective effects of guaraná extract (Paullinia cupana) on fibroblast NIH-3T3 cells exposed to sodium nitroprusside.

    PubMed

    Bittencourt, L S; Machado, D C; Machado, M M; Dos Santos, G F F; Algarve, T D; Marinowic, D R; Ribeiro, E E; Soares, F A A; Barbisan, F; Athayde, M L; Cruz, I B M

    2013-03-01

    The antioxidant effects of the hydro-alcoholic guaraná extract (Paullinia cupana var. sorbilis Mart.) on nitric oxide (NO) and other compounds generated from the degradation of sodium nitroprusside (SNP) in an embryonic fibroblast culture (NIH-3T3 cells) were evaluated. The guaraná bioactive compounds were initially determined by high-performance liquid chromatography: caffeine=12.240 mg/g, theobromine=6.733 mg/g and total catechins=4.336 mg/g. Cells were exposed to 10 μM SNP during a 6 h period because the cells exhibited >90% mortality at this concentration. Guaraná was added to the cultures in five concentrations (0.5, 1, 5, 10 and 20 mg/mL). The guaraná antioxidant effect was evaluated by viability assays, biochemical oxidation [lipid peroxidation, catalase and superoxide dismutase (SOD) activity] and genotoxicity (DNA Comet assay) analysis. Additionally, oxidative stress was evaluated by a 2,7-dihydrodichlorofluorescein diacetate fluorescence assay. Guaraná reverted the SNP toxicity mainly at lower concentrations (<5 mg), which decreased cell mortality, lipid peroxidation, DNA damage and cell oxidative stress as well as increased the SOD levels. These results demonstrate that guaraná has an antioxidant effect on NO metabolism in situations with higher cellular NO levels.

  1. Phenotypic and genotypic characteristics of novel mouse cell line (NIH/3T3)-adapted human enterovirus 71 strains (EV71:TLLm and EV71:TLLmv).

    PubMed

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Chow, Vincent T K; Chua, Kaw Bing

    2014-01-01

    Since its identification in 1969, Enterovirus 71 (EV71) has been causing periodic outbreaks of infection in children worldwide and most prominently in the Asia-Pacific Region. Understanding the pathogenesis of Enterovirus 71 (EV71) is hampered by the virus's inability to infect small animals and replicate in their derived in vitro cultured cells. This manuscript describes the phenotypic and genotypic characteristics of two selected EV71 strains (EV71:TLLm and EV71:TLLmv), which have been adapted to replicate in mouse-derived NIH/3T3 cells, in contrast to the original parental virus which is only able to replicate in primate cell lines. The EV71:TLLm strain exhibited productive infection in all primate and rodent cell lines tested, while EV71:TLLmv exhibited greater preference for mouse cell lines. EV71:TLLmv displayed higher degree of adaptation and temperature adaptability in NIH/3T3 cells than in Vero cells, suggesting much higher fitness in NIH/3T3 cells. In comparison with the parental EV71:BS strain, the adapted strains accumulated multiple adaptive mutations in the genome resulting in amino acid substitutions, most notably in the capsid-encoding region (P1) and viral RNA-dependent RNA polymerase (3D). Two mutations, E167D and L169F, were mapped to the VP1 canyon that binds the SCARB2 receptor on host cells. Another two mutations, S135T and K140I, were located in the VP2 neutralization epitope spanning amino acids 136-150. This is the first report of human EV71 with the ability to productively infect rodent cell lines in vitro.

  2. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone.

    PubMed

    Addison, W N; Nelea, V; Chicatun, F; Chien, Y-C; Tran-Khanh, N; Buschmann, M D; Nazhat, S N; Kaartinen, M T; Vali, H; Tecklenburg, M M; Franceschi, R T; McKee, M D

    2015-02-01

    Bone cell culture systems are essential tools for the study of the molecular mechanisms regulating extracellular matrix mineralization. MC3T3-E1 osteoblast cell cultures are the most commonly used in vitro model of bone matrix mineralization. Despite the widespread use of this cell line to study biomineralization, there is as yet no systematic characterization of the mineral phase produced in these cultures. Here we provide a comprehensive, multi-technique biophysical characterization of this cell culture mineral and extracellular matrix, and compare it to mouse bone and synthetic apatite mineral standards, to determine the suitability of MC3T3-E1 cultures for biomineralization studies. Elemental compositional analysis by energy-dispersive X-ray spectroscopy (EDS) showed calcium and phosphorus, and trace amounts of sodium and magnesium, in both biological samples. X-ray diffraction (XRD) on resin-embedded intact cultures demonstrated that similar to 1-month-old mouse bone, apatite crystals grew with preferential orientations along the (100), (101) and (111) mineral planes indicative of guided biogenic growth as opposed to dystrophic calcification. XRD of crystals isolated from the cultures revealed that the mineral phase was poorly crystalline hydroxyapatite with 10 to 20nm-sized nanocrystallites. Consistent with the XRD observations, electron diffraction patterns indicated that culture mineral had low crystallinity typical of biological apatites. Fourier-transform infrared spectroscopy (FTIR) confirmed apatitic carbonate and phosphate within the biological samples. With all techniques utilized, cell culture mineral and mouse bone mineral were remarkably similar. Scanning (SEM) and transmission (TEM) electron microscopy showed that the cultures had a dense fibrillar collagen matrix with small, 100nm-sized, collagen fibril-associated mineralization foci which coalesced to form larger mineral aggregates, and where mineralized sites showed the accumulation of the

  3. Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells.

    PubMed

    Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning

    2014-10-01

    The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.

  4. Ca/sup 2 +/-mobilizing actions of platelet-derived growth factor differ from those of bombesin and vasopressin in Swiss 3T3 mouse cells

    SciTech Connect

    Lopez-Rivas, A.; Mendoza, S.A.; Nanberg, E.; Sinnett-Smith, J.; Rozengurt, E.

    1987-08-01

    Addition of the mitogenic peptides bombesin and vasopressin to quiescent Swiss 3T3 mouse cells increased the cytosolic Ca/sup 2 +/ concentration without any measurable delay. In contrast, there was a significant lag period (16 +/- 1.2 s) before platelet-derived growth factor (PDGF) increased cytosolic Ca/sup 2 +/ concentration. This lag was not diminished at high concentrations of either porcine or human PDGF. Similar results were obtained in 3T3 cells loaded with quin-2 or fura-2. The differences in the effects of bombesin, vasopressin, and PDGF on Ca/sup 2 +/ movements were also substantiated by measurements of /sup 45/Ca/sup 2 +/ efflux and of cellular /sup 45/Ca/sup 2 +/ content. Activation of protein kinase C by phorbol esters inhibited Ca/sup 2 +/ mobilization induced by either bombesin or vasopressin. In contrast, phorbol esters had no effect on PDGF-induced cytosolic Ca/sup 2 +/ concentration increase or acceleration of /sup 45/Ca/sup 2 +/ efflux. Finally, bombesin and vasopressin caused a rapid increase in the production of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate, whereas PDGF, even at a saturating concentration, exerted only a small effect. These results indicate that the signal transduction pathway activated by PDGF that lead to Ca/sup 2 +/ mobilization can be distinguished form those utilized by bombesin and vasopressin.

  5. 31P NMR analysis of intracellular pH of Swiss Mouse 3T3 cells: effects of extracellular Na+ and K+ and mitogenic stimulation.

    PubMed

    Civan, M M; Williams, S R; Gadian, D G; Rozengurt, E

    1986-01-01

    Swiss mouse 3T3 cells grown on microcarrier beads were superfused with electrolyte solution during continuous NMR analysis. Conventional 31P and 19F probes of intracellular pH (pHc) were found to be impracticable. Cells were therefore superfused with 1 to 4 mM 2-deoxyglucose, producing a large intracellular, pH-sensitive signal of 2-deoxyglucose phosphate (2DGP). The intracellular incorporation of 2DGP inhibited the Embden-Meyerhof pathway. However, intracellular ATP was at least in part retained and the cellular responsivity to changes in extracellular ionic composition and to the application of growth factors proved intact. Transient replacement of external Na+ with choline or K+ reversibly acidified the intracellular fluids. Quiescent cells and mitogenically stimulated cells displayed the same dependence of shifts in pHc on external Na+ concentration (CoNa). PHc also depended on intracellular Na+ concentration (CcNa). Increasing ccNa by withdrawing external K+ (thereby inhibiting the Na,K-pump) caused reversible intracellular acidification; subsequently reducing CoNa produced a larger acid shift in pHc than with external K+ present. Comparison of separate preparations indicated that pHc was higher in stimulated than in quiescent cells. Transient administration of mitogens also reversibly alkalinized quiescent cells studied continuously. This study documents the feasibility of monitoring pHc of Swiss mouse 3T3 cells using 31P NMR analysis of 2DGP. The results support the concept of a Na/H antiport operative in these cells, both in quiescence and after mitogenic stimulation. The data document by an independent technique that cytoplasmic alkalinization is an early event in mitogenesis, and that full activity of the Embden-Meyerhof pathway is not required for the expression of this event.

  6. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes.

    PubMed

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-08-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli

  7. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes

    PubMed Central

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-01-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli-type chickpeas, which are

  8. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes.

    PubMed

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-08-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli

  9. Enhancing effect of daidzein on the differentiation and mineralization in mouse osteoblast-like MC3T3-E1 cells.

    PubMed

    Ge, Yuebin; Chen, Dawei; Xie, Liping; Zhang, Rongqing

    2006-08-01

    The effect of daidzein, an important isoflavone, on the differentiation and mineralization in MC3T3-E1 cells, a mouse calvaria osteoblast-like cell line, was investigated. The MTT assay, the alizarin red S and von Kossa staining, the measurement of calcium (Ca) and phosphorus (P) concentrations by inductively coupled plasma-atomic emission spectrometry and the nitrophenol liberation method were used to determine the cell proliferation, mineralization and intracellular alkaline phosphatase (ALP) activity, respectively. Daidzein enhanced the cell proliferation after the culture for 2 days and the effect reached maximum on day 6. ALP activity and cellular Ca and P contents were increased time- and dose-dependently when the cells were treated with daidzein in the presence of disodium beta-glycerophosphate and L-ascorbic acid. Differentiation of the cells to the mature osteoblasts was prompted under incubation in the presence of daidzein for 21 days, by the time the mineralized nodules formed. The calcium depositions of the cells by alizarin red S staining were increased significantly after the culture with daidzein as long as 28 days. It has been demonstrated that daidzein may be able to enhance the bone differentiation and mineralization and prompt the bone formation in the early growing stage and the late growing stage of osteoblasts. PMID:16880723

  10. Widening the mutation spectrum of EVC and EVC2: ectopic expression of Weyer variants in NIH 3T3 fibroblasts disrupts Hedgehog signaling.

    PubMed

    Valencia, Maria; Lapunzina, Pablo; Lim, Derek; Zannolli, Raffaella; Bartholdi, Deborah; Wollnik, Bernd; Al-Ajlouni, Othman; Eid, Suhair S; Cox, Helen; Buoni, Sabrina; Hayek, Joseph; Martinez-Frias, Maria L; Antonio, Perez-Aytes; Temtamy, Samia; Aglan, Mona; Goodship, Judith A; Ruiz-Perez, Victor L

    2009-12-01

    Autosomal recessive Ellis-van Creveld syndrome and autosomal dominant Weyer acrodental dysostosis are allelic conditions caused by mutations in EVC or EVC2. We performed a mutation screening study in 36 EvC cases and 3 cases of Weyer acrodental dysostosis, and identified pathogenic changes either in EVC or in EVC2 in all cases. We detected 40 independent EVC/EVC2 mutations of which 29 were novel changes in Ellis-van Creveld cases and 2 were novel mutations identified in Weyer pedigrees. Of interest one EvC patient had a T>G nucleotide substitution in intron 7 of EVC (c.940-150T>G), which creates a new donor splice site and results in the inclusion of a new exon. The T>G substitution is at nucleotide +5 of the novel 5' splice site. The three Weyer mutations occurred in the final exon of EVC2 (exon 22), suggesting that specific residues encoded by this exon are a key part of the protein. Using murine versions of EVC2 exon 22 mutations we demonstrate that the expression of a Weyer variant, but not the expression of a truncated protein that mimics an Ellis-van Creveld syndrome mutation, impairs Hedgehog signal transduction in NIH 3T3 cells in keeping with its dominant effect.

  11. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity.

    PubMed

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography-Mass Spectrometry (GC-MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  12. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity.

    PubMed

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography-Mass Spectrometry (GC-MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer.

  13. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity

    PubMed Central

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography–Mass Spectrometry (GC–MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC–MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  14. The dynamic distribution of fluorescent analogues of actin and myosin in protrusions at the leading edge of migrating Swiss 3T3 fibroblasts

    PubMed Central

    1988-01-01

    The formation of protrusions at the leading edge of the cell is an essential step in fibroblast locomotion. Using fluorescent analogue cytochemistry, ratio imaging, multiple parameter analysis, and fluorescence photobleaching recovery, the distribution of actin and myosin was examined in the same protrusions at the leading edge of live, locomoting cells during wound-healing in vitro. We have previously defined two temporal stages of the formation of protrusions: (a) initial protrusion and (b) established protrusion (Fisher et al., 1988). Actin was slightly concentrated in initial protrusions, while myosin was either totally absent or present at extremely low levels at the base of the initial protrusions. In contrast, established protrusions contained diffuse actin and actin microspikes, as well as myosin in both diffuse and structured forms. Actin and myosin were also localized along concave transverse fibers near the base of initial and established protrusions. The dynamics of myosin penetration into a relatively stable, established protrusion was demonstrated by recording sequential images over time. Myosin was shown to be absent from an initial protrusion, but diffuse and punctate myosin was detected in the same protrusion within 1-2 min. Fluorescence photobleaching recovery indicated that myosin was 100% immobile in the region behind the leading edge containing transverse fibers, in comparison to the 21% immobile fraction detected in the perinuclear region. Possible explanations of the delayed penetration of myosin into established protrusions and the implications on the mechanism of protrusion are discussed. PMID:3204122

  15. Effect of imposed serum deprivation on growth of the mouse 3T3 cell. Dissociation from changes in potassium ion transport as measured from [36Rb]rubidium ion uptake

    PubMed Central

    Tupper, Joseph T.; Zografos, Linda

    1978-01-01

    Decreased serum concentrations that substantially alter the growth of normal 3T3 cells alter neither the active and non-active components of unidirectional 86Rb+ influx nor the intracellular K+ content when compared with cells in exponential growth. Thus the changes in K+ transport (measured with 86Rb+ as an analogue for K+ movements) that occur on density-dependent growth inhibition of the mouse 3T3 cell are not mimicked by serum deprivation of the cells before density inhibition. PMID:728075

  16. Magnetic Beads Enhance Adhesion of NIH 3T3 Fibroblasts: A Proof-of-Principle In Vitro Study for Implant-Mediated Long-Term Drug Delivery to the Inner Ear

    PubMed Central

    Aliuos, Pooyan; Schulze, Jennifer; Schomaker, Markus; Reuter, Günter; Stolle, Stefan R. O.; Werner, Darja; Ripken, Tammo; Lenarz, Thomas; Warnecke, Athanasia

    2016-01-01

    Introduction Long-term drug delivery to the inner ear may be achieved by functionalizing cochlear implant (CI) electrodes with cells providing neuroprotective factors. However, effective strategies in order to coat implant surfaces with cells need to be developed. Our vision is to make benefit of electromagnetic field attracting forces generated by CI electrodes to bind BDNF-secreting cells that are labelled with magnetic beads (MB) onto the electrode surfaces. Thus, the effect of MB-labelling on cell viability and BDNF production were investigated. Materials and Methods Murine NIH 3T3 fibroblasts—genetically modified to produce BDNF—were labelled with MB. Results Atomic force and bright field microscopy illustrated the internalization of MB by fibroblasts after 24 h of cultivation. Labelling cells with MB did not expose cytotoxic effects on fibroblasts and allowed adhesion on magnetic surfaces with sufficient BDNF release. Discussion Our data demonstrate a novel approach for mediating enhanced long-term adhesion of BDNF-secreting fibroblasts on model electrode surfaces for cell-based drug delivery applications in vitro and in vivo. This therapeutic strategy, once transferred to cells suitable for clinical application, may allow the biological modifications of CI surfaces with cells releasing neurotrophic or other factors of interest. PMID:26918945

  17. The β-SiC nanowires (~100 nm) induce apoptosis via oxidative stress in mouse osteoblastic cell line MC3T3-E1.

    PubMed

    Xie, Weili; Xie, Qi; Jin, Meishan; Huang, Xiaoxiao; Zhang, Xiaodong; Shao, Zhengkai; Wen, Guangwu

    2014-01-01

    Silicon carbide (SiC), a compound of silicon and carbon, with chemical formula SiC, the beta modification ( β-SiC), with a zinc blende crystal structure (similar to diamond), is formed at temperature below 1700°C. β-SiC will be the most suitable ceramic material for the future hard tissue replacement, such as bone and tooth. The in vitro cytotoxicity of β-SiC nanowires was investigated for the first time. Our results indicated that 100 nm long SiC nanowires could significantly induce the apoptosis in MC3T3-E1 cells, compared with 100 μm long SiC nanowires. And 100 nm long SiC nanowires increased oxidative stress in MC3T3-E1 cells, as determined by the concentrations of MDA (as a marker of lipid peroxidation) and 8-OHdG (indicator of oxidative DNA damage). Moreover, transmission electron microscopy (TEM) was performed to evaluate the morphological changes of MC3T3-E1 cells. After treatment with 100 nm long SiC nanowires, the mitochondria were swelled and disintegrated, and the production of ATP and the total oxygen uptake were also decreased significantly. Therefore, β-SiC nanowires may have limitations as medical material.

  18. T24 HRAS transformed NIH/3T3 mouse cells (GhrasT-NIH/3T3) in serial tumorigenic in vitro/in vivo passages give rise to increasingly aggressive tumorigenic cell lines T1-A and T2-A and metastatic cell lines T3-HA and T4-PA.

    PubMed

    Ray, Durwood B; Merrill, Gerald A; Brenner, Frederic J; Lytle, Laurie S; Lam, Tan; McElhinney, Aaron; Anders, Joel; Rock, Tara Tauber; Lyker, Jennifer Kier; Barcus, Scott; Leslie, Kara Hust; Kramer, Jill M; Rubenstein, Eric M; Pryor Schanz, Karen; Parkhurst, Amy J; Peck, Michelle; Good, Kimberly; Granath, Kristi Lemke; Cifra, Nicole; Detweiler, Jessalee Wantz; Stevens, Laura; Albertson, Richard; Deir, Rachael; Stewart, Elisabeth; Wingard, Katherine; Richardson, Micah Rose; Blizard, Sarah B; Gillespie, Lauren E; Kriley, Charles E; Rzewnicki, Daniel I; Jones, David H

    2016-01-01

    Cancer cells often arise progressively from "normal" to "pre-cancer" to "transformed" to "local metastasis" to "metastatic disease" to "aggressive metastatic disease". Recent whole genome sequencing (WGS) and spectral karyotyping (SKY) of cancer cells and tumorigenic models have shown this progression involves three major types of genome rearrangements: ordered small step-wise changes, more dramatic "punctuated evolution" (chromoplexy), and large catastrophic steps (chromothripsis) which all occur in random combinations to generate near infinite numbers of stochastically rearranged metastatic cancer cell genomes. This paper describes a series of mouse cell lines developed sequentially to mimic this type of progression. This starts with the new GhrasT-NIH/Swiss cell line that was produced from the NIH/3T3 cell line that had been transformed by transfection with HRAS oncogene DNA from the T24 human bladder carcinoma. These GhrasT-NIH/Swiss cells were injected s.c. into NIH/Swiss mice to produce primary tumors from which one was used to establish the T1-A cell line. T1-A cells injected i.v. into the tail vein of a NIH/Swiss mouse produced a local metastatic tumor near the base of the tail from which the T2-A cell line was established. T2-A cells injected i.v. into the tail vein of a nude NIH/Swiss mouse produced metastases in the liver and one lung from which the T3-HA (H=hepatic) and T3-PA (P=pulmonary) cell lines were developed, respectively. T3-HA cells injected i.v. into a nude mouse produced a metastasis in the lung from which the T4-PA cell line was established. PCR analysis indicated the human T24 HRAS oncogene was carried along with each in vitro/in vivo transfer step and found in the T2-A and T4-PA cell lines. Light photomicrographs indicate that all transformed cells are morphologically similar. GhrasT-NIH/Swiss cells injected s.c. produced tumors in 4% of NIH/Swiss mice in 6-10 weeks; T1-A cells injected s.c. produced tumors in 100% of NIH/Swiss mice in 7

  19. Vasoactive intestinal peptide synergistically stimulates DNA synthesis in mouse 3T3 cells: Role of cAMP, Ca sup 2+ , and protein kinase C

    SciTech Connect

    Zurier, B.B.; Kozma, M.; Sinnett-Smith, J.; Rozengurt, E. )

    1988-05-01

    Vasoactive intestinal peptide synergistically stimulated initiation of DNA synthesis in Swiss 3T3 cells. The peptide stimulated ({sup 3}H)thymidine incorporation in the presence of insulin and either forskolin or an inhibitor of cAMP phosphodiesterase in a concentration-dependent manner. Half-maximal effect was obtained at 1 nM. At mitogenic concentrations, VIP stimulated a marked accumulation (eightfold) of cAMP. In contrast to other growth-promoting neuropeptides, VIP did not induce an increase in cytosolic free Ca{sup 2+} or the activation of protein kinase C. The authors conclude that neuropeptides can modulate long-term cell proliferation through multiple signaling pathways.

  20. Ice Plant (Mesembryanthemum crystallinum) Extract Promotes Lipolysis in Mouse 3T3-L1 Adipocytes Through Extracellular Signal-Regulated Kinase Activation.

    PubMed

    Drira, Riadh; Matsumoto, Taku; Agawa, Masashi; Sakamoto, Kazuichi

    2016-03-01

    The antiobesity effect of ice plant (IP) (Mesembryanthemum crystallinum), a salt-resistant African plant, has recently attracted increased attention. IP is rich in pinitol, which lowers blood sugar, and myo-inositol, which prevents fatty liver disease. Furthermore, IP can potentially prevent or reduce the symptoms of metabolic syndrome. However, the details of the physiological mechanisms and mechanisms of action of IP are unclear. A previous study by our group demonstrated the capability of IP extract to prevent adipogenesis in 3T3-L1 preadipocytes. In this study, we analyzed the physiological function of IP extract on lipolysis in 3T3-L1 cells and the underlying mechanisms of this process. We found that the release of glycerol from cells treated with IP extract increased in an IP dose-dependent manner. IP extract exhibited cytotoxic activity at concentrations above 4 mg/mL. Real-time polymerase chain reaction and western blotting showed that IP extract downregulated peroxisome proliferator-activated receptor (PPAR-)γ, hormone-sensitive lipase (HSL), and adipose triglyceride lipase (ATGL) in a concentration-dependent manner, but did not affect HSL-Ser563, HSL-Ser660, or perilipin phosphorylation. Although the cAMP-dependent protein kinase A (PKA)-specific inhibitor H89 did not affect IP extract-induced lipolysis, the extracellular signal-regulated kinase (ERK1/2) inhibitor U0126 significantly abrogated IP extract-activated glycerol release. Furthermore, IP extract strongly enhanced ERK1/2 phosphorylation at the concentrations used in the study. These results suggest that IP extract augments lipolysis by enhancing ERK phosphorylation. PMID:26390196

  1. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structure-function correlations at the molecular level.

    PubMed

    Halevas, E; Tsave, O; Yavropoulou, M P; Hatzidimitriou, A; Yovos, J G; Psycharis, V; Gabriel, C; Salifoglou, A

    2015-06-01

    Among the various roles of vanadium in the regulation of intracellular signaling, energy metabolism and insulin mimesis, its exogenous activity stands as a contemporary challenge currently under investigation and a goal to pursue as a metallodrug against Diabetes mellitus II. In this regard, the lipogenic activity of vanadium linked to the development of well-defined anti-diabetic vanadodrugs has been investigated through: a) specifically designing and synthesizing Schiff base organic ligands L, bearing a variable number of terminal alcohols, b) a series of well-defined soluble binary V(V)-L compounds synthesized and physicochemically characterized, c) a study of their cytotoxic effect and establishment of adipogenic activity in 3T3-L1 fibroblasts toward mature adipocytes, and d) biomarker examination of a closely-linked molecular target involving or influenced by the specific V(V) forms, cumulatively delineating factors involved in potential pathways linked to V(V)-induced insulin-like activity. Collectively, the results a) project the importance of specific structural features in Schiff ligands bound to V(V), thereby influencing the emergence of its (a)toxicity and for the first time its insulin-like activity in pre-adipocyte differentiation, b) contribute to the discovery of molecular targets influenced by the specific vanadoforms seeking to induce glucose uptake, and c) indicate an interplay of V(V) structural speciation and cell-differentiation biological activity, thereby gaining insight into vanadium's potential as a future metallodrug in Diabetes mellitus.

  2. Fisetin Suppresses Lipid Accumulation in Mouse Adipocytic 3T3-L1 Cells by Repressing GLUT4-Mediated Glucose Uptake through Inhibition of mTOR-C/EBPα Signaling.

    PubMed

    Watanabe, Marina; Hisatake, Mitsuhiro; Fujimori, Ko

    2015-05-27

    3,7,3',4'-Tetrahydroxyflavone (fisetin) is a flavonoid found in vegetables and fruits having broad biological activities. Here the effects of fisetin on adipogenesis and its regulatory mechanism in mouse adipocytic 3T3-L1 cells are studied. Fisetin inhibited the accumulation of intracellular lipids and lowered the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein (C/EBP) α and fatty acid-binding protein 4 (aP2) during adipogenesis. Moreover, the mRNA levels of genes such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase involved in the fatty acid biosynthesis (lipogenesis) were reduced by the treatment with fisetin. The expression level of the glucose transporter 4 (GLUT4) gene was also decreased by fisetin, resulting in down-regulation of glucose uptake. Furthermore, fisetin inhibited the phosphorylation of the mammalian target of rapamycin (mTOR) and that of p70 ribosomal S6 kinase, a target of the mTOR complex, the inhibition of which was followed by a decreased mRNA level of the C/EBPα gene. The results obtained from a chromatin immunoprecipitation assay demonstrated that the ability of C/EBPα to bind to the GLUT4 gene promoter was reduced by the treatment with fisetin, which agreed well with those obtained when 3T3-L1 cells were allowed to differentiate into adipocytes in medium in the presence of rapamycin, an inhibitor for mTOR. These results indicate that fisetin suppressed the accumulation of intracellular lipids by inhibiting GLUT4-mediated glucose uptake through inhibition of the mTOR-C/EBPα signaling in 3T3-L1 cells.

  3. The relative cytotoxicity of personal care preservative systems in Balb/C 3T3 clone A31 embryonic mouse cells and the effect of selected preservative systems upon the toxicity of a standard rinse-off formulation.

    PubMed

    Smith, C N; Alexander, B R

    2005-10-01

    Biocide chemicals are commonly used as preservatives for cosmetic and personal care products and the conditions for their use are stipulated in Annex VI of the Cosmetics Directive. In these studies the cytotoxicity (EC50 and EC90) of a range of preservatives including the isothiazolinone family, formaldehyde donors, parabens mixtures and organic acids have been established in the Balb/C 3T3 clone A31 fibroblast cell-line following a 1h exposure. Cell viability was established using the neutral red uptake assay 24h after exposure. The potency of the preservatives spanned several orders of magnitude from the isothiazolinones (EC50<10ppm) to the organic acids (EC50>10,000ppm). Although these values are directly proportional to the anti-microbial efficacy of the actives, they do not reflect the addition levels commonly used to preserve formulations, which are intended to provide prolonged protection against a wide spectrum of spoilage organisms. In a further study, the cytotoxic profile of an unpreserved standard rinse-off body wash formulation was assessed. Two concentrations of the formulation were selected: 0.1% v/v (EC98) and 0.15% v/v (EC82) to study the effects of selected preservative chemicals at recommended addition levels upon the cytotoxicity of the formulation. At 0.1%, only preservation with benzoate/sorbate at the highest addition level increased the toxicity, whereas at 0.15%, preservation with 2-bromo-2-nitro-propane-1,3-diol increased the cytotoxicity of the formulation. No other preservatives, including isothiazolinones and formaldehyde donors affected the basal cytotoxicity of the formulation. Theses studies have provided a standardised assessment of the cytotoxicity of cosmetic preservatives and demonstrated that preservation of a rinse-off formulation at recommended addition levels is unlikely to affect the cytotoxic profile.

  4. Effects of different forms of chitosan on intercellular junctions of mouse fibroblasts in vitro.

    PubMed

    Uslu, B; Biltekin, B; Denir, S; Özbaş-Turan, S; Arbak, S; Akbuğa, J; Bilir, A

    2016-01-01

    Chitosan is a linear polysaccharide that has many biomedical applications. We compared the effects of chitosan, in both solution and membranous form, on intercellular adhesion of Swiss 3T3 mouse fibroblasts. Cells were grown as spheroidal cell cultures. Some control cell spheroids were cultured without chitosan and two experimental groups were cultured with chitosan. Chitosan in solution was used for one experimental group and chitosan in membranous form was used for the other. For each group, intercellular adhesion was investigated on days 5 and 10 of culture. Transmission electron microscopy revealed well-defined cellular projections that were more prominent in cells exposed to either membranous or solution forms of chitosan than to the chitosan-free control. Immunocytochemical staining of ICAM-1 and e-cadherin was used to determine the development of intercellular junctions. Compared to the weakly stained control, strong reactions were observed in both chitosan exposed groups at both 5 and 10 days. Cells were treated with 5-bromo-2-deoxyuridine (BrdU) and incubated with anti-BrdU primary antibody to assess proliferation. Both the solution and membranous forms of chitosan increased proliferation at both 5 and 10 days. Cellular viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The MTT assay indicated high cell viability; maximum viability was obtained with the solution form of chitosan at day 5. Chitosan exposure increased the number of intercellular junctions and showed a significant proliferative effect on 3T3 mouse fibroblasts.

  5. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells.

    PubMed Central

    Wu, J; Issa, J P; Herman, J; Bassett, D E; Nelkin, B D; Baylin, S B

    1993-01-01

    Abnormal regional increases in DNA methylation, which have potential for causing gene inactivation and chromosomal instability, are consistently found in immortalized and tumorigenic cells. Increased DNA methyltransferase activity, which is also a characteristic of such cells, is a candidate to mediate these abnormal DNA methylation patterns. We now show that, in NIH 3T3 mouse fibroblasts, constitutive overexpression of an exogenous mouse DNA methyltransferase gene results in a marked increase in overall DNA methylation which is accompanied by tumorigenic transformation. These transformation changes can also be elicited by dexamethasone-inducible expression of an exogenous DNA methyltransferase gene. Our findings provide strong evidence that the increase in DNA methyltransferase activity associated with tumor progression could be a key step in carcinogenesis and provide a model system that can be used to further study this possibility. Images Fig. 1 Fig. 2 PMID:8415627

  6. Mouse bone marrow-derived mast cells (BMMC) change their phenotype when cultured with fibroblasts

    SciTech Connect

    Levi-Schaffer, F.; Austen, K.F.; Stevens, R.L.

    1986-03-05

    The heparin-containing mast cells (HP-MC) that reside in the connective tissues of the mouse, but not the chondroitin sulfate containing mast cells in the gastrointestinal mucosa, stain with safranin when exposed to alcian blue/safranin. Mouse BMMC (the presumptive in vitro counterpart of the in vivo differentiated mucosal mast cell) were cultured for 2-14 days with confluent skin-derived 3T3 fibroblasts in RPMI-1640 containing 10% fetal calf serum and 50% WEHI-3 conditioned medium. Although the BMMC adhered to the fibroblast monolayer, they continued to divide, probably due to the presence of interleukin-3 in the conditioned medium. The mast cells remained viable throughout the period of co-culture, since they failed to release LDG and because they increased their histamine content per cell approx.15-fold. After 8-9 days of co-culture, >50% of the BMMC changed histochemically becoming safranin positive. At this time, 30-50% of the (/sup 35/S)glycosaminoglycans on the proteoglycans synthesized by these co-cultured mass cells were heparin, whereas the initial BMMC synthesized proteoglycans containing only chondroitin sulfate E. That interleukin 3-dependent mouse BMMC can be induced to undergo a phenotypic change so as to express characteristics of a HP-MC suggests that the tissue microenvironment determines the differentiated characteristics of these cells.

  7. Irradiated Human Dermal Fibroblasts Are as Efficient as Mouse Fibroblasts as a Feeder Layer to Improve Human Epidermal Cell Culture Lifespan

    PubMed Central

    Bisson, Francis; Rochefort, Éloise; Lavoie, Amélie; Larouche, Danielle; Zaniolo, Karine; Simard-Bisson, Carolyne; Damour, Odile; Auger, François A.; Guérin, Sylvain L.; Germain, Lucie

    2013-01-01

    A fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties. Keratinocytes were grown either with or without a feeder layer in serum-containing medium. Our results showed that keratinocytes grown either on an irradiated human feeder layer or irradiated 3T3 cells (i3T3) can be cultured for a comparable number of passages. The average epithelial cell size and morphology were also similar. On the other hand, keratinocytes grown without a feeder layer showed heavily bloated cells at early passages and stop proliferating after only a few passages. On the molecular aspect, the expression level of the transcription factor Sp1, a useful marker of keratinocytes lifespan, was maintained and stabilized for a high number of passages in keratinocytes grown with feeder layers whereas Sp1 expression dropped quickly without a feeder layer. Furthermore, gene profiling on microarrays identified potential target genes whose expression is differentially regulated in the absence or presence of an i3T3 feeder layer and which may contribute at preserving the growth characteristics of these cells. Irradiated human dermal fibroblasts therefore provide a good human feeder layer for an effective expansion of keratinocytes in vitro that are to be used for clinical purposes. PMID:23443166

  8. Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells.

    PubMed

    Hou, Qingxia; Wang, Minglian; Wu, Shuicai; Ma, Xuemei; An, Guangzhou; Liu, Huan; Xie, Fei

    2015-03-01

    To investigate the potential adverse effects of mobile phone radiation, we studied reactive oxygen species (ROS), DNA damage and apoptosis in mouse embryonic fibroblasts (NIH/3T3) after intermittent exposure (5 min on/10 min off, for various durations from 0.5 to 8 h) to an 1800-MHz GSM-talk mode electromagnetic radiation (EMR) at an average specific absorption rate of 2 W/kg. A 2',7'-dichlorofluorescin diacetate fluorescence probe was used to detect intracellular ROS levels, immunofluorescence was used to detect γH2AX foci as a marker for DNA damage, and flow cytometry was used to measure apoptosis. Our results showed a significant increase in intracellular ROS levels after EMR exposure and it reached the highest level at an exposure time of 1 h (p < 0.05) followed by a slight decrease when the exposure continued for as long as 8 h. No significant effect on the number of γH2AX was detected after EMR exposure. The percentage of late-apoptotic cells in the EMR-exposed group was significantly higher than that in the sham-exposed groups (p < 0.05). These results indicate that an 1800-MHz EMR enhances ROS formation and promotes apoptosis in NIH/3T3 cells.

  9. Involvement of matrix metalloproteinases in the adipose conversion of 3T3-L1 preadipocytes.

    PubMed Central

    Croissandeau, Gilles; Chrétien, Michel; Mbikay, Majambu

    2002-01-01

    When mouse 3T3-L1 preadipocytes are induced to differentiate into adipocytes, they change from an extended fibroblast-like morphology to a rounded one. This change most likely occurs through extracellular matrix remodelling, a process known to be mediated in part by matrix metalloproteinases (MMPs). In this study, we have shown by semi-quantitative reverse transcriptase-PCR, zymographic and immunoblot analysis that MMP-2, MMP-9 and membrane type 1 (MT1)-MMP are regulated during adipose conversion. To assess the importance of MMPs for adipocytic differentiation we have used MMP-specific inhibitors as well as neutralizing antibodies. Treatment of 3T3-L1 preadipocytes with the broad MMP inhibitor Ilomastat or the more restricted MMP-2 Inhibitor I prevented their differentiation into adipocytes in a dose-dependent manner, as evidenced by absence of triglyceride accumulation. Inhibitor treatment prevented the fibronectin-network degradation, as well as the induction of the genes for peroxisome-proliferator-activated receptor gamma and adipsin, two adipocyte phenotype markers. Inhibitor treatment was effective when applied during the early stages of adipocytic conversion, whereas inhibitor treatment during later stages had little effect. Inhibitor treatment did not inhibit clonal mitotic expansion; nor did it affect the expression pattern of the adipogenic transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) or its nuclear translocation. It did, however, markedly reduce C/EBPbeta DNA-binding capacity. Taken together, these results suggest that MMPs, and notably MMP-2 and MMP-9, may be necessary mediators of adipocytic differentiation of 3T3-L1 cells. PMID:12049638

  10. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages

    PubMed Central

    Morrison, Shona; McGee, Sean L

    2015-01-01

    Differentiated 3T3-L1 adipocytes are a widely used in vitro model of white adipocytes. In addition to classical white and brown adipocytes that are derived from different cell lineages, beige adipocytes have also been identified, which have characteristics of both white and brown adipocytes. Here we show that 3T3-L1 adipocytes display features of multiple adipocytes lineages. While the gene expression profile and basal bioenergetics of 3T3-L1 adipocytes was typical of white adipocytes, they responded acutely to catecholamines by increasing oxygen consumption in an UCP1-dependent manner, and by increasing the expression of genes enriched in brown but not beige adipocytes. Chronic exposure to catecholamines exacerbated this phenotype. However, a beige adipocyte differentiation procedure did not induce a beige adipocyte phenotype in 3T3-L1 fibroblasts. These multiple lineage features should be considered when interpreting data from experiments utilizing 3T3-L1 adipocytes. PMID:26451286

  11. Phorbol esters enhance attachment of NIH/3T3 cells to laminin and type IV collagen substrates

    SciTech Connect

    Kato, Shigemi; Ben, T.L.; De Luca, L.M. )

    1988-11-01

    The effect of phorbol esters on the adhesive properties of NIH/3T3 mouse fibroblasts was investigated using plastic substrates precoated with the extracellular matrix proteins fibronectin, collagen, and laminin. Treatment with phorbol 12-myristate 13-acetate (PMA) enhanced NIH/3T3 cell attachment to laminin and type IV collagen substrates but had little or no effect on attachment to fibronectin and type I collagen substrates. The effect of PMA in enhancing cell attachment to laminin and type IV collagen substrates was dose dependent between 10{sup {minus}9} and 10{sup {minus}7} M. PMA was effective as early as 30 min; the effect reached a maximum at 2 h and decreased gradually. Phorbol 12, 13-dibenzoate and phorbol 12, 13-diacetate were effective but to a lesser extent and phorbol 12-myristate and phorbol 13-acetate showed little or no effect. These results suggest that PMA may enhance NIH/3T3 cell adhesion through effects on laminin and type IV collagen receptors. Retinoic acid, which itself requires at least 6 h to show an effect on attachment, did not have any effect on cell attachment in 2 h and, if anything, slightly inhibited PMA-enhanced cell attachment to laminin and type IV collagen substrates.

  12. New mouse xenograft model modulated by tumor-associated fibroblasts for human multi-drug resistance in cancer

    PubMed Central

    MA, YAN; LIN, ZHIQIANG; FALLON, JOHN K.; ZHAO, QIANG; LIU, DAN; WANG, YONGJUN; LIU, FENG

    2015-01-01

    We developed an MDR tumor model that is modulated by tumor-associated fibroblasts. Studies on proliferation of tumor cell lines including paclitaxel-sensitive and resistant cell lines were performed. The expressions of P-gp and α-smooth muscle actin (α-SMA) antigen were evaluated by immunohistochemistry and western blot analysis. Quantitative P-gp analyses of different cell lines were accomplished by nanoUPLC-MS/MS. Tumor cell colony formation assay and established xenograft model was used to investigate the relationship between P-gp expression, fibroblast levels and tumorigenesis. The mouse xenograft model was developed after co-inoculation with MDR tumor cells and NIH/3T3 fibroblast cells. There was no correlation between tumorigenesis in vivo and the growth rate of cells in vitro. The proliferation among different cell lines had no significant differences, but the P-gp expression and tumor growth in the xenograft model were fairly different. P-gp determination and α-SMA immunofluorescence staining clarified the relationship between P-gp expression, fibroblast levels and tumorigenesis. It was more difficult for tumor cells with higher P-gp levels to recruit fibroblasts in vivo, resulting in lower tumorigenesis due to the lack of structural and chemical support during tumor progression. In the established paclitaxel-resistant mouse xenograft model, no obvious antitumor effect was observed after Taxol treatment, but a significant decrease in tumor size for the group treated with gemcitabine sensitive to the model. The results show that the added fibroblasts do not disturb the applicability of the model in MDR. Therefore, this mouse xenograft MDR model could serve as an effective tool for MDR research. PMID:26352907

  13. Suppressive effects of the extracts of Japanese edible seaweeds on mutagen-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) and tumor promotor-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells.

    PubMed

    Okai, Y; Higashi-Okai, K; Nakamura, S; Yano, Y; Otani, S

    1994-11-25

    Some of epidemiological data indicated that ubiquitous consumption of seaweeds in Japan may be a possible protective factor against some types of tumor. To analyse this problem, the authors studied the antimutagenic and antitumor promotion activities in methanol-soluble extracts of typical edible seaweeds which showed suppressive effects on 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indol (Trp-P-1)-induced umu C gene expression in SOS response of Salmonella typhimurium (TA 1535/pSK 1002) and 12-O-tetradecanoylphorbol-13-acetate (TPA)-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells. Although eight varieties of edible seaweeds including chlorophyta, Phaenophyta and Rhodophyta showed significant antimutagenic and antipromotion activities, they expressed the activities different from each other. Among these seaweeds, Enteromorpha prolifera ('Sujiaonori' in Japanese) and Porphyra tenera ('Asakusanori') showed relatively strong suppressive activities in both antimutagenic and antipromotion assays compared with other seaweeds. These seaweeds contained considerable amounts of beta-carotene as a possible active principle with anticarcinogenic activity. This compound was partially associated with the antimutagenic activity in the seaweed extract, but did not contribute to the antipromotion activity of seaweed extract under our experimental conditions. These results strongly suggest that Japanese edible seaweeds have possible antimutagenic and antipromotion activities probably associated with antitumor activity. PMID:7954366

  14. Cloning and Expression of CD19, a Human B-Cell Marker in NIH-3T3 Cell Line

    PubMed Central

    Abbasi-Kenarsari, Hajar; Shafaghat, Farzaneh; Baradaran, Behzad; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Background CD19 is a pan B cell marker that is recognized as an attractive target for antibody-based therapy of B-cell disorders including autoimmune disease and hematological malignancies. The object of this study was to stably express the human CD19 antigen in the murine NIH-3T3 cell line aimed to be used as an immunogen in our future study. Methods Total RNA was extracted from Raji cells in which high expression of CD19 was confirmed by flow cytometry. Synthesized cDNA was used for CD19 gene amplification by conventional PCR method using Pfu DNA polymerase. PCR product was ligated to pGEM-T Easy vector and ligation mixture was transformed to DH5α competent bacteria. After blue/white selection, one positive white colony was subjected to plasmid extraction and direct sequencing. Then, CD19 cDNA was sub-cloned into pCMV6-Neo expression vector by double digestion using KpnI and HindIII enzymes. NIH-3T3 mouse fibroblast cell line was subsequently transfected by the construct using Jet-PEI transfection reagent. After 48 hours, surface expression of CD19 was confirmed by flow cytometry and stably transfected cells were selected by G418 antibiotic. Results Amplification of CD19 cDNA gave rise to 1701 bp amplicon confirmed by alignment to reference sequence in NCBI database. Flow cytometric analysis showed successful transient and stable expression of CD19 on NIH-3T3 cells (29 and 93%, respectively). Conclusion Stable cell surface expression of human CD19 antigen in a murine NIH-3T3 cell line may develop a proper immunogene which raises specific anti-CD19 antibody production in the mice immunized sera. PMID:25926951

  15. Insulin stimulates mitogen-activated protein kinase by a Ras-independent pathway in 3T3-L1 adipocytes.

    PubMed

    Carel, K; Kummer, J L; Schubert, C; Leitner, W; Heidenreich, K A; Draznin, B

    1996-11-29

    To characterize tissue-specific differences in insulin signaling, we compared the mechanisms of mitogen-activated protein (MAP) kinase activation by insulin in the mitogenically active 3T3-L1 fibroblasts with the metabolically active 3T3-L1 adipocytes. In both cell lines, insulin significantly increased p21(ras).GTP loading (1.5-2-fold) and MAP kinase activity (5-8-fold). Inhibition of Ras farnesylation with lovastatin blocked activation of p21(ras) and Raf-1 kinase in both 3T3-L1 fibroblasts and 3T3-L1 adipocytes. In 3T3-L1 fibroblasts, this was accompanied by an inhibition of the stimulatory effect of insulin on MAP kinase. In contrast, in 3T3-L1 adipocytes, despite an inhibition of activation of p21(ras) and Raf-1 by lovastatin, insulin continued to stimulate MAP kinase activity. Fractionation of the cell lysates on the FPLC Mono-Q column revealed that lovastatin inhibited insulin stimulation of ERK2 (and, to a lesser extent, ERK1) in 3T3-L1 fibroblasts and had no effect on the insulin-stimulated ERK2 in 3T3-L1 adipocytes. These results demonstrate an important distinction between the mechanism of insulin signaling in the metabolically and mitogenically active cells. Insulin activates MAP kinase by the Ras-dependent pathway in the 3T3-L1 fibroblasts and by the Ras-independent pathway in the 3T3-L1 adipocytes.

  16. Transformation of human cells by DNAs ineffective in transformation of NIH 3T3 cells

    SciTech Connect

    Sutherland, B.M.; Bennett, P.B.; Freeman, A.G.; Moore, S.P.; Strickland, P.T.

    1985-04-01

    Neonatal human foreskin fibroblasts can be transformed to anchorage-independent growth by transfection with DNAs inefficient in transforming NIH 3T3 cells. Human cells transfected with DNA from GM 1312, a multiple myeloma cell line, or MOLT-4, a permanent lymphoblast line, grow without anchorage at a much higher frequency than do the parental cells and their DNAs can transform human cell recipients to anchorage-independent growth; they have extended but not indefinite life spans and are nontumorigenic. Human fibroblasts are also transformed by DNAs from two multiple myeloma lines that also transform 3T3 cells; however, restriction analysis suggests that different transforming genes in this DNA are acting in the human and murine systems. These results indicate that the human cell transfection system allows detection of transforming genes not effective in the 3T3 system and points out the possibility of detection of additional transforming sequences even in DNAs that do transform murine cells.

  17. Induction of mutagenesis and transformation in BALB/c-3T3 clone A31-1 cells by diverse chemical carcinogens

    SciTech Connect

    Lubet, R.A. ); Kouri, R.E.; Curren, R.A.; Putman, D.L.; Schechtman, L.M. )

    1990-01-01

    BALB/c-3T3 cells were employed to examine the genotoxic potential of a variety of known chemical carcinogens. BALB/c-3T3 cells displayed a dose-dependent transformation response to a variety of carcinogens (polycyclic hydrocarbons, methylating agents, ethylating agents, aflatoxin B{sub 1} (AFT{sub 1}), and 4-nitroquinoline-N-oxide (4-NQO)). When the ability of these compounds to induce mutagenesis to resistance to the cardiac glycoside ouabain (OUA{sup R}) was examined, the authors found the short chain alkylating agents to be particularly effective mutagens, causing biologic effects at doses below those necessary to induce a transformation response. In contrast, the polycyclic hydrocarbons which were potent transforming agents were weaker, albeit significant, mutagens for the OUA{sup R} locus in this system, while AFB{sub 1} was quite weak. Further studies were performed with 5-azacytidine (5-AZA) and the nongenotoxic carcinogen cinnamyl anthranilate (CIN). 5-AZA was a potent transforming agent, but failed to cause mutagenesis. CIN similarly caused in vitro transformation. When a series of eight structurally diverse compounds were examined in both the BALB/c-3T3 and C3H10T1/2 mouse fibroblast transformation systems, the BALB/c-3T3 system was shown to be sensitive to a wide variety of potential carcinogens, whereas the C3H10T1/2 system proved routinely sensitive only to the polycyclic hydrocarbons.

  18. Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces

    PubMed Central

    Rejmontová, Petra; Capáková, Zdenka; Mikušová, Nikola; Maráková, Nela; Kašpárková, Věra; Lehocký, Marián; Humpolíček, Petr

    2016-01-01

    Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is. PMID:27649159

  19. Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces.

    PubMed

    Rejmontová, Petra; Capáková, Zdenka; Mikušová, Nikola; Maráková, Nela; Kašpárková, Věra; Lehocký, Marián; Humpolíček, Petr

    2016-01-01

    Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is. PMID:27649159

  20. Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces.

    PubMed

    Rejmontová, Petra; Capáková, Zdenka; Mikušová, Nikola; Maráková, Nela; Kašpárková, Věra; Lehocký, Marián; Humpolíček, Petr

    2016-09-15

    Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is.

  1. Acceleration of proliferative response of mouse fibroblasts by short-time pretreatment with polyphenols.

    PubMed

    Tsuruya, Makoto; Niwano, Yoshimi; Nakamura, Keisuke; Kanno, Taro; Nakashima, Takuji; Egusa, Hiroshi; Sasaki, Keiichi

    2014-11-01

    Under the hypothesis that photo-irradiated proanthocyanidin could accelerate wound healing through reactive oxygen species (ROS) formation, we examined the effect of proanthocyanidin on 3T3-L1 mouse fibroblasts with or without photo-irradiation. As a result, irrespective of presence or absence of photo-irradiation, only 1 min exposure of the cells to proanthocyanidin resulted in accelerated proliferation of the cells in a concentration-dependent manner. Similarly to proanthocyanidin, 1 min pretreatment with catechin, caffeic acid, and chlorogenic acid accelerated the proliferative response, but gallic acid, epicatechin gallate, epigallocatechin, and epigallocatechin gallate failed. If incorporated active ingredient such as proanthocyanidin for such a short time as 1 min accelerates the proliferation response, a bioassay was conducted by utilizing antioxidant potential of proanthocyanidin. That is, intracellular oxidation of 2',7'-dichlorodihydrofluorescin induced by H2O2 was significantly inhibited when the cells were pretreated with proanthocyanidin for 1 min, suggesting that incorporated proanthocyanidin into the cells exerted antioxidant effect. This was also supported by a liquid chromatography/mass spectrometry analysis in which incorporation of proanthocyanidin components such as catechin monomers and dimers into the cells within 1 min was confirmed. These results suggest that active polyphenolic compounds such as proanthocyanidin, catechin, caffeic acid, and chlorogenic acid incorporated into the cells in such a short time as 1 min could accelerate the proliferative response of the cells. PMID:25173673

  2. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    PubMed

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development. PMID:27427305

  3. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    PubMed

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development.

  4. Transcriptional profiling of immortalized and K-ras-transformed mouse fibroblasts upon PKA stimulation by forskolin in low glucose availability.

    PubMed

    Chiaradonna, Ferdinando; Pirola, Yuri; Ricciardiello, Francesca; Palorini, Roberta

    2016-09-01

    Forskolin (FSK) induces activation of protein kinase A (PKA). This activation protects specifically some cancer cells from death induced by glucose starvation. Cell effects upon FSK treatment prompted us to investigate in detail the physiological role of PKA in the activation of pro-survival mechanisms in glucose starvation. In this regard we performed a microarray analysis of normal NIH3T3 and transformed NIH3T3-K-ras mouse fibroblasts cultured at 1 mM glucose and daily treated or not with 10 μM FSK until 72 h of growth, when the samples were collected. The microarray is deposited into Gene Expression Omnibus under Series GSE68266. The microarray data revealed that the activation of PKA regulates the expression of genes involved in metabolic, stress-response and pro-survival processes, like glutamine metabolism, autophagy and unfolded protein response, preventing cancer cell death in glucose starvation. Altogether these findings suggest that PKA activation, by inducing a complex transcriptional program, leads to cancer survival in nutrient stress, a typical feature of developing tumor. These transcriptional data, identifying this important role of PKA, will be useful to identify novel target in cancer therapy. PMID:27486565

  5. K-Ras Activation Induces Differential Sensitivity to Sulfur Amino Acid Limitation and Deprivation and to Oxidative and Anti-Oxidative Stress in Mouse Fibroblasts

    PubMed Central

    De Sanctis, Gaia; Spinelli, Michela; Vanoni, Marco

    2016-01-01

    Background Cancer cells have an increased demand for amino acids and require transport even of non-essential amino acids to support their increased proliferation rate. Besides their major role as protein synthesis precursors, the two proteinogenic sulfur-containing amino acids, methionine and cysteine, play specific biological functions. In humans, methionine is essential for cell growth and development and may act as a precursor for cysteine synthesis. Cysteine is a precursor for the biosynthesis of glutathione, the major scavenger for reactive oxygen species. Methodology and Principal Findings We study the effect of K-ras oncogene activation in NIH3T3 mouse fibroblasts on transport and metabolism of cysteine and methionine. We show that cysteine limitation and deprivation cause apoptotic cell death (cytotoxic effect) in both normal and K-ras-transformed fibroblasts, due to accumulation of reactive oxygen species and a decrease in reduced glutathione. Anti-oxidants glutathione and MitoTEMPO inhibit apoptosis, but only cysteine-containing glutathione partially rescues the cell growth defect induced by limiting cysteine. Methionine limitation and deprivation has a cytostatic effect on mouse fibroblasts, unaffected by glutathione. K-ras-transformed cells–but not their parental NIH3T3—are extremely sensitive to methionine limitation. This fragility correlates with decreased expression of the Slc6a15 gene—encoding the nutrient transporter SBAT1, known to exhibit a strong preference for methionine—and decreased methionine uptake. Conclusions and Significance Overall, limitation of sulfur-containing amino acids results in a more dramatic perturbation of the oxido-reductive balance in K-ras-transformed cells compared to NIH3T3 cells. Growth defects induced by cysteine limitation in mouse fibroblasts are largely–though not exclusively–due to cysteine utilization in the synthesis of glutathione, mouse fibroblasts requiring an exogenous cysteine source for

  6. Cytotoxicity of folic acid conjugated hollow silica nanoparticles toward Caco2 and 3T3 cells, with and without encapsulated DOX.

    PubMed

    Patel, Kunal; Sundara Raj, Behin; Chen, Yan; Lou, Xia

    2016-04-01

    Hollow silica nanoparticles of two sizes with and without a folic acid targeting ligand were synthesized. Fickian diffusion of the antitumor drug doxorubicin hydrochloride (DOX) was demonstrated by the produced nanoparticles, achieving a cumulative release of 73% and 45% for 215 nm and 430 nm particles respectively over a period of 500 h. The hollow silica nanoparticles presented a time and dose dependent toxicity, selective to human epithelial colorectal adenocarcinoma (Caco2) cells, over mouse embryonic fibroblast (3T3) cells. At 24h Caco2 cell viability was reduced to 66% using pure hollow silica at a concentration of 50 μg mL(-1), while that of 3T3 cells remained at 94% under the same conditions. The selective cytotoxicity of hollow silica nanoparticles was further enhanced by conjugation of folic acid and incorporation of DOX: at 24h and an equivalent DOX concentration of 0.5 μg mL(-1), viable Caco2 cells were reduced to 45% while 3T3 cells were reduced to 83%. Interestingly the equivalent dose of free DOX was more toxic to 3T3 than to Caco2 cells, reducing the 3T3 viability to 72% and the Caco2 viability to 80%, which is likely due to the presence of the p-glycoprotein pumps in Caco2 cells. Folic acid conjugation served to enhance the viability of both cell lines in this work. Careful optimization of the folate content should further improve the cell specificity of the hollow silica nanoparticles, thus providing a viable targeting platform for cancer therapy.

  7. DNA Methylation Suppresses Leptin Gene in 3T3-L1 Adipocytes

    PubMed Central

    Kuroda, Masashi; Tominaga, Ayako; Nakagawa, Kasumi; Nishiguchi, Misa; Sebe, Mayu; Miyatake, Yumiko; Kitamura, Tadahiro; Tsutsumi, Rie; Harada, Nagakatsu; Nakaya, Yutaka; Sakaue, Hiroshi

    2016-01-01

    Leptin is a key regulator of energy intake and expenditure. This peptide hormone is expressed in mouse white adipose tissue, but hardly expressed in 3T3-L1 adipocytes. Using bisulfite sequencing, we found that CpG islands in the leptin promoter are highly methylated in 3T3-L1cells. 5-azacytidine, an inhibitor of DNA methyltransferase, markedly increased leptin expression as pre-adipocytes matured into adipocytes. Remarkably, leptin expression was stimulated by insulin in adipocytes derived from precursor cells exposed to 5-azacytidine, but suppressed by thiazolidinedione and dexamethasone. In contrast, adipocytes derived from untreated precursor cells were unresponsive to both 5-azacytidine and hormonal stimuli, although lipid accumulation was sufficient to boost leptin expression in the absence of demethylation. Taken together, the results suggest that leptin expression in 3T3-L1 cells requires DNA demethylation prior to adipogenesis, transcriptional activation during adipogenesis, and lipid accumulation after adipogenesis. PMID:27494408

  8. Antiproliferative activity of flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the MCF7, KB, and NIH/3T3 cell lines.

    PubMed

    Nedel, Fernanda; Begnini, Karine; Carvalho, Pedro Henrique de Azambuja; Lund, Rafael Guerra; Beira, Fátima T A; Del Pino, Francisco Augusto B

    2012-11-01

    This study assessed the antiproliferative effect in vitro of the flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the human breast adenocarcinoma (MCF-7), human mouth epidermal carcinoma (KB), and mouse embryonic fibroblast (NIH 3T3) cell lines, using sulforhodamine B (SRB) assay. A cell density of 2×10(4)/well was seeded in 96-well plates, and samples at different concentrations ranging from 10 to 500 mg/mL were tested. The optical density was determined in an ELISA multiplate reader (Thermo Plate TP-Reader). Results demonstrated that the hexane extract presented antiproliferative activity against both the tumor cell lines KB and MCF-7, presenting a GI(50) (MCF-7=13.09 mg/mL), TGI (KB=37.76 mg/mL), and IL(50) (KB=291.07 mg/mL). Also, the hexane extract presented antiproliferative activity toward NIH 3T3 cells GI(50) (183.65 mg/mL), TGI (280.54 mg/mL), and IL(50) (384.59 mg/mL). The results indicate that the flower hexane extract obtained from M. spicata associated with M. rotundifolia presents an antineoplastic activity against KB and MCF-7, although an antiproliferative effect at a high concentration of the extract was observed toward NIH 3T3.

  9. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails

    PubMed Central

    Fu, Yanbin; Huang, Chenwen; Xu, Xinxiu; Gu, Haifeng; Ye, Youqiong; Jiang, Cizhong; Qiu, Zilong; Xie, Xin

    2015-01-01

    The direct conversion, or transdifferentiation, of non-cardiac cells into cardiomyocytes by forced expression of transcription factors and microRNAs provides promising approaches for cardiac regeneration. However, genetic manipulations raise safety concerns and are thus not desirable in most clinical applications. The discovery of full chemically induced pluripotent stem cells suggest the possibility of replacing transcription factors with chemical cocktails. Here, we report the generation of automatically beating cardiomyocyte-like cells from mouse fibroblasts using only chemical cocktails. These chemical-induced cardiomyocyte-like cells (CiCMs) express cardiomyocyte-specific markers, exhibit sarcomeric organization, and possess typical cardiac calcium flux and electrophysiological features. Genetic lineage tracing confirms the fibroblast origin of these CiCMs. Further studies show the generation of CiCMs passes through a cardiac progenitor stage instead of a pluripotent stage. Bypassing the use of viral-derived factors, this proof of concept study lays a foundation for in vivo cardiac transdifferentiation with pharmacological agents and possibly safer treatment of heart failure. PMID:26292833

  10. Mouse liver repopulation with hepatocytes generated from human fibroblasts

    PubMed Central

    Zhu, Saiyong; Rezvani, Milad; Harbell, Jack; Mattis, Aras N.; Wolfe, Alan R.; Benet, Leslie Z.; Willenbring, Holger; Ding, Sheng

    2014-01-01

    Human induced pluripotent stem cells (iPSCs) promise to revolutionize research and therapy of liver diseases by providing a source of hepatocytes for autologous cell therapy and disease modeling. However, despite progress in advancing the differentiation of iPSCs into hepatocytes (iPSC-Heps) in vitro1–3, cells that replicate the ability of human primary adult hepatocytes (aHeps) to proliferate extensively in vivo have not been reported. This deficiency has hampered efforts to recreate human liver diseases in mice, and has cast doubt on the potential of iPSC-Heps for liver cell therapy. The reason is that extensive post-transplant expansion is needed to establish and sustain a therapeutically effective liver cell mass in patients, a lesson learned from clinical trials of aHep transplantation4. As a solution to this problem, we report generation of human fibroblast-derived hepatocytes that can repopulate mouse livers. Unlike current protocols for deriving hepatocytes from human fibroblasts, ours did not generate iPSCs, but shortcut reprogramming to pluripotency to generate an induced multipotent progenitor cell (iMPC) state from which endoderm progenitor cells (iMPC-EPCs) and subsequently hepatocytes (iMPC-Heps) could be efficiently differentiated. For this, we identified small molecules that aided endoderm and hepatocyte differentiation without compromising proliferation. After transplantation into an immune-deficient mouse model of human liver failure, iMPC-Heps proliferated extensively and acquired levels of hepatocyte function similar to aHeps. Unfractionated iMPC-Heps did not form tumors, most likely because they never entered a pluripotent state. To our knowledge, this is the first demonstration of significant liver repopulation of mice with human hepatocytes generated in vitro, which removes a long-standing roadblock on the path to autologous liver cell therapy. PMID:24572354

  11. Novel ATP-binding heat-inducible protein of Mr = 37,000 that is sensitive to transformation in BALB/3T3 cells.

    PubMed

    Nakai, A; Hirayama, C; Ohtsuka, K; Hirayoshi, K; Nagata, K

    1990-06-01

    Using affinity chromatography on ATP-agarose, we have identified a major ATP-binding protein in Nonidet P-40 extracts of avian and mammalian cells labeled with [35S]methionine. After washing ATP-agarose beads with high-ionic-strength buffer (0.4 M NaCl), the 37-kD protein was shown to be one of the major ATP-binding proteins while p72 and grp78, which are members of the hsp70 family, also bound to ATP-agarose. This protein consisted of several spots on two-dimensional gel electrophoresis. The isoelectric point of the most basic spot was approximately 9.2 in chick embryo fibroblasts, whereas it was about 8.8 in mouse 3T3 cells. The identities of these proteins in mouse and chick cells were confirmed by peptide mapping. After heat-shock treatment of BALB/3T3 cells, the major heat-shock protein, hsp70, was shown to be induced very rapidly after heat shock and was recovered in the ATP-binding fraction. Besides hsp70, a 37-kD protein was also found to be induced by heat shock. This protein was drastically induced by treating the cells with alpha,alpha'-dipyridyl, an iron chelating reagent, but not with sodium arsenite, calcium ionophore, or tunicamycin. The synthesis and the total amount of this ATP-binding protein increased in mouse 3T3 cells transformed by simian virus 40, methylcholanthrene, or activated c-Ha-ras oncogene compared to their normal counterparts. The incorporation of [32P]orthophosphate was not detected in either normal or transformed cells. These studies established that a major ATP-binding protein of Mr = 37,000 is a heat-inducible protein and that the synthesis of this protein is regulated by malignant transformation.

  12. Novel ATP-binding heat-inducible protein of Mr = 37,000 that is sensitive to transformation in BALB/3T3 cells

    SciTech Connect

    Nakai, A.; Hirayama, C.; Ohtsuka, K.; Hirayoshi, K.; Nagata, K. )

    1990-06-01

    Using affinity chromatography on ATP-agarose, we have identified a major ATP-binding protein in Nonidet P-40 extracts of avian and mammalian cells labeled with (35S)methionine. After washing ATP-agarose beads with high-ionic-strength buffer (0.4 M NaCl), the 37-kD protein was shown to be one of the major ATP-binding proteins while p72 and grp78, which are members of the hsp70 family, also bound to ATP-agarose. This protein consisted of several spots on two-dimensional gel electrophoresis. The isoelectric point of the most basic spot was approximately 9.2 in chick embryo fibroblasts, whereas it was about 8.8 in mouse 3T3 cells. The identities of these proteins in mouse and chick cells were confirmed by peptide mapping. After heat-shock treatment of BALB/3T3 cells, the major heat-shock protein, hsp70, was shown to be induced very rapidly after heat shock and was recovered in the ATP-binding fraction. Besides hsp70, a 37-kD protein was also found to be induced by heat shock. This protein was drastically induced by treating the cells with alpha,alpha'-dipyridyl, an iron chelating reagent, but not with sodium arsenite, calcium ionophore, or tunicamycin. The synthesis and the total amount of this ATP-binding protein increased in mouse 3T3 cells transformed by simian virus 40, methylcholanthrene, or activated c-Ha-ras oncogene compared to their normal counterparts. The incorporation of (32P)orthophosphate was not detected in either normal or transformed cells. These studies established that a major ATP-binding protein of Mr = 37,000 is a heat-inducible protein and that the synthesis of this protein is regulated by malignant transformation.

  13. "Macrophage" nitric oxide synthase is a glucocorticoid-inhibitable primary response gene in 3T3 cells.

    PubMed

    Gilbert, R S; Herschman, H R

    1993-10-01

    Both nitric oxide and prostaglandins are potent paracrine mediators of intercellular communication. An endotoxin-lipopolysaccharide (LPS) inducible form of nitric oxide synthase (mac-NOS) has recently been cloned from murine macrophages. An inducible prostaglandin synthase (TIS10/PGS-2), cloned from 3T3 cells, is also induced in LPS-activated macrophage. Because of the wide range of ligands that induce primary response genes in 3T3 cells, the ease of studying chimeric promoter constructs in 3T3 cells, and the importance of both nitric oxide and prostaglandins as paracrine mediators, we examined expression of mac-NOS in 3T3 cells. Tetradecanoyl phorbol-13-acetate (TPA), forskolin, platelet-derived growth factor, fibroblast growth factor, and serum all induce mac-NOS expression in Swiss 3T3 cells. Thus the mac-NOS gene can respond to a far wider range of inducers than previously suspected. mac-NOS is a primary response gene; cycloheximide does not block induction. TPA-induced mac-NOS and TIS10/PGS-2 mRNA accumulation patterns are similar. LPS is a potent inducer of mac-NOS in Swiss 3T3 cells but cannot induce TIS10/PGS-2. In contrast, v-src expression induces TIS10/PGS-2 message, but not iNOS message in a BALB/c 3T3 cell line containing a temperature-sensitive v-src gene. Dexamethasone (DEX) prevents induction of TIS10/PGS-2, but not most other primary response genes. DEX also blocks mac-NOS induction in Swiss 3T3 cells. The inducible TIS10/PGS-2 and mac-NOS genes, responsible for the production of two distinct paracrine agents, appear to share many regulatory features in 3T3 cells.

  14. Beryllium toxicity testing in the suspension culture of mouse fibroblasts.

    PubMed

    Rössner, P; Bencko, V

    1980-01-01

    Suspension culture of mouse fibroblast cell line L-A 115 was used to test beryllium toxicity in the presence of magnesium ions. Beryllium added to the MEM cultivation medium was bound in a complex with sulphosalicylic acid BeSSA complex, because the use of beryllium chloride turned out to yield ineffective beryllium phosphate that formed macroscopically detectable insoluble opacities. The BeSSA complex was used in the concentration range: 10(-3)--10(-9)M, magnesium was used in 3 concentrations: 10(-1)M, 5 x 10(-2)M and 10(-2)M. Growth curve analysis revealed pronounced beryllium toxicity at the concentration of 10(-3)M, magnesium-produced toxic changes were observed only at the concentration of 10(-1)M. No competition between the beryllium and magnesium ions was recorded. It is assumed that the possible beryllium-magnesium competition was significantly modified by the use of BeSSA complex-bound beryllium.

  15. Mouse fibroblast cell adhesion studied by neutron reflectometry.

    PubMed

    Smith, Hillary L; Hickey, Joseph; Jablin, Michael S; Trujillo, Antoinette; Freyer, James P; Majewski, Jaroslaw

    2010-03-01

    Neutron reflectometry (NR) was used to examine live mouse fibroblast cells adherent on a quartz substrate in a deuterated phosphate-buffered saline environment at room temperature. These measurements represent the first, to our knowledge, successful visualization and quantization of the interface between live cells and a substrate with subnanometer resolution using NR. NR data, attributable to the adhesion of live cells, were observed and compared with data from pure growth medium. Independently of surface cell density, the average distance between the center of the cell membrane region and the quartz substrate was determined to be approximately 180 A. The membrane region ( approximately 80 A thick) contains the membranes of cells that are inhomogeneously distributed or undulating, likely conforming to the nonplanar geometry of the supporting adherence proteins. A second region of cell membranes at a greater distance from the substrate was not detectable by NR due to the resolution limits of the technique employed. Attachment of the live cell samples was confirmed by interaction with both distilled water and trypsin. Distinct changes in the NR data after exposure indicate the removal of cells from the substrate.

  16. Proteomic profile of mouse fibroblasts exposed to pure magnesium extract.

    PubMed

    Zhen, Zhen; Luthringer, Bérengère; Yang, Li; Xi, Tingfei; Zheng, Yufeng; Feyerabend, Frank; Willumeit, Regine; Lai, Chen; Ge, Zigang

    2016-12-01

    Magnesium and its alloys gain wide attention as degradable biomaterials. In order to reveal the molecular mechanism of the influence of biodegradable magnesium on cells, proteomics analysis was performed in this work. After mouse fibroblasts (L929) were cultured with or without Mg degradation products (Mg-extract) for 8, 24, and 48h, changes in protein expression profiles were obtained using isobaric tags for relative and absolute quantitation (iTRAQ) coupled two dimensional liquid chromatography-tandem mass spectrometry (2D LC MS/MS). A total of 867 proteins were identified (relying on at least two peptides). Compared to the control group, 205, 282, and 217 regulated proteins were identified at 8, 24, and 48h, respectively. 65 common proteins were up or down- regulated within all the three time points, which were involved in various physiological and metabolic activities. Consistent with viability, proliferation, and cell cycle analysis, stimulated energy metabolism as well as protein synthesis pathways were discussed, indicating a possible effect of Mg-extract on L929 proliferation. Furthermore, endocytosis and focal adhesion processes were also discussed. This proteomics study uncovers early cellular mechanisms triggered by Mg degradation products and highlights the cytocompatibility of biodegradable metallic materials for biomedical applications such as stents or orthopaedic implants. PMID:27612743

  17. Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity.

    PubMed

    Singhal, Prabhat K; Sassi, Slim; Lan, Lan; Au, Patrick; Halvorsen, Stefan C; Fukumura, Dai; Jain, Rakesh K; Seed, Brian

    2016-01-01

    Analysis of embryonic fibroblasts from GFP reporter mice indicates that the fibroblast cell type harbors a large collection of developmentally and phenotypically heterogeneous subtypes. Some of these cells exhibit multipotency, whereas others do not. Multiparameter flow cytometry analysis shows that a large number of distinct populations of fibroblast-like cells can be found in cultures initiated from different embryonic organs, and cells sorted according to their surface phenotype typically retain their characteristics on continued propagation in culture. Similarly, surface phenotypes of individual cloned fibroblast-like cells exhibit significant variation. The fibroblast cell class appears to contain a very large number of denumerable subtypes. PMID:26699463

  18. Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    PubMed Central

    2011-01-01

    Background Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb) was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs), and retinoblastoma gene-deficient MEFs (Rb-/- MEFs). Findings Comparative analysis of the expression profiles of 3T3-L1 cells and wild-type MEFs revealed genes involved specifically in early regulation of the adipocyte differentiation as well as secreted factors and signaling molecules regulating the later phase of differentiation. In an attempt to identify transcription factors regulating adipogenesis, bioinformatics analysis of the promoters of coordinately and highly expressed genes was performed. We were able to identify a number of high-confidence target genes for follow-up experimental studies. Additionally, combination of experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1. To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs) for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis of 64 deregulated genes showed that the Rb-/- MEF model exhibits a brown(-like) adipocyte phenotype. Additionally, the analysis results indicate a different or additional role for pRb family member involvement in the lineage commitment. Conclusion In this study a number of commonly modulated genes during adipogenesis in 3T3-L1 cells and MEFs, potential transcriptional regulation mechanisms, and differentially regulated targets during adipocyte differentiation of Rb

  19. Vaspin promotes 3T3-L1 preadipocyte differentiation

    PubMed Central

    Liu, Ping; Wu, Jine; Zhou, Xin; Wang, Liping; Han, Wenqi; Lv, Ying; Sun, Chaofeng

    2015-01-01

    Vaspin, a novel adipocyte factor secreted from visceral adipose tissues, is associated with obesity and insulin resistance and can regulate glucose and lipid metabolism, increase insulin sensitivity, and suppress inflammation; however, the underlying mechanisms remain unknown. Proliferation and maladaptive differentiation are important pathological mechanisms underlying obesity. This study aimed to evaluate the effects of vaspin on the proliferation and differentiation of preadipocyte 3T3-L1 cells and to explore the likely mechanisms responsible for 3T3-L1 differentiation. Vaspin was added to cultured 3T3-L1 cells, and the differentiation of adipocytes was evaluated using Oil Red O staining. The AKT signaling pathway and specific differentiation factors related to the differentiation of preadipocyte 3T3-L1 cells, peroxisome proliferator-activated γ and the CCAAT/enhancer-binding protein (C/EBP) family, were evaluated using reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses during the early phase of differentiation. Additionally, adiponectin mRNA, interleukin-6 mRNA (IL-6 mRNA), and glucose transporter-4 (GLUT4) protein levels were measured in the differentiated adipocytes. The results indicated that vaspin promotes the intracellular accumulation of lipids and increases differentiation-related factors, including peroxisome proliferator-activated receptor γ, C/EBPα, and free fatty acid-binding protein 4 (FABP4), in a dose-dependent manner. Additionally, vaspin (200 ng/mL) increased the mRNA and protein levels of C/EBPβ, peroxisome proliferator-activated γ, C/EBPα, and FABP4. Moreover, compared with the control, significantly smaller eight-day differentiated adipocytes were observed, and these cells exhibited decreased IL-6 mRNA and increased GLUT4 mRNA levels; these results also indicated the potential of vaspin to promote the insulin-mediated AKT signaling pathway during the early phase of differentiation. In conclusion

  20. RA induces the neural-like cells generated from epigenetic modified NIH/3T3 cells.

    PubMed

    Zhang, Xi-Mei; Li, Qiu-Ming; Su, Dong-Ju; Wang, Ning; Shan, Zhi-Yan; Jin, Lian-Hong; Lei, Lei

    2010-03-01

    Recently, differentiated somatic cells had been reprogrammed to pluripotential state in vitro, and various tissue cells had been elicited from those cells. Epigenetic modifications allow differentiated cells to perpetuate the molecular memory needed for the cells to retain their identity. DNA methylation and histone deacetylation are important patterns involved in epigenetic modification, which take critical roles in regulating DNA expression. In this study, we dedifferentiated NIH/3T3 fibroblasts by 5-aza-2-deoxycytidine (5-aza-dC) and Trichstatin A (TSA) combination, and detected gene expression pattern, DNA methylation level, and differentiation potential of reprogrammed cells. As the results, embryonic marker Sox2, klf4, c-Myc and Oct4 were expressed in reprogrammed NIH/3T3 fibroblasts. Total DNA methylation level was significant decreased after the treatment. Moreover, exposure of the reprogrammed cells to all trans-retinoic acid (RA) medium elicited the generation of neuronal class IIIbeta-tubulin-positive, neuron-specific enolase (NSE)-positive, nestin-positive, and neurofilament light chain (NF-L)-positive neural-like cells. PMID:19263240

  1. Dioxin induces genomic instability in mouse embryonic fibroblasts.

    PubMed

    Korkalainen, Merja; Huumonen, Katriina; Naarala, Jonne; Viluksela, Matti; Juutilainen, Jukka

    2012-01-01

    Ionizing radiation and certain other exposures have been shown to induce genomic instability (GI), i.e., delayed genetic damage observed many cell generations later in the progeny of the exposed cells. The aim of this study was to investigate induction of GI by a nongenotoxic carcinogen, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Mouse embryonic fibroblasts (C3H10T1/2) were exposed to 1, 10 or 100 nM TCDD for 2 days. Micronuclei (MN) and expression of selected cancer-related genes were assayed both immediately and at a delayed point in time (8 days). For comparison, similar experiments were done with cadmium, a known genotoxic agent. TCDD treatment induced an elevated frequency of MN at 8 days, but not directly after the exposure. TCDD-induced alterations in gene expression were also mostly delayed, with more changes observed at 8 days than at 2 days. Exposure to cadmium produced an opposite pattern of responses, with pronounced effects immediately after exposure but no increase in MN and few gene expression changes at 8 days. Although all responses to TCDD alone were delayed, menadione-induced DNA damage (measured by the Comet assay), was found to be increased directly after a 2-day TCDD exposure, indicating that the stability of the genome was compromised already at this time point. The results suggested a flat dose-response relationship consistent with dose-response data reported for radiation-induced GI. These findings indicate that TCDD, although not directly genotoxic, induces GI, which is associated with impaired DNA damage response.

  2. Topiramate effects lipolysis in 3T3-L1 adipocytes

    PubMed Central

    MARTINS, GABRIELA POLTRONIERI CAMPAGNARO; SOUZA, CAMILA OLIVEIRA; MARQUES, SCHEROLIN; LUCIANO, THAIS FERNANDES; DA SILVA PIERI, BRUNO LUIZ; ROSA, JOSÉ CÉSAR; DA SILVA, ADELINO SANCHEZ RAMOS; PAULI, JOSÉ RODRIGO; CINTRA, DENNYS ESPER; ROPELLE, EDUARDO ROCHETE; RODRIGUES, BRUNO; DE LIRA, FABIO SANTOS; DE SOUZA, CLAUDIO TEODORO

    2015-01-01

    Studies have shown that topiramate (TPM)-induced weight loss can be dependent on the central nervous system (CNS). However, the direct action of TPM on adipose tissue has not been tested previously. Thus, the present study aimed to examine whether TPM modulates lipolysis in 3T3-L1. The 3T3-L1 cells were incubated in 50 µM TPM for 30 min. The β-adrenergic stimulator, isoproterenol, was used as a positive control. The release of lactate dehydrogenase, non-esterified fatty acid, glycerol and incorporation of 14C-palmitate to lipid were analyzed. The phosphorylation of protein kinase A (PKA), hormone-sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL) and perilipin A, as well as the protein levels of comparative genetic identification 58 (CGI-58) were assessed. The levels of glycerol and non-esterified fatty acid increased markedly when the cells were treated with TPM. The TPM effects were similar to the isoproterenol positive control. Additionally, TPM reduced lipogenesis. These results were observed without any change in cell viability. Finally, the phosphorylation of PKA, HSL, ATGL and perilipin A, as well as the protein levels of CGI-58 were increased compared to the control cells. These results were similar to those observed in the cells treated with isoproterenol. The present results show that TPM increased the phosphorylation of pivotal lipolytic enzymes, which induced lipolysis in 3T3-L1 adipocytes, suggesting that this drug may act directly in the adipose tissue independent from its effect on the CNS. PMID:26623024

  3. Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells.

    PubMed

    Kamon, Masayoshi; Zhao, Ran; Sakamoto, Kazuichi

    2009-12-16

    Recently, various physiological effects of the tea polyphenol catechin for alleviating diseases such as cancer, arteriosclerosis, hyperlipidaemia and osteoporosis have been reported. However, the physiological effect of catechin on bone metabolism remains unclear. We examined the physiological effect of EGCG [(-)-epigallocatechin-3-gallate], which is the main component of green tea catechin, on osteoblast development using the precursor cell line of osteoblasts, MC3T3-E1, and co-culture of the osteoblasts from mouse newborn calvaria and mouse bone marrow cells. Although EGCG did not affect the viability and proliferation of MC3T3-E1 cells, EGCG inhibited the osteoblast differentiation. Furthermore, EGCG did not affect the mineralization of differentiated MC3T3-E1 cells, and reduced osteoclast formation in co-culture. These results suggest that EGCG can effectively suppress bone resorption, and can be used as an effective medicine in the treatment of the symptoms of osteoporosis.

  4. Alteration of glycolipids in ras-transfected NIH 3T3 cells

    SciTech Connect

    Matyas, G.R.; Aaronson, S.A.; Brady, R.O.; Fishman, P.H.

    1987-09-01

    Glycosphingolipid alterations upon viral transformation are well documented. Transformation of mouse 3T3 cells with murine sarcoma viruses results in marked decreases in the levels of gangliosides GM1 and GD1a and an increase in gangliotriaosylceramide. The transforming oncogenes of these viruses have been identified as members of the ras gene family. The authors analyzed NIH 3T3 cells transfected with human H-, K- and N-ras oncogenes for their glycolipid composition and expression of cell surface gangliosides. Using conventional thin-layer chromatographic analysis, they found that the level of GM3 was increased and that of GD1a was slightly decreased or unchanged, and GM1 was present but not in quantifiable levels. Cell surface levels of GM1 were determined by /sup 125/I-labeled cholera toxin binding to intact cells. GD1a was determined by cholera toxin binding to cells treated with sialidase prior to toxin binding. All ras-transfected cells had decreased levels of surface GM1 and GD1 as compared to logarithmically growing normal NIH 3T3 cells. Levels of GM1 and, to a lesser extent, GD1a increased as the latter cells became confluent. Using a monoclonal antibody assay, they found that gangliotriaosylceramide was present in all ras-transfected cells studied but not in logarithmically growing untransfected cells. These results indicated that ras oncogenes derived form human tumors are capable of inducing alterations in glycolipid composition.

  5. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    SciTech Connect

    Lai, Jing; Liu, Gexiu; Yan, Guoyao; He, Dongmei; Zhou, Ying; Chen, Shengting

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  6. ANTIGENIC PROPERTIES OF MURINE SARCOMA VIRUS-TRANSFORMED BALB/3T3 NONPRODUCER CELLS

    PubMed Central

    Stephenson, John R.; Aaronson, Stuart A.

    1972-01-01

    The isolation of clonal lines of murine sarcoma virus-transformed, non-producer BALB/3T3 cells has provided a model system for determining whether RNA tumor virus-transformed cells possess virus-specific transplantation antigens. MSV nonproducer cells (K-234) were clonally derived from an inbred mouse cell line, BALB/3T3. A parallel virus-producing cell line was obtained by infection of the MSV nonproducer cells with Rauscher leukemia virus. K-234 was much more tumorigenic than K-234(R). Preimmunization of syngeneic mice with either K-234(R) or with UV-inactivated Rauscher leukemia virus induced transplantation resistance to subsequent challenge with K-234(R), but not with K-234. In contrast, mice preimmunized with nonproducer cells were not made resistant to subsequent challenge with the homologous cells. Antisera prepared from mice immunized with K-234(R) were specifically cytotoxic and positive by fluorescent antibody staining for K-234(R) target cells, but not to either BALB/3T3 or K-234. The results show that MSV nonproducer cells lack detectable transplantation antigens and suggest that the transplantation resistance to the producing cells is attributable to maturing virus at the cell surface. PMID:4550769

  7. Aspartame downregulates 3T3-L1 differentiation.

    PubMed

    Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung

    2014-10-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity. PMID:24961835

  8. Aspartame downregulates 3T3-L1 differentiation.

    PubMed

    Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung

    2014-10-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity.

  9. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    PubMed

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity. PMID:27067870

  10. Characterization of hyaluronate binding proteins isolated from 3T3 and murine sarcoma virus transformed 3T3 cells

    SciTech Connect

    Turley, E.A.; Moore, D.; Hayden, L.J.

    1987-06-02

    A hyaluronic acid binding fraction was purified from the supernatant media of both 3T3 and murine sarcoma virus (MSV) transformed 3T3 cultures by hyaluronate and immunoaffinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved the hyaluronate affinity-purified fraction into three major protein bands of estimated molecular weight (M/sub r,e/) 70K, 66K, and 56K which contained hyaluronate binding activity and which were termed hyaluronate binding proteins (HABP). Hyaluronate affinity chromatography combined with immunoaffinity chromatography, using antibody directed against the larger HABP, allowed a 20-fold purification of HABP. Fractions isolated from 3T3 supernatant medium also contained additional binding molecules in the molecular weight range of 20K. This material was present in vanishingly small amounts and was not detected with a silver stain or with (/sup 35/S)methionine label. The three protein species isolated by hyaluronate affinity chromatography (M/sub r,e/ 70K, 66K, and 56K) were related to one another since they shared antigenic determinants and exhibited similar pI values. In isocratic conditions, HABP occurred as aggregates of up to 580 kilodaltons. Their glycoprotein nature was indicated by their incorporation of /sup 3/H-sugars. Enzyme-linked immunoadsorbent assay showed they were antigenically distinct from other hyaluronate binding proteins such as fibronectin, cartilage link protein, and the hyaluronate binding region of chondroitin sulfate proteoglycan. The results are discussed with regard both to the functional significance of hyaluronate-cell surface interactions in transformed as well as normal cells and to the relationship of HABP to other reported hyaluronate binding proteins.

  11. Ultrasound associated uptake of chitosan nanoparticles in MC3T3-E1 cells

    NASA Astrophysics Data System (ADS)

    Wu, Junyi

    Chitosan is a natural linear polysaccharide that has been well known for its applications in drug delivery system due to its unique physicochemical and biological properties. However, challenges still remain for it to become a fully realized therapeutic agent. In this study, we investigated the uptake of chitosan nanoparticles (CNP) under the ultrasound stimulation, using a model cell culture system (MC3T3-E1 mouse pre-osteoblasts). The CNP were fabricated by an ionic gelation method and were lyophilized prior to characterization and delivery to cells. Particle size and zeta potential were measured using Dynamic Light Scattering (DLS); the efficiency of chitosan complexation was measured using the ninhydrin assay. Cytotoxicity was examined by neutral red assay within 48 hours after delivery. The effect of ultrasound (US) on the efficiency of nanoparticle delivery to the MC3T3-E1 cells was examined at 1MHz and at either 1 or 2 W/cm2. Fluorescein isothiocyanate (FITC)-conjugated-CNP were used to visualize the internalized particles within the cytosol. The uptake of FITC-CNP exhibits a dose and time dependent effect, a strong FITC fluorescence was detected at the concentration of 500microg/mL under fluorescence microscope. Ultrasound assisted uptake of FITC-CNP performed a significant positive effect at 2W/cm2 with 60s of ultrasound exposure time. CNP displayed a slightly decrease in cell viability from 25microg/mL to 100microg/mL, while higher concentration of CNP facilitates the proliferation of MC3T3-E1 cells. Less than 10% of reduction in cell viability was observed for US at 1W/cm2 and 2W/cm2 with 30s and 60s of exposure time, which suggest a mild effect of US to MC3T3-E1 cell line.

  12. Cell density and growth-dependent down-regulation of both intracellular calcium responses to agonist stimuli and expression of smooth-surfaced endoplasmic reticulum in MC3T3-E1 osteoblast-like cells.

    PubMed

    Koizumi, Toshiyuki; Hikiji, Hisako; Shin, Wee Soo; Takato, Tsuyoshi; Fukuda, Satoru; Abe, Takahiro; Koshikiya, Noboru; Iwasawa, Kuniaki; Toyo-oka, Teruhiko

    2003-02-21

    A two-dimensional intracellular Ca(2+) ([Ca(2+)](i)) imaging system was used to examine the relationship between [Ca(2+)](i) handling and the proliferation of MC3T3-E1 osteoblast-like cells. The resting [Ca(2+)](i) level in densely cultured cells was 1.5 times higher than the [Ca(2+)](i) level in sparsely cultured cells or in other cell types (mouse fibroblasts, rat vascular smooth muscle cells, and bovine endothelial cells). A high resting [Ca(2+)](i) level may be specific for MC3T3-E1 cells. MC3T3-E1 cells were stimulated with ATP (10 microM), caffeine (10 mM), thapsigargin (1 microM), or ionomycin (10 microM), and the effect on the [Ca(2+)](i) level of MC3T3-E1 cells was studied. The percentage of responding cells and the degree of [Ca(2+)](i) elevation were high in the sparsely cultured cells and low in densely cultured cells. The rank order for the percentage of responding cells and magnitude of the Ca(2+) response to the stimuli was ionomycin > thapsigargin = ATP > caffeine and suggests the existence of differences among the various [Ca(2+)](i) channels. All Ca(2+) responses in the sparsely cultured MC3T3-E1 cells, unlike in other cell types, disappeared after the cells reached confluence. Heptanol treatment of densely cultured cells restored the Ca(2+) response, suggesting that cell-cell contact is involved with the confluence-dependent disappearance of the Ca(2+) response. Immunohistological analysis of type 1 inositol trisphosphate receptors and electron microscopy showed distinct expression of inositol trisphosphate receptor proteins and smooth-surfaced endoplasmic reticulum in sparsely cultured cells but reduced levels in densely cultured cells. These results indicate that the underlying basis of confluence-dependent [Ca(2+)](i) regulation is down-regulation of smooth-surfaced endoplasmic reticulum by cell-cell contacts.

  13. The 3T3-L1 adipocyte glycogen proteome

    PubMed Central

    2013-01-01

    Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle. PMID:23521774

  14. Altered pattern of replication of human chromosomes in a human fibroblast-mouse cell hybrid.

    PubMed Central

    Farber, R A; Davidson, R L

    1978-01-01

    The pattern of terminal replication of the human chromosomes in a clone of hybrids between diploid human fibroblasts and mouse cells was analyzed by autoradiography. An average of 10 human chromosomes was present in the hybrid cells. Several of these chromosomes were found to terminate replication in a different order from the same chromosomes in the parental human fibroblasts. Chromosomes 4 and 5 completed replication later in the hybrid than in the fibroblasts (relative to the other human chromosomes). In contrast, chromosomes 7, 12, and 15 completed replication earlier in the hybrid than in the fibroblasts. These results suggest that the sequence of terminal chromosome replication in human fibroblasts is not irreversibly programmed into each chromosome. Images PMID:274734

  15. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells

    SciTech Connect

    Zachary, I.; Gil, J.; Lehmann, W.; Sinnett-Smith, J.; Rozengurt, E. )

    1991-06-01

    The mitogenic neuropeptides bombesin and vasopressin markedly increased tyrosine and serine phosphorylation of multiple substrates in quiescent Swiss 3T3 fibroblasts, including two major bands of M{sub r} 90,000 and 115,000. Tyrosine phosphorylation of these proteins was increased as judged by immunoprecipitation of {sup 32}P{sub i}-labeled cells and immunoblotting of unlabeled cells with monoclonal antiphosphotyrosine antibodies, elution with phenyl phosphate, and phospho amino acid analysis. Phosphotyrosyl proteins generated by bombesin and vasopressin did not correspond either by apparent molecular weight or by immunological and biochemical criteria to several known tyrosine kinase substrates, including phospholipase C{sub {gamma}}, the microtubule-associated protein 2 kinase, GTPase-activating protein, or phosphatidylinositol kinase. The effect was rapid (within seconds), concentration dependent, and inhibited by specific receptor antagonists for both bombesin and vasopressin. The endothelin-related peptide, vasoactive intestinal contractor, also elicited a rapid and concentration-dependent tyrosine/serine phosphorylation of a similar set of substrates. These results demonstrate that neuropeptides, acting through receptors linked to GTP-binding proteins, stimulate tyrosine phosphorylation of a common set of substrates in quiescent Swiss 3T3 cells and suggest the existence of an additional signal transduction pathway in neuropeptide-induced mitogenesis.

  16. In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells.

    PubMed

    Seker, Sükran; Elçin, A Eser; Yumak, Tuğrul; Sınağ, Ali; Elçin, Y Murat

    2014-12-01

    The use of metal oxide nanoparticles (NPs) in industrial applications has been expanding, as a consequence, risk of human exposure increases. In this study, the potential toxic effects of zinc oxide (ZnO) NPs on human periodontal ligament fibroblast cells (hPDLFs) and on mouse dermal fibroblast cells (mDFs) were evaluated in vitro. We synthesized ZnO NPs (particle size; 7-8 nm) by the hydrothermal method. Characterization assays were performed with atomic force microscopy, Braun-Emmet-Teller analysis, and dynamic light scattering. The hPDLFs and mDFs were incubated with the NPs with concentrations of 0.1, 1, 10, 50 and 100 μg/mL for 6, 24 and 48h. Under the control and NP-exposed conditions, we have made different types of measurements for cell viability and morphology, membrane leakage and intracellular reactive oxygen species generation. Also, we monitored cell responses to ZnO NPs using an impedance measurement system in real-time. While the morphological changes were visualized using scanning electron microscopy, the subcellular localization of NPs was investigated by transmission electron microscopy. Results indicated that ZnO NPs have significant toxic effects on both of the primary fibroblastic cells at concentrations of ∼50-100 μg/mL. The cytotoxicity of ZnO NPs on fibroblasts depended on concentration and duration of exposure.

  17. Evaluation of chylomicron effect on ASP production in 3T3-L1 adipocytes.

    PubMed

    Gao, Ying; Gauvreau, Danny; Cui, Wei; Lapointe, Marc; Paglialunga, Sabina; Cianflone, Katherine

    2011-02-01

    In the past few years, there has been increasing interest in the production and physiological role of acylation-stimulating protein (ASP), identical to C3adesArg, a product of the alternative complement pathway generated through C3 cleavage. Recent studies in C3 (-/-) mice that are ASP deficient have demonstrated a role for ASP in postprandial triglyceride clearance and fat storage. The aim of the present study was to establish a cell model and sensitive ELISA assay for the evaluation of ASP production using 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated into adipocytes, then cultured in different media such as serum-free (SF), Dulbecco's modified Eagle's medium (DMEM)/F12 + 10% fetal calf serum (FBS), and at varying concentrations of chylomicrons and insulin + chylomicrons up to 48 h. ASP production in SF and DMEM/F12 + 10% FBS was compared. Chylomicrons stimulated ASP production in a concentration- and time-dependent manner. By contrast, chylomicron treatment had no effect on the production of C3, the precursor protein of ASP, which was constant over 48 h. Addition of insulin (100 nM) to a low-dose of chylomicrons (100 µg TG/ml) significantly increased ASP production compared with chylomicrons alone at 48 h (P < 0.001). Furthermore, addition of insulin significantly increased C3 secretion at both 18 and 48 h of incubation (P < 0.05, P < 0.001, respectively). Overall, the proportion of ASP to C3 remained constant, indicating no change in the ratio of C3 cleaved to generate ASP. This study demonstrated that 3T3-L1 adipocyte is a useful model for the evaluation of C3 secretion and ASP production by using a sensitive mouse-specific ELISA assay. The stimulation of ASP production with chylomicrons demonstrates a physiologically relevant response, and provides a strategy for further studies on ASP production and function.

  18. Occurrence and control of sporadic proliferation in growth arrested Swiss 3T3 feeder cells.

    PubMed

    Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar

    2015-01-01

    Growth arrested Swiss mouse embryonic 3T3 cells are used as feeders to support the growth of epidermal keratinocytes and several other target cells. The 3T3 cells have been extensively subcultured owing to their popularity and wide distribution in the world and, as a consequence selective inclusion of variants is a strong possibility in them. Inadvertently selected variants expressing innate resistance to mitomycin C may continue to proliferate even after treatment with such growth arresting agents. The failure of growth arrest can lead to a serious risk of proliferative feeder contamination in target cell cultures. In this study, we passaged Swiss 3T3 cells (CCL-92, ATCC) by different seeding densities and incubation periods. We tested the resultant cultures for differences in anchorage-independent growth, resumption of proliferation after mitomycin C treatment and occurrence of proliferative feeder contaminants in an epidermal keratinocyte co-culture system. The study revealed subculture dependent differential responses. The cultures of a particular subculture procedure displayed unique cell size distribution and disintegrated completely in 6 weeks following mitomycin C treatment, but their repeated subculture resulted in feeder regrowth as late as 11 weeks after the growth arrest. In contrast, mitomycin C failed to inhibit cell proliferation in cultures of the other subculture schemes and also in a clone that was established from a transformation focus of super-confluent culture. The resultant proliferative feeder cells contaminated the keratinocyte cultures. The anchorage-independent growth appeared in late passages as compared with the expression of mitomycin C resistance in earlier passages. The feeder regrowth was prevented by identifying a safe subculture protocol that discouraged the inclusion of resistant variants. We advocate routine anchorage-independent growth assay and absolute confirmation of feeder disintegration to qualify feeder batches and

  19. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse

    SciTech Connect

    Xu Fang; Ji Jian; Li Li; Chen Rong; Hu Weicheng . E-mail: huweicheng@sdu.edu.cn

    2007-01-19

    The role of the adventitia in vascular function and vascular lesion formation has been largely ignored. This study observed the activation of the adventitia and specifically the fibroblasts in the development of atherosclerosis in the apoE(-/-) mouse. The results showed a gradual increase in expression of collagen types I and III after 2, 4, and 8 weeks of hyperlipidic diet. The earliest expression of monocyte chemoattractant protein-1 (MCP-1) protein and mRNA was detected in the adventitial fibroblast before the formation of intimal lesions. Proliferation, too, was first found in the adventitial fibroblasts. We hypothesize that the adventitial fibroblast is activated in the early stage of atherosclerosis. Adventitial inflammation may be an early event in the development of atherosclerotic lesions.

  20. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells

    SciTech Connect

    Sagara, Chiaki; Takahashi, Katsuhiko; Kagechika, Hiroyuki; Takahashi, Noriko

    2013-03-29

    Highlights: ► We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ► 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ► A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ► This antagonist had no effects on RXRα and PPARγ levels in 9-cis-RA-treated cells. ► 9-cis-RA-induced decrease in both RXRα and PPARγ was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA’s inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner.

  1. Dynamic Mitochondrial Localisation of STAT3 in the Cellular Adipogenesis Model 3T3-L1.

    PubMed

    Kramer, Adam H; Edkins, Adrienne L; Hoppe, Heinrich C; Prinsloo, Earl

    2015-07-01

    A mechanistic relationship exists between protein localisation, activity and cellular differentiation. Understanding the contribution of these molecular mechanisms is required for elucidation of conditions that drive development. Literature suggests non-canonical translocation of the Signal Transducer and Activator of Transcription 3 (STAT3) to the mitochondria contributes to the regulation of the electron transport chain, cellular respiration and reactive oxygen species production. Based on this we investigated the role of mitochondrial STAT3, specifically the serine 727 phosphorylated form, in cellular differentiation using the well-defined mouse adipogenic model 3T3-L1. Relative levels of reactive oxygen species (ROS) and the levels and dynamic localization of pSTAT3S727 were investigated during the initiation of adipogenesis. As a signalling entity, ROS is known to regulate the activation of C/EBPβ to stimulate a critical cascade of events prior to differentiation of 3T3-L1. Results indicate that upon induction of the differentiation programme, relative levels of mitochondrial pSTAT3S727 dramatically decrease in the mitochondria; in contrast the total cellular pSTAT3S727 levels increase. A positive correlation between increasing levels of ROS and dynamic changes in C/EBPβ indicate that mitochondrial STAT3 plays a potential critical role as an initiator of the process. Based on these findings we propose a model for mitochondrial STAT3 as a regulator of ROS in adipogenesis.

  2. Insulin regulation of lipoprotein lipase activity in 3T3-L1 adipocytes is mediated at posttranscriptional and posttranslational levels.

    PubMed

    Semenkovich, C F; Wims, M; Noe, L; Etienne, J; Chan, L

    1989-05-25

    Insulin is a major regulator of lipoprotein lipase (LPL) activity. The molecular events associated with LPL regulation by insulin in 3T3-L1 adipocytes were studied by determining LPL enzyme activity, mRNA levels, protein synthetic rate, and transcription run-off activity. Adipocytes treated with insulin (10(-6) M for 48 h) had substantially higher LPL activity (mean difference compared to carrier-treated cells 146%) with little difference in LPL mRNA levels (mean level 109% of control). Insulin regulation of LPL activity was dose-dependent but changes in LPL mRNA were not. Within 2 h of hormone addition, LPL activity was higher in insulin-treated versus carrier-treated adipocytes although their LPL mRNA levels were similar. In [35S]methionine pulse-labeled adipocytes, insulin decreased LPL protein synthetic rate measured by immunoprecipitation 42-48%, although increases (75-340%) in heparin-releasable LPL activity were detected in the same cells. In contrast, during differentiation of 3T3-L1 fibroblasts to the adipocyte state, 5-80-fold increases of heparin-releasable LPL activity were closely associated with similar (8-60-fold) increases in LPL mRNA levels. LPL synthetic rate was 16-fold greater, and LPL gene transcription initiation measured by transcriptional run-off was 10-fold higher in adipocytes than in undifferentiated cells. Differentiation of 3T3-L1 fibroblasts increases transcription of the LPL gene leading to increased LPL mRNA, protein synthetic rate, and enzyme activity. Insulin regulation of LPL activity in 3T3-L1 adipocytes, however, is mediated entirely at posttranscriptional and posttranslational levels.

  3. Stimulation of protein phosphatase activity by insulin and growth factors in 3T3 cells

    SciTech Connect

    Chan, C.P.; McNall, S.J.; Krebs, E.G.; Fischer, E.H. )

    1988-09-01

    Incubation of Swiss mouse 3T3-D1 cells with physiological concentrations of insulin resulted in a rapid and transient activation of protein phosphatase activity as measure by using ({sup 32}P)phosphorylase {alpha} as substrate. Activation reached a maximum level (140% of control value) within 5 min of addition and returned to control levels within 20 min. The effect of insulin was dose-dependent with half-maximal activation occurring at {approx}5 nM insulin. This activity could be completely inhibited by addition of the heat-stable protein inhibitor 2, which suggests the presence of an activated type-1 phosphatase. Similar effects on phosphatase activity were seen when epidermal growth factor and platelet-derived growth factor were tested. These results suggest that some of the intracellular effects caused by insulin and growth factors are mediated through the activation of a protein phosphatase.

  4. Regulation of pyruvate carboxylase in 3T3-L1 cells.

    PubMed Central

    Zhang, J; Xia, W L; Ahmad, F

    1995-01-01

    When 3T3-L1 fibroblasts differentiate to adipocytes, the specific activity of pyruvate carboxylase (PC) increases about 25-fold in parallel with its intracellular protein concentration. The increase in PC protein concentration is accompanied by a 9-10-fold increase in the relative abundance of 4.2 kb PC mRNA measured by Northern-blot analysis using a cDNA probe encoding a segment of the PC gene of 3T3-L1 adipocytes. The effects of cyclic AMP (cAMP) alone and together with insulin on levels of cellular protein, PC activity, PC protein and on the relative abundance of PC mRNA were examined in mature 3T3-L1 adipocytes. Adipocytes exposed to cAMP for 24 h exhibited a 25% decrease in cellular protein and marked decreases in enzyme activity (88%) and PC mRNA abundance (98%) compared with untreated adipocyte controls. After 48 h of exposure to cAMP, PC activity and PC mRNA diminished to levels approaching their detection limits. When exposed to medium containing cAMP plus insulin, adipocyte enzyme activity and PC mRNA declined more slowly during the first 24 h exposure (about 20% decrease) but after 48 h fell to values comparable with those of adipocytes exposed to cAMP alone. Despite these decreases in enzyme activity, the PC protein content of adipocytes treated with cAMP alone or cAMP plus insulin are nearly identical with that of control adipocytes. The inactivation of PC in cAMP-treated adipocytes does not involve loss of the prosthetic group from the holoenzyme. Cross-linking experiments suggest that the spatial arrangement of protomers in inactive PC may differ from that in the active tetrameric enzyme. Data presented suggest that, in addition to inducing inactivation, cAMP may also regulate adipocyte PC by decreasing transcription of the PC gene and/or enhancing the rate of degradation of PC mRNA. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7864811

  5. Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts

    PubMed Central

    Kim, Jonghun; Kim, Kee-Pyo; Lim, Kyung Tae; Lee, Seung Chan; Yoon, Juyong; Song, Guangqi; Hwang, Seon In; Schöler, Hans R.; Cantz, Tobias; Han, Dong Wook

    2015-01-01

    The ability to generate integration-free induced hepatocyte-like cells (iHeps) from somatic fibroblasts has the potential to advance their clinical application. Here, we have generated integration-free, functional, and expandable iHeps from mouse somatic fibroblasts. To elicit this direct conversion, we took advantage of an oriP/EBNA1-based episomal system to deliver a set of transcription factors, Gata4, Hnf1a, and Foxa3, to the fibroblasts. The established iHeps exhibit similar morphology, marker expression, and functional properties to primary hepatocytes. Furthermore, integration-free iHeps prolong the survival of fumarylacetoacetate-hydrolase-deficient (Fah−/−) mice after cell transplantation. Our study provides a novel concept for generating functional and expandable iHeps using a non-viral, non-integrating, plasmid-based system that could facilitate their pharmaceutical and biomedical application. PMID:26503743

  6. Cytotoxic effect against 3T3 fibroblasts cells of saffron floral bio-residues extracts.

    PubMed

    Serrano-Díaz, Jéssica; Estevan, Carmen; Sogorb, M Ángel; Carmona, Manuel; Alonso, Gonzalo L; Vilanova, Eugenio

    2014-03-15

    For every kilogram of saffron spice produced, about 63 kg of floral bio-residues (FB) (tepals, stamens and styles) are thrown away. Extracts of these bio-residues in water (W1), water:HCl (100:1, v/v) (W2), ethanol (E3), ethanol:HCl (100:1, v/v) (E4), dichloromethane (D5) and hexane (H6) were prepared. Their composition in flavonols and anthocyanins, and their effect on cell viability were determined. W1 was the richest in kaempferol 3-sophoroside (30.34 mg/g dry FB) and delphinidin 3,5-diglucoside (15.98 mg/g dry FB). The highest tested concentration (900 μg/ml) of W1, W2, E4, D5 and H6 did not significantly decrease the cell viability. Only E3 at that concentration caused a significant decrease of 38% in the cell viability. Therefore, all extracts studied are not cytotoxic at concentrations lower than 900 μg/ml, and W1 is proposed as the optimal for food applications due to its greater contribution of phenolic compounds. PMID:24206685

  7. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4.

    PubMed

    Wang, Haixia; Cao, Nan; Spencer, C Ian; Nie, Baoming; Ma, Tianhua; Xu, Tao; Zhang, Yu; Wang, Xiaojing; Srivastava, Deepak; Ding, Sheng

    2014-03-13

    It was recently shown that mouse fibroblasts could be reprogrammed into cells of a cardiac fate by forced expression of multiple transcription factors and microRNAs. For ultimate application of such a reprogramming strategy for cell-based therapy or in vivo cardiac regeneration, reducing or eliminating the genetic manipulations by small molecules would be highly desirable. Here, we report the identification of a defined small-molecule cocktail that enables the highly efficient conversion of mouse fibroblasts into cardiac cells with only one transcription factor, Oct4, without any evidence of entrance into the pluripotent state. Small-molecule-induced cardiomyocytes spontaneously contract and exhibit a ventricular phenotype. Furthermore, these induced cardiomyocytes pass through a cardiac progenitor stage. This study lays the foundation for future pharmacological reprogramming approaches and provides a small-molecule condition for investigation of the mechanisms underlying the cardiac reprogramming process. PMID:24561253

  8. D-Arg1,D-Phe5,D-Trp7,9,Leu11 substance P, a neuropeptide antagonist, blocks binding, Ca2(+)-mobilizing, and mitogenic effects of endothelin and vasoactive intestinal contractor in mouse 3T3 cells

    SciTech Connect

    Fabregat, I.; Rozengurt, E. )

    1990-10-01

    Endothelin (ET1) and vasoactive intestinal contractor (VIC) stimulate quiescent Swiss 3T3 cells to resume DNA synthesis acting synergistically with epidermal growth factors (EGF) and other mitogens. The peptide (D-Arg1,D-Phe5,D-Trp7,9,Leu11) substance P has been identified as a broad spectrum neuropeptide antagonist which blocks the binding and biological effects of the Ca2(+)-mobilizing neuropeptides bombesin, vasopressin, and bradykinin. In the present study we show that (D-Arg1,D-Phe5,D-Trp7,9,Leu11) substance P also acts as an ET1/VIC antagonist as judged by the following criteria: (a) inhibition of specific 125I-labelled ET1 binding to a ET1/VIC receptor in a competitive and dose-dependent manner; (b) blocking of the rapid increase in the cytosolic Ca2+ concentration promoted by ET1 or VIC; and (c) inhibition of DNA synthesis stimulated by VIC in the presence of EGF. The inhibitory effects of (D-Arg1,D-Phe5,D-Trp7,9,Leu 11) substance P on Ca2+ mobilization and DNA synthesis were reversed by increasing the concentration of VIC. This is the first time that a peptide structurally unrelated to ET1 or VIC is shown to block the binding and mitogenic effects of peptides of the endothelin family.

  9. Primary mouse lung fibroblasts help macrophages to tackle Mycobacterium tuberculosis more efficiently and differentiate into myofibroblasts up on bacterial stimulation.

    PubMed

    Verma, Subash Chand; Agarwal, Pooja; Krishnan, Manju Y

    2016-03-01

    Keeping with their classical role in wound healing, fibroblasts of the lung take part in the resolution of tubercular granulomas. They are totally absent in nascent granulomas, but surround necrotizing granulomas, and are the majority of cells in healed granulomas. Lung fibroblasts may become infected with Mycobacterium tuberculosis (Mtb). Two previous studies suggested an immunomodulatory effect of fibroblasts on infected macrophages. In the present study, we looked at the role of primary mouse lung fibroblasts on naive or activated mouse bone marrow macrophages infected with Mtb and the effect of infection on fibroblast properties. We observed that with fibroblasts in the vicinity, infected naive macrophages restricted the bacterial growth, while activated macrophages turned more bactericidal with concomitant increase in nitrite production. Neutralizing IL-1α in fibroblast supernatant reduced the nitrite production by infected macrophages. Secretion of IL-6 and MCP-1 was down-regulated, while TNF-α was up-regulated in infected naive macrophages. In infected activated macrophages, the secretion of IL-6 was up-regulated, while that of MCP-1 and TNF-α was unaffected. The 'fibroblast effects' were enhanced when the fibroblasts too were infected. Mtb induced IL-1 secretion and pro-fibrotic responses by fibroblasts. Mtb-induced myofibroblast conversion was blocked by rapamycin suggesting cell signalling via mTOR.

  10. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I.

    PubMed

    Sultana, Afroza; Cochran, Blake J; Tabet, Fatiha; Patel, Mili; Torres, Luisa Cuesta; Barter, Philip J; Rye, Kerry-Anne

    2016-06-01

    Activation of inflammatory signaling pathways links obesity with metabolic disorders. TLR4-mediated activation of MAPKs and NF-κB are 2 such pathways implicated in obesity-induced inflammation. Apolipoprotein A-I (apoA-I) exerts anti-inflammatory effects on adipocytes by effluxing cholesterol from the cells via the ATP binding cassette transporter A1 (ABCA1). It is not known if these effects involve inhibition of inflammatory signaling pathways by apoA-I. This study asks if apoA-I inhibits activation of MAPKs and NF-κB in mouse 3T3-L1 adipocytes and whether this inhibition is ABCA1 dependent. Incubation of differentiated 3T3-L1 adipocytes with apoA-I decreased cell surface expression of TLR4 by 16 ± 2% and synthesis of the TLR4 adaptor protein, myeloid differentiation primary response 88, by 24 ± 4% in an ABCA1-dependent manner. ApoA-I also inhibited downstream activation of MAPKs, such as ERK, p38MAPK, and JNK, as well as expression of proinflammatory adipokines in bacterial LPS-stimulated 3T3-L1 adipocytes in an ABCA1-dependent manner. ApoA-I, by contrast, suppressed nuclear localization of the p65 subunit of NF-κB by 30 ± 3% in LPS-stimulated 3T3-L1 adipocytes in an ABCA1-independent manner. In conclusion, apoA-I inhibits TLR4-mediated inflammatory signaling pathways in adipocytes by preventing MAPK and NF-κB activation.-Sultana, A., Cochran, B. J., Tabet, F., Patel, M., Cuesta Torres, L., Barter, P. J., Rye, K.-A. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I.

  11. Bovine Collagen Peptides Compounds Promote the Proliferation and Differentiation of MC3T3-E1 Pre-Osteoblasts

    PubMed Central

    Liu, JunLi; Zhang, Bing; Song, ShuJun; Ma, Ming; Si, ShaoYan; Wang, YiHu; Xu, BingXin; Feng, Kai; Wu, JiGong; Guo, YanChuan

    2014-01-01

    Objective Collagen peptides (CP) compounds, as bone health supplements, are known to play a role in the treatment of osteoporosis. However, the molecular mechanisms of this process remain unclear. This study aimed to investigate the effects of bovine CP compounds on the proliferation and differentiation of MC3T3-E1 cells. Methods Mouse pre-osteoblast cell line MC3T3-E1 subclone 4 cells were treated with bovine CP compounds. Cell proliferation was analyzed by MTT assays and the cell cycle was evaluated by flow cytometry scanning. Furthermore, MC3T3-E1 cell differentiation was analyzed at the RNA level by real-time PCR and at the protein level by western blot analysis for runt-related transcription factor 2 (Runx2), a colorimetric p-nitrophenyl phosphate assay for alkaline phosphatase (ALP), and ELISA for osteocalcin (OC). Finally, alizarin red staining for mineralization was measured using Image Software Pro Plus 6.0. Results Cell proliferation was very efficient after treatment with different concentrations of bovine CP compounds, and the best concentration was 3 mg/mL. Bovine CP compounds significantly increased the percentage of MC3T3-E1 cells in G2/S phase. Runx2 expression, ALP activity, and OC production were significantly increased after treatment with bovine CP compounds for 7 or 14 days. Quantitative analyses with alizarin red staining showed significantly increased mineralization of MC3T3-E1 cells after treatment with bovine CP compounds for 14 or 21 days. Conclusions Bovine CP compounds increased osteoblast proliferation, and played positive roles in osteoblast differentiation and mineralized bone matrix formation. Taking all the experiments together, our study indicates a molecular mechanism for the potential treatment of osteoarthritis and osteoporosis. PMID:24926875

  12. Effect of Ganoderma applanatum mycelium extract on the inhibition of adipogenesis in 3T3-L1 adipocytes.

    PubMed

    Kim, Ji-Eun; Park, Sung-Jin; Yu, Mi-Hee; Lee, Sam-Pin

    2014-10-01

    Ganoderma applanatum (GA) and related fungal species have been used for over 2000 years in China to prevent and treat various human diseases. However, there is no critical research evaluating the functionality of GA grown using submerged culture technology. This study aimed to evaluate the effects of submerged culture GA mycelium (GAM) and its active components (protocatechualdehyde [PCA]) on preadipocyte differentiation of 3T3-L1 cells. Mouse-derived preadipocyte 3T3-L1 cells were treated with differentiation inducers in the presence or absence of GAM extracts. We determined triglyceride accumulations, glycerol-3-phosphate dehydrogenase (GPDH) activities, and differentiation makers. PCA, the active component of GAM extract, was also used to treat 3T3-L1 cells. The MTT assay showed that the GAM extract (0.01-1 mg/mL) was not toxic to 3T3-L1 preadipocyte. Treatment of cells with GAM extracts and its active components significantly decreased the GPDH activity and lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. Western blot analysis results showed that the protein expression levels of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1) were inhibited by the GAM extract. In addition, adipogenic-specific genes such as perilipin, fatty acid synthase (FAS), fatty acid transport protein 1 (FATP1), and fatty acid-binding protein 4 (FABP4) decreased in a dose-dependent manner. Quantitative high-performance liquid chromatography analysis showed that the GAM extract contained 1.14 mg/g PCA. GAM extracts suppressed differentiation of 3T3-L1 preadipocytes, in part, through altered regulation of PPARγ, C/EBPα, and SREBP1. These results suggest that GAM extracts and PCA may suppress adipogenesis by inhibiting differentiation of preadipocytes.

  13. Effects of Berberine on Adipose Tissues and Kidney Function in 3T3-L1 Cells and Spontaneously Hypertensive Rats.

    PubMed

    Kishimoto, Aya; Dong, Shi-Fen; Negishi, Hiroko; Yasui, Naomi; Sun, Jian-Ning; Ikeda, Katsumi

    2015-09-01

    We aimed to investigate the effect of berberine on adipose tissues, as well as its effect on renal injury in 3T3-L1 cells and spontaneously hypertensive rats. 3T3-L1 cells were cultured and treated with berberine (5-20 pM) from days 3 to 8. Berberine added to the cultured medium could significantly down-regulate transcription factors, including CCAAT/enhancer binding protein β, CCAAT/enhancer binding protein a, and peroxisome pro liferator-activated receptor y, and suppress peroxisome proliferator-activated receptor target genes, such as adipocyte fatty acid binding protein and fatty acid synthase, and inhibit 3T3-Ll fibroblast differentiation to adipocytes. Male spontaneously hypertensive rats received either 150 mg/day of berberine or saline orally for 8 weeks. Compared with the control, berberine-treated rats exhibited significant reductions in body weight gain (p < 0.05), as well as retroperitoneal and mesenteric adipose tissues (p < 0.05). Berberine-treated rats significantly decreased urinary albumin excretion, a marker of renal injury (p < 0.05). Long-term treatment with berberine decreased the adipose tissues weight and attenuated renal injury in spontaneously hypertensive rats. Based on these results, berberine has an important role in regulating adipose tissues. These results suggest the protective effect of berberine on metabolic syndrome related diseases, such as renal injury.

  14. Electrophysiological and functional effects of sphingosine-1-phosphate in mouse ventricular fibroblasts

    SciTech Connect

    Benamer, Najate; Bois, Patrick

    2011-04-29

    Highlights: {yields} In cardiac fibroblasts, SUR2/Kir6.1 channel is activated by S1P via the S1P3R. {yields} S1P increases cell proliferation through SUR2/Kir6.1 activation. {yields} S1P decreases collagen and IL-6 secretion through SUR2/Kir6.1 activation. {yields} S1P stimulates fibroblast migration independently from SUR2/Kir6.1 channel. -- Abstract: The aim of this study was to characterize the effects of sphingosine-1-phosphate (S1P) on cardiac ventricular fibroblasts. Impacts of S1P on fibroblast excitability, cell migration, proliferation and secretion were characterized. The patch-clamp technique in the whole-cell configuration was used to study the S1P-induced current from mouse ventricular fibroblasts. The expression level of the S1P receptor during cell culture duration was evaluated by western-blot. Fibroblast proliferation and migration were quantified using the methylene blue assay and the Boyden chamber technique, respectively. Finally, fibroblast secretion properties were estimated by quantification of the IL-6 and collagen levels using ELISA and SIRCOL collagen assays, respectively. We found that S1P activated SUR2/Kir6.1 channel and that this effect was sensitive to specific inhibition of the S1P receptor of type 3 (S1P3R). In contrast, S1P1R receptor inhibition had no effect. Moreover, the S1P-induced current increased with cell culture duration whereas S1P3R expression level remained constant. The activation of SUR2/Kir6.1 channel by S1P via S1P3R stimulated cell proliferation and decreased IL-6 and collagen secretions. S1P also stimulated fibroblast migration via S1P3R but independently from SUR2/Kir6.1 channel activation. This study demonstrates that S1P, via S1P3R, affects cardiac ventricular fibroblasts function independently or through activation of SUR2/Kir6.1 channel. The latter effect occurs after fibroblasts differentiate into myofibroblasts, opening a new potential therapeutic strategy to modulate fibrosis after cardiac

  15. ATF3 inhibits adipocyte differentiation of 3T3-L1 cells

    SciTech Connect

    Jang, Min Kyung; Kim, Cho Hee; Seong, Je Kyung; Jung, Myeong Ho

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Overexpression of ATF3 inhibits adipocyte differentiation in 3T3-L1 cells. Black-Right-Pointing-Pointer Overexpression of ATF3 represses C/EBP{alpha} expression. Black-Right-Pointing-Pointer ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Black-Right-Pointing-Pointer ATF3 may play a role in hypoxia-mediated inhibition of adipocyte differentiation. -- Abstract: ATF3 is a stress-adaptive gene that regulates proliferation or apoptosis under stress conditions. However, the role of ATF3 is unknown in adipocyte cells. Therefore, in this study, we investigated the functional role of ATF3 in adipocytes. Both lentivirus-mediated overexpression of ATF3 and stably-overexpressed ATF3 inhibited adipocyte differentiation in 3T3-L1 cells, as revealed by decreased lipid staining with oil red staining and reduction in adipogenic genes. Thapsigargin treatment and overexpression of ATF3 decreased C/EBP{alpha} transcript and repressed the activity of the 3.6-kb mouse C/EBP{alpha} promoter, demonstrating that ATF3 downregulates C/EBP{alpha} expression. Transfection studies using mutant constructs containing 5 Prime -deletions in the C/EBP{alpha} promoter revealed that a putative ATF/CRE element, GGATGTCA, is located between -1921 and -1914. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Both chemical hypoxia-mimetics or physical hypoxia led to reduce the C/EBP{alpha} mRNA and repress the promoter activity of the C/EBP{alpha} gene, whereas increase ATF3 mRNA, suggesting that ATF3 may contribute to the inhibition of adipocyte differentiation in hypoxia through downregulation of C/EBP{alpha} expression. Collectively, these results demonstrate that ATF3 represses the C/EBP{alpha} gene, resulting in inhibition of adipocyte differentiation, and thus plays a role in hypoxia-mediated inhibition

  16. Comparison of oxygen consumption rates in minimally transformed BALB/3T3 and virus-transformed 3T3B-SV40 cells.

    PubMed

    Leznev, E I; Popova, I I; Lavrovskaja, V P; Evtodienko, Y V

    2013-08-01

    In the recent years, bioenergetics of tumor cells and particularly cell respiration have been attracting great attention because of the involvement of mitochondria in apoptosis and growing evidence of the possibility to diagnose and treat cancer by affecting the system of oxidative phosphorylation in mitochondria. In the present work, a comparative study of oxygen consumption in 3T3B-SV40 cells transformed with oncovirus SV40 and parental BALB/3T3 cells was conducted. Such fractions of oxygen consumption as "phosphorylating" respiration coupled to ATP synthesis, "free" respiration not coupled to ATP synthesis, and "reserve" or hidden respiration observed in the presence of protonophore were determined. Maximal respiration was shown to be only slightly decreased in 3T3B-SV40 cells as compared to BALB/3T3. However, in the case of certain fractions of cellular respiration, the changes were significant. "Phosphorylating" respiration was found to be reduced to 54% and "reserve" respiration, on the contrary, increased up to 160% in virus-transformed 3T3B-SV40 cells. The low rate of "phosphorylating" respiration and high "reserve" respiration indicate that under normal incubation conditions the larger part of mitochondrial respiratory chains of the virus-transformed cells is in the resting state (i.e. there is no electron transfer to oxygen). The high "reserve" respiration is suggested to play an important role in preventing apoptosis of 3T3B-SV40 cells.

  17. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells.

    PubMed

    Sagara, Chiaki; Takahashi, Katsuhiko; Kagechika, Hiroyuki; Takahashi, Noriko

    2013-03-29

    Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA's inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner. PMID:23485459

  18. Proliferation of mouse fibroblast-like and osteoblast-like cells on pure titanium films manufactured by electron beam melting.

    PubMed

    Kawase, Mayu; Hayashi, Tatsuhide; Asakura, Masaki; Tomino, Masafumi; Mieki, Akimichi; Kawai, Tatsushi

    2016-10-01

    The physical characteristics and biological compatibility of surfaces produced by electron beam melting (EBM) are not well known. In particular, there are not many reports on biocompatibility qualities. In this study, pure Ti films were manufactured using EBM. While it is reported that moderately hydrophilic biomaterial surfaces display improved cell growth and biocompatibility, contact angle measurements on the EBM-produced pure Ti films showed slight hydrophobicity. Nonetheless, we found the cell count of both fibroblast-like cells (L929) and osteoblast-like cells (MC3T3-E1) increased on pure Ti films, especially the MC3T3-E1, which increased more than that of the control. In addition, the morphology of L929 and MC3T3-E1 was polygonal and spindle-shaped and the cytoskeleton was well developed in the pure Ti surface groups. Upon staining with Alizarin red S, a slight calcium deposition was observed and this level gradually rose to a remarkable level. These results indicate that pure Ti films manufactured by EBM have good biocompatibility and could be widely applied as biomedical materials in the near future. PMID:27425003

  19. Proliferation of mouse fibroblast-like and osteoblast-like cells on pure titanium films manufactured by electron beam melting.

    PubMed

    Kawase, Mayu; Hayashi, Tatsuhide; Asakura, Masaki; Tomino, Masafumi; Mieki, Akimichi; Kawai, Tatsushi

    2016-10-01

    The physical characteristics and biological compatibility of surfaces produced by electron beam melting (EBM) are not well known. In particular, there are not many reports on biocompatibility qualities. In this study, pure Ti films were manufactured using EBM. While it is reported that moderately hydrophilic biomaterial surfaces display improved cell growth and biocompatibility, contact angle measurements on the EBM-produced pure Ti films showed slight hydrophobicity. Nonetheless, we found the cell count of both fibroblast-like cells (L929) and osteoblast-like cells (MC3T3-E1) increased on pure Ti films, especially the MC3T3-E1, which increased more than that of the control. In addition, the morphology of L929 and MC3T3-E1 was polygonal and spindle-shaped and the cytoskeleton was well developed in the pure Ti surface groups. Upon staining with Alizarin red S, a slight calcium deposition was observed and this level gradually rose to a remarkable level. These results indicate that pure Ti films manufactured by EBM have good biocompatibility and could be widely applied as biomedical materials in the near future.

  20. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers

    PubMed Central

    Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel

    2016-01-01

    To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes. PMID:27196306

  1. Locomotory behavior, contact inhibition, and pattern formation of 3T3 and polyoma virus-transformed 3T3 cells in culture

    PubMed Central

    Bell, PB

    1977-01-01

    The social behavior of 3T3 cells and their polynoma virus-transformed derivative (Py3T3 cells) was examined by time-lapse cinemicrography in order to determine what factors are responsible for the marked differences in the patterns formed by the two cell lines in culture. Contrary to expectations, both cell types have been found to exhibit contact inhibition of cell locomotion. Therefore, the tendency of 3T3 cells to form monolayers and of Py3T3 cells to form crisscrossed multilayers cannot be explained on the basis of the presence versus the absence of contact inhibition. Morevover, with the exception of cell division control, the social behavior of the two cell types is qualitively similar. Both exhibit cell underlapping and, after contact between lamelliopodia, both show inhibition of locomotory activity and adhesion formation. Neither cell type was observed to migrate over the surface of another cell. The two cell types do show quantitative differences in the frequency of underlapping, the frequency with which contact results in inhibition of locomotion, and the proportion of the cell margin that adheres to the substratum. The increased frequency pf Py3T3 underlapping is correlated with the reduced frequency of substratum adhesions, which in turn favors underlapping. On the basis of these observations, it is concluded that the differences in culture patterns are the result of differences in the shapes of the individual cells, such that underlapping, and hence crisscrossing, is favored in Py3T3 cell interactions and discouraged in 3T3 cells. PMID:198414

  2. Regulation of Na+-H+ exchange in normal NIH-3T3 cells and in NIH-3T3 cells expressing the ras oncogene

    SciTech Connect

    Owen, N.E.; Knapik, J.; Strebel, F.; Tarpley, W.G.; Gorman, R.R.

    1989-04-01

    Our laboratory and others have demonstrated that Na+-H+ exchange can be regulated by two different pathways; one that is mediated by an inositol trisphosphate-stimulated increase in intracellular calcium activity, and one that is mediated by an increase in protein kinase C activity. To determine whether one of these pathways is more important than the other, or whether one pathway is physiologically relevant, we employed normal NIH-3T3 cells (3T3 cells) and NIH-3T3 cells expressing the EJ human bladder ras oncogene (EJ cells). The EJ cells were chosen because they provide a genetic model that does not exhibit serum- or platelet-derived growth factor (PDGF)-stimulated inositol trisphosphate release or Ca2+ mobilization. It was found that serum- or PDGF-stimulated Na+-H+ exchange was more pronounced in EJ cells than in control 3T3 cells. As expected, serum- or PDGF-stimulated Na+-H+ exchange in 3T3 cells was inhibited by chelating intracellular Ca2+ with the intracellular Ca2+ chelator quin2, by the intracellular Ca2+ antagonist 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), and by the calmodulin antagonist trifluoperazine. In contrast, these agents did not inhibit serum- or PDGF-stimulated Na+-H+ exchange in EJ cells. Activators of protein kinase C (e.g., 1-oleoyl-2-acetylglycerol or biologically active phorbol esters) were found to stimulate Na+-H+ exchange in EJ cells to the same extent as serum. However, these agents were considerably less effective than serum in control 3T3 cells. Despite these findings, PDGF did not stimulate diacylglycerol levels in EJ cells.

  3. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko; Nishio, Hiroaki

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  4. Identification of Human Fibroblast Cell Lines as a Feeder Layer for Human Corneal Epithelial Regeneration

    PubMed Central

    Lu, Rong; Bian, Fang; Lin, Jing; Su, Zhitao; Qu, Yangluowa; Pflugfelder, Stephen C.; Li, De-Quan

    2012-01-01

    There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5–14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1×104 in a 35-mm dish (9.6 cm2) grew to confluence (about 1.87–2.41×106 cells) in 12–14 days, representing 187–241 fold expansion with over 7–8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction. PMID:22723892

  5. Imaging collagen remodeling and sensing transplanted autologous fibroblast metabolism in mouse dermis using multimode nonlinear optical imaging

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Chen, Jianxin; Cao, Ning; Jiang, Xingshan; Xie, Shusen; Xiong, Shuyuan

    2008-06-01

    Collagen remodeling and transplanted autologous fibroblast metabolic states in mouse dermis after cellular injection are investigated using multimode nonlinear optical imaging. Our findings show that the technique can image the progress of collagen remodeling in mouse dermis. It can also image transplanted autologous fibroblasts in their collagen matrix environment in the dermis, because of metabolic activity. It was also found that the approach can provide two-photon ratiometric redox fluorometry based on autologous fibroblast fluorescence from reduced nicotinamide adenine dinucleotide coenzyme and oxidized flavoproteins for sensing the autologous fibroblast metabolic state. These results show that the multimode nonlinear optical imaging technique may have potential in a clinical setting as an in vivo diagnostic and monitoring system for cellular therapy in plastic surgery.

  6. Exogenous fibroblast growth factor 8 rescues development of mouse diastemal vestigial tooth ex vivo.

    PubMed

    Li, Lu; Yuan, Guohua; Liu, Chao; Zhang, Lu; Zhang, Yanding; Chen, YiPing; Chen, Zhi

    2011-06-01

    Regression of vestigial tooth buds results in the formation of the toothless diastema, a unique feature of the mouse dentition. Revitalization of the diastemal vestigial tooth bud provides an excellent model for studying tooth regeneration and replacement. It has been previously shown that suppression of fibroblast growth factor (FGF) signaling in the diastema results in vestigial tooth bud regression. In this study, we report that application of exogenous FGF8 to the mouse embryonic diastemal region rescues diastemal tooth development. However, this rescue of diastemal tooth development occurs only in an isolated diastemal regions and not in the mandibular quadrant, which includes the incisor and molar germs. FGF8 promotes cell proliferation and inhibits apoptosis in diastemal tooth epithelium, and revitalizes the tooth developmental program, as evidenced by the expression of genes critical for normal tooth development. Our results also support the idea that the adjacent tooth germs contribute to the suppression of diastemal vestigial tooth buds by means of multiple signals.

  7. Bacillus Calmette Guerin Induces Fibroblast Activation Both Directly and through Macrophages in a Mouse Bladder Cancer Model

    PubMed Central

    Lodillinsky, Catalina; Langle, Yanina; Guionet, Ariel; Góngora, Adrián; Baldi, Alberto; Sandes, Eduardo O.; Casabé, Alberto; Eiján, Ana María

    2010-01-01

    Background Bacillus Calmette-Guerin (BCG) is the most effective treatment for non-muscle invasive bladder cancer. However, a failure in the initial response or relapse within the first five years of treatment has been observed in 20% of patients. We have previously observed that in vivo administration of an inhibitor of nitric oxide improved the response to BCG of bladder tumor bearing mice. It was described that this effect was due to a replacement of tumor tissue by collagen depots. The aim of the present work was to clarify the mechanism involved in this process. Methodology/Principal Findings We demonstrated that BCG induces NIH-3T3 fibroblast proliferation by activating the MAPK and PI3K signaling pathways and also differentiation determined by alpha-smooth muscle actin (alpha-SMA) expression. In vivo, intratumoral inoculation of BCG also increased alpha-SMA and collagen expression. Oral administration of L-NAME enhanced the pro-fibrotic effect of BCG. Peritoneal macrophages obtained from MB49 tumor-bearing mice treated in vivo with combined treatment of BCG with L-NAME also enhanced fibroblast proliferation. We observed that FGF-2 is one of the factors released by BCG-activated macrophages that is able to induce fibroblast proliferation. The involvement of FGF-2 was evidenced using an anti-FGF2 antibody. At the same time, this macrophage population improved wound healing rate in normal mice and FGF-2 expression was also increased in these wounds. Conclusions/Significance Our findings suggest that fibroblasts are targeted by BCG both directly and through activated macrophages in an immunotherapy context of a bladder murine model. We also described, for the first time, that FGF-2 is involved in a dialog between fibroblasts and macrophages induced after BCG treatment. The fact that L-NAME administration improves the BCG effect on fibroblasts, NO inhibition, might represent a new approach to add to the conventional BCG therapy. PMID:21042580

  8. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts

    PubMed Central

    Krais, Annette M.; Mühlbauer, Karl-Rudolf; Kucab, Jill E.; Chinbuah, Helena; Cornelius, Michael G.; Wei, Quan-Xiang; Hollstein, Monica; Phillips, David H.; Arlt, Volker M.; Schmeiser, Heinz H.

    2015-01-01

    We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells. PMID:25230394

  9. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    SciTech Connect

    Lai, Peng-Yeh; Tsai, Chong-Bin; Tseng, Min-Jen

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  10. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts.

    PubMed

    Nakagawa, Masato; Koyanagi, Michiyo; Tanabe, Koji; Takahashi, Kazutoshi; Ichisaka, Tomoko; Aoi, Takashi; Okita, Keisuke; Mochiduki, Yuji; Takizawa, Nanako; Yamanaka, Shinya

    2008-01-01

    Direct reprogramming of somatic cells provides an opportunity to generate patient- or disease-specific pluripotent stem cells. Such induced pluripotent stem (iPS) cells were generated from mouse fibroblasts by retroviral transduction of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. Mouse iPS cells are indistinguishable from embryonic stem (ES) cells in many respects and produce germline-competent chimeras. Reactivation of the c-Myc retrovirus, however, increases tumorigenicity in the chimeras and progeny mice, hindering clinical applications. Here we describe a modified protocol for the generation of iPS cells that does not require the Myc retrovirus. With this protocol, we obtained significantly fewer non-iPS background cells, and the iPS cells generated were consistently of high quality. Mice derived from Myc(-) iPS cells did not develop tumors during the study period. The protocol also enabled efficient isolation of iPS cells without drug selection. Furthermore, we generated human iPS cells from adult dermal fibroblasts without MYC.

  11. Characterization of specific high affinity receptors for human tumor necrosis factor on mouse fibroblasts

    SciTech Connect

    Hass, P.E.; Hotchkiss, A.; Mohler, M.; Aggarwal, B.B.

    1985-10-05

    Mouse L-929 fibroblasts, an established line of cells, are very sensitive to lysis by human lymphotoxin (hTNF-beta). Specific binding of a highly purified preparation of hTNF-beta to these cells was examined. Recombinant DNA-derived hTNF-beta was radiolabeled with (TH)propionyl succinimidate at the lysine residues of the molecule to a specific activity of 200 microCi/nmol of protein. (TH)hTNF-beta was purified by high performance gel permeation chromatography and the major fraction was found to be monomeric by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The labeled hTNF-beta was fully active in causing lysis of L-929 fibroblasts and bound specifically to high affinity binding sites on these cells. Scatchard analysis of the binding data revealed the presence of a single class of high affinity receptors with an apparent Kd of 6.7 X 10(-11) M and a capacity of 3200 binding sites/cell. Unlabeled recombinant DNA-derived hTNF-beta was found to be approximately 5-fold more effective competitive inhibitor of binding than the natural hTNF-beta. The binding of hTNF-beta to these mouse fibroblasts was also correlated with the ultimate cell lysis. Neutralizing polyclonal antibodies to hTNF-beta efficiently inhibited the binding of (TH)hTNF-beta to the cells. The authors conclude that the specific high affinity binding site is the receptor for hTNF-beta and may be involved in lysis of cells.

  12. Assessment of the phototoxic hazard of some essential oils using modified 3T3 neutral red uptake assay.

    PubMed

    Dijoux, Nathalie; Guingand, Yannick; Bourgeois, Caroline; Durand, Sandrine; Fromageot, Claude; Combe, Corinne; Ferret, Pierre-Jacques

    2006-06-01

    When substances are developed in the aim to be a constituent of personal care products, and to be applied on the skin, it is necessary to carry out an assessment of potential phototoxic hazard. Phototoxicity is skin reaction caused by concurrent topical or systemic exposure to specific molecule and ultraviolet radiation. Most phototoxic compounds absorb energy particularly from UVA light leading to the generation of activated derivatives which can induce cellular damage. This type of adverse cutaneous response can be reproduced in vitro using different models of phototoxicity such as the validated 3T3 Neutral Red Uptake (NRU) phototoxicity assay. In the present study we utilised two different cell lines (the murine fibroblastic cell line 3T3 and the rabbit cornea derived cell line SIRC) to compare the photo-irritation potential of a strong phototoxic compound, chlorpromazine, to a weaker composite, such as 8-methoxypsoralen and Bergamot oil. After comparison of the different systems, five other essential oils were tested with both cell lines. Cellular damage was evaluated by the NRU cytotoxicity test or by MTT conversion test.

  13. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    PubMed Central

    El-Sayed, Ahmed Kamel; Zhang, Zhentao; Zhang, Lei; Liu, Zhiyong; Abbott, Louise C.; Zhang, Yani; Li, Bichun

    2014-01-01

    Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs) generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF) cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1) and Rex-1 (ZFP-42, zinc finger protein 42). Using embryonic stem cells (ESCs) conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs) using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF) cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations. PMID:25437916

  14. Expression pattern of matrix metalloproteinase and TIMP genes in fibroblasts derived from Ets-1 knock-out mice compared to wild-type mouse fibroblasts.

    PubMed

    Hahne, Jens Claus; Fuchs, Tanja; El Mustapha, Haddouti; Okuducu, Ali Fuat; Bories, Jean Christophe; Wernert, Nicolas

    2006-07-01

    Matrix-degrading proteases play a key role in normal development, wound healing, many diseases such as rheumatoid arthritis and, in particular, tumour invasion. In invasive tumours, these enzymes are expressed by fibroblasts of the tumour stroma. Their expression and activity are tightly regulated at several levels, an important one being transcription. Previous in vitro and in vivo findings pointed to a major role of the Ets-1 transcription factor for this level of regulation. In the present study, we tried to prove this role in fibroblasts. We stimulated wild-type mouse fibroblasts with physiological doses of basic fibroblast growth factor (bFGF, known to induce different proteases and expressed by tumour cells) and compared the results to those obtained in Ets-1 -/- fibroblasts derived from Ets-1 knock-out mice. We found that basal Ets-1 levels are necessary not only for a fast induction of MMPs 2, 3 and 13 by bFGF but also for maintenance of the bFGF-induced expression of tissue inhibitors of metalloproteinases (TIMPs) 1, 2 and 3, which are known not only to inhibit but also participate as activators of certain pro-MMPs.

  15. Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Maeda, Hayato; Hosokawa, Masashi; Sashima, Tokutake; Takahashi, Nobuyuki; Kawada, Teruo; Miyashita, Kazuo

    2006-07-01

    Fucoxanthin is a major carotenoid found in edible seaweed such as Undaria pinnatifida and Hijikia fusiformis. We investigated the suppressive effects of fucoxanthin and its metabolite, fucoxanthinol, on the differentiation of 3T3-L1 preadipocytes to adipocytes. Fucoxanthin inhibited intercellular lipid accumulation during adipocyte differentiation of 3T3-L1 cells. Furthermore, fucoxanthin was converted to fucoxanthinol in 3T3-L1 cells. Fucoxanthinol also exhibited suppressive effects on lipid accumulation and decreased glycerol-3-phosphate dehydrogenase activity, an indicator of adipocyte differentiation. The suppressive effect of fucoxanthinol was stronger than that of fucoxanthin. In addition, in 3T3-L1 cells treated with fucoxanthin and fucoxanthinol, peroxisome proliferator-activated receptor gamma (PPARgamma), which regulates adipogenic gene expression, was down-regulated in a dose-dependent manner. These results suggest that fucoxanthin and fucoxanthinol inhibit the adipocyte differentiation of 3T3-L1 cells through down-regulation of PPARgamma. Fucoxanthinol had stronger suppressive effects than fucoxanthin on adipocyte differentiation in 3T3-L1 cells. PMID:16786166

  16. Transformation and apoptosis of NIH/3T3 cells treated with nickel-smelting fumes.

    PubMed

    Jin, Yan-Tao; Wu, Yong-Hui; Hu, Fu-Lan; Hu, Xue-Ying

    2009-01-01

    The purpose of this study was to investigate the transformation and apoptosis of NIH/3T3 cells treated with nickel (Ni) smelting fumes. Cytotoxicity of NIH/3T3 cells was detected with a methyl thiazolyl tetrazolium (MTT) colorimetric assay. The cell translation model was established by cell focus translation using two types of Ni-smelting fumes from a Ni smelting plant in China. The transformed focus was determined by soft agar culture assay. The apoptotic characteristics of NIH/3T3 cells treated with Ni-smelting fumes were detected by flow cytometry using Annexin V-FITC and PI as markers. The DNA fragment of apoptosis in NIH/3T3 cells treated with nickel smelting fumes was detected by observing agarose electrophoresis and morphological characteristics of cells under electron microscopy. With increase in exposure time, growth of NIH/3T3 cells was inhibited. The NIH/3T3 cell transformation model was established successfully using two Ni-smelting fumes, and the transformed cells grow in soft agar. No apoptosis peak was detected by flow cytometry. Apoptotic cells characterized by necrosis were observed using electron microscopy. There was no apparent "ladder" observed by DNA fragment analysis. Data indicated that Ni-smelting fumes produced cytotoxicity by mechanisms associated with necrosis but not apoptosis. PMID:19492236

  17. Mitigative Effect of Erythromycin on PMMA Challenged Preosteoblastic MC3T3-E1 Cells

    PubMed Central

    Shen, Yi; Wang, Weili; Li, Xiaomiao; Markel, David C.; Ren, Weiping

    2014-01-01

    Background. Aseptic loosening (AL) is a major complication of total joint replacement. Recent approaches to limiting AL have focused on inhibiting periprosthetic inflammation and osteoclastogenesis. Questions/Purposes. The purpose of this study was to determine the effects of erythromycin (EM) on polymethylmethacrylate (PMMA) particle-challenged MC3T3 osteoblast precursor cells. Methods. MC3T3 cells were pretreated with EM (0–10 μg/mL) and then stimulated with PMMA (1 mg/mL). Cell viability was evaluated by both a lactate dehydrogenase (LDH) release assay and cell counts. Cell differentiation was determined by activity of alkaline phosphatase (ALP). Gene expression was measured via real-time quantitative RT-PCR. Results. We found that exposure to PMMA particles reduced cellular viability and osteogenetic potential in MC3T3 cell line. EM treatment mitigated the effects of PMMA particles on the proliferation, viability and differentiation of MC3T3 cells. PMMA decreased the gene expression of Runx2, osterix and osteocalcin, which can be partially restored by EM treatment. Furthermore, EM suppressed PMMA- induced increase of NF-κB gene expression. Conclusions. These data demonstrate that EM mitigates the effects of PMMA on MC3T3 cell viability and differentiation, in part through downregulation of NF-κB pathway. EM appeared to represent an anabolic agent on MC3T3 cells challenged with PMMA particles. PMID:25110723

  18. Transformation and apoptosis of NIH/3T3 cells treated with nickel-smelting fumes.

    PubMed

    Jin, Yan-Tao; Wu, Yong-Hui; Hu, Fu-Lan; Hu, Xue-Ying

    2009-01-01

    The purpose of this study was to investigate the transformation and apoptosis of NIH/3T3 cells treated with nickel (Ni) smelting fumes. Cytotoxicity of NIH/3T3 cells was detected with a methyl thiazolyl tetrazolium (MTT) colorimetric assay. The cell translation model was established by cell focus translation using two types of Ni-smelting fumes from a Ni smelting plant in China. The transformed focus was determined by soft agar culture assay. The apoptotic characteristics of NIH/3T3 cells treated with Ni-smelting fumes were detected by flow cytometry using Annexin V-FITC and PI as markers. The DNA fragment of apoptosis in NIH/3T3 cells treated with nickel smelting fumes was detected by observing agarose electrophoresis and morphological characteristics of cells under electron microscopy. With increase in exposure time, growth of NIH/3T3 cells was inhibited. The NIH/3T3 cell transformation model was established successfully using two Ni-smelting fumes, and the transformed cells grow in soft agar. No apoptosis peak was detected by flow cytometry. Apoptotic cells characterized by necrosis were observed using electron microscopy. There was no apparent "ladder" observed by DNA fragment analysis. Data indicated that Ni-smelting fumes produced cytotoxicity by mechanisms associated with necrosis but not apoptosis.

  19. [Envelope protein of Jaagsiekte sheep retrovious expressed in NIH3T3 cells promotes cell proliferation].

    PubMed

    DU, Fangyuan; Chen, Dayong; Zhang, Yufei; Sun, Xiaolin; Guo, Wenqing; Liu, Shuying

    2016-09-01

    Objective To explore the influence of the exogenous Jaagsiekte sheep retrovious (exJSRV) envelope protein (Env) on NIH3T3 cell proliferation. Methods A recombinant plasmid pcDNA4/myc-His/exJSRV- env carrying exJSRV- env gene was constructed, and then the correctness of the recombinant plasmid was identified by PCR, restriction enzyme digestion and sequencing. The recombinant plasmid pcDNA4/myc-His/exJSRV- env was transiently transfected into NIH3T3 cells by Lipofectamine(TM) LTX. After the transfection of the recombinant plasmid, the expression of exJSRV- env was detected by reverse transcription PCR and Western blotting. The effect of Env on cell proliferation was investigated by CCK-8 assay and plate colony formation assay. Results The recombinant eukaryotic expression plasmid containing exJSRV- env was successfully constructed as identified by PCR, restriction enzyme identification and sequencing. After the recombinant plasmid was transiently transfected into NIH3T3 cells, reverse transcription PCR and Western blotting showed the expression of exJSRV- env , and Env promoted NIH3T3 cell proliferation significantly. Conclusion JSRV Env was expressed successfully in the NIH3T3 cells and promoted the proliferation of NIH3T3 cells. PMID:27609573

  20. 12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes.

    PubMed

    Chakrabarti, Swarup K; Cole, Banumathi K; Wen, Yeshao; Keller, Susanna R; Nadler, Jerry L

    2009-09-01

    Inflammation and insulin resistance associated with visceral obesity are important risk factors for the development of type 2 diabetes, atherosclerosis, and the metabolic syndrome. The 12/15-lipoxygenase (12/15-LO) enzyme has been linked to inflammatory changes in blood vessels that precede the development of atherosclerosis. The expression and role of 12/15-LO in adipocytes have not been evaluated. We found that 12/15-LO mRNA was dramatically upregulated in white epididymal adipocytes of high-fat fed mice. 12/15-LO was poorly expressed in 3T3-L1 fibroblasts and was upregulated during differentiation into adipocytes. Interestingly, the saturated fatty acid palmitate, a major component of high fat diets, augmented expression of 12/15-LO in vitro. When 3T3-L1 adipocytes were treated with the 12/15-LO products, 12-hydroxyeicosatetranoic acid (12(S)-HETE) and 12-hydroperoxyeicosatetraenoic acid (12(S)-HPETE), expression of proinflammatory cytokine genes, including tumor necrosis factor-alpha (TNF-alpha), monocyte chemoattractant protein 1 (MCP-1), interleukin 6 (IL-6), and IL-12p40, was upregulated whereas anti-inflammatory adiponectin gene expression was downregulated. 12/15-LO products also augmented c-Jun N-terminal kinase 1 (JNK-1) phosphorylation, a known negative regulator of insulin signaling. Consistent with impaired insulin signaling, we found that insulin-stimulated 3T3-L1 adipocytes exhibited decreased IRS-1(Tyr) phosphorylation, increased IRS-1(Ser) phosphorylation, and impaired Akt phosphorylation when treated with 12/15-LO product. Taken together, our data suggest that 12/15-LO products create a proinflammatory state and impair insulin signaling in 3T3-L1 adipocytes. Because 12/15-LO expression is upregulated in visceral adipocytes by high-fat feeding in vivo and also by addition of palmitic acid in vitro, we propose that 12/15-LO plays a role in promoting inflammation and insulin resistance associated with obesity. PMID:19521344

  1. Neuronal and astrocyte dysfunction diverges from embryonic fibroblasts in the Ndufs4fky/fky mouse

    PubMed Central

    Bird, Matthew J.; Wijeyeratne, Xiaonan W.; Komen, Jasper C.; Laskowski, Adrienne; Ryan, Michael T.; Thorburn, David R.; Frazier, Ann E.

    2014-01-01

    Mitochondrial dysfunction causes a range of early-onset neurological diseases and contributes to neurodegenerative conditions. The mechanisms of neurological damage however are poorly understood, as accessing relevant tissue from patients is difficult, and appropriate models are limited. Hence, we assessed mitochondrial function in neurologically relevant primary cell lines from a CI (complex I) deficient Ndufs4 KO (knockout) mouse (Ndufs4fky/fky) modelling aspects of the mitochondrial disease LS (Leigh syndrome), as well as MEFs (mouse embryonic fibroblasts). Although CI structure and function were compromised in all Ndufs4fky/fky cell types, the mitochondrial membrane potential was selectively impaired in the MEFs, correlating with decreased CI-dependent ATP synthesis. In addition, increased ROS (reactive oxygen species) generation and altered sensitivity to cell death were only observed in Ndufs4fky/fky primary MEFs. In contrast, Ndufs4fky/fky primary isocortical neurons and primary isocortical astrocytes displayed only impaired ATP generation without mitochondrial membrane potential changes. Therefore the neurological dysfunction in the Ndufs4fky/fky mouse may partly originate from a more severe ATP depletion in neurons and astrocytes, even at the expense of maintaining the mitochondrial membrane potential. This may provide protection from cell death, but would ultimately compromise cell functionality in neurons and astrocytes. Furthermore, RET (reverse electron transfer) from complex II to CI appears more prominent in neurons than MEFs or astrocytes, and is attenuated in Ndufs4fky/fky cells. PMID:25312000

  2. ErbB2 and EGFR are downmodulated during the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Pagano, Eleonora; Calvo, Juan Carlos

    2003-10-15

    The expression of receptors belonging to the epidermal growth factor receptor subfamily has been largely studied these last years in epithelial cells mainly as involved in cell proliferation and malignant progression. Although much work has focused on the role of these growth factor receptors in the differentiation of a variety of tissues, there is little information in regards to normal stromal cells. We investigated erbB2 expression in the murine fibroblast cell line Swiss 3T3L1, which naturally or hormonally induced undergoes adipocyte differentiation. We found that the Swiss 3T3-L1 fibroblasts express erbB2, in addition to EGFR, and in a quantity comparable to or even greater than the breast cancer cell line T47D. Proliferating cells increased erbB2 and EGFR levels when reaching confluence up to 4- and 10-fold, respectively. This expression showed a significant decrease when growth-arrested cells were stimulated to differentiate with dexamethasone and isobutyl-methylxanthine. Differentiated cells presented a decreased expression of both erbB2 and EGFR regardless of whether the cells were hormonally or spontaneously differentiated. EGF stimulation of serum-starved cells increased erbB2 tyrosine phosphorylation and retarded erbB2 migration in SDS-PAGE, suggesting receptor association and activation. Heregulin-alpha1 and -beta1, two EGF related factors, had no effect on erbB2 or EGFR phosphorylation. Although 3T3-L1 cells expressed heregulin, its specific receptors, erbB3 and erbB4, were not found. This is the first time in which erbB2 is reported to be expressed in an adipocytic cell line which does not depend on non EGF family growth factors (thyroid hormone, growth hormone, etc.) to accomplish adipose differentiation. Since erbB2 and EGFR expression were downmodulated as differentiation progressed it is conceivable that a mechanism of switching from a mitogenic to a differentiating signaling pathway may be involved, through regulation of the expression of these

  3. Activated mutant of Galpha(12) enhances the hyperosmotic stress response of NIH3T3 cells.

    PubMed

    Dermott, J M; Wadsworth, S J; van Rossum, G D; Dhanasekaran, N

    2001-01-01

    Heterotrimeric G protein G12 stimulates diverse physiological responses including the activities of Na+/H+ exchangers and Jun kinases. We have observed that the expression of the constitutively activated, GTPase-deficient mutant of Galpha(12) (Galpha(12)QL) accelerates the hyperosmotic response of NIH3T3 cells as monitored by the hyperosmotic stress-stimulated activity of JNK1. The accelerated response appears to be partly due to the increased basal activity of JNK since cell lines-such as NIH3T3 cells expressing JNK1-in which JNK activity is elevated, show a similar response. NIH3T3 cells expressing Galpha(12)QL also display heightened sensitivity to hyperosmotic stress. This is in contrast to JNK1-NIH3T3 cells that failed to enhance sensitivity although they do exhibit an accelerated hyperosmotic response. Reasoning that the increased sensitivity seen in Galpha(12)QL cells is due to a signaling component other than JNK, the effect of dimethyamiloride, an inhibitor of Na+/H+ exchanger in this response, was assessed. Treatment of vector control NIH3T3 cells with 50 microM dimethylamiloride potently inhibited their hyperosmotic response whereas the response was only partially inhibited in Galpha(12)QL-NIH3T3 cells. These results, for the first time, identify that NHEs are upstream of the JNK module in the hyperosmotic stress-signaling pathway and that Galpha(12) can enhance this response by modulating either or both of these components namely, JNKs and NHEs in NIH3T3 cells. PMID:11180393

  4. Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors.

    PubMed

    Yang, Ruifeng; Zheng, Ying; Li, Ling; Liu, Shujing; Burrows, Michelle; Wei, Zhi; Nace, Arben; Herlyn, Meenhard; Cui, Rutao; Guo, Wei; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Direct reprogramming provides a fundamentally new approach for the generation of patient-specific cells. Here, by screening a pool of candidate transcription factors, we identify that a combination of the three factors, MITF, SOX10 and PAX3, directly converts mouse and human fibroblasts to functional melanocytes. Induced melanocytes (iMels) activate melanocyte-specific networks, express components of pigment production and delivery system and produce melanosomes. Human iMels properly integrate into the dermal-epidermal junction and produce and deliver melanin pigment to surrounding keratinocytes in a 3D organotypic skin reconstruct. Human iMels generate pigmented epidermis and hair follicles in skin reconstitution assays in vivo. The generation of iMels has important implications for studies of melanocyte lineage commitment, pigmentation disorders and cell replacement therapies. PMID:25510211

  5. Cytoskeletal architecture and cell motility remain unperturbed in mouse embryonic fibroblasts from Plk3 knockout mice

    PubMed Central

    Michel, Daniel R; Mun, Kyu-Shik; Ho, Chia-Chi

    2016-01-01

    Polo-like kinase 3 (Plk3) is best known for its involvement in cell cycle checkpoint regulation following exposure to cytotoxicants or induction of DNA damage. Yet, Plk3 has also been implicated in roles beyond those of cellular responses to DNA damage. Here, we have investigated the proposition, suggested by the Plk literature, that Plk3 regulates cytoskeletal architecture and cell functions mediated by the cytoskeleton. To this end, we have assayed mouse embryonic fibroblasts (MEFs) generated from both Plk3 knockout and wild-type mice. In particular, we asked whether Plk3 is involved in actin fiber and microtubule integrity, cell migration, cell attachment, and/or cell invasion. Our results demonstrate that functional Plk3 is not critical for the regulation of cytoskeletal integrity, cell morphology, cell adhesion, or motility in MEFs. PMID:26843517

  6. Induction of cell cycle progression by hepatitis B virus HBx gene expression in quiescent mouse fibroblasts.

    PubMed Central

    Koike, K; Moriya, K; Yotsuyanagi, H; Iino, S; Kurokawa, K

    1994-01-01

    The HBx gene of hepatitis B virus has been shown to induce hepatic tumors in transgenic mice and is implicated in hepatocarcinogenesis in human hepatitis B virus infection. To further characterize the role of HBx gene in carcinogenesis, we established mouse fibroblast cell lines in which the expression of HBx gene could be controlled by glucocorticoid hormone and examined the effect of HBx gene expression on cell growth in vitro. Along with the expression of HBx gene, most cells in the G0/G1 phase moved into the S phase in 24 h, and the cell cycle progressed further toward 48 h. Induction of DNA synthesis was also demonstrated by bromo-deoxyuridine labeling analysis. These results indicate that HBx gene has a function to trigger the synthesis of cellular DNA and suggest that HBx gene may play a role in hepatocarcinogenesis in human infection by driving deregulated cell cycle progression. Images PMID:8040286

  7. Direct Reprogramming of Mouse Fibroblasts to Neural Stem Cells by Small Molecules

    PubMed Central

    Han, Yan-Chuang; Lim, Yoon; Duffieldl, Michael D.; Li, Hua; Liu, Jia; Abdul Manaph, Nimshitha Pavathuparambil; Yang, Miao; Keating, Damien J.; Zhou, Xin-Fu

    2016-01-01

    Although it is possible to generate neural stem cells (NSC) from somatic cells by reprogramming technologies with transcription factors, clinical utilization of patient-specific NSC for the treatment of human diseases remains elusive. The risk hurdles are associated with viral transduction vectors induced mutagenesis, tumor formation from undifferentiated stem cells, and transcription factors-induced genomic instability. Here we describe a viral vector-free and more efficient method to induce mouse fibroblasts into NSC using small molecules. The small molecule-induced neural stem (SMINS) cells closely resemble NSC in morphology, gene expression patterns, self-renewal, excitability, and multipotency. Furthermore, the SMINS cells are able to differentiate into astrocytes, functional neurons, and oligodendrocytes in vitro and in vivo. Thus, we have established a novel way to efficiently induce neural stem cells (iNSC) from fibroblasts using only small molecules without altering the genome. Such chemical induction removes the risks associated with current techniques such as the use of viral vectors or the induction of oncogenic factors. This technique may, therefore, enable NSC to be utilized in various applications within clinical medicine. PMID:26788068

  8. DNA demethylation reactivates a subset of imprinted genes in uniparental mouse embryonic fibroblasts.

    PubMed

    El Kharroubi, A; Piras, G; Stewart, C L

    2001-03-23

    Although most imprinted genes show allelic differences in DNA methylation, it is not clear whether methylation regulates the expression of some or all imprinted genes in somatic cells. To examine the mechanisms of silencing of imprinted alleles, we generated novel uniparental mouse embryonic fibroblasts exclusively containing either the paternal or the maternal genome. These fibroblasts retain parent-of-origin allele-specific expression of 12 imprinted genes examined for more than 30 cell generations. We show that p57(Kip2) (cyclin-dependent kinase inhibitor protein 2) and Igf2 (insulin-like growth factor 2) are induced by inhibiting histone deacetylases; however, their activated state is reversed quickly by withdrawal of trichostatin A. In contrast, DNA demethylation results in the heritable expression of a subset of imprinted genes including H19 (H19 fetal liver mRNA), p57(Kip2), Peg3/Pw1 (paternally expressed gene 3), and Zac1 (zinc finger-binding protein regulating apoptosis and cell cycle arrest). Other imprinted genes such as Grb10 (growth factor receptor-bound protein 10), Peg1/Mest (paternally expressed gene 1/mesoderm-specific transcript), Sgce (epsilon-sarcoglycan), Snrpn (small nuclear ribonucleoprotein polypeptide N), and U2af1 (U2 small nuclear ribonucleoprotein auxiliary factor), remain inactive, despite their exposure to inhibitors of histone deacetylases and DNA methylation. These results demonstrate that changes in DNA methylation but not histone acetylation create a heritable epigenetic state at some imprinted loci in somatic cells. PMID:11124954

  9. The effect of myostatin on proliferation and lipid accumulation in 3T3-L1 preadipocytes.

    PubMed

    Zhu, Hui Juan; Pan, Hui; Zhang, Xu Zhe; Li, Nai Shi; Wang, Lin Jie; Yang, Hong Bo; Gong, Feng Ying

    2015-06-01

    Myostatin is a critical negative regulator of skeletal muscle development, and has been reported to be involved in the progression of obesity and diabetes. In the present study, we explored the effects of myostatin on the proliferation and differentiation of 3T3-L1 preadipocytes by using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide spectrophotometry, intracellular triglyceride (TG) assays, and real-time quantitative RT-PCR methods. The results indicated that recombinant myostatin significantly promoted the proliferation of 3T3-L1 preadipocytes and the expression of proliferation-related genes, including Cyclin B2, Cyclin D1, Cyclin E1, Pcna, and c-Myc, and IGF1 levels in the medium of 3T3-L1 were notably upregulated by 35.2, 30.5, 20.5, 33.4, 51.2, and 179% respectively (all P<0.01) in myostatin-treated 3T3-L1 cells. Meanwhile, the intracellular lipid content of myostatin-treated cells was notably reduced as compared with the non-treated cells. Additionally, the mRNA levels of Pparγ, Cebpα, Gpdh, Dgat, Acs1, Atgl, and Hsl were significantly downregulated by 22-76% in fully differentiated myostatin-treated adipocytes. Finally, myostatin regulated the mRNA levels and secretion of adipokines, including Adiponectin, Resistin, Visfatin, and plasminogen activator inhibitor-1 (PAI-1) in 3T3-L1 adipocytes (all P<0.001). Above all, myostatin promoted 3T3-L1 proliferation by increasing the expression of cell-proliferation-related genes and by stimulating IGF1 secretion. Myostatin inhibited 3T3-L1 adipocyte differentiation by suppressing Pparγ and Cebpα expression, which consequently deceased lipid accumulation in 3T3-L1 cells by inhibiting the expression of critical lipogenic enzymes and by promoting the expression of lipolytic enzymes. Finally, myostatin modulated the expression and secretion of adipokines in fully differentiated 3T3-L1 adipocytes. PMID:25878062

  10. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    SciTech Connect

    Papadopoulos, T.; Pfeifer, U. )

    1987-07-01

    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  11. Epac, not PKA catalytic subunit, is required for 3T3-L1 preadipocyte differentiation

    PubMed Central

    Ji, Zhenyu; Mei, Fang C.; Cheng, Xiaodong

    2009-01-01

    Cyclic AMP plays a critical role in adipocyte differentiation and maturation. However, it is not clear which of the two intracellular cAMP receptors, exchange protein directly activated by cAMP/cAMP-regulated guanine nucleotide exchange factor or protein kinase A/cAMP-dependent protein kinase, is essential for cAMP-mediated adipocyte differentiation. In this study, we utilized a well-defined adipose differentiation model system, the murine preadipocyte line 3T3-L1, to address this issue. We showed that knocking down Epac expression in 3T3-L1 cells using lentiviral based small hairpin RNAs down-regulated peroxisome proliferator-activated receptor gamma expression and dramatically inhibited adipogenic conversion of 3T3-L1 cells while inhibiting PKA catalytic subunit activity by two mechanistically distinct inhibitors, heat stable protein kinase inhibitor and H89, had no effect on 3T3-L1 adipocyte differentiation. Moreover, cAMP analog selectively activating Epac was not able to stimulate adipogenic conversion. Our study demonstrated that while PKA catalytic activity is dispensable, activation of Epac is necessary but not sufficient for adipogenic conversion of 3T3-L1 cells. PMID:20036887

  12. Microinjected pBR322 stimulates cellular DNA synthesis in Swiss 3T3 cells.

    PubMed Central

    Hyland, J K; Hirschhorn, R R; Avignolo, C; Mercer, W E; Ohta, M; Galanti, N; Jonak, G J; Baserga, R

    1984-01-01

    When pBR322 is manually microinjected into the nuclei of quiescent Swiss 3T3 cells it stimulates the incorporation of [3H]thymidine into DNA. The evidence clearly shows that this increased incorporation that is detected by in situ autoradiography in microinjected cells represents cellular DNA synthesis and not DNA repair or plasmid replication. The effect is due to pBR322 and not due to impurities, mechanical perturbances due to the microinjection technique, or aspecific effects. This stimulation is striking in Swiss 3T3 cells. Some NIH 3T3 cells show a slight stimulation, but hamster cells, derived from baby hamster kidney (BHK) cells, are not stimulated when microinjected with pBR322. The preliminary evidence seems to indicate that the integrity of the pBR322 genome is important for the stimulation of cellular DNA synthesis in quiescent Swiss 3T3 cells. These results, although of a preliminary nature, are of interest because they indicate that a prokaryotic genome may alter the cell cycle of mammalian cells. From a practical point of view the stimulatory effect of microinjected pBR322 on cellular DNA synthesis has a more immediate interest, because pBR322 is the vector most commonly used for molecular cloning and 3T3 cells are very frequently used for gene transfer experiments. Images PMID:6582497

  13. Cranberries (Oxycoccus quadripetalus) inhibit adipogenesis and lipogenesis in 3T3-L1 cells.

    PubMed

    Kowalska, Katarzyna; Olejnik, Anna; Rychlik, Joanna; Grajek, Włodzimierz

    2014-04-01

    Cranberries (Oxycoccus quadripetalus) are a valuable source of bioactive substances with high antioxidant potential and well documented beneficial health properties. In the present study, the activity of cranberries, in terms of the inhibiting effects of adipogenesis, was investigated using the 3T3-L1 cell line. The obtained results showed that cranberries reduced proliferation and viability of 3T3-L1 preadipocytes in a dose-dependent manner. Treatment with cranberries decreased the number of adipocytes and reduced lipid accumulation in maturing 3T3-L1 preadipocytes, demonstrating an inhibitory effect on lipogenesis. Moreover, it was found that cranberries directly induced lipolysis in adipocytes and down-regulated the expression of major transcription factors of the adipogenesis pathway, such as PPARγ, C/EBPα and SREBP1. These findings indicate that cranberries are capable of suppressing adipogenesis and therefore they seem to be natural bioactive factors effective in adipose tissue mass modulation.

  14. Effect of Biodegradable Shape-Memory Polymers on Proliferation of 3T3 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Shuo-Gui; Zhang, Peng; Zhu, Guang-Ming; Jiang, Ying-Ming

    2011-07-01

    This article evaluates the in vitro biocompatibility for biodegradable shape-memory polymers (BSMP) invented by the authors. 3T3 cells (3T3-Swiss albino GNM 9) of primary and passaged cultures were inoculated into two kinds of carriers: the BSMP carrier and the control group carrier. Viability, proliferation, and DNA synthesis (the major biocompatibility parameters), were measured and evaluated for both the BSMP and naked carrier via cell growth curve analysis, MTT colorimetry and addition of 3H-TdR to culture media. The results showed that there was no difference between the BSMP carrier and the control dish in terms of viability, proliferation, and metabolism of the 3T3 cells. Overall, the BSMP carrier provides good biocompatibility and low toxicity to cells in vitro, and could indicate future potential for this medium as a biological material for implants in vivo.

  15. Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts.

    PubMed

    Ocbina, Polloneal Jymmiel R; Anderson, Kathryn V

    2008-08-01

    Genetic studies in the mouse have shown that Intraflagellar Transport (IFT) is essential for mammalian Hedgehog (Hh) signal transduction. In this study, we take advantage of wild type and IFT mutant mouse embryonic fibroblasts (MEFs) to characterize additional aspects of the relationship between IFT and Hh signaling. Exposure to Sonic hedgehog (Shh) ligand or expression of an activated allele of Smo, SmoA1, activates an Hh reporter in wild-type MEFs, but not in MEFs derived from embryos that lack IFT172 or the Dync2h1 subunit of the retrograde IFT motor. Similarly, decreased activity of either Sufu or PKA, two negative regulators of Hh signal transduction, activates the pathway in wild-type, but not IFT mutant, MEFs. In contrast to wild-type MEFs, Smo is constitutively present in the cilia of Dync2h1 mutant MEFs. This finding suggests that IFT-dependent trafficking of Hh pathway components through the cilium is essential for their function.

  16. Adiponectin resides in mouse skin and upregulates hyaluronan synthesis in dermal fibroblasts.

    PubMed

    Akazawa, Yumiko; Sayo, Tetsuya; Sugiyama, Yoshinori; Sato, Takashi; Akimoto, Noriko; Ito, Akira; Inoue, Shintaro

    2011-01-01

    Adipose tissue is a hormonally active tissue that produces adipokines that influence the activity of other tissues. Adiponectin is an adipocyte-specific adipokine involved in systemic metabolism. We detected the expression of adiponectin receptors (AdipoR1 and AdipoR2) mRNA in cultured dermal fibroblasts. The full-length adiponectin (fAd), but not the globular adiponectin (gAd), increased hyaluronan (HA) production and upregulated HA synthase (HAS) 2 mRNA expression. AdipoR1 and AdipoR2 mRNAs were also expressed in keratinocytes, though neither fAd nor gAd had any effect on HA synthesis. In mouse skin, we found that adiponectin was present and decreased markedly with aging. The age-dependent pattern of adiponectin decrease in skin, correlated well with that of HA in skin. Our experiments were also the first to identify adiponectin production in cultured mouse sebocytes, a finding that suggests that skin adiponectin may derive not only from plasma and/or subcutaneous adipose tissue, but also from the sebaceous gland. These results indicated that adiponectin plays an important role in the HA metabolism of skin. PMID:21117904

  17. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski

    PubMed Central

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J

    2011-01-01

    Ski is a transcriptional regulator that has been considered an oncoprotein, given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski−/− mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chromatin/chromosome bridges as the major cause of micronuclei formation and the subsequent aneuploidy. Although these cells arrested in mitosis after treatment with spindle disrupting drugs and exhibited a delayed metaphase/anaphase transition, Spindle Assembly Checkpoint (SAC) was not sufficient to prevent chromosome missegregation, consistent with a weakened SAC. Our in vivo analysis also showed dynamic metaphase plate rearrangements with switches in polarity in cells arrested in metaphase. Importantly, after ectopic expression of Ski the cells that displayed this metaphase arrest died directly during metaphase or after aberrant cell division, relating SAC activation and mitotic cell death. This increased susceptibility to undergo mitosis-associated cell death reduced the number of micronuclei-containing cells. The presented data support a new role for Ski in the mitotic process and in maintenance of genetic stability, providing insights into the mechanism of tumor suppression mediated by this protein. PMID:21412778

  18. Osmotic shrinkage elicits FAK- and Src phosphorylation and Src-dependent NKCC1 activation in NIH3T3 cells.

    PubMed

    Rasmussen, Line Jee Hartmann; Müller, Helene Steenkær Holm; Jørgensen, Bente; Pedersen, Stine Falsig; Hoffmann, Else Kay

    2015-01-15

    The mechanisms linking cell volume sensing to volume regulation in mammalian cells remain incompletely understood. Here, we test the hypothesis that activation of nonreceptor tyrosine kinases Src, focal adhesion kinase (FAK), and Janus kinase-2 (Jak2) occurs after osmotic shrinkage of NIH3T3 fibroblasts and contributes to volume regulation by activation of NKCC1. FAK phosphorylation at Tyr397, Tyr576/577, and Tyr861 was increased rapidly after exposure to hypertonic (575 mOsm) saline, peaking after 10 (Tyr397, Tyr576/577) and 10-30 min (Tyr861). Shrinkage-induced Src family kinase autophosphorylation (pTyr416-Src) was induced after 2-10 min, and immunoprecipitation indicated that this reflected phosphorylation of Src itself, rather than Fyn and Yes. Phosphorylated Src and FAK partly colocalized with vinculin, a focal adhesion marker, after hypertonic shrinkage. The Src inhibitor pyrazolopyrimidine-2 (PP2, 10 μM) essentially abolished shrinkage-induced FAK phosphorylation at Tyr576/577 and Tyr861, yet not at Tyr397, and inhibited shrinkage-induced NKCC1 activity by ∼50%. The FAK inhibitor PF-573,228 augmented shrinkage-induced Src phosphorylation, and inhibited shrinkage-induced NKCC1 activity by ∼15%. The apparent role of Src in NKCC1 activation did not reflect phosphorylation of myosin light chain kinase (MLC), which was unaffected by shrinkage and by PP2, but may involve Jak2, a known target of Src, which was rapidly activated by osmotic shrinkage and inhibited by PP2. Collectively, our findings suggest a major role for Src and possibly the Jak2 axis in shrinkage-activation of NKCC1 in NIH3T3 cells, whereas no evidence was found for major roles for FAK and MLC in this process. PMID:25377086

  19. Procollagen mRNA metabolism during the fibroblast cell cycle and its synthesis in transformed cells.

    PubMed

    Parker, I; Fitschen, W

    1980-06-25

    Procollagen mRNA was isolated from mouse embryos and used for the synthesis of a highly labelled cDNA probe complementary to collagen mRNA. This probe was used for the investigation of procollagen mRNA metabolism during the cell cycle of 3T6 mouse embryo fibroblasts in culture. Titration hybridization experiments revealed that procollagen mRNA was present throughout the cell cycle following stumulation of confluent monolayers. Procollagen mRNA levels of sparse cultures appeared similar to those of unstimulated monolayers. The fluctuating levels of collagen synthesis during the cell cycle can be ascribed to changes in the amount of collagen mRNA present. In mouse sarcoma virus transformed 3T3 cells only 20--30% of the amount of procollagen mRNA in 3T3 cells is present indicating that the decline in collagen synthesis is due to mRNA availability.

  20. Resistin regulates the expression of plasminogen activator inhibitor-1 in 3T3-L1 adipocytes.

    PubMed

    Ikeda, Yoshito; Tsuchiya, Hiroyuki; Hama, Susumu; Kajimoto, Kazuaki; Kogure, Kentaro

    2014-05-30

    Resistin and plasminogen activator inhibitor-1 (PAI-1) are adipokines, which are secreted from adipocytes. Increased plasma resistin and PAI-1 levels aggravate metabolic syndrome through exacerbation of insulin resistance and induction of chronic inflammation. However, the relationship between resistin and PAI-1 gene expression remains unclear. Previously, we found that resistin regulates lipid metabolism via carbohydrate responsive element-binding protein (ChREBP) during adipocyte maturation (Ikeda et al., 2013) [6]. In this study, to clarify the relationship between expression of resistin and PAI-1, PAI-1 expression in differentiated 3T3-L1 adipocytes was measured after transfection with anti-resistin siRNA. We found that PAI-1 gene expression and secreted PAI-1 protein were significantly decreased by resistin knockdown. Furthermore, phosphorylation of Akt, which can inhibit PAI-1 expression, was accelerated and the activity of protein phosphatase 2A (PP2A) was suppressed in resistin knockdown 3T3-L1 adipocytes. In addition, the expression of glucose transporter type 4, a ChREBP target gene, was reduced and was associated with inhibition of PP2A. The addition of culture medium collected from COS7 cells transfected with a resistin expression plasmid rescued the suppression of PAI-1 expression in resistin knockdown 3T3-L1 adipocytes. Our findings suggest that resistin regulates PAI-1 expression in 3T3-L1 adipocytes via Akt phosphorylation.

  1. Antiadopogenic effects of rice hull smoke extract in 3T3-L1 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigates the inhibitory effects of a rice hull smoke extract (RHSE) against adipogenesis in 3T3-L1 pre-adipocyte cells. At concentrations of 0.1% and 0.5% RHSE, MDI-induced cells were shown to reduce their cellular lipid content by about 72% and 88%, respectively, compared to ...

  2. Effect of Gambisan on the Inhibition of Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Kang, Jung Won; Nam, Dongwoo; Kim, Kun Hyung; Huh, Jeong-Eun; Lee, Jae-Dong

    2013-01-01

    This study was conducted to explore the antiadipogenic effect and possible mechanism of Gambisan on 3T3-L1 cells. For quality control, Gambisan was standardized by HPLC and the standard compounds ephedrine, epigallocatechin-3-gallate, and caffeine were screened. Cultured 3T3-L1 cells that had been induced to differentiate were treated with various concentrations of Gambisan or its major component extracts (Ephedra intermedia Schrenk, Atractylodes lancea DC., and Thea sinensis L.) for 72 hours for MTT assay to determine cell viability or 10 days for LDH assay, triglyceride assay, DNA content measurement, Oil red O staining, RT-PCR, and western blot. Gambisan significantly inhibited adipogenesis in 3T3-L1 cells by reducing triglyceride contents and lipid accumulation in a dose-dependent manner without obvious cytotoxicity. Viability and DNA content in 3T3-L1 cells treated with Gambisan were significantly higher than cells treated with the major component extracts at every concentration. The anti-adipogenic effects of Gambisan appeared to be mediated by a significant downregulation of the expression of lipoprotein lipase mRNA and PPARγ, C/EBPα, and SREBP-1 protein apart from the expression of hormone-sensitive lipase. Gambisan could act as a possible therapeutic agent for obesity. However, further studies including in vivo assays and clinical trials are needed to confirm the efficacy, safety and mechanisms of the antiobesity effects of Gambisan. PMID:24069055

  3. Raspberry ketone increases both lipolysis and fatty acid oxidation in 3T3-L1 adipocytes.

    PubMed

    Park, Kyoung Sik

    2010-10-01

    Raspberry ketone (RK) is a natural phenolic compound of the red raspberry. The dietary administration of RK to male mice has been reported to prevent high-fat diet-induced elevation in body weight and to increase lipolysis in white adipocytes. To elucidate a possible mechanism for the antiobesity action of RK, its effects on the expression and the secretion of adiponectin, lipolysis, and fatty acid oxidation in 3T3-L1 were investigated. Treatment with 10 µM of RK increased lipolysis significantly in differentiated 3T3-L1 cells. An immunoassay showed that RK increased both the expression and the secretion of adiponectin, an adipocytokine mainly expressed and secreted by adipose tissue. In addition, treatment with 10 µM of RK increased the fatty acid oxidation and suppressed lipid accumulation in 3T3-L1 adipocytes. These findings suggest that RK holds great promise as an herbal medicine since its biological activities alter the lipid metabolism in 3T3-L1 adipocytes.

  4. Inhibitory effects of Fucoidan in 3T3-L1 adipocyte differentiation.

    PubMed

    Kim, Mi-Ja; Chang, Un-Jae; Lee, Jin-Sil

    2009-01-01

    Fucoidan is a group of sulfated fucose-containing polysaccharides that derived from non-mammalian origin such as marine brown algae, the jelly coat from sea urchin eggs, and the sea cucumber body wall. However, potential biological activities against obesity from fucoidan were not reported in the literature. The objective of this study was to evaluate protective effect of fucoidan in 3T3-L1 adipocyte differentiation. Preadipocyte 3T3-L1 was treated with 100 and 200 microg/ml fucoidan during adipogenesis. Adipogenesis was determined through Oil Red O staining method and the expression of adipogenic genes aP2, ACC, and PPARgamma. Adipogenesis of 3T3-L1 treated with 100 and 200 microg/ml fucoidan were significantly inhibited at 32.8% and 39.7% using Oil Red O staining method, respectively (P < 0.05). Treating the 3T3-L1 cells with 100 and 200 microg/ml fucoidan significantly decreased the expression of aP2 gene by 6.2% and 27.2%, respectively, of ACC gene by 22.2% and 38.2%, respectively, and of PPARgamma gene by 44.2% and 69.4%, respectively, compared to adipocyte controls (P < 0.05). The results suggest that fucoidan could be used for inhibiting fat accumulation, which is mediated by decreasing aP2, ACC, and PPARgamma gene expression.

  5. Anti-Obesity Effects of Starter Fermented Kimchi on 3T3-L1 Adipocytes

    PubMed Central

    Lee, Kyung-Hee; Song, Jia-Le; Park, Eui-Seong; Ju, Jaehyun; Kim, Hee-Young; Park, Kun-Young

    2015-01-01

    The anti-obesity effects of starter (Leuconostoc mesenteroides+Lactobacillus plantarum) fermented kimchi on 3T3-L1 adipocyte were studied using naturally fermented kimchi (NK), a functional kimchi (FK, NK supplemented with green tea), and FK supplemented with added starters (FKS). Oil red O staining and cellular levels of triglyceride (TG) and glycerol were used to evaluate the in vitro anti-obesity effects of these kimchis in 3T3-L1 cells. The expressions of adipogenesis/lipogenesis-related genes of peroxisome proliferator-active receptor (PPAR)-γ, CCAAT/enhance-binding protein (C/EBP)-α, and fatty acid synthase (FAS) were determined by RT-PCR. Kimchis, especially FKS, markedly decreased TG levels and increased levels of intracellular glycerol and lipid lipolysis. In addition, FKS also reduced the mRNA levels of PPAR-γ, C/EBP-α, and FAS, which are related to adipogenesis/lipogenesis in 3T3-L1 cells. These results suggest the anti-obesity effects of FKS were to due to enhanced lipolysis and reduced adipogenesis/lipogenesis in 3T3-L1 adipocytes. PMID:26770918

  6. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    NASA Astrophysics Data System (ADS)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  7. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  8. Effects of leukemia inhibitory factor on 3T3-L1 adipocytes.

    PubMed

    Hogan, Jessica C; Stephens, Jacqueline M

    2005-06-01

    Leukemia inhibitory factor (LIF) is a member of the gp130 cytokine family and signals through the receptor complex of gp130 and the LIF receptor (LIFR) to activate the JAK/STAT signaling cascade. Since LIF activates STATs 1 and 3 in adipocytes, we examined the effects of LIF on 3T3-L1 adipocytes. Our studies clearly demonstrate that LIF treatment had minimal effects on adipocyte differentiation as judged by marker gene expression, but did inhibit triacylglyceride (TAG) accumulation during adipogenesis. Acute treatment with LIF resulted in increased expression of suppressors of cytokine signaling-3 (SOCS3) and CCAAT/enhancer-binding protein-delta (C/EBPdelta) mRNA in 3T3-L1 adipocytes. Moreover, the upregulation of C/EBPdelta correlated with binding to three sites in the C/EBPdelta promoter by LIF-activated protein complexes that contained STAT1 and not STAT3. Chronic treatment with LIF resulted in decreased protein levels of sterol regulatory element binding protein-1 (SREBP1) and fatty acid synthase (FAS), but had no effect on the expression of other adipocyte marker proteins or on TAG levels in mature 3T3-L1 adipocytes. LIF had a small effect on insulin-stimulated glucose uptake in 3T3-L1 adipocytes, but did not cause insulin resistance following chronic treatment. These findings indicate that LIF has similar and distinct effects in comparison with the effects of other gp130 cytokines on cultured fat cells. In summary, our results support a role for LIF in the regulation of proteins involved in lipid synthesis and in the modulation of signal transduction pathways in 3T3-L1 adipocytes.

  9. Human c-fgr induces a monocyte-specific enzyme in NIH 3T3 cells

    SciTech Connect

    Inoue, Kazushi; Akiyama, Tetsu; Toyoshima, Kumao ); Wongsasant, Budsaba )

    1991-12-01

    The mutant c-fgr protein (p58{sup c-fgr/F523}) containing Phe-523 instead of Tyr-523 exhibited transforming activity in NIH 3T3 cells like other protein-tyrosine kinases of the src family, but normal p58{sup c-fgr} (p58{sup c-fgr/wt}) did not. The mutant protein showed tyrosine kinase activity threefold higher than that of the normal protein in vitro. Surprisingly, transfection of the normal c-fgr gene into NIH 3T3 cells resulted in induction of sodium fluoride (NaF)-sensitive {alpha}-naphthyl butyrate esterase ({alpha}-NBE), marker enzyme of cells of monocytic origin, which was not induced in v-src-, v-fgr-, or lyn-transfected NIH 3T3 cells. The NaF-sensitive {alpha}-NBE induced in c-fgr transfectants was shown by isoelectric focusing to have a pI of 5.2 to 5.4, a range which was the same as those for thioglycolate-induced murine peritoneal macrophages and 1{alpha}, 25-dihydroxyvitamin D{sub 3}-treated WEHI-3B cells. Immunoblotting studies with antophosphotyrosine antibodies revealed that 58-, 62-, 75-, 120-, 200-, and 230-kDa proteins were commonly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in cells transfected with the mutated c-fgr. These findings suggest that tyrosine phosphorylation of specific cellular substrate proteins is important in induction of NaF-sensitive {alpha}-NBE and cell transformation by p58{sup c-fgr}.

  10. CLOCK promotes 3T3-L1 cell proliferation via Wnt signaling.

    PubMed

    Zhu, Zhu; Hua, Bingxuan; Xu, Lirong; Yuan, Gongsheng; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Lu, Chao; Qian, Ruizhe

    2016-07-01

    Circadian genes control most of the physiological functions including cell cycle. Cell proliferation is a critical factor in the differentiation of progenitor cells. However, the role of Clock gene in the regulation of cell cycle via wingless-type (Wnt) pathway and the relationship between Clock and adipogenesis are unclear. We found that the circadian locomotor output cycles kaput (Clock) regulated the proliferation and the adipogenesis of 3T3-L1 preadipocytes. We found that Clock attenuation inhibited the viability of 3T3-L1 preadipocytes in the cell counting kit 8. The expression of c-Myc and Cyclin D1 decreased dramatically in 3T3-L1 when Clock was silenced with short interfering RNA and was also decreased in fat tissue and adipose tissue-derived stem cells of Clock(Δ19) mice. Clock directly controls the expression of the components of Wnt signal transduction pathway, which was verified by serum shock, chromatin immunoprecipitation, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, IWR-1, a Wnt signal pathway inhibitor, inhibited the cell cycle promotion by CLOCK, which was detected by cell viability assay, flow cytometry, and qRT-PCR. Therefore, CLOCK transcription control of Wnt signaling promotes cell cycle progression in 3T3-L1 preadipocytes. Clock inhibited the adipogenesis on day 2 in 3T3-L1 cells via Oil Red O staining and qRT-PCR detection and probably related to cellular differentiation. These data provide evidence that the circadian gene Clock regulates the proliferation of preadipocytes and affects adipogenesis. © 2016 IUBMB Life, 68(7):557-568, 2016. PMID:27194636

  11. Metallomics approach to changes in element concentration during differentiation from fibroblasts into adipocytes by element array analysis.

    PubMed

    Ogra, Yasumitsu; Nagasaki, Shu; Yawata, Ayako; Anan, Yasumi; Hamada, Koichi; Mizutani, Akihiro

    2016-04-01

    We aimed to establish an element array analysis that involves the simultaneous detection of all elements in cells and the display of changes in element concentration before and after a cellular event. In this study, we demonstrated changes in element concentration during the differentiation of 3T3-L1 mouse fibroblasts into adipocytes. This metallomics approach yielded unique information of cellular response to physiological and toxicological events.

  12. Microarray data on altered transcriptional program of Phgdh-deficient mouse embryonic fibroblasts caused by ʟ-serine depletion

    PubMed Central

    Hamano, Momoko; Sayano, Tomoko; Kusada, Wataru; Kato, Hisanori; Furuya, Shigeki

    2016-01-01

    Inherent ʟ-Ser deficiency culminates in intrauterine growth retardation, severe malformation of multiple organs particularly the central nervous system, and perinatal or early postnatal death in human and mouse. To uncover the molecular mechanisms underlying the growth-arrested phenotypes of l-Ser deficiency, we compared gene expression profiles of mouse embryonic fibroblasts deficient in 3-phosphoglycerate dehydrogenase (Phgdh), the first enzyme of de novo ʟ-Ser synthetic pathway, between ʟ-Ser-depleted and -supplemented conditions. The datasets (CEL and CHP files) from this study are publicly available on the Gene Expression Omnibus repository (accession number GEO: GSE55687). PMID:27222860

  13. Microarray data on altered transcriptional program of Phgdh-deficient mouse embryonic fibroblasts caused by ʟ-serine depletion.

    PubMed

    Hamano, Momoko; Sayano, Tomoko; Kusada, Wataru; Kato, Hisanori; Furuya, Shigeki

    2016-06-01

    Inherent ʟ-Ser deficiency culminates in intrauterine growth retardation, severe malformation of multiple organs particularly the central nervous system, and perinatal or early postnatal death in human and mouse. To uncover the molecular mechanisms underlying the growth-arrested phenotypes of l-Ser deficiency, we compared gene expression profiles of mouse embryonic fibroblasts deficient in 3-phosphoglycerate dehydrogenase (Phgdh), the first enzyme of de novo ʟ-Ser synthetic pathway, between ʟ-Ser-depleted and -supplemented conditions. The datasets (CEL and CHP files) from this study are publicly available on the Gene Expression Omnibus repository (accession number GEO: GSE55687). PMID:27222860

  14. Conditionally Immortalized Mouse Embryonic Fibroblasts Retain Proliferative Activity without Compromising Multipotent Differentiation Potential

    PubMed Central

    Huang, Enyi; Bi, Yang; Jiang, Wei; Luo, Xiaoji; Yang, Ke; Gao, Jian-Li; Gao, Yanhong; Luo, Qing; Shi, Qiong; Kim, Stephanie H.; Liu, Xing; Li, Mi; Hu, Ning; Liu, Hong; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Shen, Jikun; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Luo, Jinyong; He, Bai-Cheng; Wang, Huicong; Reid, Russell R.; Luu, Hue H.; Haydon, Rex C.; Yang, Li; He, Tong-Chuan

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells which reside in many tissues and can give rise to multiple lineages including bone, cartilage and adipose. Although MSCs have attracted significant attention for basic and translational research, primary MSCs have limited life span in culture which hampers MSCs' broader applications. Here, we investigate if mouse mesenchymal progenitors can be conditionally immortalized with SV40 large T antigen and maintain long-term cell proliferation without compromising their multipotency. Using the system which expresses SV40 large T antigen flanked with Cre/loxP sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized by SV40 large T antigen. The conditionally immortalized MEFs (iMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by Cre recombinase. The iMEFs express most MSC markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages under appropriate differentiation conditions in vitro and in vivo. The removal of SV40 large T reduces the differentiation potential of iMEFs possibly due to the decreased progenitor expansion. Furthermore, the iMEFs are apparently not tumorigenic when they are subcutaneously injected into athymic nude mice. Thus, the conditionally immortalized iMEFs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages. Our results suggest that the reversible immortalization strategy using SV40 large T antigen may be an efficient and safe approach to establishing long-term cell culture of primary mesenchymal progenitors for basic and translational research, as well as for potential clinical applications. PMID:22384246

  15. Effect of basic fibroblast growth factor in mouse embryonic stem cell culture and osteogenic differentiation.

    PubMed

    Rose, Laura C; Fitzsimmons, Ross; Lee, Poh; Krawetz, Roman; Rancourt, Derrick E; Uludağ, Hasan

    2013-05-01

    Embryonic stem cells are actively explored as a cell source in tissue engineering and regenerative medicine involving bone repair. Basic fibroblast growth factor (bFGF) has been a valuable growth factor to support the culture of human stem cells as well as their osteogenic differentiation, but the influence of bFGF on mouse embryonic stem (mES) cells is not known. Towards this goal, D3 cells were treated with bFGF during maintenance conditions and during spontaneous and osteogenic differentiation. In feeder-free monolayers, up to 40 ng/ml of exogenous bFGF did not support self-renewal of mES without LIF during cell expansion. During spontaneous differentiation in high-density cultures, bFGF stimulated cell proliferation under certain conditions but did not influence differentiation, as judged by stage-specific embryonic antigen-1 expression. The addition of bFGF reduced the alkaline phosphatase (ALP) activity associated with osteoblast activity during differentiation induced by osteogenic supplements, although the extent of mineralization was unaffected by bFGF. The bFGF increased the mesenchymal stem cell marker Sca-1 in an mES cell population and led to an enhanced increase in osteocalcin and runx2 expression in combination with BMP-2. These results suggest that bFGF could be utilized to expand the cell population in high-density cultures in addition to enriching the BMP-2 responsiveness of mES cells. PMID:22674886

  16. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. PMID:25953566

  17. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Dayem, Ahmed Abdal; Kwon, Deug-Nam; Kim, Jin-Hoi

    2013-09-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a `green', natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.

  18. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    SciTech Connect

    Kukat, Alexandra; Edgar, Daniel; Bratic, Ivana; Maiti, Priyanka; Trifunovic, Aleksandra

    2011-06-10

    Highlights: {yields} Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. {yields} This process is independent of endogenous ROS production. {yields} Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of the molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O{sub 2}) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.

  19. Matrix dimensions, stiffness, and structural properties modulate spontaneous chondrogenic commitment of mouse embryonic fibroblasts.

    PubMed

    Fernández-Muiños, Teresa; Suárez-Muñoz, Melva; Sanmartí-Espinal, Marta; Semino, Carlos E

    2014-04-01

    Experimental models for cartilage and bone development have been studied in order to understand the biomechanical and biological parameters that regulate skeletal tissue formation. We have previously described that when mouse embryonic fibroblasts (MEFs) were cultured in a three-dimensional (3D)-soft self-assembling peptide nanofiber, the system engaged in a spontaneous process of cartilage-like formation evidenced by the expression of Sox9, Collagen type II, and proteoglycans. In the present work, we studied the influence that matrix mechanical properties have in modulating lineage commitment in an in vitro model of chondrogenesis. This effect was observed only when MEFs were cultured at low elastic modulus values (∼ 0.1 kPa). Interestingly, under these conditions, the system expressed the chondrogenic inductor BMP4 and its antagonist Noggin. On the other hand, at higher elastic modulus values (∼ 5 kPa), the system expressed Noggin but not BMP4, and did not engage in chondrogenesis, which suggest that the balance between bone morphogenetic protein/Noggin could be implicated in the chondrogenic process. Finally, no evidence of hypertrophy was detected under the conditions tested (by assessing expression of Collagen type X and Runx2) unless we challenged the system by co-culturing it with endothelial cells. Importantly, under these new conditions, the system underwent spontaneous matrix calcium mineralization. These results suggest that the 3D-system described here is sensitive to respond to environmental changes such as biomechanical and biological cues.

  20. Requirements for ingestion of Chlamydia psittaci by mouse fibroblasts (L cells).

    PubMed

    Byrne, G I

    1976-09-01

    Ingestion of 14C-amino acid-labeled Chlamydia psittaci (6BC) by mouse fibroblasts (L cells) was inhibited when the host cells were incubated for 30 min at 37 degrees C in Earle salts containing 10 mug of crystalline trypsin per ml. Tryptic digestion also inhibited the ingestion of 1-mum polystrene latex beads. Trypsin-treated L cells almost completely recovered their ability to ingest chlamydiae after 4 h at 37 degrees C in medium 199 with 5% fetal calf serum. Cycloheximide (10 mug/ml) blocked this recovery. Heating 14C-amino acid-labeled C. psittaci for 3 min at 60 degrees C inhibited its ingestion by L cells, whereas inactivating it with ultraviolet light was without effect on the ingestion rate. These results show that efficient ingestion of C. psittaci by L cells involves trypsin-labile sites on the host and heat-sensitive sites on the parasite. The failure of excess unlabeled infectious C. psittaci to promote the ingestion of 14C-labeled heat-inactivated chlamydiae suggests that direct interaction between these two sites must occur for uptake to proceed normally. PMID:965090

  1. Requirements for ingestion of Chlamydia psittaci by mouse fibroblasts (L cells).

    PubMed Central

    Byrne, G I

    1976-01-01

    Ingestion of 14C-amino acid-labeled Chlamydia psittaci (6BC) by mouse fibroblasts (L cells) was inhibited when the host cells were incubated for 30 min at 37 degrees C in Earle salts containing 10 mug of crystalline trypsin per ml. Tryptic digestion also inhibited the ingestion of 1-mum polystrene latex beads. Trypsin-treated L cells almost completely recovered their ability to ingest chlamydiae after 4 h at 37 degrees C in medium 199 with 5% fetal calf serum. Cycloheximide (10 mug/ml) blocked this recovery. Heating 14C-amino acid-labeled C. psittaci for 3 min at 60 degrees C inhibited its ingestion by L cells, whereas inactivating it with ultraviolet light was without effect on the ingestion rate. These results show that efficient ingestion of C. psittaci by L cells involves trypsin-labile sites on the host and heat-sensitive sites on the parasite. The failure of excess unlabeled infectious C. psittaci to promote the ingestion of 14C-labeled heat-inactivated chlamydiae suggests that direct interaction between these two sites must occur for uptake to proceed normally. PMID:965090

  2. Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment.

    PubMed

    Quintana, Lluís; Muiños, Teresa Fernández; Genove, Elsa; Del Mar Olmos, María; Borrós, Salvador; Semino, Carlos E

    2009-01-01

    Cellular self-organization studies have been mainly focused on models such as Volvox, the slime mold Dictyostelium discoideum, and animal (metazoan) embryos. Moreover, animal tissues undergoing regeneration also exhibit properties of embryonic systems such as the self-organization process that rebuilds tissue complexity and function. We speculated that the recreation in vitro of the biological, biophysical, and biomechanical conditions similar to those of a regenerative milieu could elicit the intrinsic capacity of differentiated cells to proceed to the development of a tissue-like structure. Here we show that, when primary mouse embryonic fibroblasts are cultured in a soft nanofiber scaffold, they establish a cellular network that causes an organized cell contraction,proliferation, and migration that ends in the formation of a symmetrically bilateral structure with a distinct central axis. A subset of mesodermal genes (brachyury, Sox9, Runx2) is upregulated during this morphogenetic process. The expression of brachyury was localized first at the central axis, extending then to both sides of the structure. The spontaneous formation of cartilage-like tissue mainly at the paraxial zone followed expression ofSox9 and Runx2. Because cellular self-organization is an intrinsic property of the tissues undergoing development,this model could lead to new ways to consider tissue engineering and regenerative medicine. PMID:19025338

  3. Reprogramming of Mouse, Rat, Pig, and Human Fibroblasts into iPS Cells

    PubMed Central

    Wu, Sean M.

    2012-01-01

    The induction of pluripotency in somatic cells by transcription factor overexpression has been widely regarded as one of the major breakthroughs in stem cell biology within this decade. The generation of these induced pluripotent stem cells (iPSCs) has enabled investigators to develop in vitro disease models for biological discovery and drug screening, and in the future, patient-specific therapy for tissue or organ regeneration. While new technologies for reprogramming are continually being discovered, the availability of iPSCs from different species is also increasing rapidly. Comparison of iPSCs across species may provide new insights into key aspects of pluripotency and early embryonic development. iPSCs from large animals may enable the generation of genetically-modified large animal models or potentially transplantable donor tissues or organs. In this unit, we describe the procedure for the generation of iPSCs from mouse, rat, pig and human fibroblasts. We focus on lenti- and retroviral infection as the main platform for pluripotent transcription factor overexpression since these reagents are widely-available and remain the most efficient way to generate iPSC colonies. We hope to illustrate the basic process for iPSC generation in these four species in such a way that would enable the lowering of the entry barrier into iPSC biology by new investigators. PMID:22237859

  4. Metabolomic Analysis of Mouse Embryonic Fibroblast Cells in Response to Autophagy Induced by Acute Starvation

    PubMed Central

    Shen, Sensen; Weng, Rui; Li, Linnan; Xu, Xinyuan; Bai, Yu; Liu, Huwei

    2016-01-01

    Autophagy-related protein 7 (Atg7) is essential in the formation of the autophagophore and is indispensable for autophagy induction. Autophagy will exist in lower level or even be blocked in cells without Atg7. Even though the possible signaling pathways of Atg7 have been proposed, the metabolomic responses under acute starvation in cells with and without Atg7 have not been elucidated. This study therefore was designed and aimed to reveal the metabolomics of Atg7-dependent autophagy through metabolomic analysis of Atg7−/− mouse embryonic fibroblast cells (MEFs) and wild-type MEFs along with the starvation time. 30 significantly altered metabolites were identified in response to nutrient stress, which were mainly associated with amino acid, energy, carbohydrate, and lipid metabolism. For the wild-type MEFs, the induction of autophagy protected cell survival with some up-regulated lipids during the first two hours’ starvation, while the subsequent apoptosis resulted in the decrease of cell viability after four hours’ starvation. For the Atg7−/− MEFs, apoptosis perhaps led to the deactivation of tricarboxylic acid (TCA) cycle due to the lack of autophagy, which resulted in the immediate drop of cellular viability under starvation. These results contributed to the metabolomic study and provided new insights into the mechanism associated with Atg7-dependent autophagy. PMID:27703171

  5. Suppression of oxidative phosphorylation in mouse embryonic fibroblast cells deficient in apurinic/apyrimidinic endonuclease

    PubMed Central

    Suganya, Rangaswamy; Chakraborty, Anirban; Miriyala, Sumitra; Hazra, Tapas K.; Izumi, Tadahide

    2015-01-01

    The mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair/gene regulatory protein. Decrease of APE1 in cells by inducible shRNA knockdown or by conditional gene knockout caused apoptosis. Here we succeeded in establishing a unique mouse embryonic fibroblast (MEF) line expressing APE1 at a level far lower than those achieved with shRNA knockdown. The cells, named MEFla (MEFlowAPE1), were hypersensitive to methyl methanesulfonate (MMS), and showed little activity for repairing AP-sites and MMS induced DNA damage. While these results were consistent with the essential role of APE1 in repair of AP sites, the MEFla cells grew normally and the basal activation of poly(ADP-ribose) polymerases in MEFla was lower than that in the wild-type MEF (MEFwt), indicating the low DNA damage stress in MEFla under the normal growth condition. Oxidative phosphorylation activity in MEFla was lower than in MEFwt, while the glycolysis rates in MEFla were higher than in MEFwt. In addition, we observed decreased intracellular oxidative stress in MEFla. These results suggest that cells with low APE1 reversibly suppress mitochondrial respiration and thereby reduce DNA damage stress and increases the cell viability. PMID:25645679

  6. SILAC based protein profiling data of MKK3 knockout mouse embryonic fibroblasts.

    PubMed

    Srivastava, Anup; Shinn, Amanda S; Lam, TuKiet T; Lee, Patty J; Mannam, Praveen

    2016-06-01

    This data article reports changes in the phospho and total proteome of MKK3 knock out (MKK3(-) (/) (-)) mouse embryonic fibroblasts (MEFs). The dataset generated highlights the changes at protein level which can be helpful for understanding targets of the MAP kinase signaling pathway. Data was collected after TiO2-based phosphopeptide enrichment of whole cell lysate at baseline condition with bottom-up SILAC-based LC MS/MS quantitative mass spectrometry. We report all the proteins and peptides identified and quantified in MKK3(-/-) and WT MEFs. The altered pathways in MKK3(-/-) MEFs were analyzed by Database for Annotation, Visualization and Integrated Discovery (DAVID, v6.7) and Ingenuity Pathway Analysis (IPA) and are presented as a table and graph, respectively. The data reported here is related to the published work [1]. All the associated mass spectrometry data has been deposited in the Yale Protein Expression Database (YPED) with the web-link to the data: http://yped.med.yale.edu/repository/ViewSeriesMenu.do;jsessionid=6A5CB07543D8B529FAE8C3FCFE29471D?series_id=5044&series_name=MMK3+Deletion+in+MEFs. PMID:26977448

  7. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells.

  8. Suppression of oxidative phosphorylation in mouse embryonic fibroblast cells deficient in apurinic/apyrimidinic endonuclease.

    PubMed

    Suganya, Rangaswamy; Chakraborty, Anirban; Miriyala, Sumitra; Hazra, Tapas K; Izumi, Tadahide

    2015-03-01

    The mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair/gene regulatory protein. Decrease of APE1 in cells by inducible shRNA knockdown or by conditional gene knockout caused apoptosis. Here we succeeded in establishing a unique mouse embryonic fibroblast (MEF) line expressing APE1 at a level far lower than those achieved with shRNA knockdown. The cells, named MEF(la) (MEF(lowAPE1)), were hypersensitive to methyl methanesulfonate (MMS), and showed little activity for repairing AP-sites and MMS induced DNA damage. While these results were consistent with the essential role of APE1 in repair of AP sites, the MEF(la) cells grew normally and the basal activation of poly(ADP-ribose) polymerases in MEF(la) was lower than that in the wild-type MEF (MEF(wt)), indicating the low DNA damage stress in MEF(la) under the normal growth condition. Oxidative phosphorylation activity in MEF(la) was lower than in MEF(wt), while the glycolysis rates in MEF(la) were higher than in MEF(wt). In addition, we observed decreased intracellular oxidative stress in MEF(la). These results suggest that cells with low APE1 reversibly suppress mitochondrial respiration and thereby reduce DNA damage stress and increases the cell viability.

  9. Morphology, cytoskeletal organization, and myosin dynamics of mouse embryonic fibroblasts cultured on nanofibrillar surfaces.

    PubMed

    Ahmed, Ijaz; Ponery, Abdul S; Nur-E-Kamal, Alam; Kamal, Jabeen; Meshel, Adam S; Sheetz, Michael P; Schindler, Melvin; Meiners, Sally

    2007-07-01

    Growth of cells in tissue culture is generally performed on two-dimensional (2D) surfaces composed of polystyrene or glass. Recent work, however, has shown that such 2D cultures are incomplete and do not adequately represent the physical characteristics of native extracellular matrix (ECM)/basement membrane (BM), namely dimensionality, compliance, fibrillarity, and porosity. In the current study, a three-dimensional (3D) nanofibrillar surface composed of electrospun polyamide nanofibers was utilized to mimic the topology and physical structure of ECM/BM. Additional chemical cues were incorporated into the nanofibrillar matrix by coating the surfaces with fibronectin, collagen I, or laminin-1. Results from the current study show an enhanced response of primary mouse embryonic fibroblasts (MEFs) to culture on nanofibrillar surfaces with more dramatic changes in cell spreading and reorganization of the cytoskeleton than previously observed for established cell lines. In addition, the cells cultured on nanofibrillar and 2D surfaces exhibited differential responses to the specific ECM/BM coatings. The localization and activity of myosin II-B for MEFs cultured on nanofibers was also compared. A dynamic redistribution of myosin II-B was observed within membrane protrusions. This was previously described for cells associated with nanofibers composed of collagen I but not for cells attached to 2D surfaces coated with monomeric collagen. These results provide further evidence that nanofibrillar surfaces offer a significantly different environment for cells than 2D substrates. PMID:17294137

  10. Comparing the mechanical influence of vinculin, focal adhesion kinase and p53 in mouse embryonic fibroblasts

    SciTech Connect

    Klemm, Anna H.; Diez, Gerold; Alonso, Jose-Luis

    2009-02-13

    Cytoskeletal reorganization is an ongoing process when cells adhere, move or invade extracellular substrates. The cellular force generation and transmission are determined by the intactness of the actomyosin-(focal adhesion complex)-integrin connection. We investigated the intracellular course of action in mouse embryonic fibroblasts deficient in the focal adhesion proteins vinculin and focal adhesion kinase (FAK) and the nuclear matrix protein p53 using magnetic tweezer and nanoparticle tracking techniques. Results show that the lack of these proteins decrease cellular stiffness and affect cell rheological behavior. The decrease in cellular binding strength was higher in FAK- to vinculin-deficient cells, whilst p53-deficient cells showed no effect compared to wildtype cells. The intracellular cytoskeletal activity was lowest in wildtype cells, but increased in the following order when cells lacked FAK+p53 > p53 > vinculin. In summary, cell mechanical processes are differently affected by the focal adhesion proteins vinculin and FAK than by the nuclear matrix protein, p53.

  11. A new lectin in red kidney beans called PvFRIL stimulates proliferation of NIH 3T3 cells expressing the Flt3 receptor.

    PubMed

    Moore, J G; Fuchs, C A; Hata, Y S; Hicklin, D J; Colucci, G; Chrispeels, M J; Feldman, M

    2000-07-26

    A new legume lectin has been identified by its ability to specifically stimulate proliferation of NIH 3T3 fibroblasts expressing the Flt3 tyrosine kinase receptor. The lectin was isolated from conditioned medium harvested from human peripheral blood mononuclear cells activated to secrete cytokines by a crude red kidney bean extract containing phytohemagglutinin (PHA). Untransfected 3T3 cells and 3T3 cells transfected with the related Fms tyrosine kinase receptor do not respond to this lectin, which we called PvFRIL (Phaseolus vulgaris Flt3 receptor-interacting lectin). When tested on cord blood mononuclear cells enriched for Flt3-expressing progenitors, purified PvFRIL fractions maintained a small population of cells that continued to express CD34 after 2 weeks in suspension cultures containing IL3. These cultures did not show the effects of IL3's strong induction of proliferation and differentiation (high cell number and exhausted medium); instead, low cell number at the end of the culture period resulted in persistence of cells in the context of cell death. These observations led to the hypothesis that PvFRIL acts in a dominant manner to preserve progenitor viability and prevent proliferation and differentiation.

  12. A new lectin in red kidney beans called PvFRIL stimulates proliferation of NIH 3T3 cells expressing the Flt3 receptor.

    PubMed

    Moore, J G; Fuchs, C A; Hata, Y S; Hicklin, D J; Colucci, G; Chrispeels, M J; Feldman, M

    2000-07-26

    A new legume lectin has been identified by its ability to specifically stimulate proliferation of NIH 3T3 fibroblasts expressing the Flt3 tyrosine kinase receptor. The lectin was isolated from conditioned medium harvested from human peripheral blood mononuclear cells activated to secrete cytokines by a crude red kidney bean extract containing phytohemagglutinin (PHA). Untransfected 3T3 cells and 3T3 cells transfected with the related Fms tyrosine kinase receptor do not respond to this lectin, which we called PvFRIL (Phaseolus vulgaris Flt3 receptor-interacting lectin). When tested on cord blood mononuclear cells enriched for Flt3-expressing progenitors, purified PvFRIL fractions maintained a small population of cells that continued to express CD34 after 2 weeks in suspension cultures containing IL3. These cultures did not show the effects of IL3's strong induction of proliferation and differentiation (high cell number and exhausted medium); instead, low cell number at the end of the culture period resulted in persistence of cells in the context of cell death. These observations led to the hypothesis that PvFRIL acts in a dominant manner to preserve progenitor viability and prevent proliferation and differentiation. PMID:10913819

  13. Expression of Nanog gene promotes NIH3T3 cell proliferation

    SciTech Connect

    Zhang Jingyu; Wang Xia; Chen Bing; Suo Guangli; Zhao Yanhong; Duan Ziyuan; Dai Jianwu . E-mail: jwdai@genetics.ac.cn

    2005-12-16

    Cells are the functional elements in tissue engineering and regenerative medicine. A large number of cells are usually needed for these purposes. However, there are numbers of limitations for in vitro cell proliferation. Nanog is an important self-renewal determinant in embryonic stem cells. However, it remains unknown whether Nanog will influence the cell cycle and cell proliferation of mature cells. In this study, we expressed Nanog in NIH3T3 cells and showed that expression of Nanog in NIH3T3 promoted cells to enter into S phase and enhanced cell proliferation. This suggests that Nanog gene might function in a similar fashion in mature cells as in ES cells. In addition, it may provide an approach for in vitro cell expansion.

  14. Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells

    SciTech Connect

    Yasumoto, S.; Burkhardt, A.L.; Doniger, J.; DiPaolo, J.A.

    1986-02-01

    A biological function for human papillomavirus 16 (HPV 16) DNA was demonstrated by transformation of NIH 3T3 cells. HPV 16 DNA has been found frequently in genital cancer and has been classified as a papillomavirus on the basis of DNA homology. A recombinant HPV 16 DNA (pSHPV16d), which contains a head-to-tail dimer of the full-length HPV 16 genome, induced morphologic transformation; the transformed cells were tumorigenic in nude mice. Expression of transforming activity was unique because of the long latency period (more than 4 weeks) required for induction of morphologic transformation and because the transfected DNA existed primarily in a multimeric form with some rearrangement. Furthermore, virus-specific RNAs were expressed in the transformants. The transformation of NIH 3T3 cells provides a model for analyzing the functions of HPV 16, which is associated with cervical carcinomas.

  15. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    SciTech Connect

    Milton, Flora Aparecida; Cvoro, Aleksandra; Amato, Angelica A.; Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani; Caro Alves de Lima, Maria do; Rocha Pitta, Ivan; Assis Rocha Neves, Francisco de; Webb, Paul

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  16. Distribution of fibroblast growth factors and their roles in skin fibroblast cell migration.

    PubMed

    Song, Yong Huan; Zhu, Yu Ting; Ding, Jian; Zhou, Fei Ya; Xue, Ji Xin; Jung, Jin Hee; Li, Zhi Jie; Gao, Wei Yang

    2016-10-01

    Fibroblast growth factor (FGF)2/basic FGF is a member of the fibroblast growth factor family. Its function in skin wound healing has been well-characterized. However, the function of other FGFs in skin tissues remains to be elucidated. In the present study, FGF expression patterns in heart, liver, skin and kidney tissues were analyzed. Notably, in contrast to other tissues, only four FGFs, FGF2, 7, 10 and 21, were dominant in the skin. To examine FGF function in the wound healing process, mouse NIH3T3 fibroblast cells were treated with FGF2, FGF10 and FGF21, and cell migration was monitored. The results revealed that FGF treatment promoted cell migration, which is an important step in wound healing. In addition, FGF treatment enhanced the activity of c-Jun N-terminal kinase (JNK), a key regulator of fibroblast cell migration. To analyze its role in cell migration, FGF7 was overexpressed in fibroblast cells via a lentivirus system; however, this did not change cell migration speed. FGF2, 7, 10 and 21 were highly expressed in skin tissue, and all except FGF7 regulated fibroblast cell migration and activated JNK. The results of the present study increase our understanding of the role of FGFs in skin wound healing. PMID:27572477

  17. Sclerostin Enhances Adipocyte Differentiation in 3T3-L1 Cells.

    PubMed

    Ukita, Mayumi; Yamaguchi, Taihiko; Ohata, Noboru; Tamura, Masato

    2016-06-01

    Sclerostin, a secreted protein encoded by the Sost gene, is produced by osteocytes and is inhibited by osteoblast differentiation and bone formation. Recently, a functional association between bone and fat tissue has been suggested, and a correlation between circulating sclerostin levels and lipid metabolism has been reported in humans. However, the effects of sclerostin on adipogenesis remain unexplored. In the present study, we examined the role of sclerostin in regulating adipocyte differentiation using 3T3-L1 preadipocytes. In these cells, sclerostin enhanced adipocyte-specific gene expression and the accumulation of lipid deposits. Sclerostin also upregulated CCAAT/enhancer binding protein β expression but not cell proliferation and caspase-3/7 activities. Sclerostin also attenuated canonical Wnt3a-inhibited adipocyte differentiation. Recently, the transcriptional modulator TAZ has been involved in the canonical Wnt signaling pathway. Sclerostin reduced TAZ-responsive transcriptional activity and TAZ-responsive gene expression. Transfection of 3T3-L1 cells with TAZ siRNA increased the lipid deposits and adipogenic gene expression. These results show that sclerostin upregulates adipocyte differentiation in 3T3-L1 cells, suggesting a possible role for the osteocyte-derived sclerostin as a regulator of fat metabolism and as a reciprocal regulator of bone and adipose tissues metabolism.

  18. Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway.

    PubMed

    Liou, Chian-Jiun; Lai, Xuan-Yu; Chen, Ya-Ling; Wang, Chia-Ling; Wei, Ciao-Han; Huang, Wen-Chung

    2015-01-01

    Ginkgolide C, isolated from Ginkgo biloba leaves, is a flavone reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK), resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C), ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway.

  19. Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway

    PubMed Central

    Liou, Chian-Jiun; Lai, Xuan-Yu; Chen, Ya-Ling; Wang, Chia-Ling; Wei, Ciao-Han; Huang, Wen-Chung

    2015-01-01

    Ginkgolide C, isolated from Ginkgo biloba leaves, is a flavone reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK), resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C), ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway. PMID:26413119

  20. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayoshi; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  1. Exogenous MC3T3 preosteoblasts migrate systemically and mitigate the adverse effects of wear particles.

    PubMed

    Fritton, Kate; Ren, Pei-Gen; Gibon, Emmanuel; Rao, Allison J; Ma, Ting; Biswal, Sandip; Gambhir, Sanjiv S; Goodman, Stuart B

    2012-12-01

    Understanding how relevant cell types respond to wear particles will reveal new avenues for treating osteolysis following joint replacements. In this study, we investigate the effects of ultrahigh molecular weight polyethylene (UHMWPE) particles on preosteoblast migration and function. We infused UHMWPE particles or saline into the left femur of mice and injected luciferase-expressing preosteoblasts (MC3T3 cells) into each left ventricle. Bioluminescence imaging (BLI) confirmed systemic administration of MC3T3 cells. BLI throughout the 28-day experiment showed greater MC3T3 migration to the site of particle infusion than to the site of saline infusion, with significant differences on days 0, 4, and 6 (p≤0.055). Immunostaining revealed a greater number of osteoblasts and osteoclasts in the particle-infused femora, indicating greater bone turnover. The bone mineralization of the particle-infused femora increased significantly when compared to saline-infused femora (an increase of 146.4±27.9 vs. 12.8±8.7 mg/mL, p=0.008). These results show that infused preosteoblasts can migrate to the site of wear particles. Additionally, as the migrated cells were associated with increased bone mineralization in spite of the presence of particles, increasing osteoblast recruitment is a potential strategy for combating bone loss due to increased osteoclast/macrophage number and decreased osteoblast function.

  2. Rubi Fructus (Rubus coreanus) Inhibits Differentiation to Adipocytes in 3T3-L1 Cells.

    PubMed

    Jeong, Mi-Young; Kim, Hye-Lin; Park, Jinbong; An, Hyo-Jin; Kim, Sung-Hoon; Kim, Su-Jin; So, Hong-Seob; Park, Raekil; Um, Jae-Young; Hong, Seung-Heon

    2013-01-01

    Rubi Fructus (RF) is known to exert several pharmacological effects including antitumor, antioxidant, and anti-inflammatory activities. However, its antiobesity effect has not been reported yet. This study was focused on the antidifferentiation effect of RF extract on 3T3-L1 preadipocytes. When 3T3-L1 preadipocytes were differentiating into adipocytes, 10-100  μ g/mL of RF was added. Next, the lipid contents were quantified by Oil Red O staining. RF significantly reduced lipid accumulation and downregulated the expression of peroxisome proliferator-activated receptor γ (PPAR γ ), CCAAT0-enhancer-binding proteins α (C/EBP α ), adipocyte fatty acid-binding protein 2 (aP2), resistin, and adiponectin in ways that were concentration dependent. Moreover, RF markedly upregulated liver kinase B1 and AMP-activated protein kinase (AMPK). Interestingly, pretreatment with AMPK α siRNA and RF downregulated the expression of PPAR γ and C/EBP α protein as well as the adipocyte differentiation. Our study shows that RF is capable of inhibiting the differentiation of 3T3-L1 adipocytes through the modulation of PPAR γ , C/EBP α , and AMPK, suggesting that it has a potential for therapeutic application in the treatment or prevention of obesity.

  3. Traditional Herbal Formula Oyaksungi-San Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2015-01-01

    Background. Oyaksungi-san (OYSGS) is a herbal formula that has been used for treating cardiovascular diseases in traditional Asian medicine. Here, we investigated the antiadipogenic effect of OYSGS extract in 3T3-L1 adipose cells. Methods. 3T3-L1 preadipocytes were differentiated into adipocytes with or without OYSGS. After differentiation, we measured Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, leptin production, mRNA, and protein levels of adipogenesis-related factors. Results. OYSGS extract dramatically inhibited intracellular lipid accumulation in the differentiated adipocytes. It also significantly suppressed the (GPDH) activity, triglyceride (TG) content, and leptin production by reducing the expression of adipogenesis-related genes including lipoprotein lipase, fatty acid binding protein 4, CCAAT/enhancer-binding protein-alpha (C/EBP-α), and peroxisome proliferator-activated receptor gamma (PPAR-γ). Furthermore, OYSGS clearly enhanced phosphorylation of AMP-activated protein kinase (AMPK) as well as its substrate acetyl CoA (ACC) carboxylase. Conclusions. Our results demonstrate that OYSGS negatively controls TG accumulation in 3T3-L1 adipocytes. We suggest antiadipogenic activity of OYSGS and its potential benefit in preventing obesity. PMID:25802547

  4. Ramie Leaf Extracts Suppresses Adipogenic Differentiation in 3T3-L1 Cells and Pig Preadipocytes

    PubMed Central

    Lee, Joomin; Kim, Ah-Ra; Lee, Jae-Joon

    2016-01-01

    The present study was carried out to evaluate the anti-obesity effect of different concentrations of extracts of hot air-dried ramie leaf (HR) and freeze-dried ramie leaf (FR) in 3T3-L1 cells and pig preadipocytes. To analyze the effect on cell proliferation, cells were treated with 25 μg/mL or 100 μg/mL HR or FR extract for 2 days. Cell differentiation was evaluated by measuring glycerol-3-phosphate dehydrogenase and lipoprotein lipase (LPL) activities and intracellular triglyceride content. Treatment with either HR or FR extracts inhibited the proliferation of 3T3-L1 cells and pig preadipocytes in a dose-dependent manner. HR extract treatment inhibited the differentiation of both cell types more effectively than FR treatment. The extent of triglyceride accumulation decreased significantly in both cells following either HR or FR treatment. Furthermore, LPL activity significantly decreased after treatment with HR or FR extract. These results indicated that HR and FR extracts may inhibit proliferation and differentiation of 3T3-L1 cells and pig preadipocytes. Further studies are needed to explore the anti-obesity effect of HR and FR extracts. PMID:26954122

  5. Exogenous MC3T3 Preosteoblasts Migrate Systemically and Mitigate the Adverse Effects of Wear Particles

    PubMed Central

    Fritton, Kate; Ren, Pei-Gen; Gibon, Emmanuel; Rao, Allison J.; Ma, Ting; Biswal, Sandip; Gambhir, Sanjiv S.

    2012-01-01

    Understanding how relevant cell types respond to wear particles will reveal new avenues for treating osteolysis following joint replacements. In this study, we investigate the effects of ultrahigh molecular weight polyethylene (UHMWPE) particles on preosteoblast migration and function. We infused UHMWPE particles or saline into the left femur of mice and injected luciferase-expressing preosteoblasts (MC3T3 cells) into each left ventricle. Bioluminescence imaging (BLI) confirmed systemic administration of MC3T3 cells. BLI throughout the 28-day experiment showed greater MC3T3 migration to the site of particle infusion than to the site of saline infusion, with significant differences on days 0, 4, and 6 (p≤0.055). Immunostaining revealed a greater number of osteoblasts and osteoclasts in the particle-infused femora, indicating greater bone turnover. The bone mineralization of the particle-infused femora increased significantly when compared to saline-infused femora (an increase of 146.4±27.9 vs. 12.8±8.7 mg/mL, p=0.008). These results show that infused preosteoblasts can migrate to the site of wear particles. Additionally, as the migrated cells were associated with increased bone mineralization in spite of the presence of particles, increasing osteoblast recruitment is a potential strategy for combating bone loss due to increased osteoclast/macrophage number and decreased osteoblast function. PMID:22741555

  6. Rb regulates C/EBPbeta-DNA-binding activity during 3T3-L1 adipogenesis.

    PubMed

    Cole, Kathryn A; Harmon, Anne W; Harp, Joyce B; Patel, Yashomati M

    2004-02-01

    Two pathways are initiated upon 3T3-L1 preadipocyte differentiation: the reentry of cells into the cell cycle and the initiation of a cascade of transcriptional events that "prime" the cell for differentiation. The "priming" event involves the synthesis of members of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors. However, the relationship between these two pathways is unknown. Here we report that in the 3T3-L1 preadipocytes induced to differentiate, cell cycle progression and the initiation of differentiation are linked by a cell cycle-dependent Rb-C/EBPbeta interaction. Cell cycle arrest in G1 by l-mimosine inhibited differentiation-induced C/EBPbeta-DNA-binding activity and Rb phosphorylation. However, cell cycle arrest after the G1/S transition by aphidicolin or nocodazole did not prevent C/EBPbeta-DNA-binding activity or Rb phosphorylation. Furthermore, hypophosphorylated Rb and C/EBPbeta coimmunoprecipitated, whereas phosphorylated Rb and C/EBPbeta did not. Electrophoretic mobility shift assays demonstrated that recombinant hypophosphorylated Rb decreased C/EBPbeta-DNA-binding activity and that Rb overexpression inhibited C/EBPbeta-induced transcriptional activation of a C/EBPalpha-promoter-luciferase reporter gene. We conclude that C/EBPbeta-DNA-binding activity is regulated by its interaction with hypophosphorylated Rb, thereby linking the progression of the cell cycle to the initiation of differentiation during 3T3-L1 adipogenesis. PMID:14576085

  7. AP endonuclease knockdown enhances methyl methanesulfonate hypersensitivity of DNA polymerase β knockout mouse embryonic fibroblasts.

    PubMed

    Yamamoto, Ryohei; Umetsu, Makio; Yamamoto, Mizuki; Matsuyama, Satoshi; Takenaka, Shigeo; Ide, Hiroshi; Kubo, Kihei

    2015-05-01

    Apurinic/apyrimidinic (AP) endonuclease (Apex) is required for base excision repair (BER), which is the major mechanism of repair for small DNA lesions such as alkylated bases. Apex incises the DNA strand at an AP site to leave 3'-OH and 5'-deoxyribose phosphate (5'-dRp) termini. DNA polymerase β (PolB) plays a dominant role in single nucleotide (Sn-) BER by incorporating a nucleotide and removing 5'-dRp. Methyl methanesulfonate (MMS)-induced damage is repaired by Sn-BER, and thus mouse embryonic fibroblasts (MEFs) deficient in PolB show significantly increased sensitivity to MMS. However, the survival curve for PolB-knockout MEFs (PolBKOs) has a shoulder, and increased sensitivity is only apparent at relatively high MMS concentrations. In this study, we prepared Apex-knockdown/PolB-knockout MEFs (AKDBKOs) to examine whether BER is related to the apparent resistance of PolBKOs at low MMS concentrations. The viability of PolBKOs immediately after MMS treatment was significantly lower than that of wild-type MEFs, but there was essentially no effect of Apex-knockdown on cell viability in the presence or absence of PolB. In contrast, relative counts of MEFs after repair were decreased by Apex knockdown. Parental PolBKOs showed especially high sensitivity at >1.5 mM MMS, suggesting that PolBKOs have another repair mechanism in addition to PolB-dependent Sn-BER, and that the back-up mechanism is unable to repair damage induced by high MMS concentrations. Interestingly, AKDBKOs were hypersensitive to MMS in a relative cell growth assay, suggesting that MMS-induced damage in PolB-knockout MEFs is repaired by Apex-dependent repair mechanisms, presumably including long-patch BER.

  8. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    PubMed Central

    2013-01-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet–visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a ‘green’, natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications. PMID:24059222

  9. Fibroblast growth factor 21 prevents glycemic deterioration in insulin deficient mouse models of diabetes.

    PubMed

    Andersen, Birgitte; Omar, Bilal A; Rakipovski, Günaj; Raun, Kirsten; Ahrén, Bo

    2015-10-01

    In type 1 diabetes, there is a rapid loss of glycemic control immediately after onset of the disease. We aimed to determine if the deterioration of glycemic control that occurs early after the onset of insulin-deficient diabetes could be blunted by treatment with recombinant fibroblast growth factor 21 (FGF21). Normal C57BL/6J mice made diabetic by a single high dose injection of streptozotocin (STZ) were randomized to receive twice daily subcutaneous injection of vehicle or recombinant human FGF21 at doses of 0.3 and 1.0 mg/kg for 10 days. Body weight was recorded daily and 5 h fasted glucose, insulin, glucagon, free fatty acids and ketones were determined at 6 and 10 days post-randomization. The increase in fasting plasma glucose induced by STZ in untreated mice was prevented with FGF21 at 0.3 mg/kg BID. In contrast, at 1.0 mg/kg BID, FGF21 did not prevent the rise in plasma glucose after STZ. At the end of the study, plasma glucagon was significantly higher in the diabetic group treated with FGF21 1.0 mg/kg BID than in the untreated group. This was not seen for the group treated with FGF21 0.3 mg/kg BID. There were significant dose dependent reductions in plasma free fatty acids with FGF21 treatment but no significant change in plasma ketones (β-hydroxybutyrate). FGF21 treatment did not have significant effects on body weight in lean insulin deficient mice. In conclusion, FGF21 prevents increases in glycaemia and has lipid lowering properties in mouse models of insulin deficient diabetes, although by increasing the dose increased glucagon levels are seen and hyperglycemia persists.

  10. The aporphine alkaloid boldine induces adiponectin expression and regulation in 3T3-L1 cells.

    PubMed

    Yu, Bangning; Cook, Carla; Santanam, Nalini

    2009-10-01

    Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor (PPAR)-gamma, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H(2)O(2)) (100 microM) or tumor necrosis factor-alpha (TNFalpha) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5-100 microM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARgamma, and C/EBPalpha to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H(2)O(2) or TNFalpha and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5-25 microM) having a larger inductive effect compared to higher concentrations (50-100 microM). Boldine treatment alone in the absence of H(2)O(2) or TNFalpha was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease. PMID:19857072

  11. The Aporphine Alkaloid Boldine Induces Adiponectin Expression and Regulation in 3T3-L1 Cells

    PubMed Central

    Yu, Bangning; Cook, Carla

    2009-01-01

    Abstract Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor (PPAR)-γ, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H2O2) (100 μM) or tumor necrosis factor-α (TNFα) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5–100 μM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARγ, and C/EBPα to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H2O2 or TNFα and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5–25 μM) having a larger inductive effect compared to higher concentrations (50–100 μM). Boldine treatment alone in the absence of H2O2 or TNFα was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease. PMID:19857072

  12. Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes.

    PubMed

    Ueda, Manabu; Furuyashiki, Takashi; Yamada, Kayo; Aoki, Yukiko; Sakane, Iwao; Fukuda, Itsuko; Yoshida, Ken-Ichi; Ashida, Hitoshi

    2010-11-01

    In this study, we investigated the effects of tea catechins on the translocation of glucose transporter (GLUT) 4 in 3T3-L1 adipocytes. We found that the ethyl acetate fraction of green tea extract, containing abundant catechins, most decreased insulin-induced glucose uptake activity in 3T3-L1 cells. When the cells were treated with 50 μM catechins in the absence or presence of insulin for 30 min, nongallate-type catechins increased glucose uptake activity without insulin, whereas gallate-type catechins decreased insulin-induced glucose uptake activity. (-)-Epicatechin (EC) and (-)-epigallocatechin (EGC), nongallate-type catechins, increased glucose uptake activity in the dose- and time-dependent manner, whereas (-)-catechin 3-gallate (Cg) and (-)-epigallocatechin 3-gallate (EGCg), gallate-type catechins, decreased insulin-induced glucose uptake activity in the dose- and time-dependent manner. When the cells were treated with 50 μM catechins for 30 min, EC and EGC promoted GLUT4 translocation, whereas Cg and EGCg decreased the insulin-induced translocation in the cells. EC and EGC increased phosphorylation of PKCλ/ζ without phosphorylation of insulin receptor (IR) and Akt. Wortmannin and LY294002, inhibitors for phosphatidylinositol 3'-kinase (PI3K), decreased EC- and EGC-induced glucose uptake activity in the cells. Cg and EGCg decreased phosphorylation of PKCλ/ζ in the presence of insulin without affecting insulin-induced phosphorylation of IR, and Akt. Therefore, EC and EGC promote the translocation of GLUT4 through activation of PI3K, and Cg and EGCg inhibit insulin-induced translocation of GLUT4 by the insulin signaling pathway in 3T3-L1 cells.

  13. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    SciTech Connect

    Huang, Chenglin; Chen, Dongrui; Xie, Qihai; Yang, Ying; Shen, Weili

    2013-08-16

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.

  14. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells

    SciTech Connect

    Masiello, Lisa M.; Fotos, Joseph S.; Galileo, Deni S.; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that has pleiotropic effects on a variety of cell types and enhances the migration of endothelial and cancer cells, but it is not known if this lipid can alter osteoblast motility. We performed transwell migration assays using MC3T3-E1 osteoblastic cells and found LPA to be a potent chemotactic agent. Quantitative time-lapse video analysis of osteoblast migration after wounds were introduced into cell monolayers indicated that LPA stimulated both migration velocity and the average migration distance per cell. LPA also elicited substantial changes in cell shape and actin cytoskeletal structure; lipid-treated cells contained fewer stress fibers and displayed long membrane processes that were enriched in F-actin. Quantitative RT-PCR analysis showed that MC3T3-E1 cells express all four known LPA-specific G protein-coupled receptors (LPA1-LPA4) with a relative mRNA abundance of LPA1 > LPA4 > LPA2 >> LPA3. LPA-induced changes in osteoblast motility and morphology were antagonized by both pertussis toxin and Ki16425, a subtype-specific blocker of LPA1 and LPA3 receptor function. Cell migration in many cell types is linked to changes in intracellular Ca2+. Ki16425 also inhibited LPA-induced Ca2+ signaling in a dose-dependent manner, suggesting a link between LPA-induced Ca2+ transients and osteoblast chemotaxis. Our data show that LPA stimulates MC3T3-E1 osteoblast motility via a mechanism that is linked primarily to the G protein-coupled receptor LPA1.

  15. CELL SURFACE ANTIGENS OF A MOUSE TESTICULAR TERATOMA

    PubMed Central

    Gooding, Linda R.; Edidin, Michael

    1974-01-01

    Rabbit antisera to a mouse testicular teratoma, absorbed with normal mouse tissues, react by immunofluorescence with plasma membrane antigens of a variety of transplantable mouse tumor cells and transformed fibroblast cell lines including Clone 1D, SV-40-3T3, and 3T12. Trypsin treatment of cells of "normal" lines, 3T3 and FR-SV-3T3, uncovers reactivity on these as well. Early passage mouse embryo fibroblast cell cultures do not react even after trypsinization. By cross-absorbtion studies, the anti-teratoma serum appears to react with an antigen common to most tumor cells investigated thus far. When this antigen on Clone 1D cells is "capped," H-2 antigens collect with the teratoma antigens in the cap indicating a physical association between the molecules. Molecules specified by both the H-2D and H-2K regions are bound to the teratoma antigens in the Clone 1D plasma membrane. This antigen is also found in soluble tumor cell fractions where it is believed to be free of H-2. A second cell surface antigen defined by anti-teratoma serum is expressed only by hepatoma and teratoma itself. This second antigen is apparently a secretory product of teratoma cells. A third surface antigen defined by anti-teratoma serum appears to be specific for the teratoma. PMID:4365513

  16. An electron microscopic radioautographic study of collagen secretion in periodontal ligament fibroblasts of the mouse: II. Colchicine-treated fibroblasts

    SciTech Connect

    Cho, M.I.; Garant, P.R.

    1981-12-01

    Colchicine administered intravenously depolymerized microtubules and disrupted the normal organization of the Golgi apparatus in periodontal ligament fibroblasts. Radioautography with /sup 3/H-proline indicated that collagen secretion was completely inhibited during a period of approximately 4 hours following the onset of the colchicine effect. During this period of secretory inhibition, labeled collagen precursors were present within a variety of dense bodies, primarily located in a juxtanuclear location replacing the normal Golgi complex. The time course of /sup 3/H-proline labeling from 2 to 8 hours suggested that small, newly formed dense bodies fused to form larger dense bodies and pleomorphic structures (zebra bodies), within which collagen precursors appeared to undergo partial polymerization. Autophagosomes, many labeled with /sup 3/H-proline, also increased in number after colchicine administration. A gradual decline in /sup 3/H-proline label occurred from 4 to 24 hours, presumably due to exocytosis of dense bodies or by the digestion of labeled collagen precursors within autophagosomes. These results support the concept that an intact microtubular network is essential for the organized transport of collagen precursors, from the rough endoplasmic reticulum to the Golgi apparatus, and the eventual transport and exocytosis of collagen secretory granules.

  17. A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy

    PubMed Central

    Fritsch, Anja; Loeckermann, Stefan; Kern, Johannes S.; Braun, Attila; Bösl, Michael R.; Bley, Thorsten A.; Schumann, Hauke; von Elverfeldt, Dominik; Paul, Dominik; Erlacher, Miriam; Berens von Rautenfeld, Dirk; Hausser, Ingrid; Fässler, Reinhard; Bruckner-Tuderman, Leena

    2008-01-01

    Dystrophic epidermolysis bullosa (DEB) is a severe skin fragility disorder associated with trauma-induced blistering, progressive soft tissue scarring, and increased risk of skin cancer. DEB is caused by mutations in type VII collagen. In this study, we describe the generation of a collagen VII hypomorphic mouse that serves as an immunocompetent animal model for DEB. These mice expressed collagen VII at about 10% of normal levels, and their phenotype closely resembled characteristics of severe human DEB, including mucocutaneous blistering, nail dystrophy, and mitten deformities of the extremities. The oral blistering experienced by these mice resulted in growth retardation, and repeated blistering led to excessive induction of tissue repair, causing TGF-β1–mediated contractile fibrosis generated by myofibroblasts and pseudosyndactyly in the extremities. Intradermal injection of WT fibroblasts resulted in neodeposition of collagen VII and functional restoration of the dermal-epidermal junction. Treated areas were also resistant to induced frictional stress. In contrast, untreated areas of the same mouse showed dermal-epidermal separation following induced stress. These data demonstrate that fibroblast-based treatment can be used to treat DEB in a mouse model and suggest that this approach may be effective in the development of clinical therapeutic regimens for patients with DEB. PMID:18382769

  18. Involvement of Polycomb Repressive Complex 2 in Maturation of Induced Pluripotent Stem Cells during Reprogramming of Mouse and Human Fibroblasts.

    PubMed

    Khazaie, Niusha; Massumi, Mohammad; Wee, Ping; Salimi, Mahdieh; Mohammadnia, Abdulshakour; Yaqubi, Moein

    2016-01-01

    Induced pluripotent stem cells (iPSCs) provide a reliable source for the study of regenerative medicine, drug discovery, and developmental biology. Despite extensive studies on the reprogramming of mouse and human fibroblasts into iPSCs, the efficiency of reprogramming is still low. Here, we used a bioinformatics and systems biology approach to study the two gene regulatory waves governing the reprogramming of mouse and human fibroblasts into iPSCs. Our results revealed that the maturation phase of reprogramming was regulated by a more complex regulatory network of transcription factors compared to the initiation phase. Interestingly, in addition to pluripotency factors, the polycomb repressive complex 2 (PRC2) members Ezh2, Eed, Jarid2, Mtf2, and Suz12 are crucially recruited during the maturation phase of reprogramming. Moreover, we found that during the maturation phase of reprogramming, pluripotency factors, via the expression and induction of PRC2 complex members, could silence the lineage-specific gene expression program and maintain a ground state of pluripotency in human and mouse naïve iPSCs. The findings obtained here provide us a better understanding of the gene regulatory network (GRN) that governs reprogramming, and the maintenance of the naïve state of iPSCs.

  19. Involvement of Polycomb Repressive Complex 2 in Maturation of Induced Pluripotent Stem Cells during Reprogramming of Mouse and Human Fibroblasts

    PubMed Central

    Khazaie, Niusha; Massumi, Mohammad; Wee, Ping; Salimi, Mahdieh; Mohammadnia, Abdulshakour; Yaqubi, Moein

    2016-01-01

    Induced pluripotent stem cells (iPSCs) provide a reliable source for the study of regenerative medicine, drug discovery, and developmental biology. Despite extensive studies on the reprogramming of mouse and human fibroblasts into iPSCs, the efficiency of reprogramming is still low. Here, we used a bioinformatics and systems biology approach to study the two gene regulatory waves governing the reprogramming of mouse and human fibroblasts into iPSCs. Our results revealed that the maturation phase of reprogramming was regulated by a more complex regulatory network of transcription factors compared to the initiation phase. Interestingly, in addition to pluripotency factors, the polycomb repressive complex 2 (PRC2) members Ezh2, Eed, Jarid2, Mtf2, and Suz12 are crucially recruited during the maturation phase of reprogramming. Moreover, we found that during the maturation phase of reprogramming, pluripotency factors, via the expression and induction of PRC2 complex members, could silence the lineage-specific gene expression program and maintain a ground state of pluripotency in human and mouse naïve iPSCs. The findings obtained here provide us a better understanding of the gene regulatory network (GRN) that governs reprogramming, and the maintenance of the naïve state of iPSCs. PMID:26938987

  20. Poly(L-lactide) crystallization topography directs MC3T3-E1 cells response.

    PubMed

    Li, Wenqiang; Lu, Lu; Jiao, Yanpeng; Zhang, Chaowen; Zhou, Changren

    2016-09-01

    Biomaterial surface topography significantly influences cellular form and function. Using poly(L-lactic acid) films with normal spherulites, banded spherulites, and amorphous surfaces as model substrates, we conducted a systematic assessment of the role for polymer crystallization induced surface morphologies on cell growth and contact guidance. Microscopy and image analysis showed that the MC3T3-E1 cells spread out in a random fashion on the amorphous substrate. At 24 h post-seeding, MC3T3-E1 cells on both types of spherulite surfaces were elongated and aligned along the spherulite radius direction. For the banded spherulite surface with radial stripes and coupling annular grooves, the cell orientation and cell nuclear localization were related to the grooves structure. With increasing time, this orientation preference was weaker. These results demonstrate that the patterning of polymer crystallization structure provide important signals for guiding cells to exhibit characteristic orientation and morphology especially in the early stages of regeneration. PMID:27376548

  1. p53 mediates impaired insulin signaling in 3T3-L1 adipocytes during hyperinsulinemia.

    PubMed

    Posa, Jyothi Kumari; Selvaraj, Sudhagar; Sangeetha, K N; Baskaran, Sarath Kumar; Lakshmi, B S

    2014-07-01

    Hyperinsulinemia is being implicated in the development of insulin resistance but remains poorly understood. The present study focuses on p53-mediated impaired insulin signaling by hyperinsulinemia in 3T3-L1 adipocytes. Hyperinsulinemia impairs insulin-stimulated glucose uptake and its cellular signaling in a dose- and time-dependent manner. An increased level of reactive oxygen species (ROS) and stress response signals were observed, and quenching of the ROS by an antioxidant N-acetylcysteine (NAC) did not revert impaired insulin sensitivity. The tumor suppressor p53 has emerged as a crucial factor in the metabolic adaptation of cancer cells under nutritional starvation and is being studied in the development of insulin resistance in adipocytes at physiological level. Interestingly, we observed hyperinsulinemia-enhanced p53 level in a time-dependent manner without exhibiting cytotoxicity. Transient knockdown of p53 partially improved insulin sensitivity revealing a novel link between p53 and insulin signaling in adipocytes. The findings suggest that hyperinsulinemia-induced p53 impairs insulin sensitivity in 3T3-L1 adipocytes.

  2. Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking.

    PubMed

    Sadler, Jessica B A; Bryant, Nia J; Gould, Gwyn W

    2015-02-01

    The fusion of GLUT4-containing vesicles with the plasma membrane of adipocytes is a key facet of insulin action. This process is mediated by the formation of functional soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes between the plasma membrane t-SNARE complex and the vesicle v-SNARE or VAMP. The t-SNARE complex consists of Syntaxin4 and SNAP23, and whereas many studies identify VAMP2 as the v-SNARE, others suggest that either VAMP3 or VAMP8 may also fulfil this role. Here we characterized the levels of expression, distribution, and association of all the VAMPs expressed in 3T3-L1 adipocytes to provide the first systematic analysis of all members of this protein family for any cell type. Despite our finding that all VAMP isoforms form SDS-resistant SNARE complexes with Syntaxin4/SNAP23 in vitro, a combination of levels of expression (which vary by >30-fold), subcellular distribution, and coimmunoprecipitation analyses lead us to propose that VAMP2 is the major v-SNARE involved in GLUT4 trafficking to the surface of 3T3-L1 adipocytes.

  3. Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking

    PubMed Central

    Sadler, Jessica B. A.; Bryant, Nia J.; Gould, Gwyn W.

    2015-01-01

    The fusion of GLUT4-containing vesicles with the plasma membrane of adipocytes is a key facet of insulin action. This process is mediated by the formation of functional soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes between the plasma membrane t-SNARE complex and the vesicle v-SNARE or VAMP. The t-SNARE complex consists of Syntaxin4 and SNAP23, and whereas many studies identify VAMP2 as the v-SNARE, others suggest that either VAMP3 or VAMP8 may also fulfil this role. Here we characterized the levels of expression, distribution, and association of all the VAMPs expressed in 3T3-L1 adipocytes to provide the first systematic analysis of all members of this protein family for any cell type. Despite our finding that all VAMP isoforms form SDS-resistant SNARE complexes with Syntaxin4/SNAP23 in vitro, a combination of levels of expression (which vary by >30-fold), subcellular distribution, and coimmunoprecipitation analyses lead us to propose that VAMP2 is the major v-SNARE involved in GLUT4 trafficking to the surface of 3T3-L1 adipocytes. PMID:25501368

  4. Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1.

    PubMed

    Moser, G C; Fallon, R J; Meiss, H K

    1981-02-01

    Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cycle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH-stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells; position within the G1 period. Data are presented that deal with three interrelated topics: 1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. 2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum-starved and contact-inhibited cell nuclei had the highest intensity, hydroxyurea-treated ones had the lowest intensity, while that of isoleucine-deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1. 3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other.

  5. Traf2 interacts with Smad4 and regulates BMP signaling pathway in MC3T3-E1 osteoblasts

    SciTech Connect

    Shimada, Koichi; Ikeda, Kyoko; Ito, Koichi

    2009-12-18

    Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and maturation. In mammals, the BMP-induced receptor-regulated Smads form complexes with Smad4. These complexes translocate and accumulate in the nucleus, where they regulate the transcription of various target genes. However, the function of Smad4 remains unclear. We performed a yeast two-hybrid screen using Smad4 as bait and a cDNA library derived from bone marrow, to indentify the proteins interacting with Smad4. cDNA clones for Tumor necrosis factor (TNF) receptor-associated factor 2 (Traf2) were identified, and the interaction between the endogenous proteins was confirmed in the mouse osteoblast cell line MC3T3-E1. To investigate the function of Traf2, we silenced it with siRNA. The level of BMP-2 protein in the medium, the expression levels of the Bmp2 gene and BMP-induced transcription factor genes, including Runx2, Dlx5, Msx2, and Sp7, and the phosphorylated-Smad1 protein level were increased in cells transfected with Traf2 siRNA. The nuclear accumulation of Smad1 increased with TNF-{alpha} stimulation for 30 min at Traf2 silencing. These results suggest that the TNF-{alpha}-stimulated nuclear accumulation of Smad1 may be dependent on Traf2. Thus, the interaction between Traf2 and Smad4 may play a role in the cross-talk between TNF-{alpha} and BMP signaling pathways.

  6. Retinol encapsulated into amorphous Ca(2+) polyphosphate nanospheres acts synergistically in MC3T3-E1 cells.

    PubMed

    Müller, Werner E G; Tolba, Emad; Schröder, Heinz C; Diehl-Seifert, Bärbel; Wang, Xiaohong

    2015-06-01

    Both the quality and quantity of collagen, the major structural component of the skin, decrease in aging skin. We succeeded to encapsulate retinol into amorphous inorganic polyphosphate (polyP) nanoparticles together with calcium ions ("aCa-polyP-NP"), under formation of amorphous Ca-polyP/retinol nanospheres ("retinol/aCa-polyP-NS"). The globular nanospheres are not cytotoxic, show an almost uniform size of ≈ 45 nm and have a retinol content of around 25%. Both components of those nanospheres, retinol and the aCa-polyP-NP, if administered together, caused a strong increase in proliferation of mouse calvaria MC3T3 cells. The expressions of collagen types I, II and III genes, but not the expression of collagen type V gene, were significantly enhanced if retinol is added together with aCa-polyP-NP. This synergistic effect was especially pronounced for the expression of the collagen type III gene. We propose that the synergistic effect of the retinol/aCa-polyP-NS on cell growth and collagen type III expression is induced via two routes, first through cellular uptake of the 45 nm nanospheres by clathrin-mediated endocytosis and second through extracellular disintegration of the nanospheres resulting in the release of retinol which is then taken up into the cells after binding to the retinal binding protein receptor.

  7. A growth factor-responsive gene of murine BALB/c 3T3 cells encodes a protein homologous to human tissue factor

    SciTech Connect

    Hartzell, S.; Ryder, K.; Lanahan, A.; Nathans, D.; Lau, L.F.

    1989-06-01

    Polypeptide growth factors rapidly induce the transcription of a set of genes that appear to mediate cell growth. The authors report that one of the genes induced in BALB/c mouse 3T3 cells encodes a transmembrane protein (mTF) homologous to human tissue factor, which is involved in the proteolytic activation of blood clotting. mTF mRNA is present in many murine tissues and cell lines. The authors' results raise the possibility that mTF may also play a role in cell growth.

  8. Rho family GTPases cooperate with p53 deletion to promote primary mouse embryonic fibroblast cell invasion.

    PubMed

    Guo, Fukun; Zheng, Yi

    2004-07-22

    The Rho family GTPases Rac1, RhoA and Cdc42 function as molecular switches that transduce intracellular signals regulating multiple cell functions including gene expression, adhesion, migration and invasion. p53 and its regulator p19Arf, on the other hand, are tumor suppressors that are critical in regulating cell cycle progression and apoptosis. Previously, we have demonstrated that the Rho proteins contribute to the cell proliferation, gene transcription and migration phenotypes unleashed by p19Arf or p53 deletion in primary mouse embryo fibroblasts (MEFs). To further investigate their functional interaction in the present study, we have examined the involvement of Rho signaling pathways in p53-mediated cell invasion. We found that in primary MEFs (1) p53 or p19Arf deficiency led to a marked increase in the number of focal adhesion plaques and fibronectin production, and RhoA, Rac1 and Cdc42 contribute to the p53- and p19Arf-mediated focal adhesion regulation, but not fibronectin synthesis; (2) although endogenous Rac1 activity was required for the p19Arf or p53 deficiency-induced migration phenotype, hyperactive Rho GTPases could not further enhance cell migration, rather they suppressed cell-cell adhesion of p53-/- MEFs; (3) expression of the active mutant of RhoA, Rac1 or Cdc42, but not Ras, promoted an invasion phenotype of p53-/-, not p19Arf-/-, cells; (4) although ROCK activation can partially recapitulate Rho-induced invasion phenotype, multiple pathways regulated by RhoA, in addition to ROCK, are required to fully cooperate with p53 deficiency to promote cell invasion; and (5) extracellular proteases produced by the active RhoA-transduced cells are also required for the invasion phenotype of p53-/- cells. Combined with our previous observations, these results strongly suggest that mitogenic activation of Rho family GTPases can cooperate with p53 deficiency to promote primary cell invasion as well as transformation and that multiple signaling components

  9. Mechanism underlying defective interferon gamma-induced IDO expression in non-obese diabetic mouse fibroblasts.

    PubMed

    Hosseini-Tabatabaei, Azadeh; Jalili, Reza Baradar; Li, Yunyuan; Kilani, Ruhangiz T; Moeen Rezakhanlou, Alireza; Ghahary, Aziz

    2012-01-01

    Indoleamine 2,3-dioxygenase (IDO) can locally suppress T cell-mediated immune responses. It has been shown that defective self-tolerance in early prediabetic female non-obese diabetic (NOD) mice can be attributed to the impaired interferon-gamma (IFN-γ)- induced IDO expression in dendritic cells of these animals. As IFN-γ can induce IDO in both dendritic cells and fibroblasts, we asked the question of whether there exists a similar defect in IFN-γ-induced IDO expression in NOD mice dermal fibroblasts. To this end, we examined the effect of IFN-γ on expression of IDO and its enzymatic activity in NOD dermal fibroblasts. The results showed that fibroblasts from either prediabetic (8 wks of age) female or male, and diabetic female or male (12 and 24 wks of age respectively) NOD mice failed to express IDO in response to IFN-γ treatment. To find underlying mechanisms, we scrutinized the IFN- γ signaling pathway and investigated expression of other IFN-γ-modulated factors including major histocompatibility complex class I (MHC-I) and type I collagen (COL-I). The findings revealed a defect of signal transducer and activator of transcription 1 (STAT1) phosphorylation in NOD cells relative to that of controls. Furthermore, we found an increase in MHC-I and suppression of COL-I expression in fibroblasts from both NOD and control mice following IFN-γ treatment; indicating that the impaired response to IFN-γ in NOD fibroblasts is specific to IDO gene. Finally, we showed that an IFN-γ-independent IDO expression pathway i.e. lipopolysaccharide (LPS)-mediated-c-Jun kinase is operative in NOD mice fibroblast. In conclusion, the findings of this study for the first time indicate that IFN-γ fails to induce IDO expression in NOD dermal fibroblasts; this may partially be due to defective STAT1 phosphorylation in IFN-γ-induced-IDO signaling pathway.

  10. Capsaicin Induces “Brite” Phenotype in Differentiating 3T3-L1 Preadipocytes

    PubMed Central

    Baboota, Ritesh K.; Singh, Dhirendra P.; Sarma, Siddhartha M.; Kaur, Jaspreet; Sandhir, Rajat; Boparai, Ravneet K.; Kondepudi, Kanthi K.; Bishnoi, Mahendra

    2014-01-01

    Objective Targeting the energy storing white adipose tissue (WAT) by pharmacological and dietary means in order to promote its conversion to energy expending “brite” cell type holds promise as an anti-obesity approach. Present study was designed to investigate/revisit the effect of capsaicin on adipogenic differentiation with special reference to induction of “brite” phenotype during differentiation of 3T3-L1 preadipocytes. Methods Multiple techniques such as Ca2+ influx assay, Oil Red-O staining, nutrigenomic analysis in preadipocytes and matured adipocytes have been employed to understand the effect of capsaicin at different doses. In addition to in-vitro experiments, in-vivo studies were carried out in high-fat diet (HFD) fed rats treated with resiniferatoxin (RTX) (a TRPV1 agonist) and in mice administered capsaicin. Results TRPV1 channels are expressed in preadipocytes but not in adipocytes. In preadipocytes, both capsaicin and RTX stimulate Ca2+ influx in dose-dependent manner. This stimulation may be prevented by capsazepine, a TRPV1 antagonist. At lower doses, capsaicin inhibits lipid accumulation and stimulates TRPV1 gene expression, while at higher doses it enhances accumulation of lipids and suppresses expression of its receptor. In doses of 0.1–100 µM, capsaicin promotes expression of major pro-adipogenic factor PPARγ and some of its downstream targets. In concentrations of 1 µM, capsaicin up-regulates anti-adipogenic genes. Low-dose capsaicin treatment of 3T3-L1 preadipocytes differentiating into adipocytes results in increased expression of brown fat cell marker genes. In white adipose of mice, capsaicin administration leads to increase in browning-specific genes. Global TRPV1 ablation (i.p. by RTX administration) leads to increase in locomotor activity with no change in body weight. Conclusion Our findings suggest the dual modulatory role of capsaicin in adipogenesis. Capsaicin inhibits adipogenesis in 3T3-L1 via TRPV1 activation and

  11. Ursolic Acid Inhibits Adipogenesis in 3T3-L1 Adipocytes through LKB1/AMPK Pathway

    PubMed Central

    He, Yonghan; Li, Ying; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-01-01

    Background Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. Objective As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. Methods and Results The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. Conclusions Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway

  12. Ultrasound stimulation increases proliferation of MC3T3-E1 preosteoblast-like cells

    PubMed Central

    2014-01-01

    Background Mechanical stimulation of bone increases bone mass and fracture healing, at least in part, through increases in proliferation of osteoblasts and osteoprogenitor cells. Researchers have previously performed in vitro studies of ultrasound-induced osteoblast proliferation but mostly used fixed ultrasound settings and have reported widely varying and inconclusive results. Here we critically investigated the effects of the excitation parameters of low-intensity pulsed ultrasound (LIPUS) stimulation on proliferation of MC3T3-E1 preosteoblastic cells in monolayer cultures. Methods We used a custom-designed ultrasound exposure system to vary the key ultrasound parameters—intensity, frequency and excitation duration. MC3T3-E1 cells were seeded in 12-well cell culture plates. Unless otherwise specified, treated cells, in groups of three, were excited twice for 10 min with an interval of 24 h in between after cell seeding. Proliferation rates of these cells were determined using BrdU and MTS assays 24 h after the last LIPUS excitation. All data are presented as the mean ± standard error. The statistical significance was determined using Student's two-sample two-tailed t tests. Results Using discrete LIPUS intensities ranging from 1 to 500 mW/cm2 (SATA, spatial average-temporal average), we found that approximately 75 mW/cm2 produced the greatest increase in osteoblast proliferation. Ultrasound exposures at higher intensity (approximately 465 mW/cm2) significantly reduced proliferation in MC3T3-E1 cells, suggesting that high-intensity pulsed ultrasound may increase apoptosis or loss of adhesion in these cells. Variation in LIPUS frequency from 0.5 MHz to 5 MHz indicated that osteoblast proliferation rate was not frequency dependent. We found no difference in the increase in proliferation rate if LIPUS was applied for 30 min/day or 10 min/day, indicating a habituation response. Conclusion This study concludes that a short-term stimulation with optimum intensity

  13. Inductive role of fibroblastic cell lines in development of the mouse thymus anlage in organ culture.

    PubMed

    Itoi, M; Amagai, T

    1998-01-10

    Previously, we have shown that embryonic day 12 thymus anlage cultured alone cannot develop into the mature organ but degenerates. In the present study, we investigated the cause of this insufficient organogenesis of embryonic day 12 thymus anlage in organ culture. We cocultured embryonic day 12 thymus anlages with various cell lines as pellets formed by centrifugation. In coculture with fibroblastic cell lines, but not with thymic epithelial cell lines, embryonic day 12 thymus anlages developed to support full T cell differentiation, and expressed mature stromal cell markers, Ia and Kb. By pellet culture of thymus anlages and fibroblastic cell lines transfected with a beta-galactosidase expression vector, we analyzed the distribution of added fibroblastic cells in pellets. The added fibroblastic cells constituted neither thymic capsule nor septa but disappeared after about 2 weeks in culture. Moreover, immunohistochemical studies indicated that added fibroblastic cells were adjacent to mesenchymal cells of thymus anlage. Our results strongly suggest that added fibroblastic cells support the development of the thymus anlage through interaction with its mesenchymal cells.

  14. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells.

    PubMed Central

    Sakamuro, D; Furukawa, T; Takegami, T

    1995-01-01

    Clinical evidence suggests that hepatitis C virus (HCV) is etiologically involved in hepatic cancer and liver cirrhosis. To investigate whether the HCV nonstructural protein NS3 has oncogenic activity, NIH 3T3 cells were transfected with an expression vector containing cDNA for the 5'- or 3'-half sequence of the HCV genome segment encoding NS3. Only cells transfected with the 5'-half cDNA rapidly proliferated, lost contact inhibition, grew anchorage independently in soft agar, and formed tumors in nude mice. PCR analysis confirmed the presence of the 5'-half DNA in the transfectants. These results suggest that the 5' region of the HCV genome segment encoding NS3 is involved in cell transformation. PMID:7745741

  15. N-Acetylcysteine Reduces Markers of Differentiation in 3T3-L1 Adipocytes

    PubMed Central

    Calzadilla, Pablo; Sapochnik, Daiana; Cosentino, Soledad; Diz, Virginia; Dicelio, Lelia; Calvo, Juan Carlos; Guerra, Liliana N.

    2011-01-01

    Oxidative stress plays a critical role in the pathogenesis of diabetes, hypertension and atherosclerosis. Some authors reported that fat accumulation correlates to systemic oxidative stress in humans and mice, but the relationship of lipid production and oxidative metabolism is still unclear. In our laboratory we used 3T3-L1 preadipocytes, which are able to differentiate into mature adipocytes and accumulate lipids, as obesity model. We showed that intracellular reactive oxygen species (ROS) and antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities increased in parallel with fat accumulation. Meanwhile N-acetylcysteine (NAC), a well known antioxidant and Glutathione (GSH) precursor, inhibited ROS levels as well as fat accumulation in a concentration-dependent manner. NAC also inhibited both adipogenic transcription factors CCAAT/enhancer binding protein beta (C/EBP β) and peroxisomal proliferator activated receptor gamma (PPAR γ) expression; we suggested that intracellular GSH content could be responsible for these effects. PMID:22072928

  16. Averrhoa carambola L. peel extract suppresses adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Rashid, Asyifah Mohamed; Lu, Kaihui; Yip, Yew Mun; Zhang, Dawei

    2016-02-01

    Obesity is associated with an increased risk of many chronic diseases. Recently, a growing body of evidence has shown that phytochemicals may inhibit adipogenesis and obesity. In this study, we report for the first time, the ability of Averrhoa carambola L. peel extract commonly known as star fruit (SFP) to effectively suppress adipocyte differentiation in 3T3-L1 preadipocytes and therefore, address it as a potential candidate to treat obesity and its related diseases. (-)-Epicatechin was identified as a bioactive compound likely responsible for this suppression. As the genetic expression studies revealed that the adipogenic activity of SFP extract was due to the simultaneous downregulation of the C/EBPα and PPARγ as well as the upregulation of PPARα receptor genes, a detailed computational docking study was also elucidated to reveal the likely binding mode of (-)-epicatechin to the receptor of interest, accounting for the likely mechanism that results in the overall suppression of adipocyte differentiation.

  17. Single Synonymous Mutations in KRAS Cause Transformed Phenotypes in NIH3T3 Cells

    PubMed Central

    Waters, Andrew M.; Bagni, Rachel; Portugal, Franklin; Hartley, James L.

    2016-01-01

    Synonymous mutations in the KRAS gene are clustered at G12, G13, and G60 in human cancers. We constructed 9 stable NIH3T3 cell lines expressing KRAS, each with one of these synonymous mutations. Compared to the negative control cell line expressing the wild type human KRAS gene, all the synonymous mutant lines expressed more KRAS protein, grew more rapidly and to higher densities, and were more invasive in multiple assays. Three of the cell lines showed dramatic loss of contact inhibition, were more refractile under phase contrast, and their refractility was greatly reduced by treatment with trametinib. Codon usage at these glycines is highly conserved in KRAS compared to HRAS, indicating selective pressure. These transformed phenotypes suggest that synonymous mutations found in driver genes such as KRAS may play a role in human cancers. PMID:27684555

  18. Cytotoxicity of endodontic irrigants containing calcium hydroxide and sodium lauryl sulphate on fibroblasts derived from mouse L929 cell line.

    PubMed

    Barbosa, Sérgio Valmor; Barroso, Cristiane Maria Sodré; Ruiz, Patrícia Alvarez

    2009-01-01

    The aim of this study was to evaluate the cytotoxicity of root canal irrigating solutions containing calcium hydroxide and sodium lauryl sulphate on fibroblasts derived from L929 cell line. Saturated calcium hydroxide aqueous solution (CH), sodium lauryl sulphate (SLS) and SLS associated with calcium hydroxide (HCT20) were diluted with sterile distilled water at 50%, 20%, 10% and 5% concentrations. Minimum essential medium (MEM) served as the control group. The cytotoxicity of the solutions was evaluated on L929 mouse fibroblast cell line, at 4 and 24 h of contact time by the 51Cr radiotracer method. Data were compared and statistical inferences were made with the chi-square test. In all analysis, significance level was set at 5%. CH and HCT20 showed toxicity at 50% concentration, while at concentrations lower than 50% these solutions showed cell tolerance. SLS was cytotoxic at all concentrations. In conclusion, the association of calcium hydroxide and SLS (HCT20) combines the beneficial properties of these solutions and was not harmful to the fibroblast cell line, seeming to be a suitable endodontic irrigating solution.

  19. mTOR ensures increased release and reduced uptake of the organic osmolyte taurine under hypoosmotic conditions in mouse fibroblasts.

    PubMed

    Lambert, Ian Henry; Jensen, Jane Vendelbo; Pedersen, Per Amstrup

    2014-06-01

    Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that modulates translation in response to growth factors and alterations in nutrient availability following hypoxia and DNA damage. Here we demonstrate that mTOR activity in Ehrlich Lettré ascites (ELA) cells is transiently increased within minutes following osmotic cell swelling and that inhibition of phosphatidylinositol-3-phosphatase (PTEN) counteracts the upstream phosphatidylinositol kinase and potentiates mTOR activity. PTEN inhibition concomitantly potentiates swelling-induced taurine release via the volume-sensitive transporter for organic osmolytes and anion channels (VSOAC) and enhances swelling-induced inhibition of taurine uptake via the taurine-specific transporter (TauT). Chronic osmotic stress, i.e., exposure to hypotonic or hypertonic media for 24 h, reduces and increases mTOR activity in ELA cells, respectively. Using rapamycin, we demonstrate that mTOR inhibition is accompanied by reduction in TauT activity and increase in VSOAC activity in cells expressing high (NIH3T3 fibroblasts) or low (ELA) amounts of mTOR protein. The effect of mTOR inhibition on TauT activity reflects reduced TauT mRNA, TauT protein abundance, and an overall reduction in protein synthesis, whereas the effect on VSOAC is mimicked by catalase inhibition and correlates with reduced catalase mRNA abundance. Hence, mTOR activity favors loss of taurine following hypoosmotic cell swelling, i.e., release via VSOAC and uptake via TauT during acute hypotonic exposure is potentiated and reduced, respectively, by phosphorylation involving mTOR and/or the kinases upstream to mTOR. Decrease in TauT activity during chronic hypotonic exposure, on the other hand, involves reduction in expression/activity of TauT and enzymes in antioxidative defense. PMID:24696147

  20. PML suppresses oncogenic transformation of NIH/3T3 cells by activated neu

    PubMed Central

    1995-01-01

    The chromosomal translocation t(15;17)(q22;q12) is a consistent feature of acute promyelocytic leukemia (APL) that results in the disruption of genes for the zinc finger transcription factor PML and the retinoic acid receptor alpha (RAR alpha). We have previously shown that PML is a growth suppressor and is able to suppress transformation of NIH/3T3 by activated neu oncogene. In the study presented here, the full-length PML cDNA was transfected into B104-1-1 cells (NIH/3T3 cells transformed by the activated neu oncogene) by retrovirally mediated gene transfer. We found that expression of PML could reverse phenotypes of B104-1-1 including morphology, contact-limiting properties, and growth rate in both transient-expression and stable transfectants. We also demonstrated that PML is able to suppress clonogenicity of B104-1-1 in soft agar assay and tumorigenicity in nude mice. These results strongly support our previous finding that PML is a transformation or growth suppressor. Our results further demonstrate that expression of PML in B104-1-1 cells has little effect on cell cycle distribution. Western blot analysis demonstrated that suppression of neu expression in B104-1- 1 by PML was insignificant in the transient transfection experiment but significant in the PML stable transfectants. This study suggests that PML may suppress neu expression and block signaling events associated with activated neu. This study supports our hypothesis that disruption of the normal function of PML, a growth or transformation suppressor, is a critical event in APL leukomogenesis. PMID:7759992

  1. Intracellular univalent cations and the regulation of the BALB/c-3T3 cell cycle

    PubMed Central

    1981-01-01

    Addition of serum to density-arrested BALB/c-3T3 cells causes a rapid increase in uptake of Na+ and K+, followed 12 h later by the onset of DNA synthesis. We explored the role of intracellular univalent cation concentrations in the regulation of BALB/c-3T3 cell growth by serum growth factors. As cells grew to confluence, intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) fell from 40 and 180 to 15 and 90 mmol/liter, respectively. Stimulation of growth of density-inhibited cells by the addition of serum growth factors increased [Na]i by 30% and [K+]i by 13-25% in early G0/G1, resulting in an increase in total univalent cation concentration. Addition of ouabain to stimulated cells resulted in a concentration-dependent steady decrease in [K+]i and increase in [Na+]i. Ouabain (100 microM) decreased [K+]i to approximately 60 mmol/liter by 12 h, and also prevented the serum- stimulated increase in 86Rb+ uptake. However, 100 microM ouabain did not inhibit DNA synthesis. A time-course experiment was done to determine the effect of 100 microM ouabain on [K+]i throughout G0/G1 and S phase. The addition of serum growth factors to density-inhibited cells stimulated equal rates of entry into the S phase in the presence or absence of 100 microM ouabain. However, in the presence of ouabain, there was a decrease in [K+]i. Therefore, an increase in [K+]i is not required for entry into S phase; serum growth factors do not regulate cell growth by altering [K+]i. The significance of increased total univalent cation concentration is discussed. PMID:7204489

  2. Melatonin Suppresses Autophagy Induced by Clinostat in Preosteoblast MC3T3-E1 Cells.

    PubMed

    Yoo, Yeong-Min; Han, Tae-Young; Kim, Han Sung

    2016-01-01

    Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation induced a significant time-dependent increase in the levels of the autophagosomal marker microtubule-associated protein light chain (LC3), suggesting that autophagy is induced by clinostat rotation in these cells. Melatonin treatment (100, 200 nM) significantly attenuated the clinostat-induced increases in LC3 II protein, and immunofluorescence staining revealed decreased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating a decrease in autophagosomes. The levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (Ser2448), phosphorylation of extracellular signal-regulated kinase (p-ERK), and phosphorylation of serine-threonine protein kinase (p-Akt) (Ser473) were significantly reduced by clinostat rotation. However, their expression levels were significantly recovered by melatonin treatment. Also, expression of the Bcl-2, truncated Bid, Cu/Zn- superoxide dismutase (SOD), and Mn-SOD proteins were significantly increased by melatonin treatment, whereas levels of Bax and catalase were decreased. The endoplasmic reticulum (ER) stress marker GRP78/BiP, IRE1α, and p-PERK proteins were significantly reduced by melatonin treatment. Treatment with the competitive melatonin receptor antagonist luzindole blocked melatonin-induced decreases in LC3 II levels. These results demonstrate that melatonin suppresses clinostat-induced autophagy through increasing the phosphorylation of the ERK/Akt/mTOR proteins. Consequently, melatonin appears to be a potential therapeutic agent for regulating microgravity-related bone loss or osteoporosis. PMID:27070587

  3. Melatonin Suppresses Autophagy Induced by Clinostat in Preosteoblast MC3T3-E1 Cells

    PubMed Central

    Yoo, Yeong-Min; Han, Tae-Young; Kim, Han Sung

    2016-01-01

    Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation induced a significant time-dependent increase in the levels of the autophagosomal marker microtubule-associated protein light chain (LC3), suggesting that autophagy is induced by clinostat rotation in these cells. Melatonin treatment (100, 200 nM) significantly attenuated the clinostat-induced increases in LC3 II protein, and immunofluorescence staining revealed decreased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating a decrease in autophagosomes. The levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (Ser2448), phosphorylation of extracellular signal-regulated kinase (p-ERK), and phosphorylation of serine-threonine protein kinase (p-Akt) (Ser473) were significantly reduced by clinostat rotation. However, their expression levels were significantly recovered by melatonin treatment. Also, expression of the Bcl-2, truncated Bid, Cu/Zn- superoxide dismutase (SOD), and Mn-SOD proteins were significantly increased by melatonin treatment, whereas levels of Bax and catalase were decreased. The endoplasmic reticulum (ER) stress marker GRP78/BiP, IRE1α, and p-PERK proteins were significantly reduced by melatonin treatment. Treatment with the competitive melatonin receptor antagonist luzindole blocked melatonin-induced decreases in LC3 II levels. These results demonstrate that melatonin suppresses clinostat-induced autophagy through increasing the phosphorylation of the ERK/Akt/mTOR proteins. Consequently, melatonin appears to be a potential therapeutic agent for regulating microgravity-related bone loss or osteoporosis. PMID:27070587

  4. Carcinogenic potential of metal nanoparticles in BALB/3T3 cell transformation assay.

    PubMed

    Sighinolfi, G L; Artoni, E; Gatti, A M; Corsi, L

    2016-05-01

    Metal-based nanoparticles (NPs), are currently used in many application fields including consumer products, pharmaceuticals, and biomedical treatments. In spite to their wide applications, an in-depth study of their potential toxic effects is still lacking. The aim of the present research was to investigate the potential initiator or promoter-like activity of different metallic NPs such as gold, iron, cobalt, and cerium using the Balb/3T3 two-stage transformation assay. The results indicated that all the selected metallic NPs, except for cobalt, when used as initiators did not induce any transformation in Balb/3T3 cell line. Moreover, Au and Fe3 O4 NPs, when used in place of the tumor promoter treatment TPA, increased significantly the number of Foci/dish as compared to the MCA treatment alone. The number of Foci/dish was 2.6 for Au NPs and 2.13 for Fe3 O4 ones, similar to those obtained by the positive control treatment (MCA + TPA), whereas 1.27 for MCA treatment alone. On the contrary, CeO2 NPs did not show any difference in the number of Foci/dish, as compared to MCA alone, but it decreased the number of foci by 65% in comparison to the positive control (MCA + TPA). As expected, cobalt NPs showed an increased cytotoxicity and only a few surviving cells were found at the time of analysis showing a number of Foci/dish of 0.13. For the first time, our data clearly showed that Au and Fe3 O4 NPs act as promoters in the two stage transformational assay, suggesting the importance to fully investigate the NPs carcinogenic potential with different models. PMID:25358123

  5. Early expression of p107 is associated with 3T3-L1 adipocyte differentiation.

    PubMed

    Liu, Kenian; Guan, Yu; MacNicol, Melanie C; MacNicol, Angus M; McGehee, Robert E

    2002-08-30

    In response to hormonal stimulation quiescent 3T3-L1 preadipocyte cells reenter the cell cycle and undergo a mitotic expansion phase prior to terminal differentiation. The cell cycle regulatory proteins p130 and p107 undergo dramatic changes in protein levels within 24 h of differentiation. The role of these proteins in regulating adipocyte mitotic clonal expansion and/or differentiation are unclear. It has recently been demonstrated that adipocyte proliferation can be uncoupled from adipocyte differentiation through the use of the pharmacological MEK inhibitor PD98059 or the tyrosine phosphatase inhibitor, sodium vanadate. We examined the expression of p130 and p107 in stimulated 3T3-L1 cells in the presence of either PD98059, U0126 or sodium vanadate. While inhibition of MEK blocked proliferation, the cells underwent differentiation normally. In contrast, vanadate blocked differentiation without affecting proliferation. Inhibition of MEK did not affect the increase in p107 expression in stimulated cells indicating that induction of p107 is independent of MAP kinase signaling. Vanadate treatment caused a significant delay in p107 expression in the first 24 h following stimulation. Under these conditions, p130 expression was relatively unchanged. Our results indicate that a rapid increase in p107 expression correlates with a commitment to undergo adipocyte differentiation. The data further suggest that the rapid induction of p107 is not required for cellular proliferation during the mitotic clonal expansion phase. Taken together, these findings provide correlative data that implicate p107 in the terminal differentiation, but not proliferation, of quiescent preadipocytes following hormonal stimulation.

  6. The interaction of /sup 125/I-insulin with cultured 3T3-L1 adipocytes: quantitative analysis by the hypothetical grain method

    SciTech Connect

    Fan, J.Y.; Carpentier, J.L.; Van Obberghen, E.; Blackett, N.M.; Grunfeld, C.; Gorden, P.; Orci, L.

    1983-07-01

    The murine 3T3-L1 fibroblast under appropriate incubation conditions differentiates into an adipocyte phenotype. This 3T3-L1 adipocyte exhibits many of the morphologic, biochemical, and insulin-responsive features of the normal rodent adipocyte. Using quantitative electron microscopic (EM) autoradiography we find that, when /sup 125/I-insulin is incubated with 3T3-L1 adipocytes, the ligand at early times of incubation localizes to the plasma membrane of the cell preferentially to microvilli and coated pits. When the incubation is continued at 37 degrees C, /sup 125/I-insulin is internalized by the cells and preferential binding to the villous surface is lost. With the internalization of the ligand, two intracellular structures become labeled, as determined by the method of hypothetical grain analysis. These include large clear, presumably endocytotic, vesicles and multivesicular bodies. Over the first hour of incubation the labeling of these structures increases in parallel, but in the second hour they diverge: the labeling of multivesicular bodies and other lysosomal forms continuing to increase and the labeling of large clear vesicles decreasing. At 3 hours limited but significant labeling occurs in small Golgi-related vesicles that have the typical distribution of GERL. The distinct morphologic features of this cell make it ideal for a quantitative morphologic analysis and allow for an unambiguous view of the sequence of events involved in receptor-mediated endocytosis of a polypeptide hormone. These events are likely to be representative of the processing of insulin by the mature rodent adipocyte.

  7. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  8. Mitotic Defects Lead to Pervasive Aneuploidy and Accompany Loss of RB1 Activity in Mouse LmnaDhe Dermal Fibroblasts

    PubMed Central

    Pratt, C. Herbert; Curtain, Michelle; Donahue, Leah Rae; Shopland, Lindsay S.

    2011-01-01

    Background Lamin A (LMNA) is a component of the nuclear lamina and is mutated in several human diseases, including Emery-Dreifuss muscular dystrophy (EDMD; OMIM ID# 181350) and the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS; OMIM ID# 176670). Cells from progeria patients exhibit cell cycle defects in both interphase and mitosis. Mouse models with loss of LMNA function have reduced Retinoblastoma protein (RB1) activity, leading to aberrant cell cycle control in interphase, but how mitosis is affected by LMNA is not well understood. Results We examined the cell cycle and structural phenotypes of cells from mice with the Lmna allele, Disheveled hair and ears (LmnaDhe). We found that dermal fibroblasts from heterozygous LmnaDhe (LmnaDhe/+) mice exhibit many phenotypes of human laminopathy cells. These include severe perturbations to the nuclear shape and lamina, increased DNA damage, and slow growth rates due to mitotic delay. Interestingly, LmnaDhe/+ fibroblasts also had reduced levels of hypophosphorylated RB1 and the non-SMC condensin II-subunit D3 (NCAP-D3), a mitosis specific centromere condensin subunit that depends on RB1 activity. Mitotic check point control by mitotic arrest deficient-like 1 (MAD2L1) also was perturbed in LmnaDhe/+ cells. LmnaDhe/+ fibroblasts were consistently aneuploid and had higher levels of micronuclei and anaphase bridges than normal fibroblasts, consistent with chromosome segregation defects. Conclusions These data indicate that RB1 may be a key regulator of cellular phenotype in laminopathy-related cells, and suggest that the effects of LMNA on RB1 include both interphase and mitotic cell cycle control. PMID:21464947

  9. PAPSS2 Promotes Alkaline Phosphates Activity and Mineralization of Osteoblastic MC3T3-E1 Cells by Crosstalk and Smads Signal Pathways

    PubMed Central

    Wang, Weizhuo; Li, Fang; Wang, Kunzheng; Cheng, Bin; Guo, Xiong

    2012-01-01

    Several studies have indicated that PAPSS2 (3′-phosphoadenosine-5′-phosphosulfate synthetase 2) activity is important to normal skeletal development. Mouse PAPSS2 is predominantly expressed during the formation of the skeleton and cartilaginous elements of the mouse embryo and in newborn mice. However, the role and mechanism of PAPSS2 in bone formation remains largely unidentified. By analyzing the expression pattern of the PAPSS2 gene, we have found that PAPSS2 is expressed in bone tissue and bone formation. PAPSS2 transcripts increase during osteoblast differentiation and are in less level in RANKL-induced osteoclast like cells. By using lentivirus-mediated RNA interference (RNAi) technology, we knocked down PAPSS2 expression in MC3T3-E1 osteoblast. Silencing of PAPSS2 expression significantly decreases ALP activity and cell mineralization, inhibits expression of osteoblast marker osteopontin (OPN) and collagen I. Conversely, overexpression of PAPSS2 promotes the MC3T3-E1 to differentiate into osteoblast and mineralization. Moreover, compared to that in the control cells, the mRNA level and protein expression of phosphorylated Smad 2/3, which is a key transcriptional factor in the Smad osteoblast differentiation pathway, showed significant decreases in PAPSS2-silenced cells and increases in PAPSS2-overexpression cells. These results suggest that PAPSS2 might regulate osteoblast ALP activity and cell mineralization, probably through Smads signal pathways. PMID:22916269

  10. The piggyBac Transposon-Mediated Expression of SV40 T Antigen Efficiently Immortalizes Mouse Embryonic Fibroblasts (MEFs)

    PubMed Central

    Cui, Jing; Zhang, Hongmei; Chen, Xiang; Li, Ruidong; Wu, Ningning; Chen, Xian; Wen, Sheng; Zhang, Junhui; Yin, Liangjun; Deng, Fang; Liao, Zhan; Zhang, Zhonglin; Zhang, Qian; Yan, Zhengjian; Liu, Wei; Ye, Jixing; Deng, Youlin; Wang, Zhongliang; Qiao, Min; Luu, Hue H.; Haydon, Rex C.; Shi, Lewis L.; Liang, Houjie; He, Tong-Chuan

    2014-01-01

    Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs’ basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies. PMID:24845466

  11. Notch-1 expression levels in 3T3-L1 cells influence ras signaling and transformation by oncogenic ras.

    PubMed

    Ruiz-Hidalgo, M J; Garcés, C; Laborda, J

    1999-04-01

    Notch proteins participate in interactions between several cell types involved on the specification of numerous cell fates during development. We previously showed that enforced downregulation of Notch-1 expression prevented adipogenesis of 3T3-L1 cells. Since adipogenesis of 3T3-L1 cells can be induced by oncogenic ras, we studied whether this was also the case in 3T3-L1 cells with decreased levels of Notch-1 expression. We found that oncogenic ras induces transformation and not differentiation of 3T3-L1 cells with diminished levels of Notch-1. This result suggests that Notch-1 is implicated in the interpretation of signals leading to activation of p21 Ras.

  12. In vitro BALB/3T3 cell transformation assay of nonoxynol-9 and 1,4-dioxane

    SciTech Connect

    Sheu, C.W.; Moreland, F.M.; Lee, J.K.; Dunkel, V.C.

    1988-01-01

    The spermicidal surfactant nonoxynol-9 (Igepal CO-630, GAF Corp.) and a potential impurity, 1,4-dioxane, were tested in the in vitro cell transformation assay using BALB/3T3 cells. Two treatment periods, 48 hr and 13 days, were used. Nonoxynol-9, tested at levels up to 10 /sup +/g/ml, did not induce transformation, whereas dioxane was very active in the induction type II foci in the cultured BALB/3T3 cells.

  13. Anti-obesity effect of Blumea balsamifera extract in 3T3-L1 preadipocytes and adipocytes.

    PubMed

    Kubota, Hiroaki; Kojima-Yuasa, Akiko; Morii, Risako; Huang, Xuedan; Norikura, Toshio; Rho, Sook-Nyung; Matsui-Yuasa, Isao

    2009-01-01

    Obesity, the leading metabolic disease in the world, is a serious health problem in industrialized countries. We investigated the anti-obesity effect of Blumea balsamifera extract on adipocyte differentiation of 3T3-L1 preadipocytes and anti-obesity effect of 3T3-L1 adipocytes. We found that treatment with an extract of Blumea balsamifera suppressed lipid accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity without affecting cell viability in 3T3-L1 preadipocytes and adipocytes. Furthermore, Blumea balsamifera extract brought significant attenuation of expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor (PPAR)gamma, CCAAT element binding protein (C/EBPs) and leptin, however, induced up-regulation of adiponectin at the protein level in 3T3-L1 preadipocytes and adipocytes. These results suggest that Blumea balsamifera extract may block adipogenesis, at least in part, by decreasing key adipogenic transcription factors in 3T3-L1 preadipocytes and may have antiatherogenic, anti-inflammatory, and antidiabetic effects through up-regulation of adiponectin in 3T3-L1 adipocytes. PMID:19885945

  14. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells

    SciTech Connect

    Arora, S.; Jain, J.; Rajwade, J.M.; Paknikar, K.M.

    2009-05-01

    Primary cells are ideal for in vitro toxicity studies since they closely resemble tissue environment. Here, we report a detailed study on the in vitro interactions of 7-20 nm spherical silver nanoparticles (SNP) with primary fibroblasts and primary liver cells isolated from Swiss albino mice. The intended use of silver nanoparticles is in the form of a topical antimicrobial gel formulation for the treatment of burns and wounds. Upon exposure to SNP for 24 h, morphology of primary fibroblasts and primary liver cells remained unaltered up to 25 {mu}g/mL and 100 {mu}g/mL SNP, respectively, although with minor decrease in confluence. IC{sub 50} values for primary fibroblasts and primary liver cells as revealed by XTT assay were 61 {mu}g/mL and 449 {mu}g/mL, respectively. Ultra-thin sections of primary cells exposed to 1/2 IC{sub 50} SNP for 24 h, visualized under Transmission electron microscope showed the presence of dark, electron dense, spherical aggregates inside the mitochondria, and cytoplasm, probably representing the intracellular SNP. When the cells were challenged with {approx} 1/2 IC{sub 50} concentration of SNP (i.e. 30 {mu}g/mL and 225 {mu}g/mL for primary fibroblasts and primary liver cells, respectively), enhancement of GSH ({approx} 1.2 fold) and depletion of lipid peroxidation ({approx} 1.4 fold) were seen in primary fibroblasts which probably protect the cells from functional damage. In case of primary liver cells; increased levels of SOD ({approx} 1.4 fold) and GSH ({approx} 1.1 fold) as compared to unexposed cells were observed. Caspase-3 activity assay indicated that the SNP concentrations required for the onset of apoptosis were found to be much lower (3.12 {mu}g/mL in primary fibroblasts, 12.5 {mu}g/mL in primary liver cells) than the necrotic concentration (100 {mu}g/mL in primary fibroblasts, 500 {mu}g/mL in primary liver cells). These observations were confirmed by CLSM studies by exposure of cells to 1/2 IC{sub 50} SNP (resulting in apoptosis

  15. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells.

    PubMed

    Arora, S; Jain, J; Rajwade, J M; Paknikar, K M

    2009-05-01

    Primary cells are ideal for in vitro toxicity studies since they closely resemble tissue environment. Here, we report a detailed study on the in vitro interactions of 7-20 nm spherical silver nanoparticles (SNP) with primary fibroblasts and primary liver cells isolated from Swiss albino mice. The intended use of silver nanoparticles is in the form of a topical antimicrobial gel formulation for the treatment of burns and wounds. Upon exposure to SNP for 24 h, morphology of primary fibroblasts and primary liver cells remained unaltered up to 25 microg/mL and 100 microg/mL SNP, respectively, although with minor decrease in confluence. IC(50) values for primary fibroblasts and primary liver cells as revealed by XTT assay were 61 microg/mL and 449 microg/mL, respectively. Ultra-thin sections of primary cells exposed to 1/2 IC(50) SNP for 24 h, visualized under Transmission electron microscope showed the presence of dark, electron dense, spherical aggregates inside the mitochondria, and cytoplasm, probably representing the intracellular SNP. When the cells were challenged with approximately 1/2 IC(50) concentration of SNP (i.e. 30 microg/mL and 225 microg/mL for primary fibroblasts and primary liver cells, respectively), enhancement of GSH (approximately 1.2 fold) and depletion of lipid peroxidation (approximately 1.4 fold) were seen in primary fibroblasts which probably protect the cells from functional damage. In case of primary liver cells; increased levels of SOD ( approximately 1.4 fold) and GSH ( approximately 1.1 fold) as compared to unexposed cells were observed. Caspase-3 activity assay indicated that the SNP concentrations required for the onset of apoptosis were found to be much lower (3.12 microg/mL in primary fibroblasts, 12.5 microg/mL in primary liver cells) than the necrotic concentration (100 microg/mL in primary fibroblasts, 500 microg/mL in primary liver cells). These observations were confirmed by CLSM studies by exposure of cells to 1/2 IC(50) SNP

  16. Sensitivity of simian virus 40-transformed C57BL/6 mouse embryo fibroblasts to lysis by murine natural killer cells.

    PubMed

    Fresa, K L; Karjalainen, H E; Tevethia, S S

    1987-02-15

    The susceptibility of mouse cells expressing full-length or truncated transforming protein (T antigen) of simian virus 40 (SV40) to lysis by murine natural killer (NK) cells was assessed. For these studies, C57BL/6 mouse embryo fibroblasts (B6/MEF) were transformed by transfection with SV40 DNA encoding the entire T antigen. The transformed cell lines were tested for susceptibility to lysis by nonimmune CBA splenocytes as a source of NK cells and to lysis by C57BL/6, SV40-specific cytolytic T cells (CTL). It was found that 13 of 15 clonally derived, SV40-transformed H-2b cell lines were susceptible to lysis by NK cells. However, there was some variation in their susceptibility to lysis by NK cells. There was no correlation between susceptibility to lysis by SV40-specific CTL and to lysis by NK cells. Cells transfected with a plasmid which encodes only the N-terminal half of the SV40 T antigen were consistently less susceptible to lysis by NK cells, suggesting that expression of only the N-terminus of the T antigen was insufficient for optimal susceptibility to lysis by NK cells. Primary mouse embryo fibroblasts transformed by human adenovirus type 5 E1 region DNA were also found to be susceptible to NK cell-mediated lysis. Lysis of SV40-transformed cells by nonimmune CBA splenocytes was mediated by NK cells because: lysis was augmented when the effector cells were treated with interferon before assay; and lysis was abrogated when the effector cells were obtained from mice that had been depleted of NK activity by treatment with antiserum against the asialo GM1 surface marker. These results indicate that primary mouse cells which are transformed by SV40 and which express the native T antigen are susceptible to lysis by mouse NK cells. Conversely, cells transformed by a plasmid encoding only the N-terminal half of the T antigen express reduced susceptibility to lysis by NK cells. PMID:3027174

  17. Induction of Adipocyte Differentiation by Polybrominated Diphenyl Ethers (PBDEs) in 3T3-L1 Cells

    PubMed Central

    Tung, Emily W. Y.; Boudreau, Adèle; Wade, Michael G.; Atlas, Ella

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX). A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2) and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis. PMID:24722056

  18. Neuropeptide Y potentiates beta-adrenergic stimulation of lipolysis in 3T3-L1 adipocytes.

    PubMed

    Li, Raymond; Guan, Haiyan; Yang, Kaiping

    2012-10-10

    Recently, we have shown that neuropeptide Y (NPY) is produced and upregulated in visceral adipose tissue of an early-life programmed rat model of central obesity. Moreover, we have demonstrated that NPY promotes proliferation of adipocyte precursor cells and contributes to the pathogenesis of obesity. However, the role of NPY in regulating adipocyte metabolism is poorly understood. The present study was designed to examine the effects of NPY on adipocyte metabolic function using 3T3-L1 adipocytes as an in vitro cell model system. We found that although it did not affect basal lipolysis, NPY potentiated isoproterenol (a β-adrenergic receptor agonist) stimulated lipolysis. Furthermore, this potentiation occurred upstream of adenylyl cyclase, since NPY did not enhance forskolin (an activator of adenylyl cyclase) stimulated lipolysis. In addition, NPY also augmented isoproterenol-stimulated phosphorylation of hormone sensitive lipase. In contrast, NPY did not alter the expression of several key lipolytic and lipogenic enzymes/proteins. Taken together, our results revealed a novel cross talk between the NPY and β-adrenergic signaling pathways in regulating lipolysis. Thus, the present findings add a new dimension to the dynamic role NPY plays in regulating energy balance.

  19. Flow cytometric analysis of intracellular pH in 3T3 cells.

    PubMed

    Gillies, R J; Cook, J; Fox, M H; Giuliano, K A

    1987-07-01

    Techniques to determine intracellular pH generally report the average pH of population and do not indicate whether or not there is significant variance among cells within the population. Population variance is important to ascribe pH changes on a per cell basis. The magnitude of the pH change in individual cells is important to ascribe physiological function to changes in pH. To determine the variability of cell responses, we have used dual wavelength fluorescence emission spectroscopy of intracellular dicyanohydroquinone monitored with flow cytometry to determine the pH of normal and transformed 3T3 cells in response to serum or serum components. All cells were mechanically harvested from subconfluent cultures. Large differences in pH were observed between serum-deprived and serum-conditioned normal, but not transformed, cells. Addition of serum caused cytosolic alkalinization, with the serum-deprived cells responding more slowly. Titration of cells with submaximal doses of serum indicate that the response of pH is graded, that all cells respond in similar manner, and that the relative affinity of transformed cells for the serum components causing the pH effect is about twice that of normal cells.

  20. MEASUREMENT OF LIPOLYSIS PRODUCTS SECRETED BY 3T3-L1 ADIPOCYTES USING MICROFLUIDICS

    PubMed Central

    Dugan, Colleen E.; Kennedy, Robert T.

    2015-01-01

    Glass microfluidic devices have been fabricated to monitor the secretion of glycerol or fatty acids from cultured murine 3T3-L1 adipocytes. In the current studies, adipocytes are perfused in a reversibly-sealed cell chamber and secreted products are analyzed by enzyme assay on either a single- or dual-chip device. The analysis of glycerol employed the use of a dual-chip system, which used separate chips for cell perfusion and sample analysis. An improved single-chip device integrated the cell perfusion chamber and analysis component on one platform. The performance of this device was demonstrated by the analysis of fatty acids, but could also be applied to analysis of glycerol or other chemicals. The single-chip system required fewer cells and lower flow rates, and provided improved temporal response. In both systems, cells were perfused with buffer to monitor basal response followed by lipolysis stimulation with the β-adrenergic agonist isoproterenol. Measured basal glycerol concentration from 50,000 cells was 28 μM, and when stimulated, a spike 3-fold higher than basal concentration was detected followed by a continuous release 40% above basal levels. Fatty acid basal concentration was 24 μM, measured from 6,200 cells, and isoproterenol stimulation resulted in a constant elevated concentration 7-fold higher than basal levels. PMID:24529440

  1. Isotopomer spectral analysis of triglyceride fatty acid synthesis in 3T3-L1 cells.

    PubMed

    Kharroubi, A T; Masterson, T M; Aldaghlas, T A; Kennedy, K A; Kelleher, J K

    1992-10-01

    A new analysis of stable isotope data for biosynthesis reaction, isotopomer spectral analysis (ISA), is demonstrated. ISA is theoretically applicable for polymerization biosynthesis where data are collected using selected ion-monitoring gas chromatography-mass spectrometry. ISA utilizes the discrete spectrum of isotopomer abundances and the multinomial distribution to estimate two key parameters related to the biosynthesis. These parameters are 1) the dilution of the precursor immediately before biosynthesis and 2) the dilution of the newly synthesized product in the sampled compartment. Differentiated 3T3-L1 cells incorporated 2 mM [1,2-13C]acetate into triglyceride palmitate, yielding a spectrum of mass isotopomers of palmitate. The set of equations for the first nine isotopomers were solved for the two parameters using nonlinear regression. We found that precursor dilutions for acetate and glucose were constant over time, whereas the product dilution parameter increased with time, as expected for cells accumulating triglyceride palmitate. Mathematical procedures are presented for calculating 1) the predicted isotopomer fractional abundance values and 2) the correction for atoms other than the tracer atom in the mass ion. PMID:1415685

  2. Hierarchical polymeric scaffolds support the growth of MC3T3-E1 cells.

    PubMed

    Akbarzadeh, Rosa; Minton, Joshua A; Janney, Cara S; Smith, Tyler A; James, Paul F; Yousefi, Azizeh-Mitra

    2015-02-01

    Tissue engineering makes use of the principles of biology and engineering to sustain 3D cell growth and promote tissue repair and/or regeneration. In this study, macro/microporous scaffold architectures have been developed using a hybrid solid freeform fabrication/thermally induced phase separation (TIPS) technique. Poly(lactic-co-glycolic acid) (PLGA) dissolved in 1,4-dioxane was used to generate a microporous matrix by the TIPS method. The 3D-bioplotting technique was used to fabricate 3D macroporous constructs made of polyethylene glycol (PEG). Embedding the PEG constructs inside the PLGA solution prior to the TIPS process and subsequent extraction of PEG following solvent removal (1,4-dioaxane) resulted in a macro/microporous structure. These hierarchical scaffolds with a bimodal pore size distribution (<50 and >300 μm) contained orthogonally interconnected macro-channels generated by the extracted PEG. The diameter of the macro-channels was varied by tuning the dispensing parameters of the 3D bioplotter. The in vitro cell culture using murine MC3T3-E1 cell line for 21 days demonstrated that these scaffolds could provide a favorable environment to support cell adhesion and growth.

  3. Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation

    PubMed Central

    Wang, Yu; Cui, Haitao; Wu, Zhenxu; Wu, Naipeng; Wang, Zongliang; Chen, Xuesi; Wei, Yen; Zhang, Peibiao

    2016-01-01

    Electrical stimulation (ES) is therapeutic to many bone diseases, from promoting fracture regeneration to orthopedic intervention. The application of ES offers substantial therapeutic potential, while optimal ES parameters and the underlying mechanisms responsible for the positive clinical impact are poorly understood. In this study, we assembled an ES cell culture and monitoring device. Mc-3T3-E1 cells were subjected to different frequency to investigate the effect of osteogenesis. Cell proliferation, DNA synthesis, the mRNA levels of osteosis-related genes, the activity of alkaline phosphatase (ALP), and intracellular concentration of Ca2+ were thoroughly evaluated. We found that 100 Hz could up-regulate the mRNA levels of collagen I, collagen II and Runx2. On the contrary, ES could down-regulate the mRNA levels of osteopontin (OPN). ALP activity assay and Fast Blue RR salt stain showed that 100 Hz could accelerate cells differentiation. Compared to the control group, 100 Hz could promote cell proliferation. Furthermore, 1 Hz to 10 Hz could improve calcium deposition in the intracellular matrix. Overall, these results indicate that 100Hz ES exhibits superior potentialities in osteogenesis, which should be beneficial for the clinical applications of ES for the treatment of bone diseases. PMID:27149625

  4. Rubus suavissimus S. Lee extract increases early adipogenesis in 3T3-L1 preadipocytes.

    PubMed

    Ezure, Tomonobu; Amano, Satoshi

    2011-04-01

    Leaves of Rubus suavissimus S. Lee (Rosaceae) are used to prepare tiencha or sweet tea, which is helpful for body weight control by restricting calorie intake in obese patients. Obesity is a risk factor for metabolic syndrome, and a possible approach to treatment is to promote early adipogenesis in adipose tissue, thereby leading to replacement of enlarged adipocytes that secrete inflammatory factors with small adipocytes.We therefore investigated the effect of extract of tiencha leaves on early adipogenesis by using 3T3-L1 preadipocytes as a model. Tiencha extract significantly and concentration-dependently increased adipogenesis measured in terms of lipid accumulation by means of Oil Red O assay and increased the expression of adiponectin and leptin. In the early phase of adipogenesis, tiencha extract increased the mRNA expression of adipogenic transcription factors CCAAT/enhancer binding protein α (C/EBPα) and proliferator-activated receptor γ (PPARγ). In contrast, mRNA expression of other adipogenic transcription factors, C/EBPδ and C/EBPβ, was unaffected. The mRNA expression levels of adipocyte-specific genes encoding adipocyte protein 2 (aP2), lipoprotein lipase (LPL), and glucose transporter 4 (Glut4), which are regulated by C/EBPα and PPARγ, were also increased. A PPARγ inhibitor, GW9662, partially inhibited the enhancing effect of tiencha extract on lipogenesis. These results suggest that tiencha extract enhances early adipogenesis by increasing the expression of adipogenic transcription factors C/EBPα and PPARγ.

  5. Aldosterone perturbs adiponectin and PAI-1 expression and secretion in 3T3-L1 adipocytes.

    PubMed

    Li, P; Zhang, X-N; Pan, C-M; Sun, F; Zhu, D-L; Song, H-D; Chen, M-D

    2011-06-01

    Aldosterone is considered as a new cardiovascular risk factor that plays an important role in metabolic syndrome; however, the underlying mechanism of these effects is not clear. Hypoadiponectinemia and elevated circulating concentration of plasminogen activator inhibitor-1 (PAI-1) are causally associated with obesity-related insulin resistance and cardiovascular disease. The aim of the present study is to investigate the effect of aldosterone on the production of adiponectin and PAI-1 in 3T3-L1 adipocytes. Northern and Western blot analyses revealed that aldosterone treatment inhibited adiponectin mRNA expression and secretion and simultaneously enhanced PAI-1 mRNA expression and secretion in a time- and dose-dependent manner. Rosiglitazone did not prevent aldosterone's effect on adiponectin or PAI-1 expression. In contrast, tumor necrosis factor (TNF)-α produced dramatic synergistic effects on adiponectin and PAI-1 expression when added together with aldosterone. Furthermore, the effects of aldosterone on adiponectin and PAI-1 expression appear to be mediated through glucocorticoid receptor (GR) but not mineralocorticoid receptor (MR). These results suggest that the effects of aldosterone on adiponectin and PAI-1 production are one of the underlying mechanisms linking it to insulin resistance, metabolic syndrome and cardiovascular disease. PMID:21667402

  6. Sphingosine-1-phosphate inhibits the adipogenic differentiation of 3T3-L1 preadipocytes.

    PubMed

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2014-10-01

    Sphingosine-1-phosphate (S1P) is a pluripotent lipid mediator that transmits signals through G-protein-coupled receptors to control diverse biological processes. The novel biological activity of S1P in the adipogenesis of 3T3-L1 preadipocytes was identified in the present study. S1P significantly decreased lipid accumulation in maturing preadipocytes in a dose‑dependent manner. In order to understand the anti‑adipogenic effects of S1P, preadipocytes were treated with S1P, and the change in the expression of several adipogenic transcription factors and enzymes was investigated using quantitative RT-PCR. S1P downregulated the transcriptional levels of the peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding proteins and adiponectin, which are markers of adipogenic differentiation. The effects of S1P on the levels of mitogen‑activated protein kinase (MAPK) signals in preadipocytes were also investigated. The activation of JNK and p38 were downregulated by S1P treatment in human preadipocytes. In conclusion, the results of this study suggest that S1P alters fat mass by directly affecting adipogenesis. This is mediated by the downregulation of adipogenic transcription factors and by inactivation of the JNK and p38 MAPK pathways. Thus, selective targeting of the S1P receptors and sphingosine kinases may have clinical applications for the treatment of obesity. PMID:25050633

  7. MC3T3-E1 Cell Response to Pure Titanium, Zirconia and Nano-Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hwan; Han, Jung-Suk; Yang, Jae-Ho; Lee, Jai-Bong; Kim, Dae-Joon

    Titanium, zirconia and HAp were known as good biocompatible materials for tissue engineering. Osteblastic cell response is influence by the surface topography of material and its chemical composition as well. To evaluate the influence of different chemical compositions on osteoblast-like cells the specimens were polished until they have almost identical surface roughness. The commercially pure titanium, zirconia/alumina composite and nano-sized hydroxyapatite (HAp) specimens synthesized by hydrothermal method were used to evaluate the cell attachment, proliferation and differentiation. Confocal laser microscopy was used measurement of surface roughness, and flourescence microscopy and SEM were used to evaluate initial cell attachment and morphology after 3 hours. MTS assay was performed for cell proliferation after 1, 3, 7 days and ALP assay was used for cell differentiation after 7, 10, 14 days of cell culture period. Surface topography of nano-HAp specimen was almost identical compared with those of titanium and zirconia specimen. Under this condition, proliferation and differentiation of MC3T3-E1 cells was not significantly different with those on titanium and zirconia specimen. However, cells on Nano-HAp specimen showed quicker and more active cellular reaction for attachment when measured by the expression of adhesion proteins through confocal laser microscopy. The results suggested that the new nano-sized HAp can be applied as a suitable material for skeletal tissue engineering.

  8. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells.

    PubMed

    Kim, Sang Chon; Kim, Yoo Hoon; Son, Sung Wook; Moon, Eun-Yi; Pyo, Suhkneung; Um, Sung Hee

    2015-11-27

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a naturally found flavonol in many fruits and vegetables and is known to have anti-aging, anti-cancer and anti-viral effects. However, the effects of fisetin on early adipocyte differentiation and the epigenetic regulator controlling adipogenic transcription factors remain unclear. Here, we show that fisetin inhibits lipid accumulation and suppresses the expression of PPARγ in 3T3-L1 cells. Fisetin suppressed early stages of preadipocyte differentiation, and induced expression of Sirt1. Depletion of Sirt1 abolished the inhibitory effects of fisetin on intracellular lipid accumulation and on PPARγ expression. Mechanistically, fisetin facilitated Sirt1-mediated deacetylation of PPARγ and FoxO1, and enhanced the association of Sirt1 with the PPARγ promoter, leading to suppression of PPARγ transcriptional activity, thereby repressing adipogenesis. Lowering Sirt1 levels reversed the effects of fisetin on deacetylation of PPARγ and increased PPARγ transactivation. Collectively, our results suggest the effects of fisetin in increasing Sirt1 expression and in epigenetic control of early adipogenesis.

  9. mVps45 knockdown selectively modulates VAMP expression in 3T3-L1 adipocytes.

    PubMed

    Sadler, Jessica B A; Roccisana, Jennifer; Virolainen, Minttu; Bryant, Nia J; Gould, Gwyn W

    2015-01-01

    Insulin stimulates the delivery of glucose transporter-4 (GLUT4)-containing vesicles to the surface of adipocytes. Depletion of the Sec1/Munc18 protein mVps45 significantly abrogates insulin-stimulated glucose transport and GLUT4 translocation. Here we show that depletion of mVps45 selectively reduced expression of VAMPs 2 and 4, but not other VAMP isoforms. Although we did not observe direct interaction of mVps45 with any VAMP isoform; we found that the cognate binding partner of mVps45, Syntaxin 16 associates with VAMPs 2, 4, 7 and 8 in vitro. Co-immunoprecipitation experiments in 3T3-L1 adipocytes revealed an interaction between Syntaxin 16 and only VAMP4. We suggest GLUT4 trafficking is controlled by the coordinated expression of mVps45/Syntaxin 16/VAMP4, and that depletion of mVps45 regulates VAMP2 levels indirectly, perhaps via reduced trafficking into specialized subcellular compartments.

  10. mVps45 knockdown selectively modulates VAMP expression in 3T3-L1 adipocytes

    PubMed Central

    Sadler, Jessica B A; Roccisana, Jennifer; Virolainen, Minttu; Bryant, Nia J; Gould, Gwyn W

    2015-01-01

    Insulin stimulates the delivery of glucose transporter-4 (GLUT4)-containing vesicles to the surface of adipocytes. Depletion of the Sec1/Munc18 protein mVps45 significantly abrogates insulin-stimulated glucose transport and GLUT4 translocation. Here we show that depletion of mVps45 selectively reduced expression of VAMPs 2 and 4, but not other VAMP isoforms. Although we did not observe direct interaction of mVps45 with any VAMP isoform; we found that the cognate binding partner of mVps45, Syntaxin 16 associates with VAMPs 2, 4, 7 and 8 in vitro. Co-immunoprecipitation experiments in 3T3-L1 adipocytes revealed an interaction between Syntaxin 16 and only VAMP4. We suggest GLUT4 trafficking is controlled by the coordinated expression of mVps45/Syntaxin 16/VAMP4, and that depletion of mVps45 regulates VAMP2 levels indirectly, perhaps via reduced trafficking into specialized subcellular compartments. PMID:26479872

  11. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes

    SciTech Connect

    Saito, Takeshi; Abe, Daigo; Sekiya, Keizo . E-mail: ksekiya@affrc.go.jp

    2007-06-01

    Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) targets and PPAR{gamma} itself, however, nobiletin did not exhibit PPAR{gamma} ligand activity. We observed the expression of CCAAT/enhancer binding protein {beta} (C/EBP{beta}), a transcription factor for PPAR{gamma}, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulated kinase (ERK), which play important roles in C/EBP{beta} expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB.

  12. A fully autologous co-culture system utilising non-irradiated autologous fibroblasts to support the expansion of human keratinocytes for clinical use.

    PubMed

    Jubin, K; Martin, Y; Lawrence-Watt, D J; Sharpe, J R

    2011-12-01

    Autologous keratinocytes can be used to augment cutaneous repair, such as in the treatment of severe burns and recalcitrant ulcers. Such cells can be delivered to the wound bed either as a confluent sheet of cells or in single-cell suspension. The standard method for expanding primary human keratinocytes in culture uses lethally irradiated mouse 3T3 fibroblasts as feeder cells to support keratinocyte attachment and growth. In an effort to eliminate xenobiotic cells from clinical culture protocols where keratinocytes are applied to patients, we investigated whether human autologous primary fibroblasts could be used to expand keratinocytes in culture. At a defined ratio of a 6:1 excess of keratinocytes to fibroblasts, this co-culture method displayed a population doubling rate comparable to culture with lethally irradiated 3T3 cells. Furthermore, morphological and molecular analysis showed that human keratinocytes expanded in co-culture with autologous human fibroblasts were positive for proliferation markers and negative for differentiation markers. Keratinocytes expanded by this method thus retain their proliferative phenotype, an important feature in enhancing rapid wound closure. We suggest that this novel co-culture method is therefore suitable for clinical use as it dispenses with the need for lethally irradiated 3T3 cells in the rapid expansion of autologous human keratinocytes.

  13. EVALUATION OF BENZO[C]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T1/2CL8 CELLS

    EPA Science Inventory

    EVALUATION OF BENZO[c]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T?CL8 CELLS

    Abstract The morphological cell transforming activities of three dihydrodiols of benzo[c]chrysene (B[c]C), trans-B[c]C-7,8-diol, trans-B[c]C-9...

  14. Slow growth and unstable ribosomal RNA lacking pseudouridine in mouse embryonic fibroblast cells expressing catalytically inactive dyskerin

    PubMed Central

    Gu, Bai-Wei; Ge, Jingping; Fan, Jian-Meng; Bessler, Monica; Mason, Philip J.

    2013-01-01

    Pseudouridine is the most abundant modified nucleotide in ribosomal RNA throughout eukaryotes and archaea but its role is not known. Here we produced mouse embryonic fibroblast cells expressing only catalytically inactive dyskerin, the pseudouridine synthase that converts uridine to pseudouridine in ribosomal RNA. The mutant dyskerin protein, D125A, was extremely unstable but cells were able to divide and grow very slowly. Abnormalities in ribosome RNA synthesis were apparent but mature cytoplasmic RNAs lacking pseudouridine were produced and were very unstable. We conclude that pseudouridine is required to stabilize the secondary structure of ribosomal RNA that is essential for its function. Structured summary of protein interactions∷ fibrillarin and Dkc1 colocalize by fluorescence microscopy (View interaction) PMID:23726835

  15. Mechanisms of Multi-walled Carbon Nanotubes-Induced Oxidative Stress and Genotoxicity in Mouse Fibroblast Cells.

    PubMed

    Alarifi, Saud; Ali, Daoud

    2015-01-01

    The extensive production and wide application of carbon nanotubes have made investigations of its toxic potentials necessary. In the present study, we explored the underlying mechanism through which multi-walled carbon nanotubes (MWCNTs) induce toxicity in mouse fibroblast cells (L929). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and neutral red uptake viability assays were used to examine mechanisms of cytotoxicity. Dose and time-dependent cytotoxicity was observed in L929 cells. The MWCNTs significantly increased the generation of reactive oxygen species, lipid peroxidation, superoxide dismutase, and decreased glutathione. It was observed that the MWCNTs induced caspase 3 activity. The highest DNA strand breakage was detected by comet assay at 300 µg/mL of MWCNTs. Thus, the data indicate that MWCNTs induced cytotoxicity and apoptosis in L929 cells via oxidative stress.

  16. Effects of different fatty acids and dietary lipids on adiponectin gene expression in 3T3-L1 cells and C57BL/6J mice adipose tissue.

    PubMed

    Bueno, Allain Amador; Oyama, Lila Missae; de Oliveira, Cristiane; Pisani, Luciana Pelegrini; Ribeiro, Eliane Beraldi; Silveira, Vera Lucia Flor; Oller do Nascimento, Cláudia Maria

    2008-01-01

    Obesity is positively correlated to dietary lipid intake, and the type of lipid may play a causal role in the development of obesity-related pathologies. A major protein secreted by adipose tissue is adiponectin, which has antiatherogenic and antidiabetic properties. The aim of this study was to evaluate the effects of four different high-fat diets (enriched with soybean oil, fish oil, coconut oil, or lard) on adiponectin gene expression and secretion by the white adipose tissue (WAT) of mice fed on a selected diet for either 2 (acute treatment) or 60 days (chronic treatment). Additionally, 3T3-L1 adipocytes were treated for 48 h with six different fatty acids: palmitic, linoleic, eicosapentaenoic (EPA), docosahexaenoic (DHA), lauric, or oleic acid. Serum adiponectin concentration was reduced in the soybean-, coconut-, and lard-enriched diets in both groups. Adiponectin gene expression was lower in retroperitoneal WAT after acute treatment with all diets. The same reduction in levels of adiponectin gene expression was observed in epididymal adipose tissue of animals chronically fed soybean and coconut diets and in 3T3-L1 cells treated with palmitic, linoleic, EPA, and DHA acids. These results indicate that the intake of certain fatty acids may affect serum adiponectin levels in mice and adiponectin gene expression in mouse WAT and 3T3-L1 adipocytes. The effects appear to be time dependent and depot specific. It is postulated that the downregulation of adiponectin expression by dietary enrichment with soybean oil or coconut oil may contribute to the development of insulin resistance and atherosclerosis.

  17. Soshiho-Tang Aqueous Extract Exerts Antiobesity Effects in High Fat Diet-Fed Mice and Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Lee, Mee-young; Kang, Byoung-Kab

    2016-01-01

    Soshiho-tang (SST; sho-saiko-to in Japanese; xiaochaihu-tang in Chinese) has generally been used to improve liver fibrosis- and cirrhosis-related symptoms in traditional Korean medicine. Although many studies have investigated the pharmacological properties of SST, its antiobesity effect has not been elucidated. Thus, our present study was carried out to evaluate the antiobesity effect of SST using a high fat diet- (HFD) induced obese mouse model and 3T3-L1 adipose cells. C57BL/6J mice were randomly divided into four groups (n = 6/group), normal diet (ND), HFD-fed group, and HFD- and SST-fed groups (S200: 200 mg/kg of SST; S600: 600 mg/kg of SST) and given HFD with or without SST extract for 8 weeks. 3T3-L1 preadipocytes were differentiated into adipocytes for 8 days with or without SST. In the HFD-fed obese mice, body weight and fat accumulation in adipose tissue were significantly reduced by SST administration. Compared with control-differentiated adipocytes, SST significantly inhibited lipid accumulation by decreasing the triglyceride (TG) content and leptin concentration in 3T3-L1 adipocytes. SST also decreased the expression of adipogenesis-related genes including lipoprotein lipase (LPL), fatty acid binding protein 4 (FABP4), CCAAT/enhancer-binding protein-alpha (C/EBP-α), and peroxisome proliferator-activated receptor-gamma (PPAR-γ). Our findings suggest that SST has potential as a nontoxic antiobesity medication. PMID:27777595

  18. Activation of PPAR-γ inhibits PDGF-induced proliferation of mouse renal fibroblasts.

    PubMed

    Lu, Jiamei; Shi, Jianhua; Gui, Baosong; Yao, Ganglian; Wang, Li; Ou, Yan; Zhu, Dan; Ma, Liqun; Ge, Heng; Fu, Rongguo

    2016-10-15

    Recent studies have shown that activation of peroxisome proliferators activated receptor-γ (PPAR-γ) ameliorates renal interstitial fibrosis (RIF) in animal model. Yet, the underlying molecular mechanisms remain still largely unknown. Here, we investigated the hypothesis that activation of PPAR-γ regulates renal remodeling by modulating proliferation of primary cultured renal fibroblasts. In our present study, platelet-derived growth factor-AA (PDGF-AA), a key isoform of PDGF superfamily as mitogen in RIF, was applied to stimulate renal fibroblasts, the selective inhibitor or sequence specific siRNA of PI3K, skp2 or PPAR-γ was used to investigate the involvement of above molecular mediators in PDGF-AA-induced cell proliferation. Our results demonstrate that PDGF-AA induced proliferation of renal fibroblasts by activating PI3K/AKT signaling and resultant skp2 production. Pre-stimulation of cells with rosiglitazone or adenovirus carrying PPAR-γ cDNA (AdPPAR-γ) blocked PDGF-AA-stimulated cell proliferation, this effect was particularly coupled to PPAR-γ inhibition of AKT phosphorylation and skp2 expression. Inhibition of PPAR-γ by GW9662 restored the suppression of activated PPAR-γ on phosphorylation of AKT and subsequent skp2 production. Our results indicate that activation of PI3K/AKT signaling and resultant skp2 generation mediated PDGF-induced proliferation of renal fibroblasts. Activation of PPAR-γ inhibited cell proliferation by inhibition of AKT phosphorylation and its down-streams.

  19. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment.

    PubMed

    Sekinaka, Tamotsu; Hayashi, Yohei; Noce, Toshiaki; Niwa, Hitoshi; Matsui, Yasuhisa

    2016-09-09

    Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs.

  20. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment

    PubMed Central

    Sekinaka, Tamotsu; Hayashi, Yohei; Noce, Toshiaki; Niwa, Hitoshi; Matsui, Yasuhisa

    2016-01-01

    Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs. PMID:27608931

  1. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment

    NASA Astrophysics Data System (ADS)

    Sekinaka, Tamotsu; Hayashi, Yohei; Noce, Toshiaki; Niwa, Hitoshi; Matsui, Yasuhisa

    2016-09-01

    Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs.

  2. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment.

    PubMed

    Sekinaka, Tamotsu; Hayashi, Yohei; Noce, Toshiaki; Niwa, Hitoshi; Matsui, Yasuhisa

    2016-01-01

    Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs. PMID:27608931

  3. Hormone and pharmaceutical regulation of ASP production in 3T3-L1 adipocytes.

    PubMed

    Gao, Ying; Gauvreau, Danny; Cianflone, Katherine

    2010-04-01

    Several studies have demonstrated increases in acylation stimulating protein (ASP), and precursor protein C3 in obesity, diabetes and dyslipidemia, however the nature of the regulation is unknown. To evaluate chronic hormonal and pharmaceutical mediated changes in ASP and potential mechanisms, 3T3-L1 adipocytes were treated with physiological concentrations of relevant hormones and drugs currently used in treatment of metabolic diseases for 48 h. Medium ASP production and C3 secretion were evaluated in relation to changes in adipocyte lipid metabolism (cellular triglyceride (TG) mass, non-esterified fatty acid (NEFA) release and real-time FA uptake). Chylomicrons increased ASP production (up to 411 +/- 133% P < 0.05), while leptin, triiodothyronine, and beta-blockers atenolol and propranolol had no effect. Dexamethasone, lovastatin, rosiglitazone and rimonabant decreased ASP production (-53 to -85%, P < 0.05), associated with a decrease in the precursor protein C3 (-37% to -65%, P < 0.01). By contrast, epinephrine, progesterone, testosterone, angiotensin II and metformin also decreased ASP (-54% to -100%, P < 0.05), but without change in precursor protein C3, suggesting a direct effect on convertase activity, possibly mediated by interference (except metformin) due to marked increases in NEFA (5.6-31-fold, increased P < 0.05). Both lovastatin and metformin induced decreases in ASP were also associated with decreased TG mass (maximal -60%, P < 0.05) and real-time FA uptake (maximum -75%, P < 0.05), suggesting a change in adipocyte differentiation status. These in vitro results are consistent with in vivo ASP profiles in subjects, and suggest that ASP may be regulated through precursor C3 availability, convertase activity and differentiation status.

  4. Thermotolerance inhibits various stress-induced apoptosis in NIH3T3 cells.

    PubMed

    Park, J E; Lee, K J; Kim, C

    1998-02-01

    When NIH3T3 cells were exposed to mild heat and recovered at 37 degrees C for various time intervals, they were thermotolerant and resistant to subsequent stresses including heat, oxidative stresses, and antitumor drug methotrexate which are apoptotic inducers. The induction kinetics of apoptosis by stresses were determined by DNA fragmentation and protein synthesis using [35S]methionine pulse labeling. We investigated the hypothesis that thermotolerant cells were resistant to apoptotic cell death compared to control cells when both cells were exposed to various stresses inducing apoptosis. The cellular changes in thermotolerant cells were examined to determine which components are involved in this resistance. At first, the degree of resistance correlates with the extent of heat shock protein synthesis which were varied depending on the heating times at 45 degrees C and recovery times at 37 degrees C after heat shock. Secondly, membrane permeability change was observed in thermotolerant cells. When cells prelabeled with [3H]thymidine were exposed to various amounts of heat and recovered at 37 degrees C for 1/2 to 24 h, the permeability of cytosolic [3H]thymidine in thermotolerant cells was 4 fold higher than that in control cells. Thirdly, the protein synthesis rates in thermotolerant and control cells were measured after exposing the cells to the same extent of stress. It turned out that thermotolerant cells were less damaged to same amount of stress than control cells, although the recovery rates are very similar to each other. These results demonstrate that an increase of heat shock proteins and membrane changes in thermotolerant cells may protect the cells from the stresses and increase the resistance to apoptotic cell death, even though the exact mechanism should be further studied.

  5. Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes.

    PubMed

    Hao, Jiejie; Shen, Weili; Yu, Guangli; Jia, Haiqun; Li, Xuesen; Feng, Zhihui; Wang, Ying; Weber, Peter; Wertz, Karin; Sharman, Edward; Liu, Jiankang

    2010-07-01

    Hydroxytyrosol (HT) in extra-virgin olive oil is considered one of the most important polyphenolic compounds responsible for the health benefits of the Mediterranean diet for lowering incidence of cardiovascular disease, the most common and most serious complication of diabetes. We propose that HT may prevent these diseases by a stimulation of mitochondrial biogenesis that leads to enhancement of mitochondrial function and cellular defense systems. In the present study, we investigated effects of HT that stimulate mitochondrial biogenesis and promote mitochondrial function in 3T3-L1 adipocytes. HT over the concentration range of 0.1-10 micromol/L stimulated the promoter transcriptional activation and protein expression of peroxisome proliferator-activated receptor (PPAR) coactivator 1 alpha (PPARGC1 alpha, the central factor for mitochondrial biogenesis) and its downstream targets; these included nuclear respiration factors 1 and 2 and mitochondrial transcription factor A, which leads to an increase in mitochondrial DNA (mtDNA) and in the number of mitochondria. Knockdown of Ppargc1 alpha by siRNA blocked HT's stimulating effect on Complex I expression and mtDNA copy number. The HT treatment resulted in an enhancement of mitochondrial function, including an increase in activity and protein expression of Mitochondrial Complexes I, II, III and V; increased oxygen consumption; and a decrease in free fatty acid contents in the adipocytes. The mechanistic study of the PPARGC1 alpha activation signaling pathway demonstrated that HT is an activator of 5'AMP-activated protein kinase and also up-regulates gene expression of PPAR alpha, CPT-1 and PPAR gamma. These data suggest that HT is able to promote mitochondrial function by stimulating mitochondrial biogenesis. PMID:19576748

  6. Substrate selectivity of diacylglycerol kinase in PDGF-stimulated 3T3 cells

    SciTech Connect

    MacDonald, M.L.; Mack, K.F.; Glomset, J.A.

    1987-05-01

    The authors investigated the properties of Diacylglycerol (DAG) Kinase in 3T3 cells. PDGF treatment caused an increase in DAG mass, an increase in incorporation of /sup 32/P into phosphatidic acid (PA) and phosphatidylinositol (PI), and an increase in the rate of phosphorylation of membrane DAG in vitro. The mechanism of enhanced phosphorylation of DAG was studied with dicaprylin (diC/sub 10/) as a probe. Cells were prelabeled with /sup 32/P and treated with PDGF or carrier. DiC/sub 10/ was added to the cell medium before harvesting. With PDGF treatment, the radioactivity in endogenous PA increased fourfold, whereas the radioactivity in PA/sub 10/ and PI/sub 10/ was consistently decreased. To verify that the PDGF effect on PA/sub 10/ formation in intact cells was due to reduced phosphorylation of diC/sub 10/ by DAG kinase, cells were treated with PDGF and/or diC/sub 10/, freeze-thawed, and then incubated with Mg(/sup 32/P)ATP. The rate of phosphorylation of cell-associated diC/sub 10/ was decreased 50% by PDGF treatment. This effect could not be explained by decreased intracellular levels of diC/sub 10/, or by saturation of DAG kinase with endogenous DAGs. Therefore, it seemed that endogenous DAGs, derived from PI, might be better substrates for DAG kinase than is diC/sub 10/. In studies of the properties of DAG kinase with pure DAGs in mixed detergent micelles, they found that the enzyme phosphorylated arachidonoyl-DAG more readily than diC/sub 10/. The selectivity of DAG kinase may play a key role in the formation of arachidonoyl species of PI.

  7. Inositol hexakisphosphate inhibits mineralization of MC3T3-E1 osteoblast cultures.

    PubMed

    Addison, William N; McKee, Marc D

    2010-04-01

    Inositol hexakisphosphate (IP6, phytic acid) is an endogenous compound present in mammalian cells and tissues. Differentially phosphorylated forms of inositol are well-documented to have important roles in signal transduction, cell proliferation and differentiation, and IP6 in particular has been suggested to inhibit soft tissue calcification (specifically renal and vascular calcification) by binding extracellularly to calcium oxalate and calcium phosphate crystals. However, the effects of IP6 on bone mineralization are largely unknown. In this study, we used MC3T3-E1 osteoblast cultures to examine the effects of exogenous IP6 on osteoblast function and matrix mineralization. IP6 at physiologic concentrations caused a dose-dependent inhibition of mineralization without affecting cell viability, proliferation or collagen deposition. Osteoblast differentiation markers, including tissue-nonspecific alkaline phosphatase activity, bone sialoprotein and osteocalcin mRNA levels, were not adversely affected by IP6 treatment. On the other hand, IP6 markedly increased protein and mRNA levels of osteopontin, a potent inhibitor of crystal growth and matrix mineralization. Inositol alone (without phosphate), as well as inositol hexakis-sulphate, a compound with a high negative charge similar to IP6, had no effect on mineralization or osteopontin induction. Binding of IP6 to mineral crystals from the osteoblast cultures, as well as to synthetic hydroxyapatite crystals, was confirmed by a colorimetric assay for IP6. In summary, IP6 inhibits mineralization of osteoblast cultures by binding to growing crystals through negatively charged phosphate groups and by induction of inhibitory osteopontin expression. These data suggest that IP6 may regulate physiologic bone mineralization by directly acting extracellularly, and by serving as a specific signal at the cellular level for the regulation of osteopontin gene expression.

  8. Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes

    PubMed Central

    de Oliveira, Miriane; Síbio, Maria Teresa De; Olimpio, Regiane Marques Castro; Moretto, Fernanda Cristina Fontes; Luvizotto, Renata de Azevedo Melo; Nogueira, Celia Regina

    2015-01-01

    Objective To study the effect of different doses of triiodothyronine on gene expression of the adipokines leptin and adiponectin, at different times, and to evaluate the difference in expression between the two adipokines in each group. Methods 3T3-L1 adipocytes were incubated with triiodothyronine at physiological dose (10nM) and supraphysiological doses (100nM or 1,000nM), or without triiodothyronine (control, C) for 0.5, 6, or 24 hours. Leptin and adiponectin mRNA was detected using real-time polymerase chain reaction (RT-PCR). One-way analyses of variance, Tukey’s test or Student’s t test, were used to analyze data, and significance level was set at 5%. Results Leptin levels decreased in the 1,000nM-dose group after 0.5 hour. Adiponectin levels dropped in the 10nM-dose group, but increased at the 100nM dose. After 6 hours, both genes were suppressed in all hormone concentrations. After 24 hours, leptin levels increased at 10, 100 and 1,000nM groups as compared to the control group; and adiponectin levels increased only in the 100nM group as compared to the control group. Conclusion These results demonstrated fast actions of triiodothyronine on the leptin and adiponectin expression, starting at 0.5 hour, at a dose of 1,000nM for leptin and 100nM for adiponectin. Triiodothyronine stimulated or inhibited the expression of adipokines in adipocytes at different times and doses which may be useful to assist in the treatment of obesity, assuming that leptin is increased and adiponectin is decreased, in obesity cases. PMID:25993072

  9. Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine.

    PubMed

    Al Alam, Denise; Danopoulos, Soula; Schall, Kathy; Sala, Frederic G; Almohazey, Dana; Fernandez, G Esteban; Georgia, Senta; Frey, Mark R; Ford, Henri R; Grikscheit, Tracy; Bellusci, Saverio

    2015-04-15

    Intestinal epithelial cell renewal relies on the right balance of epithelial cell migration, proliferation, differentiation, and apoptosis. Intestinal epithelial cells consist of absorptive and secretory lineage. The latter is comprised of goblet, Paneth, and enteroendocrine cells. Fibroblast growth factor 10 (FGF10) plays a central role in epithelial cell proliferation, survival, and differentiation in several organs. The expression pattern of FGF10 and its receptors in both human and mouse intestine and their role in small intestine have yet to be investigated. First, we analyzed the expression of FGF10, FGFR1, and FGFR2, in the human ileum and throughout the adult mouse small intestine. We found that FGF10, FGFR1b, and FGFR2b are expressed in the human ileum as well as in the mouse small intestine. We then used transgenic mouse models to overexpress Fgf10 and a soluble form of Fgfr2b, to study the impact of gain or loss of Fgf signaling in the adult small intestine. We demonstrated that overexpression of Fgf10 in vivo and in vitro induces goblet cell differentiation while decreasing Paneth cells. Moreover, FGF10 decreases stem cell markers such as Lgr5, Lrig1, Hopx, Ascl2, and Sox9. FGF10 inhibited Hes1 expression in vitro, suggesting that FGF10 induces goblet cell differentiation likely through the inhibition of Notch signaling. Interestingly, Fgf10 overexpression for 3 days in vivo and in vitro increased the number of Mmp7/Muc2 double-positive cells, suggesting that goblet cells replace Paneth cells. Further studies are needed to determine the mechanism by which Fgf10 alters cell differentiation in the small intestine.

  10. Effect of Black Soybean Koji Extract on Glucose Utilization and Adipocyte Differentiation in 3T3-L1 Cells

    PubMed Central

    Huang, Chi-Chang; Huang, Wen-Ching; Hou, Chien-Wen; Chi, Yu-Wei; Huang, Hui-Yu

    2014-01-01

    Adipocyte differentiation and the extent of subsequent fat accumulation are closely related to the occurrence and progression of diseases such as insulin resistance and obesity. Black soybean koji (BSK) is produced by the fermentation of black soybean with Aspergilllus awamori. Previous study indicated that BSK extract has antioxidative and multifunctional bioactivities, however, the role of BSK in the regulation of energy metabolism is still unclear. We aimed to investigate the effect of glucose utilization on insulin-resistant 3T3-L1 preadipocytes and adipogenesis-related protein expression in differentiated adipocytes with BSK treatment. Cytoxicity assay revealed that BSK did not adversely affect cell viability at levels up to 200 μg/mL. The potential for glucose utilization was increased by increased glucose transporter 1 (GLUT1), GLUT4 and protein kinase B (AKT) protein expression in insulin-resistant 3T3-L1 cells in response to BSK treatment. Simultaneously, BSK inhibited lipid droplet accumulation in differentiated 3T3-L1 cells. The inhibitory effect of adipogenesis was associated with downregulated peroxisome proliferator-activated receptor γ (PPARγ) level and upregulated Acrp30 protein expression. Our results suggest that BSK extract could improve glucose uptake by modulating GLUT1 and GLUT4 expression in a 3T3-L1 insulin-resistance cell model. In addition, BSK suppressed differentiation and lipid accumulation in mature 3T3-L1 adipocytes, which may suggest its potential for food supplementation to prevent obesity and related metabolic abnormalities. PMID:24821545

  11. An in vitro phototoxicity assay battery (photohaemolysis and 3T3 NRU PT test) to assess phototoxic potential of fragrances.

    PubMed

    Nam, Chunja; An, Susun; Lee, Eunyoung; Moon, Seongjoon; Kang, Jongkoo; Chang, Ihseop

    2004-06-01

    The purpose of this study was to compare the in vivo and in vitro phototoxicity potentials of 13 fragrances. We used the 3T3 neutral red uptake phototoxicity (3T3 NRU PT) test and the photohaemolysis test as in vitro phototoxicity assays. In the 3T3 NRU PT test, all of the fragrances were non-phototoxic. Six fragrances were phototoxic in the photohaemolysis test. Three of the six photohaemolytic fragrances were phototoxic in the guinea-pig photoirritation test. These phototoxic fragrances did not cause cellular phototoxicity, but showed a photohaemolytic reaction. The photohaemolysis test was more sensitive than the 3T3 NRU PT test for screening for the phototoxicity of fragrances. The accuracy of this in vitro phototoxicity test battery was 82%. It is thought that the major phototoxic mechanism of fragrances is cell membrane damage. We suggest that a battery composed of the 3T3 NRU PT test and the photohaemolysis test is a simple and effective model for the in vitro phototoxicity assay of fragrances.

  12. Purple Sweet Potato Leaf Extract Induces Apoptosis and Reduces Inflammatory Adipokine Expression in 3T3-L1 Differentiated Adipocytes.

    PubMed

    Lee, Shou-Lun; Chin, Ting-Yu; Tu, Ssu-Chieh; Wang, Yu-Jie; Hsu, Ya-Ting; Kao, Ming-Ching; Wu, Yang-Chang

    2015-01-01

    Background. Purple sweet potato leaves (PSPL) are widely grown and are considered a healthy vegetable in Taiwan. PSPL contain a high content of flavonoids, and the boiling water-extracted PSPL (PSPLE) is believed to prevent metabolic syndrome. However, its efficacy has not yet been verified. Therefore, we investigated the effect of PSPLE on adipocytes. Methods. The differentiated 3T3-L1 cells used in this study were derived from preadipocytes that were differentiated into adipocytes using an adipogenic agent (insulin, dexamethasone, and 3-isobutyl-1-methylxanthine); approximately 90% of the cells were differentiated using this method. Results. Treating the differentiated 3T3-L1 cells with PSPLE caused a dose-dependent decrease in the number of adipocytes rather than preadipocytes. In addition, treatment with PSPLE resulted in apoptosis of the differentiated 3T3-L1 cells as determined by DAPI analysis and flow cytometry. PSPLE also increased the expression of cleaved caspase-3 and poly ADP-ribose polymerase (PARP). Furthermore, PSPLE induced downregulation of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) gene expression in the differentiated 3T3-L1 cells. Conclusions. These results suggest that PSPLE not only induced apoptosis but also downregulated inflammation-associated genes in the differentiated 3T3-L1 cells. PMID:26170870

  13. Shp2 suppresses the adipogenic differentiation of preadipocyte 3T3-L1 cells at an early stage

    PubMed Central

    Tao, J; Zheng, L; Meng, M; Li, Y; Lu, Z

    2016-01-01

    Tyrosine phosphatase protein Shp2 is a potential therapeutic target for obesity. However, the mechanism of Shp2 during adipogenesis is not fully understood. The present study investigated the role of Shp2 in the terminal differentiation of preadipocytes. The results showed that Shp2 suppressed adipocyte differentiation in 3T3-L1 cells; overexpression of Shp2 reduced lipid droplet production in 3T3-L1 cells, whereas Shp2 knockdown increased lipid droplet production in 3T3-L1 cells. Furthermore, inhibition of Shp2 activity also enhanced adipocyte differentiation. Interestingly, Shp2 expression was specifically decreased early during differentiation in response to stimulation with the dexamethasone–methylisobutylxanthine–insulin (DMI) hormone cocktail. During the first 2 days of differentiation, Shp2 overexpression impaired the DMI-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in 3T3-L1 cells and blocked the peak expression of CCAAT/enhancer-binding proteins β and δ during preadipocyte differentiation. In conclusion, Shp2 downregulated the early stages of hormone-induced differentiation of 3T3-L1 cells and inhibited the expression of the first wave of transcription factors by suppressing the DMI-induced STAT3 signaling pathway. These discoveries point to a novel role of Shp2 during adipogenesis and support the hypothesis that Shp2 could be a therapeutic target for the control of obesity. PMID:27551539

  14. Hop and Acacia Phytochemicals Decreased Lipotoxicity in 3T3-L1 Adipocytes, db/db Mice, and Individuals with Metabolic Syndrome

    PubMed Central

    Minich, Deanna M.; Lerman, Robert H.; Darland, Gary; Babish, John G.; Pacioretty, Linda M.; Bland, Jeffrey S.; Tripp, Matthew L.

    2010-01-01

    The plant-based compounds rho-iso-alpha acids (RIAA) from Humulus lupulus (hops) and proanthocyanidins (PAC) from Acacia nilotica have been shown to modulate insulin signaling in vitro. We investigated their effects on triglyceride (TG) deposition in 3T3-L1 adipocytes, glucose and insulin in obese mouse models, and metabolic syndrome markers in adults with metabolic syndrome. The combination of RIAA and PAC synergistically increased TG content and adiponectin secretion in 3T3-L1 adipocytes under hyperinsulinemic conditions and reduced glucose or insulin in obese mice. In a clinical trial, tablets containing 100 mg RIAA and 500 mg PAC or placebo were administered to metabolic syndrome subjects (3 tablets/day, n = 35; 6 tablets/day, n = 34; or placebo, n = 35) for 12 weeks. Compared to placebo, subjects taking 3 tablets daily showed greater reductions in TG, TG : HDL, fasting insulin, and HOMA scores. The combination of RIAA : PAC at 1 : 5 (wt : wt) favorably modulates dysregulated lipids in insulin resistance and metabolic syndrome. PMID:20721358

  15. Expression of a cDNA for the catalytic subunit of skeletal-muscle phosphorylase kinase in transfected 3T3 cells.

    PubMed Central

    Cawley, K C; Akita, C G; Walsh, D A

    1989-01-01

    Phosphorylase kinase is a multimeric enzyme of composition (alpha, beta, gamma, delta)4 whose catalytic activity resides in the gamma-subunit. As an approach to understand further its regulation, a cDNA for the gamma-subunit of phosphorylase kinase (gamma PhK) has been cloned into a mammalian expression vector behind the mouse metallothionein-1 promoter. NIH 3T3 cells were co-transfected with this construct (pEV gamma PhK) and pSV2neo, G418-resistant clones were selected, and several were found to have stably incorporated the gamma-subunit cDNA into their genomic DNA. Phosphorylase kinase activity was clearly present in extracts from cultures of pEV gamma PhK-transformed cells and increased several-fold after 24 h of incubation with Zn2+, whereas it was undetectable in the parent 3T3 cells. A significant, but variable, proportion (15-70%) of the activity was Ca2+-dependent. We conclude that the phosphorylase kinase activity expressed by the cells transformed with pEV gamma PhK is due to free gamma-subunit and gamma-subunit associated with cellular calmodulin, which replaces the delta-subunit normally associated with the gamma-subunit in the holoenzyme. Images Fig. 1. Fig. 2. Fig. 3. PMID:2481439

  16. Unstable resistance of G mouse fibroblasts to ecotropic murine leukemia virus infection.

    PubMed Central

    Yoshikura, H; Naito, Y; Moriwaki, K

    1979-01-01

    G mouse cells were resistant to N- and NB-tropic Friend leukemia viruses and to B-tropic WN 1802B. Though the cells were resistant to focus formation by the Moloney isolate of murine sarcoma virus, they were relatively sensitive to helper component murine leukemia virus. To amphotropic murine leukemia virus and to focus formation by amphotropic murine sarcoma virus, G mouse cells were fully permissive. When the cell lines were established starting from the individual embryos, most cell lines were not resistant to the murine leukemia viruses. Only one resistant line was established. Cloning of this cell line indicated that the resistant cells constantly segregated sensitive cells during the culture; i.e., the G mouse cell cultures were probably always mixtures of sensitive and resistant cells. Among the sensitive cell clones, some were devoid of Fv-1 restriction. Such dually permissive cells, and also feral mouse-derived SC-1 cells, retained glucose-6-phosphate dehydrogenase-1 and apparently normal number 4 chromosomes. The loss of Fv-1 restriction in these mouse cells was not brought about by any gross structural changes in the vicinity of Fv-1 on number 4 chromosomes. Images PMID:221667

  17. Appl1 and Appl2 are Expendable for Mouse Development But Are Essential for HGF-Induced Akt Activation and Migration in Mouse Embryonic Fibroblasts.

    PubMed

    Tan, Yinfei; Xin, Xiaoban; Coffey, Francis J; Wiest, David L; Dong, Lily Q; Testa, Joseph R

    2016-05-01

    Although Appl1 and Appl2 have been implicated in multiple cellular activities, we and others have found that Appl1 is dispensable for mouse embryonic development, suggesting that Appl2 can substitute for Appl1 during development. To address this possibility, we generated conditionally targeted Appl2 mice. We found that ubiquitous Appl2 knockout (Appl2-/-) mice, much like Appl1-/- mice, are viable and grow normally to adulthood. Intriguingly, when Appl1-/- mice were crossed with Appl2-/- mice, we found that homozygous Appl1;Appl2 double knockout (DKO) animals are also viable and grossly normal with regard to reproductive potential and postnatal growth. Appl2-null and DKO mice were found to exhibit altered red blood cell physiology, with erythrocytes from these mice generally being larger and having a more irregular shape than erythrocytes from wild type mice. Although Appl1/2 proteins have been previously shown to have a very strong interaction with phosphatidylinositol-3 kinase (Pi3k) in thymic T cells, Pi3k-Akt signaling and cellular differentiation was unaltered in thymocytes from Appl1;Appl2 (DKO) mice. However, Appl1/2-null mouse embryonic fibroblasts exhibited defects in HGF-induced Akt activation, migration, and invasion. Taken together, these data suggest that Appl1 and Appl2 are required for robust HGF cell signaling but are dispensable for embryonic development and reproduction.

  18. Five-parameter fluorescence imaging: wound healing of living Swiss 3T3 cells

    PubMed Central

    1987-01-01

    Cellular functions involve the temporal and spatial interplay of ions, metabolites, macromolecules, and organelles. To define the mechanisms responsible for completing cellular functions, we used methods that can yield both temporal and spatial information on multiple physiological parameters and chemical components in the same cell. We demonstrated that the combined use of selected fluorescent probes, fluorescence microscopy, and imaging methods can yield information on at least five separate cellular parameters and components in the same living cell. Furthermore, the temporal and spatial dynamics of each of the parameters and/or components can be correlated with one or more of the others. Five parameters were investigated by spectrally isolating defined regions of the ultraviolet, visible, and near-infrared spectrum based on five distinct fluorescent probes. The parameters included nuclei (Hoechst 33342), mitochondria (diIC1-[5] ), endosomes (lissamine rhodamine B-dextran), actin (fluorescein), and the cell volume Cy7- dextran). Nonmotile, confluent Swiss 3T3 cells did not show any detectable polarity of cell shape, or distribution of nuclei, endosomes, or mitochondria. These cells also organized a large percentage of the actin into stress fibers. In contrast, cells migrating into an in vitro wound exhibited at least two stages of reorganization of organelles and cytoplasm. During the first 3 h after wounding, the cells along the edge of the wound assumed a polarized shape, carried the nuclei in the rear of the cells, excluded endosomes and mitochondria from the lamellipodia, and lost most of the highly organized stress fibers. The cell showed a dramatic change between 3 and 7 h after producing the wound. The cells became highly elongated and motile; both the endosomes and the mitochondria penetrated into the lamellipodia, while the nuclei remained in the rear and the actin remained in less organized structures. Defining the temporal and spatial dynamics and

  19. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    SciTech Connect

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2014-02-15

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  20. Polyphosphates inhibit extracellular matrix mineralization in MC3T3-E1 osteoblast cultures.

    PubMed

    Hoac, Betty; Kiffer-Moreira, Tina; Millán, José Luis; McKee, Marc D

    2013-04-01

    Studies on various compounds of inorganic phosphate, as well as on organic phosphate added by post-translational phosphorylation of proteins, all demonstrate a central role for phosphate in biomineralization processes. Inorganic polyphosphates are chains of orthophosphates linked by phosphoanhydride bonds that can be up to hundreds of orthophosphates in length. The role of polyphosphates in mammalian systems, where they are ubiquitous in cells, tissues and bodily fluids, and are at particularly high levels in osteoblasts, is not well understood. In cell-free systems, polyphosphates inhibit hydroxyapatite nucleation, crystal formation and growth, and solubility. In animal studies, polyphosphate injections inhibit induced ectopic calcification. While recent work has proposed an integrated view of polyphosphate function in bone, little experimental data for bone are available. Here we demonstrate in osteoblast cultures producing an abundant collagenous matrix that normally show robust mineralization, that two polyphosphates (PolyP5 and PolyP65, polyphosphates of 5 and 65 phosphate residues in length) are potent mineralization inhibitors. Twelve-day MC3T3-E1 osteoblast cultures with added ascorbic acid (for collagen matrix assembly) and β-glycerophosphate (a source of phosphate for mineralization) were treated with either PolyP5 or PolyP65. Von Kossa staining and calcium quantification revealed that mineralization was inhibited in a dose-dependent manner by both polyphosphates, with complete mineralization inhibition at 10μM. Cell proliferation and collagen assembly were unaffected by polyphosphate treatment, indicating that polyphosphate inhibition of mineralization results not from cell and matrix effects but from direct inhibition of mineralization. This was confirmed by showing that PolyP5 and PolyP65 bound to synthetic hydroxyapatite in a concentration-dependent manner. Tissue-nonspecific alkaline phosphatase (TNAP, ALPL) efficiently hydrolyzed the two PolyPs as

  1. Validation of a commercially available anti-REDD1 antibody using RNA interference and REDD1-/- mouse embryonic fibroblasts

    PubMed Central

    Grainger, Deborah L.; Kutzler, Lydia; Rannels, Sharon L.; Kimball, Scot R.

    2016-01-01

    REDD1 is a transcriptional target gene of p53 and HIF-1, and an inhibitor of mTOR (mechanistic target of rapamycin) complex 1 (mTORC1)-signaling through PP2A-dependent interaction, making it an important convergence point of both tumor suppression and cell growth pathways. In accordance with this positioning, REDD1 levels are transcriptionally upregulated in response to a variety of cellular stress factors such as nutrient deprivation, hypoxia and DNA damage. In the absence of such conditions, and in particular where growth factor signaling is activated, REDD1 expression is typically negligible; therefore, it is necessary to induce REDD1 prior to experimentation or detection in model systems. Here, we evaluated the performance of a commercially available polyclonal antibody recognizing REDD1 by Western blotting in the presence of thapsigargin, a pharmacological inducer of ER stress well known to upregulate REDD1 protein expression. Further, REDD1 antibody specificity was challenged in HEK-293 cells in the presence of RNA interference and with a REDD1 -/- mouse embryonic fibroblast knockout cell line. Results showed reproducibility and specificity of the antibody, which was upheld in the presence of thapsigargin treatment. We conclude that this antibody can be used to reliably detect REDD1 endogenous expression in samples of both human and mouse origin. PMID:27335637

  2. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor.

    PubMed

    Gritti, A; Parati, E A; Cova, L; Frolichsthal, P; Galli, R; Wanke, E; Faravelli, L; Morassutti, D J; Roisen, F; Nickel, D D; Vescovi, A L

    1996-02-01

    It has been established that the adult mouse forebrain contains multipotential (neuronal/glial) progenitor cells that can be induced to proliferate in vitro when epidermal growth factor is provided. These cells are found within the subventricular zone of the lateral ventricles, together with other progenitor cell populations, whose requirements for proliferation remain undefined. Using basic fibroblast growth factor (bFGF), we have isolated multipotential progenitors from adult mouse striatum. These progenitors proliferate and can differentiate into cells displaying the antigenic properties of astrocytes, oligodendrocytes, and neurons. The neuron-like cells possess neuronal features, exhibit neuronal electrophysiological properties, and are immunoreactive for GABA, substance P, choline acetyl-transferase, and glutamate. Clonal analysis confirmed the multipotency of these bFGF-dependent cells. Most significantly, subcloning experiments demonstrated that they were capable of self-renewal, which led to a progressive increase in population size over serial passaging. These results demonstrate that bFGF is mitogenic for multipotential cells from adult mammalian forebrain that possess stem cell properties. PMID:8558238

  3. A Swiss 3T3 variant cell line resistant to the effects of tumor promoters cannot be transformed by src.

    PubMed Central

    Nori, M; Shawver, L K; Weber, M J

    1990-01-01

    To study the relationship between oncogenesis by v-src and normal cellular signalling pathways, we determined the effects of v-src on 3T3-TNR9 cells, a Swiss 3T3 variant which does not respond mitogenically to tumor promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We found that src was unable to transform these variant cells, whether the oncogene was introduced by infection with a murine retrovirus vector or by transfection with plasmid DNA. 3T3-TNR9 cells were not inherently resistant to transformation, since infection with similar recombinant retroviruses containing either v-ras or v-abl did induce transformation. Further analysis of Swiss 3T3 and 3T3-TNR9 cell populations infected with the v-src-containing retrovirus revealed that although the amount of v-src DNA in each was approximately the same, the level of the v-src message and protein and the overall level of phosphotyrosine expressed in the infected variants was much less than in infected parental cells. Cotransfection experiments using separate v-src and neo plasmids revealed a decrease in the number of G418-resistant colonies when transfections of TNR9 cells occurred in the presence of the src-containing plasmid, suggesting a growth inhibitory effect of v-src on 3T3-TNR9 cells, as has also been found for TPA itself. Since v-src cannot transform this variant cell line, which does not respond mitogenically to the protein kinase C agonist TPA, we suggest that src makes use of the protein kinase C pathway as part of its signalling activities. Images PMID:2115120

  4. Glucose starvation and hypoxia, but not the saturated fatty acid palmitic acid or cholesterol, activate the unfolded protein response in 3T3-F442A and 3T3-L1 adipocytes

    PubMed Central

    Mihai, Adina D; Schröder, Martin

    2015-01-01

    Obesity is associated with endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) in adipose tissue. In this study we identify physiological triggers of ER stress and of the UPR in adipocytes in vitro. We show that two markers of adipose tissue remodelling in obesity, glucose starvation and hypoxia, cause ER stress in 3T3-F442A and 3T3-L1 adipocytes. Both conditions induced molecular markers of the IRE1α and PERK branches of the UPR, such as splicing of XBP1 mRNA and CHOP, as well as transcription of the ER stress responsive gene BiP. Hypoxia also induced an increase in phosphorylation of the PERK substrate eIF2α. By contrast, physiological triggers of ER stress in many other cell types, such as the saturated fatty acid palmitic acid, cholesterol, or several inflammatory cytokines including TNF-α, IL-1β, and IL-6, do not cause ER stress in 3T3-F442A and 3T3-L1 adipocytes. Our data suggest that physiological changes associated with remodelling of adipose tissue in obesity, such as hypoxia and glucose starvation, are more likely physiological ER stressors of adipocytes than the lipid overload or hyperinsulinemia associated with obesity. PMID:26257992

  5. Anti-adipogenic activity of an olive seed extract in mouse fibroblasts.

    PubMed

    Veciana-Galindo, Carmen; Cortés-Castell, Ernesto; Torró-Montell, Luis; Palazón-Bru, Antonio; Sirvent-Segura, Elia; Rizo-Baeza, María M; Gil-Guillén, Vicente F

    2015-06-01

    La administración de diferentes polifenoles protege contra el incremento de peso y la acumulación de grasa. Objetivo: comprobar la actividad anti-adipogénica de un extracto polifenólico de huesos de aceituna, utilizando la diferenciación a adipocitos de la línea celular 3T3-L1 de fibroblastos de ratón. Material y métodos: se cultivan y diferencian las células (6.000 células/pocillo) en presencia del extracto de huesos de aceitunas a 10 y 50 mg/l de polifenoles, concentraciones bioseguras, y sin extracto como control. A los 5-7 días se forman los adipocitos maduros. Se cuantifican los cúmulos de grasa formados mediante tinción con Oil- Red y medida de la absorbancia a 490 nm y la expresión de los genes de leptina y PPARg, relacionándolos con los valores en los cultivos antes y después de diferenciarse a adipocitos. Resultados: las muestras control, sin extracto, se consideran el 100% de acumulación de grasas. En contraste, la adición de 50 mg/l de extracto de polifenoles de huesos de aceituna muestra un cúmulo de grasa de alrededor del 50%, semejante a las células no diferenciadas. Con 10 mg/l de extracto no se muestra efecto. Se confirma la actividad antiadipogénica, observándose disminución en la expresión de los genes PPARg y de leptina en la diferenciación a adipocitos en presencia del extracto a 50 mg/l. En conclusión, la formación de los cuerpos grasos característicos de la adipogénesis queda inhibida previa adición de 50 mg/l de polifenoles de extracto de huesos de aceituna, así como la expresión de los genes adipogénicos PPARg y de leptina.

  6. Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism.

    PubMed

    Page, Melissa M; Salmon, Adam B; Leiser, Scott F; Robb, Ellen L; Brown, Melanie F; Miller, Richard A; Stuart, Jeffrey A

    2009-04-15

    Dermal fibroblasts from long-lived Snell dwarf mice can withstand a variety of oxidative and non-oxidative stressors compared to normal littermate controls. Here, we report differences in the levels and activities of intracellular antioxidant and DNA repair enzymes between normal and Snell dwarf mice fibroblasts cultured under a variety of conditions, including: 3% and 20% ambient O(2); the presence and absence of serum; and the addition of an exogenous oxidative stress. The only significant difference between normal and dwarf cells cultured in complete medium, at 20% O(2), was an approximately 40% elevation of glutathione peroxidase (GPx) activity in the mutant cells. Serum deprivation elicited increases in GPx in both genotypes, but these activities remained higher in dwarf mouse cells. Dwarf mouse cells deprived of serum and challenged with exposure to paraquat or hydrogen peroxide showed a generally greater upregulation of catalase and DNA base excision repair enzymes. As these toxins can interact with mitochondria to increase mitochondrial ROS production, we explored whether there were differences in mitochondrial metabolism between normal and dwarf mouse cells. However, neither mitochondrial content nor the apparent mitochondrial membrane potential differed between genotypes. Overall, the results suggest that superior hydrogen peroxide metabolism and a marginally greater DNA base excision repair capacity contribute to the stress resistance phenotype of Snell dwarf mouse fibroblasts.

  7. Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism.

    PubMed

    Page, Melissa M; Salmon, Adam B; Leiser, Scott F; Robb, Ellen L; Brown, Melanie F; Miller, Richard A; Stuart, Jeffrey A

    2009-04-15

    Dermal fibroblasts from long-lived Snell dwarf mice can withstand a variety of oxidative and non-oxidative stressors compared to normal littermate controls. Here, we report differences in the levels and activities of intracellular antioxidant and DNA repair enzymes between normal and Snell dwarf mice fibroblasts cultured under a variety of conditions, including: 3% and 20% ambient O(2); the presence and absence of serum; and the addition of an exogenous oxidative stress. The only significant difference between normal and dwarf cells cultured in complete medium, at 20% O(2), was an approximately 40% elevation of glutathione peroxidase (GPx) activity in the mutant cells. Serum deprivation elicited increases in GPx in both genotypes, but these activities remained higher in dwarf mouse cells. Dwarf mouse cells deprived of serum and challenged with exposure to paraquat or hydrogen peroxide showed a generally greater upregulation of catalase and DNA base excision repair enzymes. As these toxins can interact with mitochondria to increase mitochondrial ROS production, we explored whether there were differences in mitochondrial metabolism between normal and dwarf mouse cells. However, neither mitochondrial content nor the apparent mitochondrial membrane potential differed between genotypes. Overall, the results suggest that superior hydrogen peroxide metabolism and a marginally greater DNA base excision repair capacity contribute to the stress resistance phenotype of Snell dwarf mouse fibroblasts. PMID:19439226

  8. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels

    PubMed Central

    Smith, Amanda W.; Hoyne, Jake D.; Nguyen, Peter K.; McCreedy, Dylan A.; Aly, Haytham; Efimov, Igor R.; Rentschler, Stacey; Elbert, Donald L.

    2013-01-01

    Direct reprogramming strategies enable rapid conversion of somatic cells to cardiomyocytes or cardiomyocyte-like cells without going through the pluripotent state. A recently described protocol couples Yamanaka factor induction with pluripotency inhibition followed by BMP4 treatment to achieve rapid reprogramming of mouse fibroblasts to beating cardiomyocyte-like cells. The original study was performed using Matrigel-coated tissue culture polystyrene (TCPS), a stiff material that also non-specifically adsorbs serum proteins. Protein adsorption-resistant poly(ethylene glycol) (PEG) materials can be covalently modified to present precise concentrations of adhesion proteins or peptides without the unintended effects of non-specifically adsorbed proteins. Here, we describe an improved protocol that incorporates custom-engineered materials. We first reproduced the Efe et al. protocol on Matrigel-coated TCPS (the original material), reprogramming adult mouse tail tip mouse fibroblasts (TTF) and mouse embryonic fibroblasts (MEF) to cardiomyocyte-like cells that demonstrated striated sarcomeric α-actinin staining, spontaneous calcium transients, and visible beating. We then designed poly(ethylene glycol) culture substrates to promote MEF adhesion via laminin and RGD-binding integrins. PEG hydrogels improved proliferation and reprogramming efficiency (evidenced by beating patch number and area, gene expression, and flow cytometry), yielding almost twice the number of sarcomeric α-actinin positive cardiomyocyte-like cells as the originally described substrate. These results illustrate that cellular reprogramming may be enhanced using custom-engineered materials. PMID:23773820

  9. alpha2-Adrenoceptor stimulation promotes actin polymerization and focal adhesion in 3T3F442A and BFC-1beta preadipocytes.

    PubMed

    Bétuing, S; Daviaud, D; Valet, P; Bouloumié, A; Lafontan, M; Saulnier-Blache, J S

    1996-12-01

    We previously demonstrated that in white fat cell precursors alpha2-adrenoceptor stimulation lead to the phosphorylation of p44 and p42 mitogen-activated protein kinases and an increase in cell number. Regulation of cell adhesion and cell cytoskeleton plays a crucial role in the control of cell growth by various growth factors. Here, we report that in mouse 3T3F442A preadipocytes expressing 2500 fmol/mg protein of the human alpha2C10-adrenoceptor (alpha2AF2 cells), alpha2-adrenergic stimulation rapidly restored the spreading of cells previously retracted by serum withdrawal. This effect was pertussis toxin sensitive and was blocked by pretreatment of the cells with dihydrocytochalasin B (a blocker of actin polymerization), genistein (a tyrosine kinase inhibitor), or agents that increase cell cAMP content. Spreading was accompanied by cell membrane ruffling, formation of lamelipodia and filipodia, appearance of focal adhesion plaques, and induction of actin stress fibers. alpha2-Adrenergic stimulation also lead to a rapid Gi- and actin-dependent tyrosine phosphorylation of the pp125 focal adhesion kinase (FAK) as well as of the p42 and p44 mitogen-activated protein kinases. alpha2-Adrenergic-dependent spreading and FAK and mitogen-activated protein kinase phosphorylation were also observed in 3T3F442A preadipocytes permanently expressing 20 fmol/mg protein of the human alpha2C10-adrenoceptor (alpha2AF3 cells) as well as in BFC-1beta preadipocytes, which constitutively express 25 fmol/mg protein of mouse alpha2A-adrenoceptors. In BFC-1beta preadipocytes, alpha2-adrenergic-dependent spreading and pp125FAK phosphorylation were counteracted by beta-adrenergic stimulation. Our results suggest that alpha2-adrenergic control of actin polymerization and focal adhesion assembly could play a crucial role in the regulation of preadipocyte growth by the sympathetic nervous system.

  10. Factor Xa in mouse fibroblasts may induce fibrosis more than thrombin.

    PubMed

    Kitasato, Lisa; Yamaoka-Tojo, Minako; Hashikata, Takehiro; Ishii, Sayaka; Kameda, Ryo; Shimohama, Takao; Tojo, Taiki; Ako, Junya

    2014-01-01

    Coagulation factors are known to play a role in wound healing by stimulating fibroblasts and might be associated with tissue fibrosis, however, only limited data exist. Protease-activated receptor 1 (PAR1), activated by thrombin or factor (F) Xa, and PAR2, activated by FXa, have recently been reported to play roles not only in the coagulation system, but also in cardiac fibrosis. Furthermore, a previous report found that FX deficiency in mice led to the development of cardiac fibrosis. Therefore, in the present study, we evaluated cellular biological function under conditions of overexpressed thrombin and FXa in fibroblasts.Cell migration and proliferation with FXa (1U/mL) and thrombin (1U/mL) stimulation were evaluated. Cells incubated without FXa or thrombin were used as control. H2O2 and TGF-β1 production were measured using ELISA. Signal pathways were evaluated using a signal pathway reporter assay.Cell migration and proliferation were increased in FXa-stimulated cells (4.1-fold increase for migration, 1.3-fold for proliferation compared with control, respectively) and thrombin (4.1-fold increase for migration, 1.3-fold for proliferation as compared to control, respectively). H2O2 production was higher in FXa-stimulated cells compared to thrombin (1.3-fold increase) and control cells (1.4-fold increased). TGF-β1 production was up-regulated after FXa addition (12.6-fold increase compared with thrombin, 1.8-fold increase compared with control, respectively). In FXa-stimulated cells, AP-1 and NF-kB were increased compared to control (P < 0.05).These data suggest that FXa and thrombin play important roles in the fibrotic process that could also lead to cardiac fibrosis, and that at least some of these signalings are more accelerated with FXa compared to thrombin. PMID:24942638

  11. A role for cortactin in Listeria monocytogenes invasion of NIH 3T3 cells, but not in its intracellular motility.

    PubMed

    Barroso, Consuelo; Rodenbusch, Stacia E; Welch, Matthew D; Drubin, David G

    2006-04-01

    Cortactin is an F-actin binding protein that binds to the Arp2/3 complex, stimulates its actin nucleation activity, and inhibits actin filament debranching. Using RNA interference directed against cortactin, we explored the importance of cortactin for several processes involving dynamic actin assembly. Silencing cortactin expression was efficiently achieved in HeLa and NIH 3T3 cells, with less than 5% of cortactin expression in siRNA-treated cells. Surprisingly, endocytosis in HeLa and NIH 3T3 cells, and cell migration rates, were not altered by RNAi-mediated cortactin silencing. Listeria utilizes actin-based motility to move within and spread among mammalian host cells; its actin-clouds and tails recruit cortactin. We explored the role of cortactin during the Listeria life cycle in cortactin "knockdown" NIH 3T3 cells. Interestingly, cortactin siRNA-treated cells showed a significant reduction in the efficiency of the bacteria invasion in NIH 3T3 cells. However, cortactin depletion did not interfere with assembly of Listeria actin clouds or actin tails, or Listeria intracellular motility or speed. Therefore, our findings suggest that cortactin plays a role in Listeria internalization, but not in the formation of actin clouds and tails, or in bacteria intracellular motility.

  12. Piromelatine decreases triglyceride accumulation in insulin resistant 3T3-L1 adipocytes: role of ATGL and HSL.

    PubMed

    Wang, Ping-Ping; She, Mei-Hua; He, Ping-Ping; Chen, Wu-Jun; Laudon, Moshe; Xu, Xuan-Xuan; Yin, Wei-Dong

    2013-08-01

    Piromelatine, a novel investigational multimodal sleep medicine, is developed for the treatment of patients with primary and co-morbid insomnia. Piromelatine has been shown to inhibit weight gain and improve insulin sensitivity in high-fat/high-sucrose-fed (HFHS) rats. Considering that piromelatine has also been implicated in lowering of triglyceride levels in HFHS rats, this work elucidated whether this effect involves in the regulation of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) in triglyceride (TG) metabolism. In this study, we investigated the effects of piromelatine and MT2 receptors inhibition on TG content, insulin-stimulated glucose uptake, and the expressions of ATGL and HSL in 3T3-L1 adipocytes preincubated in high glucose and high insulin (HGI) conditions. Our results showed that culturing 3T3-L1 adipocytes under HGI conditions increased triglyceride accumulation with concomitant decrease of ATGL and HSL expression, inducing insulin resistance in 3T3-L1 adipocytes. We also found that triglyceride accumulation was significantly inhibited and the levels of ATGL/HSL increased after melatonin or piromelatine treatment. The effects of melatonin/piromelatine (10 nM) were counteracted by pretreatment with the relatively selective MT2 receptor antagonist luzindole (100 nM). In this study, our data demonstrate that piromelatine reverses high glucose and high insulin-induced triglyceride accumulation in 3T3-L1 adipocytes, possibly through up-regulating of ATGL and HSL expression via a melatonin-dependent manner.

  13. The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4.

    PubMed

    Du, William W; Li, Xianmin; Li, Tianbi; Li, Haoran; Khorshidi, Azam; Liu, Fengqiong; Yang, Burton B

    2015-01-15

    The microRNA miR-17-92 cluster plays a fundamental role in heart development. The aim of this study was to investigate the effect of a member of this cluster, miR-17, on cardiac senescence. We examined the roles of miR-17 in senescence and demonstrated that miR-17-3p attenuates cardiac aging in the myocardium by targeting Par4 (also known as PAWR). This upregulates the downstream proteins CEBPB, FAK, N-cadherin, vimentin, Oct4 and Sca-1 (also known as stem cell antigen-1), and downregulates E-cadherin. Par4 has been reported as a tumor suppressor gene that induces apoptosis in cancer cells, but not in normal cells. Repression of Par4 by miR-17-3p enhances the transcription of CEBPB and FAK, which promotes mouse cardiac fibroblast (MCF) epithelial-to-mesenchymal transition (EMT) and self-renewal, resulting in cellular senescence and apoptosis resistance. We conclude that Par4 can bind to the CEBPB promoter and inhibit its transcription. Decreased Par4 expression increases the amount of CEBPB, which binds to the FAK promoter and enhances FAK transcription. Par4, CEBPB and FAK form a senescence signaling pathway, playing roles in modulating cell survival, growth, apoptosis, EMT and self-renewal. Through this novel senescence signaling axis, miR-17-3p represses Par4 expression, acting pleiotropically as a negative modulator of cardiac aging and cardiac fibroblast cellular senescence. PMID:25472717

  14. Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats

    PubMed Central

    Uteza, Yves; Rouillot, Jean-Sébastien; Kobetz, Alexandra; Marchant, Dominique; Pecqueur, Sèverine; Arnaud, Emmanuelle; Prats, Hervé; Honiger, Jiri; Dufier, Jean-Louis; Abitbol, Marc; Neuner-Jehle, Martin

    1999-01-01

    We developed an experimental approach with genetically engineered and encapsulated mouse NIH 3T3 fibroblasts to delay the progressive degeneration of photoreceptor cells in dark-eyed Royal College of Surgeons rats. These xenogeneic fibroblasts can survive in 1.5-mm-long microcapsules made of the biocompatible polymer AN69 for at least 90 days under in vitro and in vivo conditions because of their stable transfection with the gene for the 18-kDa form of the human basic fibroblast growth factor (hFGF-2). Furthermore, when transferred surgically into the vitreous cavity of 21-day-old Royal College of Surgeons rats, the microencapsulated hFGF-2-secreting fibroblasts provoked a local delay of photoreceptor cell degeneration, as seen at 45 days and 90 days after transplantation. This effect was limited to 2.08 mm2 (45 days) and 0.95 mm2 (90 days) of the retinal surface. In both untreated eyes and control globes with encapsulated hFGF-2-deficient fibroblasts, the rescued area (of at most 0.08 mm2) was significantly smaller at both time points. Although, in a few ocular globes, surgical trauma induced a reorganization of the retinal cytoarchitecture, neither microcapsule rejection nor hFGF-2-mediated tumor formation were detected in any treated eyes. These findings indicate that encapsulated fibroblasts secreting hFGF-2 or perhaps other agents can be applied as potential therapeutic tools to treat retinal dystrophies. PMID:10077648

  15. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    SciTech Connect

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan; Cui, Rong-Rong; Yuan, Ling-Qing Liao, Er-Yuan

    2013-11-01

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T3-E1

  16. Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast Smad3 linker phosphorylation in the mouse obstructed kidney.

    PubMed

    Sun, Yu Bo Yang; Qu, Xinli; Li, Xueling; Nikolic-Paterson, David J; Li, Jinhua

    2013-01-01

    Endothelial dysfunction and enhanced transforming growth factor-β (TGF-β)/Smad3 signalling are common features of progressive renal fibrosis. This study investigated a potential link between these mechanisms. In unilateral ureteric obstruction (UUO) we observed an acute (6 hr) down-regulation of nitric oxide synthase 3 (NOS3/eNOS) levels and increased phosphorylation of the linker region of Smad3 at T179 and S208 in Smad3/JNK complexes. These events preceded Smad3 C-terminal domain phosphorylation and the induction of myofibroblast proliferation at 48 hrs. Mice deficient in NOS3 showed enhanced myofibroblast proliferation and collagen accumulation compared to wild type mice in a 7 day UUO model. This was associated with enhanced phosphorylation of Smad3 T179 and S208 by 92% and 88%, respectively, whereas Smad3-C-terminal phosphorylation was not affected. Resolvin D1 (RvD1) can suppress renal fibrosis in the UUO model, and further analysis herein showed that RvD1 protected against endothelial dysfunction and suppressed Smad3/JNK complex formation with a consequent reduction in phosphorylation of Smad3 T179 and S208 by 78% and 65%, respectively, while Smad3 C-terminal phosphorylation was unaltered. In vitro, conditioned media from mouse microvascular endothelial cells (MMEC) treated with a general inhibitor of nitric oxide synthase (L-NAME) augmented the proliferation and collagen production of renal fibroblasts (NRK49F cells) compared to control MMEC media and this was associated with increased phosphorylation of JNK and Smad3 T179 and S208, whereas Smad3-C-terminal domain phosphorylation was unaffected. The addition of RvD1 to L-NAME treated MMEC abrogated these effects of the conditioned media on renal fibroblasts. Finally, Smad3 T179/V and S208/A mutations significantly inhibit TGF-β1 induced up-regulation collagen I promoter. In conclusion, these data suggest that endothelial dysfunction can exacerbate renal interstitial fibrosis through increased fibroblast

  17. 6-gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells.

    PubMed

    Tzeng, Thing-Fong; Liu, I-Min

    2013-04-15

    6-Gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) is one of the pungent constituents of Zingiber zerumbet (L) Smith (Zingiberaceae family). In this study, we investigated the effects of 6-gingerol on the inhibition of adipogenesis in 3T3-L1 cells. After treatment with 6-gingerol in differentiation medium for 4 or 8 days, the 3T3-L1 cells were lysed for experimental analysis. Cells were stained with Oil-Red-O to detect oil droplets in adipocytes. The 3T3-L1 cells were lysed and measured for triglyceride contents. The protein expression of adipogenesis-related transcription factor was evaluated by Western blot analysis. 6-Gingerol suppressed oil droplet accumulation and reduced the droplet size in a concentration (5-15 μg/ml)- and time-dependent manner. Treatment of 3T3-L1 cells with 6-gingerol reduced the protein levels of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α. Additionally, the protein levels of fatty acid synthase (FAS) and adipocyte-specific fatty acid binding protein (aP2) decreased upon treatment with 6-gingerol. Meanwhile, 6-gingerol diminished the insulin-stimulated serine phosphorylation of Akt (Ser473) and GSK3β (Ser9). These results suggest that 6-gingerol effectively suppresses adipogenesis and that it exerts its role mainly through the significant down-regulation of PPARγ and C/EBPα and subsequently inhibits FAS and aP2 expression. 6-Gingerol also inhibited differentiation in 3T3-L1 cells by attenuating the Akt/GSK3β pathway. Our findings provide important insights into the mechanisms underlying the anti-adipogenic activity of 6-gingerol. PMID:23369342

  18. Two new approaches to improve the analysis of BALB/c 3T3 cell transformation assay data.

    PubMed

    Hoffmann, Sebastian; Hothorn, Ludwig A; Edler, Lutz; Kleensang, André; Suzuki, Masaya; Phrakonkham, Pascal; Gerhard, Daniel

    2012-04-11

    Validation activities of the BALB/c 3T3 cell transformation assay (CTA) - a test method used for the assessment of the carcinogenic potential of compounds - have revealed the need for statistical analysis tailored to specific features of BALB/c 3T3 CTA data. Whereas a standard statistical approach for the Syrian hamster embryo (SHE) CTA was considered sufficient, an international expert group was gathered by the European Centre for the Validation of Alternative Methods (ECVAM) to review commonly applied statistical approaches for BALB/c 3T3 CTA. As it was concluded that none of the commonly applied approaches is entirely appropriate, two novel statistical approaches were found to be recommended for the evaluation of BALB/c 3T3 CTA data accounting for possible non-monotone concentration-response relationship and variance heterogeneity: a negative binomial generalised linear model with William's-type downturn-protected trend tests and a normalisation of the data by a specific transformation allowing for application of a general linear model that estimates effects assuming a normal distribution with William's-type protected tests. Both approaches are described in this article and their performance and the quality of the results they generate is demonstrated using exemplary data. Our work confirmed that both approaches are suitable for the statistical analysis of BALB/c 3T3 CTA data and that each of them is superior to commonly used methods. Furthermore, a procedure dichotomising data into negatives and positives is proposed which allows re-testing in cases where inconclusive data are encountered. The scripts of the statistical evaluation programs written in R - a freely available statistical software - are appended including exemplary outputs (Appendix A).

  19. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    SciTech Connect

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne; Nadanaciva, Sashi

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with the latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.

  20. Phagocytic activity and hyperpolarizing responses in L-strain mouse fibroblasts.

    PubMed Central

    Okada, Y; Tsuchiya, W; Yada, T; Yano, J; Yawo, H

    1981-01-01

    1. Fibroblastic L cells not only respond with a slow hyperpolarizing potential change to a mechanical or electrical stimulus but also show spontaneous, repetitive hyperpolarizations (i.e. membrane potential oscillation). 2. Almost all the cells can actively take up latex beads whose surfaces were treated by U.V. irradiation. 3. Non-phagocytic L cells hardly showed hyperpolarizing responses, while hyperpolarizing responses were obtained in all the phagocytic L cells. The exposure of the cell surface to beads, however, did not trigger the generation of hyperpolarizing responses. 4. Metabolic inhibitors, low temperature and cytochalasin B inhibited both the uptake of beads and the hyperpolarizing responses. 5. Increasing the external concentration of Ca2+ induced a remarkable stimulation of the phagocytosis of beads. Mg2+ and Ba2+, which inhibited hyperpolarizing responses due to competition for Ca2+ sites on the outer surface of the membrane, significantly suppressed the uptake of beads. 6. Verapamil, a Ca2+ channel blocker, inhibited not only hyperpolarizing membrane responses but also ingestion of beads. 7. It is concluded that the Ca2+ inflow on the hyperpolarizing membrane responses is closely associated with the phagocytic activity in L cells, probably through activation of the microfilament assembly. Images Plate 1 PMID:7024506

  1. Mouse embryonic fibroblasts accumulate differentially on titanium surfaces treated with nanosecond laser pulses.

    PubMed

    Radmanesh, Mitra; Ektesabi, Amin M; Wyatt, Rachael A; Crawford, Bryan D; Kiani, Amirkianoosh

    2016-01-01

    Biomaterial engineering, specifically in bone implant and osseointegration, is currently facing a critical challenge regarding the response of cells to foreign objects and general biocompatibility of the materials used in the production of these implants. Using the developing technology of the laser surface treatment, this study investigates the effects of the laser repetition rate (frequency) on cell distribution across the surface of the titanium substrates. The main objective of this research is building a fundamental understanding of how cells interact with treated titanium and how different treatments affect cell accumulation. Cells respond differently to surfaces treated with different frequency lasers. The results of this research identify the influence of frequency on surface topography properties and oxidation of titanium, and their subsequent effects on the pattern of cell accumulation on its surface. Despite increased oxidation in laser-treated regions, the authors observe that fibroblast cells prefer untreated titanium to laser-treated regions, except the regions treated with 25 kHz pulses, which become preferentially colonized after 72 h. PMID:27581527

  2. Rapid nuclear transit and impaired degradation of amyloid β and glypican-1-derived heparan sulfate in Tg2576 mouse fibroblasts.

    PubMed

    Cheng, Fang; Fransson, Lars-Åke; Mani, Katrin

    2015-05-01

    Anhydromannose (anMan)-containing heparan sulfate (HS) derived from S-nitrosylated glypican-1 is generated in endosomes by an endogenously or ascorbate induced S-nitrosothiol-catalyzed reaction. Expression and processing of amyloid precursor protein (APP) is required to initiate formation and endosome-to-nucleus translocation of anMan-containing HS in wild-type mouse embryonic fibroblasts (WT MEF). HS is then transported to autophagosomes and finally degraded in lysosomes. To investigate how APP-derived amyloid β (Aβ) peptide affects intracellular trafficking of HS, we have studied nuclear transit as well as autophagosome/lysosome targeting and degradation in transgenic Alzheimer disease mouse (Tg2576) MEF which produce increased amounts of Aβ. Deconvolution immunofluorescence microscopy with an anMan-specific monoclonal antibody showed anMan staining in the nuclei of Tg2576 MEF after 5 min of ascorbate treatment and after 15 min in WT MEF. There was also greater nuclear accumulation of HS in Tg2576 MEF as determined by (35)S-sulfate-labeling experiments. Tg2576 MEF was less sensitive to inhibition of NO production and copper-chelation than WT MEF. By using APP- and Aβ-recognizing antibodies, we observed nuclear translocation of Aβ peptide in Tg2576 MEF but not in WT MEF. HS remained in the nucleus of WT MEF for at least 8 h and was then transported to autophagosomes. By 8 h, HS had disappeared from the nuclei of Tg2576 MEF but colocalized poorly with the autophagosome marker LC3. Aβ also disappeared rapidly from the nuclei of Tg2576 MEF. Initially, it appeared in acidic vesicles and later it accumulated extracellularly. Thus, in Tg2576 MEF there is nuclear accumulation as well as secretion of Aβ and impaired degradation of HS. PMID:25527428

  3. Quantitative Proteomic Analysis of Mouse Embryonic Fibroblasts and Induced Pluripotent Stem Cells Using 16O /18O labeling

    SciTech Connect

    Huang, Xin; Tian, Changhai; Liu, Miao; Wang, Yongxiang; Tolmachev, Aleksey V.; Sharma, Seema; Yu, Fang; Fu, Kai; Zheng, Jialin; Ding, Shi-Jian

    2012-04-06

    Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using this platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.

  4. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    SciTech Connect

    Zhai, Yingying; Chen, Xi; Yu, Dehai; Li, Tao; Cui, Jiuwei; Wang, Guanjun; Hu, Ji-Fan; Li, Wei

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  5. The morphogenesis of herpes simplex virus type 1 in infected parental mouse L fibroblasts and mutant gro29 cells.

    PubMed

    Jensen, Helle Lone; Norrild, Bodil

    2003-11-01

    Mutants of cell lines and viruses are important biological tools. The pathway of herpesvirus particle maturation and egress are contentious issues. The mutant gro29 line of mouse L cells is defective for egress of herpes simplex virus type 1 (HSV-1) virions, and a candidate for studies of virus-cell interactions. The properties of uninfected and HSV-1-infected L fibroblasts and gro29 cells investigated by protein assay, immunoblot, titration assay, immunofluorescence light microscopy and immunogold cryosection electron microscopy are reported. The ultrastructure of both HSV-1-infected L and gro29 cells confirmed primary envelopment of virions at the nuclear membranes followed by maturing multiple de-envelopments and re-envelopments in the endoplasmic reticulum and in the Golgi complex. The gro29 cells presented changed cytoskeleton, abolished egress of virions, and were defective in the trafficking of glycoproteins, giving rise to accumulation of viral particles and glycoproteins in the endoplasmic reticulum and the Golgi complex. The results suggest that gro29 cells harbour a causal underlying defect of the cytoskeleton in addition to the HSV-1-induced cytoskeletal changes.

  6. Ethanol Inactivated Mouse Embryonic Fibroblasts Maintain the Self-Renew and Proliferation of Human Embryonic Stem Cells

    PubMed Central

    Huang, Boxian; Ning, Song; Zhuang, Lili; Jiang, Chunyan; Cui, Yugui; Fan, Guoping; Qin, Lianju; Liu, Jiayin

    2015-01-01

    Conventionally, mouse embryonic fibroblasts (MEFs) inactivated by mitomycin C or irradiation were applied to support the self-renew and proliferation of human embryonic stem cells (hESCs). To avoid the disadvangtages of mitomycin C and irradiation, here MEFs were treated by ethanol (ET). Our data showed that 10% ET-inactivated MEFs (eiMEFs) could well maintain the self-renew and proliferation of hESCs. hESCs grown on eiMEFs expressed stem cell markers of NANOG, octamer-binding protein 4 (OCT4), stage-specific embryonic antigen-4 (SSEA4) and tumour related antigen-1-81 (TRA-1-81), meanwhile maintained normal karyotype after long time culture. Also, hESCs cocultured with eiMEFs were able to form embryoid body (EB) in vitro and develop teratoma in vivo. Moreover, eiMEFs could keep their nutrient functions after long time cryopreservation. Our results indicate that the application of eiMEF in hESCs culture is safe, economical and convenient, thus is a better choice. PMID:26091287

  7. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  8. Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts.

    PubMed

    Nordgren, Marcus; Francisco, Tânia; Lismont, Celien; Hennebel, Lore; Brees, Chantal; Wang, Bo; Van Veldhoven, Paul P; Azevedo, Jorge E; Fransen, Marc

    2015-01-01

    Peroxisomes are ubiquitous cell organelles essential for human health. To maintain a healthy cellular environment, dysfunctional and superfluous peroxisomes need to be selectively removed. Although emerging evidence suggests that peroxisomes are mainly degraded by pexophagy, little is known about the triggers and molecular mechanisms underlying this process in mammalian cells. In this study, we show that PEX5 proteins fused to a bulky C-terminal tag trigger peroxisome degradation in SV40 large T antigen-transformed mouse embryonic fibroblasts. In addition, we provide evidence that this process is autophagy-dependent and requires monoubiquitination of the N-terminal cysteine residue that marks PEX5 for recycling. As our findings also demonstrate that the addition of a bulky tag to the C terminus of PEX5 does not interfere with PEX5 monoubiquitination but strongly inhibits its export from the peroxisomal membrane, we hypothesize that such a tag mimics a cargo protein that cannot be released from PEX5, thus keeping monoubiquitinated PEX5 at the membrane for a sufficiently long time to be recognized by the autophagic machinery. This in turn suggests that monoubiquitination of the N-terminal cysteine of peroxisome-associated PEX5 not only functions to recycle the peroxin back to the cytosol, but also serves as a quality control mechanism to eliminate peroxisomes with a defective protein import machinery.

  9. Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts

    SciTech Connect

    Bayne, M.L.; Cascieri, M.A.; Kelder, B.; Applebaum, J.; Chicchi, G.; Shapiro, J.A.; Pasleau, F.; Kopchick, J.J.

    1987-05-01

    A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium from transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.

  10. Skp2 promotes adipocyte differentiation via a p27{sup Kip1}-independent mechanism in primary mouse embryonic fibroblasts

    SciTech Connect

    Okada, Mitsuru; Sakai, Tamon; Nakamura, Takehiro; Tamamori-Adachi, Mimi; Kitajima, Shigetaka; Matsuki, Yasushi; Watanabe, Eijiro; Hiramatsu, Ryuji; Sakaue, Hiroshi Kasuga, Masato

    2009-02-06

    Skp2, the substrate-binding subunit of an SCF ubiquitin ligase complex, is a key regulator of cell cycle progression that targets substrates for degradation by the 26S proteasome. We have now shown that ablation of Skp2 in primary mouse embryonic fibroblasts (MEFs) results both in impairment of adipocyte differentiation and in the accumulation of the cyclin-dependent kinase inhibitor p27{sup Kip1}, a principal target of the SCF{sup Skp2} complex. Genetic ablation of p27{sup Kip1} in MEFs promoted both lipid accumulation and adipocyte-specific gene expression. However, depletion of p27{sup Kip1} by adenovirus-mediated RNA interference failed to correct the impairment of adipocyte differentiation in Skp2{sup -/-} MEFs. In contrast, troglitazone, a high-affinity ligand for peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), largely restored lipid accumulation and PPAR{gamma} gene expression in Skp2{sup -/-} MEFs. Our data suggest that Skp2 plays an essential role in adipogenesis in MEFs in a manner that is at least in part independent of regulation of p27{sup Kip1} expression.

  11. Ethanol Inactivated Mouse Embryonic Fibroblasts Maintain the Self-Renew and Proliferation of Human Embryonic Stem Cells.

    PubMed

    Huang, Boxian; Ning, Song; Zhuang, Lili; Jiang, Chunyan; Cui, Yugui; Fan, Guoping; Qin, Lianju; Liu, Jiayin

    2015-01-01

    Conventionally, mouse embryonic fibroblasts (MEFs) inactivated by mitomycin C or irradiation were applied to support the self-renew and proliferation of human embryonic stem cells (hESCs). To avoid the disadvangtages of mitomycin C and irradiation, here MEFs were treated by ethanol (ET). Our data showed that 10% ET-inactivated MEFs (eiMEFs) could well maintain the self-renew and proliferation of hESCs. hESCs grown on eiMEFs expressed stem cell markers of NANOG, octamer-binding protein 4 (OCT4), stage-specific embryonic antigen-4 (SSEA4) and tumour related antigen-1-81 (TRA-1-81), meanwhile maintained normal karyotype after long time culture. Also, hESCs cocultured with eiMEFs were able to form embryoid body (EB) in vitro and develop teratoma in vivo. Moreover, eiMEFs could keep their nutrient functions after long time cryopreservation. Our results indicate that the application of eiMEF in hESCs culture is safe, economical and convenient, thus is a better choice.

  12. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity.

    PubMed

    Hammer, Bruce E; Kidder, Louis S; Williams, Philip C; Xu, Wayne Wenzhong

    2009-11-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed. PMID:20052306

  13. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity.

    PubMed

    Hammer, Bruce E; Kidder, Louis S; Williams, Philip C; Xu, Wayne Wenzhong

    2009-11-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed.

  14. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity

    PubMed Central

    Kidder, Louis S.; Williams, Philip C.; Xu, Wayne Wenzhong

    2009-01-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed. PMID:20052306

  15. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells

    PubMed Central

    2012-01-01

    Background Obesity is a health hazard that is associated with a number of diseases and metabolic abnormalities, such as type-2 diabetes, hypertension, dyslipidemia, and coronary heart disease. In the current study, we investigated the effects of Citrus aurantium flavonoids (CAF) on the inhibition of adipogenesis and adipocyte differentiation in 3T3-L1 cells. Methods During adipocyte differentiation, 3T3-L1 cells were treated with 0, 10, and 50 μg/ml CAF, and then the mRNA and protein expression of adipogenesis-related genes was assayed. We examined the effect of CAF on level of phosphorylated Akt in 3T3-L1 cells treated with CAF at various concentrations during adipocyte differentiation. Results The insulin-induced expression of C/EBPβ and PPARγ mRNA and protein were significantly down-regulated in a dose-dependent manner following CAF treatment. CAF also dramatically decreased the expression of C/EBPα, which is essential for the acquisition of insulin sensitivity by adipocytes. Moreover, the expression of the aP2 and FAS genes, which are involved in lipid metabolism, decreased dramatically upon treatment with CAF. Interestingly, CAF diminished the insulin-stimulated serine phosphorylation of Akt (Ser473) and GSK3β (Ser9), which may reduce glucose uptake in response to insulin and lipid accumulation. Furthermore, CAF not only inhibited triglyceride accumulation during adipogenesis but also contributed to the lipolysis of adipocytes. Conclusions In the present study, we demonstrate that CAF suppressed adipogenesis in 3T3-L1 adipocytes. Our results indicated that CAF down-regulates the expression of C/EBPβ and subsequently inhibits the activation of PPARγ and C/EBPα. The anti-adipogenic activity of CAF was mediated by the inhibition of Akt activation and GSK3β phosphorylation, which induced the down-regulation of lipid accumulation and lipid metabolizing genes, ultimately inhibiting adipocyte differentiation. PMID:22471389

  16. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    SciTech Connect

    Park, Yu-Kyoung; Lee, Tae-Yoon; Choi, Jong-Soon; Hong, Victor Sukbong; Lee, Jinho; Park, Jong-Wook; Jang, Byeong-Churl

    2014-10-03

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5.

  17. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    PubMed

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription.

  18. Effects of Pueraria lobata Root Ethanol Extract on Adipogenesis and Lipogenesis During 3T3-L1 Differentiation into Adipocytes.

    PubMed

    Lee, Chae Myoung; Yoon, Mi Sook; Kim, Young Chul

    2015-06-01

    We evaluated the inhibitory effect of Pueraria lobata root ethanol extract (PLREE) on lipid accumulation during 3T3-L1 differentiation to adipocytes by measuring the intracellular expression of adipogenic, lipogenic, and lipolytic markers and lipid accumulation. The total polyphenol and flavonoid content of PLREE were 47 and 29 mg/g, respectively. The electron donating capacity of PLREE at 1,000 μg/mL was 48.8%. Treatment of 3T3-L1 preadipocytes with 100, 250, or 500 μg/mL PLREE for 8 days dose-dependently promoted the differentiation of 3T3-L1 cells. In contrast, the lipid content of PLREE-treated cells was significantly reduced by 7.8% (p < 0.05), 35.6% (p < 0.001), and 42.2% (p < 0.001) following treatment with 100, 250, and 500 μg/mL PLREE, respectively, as compared to differentiated control cells. PLREE upregulated peroxisome proliferator-activated receptor γ mRNA and protein, and sterol regulator element-binding protein-1c mRNA levels, but did not affect CCAAT/enhancer binding-protein β and α mRNA levels. PLREE also downregulated acetyl-CoA carboxylase mRNA and protein, fatty acid synthase (FAS) protein, and leptin mRNA levels, but did not affect FAS mRNA expression. PLREE upregulated adipose triglyceride lipase mRNA and protein expression, and hormone-sensitive lipase (HSL) protein expression, but did not affect HSL mRNA expression. In conclusion, we found that PLREE enhanced adipogenesis, but reduced lipogenesis, resulting in decreased lipid accumulation in 3T3-L1 cells. PMID:26191386

  19. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    SciTech Connect

    Yuan, Guoyue; Jia, Jue; Di, Liangliang; Zhou, Libin; Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang; Li, Lianxi; Yang, Ying; Mao, Chaoming; Chen, Mingdao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  20. Isolation of genes specifically expressed in flat revertant cells derived from activated ras-transformed NIH 3T3 cells by treatment with azatyrosine.

    PubMed Central

    Krzyzosiak, W J; Shindo-Okada, N; Teshima, H; Nakajima, K; Nishimura, S

    1992-01-01

    We previously reported that mouse NIH 3T3 cells transformed by transfection of activated human c-Ha-ras become apparently normal upon treatment with the antibiotic azatyrosine. The revertant cells maintain their normal phenotype during prolonged culture in the absence of azatyrosine, although activated p21ras is still expressed. The normal phenotype induced by azatyrosine could be due to activation of expression of some cellular gene(s) in the cells that results in suppression of ras function. To identify the genes with increased expression in the revertant cells, we adopted differential screening of recombinants from a phage cDNA library made from mRNA of the revertant cells, hybridized with 32P-labeled cDNAs made from mRNAs of the ras-transformed NIH 3T3 cells and the revertant cells. Two clones thus isolated were found to be almost identical to the ras recision gene (rrg), which was identified as a tumor-suppressor gene by Contente et al. [Contente, S., Kenyon, K., Rimoldi, D. & Friedman, R. M. (1990) Science 249, 796-798]. Other genes identified were the collagen type III and rhoB genes. Approximately half the clones were found to contain a sequence corresponding to that of the murine retrovirus-like intracisternal A particle. We speculate that azatyrosine activates several cellular genes in the ras-transformed cells and that some of these genes, including rrg, act cooperatively to counteract ras function, resulting in reversion of the ras-transformed cells to the normal phenotype. Images PMID:1594588

  1. Collagen-derived dipeptide prolyl-hydroxyproline promotes differentiation of MC3T3-E1 osteoblastic cells

    SciTech Connect

    Kimira, Yoshifumi; Ogura, Kana; Taniuchi, Yuri; Kataoka, Aya; Inoue, Naoki; Sugihara, Fumihito; Nakatani, Sachie; Shimizu, Jun; Wada, Masahiro; Mano, Hiroshi

    2014-10-24

    Highlights: • Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization. • Pro-Hyp significantly increased alkaline phosphatase activity. • Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. - Abstract: Prolyl-hydroxyproline (Pro-Hyp) is one of the major constituents of collagen-derived dipeptides. The objective of this study was to investigate the effects of Pro-Hyp on the proliferation and differentiation of MC3T3-E1 osteoblastic cells. Addition of Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization but alkaline phosphatase activity was significantly increased. Furthermore, cells treated with Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. These results indicate that Pro-Hyp promotes osteoblast differentiation. This study demonstrates for the first time that Pro-Hyp has a positive effect on osteoblast differentiation with upregulation of Runx2, Osterix, and Collα1 gene expression.

  2. Nickel-Refining Fumes Induced DNA Damage and Apoptosis of NIH/3T3 Cells via Oxidative Stress

    PubMed Central

    Wang, Yue; Wang, Sheng-Yuan; Jia, Li; Zhang, Lin; Ba, Jing-Chong; Han, Dan; Yu, Cui-Ping; Wu, Yong-Hui

    2016-01-01

    Although there have been numerous studies examining the toxicity and carcinogenicity of nickel compounds in humans and animals, its molecular mechanisms of action are not fully elucidated. In our research, NIH/3T3 cells were exposed to nickel-refining fumes at the concentrations of 0, 6.25, 12.50, 25, 50 and 100 μg/mL for 24 h. Cell viability, cell apoptosis, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) assay, the level of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) level were detected. The exposure of NIH/3T3 cells to nickel-refining fumes significantly reduced cell viability and induced cell apoptotic death in a dose-dependent manner. Nickel-refining fumes significantly increased ROS levels and induced DNA damage. Nickel-refining fumes may induce the changes in the state of ROS, which may eventually initiate oxidative stress, DNA damage and apoptosis of NIH/3T3 cells. PMID:27347984

  3. Suppressive Effects of Barley β-Glucans with Different Molecular Weight on 3T3-L1 Adipocyte Differentiation.

    PubMed

    Zhu, Yingying; Yao, Yang; Gao, Yue; Hu, Yibo; Shi, Zhenxing; Ren, Guixing

    2016-03-01

    In this study, 2 β-glucans with different molecular weight were prepared and purified from hull-less barley bran. The aim was to evaluate their effects on the differentiation of 3T3-L1 pre-adipocytes. Results showed that barley β-glucans inhibited the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, the suppressive effect of high-molecular-weight barley β-glucans (552 kDa, BGH) was stronger (P < 0.05) than that of low-molecular-weight barley β-glucan (32 kDa, BGL), evidenced by the significantly decrease (P < 0.05) of Oil-red O staining and intracellular triglyceride content in the mature adipocytes. Besides, gene expression analysis and Western Blot analysis revealed that both BGH and BGL inhibited the mRNA and protein levels of adipogenesis related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα) which are principal regulators of adipogenesis. Furthermore, the mRNA and protein expression levels of PPARγ target genes in adipose tissue including adipocyte fatty acid binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose-transporter 4 (Glut4) in 3T3-L1 cells was also markedly downregulated (P < 0.05). These findings were anticipated to help develop barley β-glucans based functional food for the management of obesity.

  4. Isoflavones in Chickpeas Inhibit Adipocyte Differentiation and Prevent Insulin Resistance in 3T3-L1 Cells.

    PubMed

    Gao, Yue; Yao, Yang; Zhu, Yinging; Ren, Guixing

    2015-11-11

    Diabetes mellitus is a metabolic disease characterized by hyperglycemia arising from defects in insulin secretion. This study investigated the effects of isoflavones in chickpea sprouts germinated in light (IGL) and isoflavones in chickpea seeds (ICS) on insulin resistance through their role in suppression of 3T3-L1 adipocyte differentiation. Results showed that IGL and ICS inhibit the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, and the suppressive effect of IGL was stronger (p < 0.05) than that of ICS, evidenced by a decrease of Oil Red O staining and intracellular triacylglycerol content in the mature adipocytes. IGL and ICS also stimulated glucose uptake significantly (p < 0.05). Besides, IGL and ICS treatment caused a significant decrease in mRNA and protein expression levels of adipogenesis-related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα). Furthermore, the mRNA and protein expression levels of adipocyte fatty acid-binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose transporter 4 (Glut4) in 3T3-L1 cells were also markedly down-regulated (p < 0.05).

  5. 4-Hydroxyderricin, as a PPARγ Agonist, Promotes Adipogenesis, Adiponectin Secretion, and Glucose Uptake in 3T3-L1 Cells.

    PubMed

    Li, Yongjia; Goto, Tsuyoshi; Yamakuni, Kanae; Takahashi, Haruya; Takahashi, Nobuyuki; Jheng, Huei-Fen; Nomura, Wataru; Taniguchi, Masahiko; Baba, Kimiye; Murakami, Shigeru; Kawada, Teruo

    2016-07-01

    Adipocyte differentiation plays a pivotal role in maintaining the production of small-size adipocytes with insulin sensitivity, and impaired adipogenesis is implicated in insulin resistance. 4-Hydroxyderricin (4-HD), a phytochemical component of Angelica keiskei, possesses diverse biological properties such as anti-inflammatory, antidiabetic, and antitumor. In the present study, we investigated the effects of 4-HD on adipocyte differentiation. 4-HD promoted lipid accumulation in 3T3-L1 cells, upregulated both peroxisome proliferator-activated receptor (PPAR)-γ mRNA and protein expression, and acted as a ligand for PPARγ in the luciferase assay. Moreover, 4-HD increased the mRNA and protein expression levels of adiponectin. Additionally, it promoted insulin-dependent glucose uptake into 3T3-L1 adipocytes and increased Akt phosphorylation and glucose transporter (GLUT) 4 mRNA expression. In summary, these findings suggest that 4-HD, which promoted adipogenesis and insulin sensitivity in 3T3-L1 cells, might be a phytochemical with potent insulin-sensitizing effects. PMID:27098252

  6. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    SciTech Connect

    Watanabe, Akio; Kato, Tsuyoshi; Ito, Yusuke; Yoshida, Izumi; Harada, Teppei; Mishima, Takashi; Fujita, Kazuhiro; Watai, Masatoshi; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-10-31

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence of insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.

  7. Nickel-Refining Fumes Induced DNA Damage and Apoptosis of NIH/3T3 Cells via Oxidative Stress.

    PubMed

    Wang, Yue; Wang, Sheng-Yuan; Jia, Li; Zhang, Lin; Ba, Jing-Chong; Han, Dan; Yu, Cui-Ping; Wu, Yong-Hui

    2016-01-01

    Although there have been numerous studies examining the toxicity and carcinogenicity of nickel compounds in humans and animals, its molecular mechanisms of action are not fully elucidated. In our research, NIH/3T3 cells were exposed to nickel-refining fumes at the concentrations of 0, 6.25, 12.50, 25, 50 and 100 μg/mL for 24 h. Cell viability, cell apoptosis, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) assay, the level of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) level were detected. The exposure of NIH/3T3 cells to nickel-refining fumes significantly reduced cell viability and induced cell apoptotic death in a dose-dependent manner. Nickel-refining fumes significantly increased ROS levels and induced DNA damage. Nickel-refining fumes may induce the changes in the state of ROS, which may eventually initiate oxidative stress, DNA damage and apoptosis of NIH/3T3 cells. PMID:27347984

  8. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells.

    PubMed

    Hsin, Yi-Hong; Chen, Chun-Feng; Huang, Shing; Shih, Tung-Sheng; Lai, Ping-Shan; Chueh, Pin Ju

    2008-07-10

    Nanomaterials and nanoparticles have received considerable attention recently because of their unique properties and diverse biotechnology and life sciences applications. Nanosilver products, which have well-known antimicrobial properties, have been used extensively in a range of medical settings. Despite the widespread use of nanosilver products, relatively few studies have been undertaken to determine the biological effects of nanosilver exposure. The purpose of this study was to evaluate the toxicity of nanosilver and to elucidate possible molecular mechanisms underlying the biological effects of nanosilver. Here, we show that nanosilver is cytotoxic, inducing apoptosis in NIH3T3 fibroblast cells. Treatment with nanosilver induced the release of cytochrome c into the cytosol and translocation of Bax to mitochondria, indicating that nanosilver-mediated apoptosis is mitochondria-dependent. Nanosilver-induced apoptosis was associated with the generation of reactive oxygen species (ROS) and JNK activation, and inhibition of either ROS or JNK attenuated nanosilver-induced apoptosis. In nanosilver-resistant HCT116 cells, up-regulation of the anti-apoptotic proteins, Bcl-2 appeared to be associated with a diminished apoptotic response. Taken together, our results provide the first evidence for a molecular mechanism of nanosilver cytotoxicity, showing that nanosilver acts through ROS and JNK to induce apoptosis via the mitochondrial pathway.

  9. Molecular mechanism of extinction of liver-specific functions in mouse hepatoma x rat fibroblast hybrids: extinction of the albumin gene

    SciTech Connect

    Papaconstantinou, J.; Wong, E.; Ratrie, H.; Szpirer, C.; Szpirer, J.

    1982-01-01

    Hybrids formed by the fusion of mouse hepatoma (BWTG3) and rat fibroblast (JF1) cells exhibit the extinction of mouse albumin and ..cap alpha..-fetoprotein synthesis. Karyotype analyses suggest that all parental chromosomes are present in the hybrids. The extinction, therefore, of mouse hepatocyte genes is attributed to the inhibitory action of the rat genome. In these studies, we show that these hybrids possess and express the mouse ..beta..-glucyronidase gene (which is encoded on the same chromosome as the mouse albumin and ..cap alpha..-fetoprotein gene), and we present data of Southern blot analysis which demonstrate that such hybrids have indeed retained both mouse and rat albumin DNA sequences. In addition, using mouse albumin cDNA, we have shown by cDNA-RNA reassociation kinetics that albumin mRNA is virtually absent in these hybrids. We conclude from these studies that the extinction of albumin synthesis involves a mechanism which results in the loss of cytoplasmic albumin mRNA.

  10. Structure-Dependent Membrane-Perturbing Potency of Four Proanthocyanidin Dimers on 3T3-L1 Preadipocytes.

    PubMed

    Zhu, Wei; Xiong, Le; Peng, Jinming; Deng, Xiangyi; Gao, Jun; Li, Chun-Mei

    2016-09-21

    Proanthocyanidins (PAs) have been widely recognized for their broad spectrum of beneficial health effects, which are highly structure-dependent. It was found that PA dimers epicatechin-3-gallate-(4β→8,2β→O→7)-epicatechin-3-gallate (A-type ECG dimer) and epigallocatechin-3-gallate-(4β→,2β→O→7)-epigallocatechin-3-gallate (A-type EGCG dimer) inhibit the differentiation of 3T3-L1 cells significantly, whereas epicatechin-(4β→8,2β→O→7)-epicatechin (A-type EC dimer) and epicatechin-(4β→8)-epicatechin (B-type EC dimer) showed little effect in previous work. However, the underlying mechanisms are unclear. To test whether bilayer perturbation may underlie this diversity of actions, we examined the bilayer-modifying effects of the four dimers in both 3T3-L1 cell and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine liposome models by using scanning electron microscopy, fluorescent spectroscopy, differential scanning calorimetry, and molecular dynamics methods. Our results revealed that A-type ECG and EGCG dimers had a high affinity for the lipid bilayer and could form simultaneous hydrogen bonds (H-bond) with both the surface oxygen acceptors and the deeper inside lipid oxygen atoms. However, A-type and B-type EC dimers contacted only the surface oxygen atoms with limited and significantly fewer H-bonds. A-type ECG and EGCG dimers notably distorted the membrane morphology of 3T3-L1 cells. In the present study, we found there was a high positive correlation between the membrane-disturbing abilities of the four dimers and their 3T3-L1 cell differentiation inhibitory effects as previously reported. This indicated that the strong 3T3-L1 cell differentiation inhibitory effect of A-type ECG and EGCG dimers might be due to their strong bilayer-perturbing potency. PMID:27588748

  11. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes

    SciTech Connect

    Hashimoto, Takeshi; Yokokawa, Takumi; Endo, Yuriko; Iwanaka, Nobumasa; Higashida, Kazuhiko; Taguchi, Sadayoshi

    2013-10-11

    Highlights: •Long-term hypoxia decreased the size of LDs and lipid storage in 3T3-L1 adipocytes. •Long-term hypoxia increased basal lipolysis in 3T3-L1 adipocytes. •Hypoxia decreased lipid-associated proteins in 3T3-L1 adipocytes. •Hypoxia decreased basal glucose uptake and lipogenic proteins in 3T3-L1 adipocytes. •Hypoxia-mediated lipogenesis may be an attractive therapeutic target against obesity. -- Abstract: Background: A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modest hypoxia on adipocyte function. Methods: Differentiated 3T3-L1 adipocytes were incubated at 5% O{sub 2} for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC). Results: HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01). Conclusion: We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet size via

  12. A Small Molecule Swertisin from Enicostemma littorale Differentiates NIH3T3 Cells into Islet-Like Clusters and Restores Normoglycemia upon Transplantation in Diabetic Balb/c Mice.

    PubMed

    Dadheech, Nidheesh; Soni, Sanket; Srivastava, Abhay; Dadheech, Sucheta; Gupta, Shivika; Gopurappilly, Renjitha; Bhonde, Ramesh R; Gupta, Sarita

    2013-01-01

    Aim. Stem cell therapy is one of the upcoming therapies for the treatment of diabetes. Discovery of potent differentiating agents is a prerequisite for increasing islet mass. The present study is an attempt to screen the potential of novel small biomolecules for their differentiating property into pancreatic islet cells using NIH3T3, as representative of extra pancreatic stem cells/progenitors. Methods. To identify new agents that stimulate islet differentiation, we screened various compounds isolated from Enicostemma littorale using NIH3T3 cells and morphological changes were observed. Characterization was performed by semiquantitative RT-PCR, Q-PCR, immunocytochemistry, immunoblotting, and insulin secretion assay for functional response in newly generated islet-like cell clusters (ILCC). Reversal of hyperglycemia was monitored after transplanting ILCC in STZ-induced diabetic mice. Results. Among various compounds tested, swertisin, an isolated flavonoid, was the most effective in differentiating NIH3T3 into endocrine cells. Swertisin efficiently changed the morphology of NIH3T3 cells from fibroblastic to round aggregate cell cluster in huge numbers. Dithizone (DTZ) stain primarily confirmed differentiation and gene expression studies signified rapid onset of differentiation signaling cascade in swertisin-induced ILCC. Molecular imaging and immunoblotting further confirmed presence of islet specific proteins. Moreover, glucose induced insulin release (in vitro) and decreased fasting blood glucose (FBG) (in vivo) in transplanted diabetic BALB/c mice depicted functional maturity of ILCC. Insulin and glucagon expression in excised islet grafts illustrated survival and functional integrity. Conclusions. Rapid induction for islet differentiation by swertisin, a novel herbal biomolecule, provides low cost and readily available differentiating agent that can be translated as a therapeutic tool for effective treatment in diabetes. PMID:23662125

  13. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts.

    PubMed

    Gardner, Nicole M; Riley, Ronald T; Showker, Jency L; Voss, Kenneth A; Sachs, Andrew J; Maddox, Joyce R; Gelineau-van Waes, Janee B

    2016-05-01

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs. PMID:26905748

  14. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes.

    PubMed

    Iacovides, Demetris; Rizki, Gizem; Lapathitis, Georgios; Strati, Katerina

    2016-01-01

    The insufficient ability of specialized cells such as neurons, cardiac myocytes, and epidermal cells to regenerate after tissue damage poses a great challenge to treat devastating injuries and ailments. Recent studies demonstrated that a diverse array of cell types can be directly derived from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), or somatic cells by combinations of specific factors. The use of iPSCs and direct somatic cell fate conversion, or transdifferentiation, holds great promise for regenerative medicine as these techniques may circumvent obstacles related to immunological rejection and ethical considerations. However, producing iPSC-derived keratinocytes requires a lengthy two-step process of initially generating iPSCs and subsequently differentiating into skin cells, thereby elevating the risk of cellular damage accumulation and tumor formation. In this study, we describe the reprogramming of mouse embryonic fibroblasts into functional keratinocytes via the transient expression of pluripotency factors coupled with directed differentiation. The isolation of an iPSC intermediate is dispensable when using this method. Cells derived with this approach, termed induced keratinocytes (iKCs), morphologically resemble primary keratinocytes. Furthermore they express keratinocyte-specific markers, downregulate mesenchymal markers as well as the pluripotency factors Oct4, Sox2, and Klf4, and they show important functional characteristics of primary keratinocytes. iKCs can be further differentiated by high calcium administration in vitro and are capable of regenerating a fully stratified epidermis in vivo. Efficient conversion of somatic cells into keratinocytes could have important implications for studying genetic skin diseases and designing regenerative therapies to ameliorate devastating skin conditions. PMID:27473056

  15. Metabolic activation of diesel exhaust carcinogens in primary and immortalized human TP53 knock-in (Hupki) mouse embryo fibroblasts.

    PubMed

    Kucab, Jill E; Phillips, David H; Arlt, Volker M

    2012-04-01

    Approximately 50% of human tumors have a mutation in TP53. The pattern and spectra of TP53 mutations often differ between cancer types, perhaps due to different etiological factors. The Hupki (human TP53 knock-in) mouse embryo fibroblast (HUF) immortalization assay is useful for studying mutagenesis in the human TP53 gene by environmental carcinogens. Prior to initiating an immortalization assay, carcinogen treatment conditions must be optimized, which can require a large number of cells. As primary HUF cultures senesce within 2 weeks, restricting their use, we investigated whether immortalized HUFs retaining wild-type TP53 can be surrogates for primary HUFs in initial treatment optimization. DNA damage by eight compounds found in diesel exhaust, benzo[a]pyrene, 3-nitrobenzanthrone, 1-nitropyrene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene, 6-nitrochrysene, and 3-nitrofluorene, was assessed by (32) P-postlabeling and the alkaline comet assay in primary HUFs and in an immortal HUF cell line J201. For most compounds, higher levels of DNA adducts accumulated in J201 cells than in primary HUFs. This difference was not reflected in the comet assay or by cell viability changes. Experiments in three additional immortal HUF cell lines (AAI49, U56, and E2-143) confirmed strong differences in DNA adduct levels compared with primary HUFs. However, these did not correlate with the protein expression of Nqo1 or Nat1/2, or with gene expression of Cyp1a1 or Cyp1b1. Our results show that using immortal HUFs as surrogates for primary HUFs in genotoxicity screening has limitations and that DNA adduct formation is the best measure of genotoxicity of the nitro-polycyclic aromatic hydrocarbons tested in HUFs. PMID:22351035

  16. Apaf-1 deficient mouse fibroblasts are resistant to MNNG and MMS-induced apoptotic death without attenuation of Bcl-2 decline

    SciTech Connect

    Tomicic, Maja T.; Christmann, Markus; Fabian, Kerstin; Kaina, Bernd . E-mail: kaina@uni-mainz.de

    2005-09-01

    Simple alkylating agents induce cell death by activating the apoptotic pathway. In rodent fibroblasts, apoptosis triggered by DNA methylation lesions is executed via the mitochondrial damage pathway. Here, we studied cell death induced by the methylating agents methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in mouse fibroblasts wild-type (wt) and deficient for Apaf-1 (apaf-1 knockout cells). Apaf-1 is an essential component of the apoptosome complex that becomes activated upon cytochrome c release from mitochondria. We show that apaf-1 knockout cells are more resistant to the cytotoxic effect (as measured by WST assay) of methylating agents. This is due to a reduced frequency of apoptosis and necrosis, which appeared at late times (72 h) after exposure. Caspase-3 and -9 became activated in wt but not in apaf-1 knockout cells, whereas caspase-8 was not activated in either one of the lines. The data indicate that MMS and MNNG-induced cell death in mouse fibroblasts is triggered by the activation of the mitochondrial damage pathway and that apaf-1 is required for eliciting this response. A hallmark of mitochondria-mediated apoptosis induced upon alkylation is decline of Bcl-2 protein level. Bcl-2 decline occurred to similar extent in wt and apaf-1 knockout cells suggesting that it is an upstream event in MMS and MNNG-induced apoptosis triggered by non-repaired DNA damage.

  17. Camphor Induces Proliferative and Anti-senescence Activities in Human Primary Dermal Fibroblasts and Inhibits UV-Induced Wrinkle Formation in Mouse Skin.

    PubMed

    Tran, Thao Anh; Ho, Manh Tin; Song, Yeon Woo; Cho, Moonjae; Cho, Somi Kim

    2015-12-01

    Camphor ((1R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one), a bicyclic monoterpene, is one of the major constituents of essential oils from various herbs such as rosemary, lavender, and sage. In this study, we investigated the beneficial effects of camphor as a botanical ingredient in cosmetics. Camphor induced the proliferation of human primary dermal fibroblasts in a dose-dependent manner via the PI3K/AKT and ERK signaling pathways. Camphor attenuated the elevation of senescence associated with β-galactosidase (SA-β-gal) activity. Elastase activity decreased, while the total amount of collagen increased, in a dose- and time-dependent manner in human primary dermal fibroblasts treated with camphor. Camphor induced the expression of collagen IA, collagen IIIA, collagen IVA, and elastin in human primary dermal fibroblasts. In addition, posttreatment with 26 and 52 mM camphor for 2 weeks led to a significant reduction in the expression of MMP1 but increases in the expression of collagen IA, IIIA, and elastin in mouse skin exposed to UV for 4 weeks. These posttreatments also reduced the depths of the epidermis and subcutaneous fat layer in UV-exposed mouse skin. Taken together, these findings suggest camphor to be a potent wound healing and antiwrinkle agent with considerable potential for use in cosmeceuticals. PMID:26458283

  18. Widdrol-induced lipolysis is mediated by PKC and MEK/ERK in 3T3-L1 adipocytes.

    PubMed

    Jeong, Hyun Young; Yun, Hee Jung; Kim, Byung Woo; Lee, Eun Woo; Kwon, Hyun Ju

    2015-12-01

    Obesity is a serious medical condition causing various diseases such as heart disease, type-2 diabetes, and cancer. Fat cells (adipocytes) play an important role in the generation of energy through hydrolysis of lipids they accumulate. Therefore, induction of lipolysis (breakdown of lipids into fatty acids and glycerol), is one of the ways to treat obesity. In the present study, we investigated the lipolytic effect of widdrol in 3T3-L1 adipocytes and its mechanism. Widdrol considerably increased the amount of glycerol released from 3T3-L1 adipocytes into the medium in a time- and dose-dependent manner. To determine the mechanism of this effect, we investigated the alterations in glycerol release and protein expression in 3T3-L1 adipocytes treated with widdrol alone or widdrol and inhibitors of proteins involved in the cAMP-dependent pathway or cAMP-independent PKC-MAPK pathway, which are known to induce lipolysis in adipocytes. The adenylyl cyclase inhibitor SQ-22536, PLA2 inhibitor dexamethasone, PI3K inhibitor wortmannin, and PKA inhibitor H-89, which were used to investigate the involvement of the cAMP-dependent pathway, did not affect the lipolytic effect of widdrol. Widdrol-induced phosphorylation of PKC, MEK, and ERK, which are related to the PKC-MAPK pathway, and their phosphorylation was inhibited by their inhibitors (H-7, U0126, and PD-98059, respectively). Moreover, the increase in glycerol release induced by widdrol was almost completely blocked by PKC, MEK, and ERK inhibitors. These results suggest that widdrol induces lipolysis through activation of the PKC-MEK-ERK pathway. PMID:26359088

  19. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    SciTech Connect

    He, Yonghan; Li, Ying; Zhang, Shuocheng; Perry, Ben; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  20. Liraglutide attenuates the osteoblastic differentiation of MC3T3-E1 cells by modulating AMPK/mTOR signaling

    PubMed Central

    Hu, Xiong-Ke; Yin, Xin-Hua; Zhang, Hong-Qi; Guo, Chao-Feng; Tang, Ming-Xing

    2016-01-01

    Liraglutide, a synthetic analogue of glucagon-like peptide-1, is utilized in the treatment of type 2 diabetes and obesity. Liraglutide has been previously demonstrated to prevent osteoblastic differentiation of human vascular smooth muscle cells, resulting in the slowing of arterial calcification, however, its effect on bone formation remains unclear. The present study investigated the effect of liraglutide on osteoblastic differentiation using Alizarin Red S staining, and examined the molecular mechanisms underlying the regulatory effect by western blot analysis. The present study demonstrated that protein expression levels of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were downregulated in MC3T3-E1 cells during osteoblastic differentiation in commercial osteogenic differentiation medium, whereas protein expression levels of transforming growth factor-β (TGF-β) and phosphorylated mammalian target of rapamycin (p-mTOR) increased. Liraglutide was subsequently demonstrated to dose-dependently attenuate the osteoblastic differentiation of MC3T3-E1 cells, to upregulate p-AMPK, and downregulate p-mTOR and TGF-β protein expression levels. Treatment with an AMPK-specific inhibitor, Compound C, eradicated the effect of liraglutide on osteoblastic differentiation, and p-mTOR and TGF-β downregulation. An mTOR activator, MHY1485, also abolished the inhibitory effect of liraglutide on osteoblastic differentiation, and resulted in p-mTOR and TGF-β downregulation, but did not attenuate the liraglutide-induced increase in p-AMPK protein expression levels. The results of the present study demonstrate that liraglutide attenuates osteoblastic differentiation of MC3T3-E1 cells via modulation of AMPK/mTOR signaling. The present study revealed a novel function of liraglutide, which contributes to the understanding of its pharmacological and physiological effects in clinical settings. PMID:27600753

  1. Changes in chromatin structure in NIH 3T3 cells induced by valproic acid and trichostatin A.

    PubMed

    Felisbino, Marina Barreto; Gatti, Maria Silvia Viccari; Mello, Maria Luiza S

    2014-11-01

    Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.

  2. Enhancement of ajoene-induced apoptosis by conjugated linoleic acid in 3T3-L1 adipocytes.

    PubMed

    Yang, Jeong-Yeh; Della-Fera, Mary Anne; Hausman, Dorothy B; Baile, Clifton A

    2007-06-01

    Ajoene has been shown to induce apoptosis in 3T3-L1 adipocytes. In this report the effects on apoptosis of combinations of ajoene and trans-10, cis-12 conjugated linoleic acid (t10,c12CLA) in 3T3-L1 adipocytes were investigated. Although t10,c12CLA alone had no effect, ajoene plus t10,c12CLA reduced cell viability more than ajoene alone at 24 h (59.1 vs. 85.9% of control, respectively; p<0.05). Compared to treatment with t10,c12CLA, ajoene increased apoptosis 218% after 24 h (p<0.01), whereas ajoene plus t10,c12CLA increased apoptosis 122% over that caused by ajoene alone (p<0.01). Immunoblotting analysis also indicated that ajoene plus t10,c12CLA caused a greater increase in phosphorylation of c-Jun N-terminal kinase (JNK) and Bax expression and a greater release of mitochondrial proteins (cytochrome c, AIF) than additive responses to each compound alone. Ajoene plus t10,c12CLA also increased ROS production more than that resulting from ajoene treatment alone (264 vs 204% after 40 min, respectively; p<0.01). Furthermore, the antioxidant NAC prevented ROS generation and apoptosis by ajoene plus t10,c12CLA. Interestingly, the combination of ajoene and t10,c12CLA increased NF-kappaB activation and decreased the level of phosphorylated Akt more than each compound alone. Altogether, our observations indicate that t10,c12CLA potentiates the effect of ajoene on apoptosis in 3T3-L1 adipocytes.

  3. Cirsium brevicaule A. GRAY leaf inhibits adipogenesis in 3T3-L1 cells and C57BL/6 mice

    PubMed Central

    2013-01-01

    Background Various flavonoids obtained from the genus Cirsium have been reported to exhibit beneficial effects on health. The present study evaluated the antiobesity effects of Cirsium brevicaule A. GRAY leaf (CL) by using 3T3-L1 cells and C57BL/6 mice that were fed a high-fat diet (HFD). Methods Dried CL powder was serially extracted with solvents of various polarities, and these extracts were tested for antiadipogenic activity using 3T3-L1 adipocytes. Mice were fed experimental HFD supplemented with dried CL powder for 4 wk. Lipid levels and mRNA levels of genes related to lipid metabolism were determined in 3T3-L1 adipocytes and the white adipose tissue (WAT) and liver of mice fed on a HFD. Results Treatment of 3T3-L1 adipocytes with a hexane extract of CL significantly reduced cellular lipid accumulation and expression of the fatty acid synthase (FASN) gene. Dietary CL reduced the serum levels of non-esterified fatty acids in HFD-fed mice. Significant decreases in subcutaneous WAT weight and associated FASN gene expression were observed in the mice fed the experimental CL diet. Dietary CL also reduced the hepatic lipid and serum levels of a hepatopathic indicator in the HFD-fed mice. A significant reduction in mRNA levels of FASN and HMG-CoA reductase were observed in the livers of the CL-diet group. Dietary CL, on the other hand, increased in the hepatic mRNA levels of genes related to β-oxidation, namely peroxisome proliferator-activated receptor α, calnitine palmitoyltrasferase 1A, and uncoupling protein 2. Expression of the insulin receptor gene was also significantly increased in the livers of mice-fed the CL diet. Conclusions The present study therefore demonstrated that CL suppresses lipid accumulation in the WAT and liver partly through inhibiting mRNA levels of FASN gene and enhancing the lipolysis-related gene expression. PMID:23945333

  4. Regulation of plasminogen activator in 3T3 cells: effect of phorbol myristate acetate on subcellular distribution and molecular weight

    PubMed Central

    1981-01-01

    The tumor promoter, phorbol myristate acetate (PMA), stimulates plasminogen activator production and extracellular release in confluent Swiss 3T3 cells. Coordinated with the increased extracellular release is a redistribution of the activity into plasma membrane-enriched fractions and a shift in the predominant molecular weight species from 75,000 to 49,000 daltons. The evidence suggests that PMA induces the formation of the 49,000 dalton species which is preferentially located in plasma membrane-enriched fractions. PMID:7197280

  5. Regulatory role of NADPH oxidase in glycated LDL-induced upregulation of plasminogen activator inhibitor-1 and heat shock factor-1 in mouse embryo fibroblasts and diabetic mice.

    PubMed

    Zhao, Ruozhi; Le, Khuong; Moghadasian, Mohammed H; Shen, Garry X

    2013-08-01

    Cardiovascular disease is the predominant cause of death in diabetic patients. Fibroblasts are one of the major types of cells in the heart or vascular wall. Increased levels of glycated low-density lipoprotein (glyLDL) were detected in diabetic patients. Previous studies in our group demonstrated that oxidized LDL increased the amounts of NADPH oxidase (NOX), plasminogen activator inhibitor-1 (PAI-1), and heat shock factor-1 (HSF1) in fibroblasts. This study examined the expression of NOX, PAI-1, and HSF1 in glyLDL-treated wild-type or HSF1-deficient mouse embryo fibroblasts (MEFs) and in leptin receptor-knockout (db/db) diabetic mice. Treatment with physiologically relevant levels of glyLDL increased superoxide and H2O2 release and the levels of NOX4 and p22phox (an essential component of multiple NOX complexes) in wild-type or HSF1-deficient MEFs. The levels of HSF1 and PAI-1 were increased by glyLDL in wild-type MEFs, but not in HSF1-deficient MEFs. Diphenyleneiodonium (a nonspecific NOX inhibitor) or small interfering RNA for p22phox prevented glyLDL-induced increases in the levels of NOX4, HSF1, or PAI-1 in MEFs. The amounts of NOX4, HSF1, and PAI-1 were elevated in hearts of db/db diabetic mice compared to wild-type mice. The results suggest that glyLDL increased the abundance of NOX4 or p22phox via an HSF1-independent pathway, but that of PAI-1 via an HSF1-dependent manner. NOX4 plays a crucial role in glyLDL-induced expression of HSF1 and PAI-1 in mouse fibroblasts. Increased expression of NOX4, HSF1, and PAI-1 was detected in cardiovascular tissue of diabetic mice.

  6. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    SciTech Connect

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan; Xu, Weijia; Shao, Xinghua; Mou, Shan Ni, Zhaohui

    2015-09-04

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production in a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.

  7. Human milk and infant formula can induce in vitro adipocyte differentiation in murine 3T3-L1 preadipocytes.

    PubMed

    Lyle, R E; Corley, J D; McGehee, R E

    1998-11-01

    The potential of infant diet to influence fat cell development has largely been examined in clinical studies with conflicting results. In this study, the direct effects of two standard infant formulas, Enfamil and Similac, as well as human milk were examined using a well characterized model of adipocyte differentiation, the 3T3-L1 murine preadipocyte cell line. After exposure to a hormonal regimen of insulin, dexamethasone, and 1-methyl-3-isobutylmethylxanthine, these cells undergo a mitotic expansion phase followed by terminal differentiation. On d 4 of hormonal exposure, greater than 95% of 3T3-L1 cells exhibit the morphologic and biochemical characteristics of mature adipocytes. In this study, cells were exposed to control medium, or control medium supplemented with either 10% Enfamil, 10% Similac, 10% human milk (skim or whole), or the standard hormonal regimen. Oil Red O-detectable lipid accumulation, immunocytochemical cell proliferation assays, and activated expression of adipocyte differentiation-specific mRNAs by Northern blot analysis were used to assess the effects of treatment on adipocyte differentiation. Results from each level of assessment revealed that both Enfamil and human milk were as effective as the standard hormonal regimen at stimulating adipocyte differentiation. In contrast, results from treatment with Similac or human skim milk were indistinguishable from control unstimulated cells. This study, demonstrating that Enfamil and human milk are capable of independently inducing in vitro adipocyte differentiation, suggests that diet during infancy could influence body fat development.

  8. Macrophage-conditioned medium inhibits differentiation-induced Rb phosphorylation in 3T3-L1 preadipocytes

    SciTech Connect

    Yarmo, Michelle N.; Landry, Anne; Molgat, Andre S.D.; Gagnon, AnneMarie; Sorisky, Alexander

    2009-02-01

    This study examines the mechanisms underlying the anti-adipogenic effect of macrophage-secreted products. 3T3-L1 preadipocytes were induced to differentiate over 8 days in medium conditioned by murine J774 macrophages (MacCM). The inhibitory effect on lipid accumulation and expression of adipogenic markers was diminished when addition of MacCM was delayed to day 2 of differentiation. Clonal expansion, an early event required for 3T3-L1 adipogenesis, was reduced in the presence of MacCM (89%; n = 3; p < 0.001), and BrdU incorporation was impaired by 55% (n = 3; p < 0.01). Activation of ERK1/2 was not affected by MacCM, and neither was the expression of p27{sup kip1}, a cyclin-dependent kinase inhibitor. However, phosphorylation of the retinoblastoma protein (Rb), required for cell cycle progression, was impaired by MacCM (94% inhibition; n = 3; p < 0.01). Differentiation-dependent expression, nuclear localization, and DNA binding ability of C/EBP{beta} were not inhibited by MacCM. Alterations in cell cycle-associated proteins may be important with respect to the anti-adipogenic action of MacCM.

  9. Alliin, a Garlic (Allium sativum) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    PubMed Central

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile. PMID:24453416

  10. Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro.

    PubMed

    Ju, Jae-Hyun; Yoon, Hong-Sup; Park, Hyun-Joon; Kim, Mi-Young; Shin, Hyeun-Kil; Park, Kun-Young; Yang, Jin-Oh; Sohn, Min-Shik; Do, Myoung-Sool

    2011-10-01

    The purpose of the current study was to determine the anti-obesity and anti-inflammatory effects of an extract of purple sweet potatoes (PSPs) on 3T3-L1 adipocytes. For this purpose, differentiated 3T3-L1 adipocytes were treated with a PSP extract at concentrations of 1,000, 2,000, and 3,000 μg/mL for 24 hours. Then, we measured the changes in the sizes of the adipocytes, the secretion of leptin, and the mRNA/protein expression of lipogenic, inflammatory, and lipolytic factors after the treatment with the PSP extract. The PSP extract diminished leptin secretion, indicating that growth of fat droplets was suppressed. The extract also suppressed the expression of mRNAs of lipogenic and inflammatory factors and promoted lipolytic action. The antioxidative activity of the PSP extract was also measured using three different in vitro methods: 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity, ferric reducing ability potential assay, and chelating activity of transition metal ions. Taken together, our study shows that PSP extract has antilipogenic, anti-inflammatory, and lipolytic effects on adipocytes and has radical scavenging and reducing activity. PMID:21861722

  11. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes.

    PubMed

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  12. Determination of the differentiation capacities of murines' primary mononucleated cells and MC3T3-E1 cells

    PubMed Central

    2010-01-01

    Background The main morphological features of primitive cells, such as stem and progenitor cells, are that these cells consists only one nucleus. The main purpose of this study was to determine the differentiation capacities of stem and progenitor cells. This study was performed using mononucleated cells originated from murine peripheral blood and MC3T3-E1 cells. Three approaches were used to determine their differentiation capacities: 1) Biochemical assays, 2) Gene expression analysis, and 3) Morphological observations. Results We found that both cells were able to differentiate into mature osteoblasts, as assayed by ALP activity. RT-PCR analysis showed the activation of the Opn gene after osteoblast differentiation. Morphological observations of both cells revealed the formation of black or dark-brown nodules after von Kossa staining. Nevertheless, only mononucleated cells showed the significant increase in TRAP activity characteristic of mature osteoclasts. The osteoclast-specific CatK gene was only upregulated in mononucleated cells. Morphological observations indicated the existence of multinucleated osteoclasts. Sca-1 was activated only in undifferentiated mononucleated cells, indicating that the cells were hematopoietic stem cells. In both cell lines, the housekeeping Gapdh gene was activated before and after differentiation. Conclusion The isolated mononucleated cells were able to differentiate into both osteoblasts and osteoclasts; indicating that they are stem cells. On the other hand, MC3T3-E1 cells can only differentiate into osteoblasts; a characteristic of progenitor cells. PMID:20979664

  13. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  14. Restoration of murine femoral segmental defect using CTGF-overexpressing MC3T3-E1 cells

    PubMed Central

    Huang, Xiangyu; Li, Yanqiu; Xu, Jiantao; Liu, Kai; Yu, Xin; Cheng, Xin; Xu, Dongdong; Li, Zubing

    2016-01-01

    Connective tissue growth factor (CTGF) is a member of the CCN super family and is reported to widely participate in bone development and regeneration. This study aimed to restore murine femoral segmental defect using CTGF-overexpressing MC3T3-E1 cells. MC3T3-E1 cells were transinfected by lenti-CTGF (LvCTGF) and lenti-negative control (LvNC) virus to obtain stably transinfected cells. Real-time PCR, Western blot, alkaline phosphatase activity assay, and alizarin red staining demonstrated that the overexpression of CTGF enhanced osteogenesis in vitro. Cell migration assay results showed that LvCTGF cells expressed higher migration ability than LvNC cells, while CCK-8 assay revealed no significant difference in cell proliferation. The LvCTGF and LvNC cells were then seeded into a chitosan/β-TCP scaffold and were used to restore a murine femoral segmental defect. Samples were harvested by the end of 2 and 5 weeks respectively. Micro-CT analysis and Masson’s trichrome staining results showed that the LvCTGF-scaffold group expressed better bone healing compared with the LvNC-scaffold and scaffold-only groups. CTGF-overexpressed cells serve as an efficient source of seeding cells for bone regeneration. PMID:27186279

  15. Ajoene exerts potent effects in 3T3-L1 adipocytes by inhibiting adipogenesis and inducing apoptosis.

    PubMed

    Ambati, Suresh; Yang, Jeong-Yeh; Rayalam, Srujana; Park, Hea Jin; Della-Fera, Mary Anne; Baile, Clifton A

    2009-04-01

    This paper describes effects of several sulfur-containing compounds from garlic on the cell viability, apoptosis and adipogenesis in 3T3-L1 adipocytes. In both preadipocytes and mature adipocytes, 100 and 200 microM ajoene significantly decreased cell viability and increased apoptosis. The effect on apoptosis was further confirmed with Hoechst staining. In contrast, diallyl sulfide, diallyl disulfide, diallyl trisulfide, deoxyalliin, and allyl methyl sulfide had no significant effect on cell viability or apoptosis in either preadipocytes or mature adipocytes. In maturing preadipocytes ajoene significantly decreased lipid accumulation in a dose-dependent manner and these results were further confirmed by a decrease in lipid droplet number and lipid content through Oil Red O staining. There was no significant change in lipid accumulation in maturing preadipocytes treated with other garlic derivatives. Thus, despite the same source of origin, garlic, ajoene was the only one with potent effects on cell viability, apoptosis and adipogenesis in 3T3-L1 adipocytes.

  16. Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis.

    PubMed

    Yin, Lei; Yu, Kevin Shengyang; Lu, Kun; Yu, Xiaozhong

    2016-04-01

    Benzyl butyl phthalate (BBP) has been known to induce developmental and reproductive toxicity. However, its association with dysregulation of adipogenesis has been poorly investigated. The present study aimed to examine the effect of BBP on the adipogenesis, and to elucidate the underlying mechanisms using the 3T3-L1 cells. The capacity of BBP to promote adipogenesis was evaluated by multiple staining approaches combined with a High Content Cellomics analysis. The dynamic changes of adipogenic regulatory genes and proteins were examined, and the metabolite profile was identified using GC/MC based metabolomic analysis. The High Content analysis showed BBP in contrast with Bisphenol A (BPA), a known environmental obesogen, increased lipid droplet accumulation in a similar dose-dependent manner. However, the size of the lipid droplets in BBP-treated cells was significantly larger than those in cells treated with BPA. BBP significantly induced mRNA expression of transcriptional factors C/EBPα and PPARγ, their downstream genes, and numerous adipogenic proteins in a dose and time-dependent manner. Furthermore, GC/MC metabolomic analysis revealed that BBP exposure perturbed the metabolic profiles that are associated with glyceroneogenesis and fatty acid synthesis. Altogether, our current study clearly demonstrates that BBP promoted the differentiation of 3T3-L1 through the activation of the adipogenic pathway and metabolic disturbance. PMID:26820058

  17. Characterization of RNA from Noninfectious Virions Produced by Sarcoma Positive-Leukemia Negative Transformed 3T3 Cells

    PubMed Central

    Phillips, Leo A.; Hollis, Vincent W.; Bassin, Robert H.; Fischinger, Peter J.

    1973-01-01

    RNA from noninfectious virions produced by two established clonal lines of sarcoma positive-leukemia negative (S+L-)-transformed 3T3 cells has been characterized. RNA from virions or nucleoids of S+L--(C243) cells consisted of three to four sizes: ±44 S (6%), 28 S (17%), 18 S (38%), and <18 S (39%). 28S virion RNA contained some virus-specific information demonstrable by RNA·DNA hybridization with a DNA probe derived from the RNA-directed DNA polymerase product of murine sarcoma-leukemia virus, while parallel studies indicated that 28S ribosomal RNA from ribosomal subunits of transformed and nontransformed 3T3 cells did not contain virus-specific information. In contrast to the S+L-(C243) virions, RNA from virions or nucleoids of S+L-(D56) cells consisted of five sizes: 80 S (6%), 68 S (8%), 56 S (5%), 28 S (28%), and <28 S (53%). Thermal dissociation studies suggested that this S+L- genome is comprised of 28S RNA subunits. From these studies we postulate that the 28S viral RNA is most probably the monomeric genome of S+L- virions. PMID:4355380

  18. Sodium acetate decreases phosphorylation of hormone sensitive lipase in isoproterenol-stimulated 3T3-L1 mature adipocytes

    PubMed Central

    Aberdein, Nicola; Schweizer, Michael; Ball, Derek

    2014-01-01

    Lipolysis, the process of hydrolysis of stored triacylglycerol into glycerol and non-esterified fatty acids (NEFA), is reported to be reduced by short chain fatty acids (SCFA) but the mechanism of this inhibition is poorly understood. The aim of this study was to measure the phosphorylation at serine residue 563 of hormone sensitive lipase with and without exposure to sodium acetate. Using the 3T3-L1 cell line, we identified that stimulating the cells with isoproterenol increased phosphorylated hormone sensitive lipase (pHSL) expression by 60% compared with the basal state. In the presence of the SCFA acetate in stimulated cells, pHSL decreased by 15% compared with stimulated cells alone. These results were mirrored by the NEFA release from stimulated cells that had significantly decreased in the presence of sodium acetate after 60 min (from 0.53 µmol mg−1 protein to 0.41 µmol mg−1 protein, respectively, P = 0.004); and 180 min (1.73 µmol mg−1 protein to 1.13 µmol mg−1 protein, P = 0.020); however, treatment had no effect on glycerol release (P = 0.109). In conclusion, exposure to 4 mM acetate reduced the level of phosphorylation of HSL(SER563) in mature 3T3-L1 adipocytes and led to a significant reduction in NEFA release, although glycerol release was not affected. PMID:24719785

  19. Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes.

    PubMed

    Mitsuhashi, Kazuteru; Senmaru, Takafumi; Fukuda, Takuya; Yamazaki, Masahiro; Shinomiya, Katsuhiko; Ueno, Morio; Kinoshita, Shigeru; Kitawaki, Jo; Katsuyama, Masato; Tsujikawa, Muneo; Obayashi, Hiroshi; Nakamura, Naoto; Fukui, Michiaki

    2016-01-01

    Decreases in serum testosterone concentrations in aging men are associated with metabolic disorders. Testosterone has been reported to increase GLUT4-dependent glucose uptake in skeletal muscle cells and cardiomyocytes. However, studies on glucose uptake occurring in response to testosterone stimulation in adipocytes are currently not available. This study was designed to determine the effects of testosterone on glucose uptake in adipocytes. Glucose uptake was assessed with 2-[(3)H] deoxyglucose in 3T3-L1 adipocytes. GLUT4 translocation was evaluated in plasma membrane (PM) sheets and PM fractions by immunofluorescence and immunoblotting, respectively. Activation of GLUT4 translocation-related protein kinases, including Akt, AMPK, LKB1, CaMKI, CaMKII, and Cbl was followed by immunoblotting. Expression levels of androgen receptor (AR) mRNA and AR translocation to the PM were assessed by real-time RT-PCR and immunoblotting, respectively. The results showed that both high-dose (100 nM) testosterone and testosterone-BSA increased glucose uptake and GLUT4 translocation to the PM, independently of the intracellular AR. Testosterone and testosterone-BSA stimulated the phosphorylation of AMPK, LKB1, and CaMKII. The knockdown of LKB1 by siRNA attenuated testosterone- and testosterone-BSA-stimulated AMPK phosphorylation and glucose uptake. These results indicate that high-dose testosterone and testosterone-BSA increase GLUT4-dependent glucose uptake in 3T3-L1 adipocytes by inducing the LKB1/AMPK signaling pathway.

  20. Ionic responses rapidly elicited by activation of protein kinase C in quiescent Swiss 3T3 cells

    SciTech Connect

    Vara, F.; Schneider, J.A.; Rozengurt, E.

    1985-04-01

    Diacylglycerol and phorbol esters activate protein kinase C in intact cells. The authors report here that addition of the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) to quiescent cultures of Swiss 3T3 cells caused a marked increase in the rate of ouabain-sensitive YWRb uptake, a measure of the activity of the Na /K pump. The effect was dose-dependent and could be detected after 1 min of exposure to the diacylglycerol. OAG stimulated Na influx via an amiloride-sensitive pathway and increased intracellular pH by 0.15 pH unit. Phorbol 12,13-dibutyrate (PBt2) also enhanced ouabain sensitive YWRb uptake and amiloride-sensitive SSNa influx. Prolonged treatment (40 hr) of 3T3 cells with PBt2 at a saturating dose, which reduces the number of PBt2 binding sites and protein kinase C activity, abolished the ionic response of the cells to a subsequent addition of either OAG or PBt2. They suggest that activation of protein kinase C elicits, either directly or indirectly, enhanced Na /H antiport activity, which, in turn, leads to Na influx, intracellular pH modulation, and stimulation of the Na /K pump.

  1. The anti-obesity effect of Lethariella cladonioides in 3T3-L1 cells and obese mice

    PubMed Central

    Sung, Ju-Hyun; Chon, Jeong-Woo; Lee, Mi-Ae; Park, Jin-Kyung; Woo, Jeong-Taek

    2011-01-01

    The aim of this study was to investigate whether a water extract of L. cladonioides (LC) has an anti-obesity effect in 3T3-L1 cells and obese mice. Treatment of differentiated 3T3-L1 adipocytes with LC caused a significant increase in glycerol release and reduced the protein expression of the adipogenic transcription factors, PPARγ and C/EBPα. In an animal model, obese mice were artificially induced by a high fat diet for 10 weeks. Experimental groups were treated with LC (100 mg/kg/day) by gavage for the next 10 weeks. At the end of experiment, the body weight of the LC group mice was reduced by 14.2% compared to the high fat diet (HFD) group. The treatment also decreased liver (31.0%), epididymal (18.0%) and retroperitoneal (19.3%) adipose tissue, and kidney (6.7%) weights, respectively, compared with those of the HFD group. LC prevented diet-induced increases in the serum level of TC (22.6%), TG (11.6%), and glucose (35.0%), respectively, compared with the HFD group. However, the HDL-C level was higher in the LC group (26.1%) than the HFD group. The results of this study thus suggest that LC suppressed lipid accumulation and expression of adipogenic transcription factors, and increased the amount of glycerol release. LC also indicated an anti-obese and anti-hyperlipidemic effect. PMID:22259674

  2. Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro.

    PubMed

    Ju, Jae-Hyun; Yoon, Hong-Sup; Park, Hyun-Joon; Kim, Mi-Young; Shin, Hyeun-Kil; Park, Kun-Young; Yang, Jin-Oh; Sohn, Min-Shik; Do, Myoung-Sool

    2011-10-01

    The purpose of the current study was to determine the anti-obesity and anti-inflammatory effects of an extract of purple sweet potatoes (PSPs) on 3T3-L1 adipocytes. For this purpose, differentiated 3T3-L1 adipocytes were treated with a PSP extract at concentrations of 1,000, 2,000, and 3,000 μg/mL for 24 hours. Then, we measured the changes in the sizes of the adipocytes, the secretion of leptin, and the mRNA/protein expression of lipogenic, inflammatory, and lipolytic factors after the treatment with the PSP extract. The PSP extract diminished leptin secretion, indicating that growth of fat droplets was suppressed. The extract also suppressed the expression of mRNAs of lipogenic and inflammatory factors and promoted lipolytic action. The antioxidative activity of the PSP extract was also measured using three different in vitro methods: 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity, ferric reducing ability potential assay, and chelating activity of transition metal ions. Taken together, our study shows that PSP extract has antilipogenic, anti-inflammatory, and lipolytic effects on adipocytes and has radical scavenging and reducing activity.

  3. Anti-obesity effects of hispidin and Alpinia zerumbet bioactives in 3T3-L1 adipocytes.

    PubMed

    Tu, Pham Thi Be; Tawata, Shinkichi

    2014-10-15

    Obesity and its related disorders have become leading metabolic diseases. In the present study, we used 3T3-L1 adipocytes to investigate the anti-obesity activity of hispidin and two related compounds that were isolated from Alpinia zerumbet (alpinia) rhizomes. The results showed that hispidin, dihydro-5,6-dehydrokawain (DDK), and 5,6-dehydrokawain (DK) have promising anti-obesity properties. In particular, all three compounds significantly increased intracellular cyclic adenosine monophosphate (cAMP) concentrations by 81.2% ± 0.06%, 67.0% ± 1.62%, and 56.9% ± 0.19%, respectively. Hispidin also stimulated glycerol release by 276.4% ± 0.8% and inhibited lipid accumulation by 47.8% ± 0.16%. Hispidin and DDK decreased intracellular triglyceride content by 79.5% ± 1.37% and 70.2% ± 1.4%, respectively, and all three compounds inhibited glycerol-3-phosphate dehydrogenase (GPDH) and pancreatic lipase, with hispidin and DDK being the most potent inhibitors. Finally, none of the three compounds reduced 3T3-L1 adipocyte viability. These results highlight the potential for developing hispidin and its derivatives as anti-obesity compounds.

  4. 1'-acetoxychavicol acetate inhibits adipogenesis in 3T3-L1 adipocytes and in high fat-fed rats.

    PubMed

    Ohnishi, Rie; Matsui-Yuasa, Isao; Deguchi, Yohei; Yaku, Keisuke; Tabuchi, Masaki; Munakata, Hiroshi; Akahoshi, Yasumitsu; Kojima-Yuasa, Akiko

    2012-01-01

    Alpinia galanga and Languas galanga, which are plants belonging to the ginger family, are frequently used for cooking, especially in Thai and Indonesian cuisine. The compound 1'-acetoxychavicol acetate (ACA), which is naturally obtained from the rhizomes and seeds of these gingers, has antioxidant and anti-inflammatory properties. We investigated the anti-obesity effects of ACA in 3T3-L1 adipocytes and in high fat diet (HFD)-induced rat models of obesity. ACA caused a significant decrease in the activity of GPDH in 3T3-L1 adipocytes without eliciting cell cytotoxicity, and it inhibited cellular lipid accumulation through the down-regulation of transcription factors such as PPARγ and C/EBPα. ACA also induced a dose-dependent phosphorylation of AMP-activated protein kinase (AMPK). In the animal model, rats fed an HFD containing 0.05% ACA gained less weight than rats fed an HFD alone. The visceral fat mass in rats fed an HFD containing 0.05% ACA tended to be lower than that in rats fed an HFD alone. Furthermore, a histological examination of livers from rats fed an HFD showed steatohepatitis. However, rats fed an HFD containing 0.05% ACA showed no histopathological changes in the liver tissue. Our results show that ACA exerts anti-obesity activities both in vitro and in vivo and suggests that ACA may have a novel preventive activity against obesity and possibly other metabolic diseases.

  5. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C.

    PubMed

    Park, Yu-Kyoung; Lee, Tae-Yoon; Choi, Jong-Soon; Hong, Victor Sukbong; Lee, Jinho; Park, Jong-Wook; Jang, Byeong-Churl

    2014-10-01

    Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a-7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases' inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5. PMID:25245291

  6. Effects of Scytosiphon lomentaria on osteoblastic proliferation and differentiation of MC3T3-E1 cells

    PubMed Central

    Park, Mi Hwa; Kim, Seoyeon; Cheon, Jihyeon; Lee, Juyeong; Kim, Bo Kyung; Lee, Sang-Hyeon; Kong, Changsuk; Kim, Yuck Yong

    2016-01-01

    BACKGROUND/OBJECTIVES Bone formation and bone resorption continuously occur in bone tissue to prevent the accumulation of old bone, this being called bone remodeling. Osteoblasts especially play a crucial role in bone formation through the differentiation and proliferation. Therefore, in this study, we investigated the effects of Scytosiphon lomentaria extract (SLE) on osteoblastic proliferation and differentiation in MC3T3-E1 cells. MATERIALS/METHODS A cell proliferation assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and protein expression analysis of osteoblastic genes were carried out to assess the osteoblastic proliferation and differentiation. RESULTS The results indicated that treatment of SLE promoted the proliferation of MC3T3-E1 cells and improved ALP activity. And, SLE treatment significantly promoted mineralized nodule formation compared with control. In addition, cells treated with SLE significantly upregulated protein expression of ALP, type 1 collagen, bone morphogenetic protein 2, runt-related transcription factor 2, osterix, and osteoprotegerin. CONCLUSIONS The results demonstrate that SLE promote differentiation inducement and proliferation of osteoblasts and, therefore may help to elucidate the transcriptional mechanism of bone formation and possibly lead to the development of bone-forming drugs. PMID:27087897

  7. Low concentration of lipopolysaccharide acts on MC3T3-E1 osteoblasts and induces proliferation via the COX-2-independent NFkappaB pathway.

    PubMed

    Wang, Le-Yu; Wang, Hai-Yi; Ouyang, Jun; Yu, Lei; Chen, Bing; Qin, Jian-Qiang; Qiu, Xiao-Zhong

    2009-06-01

    The translocations of lipopolysaccharide (LPS) from the gut and its effects on bone healing are usually of clinical interest during bone fracture. As already widely studied, Cyclooxygenase-2 (COX-2) is a key enzyme for prostaglandin E2 (PGE(2)) production, which induces the nuclear factor kappa B (NFkappaB) activation and is beneficial to fracture healing. In order to know their roles in skeletal regeneration, mouse MC3T3-E1 osteoblasts were treated with NFkappaB inhibitor BAY 11-7082 and sc791 (a selective COX-2 inhibitor), in the presence of LPS. Interestingly, LPS could induce osteoblasts proliferation through increasing NFkappaB activation and translocation. This induction was not related to COX-2 expression, suggesting that LPS-induced NFkappaB activation is independent of COX-2. It is possible that low concentration of LPS can act as a stimulating factor of the NFkappaB pathway in nonstimulated cells such as osteoblasts. COX-2 is not necessary for the NFkappaB pathway during LPS-induced proliferation of osteoblasts since sc791 had no effects on this induction. These studies provide insight into a potential mechanism by which LPS can affect bone tissue repair in the initial phase of inflammation.

  8. Influence of MC3T3-E1 preosteoblast culture on the corrosion of a T6-treated AZ91 alloy

    PubMed Central

    Brooks, Emily K.; Tobias, Menachem E.; Yang, Shuying; Bone, Lawrence B.; Ehrensberger, Mark T.

    2015-01-01

    This study investigated the corrosion of artificially aged T6 heat-treated Mg-9%Al-1%Zn (AZ91) for biomedical applications. Corrosion tests and surface analysis were completed both with and without a monolayer of mouse preosteoblast MC3T3-E1 cells cultured on the sample. Electrochemical impedance spectroscopy (EIS) and inductively coupled plasma mass spectroscopy (ICPMS) were used to explore the corrosion processes after either 3 or 21 days of AZ91 incubation in cell culture medium (CCM). The EIS showed both the inner layer resistance (Rin) and outer layer resistance (Rout) were lower for samples without cells cultured on the surface at 3 days (Rin = 2.64 e4 Ω/cm2, Rout = 140 Ω/cm2) compared to 21 days (Rin = 3.60 e4 Ω/cm2, Rout = 287 Ω/cm2) due to precipitation of magnesium and calcium phosphates over time. Samples with preosteoblasts cultured on the surface had a slower initial corrosion (3 day, Rin = 1.88 e5 Ω/cm2, Rout = 1060 Ω/cm2) which was observed to increase over time (21 day, Rin = 2.99 e4 Ω/cm2, Rout = 287 Ω/cm2). Changes in the corrosion processes were thought to be related to changes in the coverage provided by the cell layer. Our results reveal that the presence of cells and biological processes are able to significantly influence the corrosion rate of AZ91. PMID:25715925

  9. Mutated human beta3-adrenergic receptor (Trp64Arg) lowers the response to beta3-adrenergic agonists in transfected 3T3-L1 preadipocytes.

    PubMed

    Kimura, K; Sasaki, N; Asano, A; Mizukami, J; Kayahashi, S; Kawada, T; Fushiki, T; Morimatsu, M; Yoshida, T; Saito, M

    2000-03-01

    Wild-type or mutated human beta3-adrenergic receptor (Trp64Arg) cDNAs were stably expressed in mouse 3T3-L1 cells. Saturation binding study using a beta-adrenergic ligand revealed that there was no significant difference in the receptor density and the equilibrium dissociation constant between the two cell lines. However, the ability of the mutant beta3-adrenergic receptor to accumulate cyclic AMP (cAMP) in response to isoproterenol was much reduced and Kact for cAMP accumulation was lowered as compared to the wild type receptor. The amount of alpha subunit of stimulatory GTP-binding protein (GSalpha) and adenylyl cyclase activity in response to forskolin were not different in the two cell lines. The responses of the mutant receptor to epinephrine, norepinephrine and L-755,507, a highly specific agonist for human beta3-adrenergic receptor, were also reduced, but the reduction of Kact for L-755,507 was more evident than other agonists tested. The cAMP accumulation in response to some conventional beta3 agonists was less than 10% of that to isoproterenol even in the cells expressing the wild type receptor. These results suggest that the Trp64Arg mutant beta3-adrenergic receptor has less ability to stimulate adenylyl cyclase, and that lipolytic activity through the beta3-adrenergic receptor by catecholamines in subjects carrying this mutation might be suppressed. PMID:10786926

  10. Suppression of Adipogenesis by 5-Hydroxy-3,6,7,8,3',4'-Hexamethoxyflavone from Orange Peel in 3T3-L1 Cells.

    PubMed

    Wang, Yu; Lee, Pei-Sheng; Chen, Yi-Fen; Ho, Chi-Tang; Pan, Min-Hsiung

    2016-09-01

    We reported previously that hydroxylated polymethoxyflavones (HPMFs) effectively suppressed obesity in high-fat-induced mouse. In this study, we further investigated the molecular mechanism of action of 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5-OH-HxMF), one of major HPMFs in orange peel. Treatment of 5-OH-HxMF effectively inhibited lipid accumulation by 55-60% in a dose-dependent manner. The 5-OH-HxMF attenuated adipogenesis through downregulating adipogenesis-related transcription factors such as peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding proteins (C/EBPs), as well as downstream target fatty acid synthase and acetyl-CoA carboxylase (ACC). 5-OH-HxMF activated adenosine monophosphate-activated protein kinase signaling and silent mating type information regulation 1 (SIRTUIN 1 or SIRT1) in 3T3-L1 adipocytes to decrease lipid accumulation. In addition, the inhibition rate of lipid accumulation was compared between 5-OH-HxMF and 3,5,6,7,8,3',4'-heptamethoxyflavone (HpMF). 5-OH-HxMF inhibited lipid accumulation 15-20% more than HpMF did, indicating that hydroxyl group at position 5 can be a key factor in the suppression of adipogenesis. PMID:27542074

  11. Recombinant C3adesArg/acylation stimulating protein (ASP) is highly bioactive: a critical evaluation of C5L2 binding and 3T3-L1 adipocyte activation.

    PubMed

    Cui, Wei; Lapointe, Marc; Gauvreau, Danny; Kalant, David; Cianflone, Katherine

    2009-10-01

    C5L2 is a recently identified receptor for C5a/C5adesArg, C3a and C3adesArg (ASP). C5a/C5adesArg bind with high affinity, with no identified activation. By contrast, some studies demonstrate C3a/ASP binding/activation to C5L2; others do not. Our aim is to critically evaluate ASP/C3adesArg-C5L2 binding and bioactivity. Cell-associated fluorescent-ASP (Fl-ASP) binding to C5L2 increased from transiently transfectedmouse C5L2. Transfected C5L2-CHO cells had similar results. Endogenous C5L2 expression increased from 3T3-L1 preadipocytes<3T3-L1 adipocytesmouse adipocytes. Non-transfected cells+/-Fl-ASP demonstrated background fluorescence only. In adherent C5L2-HEK (Fl-ASP sorted) and 3T3-L1 cells, blocking with 10% fetal calf serum, protamine sulfate or ovalbumin prevented (125)I-ASP non-specific binding (NSB, no cells), while albumin increased NSB. Binding to non-transfected HEK was comparable to NSB. Optimal specific binding was obtained at 20 degrees C (vs. 4 degrees C) in PBS or serum-free medium with K(d) 83.7+/-23.7 nM (C5L2-HEK), 66+/-15 nM (C5L2-CHO) and 76+/-14.3 nM (3T3-L1 preadipocytes); (125)I-C5a binding had greater affinity. Fl-ASP-C5L2 binding was comparable and concentration dependent (K(d) 31 nM (direct binding) and IC(50) 35 nM (competition binding) regardless of conditions). Recombinant ASP (rASP) produced in modified Escherichia coli Origami (DE3) (allowing folding and disulphide bridge formation), purified under non-denaturing conditions demonstrated 10x greater bioactivity vs. proteolytically derived plasma ASP for triglyceride synthesis and fatty acid uptake in 3T3-L1 adipocytes and preadipocytes while adipose tissue from C5L2 KO mice was non-responsive. rASP stimulation of adipocyte BODIPY-fatty acid uptake demonstrated EC(50) 115+/-93 nM and maximal stimulation of 413+/-33%, p<0.001. ASP binding has distinct characteristics that lead to C5L2 activation and increased

  12. Membrane voltage, resistance, and channel switching in isolated mouse fibroblasts (L cells): a patch-electrode analysis.

    PubMed Central

    Hosoi, S; Slayman, C L

    1985-01-01

    The whole-cell patch-electrode technique of Fenwick, Marty & Neher (1982) has been applied to single suspension-cultured mouse fibroblasts. Seals in the range of 10-50 G omega were obtained without special cleaning of the cell membranes. Rupture of the membrane patch inside the electrode was accompanied by a shift of measured potential into the range -10 to -25 mV, but in most cases with little change in the recorded resistance. The latter fact implied that the absolute resistance of the cell membrane must be in the same range as the seal resistance and the recorded potential is a poor measure of actual cell membrane potential. Steady-state current-voltage curves (range -160 mV to +80 mV) were generated before and after rupture of the membrane patch, and the difference between these gave (zero-current) membrane potentials of -50 to -75 mV, which represents a leak-corrected estimate of the true cell-membrane potential. The associated slope conductivity of the cell membrane was 5-15 microS/cm2 (assumed smooth-sphere geometry, cells 13-15 microns in diameter) and was K+-dominated. With 0.1 mM (or more) free Ca2+ filling the patch electrode, membrane potentials in the range -60 to -85 mV were observed following patch rupture, with associated slope conductivities of 200-400 microS/cm2, also K+-dominated. Similar voltages and conductivities were observed at the peak of pulse-induced 'hyperpolarizing activation' (Nelson, Peacock, & Minna, 1972), and the two phenomena probably reflect the behaviour of Ca2+-activated K+ channels. Both the pulse-induced conductance and the Ca2+-activated conductance spontaneously decayed, the latter over periods of 5-15 min following patch rupture. Sr2+, Ba2+, and Co2+ could also activate the putative K+ channels, but only Sr2+ really mimicked Ca2+. Co2+ and Ba2+ activated with a delay of several minutes following patch rupture, and deactivated quickly with a small decrease of conductance and a large decrease of membrane potential. Evidently

  13. Differentiation of 3T3-L1 preadipocytes with 3-isobutyl-1-methylxanthine and dexamethasone stimulates cell-associated and soluble chondroitin 4-sulfate proteoglycans

    SciTech Connect

    Calvo, J.C.; Rodbard, D.; Katki, A.; Chernick, S.; Yanagishita, M. )

    1991-06-15

    The proteoglycans (cell-associated and culture media) in 3T3-L1 preadipocytes in culture were analyzed before and during differentiation into adipocytes. Cells were metabolically labeled with (35S)sulfate and (3H) glucosamine for 24 h and then extracted and analyzed. There was a 1.68 {plus minus} 0.07-fold increase in the 35S in medium proteoglycan during differentiation, whereas cell-associated proteoglycan radioactivity showed no increase. Analyses of radiolabeled molecules using ion-exchange chromatography, gel filtration, and high performance liquid chromatography after enzymatic or alkaline digestion indicated that all of the 35S label was recovered as two major species of chondroitin 4-sulfate proteoglycans (CSPG-I and CSPG-II) and 7% as heparan sulfate proteoglycan. CSPG-I has a mass of {approximately} 970 kDa with multiple chondroitin sulfate chains (average of 50 kDa each) and a core protein of {approximately} 370 kDa including oligosaccharides. CSPG-II has a mass of 140 kDa with one or two chondroitin sulfate chains (average of 68 kDa each) and a core protein of 41 kDa including oligosaccharides. CSPG-I appears to be similar to versican, whereas CSPG-II is similar to decorin and/or biglycan, found in other fibroblastic cells. Cell differentiation was associated with a specific increase in CSPG-I (4.0 {plus minus} 0.2-fold in media and 3.2 {plus minus} 0.5-fold in the cell-associated form). This system should facilitate study of the functional roles of proteoglycans during growth and differentiation.

  14. Gas6-mediated survival in NIH3T3 cells activates stress signalling cascade and is independent of Ras.

    PubMed

    Goruppi, S; Ruaro, E; Varnum, B; Schneider, C

    1999-07-22

    Gas6 is a growth factor membrane of the vitamin K-dependent family of proteins which is preferentially expressed in quiescent cells. Gas6 was identified as the ligand for Axl tyrosine kinase receptor family. Consistent with this, Gas6 was previously reported to induce cell cycle re-entry of serum-starved NIH3T3 cells and to prevent cell death after complete growth factor withdrawal, the survival effect being uncoupled from Gas6-induced mitogenesis. We have previously demonstrated that both Gas6 mitogenic and survival effects are mediated by Src and the phosphatidylinositol3-OH kinase (PI3K). Here we report that Ras is required for Gas6 mitogenesis but is dispensable for its survival effect. Gas6-induced survival requires the activity of the small GTPases of the Rho family, Rac and Rho, together with the downstream kinase Pak. Overexpression of the respective dominant negative constructs abrogates Gas6-mediated survival functions. Addition of Gas6 to serum starved cells results in the activation of AKT/PKB and in the phosphorylation of the Bcl-2 family member, Bad. By ectopic expression of a catalytically inactive form of AKT/PKB, we demonstrate that AKT/PKB is necessary for Gas6-mediated survival functions. We further show evidence that Gas6 stimulation of serum starved NIH3T3 cells results in a transient ERK, JNK/SAPK and p38 MAPK activation. Blocking ERK activation did not influence Gas6-induced survival, suggesting that such pathway is not involved in Gas6 protection from cell death. On the contrary we found that the late constitutive increase of p38 MAPK activity associated with cell death was downregulated in Gas6-treated NIH3T3 cells thus suggesting that Gas6 might promote survival by interfering with this pathway. Taken together the evidence here provided identity elements involved in Gas6 signalling more specifically elucidating the pathway responsible for Gas6-induced cell survival under conditions that do not allow cell proliferation.

  15. A Novel Regulatory Function of Sweet Taste-Sensing Receptor in Adipogenic Differentiation of 3T3-L1 Cells

    PubMed Central

    Masubuchi, Yosuke; Nakagawa, Yuko; Ma, Jinhui; Sasaki, Tsutomu; Kitamura, Tadahiro; Yamamoto, Yoritsuna; Kurose, Hitoshi; Kojima, Itaru; Shibata, Hiroshi

    2013-01-01

    Background Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. Methodology/Principal Findings In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. Conclusions 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism. PMID:23336004

  16. Independence of metastatic ability and extravasation: metastatic ras-transformed and control fibroblasts extravasate equally well.

    PubMed Central

    Koop, S; Schmidt, E E; MacDonald, I C; Morris, V L; Khokha, R; Grattan, M; Leone, J; Chambers, A F; Groom, A C

    1996-01-01

    Escape of cancer cells from the circulation (extravasation) is thought to be a major rate-limiting step in metastasis, with few cells being able to extravasate. Furthermore, highly metastatic cells are believed to extravasate more readily than poorly metastatic cells. We assessed in vivo the extravasation ability of highly metastatic ras-transformed NIH 3T3 cells (PAP2) versus control nontumorigenic nontransformed NIH 3T3 cells and primary mouse embryo fibroblasts. Fluorescently labeled cells were injected intravenously into chicken embryo chorioallantoic membrane and analyzed by intravital videomicroscopy. The chorioallantoic membrane is an appropriate model for studying extravasation, since, at the embryonic stage used, the microvasculature exhibits a continuous basement membrane and adult permeability properties. The kinetics of extravasation were assessed by determining whether individual cells (n = 1481) were intravascular, extravascular, or in the process of extravasation, at 3, 6, and 24 h after injection. Contrary to expectations, our results showed that all three cell types extravasated with the same kinetics. By 24 h after injection > 89% of observed cells had completed extravasation from the capillary plexus. After extravasation, individual fibroblasts of all cell types demonstrated preferential migration within the mesenchymal layer toward arterioles, not to venules or lymphatics. Thus in this model and for these cells, extravasation is independent of metastatic ability. This suggests that the ability to extravasate in vivo is not necessarily predictive of subsequent metastasis formation, and that postextravasation events may be key determinants in metastasis. Images Fig. 1 Fig. 3 PMID:8855312

  17. Pseudoginsenoside F11, a Novel Partial PPARγ Agonist, Promotes Adiponectin Oligomerization and Secretion in 3T3-L1 Adipocytes

    PubMed Central

    Wu, Guoyu; Yi, Junyang; Liu, Ling; Wang, Pengcheng; Zhang, Zhijie

    2013-01-01

    PPARγ is a nuclear hormone receptor that functions as a master regulator of adipocyte differentiation and development. Full PPARγ agonists, such as the thiazolidinediones (TZDs), have been widely used to treat type 2 diabetes. However, they are characterized by undesirable side effects due to their strong agonist activities. Pseudoginsenoside F11 (p-F11) is an ocotillol-type ginsenoside isolated from Panax quinquefolium L. (American ginseng). In this study, we found that p-F11 activates PPARγ with modest adipogenic activity. In addition, p-F11 promotes adiponectin oligomerization and secretion in 3T3-L1 adipocytes. We also found that p-F11 inhibits obesity-linked phosphorylation of PPARγ at Ser-273 by Cdk5. Therefore, p-F11 is a novel partial PPARγ agonist, which might have the potential to be developed as a new PPARγ-targeted therapeutics for type 2 diabetes. PMID:24454336