Science.gov

Sample records for 3t3-l1 adipocyte differentiation

  1. Rutin Stimulates Adipocyte Differentiation and Adiponectin Secretion in 3T3-L1 Adipocytes.

    PubMed

    Naowaboot, Jarinyaporn; Chung, Choon Hee; Choi, Ran

    2015-04-01

    Rutin is aflavonoid, which is found in many plants. It has been shown to reduce blood glucose and increase insulin levels in diabetic rats. In the present study, the authors aimed to elucidate the molecular basis for the observed antidiabetic activity using murine 3T3-L1 preadipocyte cultures. The treatment of differentiating 3T3-L1 cells with rutin at concentrations of 3, 10, 30 and 100 µM significantly increased lipid accumulation and mRNA expression of transcription factors, such as peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and adipocyte fatty acid-binding protein. Furthermore, rutin at concentrations of 10, 30 and 100 µM increased adiponectin mRNA expression together with stimulating the secretion of adiponectin in differentiating 3T3-L1 cells. These results indicate that the stimulatory effect of rutin on adipocyte differentiation likely occurs through up-regulation of adipogenic transcription factors and downstream adipocyte-specific gene expression. Such effects of rutin on adiponectin secretion and adipocyte activity may account for, at least in part, the antidiabetic effects of consumption of food containing rutin.

  2. ZnO Nanoparticles Upregulates Adipocyte Differentiation in 3T3-L1 Cells.

    PubMed

    Pandurangan, Muthuraman; Jin, Bong Yeon; Kim, Doo Hwan

    2016-03-01

    The present study was aimed to investigate the effect of zinc oxide (ZnO) nanoparticles on 3T3-L1 cell differentiation, by quantitating peroxisome proliferators-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), fatty acid binding protein 4 (FABP4), sterol regulatory element-binding transcription factor 1 (SREBP1), and serine-threonine kinase cyclin-dependent kinase 4 (cdk4), which are critical for adipogenesis. 3T3-L1 preadipocyte cells were cultured and differentiated with the standard differentiation medium. Sulforhodamine B (SRB) assay determined 3T3-L1 cell viability. ZnO nanoparticles increased the lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. The quantitative PCR (qPCR) analysis showed that the PPARγ, FABP4, C/EBPα, and SREBP1 messenger RNA (mRNA) expression was significantly increased in the ZnO nanoparticle-treated 3T3-L1 adipocytes. Western blot analysis showed increased PPARγ, FABP4, C/EBPα, and SREBP1 protein expression compared to their respective controls. Also, the immunofluorescence study showed the increased cdk4 and PPARγ expression in the nanoparticle-treated cells. Taking all these data together, it is concluded that ZnO nanoparticles may be a potent substance to alter 3T3-L1 preadipocyte differentiation and adipogenesis.

  3. Cirsium japonicum flavones enhance adipocyte differentiation and glucose uptake in 3T3-L1 cells.

    PubMed

    Liao, Zhiyong; Wu, Zhihua; Wu, Mingjiang

    2012-01-01

    Cirsium japonicum flavones have been demonstrated to possess anti-diabetic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) plays an important role in glucose and lipid homeostasis. In this study, we report the effects of Cirsium japonicum flavones (pectolinarin and 5,7-dihydroxy-6,4-dimethoxy flavone) on PPARγ activation, adipocyte differentiation, and glucose uptake in 3T3-L1 cells. Reporter gene assays and Oil Red O staining showed that Cirsium japonicum flavones induced PPARγ activation and enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. In addition, Cirsium japonicum flavones increased the expression of PPARγ target genes, such as adiponectin and glucose transporter 4 (GLUT4), and enhanced the translocation of intracellular GLUT4 to the plasma membrane. In mature 3T3-L1 adipocytes, Cirsium japonicum flavones significantly enhanced the basal and insulin-stimulated glucose uptake. The flavones-induced effects in 3T3-L1 cells were abolished by the PPARγ antagonist, GW9662, and by the phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin. This study suggests that Cirsium japonicum flavones promote adipocyte differentiation and glucose uptake by inducing PPARγ activation and then modulating the insulin signaling pathway in some way, which could benefit diabetes patients.

  4. Rubi Fructus (Rubus coreanus) Inhibits Differentiation to Adipocytes in 3T3-L1 Cells.

    PubMed

    Jeong, Mi-Young; Kim, Hye-Lin; Park, Jinbong; An, Hyo-Jin; Kim, Sung-Hoon; Kim, Su-Jin; So, Hong-Seob; Park, Raekil; Um, Jae-Young; Hong, Seung-Heon

    2013-01-01

    Rubi Fructus (RF) is known to exert several pharmacological effects including antitumor, antioxidant, and anti-inflammatory activities. However, its antiobesity effect has not been reported yet. This study was focused on the antidifferentiation effect of RF extract on 3T3-L1 preadipocytes. When 3T3-L1 preadipocytes were differentiating into adipocytes, 10-100  μ g/mL of RF was added. Next, the lipid contents were quantified by Oil Red O staining. RF significantly reduced lipid accumulation and downregulated the expression of peroxisome proliferator-activated receptor γ (PPAR γ ), CCAAT0-enhancer-binding proteins α (C/EBP α ), adipocyte fatty acid-binding protein 2 (aP2), resistin, and adiponectin in ways that were concentration dependent. Moreover, RF markedly upregulated liver kinase B1 and AMP-activated protein kinase (AMPK). Interestingly, pretreatment with AMPK α siRNA and RF downregulated the expression of PPAR γ and C/EBP α protein as well as the adipocyte differentiation. Our study shows that RF is capable of inhibiting the differentiation of 3T3-L1 adipocytes through the modulation of PPAR γ , C/EBP α , and AMPK, suggesting that it has a potential for therapeutic application in the treatment or prevention of obesity.

  5. Soluble soy protein peptic hydrolysate stimulates adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Goto, Tsuyoshi; Mori, Ayaka; Nagaoka, Satoshi

    2013-08-01

    The molecular mechanisms underlying the potential health benefit effects of soybean proteins on obesity-associated metabolic disorders have not been fully clarified. In this study, we investigated the effects of soluble soybean protein peptic hydrolysate (SPH) on adipocyte differentiation by using 3T3-L1 murine preadipocytes. The addition of SPH increased lipid accumulation during adipocyte differentiation. SPH increased the mRNA expression levels of an adipogenic marker gene and decreased that of a preadipocyte marker gene, suggesting that SPH promotes adipocyte differentiation. SPH induced antidiabetic and antiatherogenic adiponectin mRNA expression and secretion. Moreover, SPH increased the mRNA expression levels of insulin-responsive glucose transporter 4 and insulin-stimulated glucose uptake. The expression levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, during adipocyte differentiation were up-regulated in 3T3-L1 cells treated with SPH, and lipid accumulation during adipocyte differentiation induced by SPH was inhibited in the presence of a PPARγ antagonist. However, SPH did not exhibit PPARγ ligand activity. These findings indicate that SPH stimulates adipocyte differentiation, at least in part, via the up-regulation of PPARγ expression levels. These effects of SPH might be important for the health benefit effects of soybean proteins on obesity-associated metabolic disorders. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Extract of Chaga mushroom (Inonotus obliquus) stimulates 3T3-L1 adipocyte differentiation.

    PubMed

    Joo, Jeong In; Kim, Dong Hyun; Yun, Jong Won

    2010-11-01

    Chaga mushroom (Inonotus obliquus) has long been used as a folk medicine due to its numerous biological functions such as antibacterial, antiallergic, antiinflammatory and antioxidative activities. In the present study, it was found that the I. obliquus hot water extract (IOWE) activated adipogenesis of 3T3-L1 preadipocytes. Even in the absence of adipogenic stimuli by insulin, the IOWE strongly induced adipogenesis of 3T3-L1 preadipocytes. The major constituent of IOWE was glucose-rich polysaccharides with a molecular mass of 149  kDa. IOWE enhanced the differentiation of 3T3-L1 preadipocytes, increasing TG (triacylglycerol) accumulation that is critical for acquisition of the adipocyte phenotype, in a dose-dependent manner. IOWE stimulated gene expression of C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome proliferator-activated receptors γ) during adipocyte differentiation, and induced the expression of PPARγ target genes such as aP2 (adipocyte protein 2), LPL (lipoprotein lipase) and CD36 (fatty acid translocase). Immunoblot analysis revealed that IOWE increased the expression of adipogenic makers such as PPARγ and GLUT4 (glucose transporter 4). The luciferase reporter assay demonstrated that IOWE did not exhibit PPARγ ligand activity. Although these results require further investigation, the ability of natural mushroom product to increase PPARγ transcriptional activities may be expected to be therapeutic targets for dyslipidemia and type 2 diabetes.

  7. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    SciTech Connect

    Lai, Jing; Liu, Gexiu; Yan, Guoyao; He, Dongmei; Zhou, Ying; Chen, Shengting

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  8. The expression and regulation of STATs during 3T3-L1 adipocyte differentiation.

    PubMed

    Stephens, J M; Morrison, R F; Pilch, P F

    1996-05-03

    STATs (Signal Transducers and Activators of Transcription) comprise a family of transcription factors that reside in the cytoplasm of resting cells. In response to a variety of stimuli, STATs become tyrosine-phosphorylated and translocate to the nucleus where they mediate transcriptional regulation. We have used the 3T3-L1 murine cell line to examine the expression of STAT proteins as a function of their differentiation into adipocytes. The expression of STATs 1, 3, and 5, but not of STAT 6, is markedly elevated in adipocytes as compared with their fibroblast precursors. Exposure of 3T3-L1 preadipocytes to tumor necrosis factor alpha (TNF alpha) blocks their differentiation into adipocytes. Therefore, we examined STAT expression as a function of differentiation in the presence of this cytokine. The expression of STATs 1 and 5 is markedly attenuated in the presence of TNF alpha, whereas STAT 3 expression is unaffected by this treatment. Only STAT 1 is down-regulated by TNF alpha in fully differentiated cells. Thus, although the expression of STATs 1, 3, and 5 is markedly enhanced upon differentiation, only STAT 5 expression is tightly correlated with the adipocyte phenotype. These data suggest that STAT 5, and possibly STAT 1, could be potential inducers of tissue-specific genes, which contribute to the development and maintenance of the adipocyte phenotype.

  9. Tocotrienol suppresses adipocyte differentiation and Akt phosphorylation in 3T3-L1 preadipocytes.

    PubMed

    Uto-Kondo, Harumi; Ohmori, Reiko; Kiyose, Chikako; Kishimoto, Yoshimi; Saito, Hisako; Igarashi, Osamu; Kondo, Kazuo

    2009-01-01

    In vivo studies show that alpha-tocotrienol and gamma-tocotrienol accumulate in adipose tissue. Furthermore, a recent study reports that the oral administration of gamma-tocotrienol from a tocotrienol-rich fraction from palm oil (TRF) decreases body fat levels in rats. The objective of this study was to evaluate the effect of TRF and its components on adipocyte differentiation in 3T3-L1 preadipocytes, which differentiated into adipocytes in the presence of 1.8 micromol/L insulin. TRF suppressed the insulin-induced mRNA expression of adipocyte-specific genes such as PPARgamma, adipocyte fatty acid-binding protein (aP2), and CCAAT/enhancer-binding protein-alpha (C/EBPalpha) compared with the differentiation of 3T3-L1 preadipocytes into adipocytes only in the presence of insulin. To confirm the suppressive effect of TRF, the major components of TRF, such as alpha-tocotrienol, gamma-tocotrienol, and alpha-tocopherol, were investigated. Alpha-tocotrienol and gamma-tocotrienol decreased the insulin-induced PPARgamma mRNA expression by 55 and 90%, respectively, compared with insulin, whereas alpha-tocopherol increased the mRNA expression. In addition, gamma-tocotrienol suppressed the insulin-induced aP2 and C/EBPalpha mRNA expression, triglyceride accumulation, and PPARgamma protein levels compared with insulin. The current results also revealed that gamma-tocotrienol inhibited the insulin-stimulated phosphorylation of Akt but not extracellular signal-regulated kinase (ERK)1/2 in the insulin signaling pathway of 3T3-L1 preadipocytes. Thus, the antiadipogenic effect of TRF depends on alpha-tocotrienol and gamma-tocotrienol, and gamma-tocotrienol may be a more potent inhibitor of adipogenesis than alpha-tocotrienol. Therefore, the results of this study suggest that tocotrienol suppresses insulin-induced differentiation and Akt phosphorylation in 3T3-L1 preadipocytes. Furthermore, tocotrienol could act as an antiadipogenic vitamin in the nutrient-mediated regulation of body

  10. Honokiol enhances adipocyte differentiation by potentiating insulin signaling in 3T3-L1 preadipocytes.

    PubMed

    Choi, Sun-Sil; Cha, Byung-Yoon; Iida, Kagami; Sato, Masako; Lee, Young-Sil; Teruya, Toshiaki; Yonezawa, Takayuki; Nagai, Kazuo; Woo, Je-Tae

    2011-07-01

    Adipose tissue plays an essential role in energy homeostasis as a metabolic and endocrine organ. Accordingly, adipocytes are emerging as a major drug target for obesity and obesity-mediated metabolic syndrome. Dysfunction of enlarged adipocytes in obesity is involved in obesity-mediated metabolic syndrome. Adipocytokines, such as adiponectin released from small adipocytes, are able to prevent these disorders. In this study, we found that honokiol, an ingredient of Magnolia officinalis used in traditional Chinese and Japanese medicines, enhanced adipocyte differentiation in 3T3-L1 preadipocytes. Oil Red O staining showed that treatment with honokiol in the presence of insulin dose-dependently increased lipid accumulation in 3T3-L1 preadipoyctes although its activity was weak compared with rosiglitazone. During adipocyte differentiation, the expression of peroxisome proliferator-activated receptor γ2 (PPARγ2) mRNA and PPARγ target genes such as adipocyte protein 2 (aP2), adiponectin, and GLUT4 was induced by treatment with 10 μM honokiol. However, honokiol failed to show direct binding to the PPARγ ligand-binding domain in vitro. In preadipocytes, treatment with honokiol in the presence of insulin increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 protein and Akt protein, early insulin signaling pathways related to adipocyte differentiation, compared with insulin-only treatment. Taken together, our results suggest that honokiol promotes adipocyte differentiation through increased expression of PPARγ2 mRNA and potentiation of insulin signaling pathways such as the Ras/ERK1/2 and phosphoinositide-3-kinase (PI3K)/Akt signaling pathways.

  11. Fructose promotes the differentiation of 3T3-L1 adipocytes and accelerates lipid metabolism.

    PubMed

    Legeza, Balázs; Balázs, Zoltán; Odermatt, Alex

    2014-01-31

    Excessive fructose consumption and elevated glucocorticoids contribute to metabolic syndrome. We show that fructose as the only carbohydrate source is sufficient for the differentiation of 3T3-L1 fibroblasts into adipocytes. Differentiation of cells in fructose containing medium resulted in increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) expression and activity. Experiments with transfected HEK-293 cells suggested more efficient NADPH generation by fructose compared with glucose in the endoplasmic reticulum (ER). Adipocytes differentiated in the presence of fructose showed increased FABP4 expression, C/EBPα to C/EBPβ ratio and lipolysis. Thus, excessive fructose may cause adverse metabolic effects by enhancing 11β-HSD1 activity and increasing lipolysis in adipocytes. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. N-acetylcysteine inhibits kinase phosphorylation during 3T3-L1 adipocyte differentiation.

    PubMed

    Soto, Daniela; Gomez-Serrano, María; Pieralisi, Azul; Calvo, Juan C; Peral, Belén; Guerra, Liliana N

    2016-09-27

    Reports investigating the effects of antioxidants on obesity have provided contradictory results. We have previously demonstrated that treatment with the antioxidant N-acetylcysteine (NAC) inhibits cellular triglyceride (Tg) accumulation as well as total cellular monoamine oxidase A (MAOA) expression in 3T3-L1 mature adipocytes (Calzadilla et al., Redox Rep. 2013;210-218). Here we analyzed the role of NAC on adipogenic differentiation pathway. Assays were conducted using 3T3-L1 preadipocytes (undifferentiated cells: CC), which are capable of differentiating into mature adipocytes (differentiated cells: DC). We studied the effects of different doses of NAC (0.01 or 1 mM) on DC, to evaluate cellular expression of phospho-JNK½ (pJNK½), phospho-ERK½ (pERK½) and, mitochondrial expression of citrate synthase, fumarate hydratase and MAOA. Following the differentiation of preadipocytes, an increase in the expression levels of pJNK½ and pERK½ was observed, together with mitotic clonal expansion (MCE). We found that both doses of NAC decreased the expression of pJNK½ and pERK½. Consistent with these results, NAC significantly inhibited MCE and modified the expression of different mitochondrial proteins. Our results suggested that NAC could inhibit Tg and mitochondrial protein expression by preventing both MCE and kinase phosphorylation.

  13. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway.

    PubMed

    Huang, Cheng; Zhang, Yuebo; Gong, Zhenwei; Sheng, Xiaoyan; Li, Zongmeng; Zhang, Wei; Qin, Ying

    2006-09-22

    Berberine (BBR), a compound purified from Cortidis rhizoma, reduces serum cholesterol, triglycerides, and LDL-cholesterol of hypercholesterolemic patients and high fat diet fed animals, and increases hepatic LDLR mRNA and protein levels through a post-transcriptional mechanism. BBR also enhances the hypoglycemic action of insulin in diabetic animal models. Here, we show that BBR inhibits the differentiation of 3T3-L1 preadipocytes induced by DM and suppresses the mitotic clonal expansion of 3T3-L1 preadipocytes in a time- and dose-dependent manner. Gene expression analysis and Western blot analysis reveal that the BBR inhibits the mRNA and protein levels of adipogenesis related transcription factors PPARgamma and C/EBPalpha and their upstream regulator, C/EBPbeta. Reporter gene assays demonstrate that the full-length PPARgamma and alpha transcription activities are inhibited by BBR. Using real-time PCR, we have also found that the PPAR target genes that are involved in adipocyte differentiation, such as aP2, CD36, ACO, LPL, and other adipocyte markers, are suppressed by BBR. These studies suggest that BBR works on multiple molecular targets as an inhibitor of PPARgamma and alpha, and is a potential weight reducing, hypolipidemic, and hypoglycemic drug.

  14. Averrhoa carambola L. peel extract suppresses adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Rashid, Asyifah Mohamed; Lu, Kaihui; Yip, Yew Mun; Zhang, Dawei

    2016-02-01

    Obesity is associated with an increased risk of many chronic diseases. Recently, a growing body of evidence has shown that phytochemicals may inhibit adipogenesis and obesity. In this study, we report for the first time, the ability of Averrhoa carambola L. peel extract commonly known as star fruit (SFP) to effectively suppress adipocyte differentiation in 3T3-L1 preadipocytes and therefore, address it as a potential candidate to treat obesity and its related diseases. (-)-Epicatechin was identified as a bioactive compound likely responsible for this suppression. As the genetic expression studies revealed that the adipogenic activity of SFP extract was due to the simultaneous downregulation of the C/EBPα and PPARγ as well as the upregulation of PPARα receptor genes, a detailed computational docking study was also elucidated to reveal the likely binding mode of (-)-epicatechin to the receptor of interest, accounting for the likely mechanism that results in the overall suppression of adipocyte differentiation.

  15. miR-26b Promotes 3T3-L1 Adipocyte Differentiation Through Targeting PTEN.

    PubMed

    Li, Guilin; Ning, Chunyou; Ma, Yao; Jin, Long; Tang, Qianzi; Li, Xuewei; Li, Mingzhou; Liu, Haifeng

    2017-08-01

    microRNAs (miRNAs) play important roles in adipogenesis that is closely linked to obesity and energy homeostasis. Thus far, only a few miRNAs have been identified to regulate adipocyte development, arousing interest in the detailed function of miRNAs during adipogenesis. In this study, we found that the miR-26b expression showed an increasing trend during 3T3-L1 cells differentiation. To investigate the role of miR-26b in adipogenesis, the synthetic miR-26b agomirs and antagomirs were used to perform overexpression and knockdown experiment, respectively. Our data revealed that overexpression of miR-26b significantly accelerated the mRNA expression of the adipogenic markers, peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS), CCAAT/enhancer binding protein alpha (C/EBPα), and lipoprotein lipase, and the protein level of PPARγ and FAS. miR-26b overexpression also resulted in a significant increase in lipid accumulation. In contrast, inhibition of miR-26b expression decreased differentiation of 3T3-L1 cells. By target gene prediction and luciferase reporter assay, we demonstrated that miR-26b may directly bind to the 3' UTR of phosphatase and tensin homolog (PTEN). Taken together, these results demonstrate that miR-26b might participate in regulating adipogenic differentiation in 3T3-L1 cells by inhibiting the PTEN expression, further highlighting the importance of miRNA in adipogenesis.

  16. Echinacea purpurea root extract enhances the adipocyte differentiation of 3T3-L1 cells.

    PubMed

    Shin, Dong-Mi; Choi, Kyeong-Mi; Lee, Youn-Sun; Kim, Wonkyun; Shin, Kyong-Oh; Oh, Seikwan; Jung, Jae-Chul; Lee, Mi Kyeong; Lee, Yong-Moon; Hong, Jin Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo

    2014-06-01

    Echinacea purpurea has been shown to have anti-diabetic activities; for example, it activates peroxisome proliferator-activated receptor γ (PPARγ) and increases insulin-stimulated glucose uptake. Adipogenesis has been used to study the insulin signaling pathway and to screen anti-diabetic compounds. The present study was conducted to investigate the effects of an ethanol extract of E. purpurea (EEEP) and its constituents on the insulin-induced adipocyte differentiation of 3T3-L1 preadipocytes. When adipocyte differentiation was induced with insulin plus 3-isobutyl-1-methylxanthine and dexamethasone, the accumulation of lipid droplets and the cellular triglyceride content were significantly increased by EEEP. The expressions of PPARγ and C/EBPα in adipocytes treated with EEEP were gradually increased as compared with control cells. Fat accumulation and triglyceride content of adipocytes treated with dodeca-2(E),4(E)-dienoic acid isobutylamide were significantly increased as compared with control cells. The expressions of PPARγ and C/EBPα in adipocytes treated with dodeca-2(E),4(E)-dienoic acid isobutylamide were significantly higher than in control cells. These results suggest EEEP promotes the adipogenesis that is partially induced by insulin and that dodeca-2(E),4(E)-dienoic acid isobutylamide appears to be responsible for EEEP-enhanced adipocyte differentiation.

  17. ATF3 inhibits adipocyte differentiation of 3T3-L1 cells

    SciTech Connect

    Jang, Min Kyung; Kim, Cho Hee; Seong, Je Kyung; Jung, Myeong Ho

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Overexpression of ATF3 inhibits adipocyte differentiation in 3T3-L1 cells. Black-Right-Pointing-Pointer Overexpression of ATF3 represses C/EBP{alpha} expression. Black-Right-Pointing-Pointer ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Black-Right-Pointing-Pointer ATF3 may play a role in hypoxia-mediated inhibition of adipocyte differentiation. -- Abstract: ATF3 is a stress-adaptive gene that regulates proliferation or apoptosis under stress conditions. However, the role of ATF3 is unknown in adipocyte cells. Therefore, in this study, we investigated the functional role of ATF3 in adipocytes. Both lentivirus-mediated overexpression of ATF3 and stably-overexpressed ATF3 inhibited adipocyte differentiation in 3T3-L1 cells, as revealed by decreased lipid staining with oil red staining and reduction in adipogenic genes. Thapsigargin treatment and overexpression of ATF3 decreased C/EBP{alpha} transcript and repressed the activity of the 3.6-kb mouse C/EBP{alpha} promoter, demonstrating that ATF3 downregulates C/EBP{alpha} expression. Transfection studies using mutant constructs containing 5 Prime -deletions in the C/EBP{alpha} promoter revealed that a putative ATF/CRE element, GGATGTCA, is located between -1921 and -1914. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Both chemical hypoxia-mimetics or physical hypoxia led to reduce the C/EBP{alpha} mRNA and repress the promoter activity of the C/EBP{alpha} gene, whereas increase ATF3 mRNA, suggesting that ATF3 may contribute to the inhibition of adipocyte differentiation in hypoxia through downregulation of C/EBP{alpha} expression. Collectively, these results demonstrate that ATF3 represses the C/EBP{alpha} gene, resulting in inhibition of adipocyte differentiation, and thus plays a role in hypoxia-mediated inhibition

  18. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes

    SciTech Connect

    Saito, Takeshi; Abe, Daigo; Sekiya, Keizo . E-mail: ksekiya@affrc.go.jp

    2007-06-01

    Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) targets and PPAR{gamma} itself, however, nobiletin did not exhibit PPAR{gamma} ligand activity. We observed the expression of CCAAT/enhancer binding protein {beta} (C/EBP{beta}), a transcription factor for PPAR{gamma}, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulated kinase (ERK), which play important roles in C/EBP{beta} expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB.

  19. Guggulsterone inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 cells.

    PubMed

    Yang, Jeong-Yeh; Della-Fera, Mary Anne; Baile, Clifton A

    2008-01-01

    To determine the effects of guggulsterone (GS), the active substance in guggulipid, on apoptosis, adipogenesis, and lipolysis using 3T3-L1 cells. For apoptosis and lipolysis experiments, mature adipocytes were treated with GS isomers. Viability, apoptosis, and caspase 3/7 activation were quantified using MTS, enzyme-linked immunosorbent assay (ELISA), caspase-Glo 3/7 activity assay, respectively. The expression of cytochrome c was demonstrated by western blot. Lipolysis was quantified by measuring the release of glycerol. For adipogenesis experiments, postconfluent preadipocytes were incubated with GS isomers for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye. Western blot was also used to demonstrate the adipocyte-specific transcription factors peroxisome proliferator-activated receptor gamma2 (PPARgamma2), CCAAT/enhancer binding protein alpha (C/EBPalpha), and C/EBPbeta. In mature adipocytes cis-GS decreased viability, whereas the trans-GS isomer had little effect. Both isomers caused dose-dependent increases in apoptosis and cis-GS was more effective than trans-GS in inducing apoptosis. cis- and trans-GS also increased caspase-3 activity and release of cytochrome c from mitochondria. In maturing preadipocytes, both isomers were equally effective in reducing lipid content. The adipocyte-specific transcription factors PPARgamma2, C/EBPalpha, and C/EBPbeta were downregulated after treatment with cis-GS during the maturation period. Furthermore, cis-GS increased basal lipolysis of mature adipocytes, but trans-GS had no effect. These results indicate that GS isomers may exert antiobesity effects by inhibiting differentiation of preadipocytes, and by inducing apoptosis and promoting lipolysis of mature adipocytes. The cis-GS isomer was more potent than the trans-GS isomer in inducing apoptosis and lipolysis in mature adipocytes.

  20. Induction of adipocyte differentiation by polybrominated diphenyl ethers (PBDEs) in 3T3-L1 cells.

    PubMed

    Tung, Emily W Y; Boudreau, Adèle; Wade, Michael G; Atlas, Ella

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX). A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2) and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis.

  1. Induction of Adipocyte Differentiation by Polybrominated Diphenyl Ethers (PBDEs) in 3T3-L1 Cells

    PubMed Central

    Tung, Emily W. Y.; Boudreau, Adèle; Wade, Michael G.; Atlas, Ella

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX). A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2) and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis. PMID:24722056

  2. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    SciTech Connect

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2014-02-15

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  3. Suppression of adipocyte differentiation and lipid accumulation by stearidonic acid (SDA) in 3T3-L1 cells.

    PubMed

    Li, Yueru; Rong, Yinghui; Bao, Lisui; Nie, Ben; Ren, Guang; Zheng, Chen; Amin, Rajesh; Arnold, Robert D; Jeganathan, Ramesh B; Huggins, Kevin W

    2017-09-25

    Increased consumption of omega-3 (ω-3) fatty acids found in cold-water fish and fish oil has been reported to protect against obesity. A potential mechanism may be through reduction in adipocyte differentiation. Stearidonic acid (SDA), a plant-based ω-3 fatty acid, has been targeted as a potential surrogate for fish-based fatty acids; however, its role in adipocyte differentiation is unknown. This study was designed to evaluate the effects of SDA on adipocyte differentiation in 3T3-L1 cells. 3T3-L1 preadipocytes were differentiated in the presence of SDA or vehicle-control. Cell viability assay was conducted to determine potential toxicity of SDA. Lipid accumulation was measured by Oil Red O staining and triglyceride (TG) quantification in differentiated 3T3-L1 adipocytes. Adipocyte differentiation was evaluated by adipogenic transcription factors and lipid accumulation gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). Fatty acid analysis was conducted by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). 3T3-L1 cells treated with SDA were viable at concentrations used for all studies. SDA treatment reduced lipid accumulation in 3T3-L1 adipocytes. This anti-adipogenic effect by SDA was a result of down-regulation of mRNA levels of the adipogenic transcription factors CCAAT/enhancer-binding proteins alpha and beta (C/EBPα, C/EBPβ), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol-regulatory element binding protein-1c (SREBP-1c). SDA treatment resulted in decreased expression of the lipid accumulation genes adipocyte fatty-acid binding protein (AP2), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD-1), lipoprotein lipase (LPL), glucose transporter 4 (GLUT4) and phosphoenolpyruvate carboxykinase (PEPCK). The transcriptional activity of PPARγ was found to be decreased with SDA treatment. SDA treatment led to significant EPA enrichment in 3T3-L1 adipocytes compared to vehicle-control. These

  4. Prolonged treatment with 3-isobutyl-1-methylxanthine improves the efficiency of differentiating 3T3-L1 cells into adipocytes.

    PubMed

    Hua, Yongjie; Ke, Shanshan; Wang, Yao; Irwin, David M; Zhang, Shuyi; Wang, Zhe

    2016-08-15

    Until now, the low efficiency of current protocols or kits for the differentiation of 3T3-L1 preadipocytes makes it difficult to continue the studies of the cellular and molecular mechanisms in adipocytes. Here we present a productive and highly efficient protocol for the differentiation of 3T3-L1 cells that uses a prolonged treatment with 3-isobutyl-1-methylxanthine (IBMX) during the differentiated process. 3T3-L1 cells of unknown passage +3 and unknown passage +7 treated with a prolonged exposure to IBMX showed significantly increased differentiation efficiency by day 15, in contrast to low levels of differentiation seen with protocols that lacked additional IBMX. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effects of telmisartan on lipid metabolisms and proinflammatory factors secretion of differentiated 3T3-L1 adipocytes.

    PubMed

    Kang, Chen; Yijun, Li; Jingtao, Dou; Changyu, Pan; Wenhua, Yan; Baoan, Wang; Fangling, Ma; Xianling, Wang; Guoqing, Yang; Yiming, Mu; Juming, Lu

    2015-12-01

    To investigate the effect of telmisartan on the lipometabolisms and the proinflammatory factors secreted from 3T3-L1 adipocytes and to explore the possible mechanisms. Telmisartan was applied to interfere with mature 3T3-L1 adipocytes. The culture's free fatty acids, interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) were evaluated. Oil Red O staining was used to determine the adipogenesis of 3T3-L1 adipocytes. (18)F-FDG uptake levels corrected for protein content were determined by cellular radioactivity. The total RNA was isolated for hybridization experimentation in the microarray. Telmisartan reduced lipid storage and increased (18)F-FDG uptake in a dose-dependent manner, reduced the levels of IL-6 and TNFα and increased those of free fatty acids. One hundred and fifty-seven differentially expressed genes were found by microarray. The mitogen-activated protein kinase (MAPK) signaling pathway involved in the secretion of proinflammatory factor and lipid metabolisms was affected by telmisartan. The expression of endothelial nitric oxide synthetase gene 3 (Nos3) and carnitine palmitoyl transferase 1α (CPT1α) was up-regulated by telmisartan. Telmisartan affected lipometabolisms and the proinflammatory factors secreted from adipocytes. Nos3, CPT1α and the MAPK pathway being affected by telmisartan may be the underlying cause of the improvement in lipid metabolisms and secretion of proinflammatory factors of differentiated 3T3-L1 adipocytes. © The Author(s) 2014.

  6. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    SciTech Connect

    Watanabe, Akio; Kato, Tsuyoshi; Ito, Yusuke; Yoshida, Izumi; Harada, Teppei; Mishima, Takashi; Fujita, Kazuhiro; Watai, Masatoshi; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-10-31

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence of insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.

  7. MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling

    SciTech Connect

    Jin, Min; Wu, Yutao; Wang, Jing; Chen, Jian; Huang, Yiting; Rao, Jinpeng; Feng, Chun

    2016-05-20

    Over the past years, MicroRNAs (miRNAs) act as a vital role in harmony with gene regulation and maintaining cellular homeostasis. It is well testified that miRNAshave been involved in numerous physiological and pathological processes, including embryogenesis, cell fate decision, and cellular differentiation. Adipogenesis is an organized process of cellular differentiation by which pre-adipocytes differentiate towards mature adipocytes, and it is tightly modulated by a series of transcription factors such as peroxisome proliferator-activated receptor γ (PPAR-γ) and sterol regulatory-element binding proteins 1 (SREBP1). However, the molecular mechanisms underlying the connection between miRNAs and adipogenesis-related transcription factors remain obscure. In this study, we unveiled that miR- 24 was remarkably upregulated during 3T3-L1 adipogenesis. Overexpression of miR-24 significantly promoted 3T3-L1 adipogenesis, as evidenced by its ability to increase the expression of PPAR-γ and SREBP1, lipid droplet formation and triglyceride (TG) accumulation. Furthermore, we found that neither ectopic expression of miR-24nor miR-24 inhibitor affect cell proliferation and cell cycle progression. Finally, we demonstrated that miR-24 plays the modulational role by directly repressing MAPK7, a key number in the MAPK signaling pathway. These data indicate that miR-24 is a novel positive regulator of adipocyte differentiation by targeting MAPK7, which provides new insights into the molecular mechanism of miRNA-mediated cellular differentiation. -- Highlights: •We firstly found miR-24 was upregulated in 3T3-L1 pre-adipocytes differentiation. •miR-24 promoted 3T3-L1 pre-adipocytes differentiation while silencing the expression of miR-24 had an opposite function. •miR-24 regulated 3T3-L1 differentiation by directly targeting MAPK7 signaling pathway. •miR-24did not affect 3T3-L1 pre-adipocytes cellular proliferation.

  8. Isoflavones in Chickpeas Inhibit Adipocyte Differentiation and Prevent Insulin Resistance in 3T3-L1 Cells.

    PubMed

    Gao, Yue; Yao, Yang; Zhu, Yinging; Ren, Guixing

    2015-11-11

    Diabetes mellitus is a metabolic disease characterized by hyperglycemia arising from defects in insulin secretion. This study investigated the effects of isoflavones in chickpea sprouts germinated in light (IGL) and isoflavones in chickpea seeds (ICS) on insulin resistance through their role in suppression of 3T3-L1 adipocyte differentiation. Results showed that IGL and ICS inhibit the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, and the suppressive effect of IGL was stronger (p < 0.05) than that of ICS, evidenced by a decrease of Oil Red O staining and intracellular triacylglycerol content in the mature adipocytes. IGL and ICS also stimulated glucose uptake significantly (p < 0.05). Besides, IGL and ICS treatment caused a significant decrease in mRNA and protein expression levels of adipogenesis-related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα). Furthermore, the mRNA and protein expression levels of adipocyte fatty acid-binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose transporter 4 (Glut4) in 3T3-L1 cells were also markedly down-regulated (p < 0.05).

  9. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes.

    PubMed

    Watanabe, Akio; Kato, Tsuyoshi; Ito, Yusuke; Yoshida, Izumi; Harada, Teppei; Mishima, Takashi; Fujita, Kazuhiro; Watai, Masatoshi; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-10-31

    Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence of insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Lipolytic efficacy of alginate double-layer nanoemulsion containing oleoresin capsicum in differentiated 3T3-L1 adipocytes.

    PubMed

    Lee, Mak-Soon; Jung, Sunyoon; Shin, Yoonjin; Lee, Seohyun; Kim, Chong-Tai; Kim, In-Hwan; Kim, Yangha

    2017-01-01

    Background: Oleoresin capsicum (OC) is an organic extract from fruits of the genus Capsicum, and has been reported to have an anti-obesity effect. Objective: This study comparatively investigated lipolytic effects of single-layer nanoemulsion (SN) and alginate double-layer nanoemulsion (AN) containing OC in 3T3-L1 adipocytes. Methods: SN and AN were compared by analyzing the intracellular lipid accumulation, triglyceride (TG) content, release of free fatty acids (FFAs) and glycerol, and mRNA expression of genes related to adipogenesis and lipolysis were analyzed in fully differentiated 3T3-L1 adipocytes. Results: Compared with SN, AN exhibited higher efficiency in inhibiting the intracellular lipid accumulation and TG content, and enhanced the release of FFAs and glycerol into the medium. In AN-treated cells, mRNA levels of peroxisome proliferator-activated receptor-γ and the fatty acid-binding protein adipocyte protein-2, which are involved in adipogenesis, were down-regulated, whereas those of genes related to lipolysis, including hormone-sensitive lipase and carnitine palmitoyl transferase-1α, were up-regulated compared with SN-treated cells. Conclusion: The lipolytic effect of AN was greater than that of SN; this was partly associated with the increased TG hydrolysis via induction of lipolytic gene expression and suppression of adipogenic gene expression in 3T3-L1 adipocytes.​​​​.

  11. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes.

    PubMed

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-02-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea.

  12. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes

    PubMed Central

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-01-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea PMID:26833256

  13. 6,6'-Bieckol inhibits adipocyte differentiation through downregulation of adipogenesis and lipogenesis in 3T3-L1 cells.

    PubMed

    Kwon, Tae-Hyung; Wu, Yong-Xiang; Kim, Jong-Shik; Woo, Jung-Hee; Park, Kyu Tae; Kwon, O Jun; Seo, Hyun-Ju; Kim, Taewan; Park, Nyun-Ho

    2015-07-01

    Brown algae have been used for their nutritional value as well as a source of bioactive compounds with antioxidant, anti-inflammatory, antimicrobial and anti-obesity effects. Obesity is an important condition implicated in various diseases, including diabetes, hypertension, dyslipidemia and coronary heart disease. However, anti-obesity effects of Eisenia bicyclis remain unknown. We investigated the anti-obesity effects of 6,6'-bieckol, 6,8'-bieckol, 8,8'-bieckol, dieckol and phlorofucofuroeckol A isolated from E. bicyclis. Anti-obesity activity was evaluated by examining the inhibition of differentiation of 3T3-L1 adipocytes and the expression of peroxisome proliferator-activated receptor γ (PPARγ), CCATT/enhancer-binding protein α (C/EBPα) and sterol regulatory element binding protein-1c (SREBP-1c) at the mRNA and protein level. Differentiated 3T3-L1 cells were treated with the purified phlorotannins at concentrations of 10, 25 and 50 µg mL(-1) for 8 days. The results indicated that the purified phlorotannins suppressed the differentiation of 3T3-L1 adipocytes in a dose-dependent manner, without toxic effects. Among the five compounds, 6,6'-bieckol markedly decreased lipid accumulation and expression levels of PPARγ, C/EBPα, SREBP-1c (mRNA and protein), and fatty acid synthase and acyl-coA carboxylase (mRNA). These findings suggest that E. bicyclis suppressed differentiation of 3T3-L1 adipocyte through downregulation of adipogenesis and lipogenesis. © 2014 Society of Chemical Industry.

  14. Modulation of HO-1 by Ferulic Acid Attenuates Adipocyte Differentiation in 3T3-L1 Cells.

    PubMed

    Koh, Eun-Jeong; Kim, Kui-Jin; Seo, Young-Jin; Choi, Jia; Lee, Boo-Yong

    2017-05-05

    Ferulic acid (FA) is phenolic compound found in fruits. Many studies have reported that FA has diverse therapeutic effects against metabolic diseases. However, the mechanism by which FA modulates adipogenesis via the expression of heme oxygenase-1 (HO-1) implicated in suppression of adipocyte differentiation is not fully understood. We investigated whether HO-1 can be activated by FA and suppress adipogenic factors in 3T3-L1. Our results showed that FA suppresses triglyceride-synthesizing enzymes, fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). We observed that the expression of CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) were suppressed by FA. In addition, HO-1 inhibitor stimulated lipid accumulation, while FA attenuated lipid accumulation in 3T3-L1 treated with HO-1 inhibitor. We also observed that the expression of HO-1 had the same tendency as C/EBP homologous protein 10 (CHOP10) during the mitotic clonal expansion (MCE) of adipogenesis. We next employed siRNA against HO-1 to clarify whether HO-1 regulates CHOP10. The results indicated that CHOP10 is downstream of HO-1. Furthermore, FA-mediated HO-1/CHOP10 axis activation prevented the initiation of MCE. Therefore, we demonstrated that FA is a positive regulator of HO-1 in 3T3-L1, and may be an effective bioactive compound to reduce adipocyte tissue mass.

  15. Effect of hexavalent chromium on proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts.

    PubMed

    Martini, Claudia N; Brandani, Javier N; Gabrielli, Matías; Vila, María del C

    2014-06-01

    Heavy metals contamination has become an important risk factor for public health and the environment. Chromium is a frequent industrial contaminant and is also used in orthopaedic joint replacements made from cobalt-chromium-alloy. Since hexavalent chromium (Cr(VI)) was reported as genotoxic and carcinogenic in different mammals, to further evaluate its cytotoxicity, we investigated the effect of this heavy metal in the proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts. These cells, after the addition of a mixture containing insulin, dexamethasone and methylisobutylxanthine, first proliferate, a process known as mitotic clonal expansion (MCE), and then differentiate to adipocytes. In this differentiation process a key transcription factor is induced: peroxisome proliferator-activated receptor gamma (PPAR gamma). We found that treatment of 3T3-L1 fibroblasts with potassium chromate inhibited proliferation in exponentially growing cells and MCE as well as differentiation. A decrease in PPAR gamma content, evaluated by western blot and immunofluorescence, was found in cells differentiated in the presence of chromium. On the other hand, after inhibition of differentiation with chromium, when the metal was removed, differentiation was recovered, which indicates that this may be a reversible effect. We also found an increase in the number of micronucleated cells after treatment with Cr(VI) which is associated with genotoxic effects. According to our results, Cr(VI) is able to inhibit proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts and to increase micronucleated cells, which are all indicative of alterations in cellular physiology and therefore, contributes to further elucidate the cytotoxic effects of this heavy metal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Suppressive Effects of Barley β-Glucans with Different Molecular Weight on 3T3-L1 Adipocyte Differentiation.

    PubMed

    Zhu, Yingying; Yao, Yang; Gao, Yue; Hu, Yibo; Shi, Zhenxing; Ren, Guixing

    2016-03-01

    In this study, 2 β-glucans with different molecular weight were prepared and purified from hull-less barley bran. The aim was to evaluate their effects on the differentiation of 3T3-L1 pre-adipocytes. Results showed that barley β-glucans inhibited the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, the suppressive effect of high-molecular-weight barley β-glucans (552 kDa, BGH) was stronger (P < 0.05) than that of low-molecular-weight barley β-glucan (32 kDa, BGL), evidenced by the significantly decrease (P < 0.05) of Oil-red O staining and intracellular triglyceride content in the mature adipocytes. Besides, gene expression analysis and Western Blot analysis revealed that both BGH and BGL inhibited the mRNA and protein levels of adipogenesis related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα) which are principal regulators of adipogenesis. Furthermore, the mRNA and protein expression levels of PPARγ target genes in adipose tissue including adipocyte fatty acid binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose-transporter 4 (Glut4) in 3T3-L1 cells was also markedly downregulated (P < 0.05). These findings were anticipated to help develop barley β-glucans based functional food for the management of obesity. © 2016 Institute of Food Technologists®

  17. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    SciTech Connect

    Kim, Soon-hee; Park, Hee-Sook; Lee, Myoung-su; Cho, Yong-Jin; Kim, Young-Sup; Hwang, Jin-Taek; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young

    2008-07-18

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPAR{gamma} expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression, while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest.

  18. Effects of Pueraria lobata Root Ethanol Extract on Adipogenesis and Lipogenesis During 3T3-L1 Differentiation into Adipocytes.

    PubMed

    Lee, Chae Myoung; Yoon, Mi Sook; Kim, Young Chul

    2015-06-01

    We evaluated the inhibitory effect of Pueraria lobata root ethanol extract (PLREE) on lipid accumulation during 3T3-L1 differentiation to adipocytes by measuring the intracellular expression of adipogenic, lipogenic, and lipolytic markers and lipid accumulation. The total polyphenol and flavonoid content of PLREE were 47 and 29 mg/g, respectively. The electron donating capacity of PLREE at 1,000 μg/mL was 48.8%. Treatment of 3T3-L1 preadipocytes with 100, 250, or 500 μg/mL PLREE for 8 days dose-dependently promoted the differentiation of 3T3-L1 cells. In contrast, the lipid content of PLREE-treated cells was significantly reduced by 7.8% (p < 0.05), 35.6% (p < 0.001), and 42.2% (p < 0.001) following treatment with 100, 250, and 500 μg/mL PLREE, respectively, as compared to differentiated control cells. PLREE upregulated peroxisome proliferator-activated receptor γ mRNA and protein, and sterol regulator element-binding protein-1c mRNA levels, but did not affect CCAAT/enhancer binding-protein β and α mRNA levels. PLREE also downregulated acetyl-CoA carboxylase mRNA and protein, fatty acid synthase (FAS) protein, and leptin mRNA levels, but did not affect FAS mRNA expression. PLREE upregulated adipose triglyceride lipase mRNA and protein expression, and hormone-sensitive lipase (HSL) protein expression, but did not affect HSL mRNA expression. In conclusion, we found that PLREE enhanced adipogenesis, but reduced lipogenesis, resulting in decreased lipid accumulation in 3T3-L1 cells.

  19. Lactacystin inhibits 3T3-L1 adipocyte differentiation through induction of CHOP-10 expression

    SciTech Connect

    Li Xi; Huang Haiyan |; Chen Jiegen; Jiang Lin; Liu Honglei |; Liu Deguo; Song Tanjing; He Qun; Ma Chungu; Ma Duan |; Song Houyan; Tang Qiqun ||. E-mail: qqtang@shmu.edu.cn

    2006-11-10

    Hormonal induction triggers a cascade leading to the expression of CCAAT/enhancer-binding protein(C/EBP){alpha} and peroxisome proliferator-activated receptor (PPAR) {gamma}, C/EBP{alpha}, and PPAR{gamma} turns on series of adipocyte genes that give rise to the adipocyte phenotype. Previous findings indicate that C/EBP{beta}, a transcriptional activator of the C/EBP{alpha} and PPAR{gamma} genes, is rapidly expressed after induction, but lacks DNA-binding activity and therefore cannot activate transcription of the C/EBP{alpha} and PPAR{gamma} genes early in the differentiation program. Acquisition of DNA-binding activity of C/EBP{beta} occurs when CHOP-10, a dominant-negative form of C/EBP family members, is down-regulated and becomes hyperphosphorylated as preadipocytes traverse the G{sub 1}-S checkpoint of mitotic clonal expansion. Evidences are presented in this report that lactacystin, a proteasome inhibitor, up-regulated the CHOP-10 expression, blocked the DNA-binding activity of C/EBP{beta}, and subsequently inhibited MCE as well as adipocyte differentiation.

  20. Ivy gourd (Coccinia grandis L. Voigt) root suppresses adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2014-01-01

    Background Ivy gourd (Coccinia grandis L. Voigt) is a tropical plant widely distributed throughout Asia, Africa, and the Pacific Islands. The anti-obesity property of this plant has been claimed but still remains to be scientifically proven. We therefore investigated the effects of ivy gourd leaf, stem, and root on adipocyte differentiation by employing cell culture model. Methods Dried roots, stems, and leaves of ivy gourd were separately extracted with ethanol. Each extract was then applied to 3T3-L1 pre-adipocytes upon induction with a mixture of insulin, 3-isobutyl-1-methylxanthine, and dexamethasone, for anti-adipogenesis assay. The active extract was further fractionated by a sequential solvent partitioning method, and the resulting fractions were examined for their abilities to inhibit adipogenesis in 3T3-L1 cells. Differences in the expression of adipogenesis-related genes between the treated and untreated cells were determined from their mRNA and protein levels. Results Of the three ivy gourd extracts, the root extract exhibited an anti-adipogenic effect. It significantly reduced intracellular fat accumulation during the early stages of adipocyte differentiation. Together with the suppression of differentiation, expression of the genes encoding PPARγ, C/EBPα, adiponectin, and GLUT4 were down-regulated. Hexane-soluble fraction of the root extract also inhibited adipocyte differentiation and decreased the mRNA levels of various adipogenic genes in the differentiating cells. Conclusions This is the first study to demonstrate that ivy gourd root may prevent obesity based mainly on the ability of its active constituent(s) to suppress adipocyte differentiation in vitro. Such an inhibitory effect is mediated by at least down-regulating the expression of PPARγ-the key transcription factor of adipogenesis in pre-adipocytes during their early differentiation processes. PMID:24884680

  1. Ivy gourd (Coccinia grandis L. Voigt) root suppresses adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Bunkrongcheap, Ruthaiwan; Hutadilok-Towatana, Nongporn; Noipha, Kusumarn; Wattanapiromsakul, Chatchai; Inafuku, Masashi; Oku, Hirosuke

    2014-05-28

    Ivy gourd (Coccinia grandis L. Voigt) is a tropical plant widely distributed throughout Asia, Africa, and the Pacific Islands. The anti-obesity property of this plant has been claimed but still remains to be scientifically proven. We therefore investigated the effects of ivy gourd leaf, stem, and root on adipocyte differentiation by employing cell culture model. Dried roots, stems, and leaves of ivy gourd were separately extracted with ethanol. Each extract was then applied to 3T3-L1 pre-adipocytes upon induction with a mixture of insulin, 3-isobutyl-1-methylxanthine, and dexamethasone, for anti-adipogenesis assay. The active extract was further fractionated by a sequential solvent partitioning method, and the resulting fractions were examined for their abilities to inhibit adipogenesis in 3T3-L1 cells. Differences in the expression of adipogenesis-related genes between the treated and untreated cells were determined from their mRNA and protein levels. Of the three ivy gourd extracts, the root extract exhibited an anti-adipogenic effect. It significantly reduced intracellular fat accumulation during the early stages of adipocyte differentiation. Together with the suppression of differentiation, expression of the genes encoding PPARγ, C/EBPα, adiponectin, and GLUT4 were down-regulated. Hexane-soluble fraction of the root extract also inhibited adipocyte differentiation and decreased the mRNA levels of various adipogenic genes in the differentiating cells. This is the first study to demonstrate that ivy gourd root may prevent obesity based mainly on the ability of its active constituent(s) to suppress adipocyte differentiation in vitro. Such an inhibitory effect is mediated by at least down-regulating the expression of PPARγ-the key transcription factor of adipogenesis in pre-adipocytes during their early differentiation processes.

  2. Lead enhancement of 3T3-L1 fibroblasts differentiation to adipocytes involves ERK, C/EBPβ and PPARγ activation.

    PubMed

    Martini, Claudia Noemí; Gabrielli, Matías; Bonifacino, Graciela; Codesido, María Magdalena; Vila, María Del Carmen

    2017-06-23

    Lead (Pb) is an environmental and industrial contaminant that still represents a public health problem. Elevated Pb exposure has been inversely correlated with femoral bone density and associated with osteoporosis. In the last years, it has been shown that inhibition of osteogenesis from mesenchymal stem cells activates adipogenesis and vice versa. In this paper, we investigated the effect of Pb on the differentiation of 3T3-L1 fibroblasts to adipocytes which is the cell model most used to study adipogenesis. After induction of differentiation, 2 days post-confluent cells re-enter the cell cycle and undergo mitotic clonal expansion (MCE) followed by expression of genes that produce the adipocyte phenotype. The presence of concentrations of Pb up to 10 μM during differentiation of 3T3-L1 fibroblasts did not interfere with MCE but enhanced the accumulation of cytosolic lipids that occur during adipogenesis, as well as, the induction of PPARγ, the master gene in adipogenesis. It is known that PPARγ upregulation is subsequent to induction of C/EBPβ and ERK activation, which are early events in adipogenesis. We found that both events were enhanced by Pb treatment. Our results support a stimulatory effect of Pb on adipogenesis which involves ERK activation and C/EBPβ upregulation prior to PPARγ and adipogenesis activation.

  3. St. John's wort promotes adipocyte differentiation and modulates NF-κB activation in 3T3-L1 cells.

    PubMed

    Hatano, Tomoko; Sameshima, Yuka; Kawabata, Mami; Yamada, Shizuo; Shinozuka, Kazumasa; Nakabayashi, Toshikatsu; Mizuno, Hideya

    2014-01-01

    St. John's wort (SJW), or Hypericum perforatum, is a perennial herb that has been used in the treatment of depression in several countries. Though its therapeutic effect on depression has been extensively studied, its influence on metabolic syndrome is yet to be fully characterized. Therefore, we investigated the effect of SJW extract on adipocyte differentiation and its anti-inflammatory effects by using 3T3-L1 preadipocytes. Oil Red O staining indicated that SJW promotes adipocyte differentiation, while immunoblots indicated that SJW increases the expression of peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor regulating adipocyte differentiation, and adiponectin, an anti-inflammatory adipokine. Furthermore, the anti-inflammatory activity of SJW was demonstrated by its inhibition of the activation of nuclear factor-κB (NF-κB), an inflammatory transcription factor. Stimulation of mature 3T3-L1 adipocytes by tumor necrosis factor-α (TNF-α) decreased the expression of the NF-κB inhibitor IκBα, and increased its phosphorylation. Treatment with SJW further decreased the TNF-α-induced perturbation in IκBα expression and phosphorylation, which indicated that SJW mediated the inhibition of NF-κB activation. In addition, SJW decreased the TNF-α-induced increase in the mRNA levels of pro-inflammatory adipokines, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). Collectively, our results indicate that SJW treatment could promote adipocyte differentiation probably through its anti-inflammatory activity, which in turn suggests that SJW has the potential to minimize the risk factors of metabolic syndrome.

  4. Stimulatory Effects of Cinnamon Extract (Cinnamomum cassia) during the Initiation Stage of 3T3-L1 Adipocyte Differentiation

    PubMed Central

    Lee, Sang Gil; Siaw, Joanna A.; Kang, Hye Won

    2016-01-01

    Cinnamon (Cinnamomum cassia) has an anti-diabetic effect by possibly increasing the lipid storage capacity of white adipocytes; however, this effect remains controversial. The aim of this study was to examine which stage of adipogenesis is critical for the stimulatory effect of cinnamon in adipogenesis using 3T3-L1 cells. Cells were treated with cinnamon extract during three different stages of adipogenesis. We found that genes related to adipogenesis and lipogenesis were enhanced when cinnamon extract was administered during the initiation stage of differentiation but not when administered during the preadipocyte and post stages of differentiation. At the same time, genes that were involved in the regulation of fatty acid oxidation were unexpectedly upregulated. Taken together, cinnamon may boost lipid storage in white adipocytes and increase the fatty acid oxidation capacity throughout the initiation stage of differentiation, which may be beneficial for the prevention of obesity-induced type II diabetes. PMID:28231178

  5. Almond Skin Polyphenol Extract Inhibits Inflammation and Promotes Lipolysis in Differentiated 3T3-L1 Adipocytes.

    PubMed

    Huang, Wen-Chung; Chen, Chi-Yuan; Wu, Shu-Ju

    2017-02-01

    Studies have shown that polyphenols reduce the risk of inflammation-related diseases and upregulates energy expenditure in adipose tissue. Here, we investigated the mechanism of the anti-inflammatory and antiobesity effects of almond skin polyphenol extract (ASP) in differentiated 3T3-L1 adipocytes. The antioxidant effects of ASP were measured based on DPPH radical scavenging activity, Trolox equivalent antioxidant capacity, and total phenolic content. Differentiated 3T3-L1 cells were treated with ASP. Subsequently, lipolysis proteins and transcription factors of adipogenesis were measured. The proinflammatory mediators monocyte chemotactic protein-1 (MCP-1) and chemokine ligand 5 (CCL-5) were determined by enzyme-linked immunosorbent assay. We found that ASP significantly promoted phosphorylation of AMP-activated protein kinase (AMPK), increased activity of adipose triglyceride lipase and hormone-sensitive lipase, and inhibited adipogenesis-related transcription factors. In addition, ASP inhibited the tumor necrosis factor-α (TNF-α)-induced cell inflammatory response via downregulation of MCP-1 and CCL-5 secretion. This study suggests that ASP regulates lipolysis through activation of AMPK, reduced adipogenesis, and suppresses proinflammatory cytokines in adipocytes.

  6. Inhibition of mitotic clonal expansion mediates fisetin-exerted prevention of adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Lee, Youngyi; Bae, Eun Ju

    2013-11-01

    Adipocytes are the key player in adipose tissue inflammation and subsequent systemic insulin resistance and its development involves complex process of proliferation and differentiation of preadipocytes. Fistein, a polyphenol flavonoid, is known to exert anti-inflammatory, anti-carcinogenic and anti-diabetic effects. In this study, we aimed to investigate the effect of fisetin on adipocyte proliferation and differentiation in 3T3-L1 preadipocyte cell line and its mechanism of action. We found that fisetin inhibits adipocyte differentiation in a concentration dependent manner, which were evidenced by Oil Red O staining and the protein expression of mature adipocyte marker genes fatty acid synthase and peroxisome proliferator-activated receptor γ. Moreover, the proliferation of preadipocytes was also markedly suppressed by treatment of fisetin for 24 and 48 h in the differentiation medium. We also found that fisetin inhibition of adipocyte differentiation was largely due to the effect on mitotic clonal expansion. Fisetin suppression of preadipocyte proliferation at early stage of differentiation was accompanied by the changes of expression of a series of cell cycle regulatory proteins. Altogether, our results suggest that the inhibition of adipocyte differentiation by fisetin may be at least in part mediated by cell cycle arrest during adipogenesis.

  7. Effects of MicroRNA-23a on Differentiation and Gene Expression Profiles in 3T3-L1 Adipocytes

    PubMed Central

    Huang, Yong; Huang, Jinxiu; Qi, Renli; Wang, Qi; Wu, Yongjiang; Wang, Jing

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate growth, development, and programmed death of cells. A newly-published study has shown that miRNA-23a could regulate 3T3-L1 adipocyte differentiation. Here, we identified miRNA-23a as a negative regulator of 3T3-L1 adipocyte differentiation again. Over-expression of miRNA-23a inhibited differentiation and decreased lipogenesis as well as down-regulated mRNA and protein expression of both peroxisome proliferator-activated receptor (PPAR) γ and fatty acid binding protein (FABP) 4, whereas knock down of miRNA-23a showed the opposite effects on differentiation as well as increasing the number of apoptotic cells. Additionally, digital gene expression profiling sequencing (DGE-Seq) was used to assay changes in gene expression profiles following alterations in the level of miR-23a. In total, over-expression or knock down of miRNA-23a significantly changed the expression of 313 and 425 genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these genes were mainly involved in the stress response, immune system, metabolism, cell cycle, among other pathways. Additionally, the signal transducer and activator of transcription 1 (Stat1) was shown to be a target of miRNA-23a by computational and dual-luciferase reporter assays that indicated Janus Kinase (Jak)-Stat signal pathway was implicated in regulating adipogenesis mediated by miRNA-23a in adipocytes. PMID:27783036

  8. Kefir inhibits 3T3-L1 adipocyte differentiation through down-regulation of adipogenic transcription factor expression.

    PubMed

    Ho, Jin-Nyoung; Choi, Jae-Woo; Lim, Won-Chul; Kim, Mi-Kyoung; Lee, In-Young; Cho, Hong-Yon

    2013-02-01

    Kefir, a traditional fermented milk composed of microbial symbionts, is reported to have various health benefits such as anti-tumour, anti-inflammatory, anti-neoplastic and pro-digestive effects. In this study, to elucidate the effects of kefir on adipocyte differentiation and lipid accumulation, three fractions were prepared from kefir culture broth. The inhibitory effects of kefir liquid culture broth fraction (Fr-1), soluble fraction (Fr-2) and insoluble fraction (Fr-3), prepared by sonication of kefir solid culture broth, on adipocyte differentiation in 3T3-L1 preadipocytes were examined. Fr-3 (0.1 mg mL(-1)) significantly decreased lipid accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity by 60 and 68% respectively without affecting cell viability. In addition, Fr-3 treatment down-regulated the mRNA expression of adipogenic transcription factors including C/EBPα (32%), PPARγ (46%) and SREBP-1c (34%) during adipocyte differentiation compared with untreated control cells. The mRNA expression of adipocyte-specific genes (aP2, FAS and ACC) was also clearly decreased. The results suggest that the insoluble fraction of kefir (Fr-3) mediates anti-adipogenic effects through the inhibition of adipocyte differentiation, partly via suppression of the C/EBPα-, SREBP-1c- and PPARγ-dependent pathways. Copyright © 2012 Society of Chemical Industry.

  9. Identification of suitable reference genes for quantitative RT-PCR during 3T3-L1 adipocyte differentiation.

    PubMed

    Zhang, Juan; Tang, Hongju; Zhang, Yuqing; Deng, Ruyuan; Shao, Li; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2014-05-01

    Quantitative reverse transcription PCR (qRT-PCR) is becoming increasingly important in the effort to gain insight into the molecular mechanisms underlying adipogenesis. However, the expression profile of a target gene may be misinterpreted due to the unstable expression of the reference genes under different experimental conditions. Therefore, in this study, we investigated the expression stability of 10 commonly used reference genes during 3T3-L1 adipocyte differentiation. The mRNA expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and transferrin receptor (TFRC) significantly increased during the course of 3T3-L1 adipocyte differentiation, which was decreased by berberine, an inhibitor of adipogenesis. Three popular algorithms, GeNorm, NormFinder and BestKeeper, identified 18 ribosomal RNA and hydroxymethylbilane synthase (HMBS) as the most stable reference genes, while GAPDH and TFRC were the least stable ones. Peptidylprolyl isomerase A [PIPA (cyclophilin A)], ribosomal protein, large, P0 (36-B4), beta-2-microglobulin (B2M), α1-tubulin, hypoxanthine-guanine phosphoribosyltransferase (HPRT) and β-actin showed relatively stable expression levels. The choice of reference genes with various expression stabilities exerted a profound influence on the expression profiles of 2 target genes, peroxisome proliferator-activated receptor (PPAR)γ2 and C/EBPα. In addition, western blot analysis revealed that the increased protein expression of GAPDH was markedly inhibited by berberine during adipocyte differentiation. This study highlights the importance of selecting suitable reference genes for qRT-PCR studies of gene expression during the process of adipogenesis.

  10. Perfluorooctanoic acid binds to peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation in 3T3-L1 adipocytes.

    PubMed

    Yamamoto, Junpei; Yamane, Takumi; Oishi, Yuichi; Kobayashi-Hattori, Kazuo

    2015-01-01

    We examined the effect of perfluorooctanoic acid (PFOA) on adipose cells using 3T3-L1 adipocytes and found that PFOA increased adipocyte differentiation, triglyceride accumulation, and the mRNA level of factors related to adipocyte differentiation. In addition, PFOA bound to peroxisome proliferator-activated receptor γ (PPAR γ). These results suggest that PFOA promotes adipocyte differentiation as a PPAR γ ligand.

  11. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    SciTech Connect

    Kang, Seong-Il; Ko, Hee-Chul; Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk; Lee, Nam-Ho; Kim, Se-Jae

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  12. Parabens inhibit fatty acid amide hydrolase: A potential role in paraben-enhanced 3T3-L1 adipocyte differentiation.

    PubMed

    Kodani, Sean D; Overby, Haley B; Morisseau, Christophe; Chen, Jiangang; Zhao, Ling; Hammock, Bruce D

    2016-11-16

    Parabens are a class of small molecules that are regularly used as preservatives in a variety of personal care products. Several parabens, including butylparaben and benzylparaben, have been found to interfere with endocrine signaling and to stimulate adipocyte differentiation. We hypothesized these biological effects could be due to interference with the endocannabinoid system and identified fatty acid amide hydrolase (FAAH) as the direct molecular target of parabens. FAAH inhibition by parabens yields mixed-type and time-independent kinetics. Additionally, structure activity relationships indicate FAAH inhibition is selective for the paraben class of compounds and the more hydrophobic parabens have higher potency. Parabens enhanced 3T3-L1 adipocyte differentiation in a dose dependent fashion, different from two other FAAH inhibitors URB597 and PF622. Moreover, parabens, URB597 and PF622 all failed to enhance AEA-induced differentiation. Furthermore, rimonabant, a cannabinoid receptor 1 (CB1)-selective antagonist, did not attenuate paraben-induced adipocyte differentiation. Thus, adipogenesis mediated by parabens likely occurs through modulation of endocannabinoids, but cell differentiation is independent of direct activation of CB1 by endocannabinoids. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Phytic acid and myo-inositol support adipocyte differentiation and improve insulin sensitivity in 3T3-L1 cells.

    PubMed

    Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2014-08-01

    Phytic acid, also known as myo-inositol hexaphosphate, has been shown to lower blood glucose levels and to improve insulin sensitivity in rodents. We investigated the effects of phytic acid and myo-inositol on differentiation, insulin-stimulated glucose uptake, and lipolysis of adipocytes to test the hypothesis that the antidiabetic properties of phytic acid and myo-inositol are mediated directly through adipocytes. 3T3-L1 cells were treated with 10, 50, or 200 μmol/L of phytic acid or myo-inositol. Oil Red O staining and an intracellular triacylglycerol assay were used to determine lipid accumulation during adipocyte differentiation. Immunoblotting and real-time polymerase chain reaction (PCR) were performed to evaluate expression of transcription factors, a target protein, and insulin signaling molecules. Phytic acid and myo-inositol exposures increased lipid accumulation in a dose-dependent manner (P < .01). The expression of key transcription factors associated with adipocyte differentiation, such as peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein 1c, and the expression of fatty acid synthase increased upon treatments with phytic acid and myo-inositol (P < .05). Insulin-stimulated glucose uptake in mature adipocytes increased with phytic acid and myo-inositol treatments (P < .01). In addition, mRNA levels of insulin receptor substrate 1 (IRS1), mRNA levels of glucose transporter 4, and phosphorylation of tyrosine in IRS1 increased upon phytic acid and myo-inositol treatments. In fully differentiated adipocytes, phytic acid and myo-inositol reduced basal lipolysis dose dependently (P < .01). These results suggest that phytic acid and myo-inositol increase insulin sensitivity in adipocytes by increasing lipid storage capacity, improving glucose uptake, and inhibiting lipolysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A Triterpenoid Inhibited Hormone-Induced Adipocyte Differentiation and Alleviated Dexamethasone-Induced Insulin Resistance in 3T3-L1 adipocytes.

    PubMed

    Qin, Ji-Huan; Ma, Jun-Zeng; Yang, Xing-Wei; Hu, Ying-Jie; Zhou, Juan; Fu, Lin-Chun; Tian, Ru-Hua; Liu, Shan; Xu, Gang; Shen, Xiao-Ling

    2015-06-01

    6α-Hydroxylup-20(29)-en-3-on-28-oic acid (1), a natural triterpenoid, was found to possess the ability in a dose-dependent manner inhibiting hormone-induced adipocyte differentiation in 3T3-L1 preadipocytes, and restoring glucose consuming ability in dexamethasone (DXM)-induced insulin resistant 3T3-L1 adipocytes. Compound 1 was also found to ameliorate DXM-induced adipocyte dysfunction in lipolysis and adipokine secretion. Mechanistic studies revealed that 1 inhibited adipocyte differentiation in 3T3-L1 preadipocytes via down-regulating hormone-stimulated gene transcription of peroxisome proliferator-activated receptor γ and CCAAT-enhancer-binding protein alpha which are key factors in lipogenesis, and restored DXM-impaired glucose consuming ability in differentiated 3T3-L1 adipocytes via repairing insulin signaling pathway and activating down-stream signaling transduction by phosphorylation of signaling molecules PI3K/p85, Akt2 and AS160, thus leading to increased translocation of glucose transporter type 4 and transportation of glucose.

  15. Inhibitory effect of microRNA-24 on fatty acid-binding protein expression on 3T3-L1 adipocyte differentiation.

    PubMed

    Kang, M; Yan, L M; Li, Y M; Zhang, W Y; Wang, H; Tang, A Z; Ou, H S

    2013-11-07

    We examined the effect of microRNAs on 3T3-L1 adipocyte differentiation and expression of adipocyte-specific gene fatty acid-binding protein 4 (FABP4). We screened and identified adipo-related microRNAs during 3T3-L1 adipocyte differentiation with a microRNA microarray. High expression plasmids of miR-24 and miR-21 were constructed and transfected into 3T3-L1 preadipocytes by lipofectamine. The effects of miR-24 and miR-21 on 3T3-L1 adipocyte differentiation were observed, and the protein and mRNA expression levels of FABP4 and AP-1 were determined. The expression profiles of microRNAs significantly changed during 3T3-L1 adipocyte differentiation. The expression of 33 microRNAs was downregulated, among which downregulation of miR-24 was the most extensive. There were 17 microRNAs with upregulated expression; the highest levels were found for miR-21. miR-24 significantly inhibited 3T3-L1 adipocyte differentiation and maturity, while miR-21 had no significant effect. In addition, miR-24 significantly inhibited the expression of FABP4, while it upregulated AP-1 expression, but had no effect on the level of FABP4 mRNA. miR-21 had no effect on FABP4 protein and mRNA expression. AP-1 silencing could, at least partially, reverse the inhibitory effect of miR-24 on FABP4 expression. We conclude that microRNA expression profiles change significantly during 3T3- L1 adipocyte differentiation and that miR-24 plays an important role in regulating adipocyte differentiation and FABP4 expression. The mechanism involved may be the upregulation of AP-1.

  16. Itm2a silencing rescues lamin A mediated inhibition of 3T3-L1 adipocyte differentiation.

    PubMed

    Davies, Stephanie J; Ryan, James; O'Connor, Patrick B F; Kenny, Elaine; Morris, Derek; Baranov, Pavel V; O'Connor, Rosemary; McCarthy, Tommie V

    2017-08-18

    Dysregulation of adipose tissue metabolism is associated with multiple metabolic disorders. One such disease, known as Dunnigan-type familial partial lipodystrophy (FPLD2) is characterized by defective fat metabolism and storage. FPLD2 is caused by a specific subset of mutations in the LMNA gene. The mechanisms by which LMNA mutations lead to the adipose specific FPLD2 phenotype have yet to be determined in detail. We used RNA-Seq analysis to assess the effects of wild-type (WT) and mutant (R482W) lamin A on the expression profile of differentiating 3T3-L1 mouse preadipocytes and identified Itm2a as a gene that was upregulated at 36 h post differentiation induction in these cells. In this study we identify Itm2a as a novel modulator of adipogenesis and show that endogenous Itm2a expression is transiently downregulated during induction of 3T3-L1 differentiation. Itm2a overexpression was seen to moderately inhibit differentiation of 3T3-L1 preadipocytes while shRNA mediated knockdown of Itm2a significantly enhanced 3T3-L1 differentiation. Investigation of PPARγ levels indicate that this enhanced adipogenesis is mediated through the stabilization of the PPARγ protein at specific time points during differentiation. Finally, we demonstrate that Itm2a knockdown is sufficient to rescue the inhibitory effects of lamin A WT and R482W mutant overexpression on 3T3-L1 differentiation. This suggests that targeting of Itm2a or its related pathways, including autophagy, may have potential as a therapy for FPLD2.

  17. Flavanone exhibits PPAR{gamma} ligand activity and enhances differentiation of 3T3-L1 adipocytes

    SciTech Connect

    Saito, Takeshi; Abe, Daigo; Sekiya, Keizo

    2009-03-06

    Flavanones are class of polyphenolic compounds, some of which are found in foods and provide health benefits. In this study, we show that flavanone significantly enhances differentiation of 3T3-L1 preadipocytes. During adipogenesis, flavanone enhanced expression of genes and accumulation of proteins that are involved in adipocyte function. Some reports have indicated that flavanone inhibits proliferation of mammalian cells, and down-regulates expression of growth-related proteins. Such proteins include phosphorylated ERK1/2, cyclins, and Cdks that are important for an early event in adipogenesis, mitotic clonal expansion (MCE). We demonstrated that flavanone did not inhibit MCE or expression of MCE-related proteins, except for a modest inhibition of cyclin D1 expression. Using luciferase reporter assays, we found that flavanone acted as a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligand in a dose-dependent manner. Together, our results suggest that flavanone enhances adipogenesis, at least in part, through its PPAR{gamma} ligand activity.

  18. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages.

    PubMed

    Morrison, Shona; McGee, Sean L

    2015-01-01

    Differentiated 3T3-L1 adipocytes are a widely used in vitro model of white adipocytes. In addition to classical white and brown adipocytes that are derived from different cell lineages, beige adipocytes have also been identified, which have characteristics of both white and brown adipocytes. Here we show that 3T3-L1 adipocytes display features of multiple adipocytes lineages. While the gene expression profile and basal bioenergetics of 3T3-L1 adipocytes was typical of white adipocytes, they responded acutely to catecholamines by increasing oxygen consumption in an UCP1-dependent manner, and by increasing the expression of genes enriched in brown but not beige adipocytes. Chronic exposure to catecholamines exacerbated this phenotype. However, a beige adipocyte differentiation procedure did not induce a beige adipocyte phenotype in 3T3-L1 fibroblasts. These multiple lineage features should be considered when interpreting data from experiments utilizing 3T3-L1 adipocytes.

  19. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages

    PubMed Central

    Morrison, Shona; McGee, Sean L

    2015-01-01

    Differentiated 3T3-L1 adipocytes are a widely used in vitro model of white adipocytes. In addition to classical white and brown adipocytes that are derived from different cell lineages, beige adipocytes have also been identified, which have characteristics of both white and brown adipocytes. Here we show that 3T3-L1 adipocytes display features of multiple adipocytes lineages. While the gene expression profile and basal bioenergetics of 3T3-L1 adipocytes was typical of white adipocytes, they responded acutely to catecholamines by increasing oxygen consumption in an UCP1-dependent manner, and by increasing the expression of genes enriched in brown but not beige adipocytes. Chronic exposure to catecholamines exacerbated this phenotype. However, a beige adipocyte differentiation procedure did not induce a beige adipocyte phenotype in 3T3-L1 fibroblasts. These multiple lineage features should be considered when interpreting data from experiments utilizing 3T3-L1 adipocytes. PMID:26451286

  20. Ubiquitin Ligase NEDD4 Regulates PPARγ Stability and Adipocyte Differentiation in 3T3-L1 Cells

    PubMed Central

    Li, Jing Jing; Wang, Ruishan; Lama, Rati; Wang, Xinjiang; Floyd, Z. Elizabeth; Park, Edwards A.; Liao, Francesca-Fang

    2016-01-01

    Peroxisome proliferator–activated receptor-γ (PPARγ) is a ligand-activated nuclear receptor which controls lipid and glucose metabolism. It is also the master regulator of adipogenesis. In adipocytes, ligand-dependent PPARγ activation is associated with proteasomal degradation; therefore, regulation of PPARγ degradation may modulate its transcriptional activity. Here, we show that neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4), an E3 ubiquitin ligase, interacts with the hinge and ligand binding domains of PPARγ and is a bona fide E3 ligase for PPARγ. NEDD4 increases PPARγ stability through the inhibition of its proteasomal degradation. Knockdown of NEDD4 in 3T3-L1 adipocytes reduces PPARγ protein levels and suppresses adipocyte conversion. PPARγ correlates positively with NEDD4 in obese adipose tissue. Together, these findings support NEDD4 as a novel regulator of adipogenesis by modulating the stability of PPARγ. PMID:27917940

  1. Glycine suppresses TNF-α-induced activation of NF-κB in differentiated 3T3-L1 adipocytes.

    PubMed

    Blancas-Flores, Gerardo; Alarcón-Aguilar, Francisco J; García-Macedo, Rebeca; Almanza-Pérez, Julio C; Flores-Sáenz, José L; Román-Ramos, Rubén; Ventura-Gallegos, José L; Kumate, Jesús; Zentella-Dehesa, Alejandro; Cruz, Miguel

    2012-08-15

    Glycine strongly reduces the serum levels of pro-inflammatory cytokines and increases the levels of anti-inflammatory cytokines. Recently, glycine has been shown to decrease the expression and secretion of pro-inflammatory adipokines in monosodium glutamate-induced obese (MSG/Ob) mice. It has been postulated that these effects may be explained by a reduction in nuclear factor kappa B (NF-κB) activation. NF-κB is a transcription factor, which is crucial to the inflammatory response. Hasegawa et al. (2011 and 2012) recently reported a glycine-dependent reduction in NF-κB levels. Here, we have investigated the role of glycine in the regulation of NF-κB in differentiated 3T3-L1 adipocytes. The results revealed that pretreatment with glycine interfered with the activation of NF-κB, which has been shown to be stimulated by tumor necrosis factor-alpha (TNF-α). Glycine alone stimulated NF-κB activation in an unusual way such that the inhibitor κB-β (IκB-β) degradation was more significant than that of the inhibitor κB-α (IκB-α) and led to NF-κB complexes comprised of p50 and p65 subunits; IκB-ε degradation did not affect by glycine. These findings suggest that glycine could be used as an alternative treatment for chronic inflammation, which is a hallmark of obesity and other comorbidities, and is characterized by an elevated production of pro-inflammatory cytokines. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. (-)-Epigallocatechin gallate enhances the expression of genes related to insulin sensitivity and adipocyte differentiation in 3T3-L1 adipocytes at an early stage of differentiation.

    PubMed

    Sakurai, Naoko; Mochizuki, Kazuki; Kameji, Hiroyuki; Shimada, Masaya; Goda, Toshinao

    2009-10-01

    (-)-Epigallocatechin gallate (EGCG) is thought to enhance insulin sensitivity in adipocytes, although doses used in in vitro experiments have been shown to promote apoptosis. To explore the effects of EGCG on insulin sensitivity in adipocytes, the expression of genes related to insulin sensitivity and adipocyte differentiation in 3T3-L1 adipocytes were measured in response to low doses of EGCG. Increasing concentrations of low-dose EGCG were administered for 8 d to differentiating 3T3 adipocytes, either at days 0-8 (early stage) or at days 8-16 (late stage). Fat accumulation and cell activity were measured by Oil Red O staining and 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan assay, respectively. The expression of genes related to insulin sensitivity and adipocyte differentiation was measured by real-time reverse transcriptase-polymerase chain reaction. Fat accumulation and cell activity in 3T3-L1 cells at the early and late stages were reduced at EGCG concentrations > or = 50 microM. However, EGCG doses of 5-10 microM reduced fat accumulation and induced the expression of genes related to insulin sensitivity (including Fabp4, Cd36, Lpl, Pck1, Acox1, Lypla3, and Ucp2) and adipocyte differentiation (Pparg1, Pparg2, Cebps, and Ppargc1a). These increases were only seen at the early, and not late, stages of differentiation. These data indicate that low doses of EGCG, despite reducing triacylglycerol accumulation, induce the expression of genes related to insulin sensitivity in the early stage of differentiation.

  3. Insulin stimulates actin comet tails on intracellular GLUT4-containing compartments in differentiated 3T3L1 adipocytes.

    PubMed

    Kanzaki, M; Watson, R T; Khan, A H; Pessin, J E

    2001-12-28

    Incubation of isolated GLUT4-containing vesicles with Xenopus oocyte extracts resulted in a guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) and sodium orthovanadate stimulation of actin comet tails. The in vitro actin-based GLUT4 vesicle motility was inhibited by both latrunculin B and a dominant-interfering N-WASP mutant, N-WASP/Delta VCA. Preparations of gently sheared (broken) 3T3L1 adipocytes also displayed GTP gamma S and sodium orthovanadate stimulation of actin comet tails on GLUT4 intracellular compartments. Furthermore, insulin pretreatment of intact adipocytes prior to gently shearing also resulted in a marked increase in actin polymerization and actin comet tailing on GLUT4 vesicles. In addition, the insulin stimulation of actin comet tails was completely inhibited by Clostridum difficile toxin B, demonstrating a specific role for a Rho family member small GTP-binding protein. Expression of N-WASP/Delta VCA in intact cells had little effect on adipocyte cortical actin but partially inhibited insulin-stimulated GLUT4 translocation. Taken together, these data demonstrate that insulin can induce GLUT4 vesicle actin comet tails that are necessary for the efficient translocation of GLUT4 from intracellular storage sites to the plasma membrane.

  4. Isoliquiritigenin impairs insulin signaling and adipocyte differentiation through the inhibition of protein-tyrosine phosphatase 1B oxidation in 3T3-L1 preadipocytes.

    PubMed

    Park, Sun-Ji; Choe, Young-Geun; Kim, Jung-Hak; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-07-01

    Isoliquritigenin (ISL) is an abundant dietary flavonoid with a chalcone structure, which is an important constituent in Glycyrrhizae Radix (GR). ISL exhibits anti-oxidant activity, and this activity has been shown to play a beneficial role in various health conditions. However, it is unclear whether the anti-oxidant activity of ISL affects insulin signaling pathway and lipid accumulation of adipocytes. We sought to investigate the effects and molecular mechanisms of ISL on insulin-stimulated adipogenesis in 3T3-L1 cells. We investigated whether ISL attenuates insulin-induced Reactive Oxygen Species (ROS) generation, and whether ISL inhibits the lipid accumulation and the expression of adipogenic-genes during the differentiation of 3T3-L1 cells. ISL blocked the ROS generation, suppressed the lipid accumulation and the expression of adipocyte-specific proteins, which are increased in response to insulin stimulation during adipocyte differentiation of 3T3-L1 cells. We also investigated whether the anti-oxidant capacity of ISL is involved in regulating the molecular events of insulin-signaling cascade in 3T3-L1 adipocytes. ISL restores PTP1B activity by inhibiting PTP1B oxidation and IR/PI3K/AKT phosphorylation during the early stages of insulin-induced adipogenesis. Our findings show that the anti-oxidant capacity of ISL attenuated insulin IR/PI3K/AKT signaling through inhibition of PTP1B oxidation, and ultimately attenuated insulin-induced adipocyte differentiation of 3T3-L1 cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Cinnamyl Alcohol, the Bioactive Component of Chestnut Flower Absolute, Inhibits Adipocyte Differentiation in 3T3-L1 Cells by Downregulating Adipogenic Transcription Factors.

    PubMed

    Hwang, Dae Il; Won, Kyung-Jong; Kim, Do-Yoon; Kim, Bokyung; Lee, Hwan Myung

    2017-01-01

    The extract of chestnut (Castanea crenata var. dulcis) flower (CCDF) has antioxidant and antimelanogenic properties, but its anti-obesity properties have not been previously examined. In this study, we tested the effect of CCDF absolute on adipocyte differentiation by using 3T3-L1 cells and determining the bioactive component of CCDF absolute in 3T3-L1 cell differentiation. CCDF absolute (0.1-100[Formula: see text][Formula: see text]g/mL) did not change 3T3-L1 cell viability. At 50[Formula: see text][Formula: see text]g/mL and 100[Formula: see text][Formula: see text]g/mL, the absolute significantly reduced the accumulation of lipid droplets in 3T3-L1 cells that were induced by culture in medium containing 3-isobutyl-1-methylxanthine/dexamethasone/insulin (MDI). GC/MS analysis showed that CCDF absolute contains 10 compounds. Among these compounds, cinnamyl alcohol (3-phenyl-2-propene-1-ol) dose-dependently inhibited the increased accumulation of lipid droplets in MDI-contained medium-cultured 3T3-L1 cells at a concentration range of 0.1[Formula: see text][Formula: see text]g/mL to 10[Formula: see text][Formula: see text]g/mL that did not cause cytotoxicity in 3T3-L1 cells. The inhibitory effect was significant at 5[Formula: see text][Formula: see text]g/mL ([Formula: see text] of response in MDI alone-treated state, [Formula: see text]) and 10[Formula: see text][Formula: see text]g/mL ([Formula: see text] of response in MDI alone-treated state, [Formula: see text]). Moreover, the enhanced expression of obesity-related proteins (PPAR[Formula: see text], C/EBP[Formula: see text], SREBP-1c, and FAS) in MDI medium-cultivated 3T3-L1 cells was significantly attenuated by the addition of cinnamyl alcohol at 5[Formula: see text][Formula: see text]g/mL and 10[Formula: see text][Formula: see text]g/mL. These findings demonstrate that cinnamyl alcohol suppresses 3T3-L1 cell differentiation by inhibiting anti-adipogenesis-related proteins, and it may be a main bioactive

  6. Cineromycin B isolated from Streptomyces cinerochromogenes inhibits adipocyte differentiation of 3T3-L1 cells via Krüppel-like factors 2 and 3.

    PubMed

    Matsuo, Hirotaka; Kondo, Yoshiyuki; Kawasaki, Takashi; Imamura, Nobutaka

    2015-08-15

    3T3-L1 cells are preadipocytes and often used as a model for cellular differentiation to adipocytes; however, the mechanism of this differentiation is not completely understood even in these model cells. In this study, we sought to identify a unique anti-adipogenesis agent from microorganisms and to examine its mechanism of action to gain knowledge and create a tool and/or seed compound for anti-obesity drug discovery research. Screening for anti-adipogenesis agents from microorganisms was performed using a 3T3-L1 cell differentiation system, and an active compound was isolated. The inhibitory mechanism of the compound was investigated by measuring the expression of key regulators using quantitative real-time PCR and Western blot analysis. The compound with anti-adipogenic activity in 3T3-L1 cells was identified as cineromycin B. Cineromycin B at 50 μg/mL suppressed intracellular lipid accumulation and the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα), which are master regulators of adipocyte differentiation. Further investigations showed that cineromycin B increased significantly the mRNA expression of two negative regulators of adipocyte differentiation, Krüppel-like factor (KLF) 2 and KLF3, at an early stage of the differentiation. The results of siRNA transfection experiments indicated that cineromycin B is a unique adipocyte differentiation inhibitor, acting mainly via upregulation of KLF2 and KLF3, and these KLFs may play a role in the early stage of differentiation. Cineromycin B inhibited adipocyte differentiation in 3T3-L1 cells mainly via upregulation of KLF2 and KLF3 mRNA expression at an early stage of the differentiation. Copyright © 2015. Published by Elsevier Inc.

  7. Epimedium koreanum Nakai and its main constituent icariin suppress lipid accumulation during adipocyte differentiation of 3T3-L1 preadipocytes.

    PubMed

    Han, Yunk-Yung; Song, Mi-Young; Hwang, Min-Sub; Hwang, Ji-Hye; Park, Yong-Ki; Jung, Hyo-Won

    2016-09-01

    Obesity is associated with a number of metabolic abnormalities such as type 2 diabetes and has become a major health problem worldwide. In the present study, we investigated the effects of Epimedium koreanum Nakai (Herba Epimedii, HE) and its main constituent icariin on the adipocyte differentiation in 3T3-L1 preadipocytes. HE extract and icariin significantly reduced lipid accumulation and suppressed the expressions of PPARγ, C/EBPα, and SREBP-1c in 3T3-L1 adipocytes. They also inhibited fatty acid synthase (FAS), acyl-Co A synthase (ACS1), and perilipin. Moreover, HE extract and icariin markedly increased the phosphorylation of AMPK. These results indicated that HE extract and icariin can inhibit the adipocyte differentiation through downregulation of the adipogenic transcription factors, suggesting that HE containing icariin may be used as a potential therapeutic agent in the treatment and prevention of obesity. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  8. The 3T3-L1 adipocyte glycogen proteome

    PubMed Central

    2013-01-01

    Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle. PMID:23521774

  9. Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes

    PubMed Central

    Kim, Woo Kyoung; Kang, Nam E; Kim, Myung Hwan

    2013-01-01

    3T3-L1 preadipocyte were differentiated to adipocytes, and then treated with 0, 10, 20, and 40 µg/mL of peanut sprout ethanol extract (PSEE). The main component of PSEE is resveratrol which contained 5.55 mg/mL of resveratrol. The MTT assay, Oil-Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, and the triglyceride concentration were determined in 3T3-L1 cells. MMP-2 and MMP-9 activities as well as mRNA expressions of C/EBP β and C/EBP α were also investigated. As the concentration of PSEE in adipocytes increased, the cell proliferation was decreased in a dose-dependent manner from 4 days of incubation (P < 0.05). The GDPH activity (P < 0.05) and the triglyceride concentration (P < 0.05) were decreased as the PSEE treatment concentration increased. The mRNA expression of C/EBPβ in 3T3-L1 cells was significantly low in groups of PSEE-treated, compared with control group (P < 0.05). The MMP-9 (P < 0.05) and MMP-2 (P < 0.05) activities were decreased in a dose-dependent manner as the PSEE concentration increased from 20 µg/mL. In conclusion, it was found that PSEE has an effect on restricting proliferation and differentiation of adipocytes. PMID:23766875

  10. Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes.

    PubMed

    Kim, Woo Kyoung; Kang, Nam E; Kim, Myung Hwan; Ha, Ae Wha

    2013-06-01

    3T3-L1 preadipocyte were differentiated to adipocytes, and then treated with 0, 10, 20, and 40 µg/mL of peanut sprout ethanol extract (PSEE). The main component of PSEE is resveratrol which contained 5.55 mg/mL of resveratrol. The MTT assay, Oil-Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, and the triglyceride concentration were determined in 3T3-L1 cells. MMP-2 and MMP-9 activities as well as mRNA expressions of C/EBP β and C/EBP α were also investigated. As the concentration of PSEE in adipocytes increased, the cell proliferation was decreased in a dose-dependent manner from 4 days of incubation (P < 0.05). The GDPH activity (P < 0.05) and the triglyceride concentration (P < 0.05) were decreased as the PSEE treatment concentration increased. The mRNA expression of C/EBPβ in 3T3-L1 cells was significantly low in groups of PSEE-treated, compared with control group (P < 0.05). The MMP-9 (P < 0.05) and MMP-2 (P < 0.05) activities were decreased in a dose-dependent manner as the PSEE concentration increased from 20 µg/mL. In conclusion, it was found that PSEE has an effect on restricting proliferation and differentiation of adipocytes.

  11. Adlay seed extract (Coix lachryma-jobi L.) decreased adipocyte differentiation and increased glucose uptake in 3T3-L1 cells.

    PubMed

    Ha, Do Thi; Nam Trung, Trinh; Bich Thu, Nguyen; Van On, Tran; Hai Nam, Nguyen; Van Men, Chu; Thi Phuong, Tran; Bae, KiHwan

    2010-12-01

    The aim of the present study was to investigate effects of the ethyl acetate fraction of an ethanol extract of Coix lachryma-jobi (ECLJ) on glucose uptake and adipocyte differentiation in 3T3-L1 cells. ECLJ phosphorylated AMP-activated protein kinase (AMPK) and its downstream substrate acetyl-coenzymeA carboxylase in 3T3-L1 cells in a time- and dose-dependent manner. Moreover, we discovered that compound C inhibits ECLJ-stimulated ACC phosphorylation. In addition, ECLJ exhibited a dose-dependent stimulation of glucose uptake in 3T3-L1 cells, and this increase was obviously attenuated by compound C. ECLJ also caused a decrease in the expression levels of adipogenesis factors such as fatty acid synthase, sterol-regulatory-element-binding protein-1c, peroxisome proliferator-activated receptor γ, and CAATT/enhancer binding protein α in a dose-dependent manner. Differentiation was examined by Oil red O staining activity after ECLJ treatment for 6 days. ECLJ decreased mean droplet size. These results suggest a possible role for AMPK in the process of adipose differentiation and that ECLJ targeted for adipocyte functions could be effective in improving the symptoms of metabolic syndrome.

  12. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2013-01-01

    Background The naphthoquinone pigment, shikonin, is a major component of Lithospermum erythrorhizon and has been shown to have various biological functions, including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we investigated the effect of shikonin on adipocyte differentiation and its mechanism of action in 3T3-L1 cells. Methods To investigate the effects of shikonin on adipocyte differentiation, 3T3-L1 cells were induced to differentiate using 3-isobutyl-1-methylzanthine, dexamethasone, and insulin (MDI) for 8 days in the presence of 0–2 μM shikonin. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the anti-adipogenic mechanism of shikonin, adipogenic transcription factors, the phosphorylation levels of ERK, and adipogenic gene expression were analyzed by Western blotting and quantitative real-time PCR. To further confirm that shikonin inhibits adipogenic differentiation through downregulation of ERK 1/2 activity, 3T3-L1 cells were treated with shikonin in the presence of FGF-2, an activator, or PD98059, an inhibitor, of the ERK1/2 signaling pathway. Results Shikonin effectively suppressed adipogenesis and downregulated the protein levels of 2 major transcription factors, PPARγ and C/EBPα, as well as the adipocyte specific gene aP2 in a dose-dependent manner. qRT-PCR analysis revealed that shikonin inhibited mRNA expression of adipogenesis-related genes, such as PPARγ, C/EBPα, and aP2. Adipocyte differentiation was mediated by ERK 1/2 phosphorylation, which was confirmed by pretreatment with PD98059 (an ERK 1/2 inhibitor) or FGF-2 (an ERK 1/2 activator). The phosphorylation of ERK1/2 during the early stages of adipogenesis in 3T3-L1 cells was inhibited by shikonin. We also confirmed that FGF-2-stimulated ERK 1/2 activity was attenuated by shikonin. Conclusions These results demonstrate that shikonin inhibits adipogenic differentiation via suppression of the ERK signaling pathway

  13. Platyphylloside Isolated From Betula platyphylla Inhibit Adipocyte Differentiation and Induce Lipolysis Via Regulating Adipokines Including PPARγ in 3T3-L1 Cells.

    PubMed

    Lee, Mina; Sung, Sang Hyun

    2016-01-01

    Obesity causes or aggravates many health problems, both independently and in association with several pathological disorders, including Type II diabetes, hypertension, atherosclerosis, and cancer. Therefore, we screened small compounds isolated from natural products for the development of anti-obesity drugs. The purpose of this study was to investigate the anti-adipogenic activities of platyphylloside, diarylheptanoid isolated from Betula platyphylla, which was selected based on the screening using 3T3-L1 cells. To evaluate the inhibition of adipocyte differentiation and lipolysis, lipid contents of BPP on were measured using Oil Red O staining in 3T3-L1 cells. The mRNA and protein expression levels of various adipokines were measured by Quantitative real-time PCR and Western blotting analysis, respectively. Platyphylloside showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 cells and suppressed adipocyte differentiation even in the presence of troglitazone, a PPARγ agonist. Platyphylloside might suppress adipocyte differentiation through PPARγ, C/EBPα, and SREBP1-induced adipogenesis, which is synergistically associated with downstream adipocyte-specific gene promoters such as aP2, FAS, SCD-1, LPL, and Adiponectin. In addition, platyphylloside affected lipolysis by down-regulating perilipin and HSL and up-regulating TNFα. Taken together, the results reveal that platyphylloside has anti-adipogenic activity and highlight its potential in the prevention and treatment of obesity. The extract of B. platyphylla bark and its isolate, BPP, had anti-adipogenic activity in 3T3-L1 cells via suppression of adipocyte differentiation from preadipocytes.Treatment with BPP significantly down-regulated the expression of PPARγ, C/EBP, C/EBPβ, C/EBPδ, SREBP1c, SCD-1, FAS, aP2 and LPL.BPP induced a lipolytic response in mature adipocytes via up-regulation krof TNFá and down-regulation of HSL, perilipin, PPARγ, PDE3B, and Gia1.BPP is a novel

  14. Differentiation to adipocytes in accompanied by an increase in the amounts of Gi- and Go-proteins in 3T3-L1 cells

    SciTech Connect

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    1986-05-01

    Treatment of cultures of 3T3-L1 cells with methylisobutyl-xanthine and dexamethasone has been shown to result in accumulation of lipid and conversion to the morphology of adipocytes in more than 90% of the cells. The status of the stimulatory (Gs), inhibitory (Gi) and Go-proteins during the course of 3T3-L1 differentiation was examined. The amount of alpha subunit of Gs (..cap alpha..Gs), assayed by radiolabeling in the presence of cholera toxin and (/sup 32/P)NAD/sup +/, increased upon differentiation as previously described by others. The amounts of ..cap alpha..Gi and ..cap alpha..Go assayed by radiolabeling in the presence of pertussis toxin and (/sup 32/P)NAD/sup +/ increased 3-fold upon differentiation. Immunoblots of cell membranes subjected to gel electrophoresis in sodium dodecyl sulfate were probed with two rabbit antisera raised against bovine brain ..cap alpha..Go and with one raised against the..beta..-subunit of the bovine rod-outer-segment G-protein, referred to as transducin. The immunoblotting data confirm the increase upon differentiation of ..cap alpha..Go and also demonstrate an increase in the amount of the ..beta..-subunit. Thus differentiation of 3T3-L1 cells is accompanied by dramatic changes in the complexion of G-proteins in the membranes.

  15. Vaspin promotes 3T3-L1 preadipocyte differentiation

    PubMed Central

    Liu, Ping; Wu, Jine; Zhou, Xin; Wang, Liping; Han, Wenqi; Lv, Ying; Sun, Chaofeng

    2015-01-01

    Vaspin, a novel adipocyte factor secreted from visceral adipose tissues, is associated with obesity and insulin resistance and can regulate glucose and lipid metabolism, increase insulin sensitivity, and suppress inflammation; however, the underlying mechanisms remain unknown. Proliferation and maladaptive differentiation are important pathological mechanisms underlying obesity. This study aimed to evaluate the effects of vaspin on the proliferation and differentiation of preadipocyte 3T3-L1 cells and to explore the likely mechanisms responsible for 3T3-L1 differentiation. Vaspin was added to cultured 3T3-L1 cells, and the differentiation of adipocytes was evaluated using Oil Red O staining. The AKT signaling pathway and specific differentiation factors related to the differentiation of preadipocyte 3T3-L1 cells, peroxisome proliferator-activated γ and the CCAAT/enhancer-binding protein (C/EBP) family, were evaluated using reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses during the early phase of differentiation. Additionally, adiponectin mRNA, interleukin-6 mRNA (IL-6 mRNA), and glucose transporter-4 (GLUT4) protein levels were measured in the differentiated adipocytes. The results indicated that vaspin promotes the intracellular accumulation of lipids and increases differentiation-related factors, including peroxisome proliferator-activated receptor γ, C/EBPα, and free fatty acid-binding protein 4 (FABP4), in a dose-dependent manner. Additionally, vaspin (200 ng/mL) increased the mRNA and protein levels of C/EBPβ, peroxisome proliferator-activated γ, C/EBPα, and FABP4. Moreover, compared with the control, significantly smaller eight-day differentiated adipocytes were observed, and these cells exhibited decreased IL-6 mRNA and increased GLUT4 mRNA levels; these results also indicated the potential of vaspin to promote the insulin-mediated AKT signaling pathway during the early phase of differentiation. In conclusion

  16. Vaspin promotes 3T3-L1 preadipocyte differentiation.

    PubMed

    Liu, Ping; Li, Guoliang; Wu, Jine; Zhou, Xin; Wang, Liping; Han, Wenqi; Lv, Ying; Sun, Chaofeng

    2015-11-01

    Vaspin, a novel adipocyte factor secreted from visceral adipose tissues, is associated with obesity and insulin resistance and can regulate glucose and lipid metabolism, increase insulin sensitivity, and suppress inflammation; however, the underlying mechanisms remain unknown. Proliferation and maladaptive differentiation are important pathological mechanisms underlying obesity. This study aimed to evaluate the effects of vaspin on the proliferation and differentiation of preadipocyte 3T3-L1 cells and to explore the likely mechanisms responsible for 3T3-L1 differentiation. Vaspin was added to cultured 3T3-L1 cells, and the differentiation of adipocytes was evaluated using Oil Red O staining. The AKT signaling pathway and specific differentiation factors related to the differentiation of preadipocyte 3T3-L1 cells, peroxisome proliferator-activated γ and the CCAAT/enhancer-binding protein (C/EBP) family, were evaluated using reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses during the early phase of differentiation. Additionally, adiponectin mRNA, interleukin-6 mRNA (IL-6 mRNA), and glucose transporter-4 (GLUT4) protein levels were measured in the differentiated adipocytes. The results indicated that vaspin promotes the intracellular accumulation of lipids and increases differentiation-related factors, including peroxisome proliferator-activated receptor γ, C/EBPα, and free fatty acid-binding protein 4 (FABP4), in a dose-dependent manner. Additionally, vaspin (200 ng/mL) increased the mRNA and protein levels of C/EBPβ, peroxisome proliferator-activated γ, C/EBPα, and FABP4. Moreover, compared with the control, significantly smaller eight-day differentiated adipocytes were observed, and these cells exhibited decreased IL-6 mRNA and increased GLUT4 mRNA levels; these results also indicated the potential of vaspin to promote the insulin-mediated AKT signaling pathway during the early phase of differentiation. In conclusion

  17. Esculetin Inhibits Adipogenesis and Increases Antioxidant Activity during Adipocyte Differentiation in 3T3-L1 Cells.

    PubMed

    Kim, Younghwa; Lee, Junsoo

    2017-06-01

    This study was conducted to investigate the anti-adipogenic activity of esculetin (ECT) which is reported to be attributable to the modulation of antioxidant enzymes during adipogenesis. After six days of ECT treatment of 3T3-L1 cells, lipid accumulation was determined by Oil red O staining. The levels of glutathione (GSH) and reactive oxygen species (ROS), and the activities of antioxidant enzymes including glutathione reductase, glutathione peroxidase (GPx), and catalase were examined. In addition, the protein expression of glutamate-cysteine ligase catalytic subunit (GCLC) and heme oxygenase-1 (HO-1) was measured by Western blot. ECT significantly inhibited lipid accumulation by approximately 80% and ROS production in a concentration-dependent manner. GSH level and GPx activity were increased by ECT by approximately 1.3-fold and 1.7-fold compared to the control group, respectively. GCLC and HO-1 expression were elevated by ECT. These results showed that ECT treatments strongly inhibit adipogenesis, increase GSH level, and upregulate the expression of GCLC and HO-1, possibly by decreasing ROS production in 3T3-L1 cells during adipogenesis.

  18. Aspartame downregulates 3T3-L1 differentiation.

    PubMed

    Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung

    2014-10-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity.

  19. A commercial formulation of glyphosate inhibits proliferation and differentiation to adipocytes and induces apoptosis in 3T3-L1 fibroblasts.

    PubMed

    Martini, Claudia N; Gabrielli, Matías; Vila, María del C

    2012-09-01

    Glyphosate-based herbicides are extensively used for weed control all over the world. Therefore, it is important to investigate the putative toxic effects of these formulations which include not only glyphosate itself but also surfactants that may also be toxic. 3T3-L1 fibroblasts are a useful tool to study adipocyte differentiation, this cell line can be induced to differentiate by addition of a differentiation mixture containing insulin, dexamethasone and 3-isobutyl-1-methylxanthine. We used this cell line to investigate the effect of a commercial formulation of glyphosate (GF) on proliferation, survival and differentiation. It was found that treatment of exponentially growing cells with GF for 48h inhibited proliferation in a dose-dependent manner. In addition, treatment with GF dilution 1:2000 during 24 or 48h inhibited proliferation and increased cell death, as evaluated by trypan blue-exclusion, in a time-dependent manner. We showed that treatment of 3T3-L1 fibroblasts with GF increased caspase-3 like activity and annexin-V positive cells as evaluated by flow cytometric analysis, which are both indicative of induction of apoptosis. It was also found that after the removal of GF, remaining cells were able to restore proliferation. On the other hand, GF treatment severely inhibited the differentiation of 3T3-L1 fibroblasts to adipocytes. According to our results, a glyphosate-based herbicide inhibits proliferation and differentiation in this mammalian cell line and induces apoptosis suggesting GF-mediated cellular damage. Thus, GF is a potential risk factor for human health and the environment.

  20. Involvement of JNK/NFκB Signaling Pathways in the Lipopolysaccharide-Induced Modulation of Aquaglyceroporin Expression in 3T3-L1 Cells Differentiated into Adipocytes

    PubMed Central

    Chiadak, Jeanne Durendale; Arsenijevic, Tatjana; Gregoire, Francoise; Bolaky, Nargis; Delforge, Valerie; Perret, Jason; Delporte, Christine

    2016-01-01

    Aquaglyceroporins, belonging to the family of aquaporins (AQPs), are integral plasma membrane proteins permeable to water and glycerol that have emerged as key players in obesity. The aim of this study was to investigate the expression profile of AQPs in undifferentiated and differentiated 3T3-L1 cells and to investigate the changes in expression of aquaglyceroporins in 3T3-L1 cells differentiated into adipocytes and subjected to lipopolysaccharide (LPS) mimicking inflammation occurring during obesity. Furthermore, the study aimed at identifying the signaling cascade involved in the regulation of aquaglyceroporins expression upon LPS stimulation. 3T3-L1 cells were grown as undifferentiated cells (UDC; preadipocytes) or cells differentiated into adipocytes (DC, adipocytes). DC were incubated in the presence or absence of LPS with or without inhibitors of various protein kinases. AQPs mRNA expression levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). AQP1, AQP2, AQP3, AQP9 and AQP11 mRNA were expressed in both UDC and DC, whereas AQP4, AQP7 and AQP8 mRNA were expressed only in DC. In DC, LPS up-regulated AQP3 mRNA levels (p < 0.05) compared to control; these effects were inhibited by CLI095, SP600125 and BAY11-7082 (p < 0.05). LPS decreased both AQP7 and AQP11 mRNA levels (p < 0.01) in DC as compared to control; this decrease was inhibited by CLI095 and BAY11-7082 (p < 0.05) and additionally by SP00125 for AQP7 (p < 0.05). SB203580 had no effect on LPS-induced AQP3, AQP7 and AQP11 mRNA levels modulations. In conclusion, our results clearly show that many AQPs are expressed in murine 3T3-L1 adipocytes. Moreover, in DCs, LPS led to decreased AQP7 and AQP11 mRNA levels but to increased AQP3 mRNA levels, resulting from the Toll-like receptor 4 (TLR4)-induced activation of JNK and/or NFκB pathway. PMID:27763558

  1. Hypaphorine, an Indole Alkaloid Isolated from Caragana korshinskii Kom., Inhibites 3T3-L1 Adipocyte Differentiation and Improves Insulin Sensitivity in Vitro.

    PubMed

    Luan, Guangxiang; Tie, Fangfang; Yuan, Zhenzhen; Li, Gang; He, Jie; Wang, Zhenhua; Wang, Honglun

    2017-07-01

    Obesity, a major health problem worldwide, is a complex multifactorial chronic disease that increases the risk for insulin resistance, type 2 diabetes, coronary heart disease, and hypertension. In this study, we assessed methods to isolate hypaphorine, a potent drug candidate for obesity and insulin resistance. Semi-preparative reversed-phase liquid chromatography (semi-preparative RPLC) was established as a method to separate three compounds, adenosine, l-tryptophan, and hypaphorine, from the crude extracts of Caragana korshinskii Kom. Due to its specific chemical structure, the effect of hypaphorine on differentiation and dexamethasone (DXM) induced insulin resistance of 3T3-L1 cells was investigated. The structures of the three compounds were confirmed by UV, (1) H-NMR, and (13) C-NMR analysis and compared with published data. The activity results indicated that hypaphorine prevented the differentiation of 3T3-L1 preadipocytes into adipocytes by down-regulating hormone-stimulated protein expression of peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα), and their downstream targets, sterol regulatory element binding protein 1 c (SREBP1c) and fatty acid synthase (FAS). Hypaphorine also alleviated DXM-induced insulin resistance in differentiated 3T3-L1 adipocytes via increasing the phosphorylation level of Akt2, a key protein in the insulin signaling pathway. Taken together, we suggest that the method can be applied to large-scale extraction and large-quantity preparation of hypaphorine for treatment of obesity and insulin resistance. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  2. Role of Adiantum philippense L. on Glucose Uptake in Isolated Pancreatic Cells and Inhibition of Adipocyte Differentiation in 3T3-L1 Cell Line.

    PubMed

    Paul, Tania; Apte, Kishori G; Parab, Pradeep B; Das, Biswadeep

    2017-07-01

    Adiantum philippense (AP) is a pteridophyte that shows antihyperglycemic activity in vivo diabetic model, but the mechanism of action is unknown. AP was found to play a pivotal role in minimizing the high blood glucose in alloxan-induced diabetic rats. Simultaneously, it was observed that it could maintain the normal lipid profile even in diabetic condition. To investigate its insulin-like activity along with its inhibitory role on adipocyte differentiation became the objective of our present study. Glucose uptake potential of this fern was done in isolated pancreatic islets and inhibition of adipocyte differentiation was assessed in 3T3-L1 cell line. Before this, the cytotoxic concentration was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on L929 cell line. To determine its role in lipid metabolism, the oil droplets produced in adipocytes were stained with Oil 'O' red staining, and triglyceride levels of various drug treatments were measured spectrophotometrically. This fern extract was found to be actively utilizing glucose in the glucose uptake assay. Moreover, it was also involved in inhibiting differentiation of pro-adipocyte to adipocyte in the 3T3-L1 cell lines. The percentage inhibition as obtained from the absorbance showed that the ethanolic extract at the concentration of 200 μg/ml showed 32.48% inhibition. All the above-mentioned parameters when appraised indicated that this fern could be used as an alternative medicine in managing diabetes associated with obesity. Adiantum phillippense (AP) is a pteridophyte that can work as antihyperglycemic agent by minimizing some adverse effects produced by diabetes. Diabetes produces oxidative stress, hampers normal glucose uptake in the pancreas, promotes adipocyte differentiation, and leads to obesity, and as a result, it generates catastrophic effect to the normal cells. The present study has shown that ethanolic extract of AP gives better protection rate against H(2) O(2

  3. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    PubMed

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity.

  4. TNF-alpha inhibits 3T3-L1 adipocyte differentiation without downregulating the expression of C/EBPbeta and delta.

    PubMed

    Kurebayashi, S; Sumitani, S; Kasayama, S; Jetten, A M; Hirose, T

    2001-04-01

    Tumor necrosis factor-alpha (TNF-alpha) has been reported to inhibit adipocyte differentiation in which multiple transcription factors including CCAAT enhancer binding proteins (C/EBPs) and peroxisome proliferator-activated receptor (PPAR) gamma play an important role. Induction of C/EBPalpha and PPARgamma, which regulate the expression of many adipocyte-related genes, is dependent on the expression of C/EBPbeta and C/EBPdelta at the early phase of adipocyte differentiation. To elucidate the mechanism by which TNF-alpha inhibits adipocyte differentiation, we examined the effect of TNF-alpha on the expression of these transcription factors in mouse 3T3-L1 preadipocytes. TNF-alpha did not abrogate the induction of C/EBPbeta and C/EBPdelta in response to differentiation stimuli. In fully differentiated adipocytes, TNF-alpha rapidly induced C/EBPbeta and C/EBPdelta, whereas it downregulated the expression of C/EBPalpha and PPARgamma. Our results suggest that TNF-alpha inhibits adipocyte differentiation independently of the downregulation of C/EBPbeta and C/EBPdelta.

  5. Platyphylloside Isolated From Betula platyphylla Inhibit Adipocyte Differentiation and Induce Lipolysis Via Regulating Adipokines Including PPARγ in 3T3-L1 Cells

    PubMed Central

    Lee, Mina; Sung, Sang Hyun

    2016-01-01

    Background: Obesity causes or aggravates many health problems, both independently and in association with several pathological disorders, including Type II diabetes, hypertension, atherosclerosis, and cancer. Therefore, we screened small compounds isolated from natural products for the development of anti-obesity drugs. Objective: The purpose of this study was to investigate the anti-adipogenic activities of platyphylloside, diarylheptanoid isolated from Betula platyphylla, which was selected based on the screening using 3T3-L1 cells. Materials and Methods: To evaluate the inhibition of adipocyte differentiation and lipolysis, lipid contents of BPP on were measured using Oil Red O staining in 3T3-L1 cells. The mRNA and protein expression levels of various adipokines were measured by Quantitative real-time PCR and Western blotting analysis, respectively. Results: Platyphylloside showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 cells and suppressed adipocyte differentiation even in the presence of troglitazone, a PPARγ agonist. Platyphylloside might suppress adipocyte differentiation through PPARγ, C/EBPα, and SREBP1-induced adipogenesis, which is synergistically associated with downstream adipocyte-specific gene promoters such as aP2, FAS, SCD-1, LPL, and Adiponectin. In addition, platyphylloside affected lipolysis by down-regulating perilipin and HSL and up-regulating TNFα. Conclusion: Taken together, the results reveal that platyphylloside has anti-adipogenic activity and highlight its potential in the prevention and treatment of obesity. SUMMARY The extract of B. platyphylla bark and its isolate, BPP, had anti-adipogenic activity in 3T3-L1 cells via suppression of adipocyte differentiation from preadipocytes.Treatment with BPP significantly down-regulated the expression of PPARγ, C/EBP, C/EBPβ, C/EBPδ, SREBP1c, SCD-1, FAS, aP2 and LPL.BPP induced a lipolytic response in mature adipocytes via up-regulation krof TNFá and down

  6. Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells.

    PubMed

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N; Dietzgen, Ralf G; Roberts-Thomson, Sarah J; Gidley, Michael J; Monteith, Gregory R

    2013-02-26

    Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.

  7. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells.

    PubMed

    Furuyashiki, Takashi; Nagayasu, Hironobu; Aoki, Yukiko; Bessho, Hiroaki; Hashimoto, Takashi; Kanazawa, Kazuki; Ashida, Hitoshi

    2004-11-01

    Obesity is a serious health problem, and its prevention is promoted through life style including diet and exercise. In this study, we investigated the suppressive effects of tea catechin on the differentiation of 3T3-L1 preadipocytes to adipocytes. (-)-Catechin 3-gallate (CG), (-)-epigallocatechin (EGC), (-)-epicatechin 3-gallate, and (-)-epigallocatechin 3-gallate at 5 muM suppressed intracellular lipid accumulation. The suppressive effects of CG and EGC were stronger than the others, and CG and EGC also suppressed the activity of glycerol-3-phosphate dehydrogenase as a differentiation marker. These catechins inhibited the expression of peroxisome proliferator-activated receptor (PPAR) gamma2 and CCAAT/enhancer-binding protein (C/EBP) alpha, both of which act as key transcription factors at an early stage of differentiation, followed by the expression of glucose transporter (GLUT) 4 at a later stage. In addition, the catechins did not affect the phosphorylation status of the insulin signal pathway. Thus, catechin suppressed adipocyte differentiation accompanied by the down-regulation of PPARgamma2, C/EBPalpha, and GLUT4. These results suggest that tea catechin prevents obesity through the suppression of adipocyte differentiation.

  8. 18O-Tracer Metabolomics Reveals Protein Turnover and CDP-Choline Cycle Activity in Differentiating 3T3-L1 Pre-Adipocytes

    PubMed Central

    Kirkwood, Jay S.; Miranda, Cristobal L.; Bobe, Gerd; Maier, Claudia S.; Stevens, Jan F.

    2016-01-01

    The differentiation of precursor cells into mature adipocytes (adipogenesis) has been an area of increased focus, spurred by a rise in obesity rates. Though our understanding of adipogenesis and its regulation at the cellular level is growing, many questions remain, especially regarding the regulation of the metabolome. The 3T3-L1 cell line is the most well characterized cellular model of adipogenesis. Using a time course metabolomics approach, we show that the 3T3-L1 preadipocyte metabolome is greatly altered during the first 48 hours of differentiation, where cells go through about two rounds of cell division, a process known as mitotic clonal expansion. Short-chain peptides were among several small molecules that were increased during mitotic clonal expansion. Additional indicators of protein turnover were also increased, including bilirubin, a degradation product of heme-containing proteins, and 3-methylhistidine, a post-translationally modified amino acid that is not reutilized for protein synthesis. To study the origin of the peptides, we treated differentiating preadipocytes with 18O labeled water and found that 18O was incorporated into the short chain peptides, confirming them, at least in part, as products of hydrolysis. Inhibitors of the proteasome or matrix metalloproteinases affected the peptide levels during differentiation, but inhibitors of autophagy or peptidases did not. 18O was also incorporated into several choline metabolites including cytidine 5'-diphosphocholine (CDP-choline), glycerophosphocholine, and several phosphatidylcholine species, indicative of phosphatidylcholine synthesis/degradation and of flux through the CDP-choline cycle, a hallmark of proliferating cells. 18O-Tracer metabolomics further showed metabolic labeling of glutamate, suggestive of glutaminolysis, also characteristic of proliferating cells. Together, these results highlight the utility of 18O isotope labeling in combination with metabolomics to uncover changes in

  9. Pear pomace water extract inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes.

    PubMed

    Rhyu, Jin; Kim, Min Sook; You, Mi-Kyoung; Bang, Mi-Ae; Kim, Hyeon-A

    2014-02-01

    Obesity occurs when a person's calorie intake exceeds the amount of energy burns, which may lead to pathologic growth of adipocytes and the accumulation of fat in the tissues. In this study, the effect and mechanism of pear pomace extracts on 3T3-L1 adipocyte differentiation and apoptosis of mature adipocytes were investigated. The effects of pear pomace extract on cell viability and the anti-adipogenic and proapoptotic effects were investigated via MTT assay, Oil red O staining, western blot analysis and apoptosis assay. 3T3-L1 preadipocytes were stimulated with DMEM containing 10% FBS, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 5 µg/ml insulin and 1 µM dexamethasone for differentiation to adipocytes. 3T3-L1 cells were cultured with PBS or water extract of pear pomace. Water extract of pear pomace effectively inhibited lipid accumulations and expressions of PPAR-γ and C/EBPα in 3T3-L1 cells. It also increased expression of p-AMPK and decreased the expression of SREBP-1c and FAS in 3T3-L1 cells. The induction of apoptosis was observed in 3T3-L1 cells treated with pear pomace. These results indicate that pear pomace water extract inhibits adipogenesis and induces apoptosis of adipocytes and thus can be used as a potential therapeutic substance as part of prevention or treatment strategy for obesity.

  10. CCR4-NOT2 Promotes the Differentiation and Lipogenesis of 3T3-L1 Adipocytes via Upregulation of PPARx03B3;, CEBPα and Inhibition of P-GSK3α/β and β-Catenin.

    PubMed

    Sohn, Eun Jung; Jung, Deok-Beom; Lee, Jihyun; Yoon, Sang Wook; Won, Gun-Ho; Ko, Hyun Suk; Kim, Sung-Hoon

    2015-01-01

    Though CCR4-NOT2 (CNOT2), one of CCR4-NOT complex subunits, was known to be involved in metastasis and apoptosis through transcription and mRNA degradation, its other biological function is poorly understood so far. The aim of this study is to elucidate the molecular role of CNOT2 in the differentiation process of 3T3-L1 preadipocytes. CNOT2 was overexpressed during the differentiation process of 3T3-L1 preadipocytes. Consistently, mRNA levels of CNOT2, adiponectin, adiponectin 2, PPARx03B3; and CEBPα were enhanced in 3T3-L1 adipocytes. Conversely, CNOT2 depletion by siRNA transfection also reversed the activation of PPARx03B3; and CEBPα and inhibition of GSK3α/β and β-catenin at the protein level in 3T3-L1 preadipocytes. Immunofluorescence assay revealed that CNOT2 was colocalized with PPARx03B3;, but not with CEBPα in 3T3-L1 adipocyte. Consistently, IP western blots revealed that CNOT2 interacted with PPARx03B3; in 3T3-L1 adipocyte. Our findings demonstrate that CNOT2 promotes the differentiation of 3T3-L1 preadipocytes via upregulation of PPARx03B3;, and CEBPα and inhibition of GSK3α/β and β-catenin signaling as a potent molecular target for obesity. © 2015 S. Karger AG, Basel.

  11. [Establishment of a cell model of insulin-resistant 3T3-L1 adipocytes].

    PubMed

    Nie, Xu-Qiang; Yang, Jian-Wen; Shi, Hai-Xia; Zhang, Yu-Jin; Zhang, Jian-Yong; Bian, Ka

    2015-01-01

    To investigate the optimal conditions for establishing insulin-resistant 3T3-L1 adipocytes. Dexamethason (DEX), 3-isobutyl-methylxanthine (IBMX) and different concentrations of insulin (10(-8), 10(-7), and 10(-6) mol·L(-1)) were used to induce 3T3-L1 preadipocytes into mature adipocytes identified by oil red O staining. We established insulin- resistant 3T3-L1 adipocytes cell model (IR-3T3-L1) by exposing the cells to 1µmol·L(-1) DEX, and the changes of glucose concen- tration in the cell culture were determined by glucose oxidase-peroxidase (GOD-POD) assay. Treatment of 3T3-L1 cells with DEX, IBMX and 10(-6) mol·L(-1)) insulin for 9 days resulted in the differentiation of >90% of the cells into mature adipocytes. IR-3T3-L1 cells cultured for 96 h in the culture media containing 1 µmol·L(-1) DEX showed significantly increased glucose consumption (P=0.0003) as compared with the control group at 36 h (P<0.001). 3T3-L1 cells can be induced into mature adipocytes by exposure to 1 µmol·L(-1) DEX, 0.5 mmol·L(-1) IBMX and 10(-6) mol·L(-1)) insulin. A 96 h exposure to 1 µmol·L(-1) DEX can induce 3T3-L1 adipocytes to acquire insulin resistance that can be maintained for 36 h.

  12. α-Mangostin Improves Glucose Uptake and Inhibits Adipocytes Differentiation in 3T3-L1 Cells via PPARγ, GLUT4, and Leptin Expressions

    PubMed Central

    Taher, Muhammad; Mohamed Amiroudine, Mohamed Zaffar Ali; Tengku Zakaria, Tengku Muhamad Faris Syafiq; Ichwan, Solachuddin J. A.; Kaderi, Mohd Arifin; Ahmed, Qamar Uddin; Zakaria, Zainul Amiruddin

    2015-01-01

    Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[3H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P < 0.05) with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA) released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future. PMID:25873982

  13. Fucoidan from the sporophyll of Undaria pinnatifida suppresses adipocyte differentiation by inhibition of inflammation-related cytokines in 3T3-L1 cells.

    PubMed

    Kim, Kui-Jin; Lee, Boo-Yong

    2012-06-01

    Obesity is a metabolic disorder, associated with cardiovascular disease and type 2 diabetes mellitus. Recent studies suggest that seaweed extracts are a significant source of bioactive compounds that are similar to dietary phytochemicals. Fucoidan, which is extracted from brown seaweeds, has a number of physiological functions. However, it is still unclear whether fucoidan would be beneficial in adipogenesis. In this study, we hypothesized that fucoidan extracted from the sporophyll of U pinnatifida exerts anti-obesity effects via inhibition of inflammatory-related cytokines. Thus, to test our hypothesis, we determined the obesity-specific therapeutic action of fucoidan in 3T3-L1 adipocytes. Herein, we showed that proliferator-activated receptor γ, CCAAR/enhancer-binding protein α, and adipocyte protein 2 were significantly suppressed in the presence of fucoidan, which decreased expression of the inflammation-related genes during adipogenesis in 3T3-L1 adipocytes. Moreover, fucoidan also reduced the accumulation of lipids and reactive oxygen species production in adipocytes. In conclusion, these results demonstrate that fucoidan from the sporophyll of U pinnatifida suppresses adipogenesis through the inhibition of major markers and inflammation-related cytokines in adipocytes. Hence, these findings indicate that fucoidan may afford some potential to control or reduce obesity.

  14. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    PubMed Central

    Hafizi Abu Bakar, Mohamad; Sarmidi, Mohamad Roji; Kai, Cheng Kian; Huri, Hasniza Zaman; Yaakob, Harisun

    2014-01-01

    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes. PMID:25474091

  15. Amelioration of mitochondrial dysfunction-induced insulin resistance in differentiated 3T3-L1 adipocytes via inhibition of NF-κB pathways.

    PubMed

    Bakar, Mohamad Hafizi Abu; Sarmidi, Mohamad Roji; Kai, Cheng Kian; Huri, Hasniza Zaman; Yaakob, Harisun

    2014-12-02

    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  16. Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells.

    PubMed

    Manaharan, Thamilvaani; Ming, Cheng Hwee; Palanisamy, Uma D

    2013-01-15

    The insulin-like and/or insulin-sensitising effects of Syzygium aqueum leaf extract and its six bioactive compounds; 4-hydroxybenzaldehyde, myricetin-3-O-rhamnoside, europetin-3-O-rhamnoside, phloretin, myrigalone-G and myrigalone-B were investigated in 3T3-L1 adipocytes. We observed that, S. aqueum leaf extract (0.04-5 μg/ml) and its six bioactive compounds (0.08-10 μM) at non-cytotoxic concentrations were effectively enhance adipogenesis, stimulate glucose uptake and increase adiponectin secretion in 3T3-L1 adipocytes. Clearly, the compounds myricetin-3-O-rhamnoside and europetin-3-O-rhamnoside showed insulin-like and insulin-sensitising effects on adipocytes from a concentration of 0.08 μM. These compounds were far better than rosiglitazone and the other isolated compounds in enhancing adipogenesis, stimulating 2-NBDG uptake and increasing adiponectin secretion at all the concentrations tested. These suggest the antidiabetic potential of S. aqueum leaf extract and its six bioactive compounds. However, further molecular interaction studies to explain the mechanisms of action are highly warranted. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Kahweol inhibits adipogenesis of 3T3-L1 adipocytes through downregulation of PPARγ.

    PubMed

    Kim, Jin Soo; Lee, Seul Gi; Kang, Young Jin; Kwon, Taeg Kyu; Nam, Ju-Ock

    2017-05-16

    Kahweol, a compound from Coffea arabica, possesses antioxidant, anti-inflammatory, and antitumour properties. However, an anti-adipogenic effect has not yet been reported. In this study, we have shown that kahweol has an anti-adipogenic effect on 3T3-L1 adipocytes. Kahweol significantly inhibited the differentiation of intracellular lipid accumulation in 3T3-L1 adipocytes, without being cytotoxic. It also downregulated the expression of adipogenesis-related gene, including an adipocytokine, adiponectin. This anti-adipogenic effect stems from an ability to inhibit key adipogenic regulators, including PPARγ and C/EBPα. These results demonstrate that kahweol significantly inhibits the differentiation of 3T3-L1 cells, and suggest that it has potential as a novel anti-obesity treatment.

  18. 7,8-Dihydroxyflavone inhibits adipocyte differentiation via antioxidant activity and induces apoptosis in 3T3-L1 preadipocyte cells.

    PubMed

    Choi, Ji Won; Lee, Chang Won; Lee, Jisun; Choi, Doo Jin; Sohng, Jae Kyung; Park, Yong Il

    2016-01-01

    Anti-obesity effects of a natural plant flavonoid 7,8-dihydroxyflavone (7,8-DHF) were evaluated using 3T3-L1 preadipocyte cells. The cell viability was determined using MTT assay. Effects of 7,8-DHF on intracellular lipid droplets and intracellular reactive oxygen species (ROS) were measured using a 2,7-dichlorofluorescein diacetate (DCF-DA) assay and Oil Red O staining method, respectively. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by a TUNEL assay. Antioxidant enzyme mRNA levels and protein expression of adipogenic transcription factors were determined by real-time PCR and Western blotting, respectively. Whereas the cell viability of 3T3-L1 preadipocytes was not affected by lower concentrations of 7,8-DHF (<20 μM), higher concentrations of 7,8-DHF (>20 μM) induced apoptotic cell death. 7,8-DHF (<20 μM) significantly reduced the intracellular lipid droplets and the expression of major adipogenic transcription factors, such as CCAAT/enhancer-binding protein-α (C/EBP-α), C/EBP-β, and peroxisome proliferator activated receptor-γ (PPAR-γ). 7,8-DHF treatment also dose-dependently reduced the intracellular ROS level, attenuated MAPK pathway activation, and increased the expression of antioxidant enzymes, such as Mn-superoxide dismutase (Mn-SOD), catalase (CAT), and heme oxygenase-1 (HO-1). The results of this study indicated that 7,8-DHF inhibits the adipogenesis of 3T3-L1 preadipocyte cells by down-regulating the expression of adipogenic transcription factors, reduces lipid accumulation, and attenuates ROS accumulation by inducing antioxidant enzymes in differentiated 3T3-L1 cells, suggesting for the first time that 7,8-DHF has an anti-obesity effect in vitro via its anti-oxidant activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Induction of dihydrolipoamide dehydrogenase in differentiating 3T3-L1 cells

    SciTech Connect

    Carothers, D.J.

    1987-01-01

    The activity and turnover of dihydrolipoamide dehydrogenase (E/sub 3/), the common component of the 3 ..cap alpha..-ketoacid dehydrogenase complexes, were measured during differentiation of 3T3-L1 preadipocytes into 3T3-L1 adipocytes. 3T3-L1 cells differentiate spontaneously or under the influence of hormones and chemicals into cells with many of the biological and biochemical features of adipocytes. The specific activity of E/sub 3/ increased approximately 3- to 4-fold following treatment with insulin, dexamethasone, and 1-methyl-3-isobutyl xanthine for 48 h, and insulin alone thereafter. Antibody to E/sub 3/ quantitatively precipitated the enzyme from 3T3-L1 adipocytes. Immunoprecipitation and gel electrophoresis showed an approximate 3-fold increase in E/sub 3/ protein from the adipocytes as compared to the same number of preadipocytes. Pulse labelling with L-(/sup 35/S)methionine showed a 3.5-fold increase in the relative rate of synthesis of E/sub 3/ in the 3T3-L1 adipocytes compared to the preadipocytes. In contrast, the apparent half-life of E/sub 3/ in preadipocytes was greater than or equal to that in adipocytes. Therefore, the increase in specific activity of E/sub 3/ in 3T3-L1 adipocytes results from an increased rate of enzyme synthesis.

  20. 6-gingerol inhibits rosiglitazone-induced adipogenesis in 3T3-L1 adipocytes.

    PubMed

    Tzeng, Thing-Fong; Chang, Chia Ju; Liu, I-Min

    2014-02-01

    We investigated the effects of 6-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) on the inhibition of rosiglitazone (RGZ)-induced adipogenesis in 3T3-L1 cells. The morphological changes were photographed based on staining lipid accumulation by Oil-Red O in RGZ (1 µmol/l)-treated 3T3-L1 cells without or with various concentrations of 6-gingerol on differentiation day 8. Quantitation of triglycerides content was performed in cells on day 8 after differentiation induction. Differentiated cells were lysed to detect mRNA and protein levels of adipocyte-specific transcription factors by real-time reverse transcription-polymerase chain reaction and Western blot analysis, respectively. 6-gingerol (50 µmol/l) effectively suppressed oil droplet accumulation and reduced the sizes of the droplets in RGZ-induced adipocyte differentiation in 3T3-L1 cells. The triglyceride accumulation induced by RGZ in differentiated 3T3-L1 cells was also reduced by 6-gingerol (50 µmol/l). Treatment of differentiated 3T3-L1 cells with 6-gingerol (50 µmol/l) antagonized RGZ-induced gene expression of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein α. Additionally, the increased levels of mRNA and protein in adipocyte-specific fatty acid binding protein 4 and fatty acid synthase induced by RGZ in 3T3-L1 cells were decreased upon treatment with 6-gingerol. Our data suggests that 6-gingerol may be beneficial in obesity, by reducing adipogenesis partly through the down-regulating PPARγ activity. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    SciTech Connect

    Ferrante, Maria C.; Amero, Paola; Santoro, Anna; Monnolo, Anna; Simeoli, Raffaele; Di Guida, Francesca; Mattace Raso, Giuseppina; Meli, Rosaria

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  2. Insulin and chromium picolinate induce translocation of CD36 to the plasma membrane through different signaling pathways in 3T3-L1 adipocytes, and with a differential functionality of the CD36.

    PubMed

    Wang, Yiqun; Van Oort, Masja M; Yao, Minghui; Van der Horst, Dick J; Rodenburg, Kees W

    2011-09-01

    Chromium picolinate (CrPic) has been indicated to activate glucose transporter 4 (GLUT4) trafficking to the plasma membrane (PM) to enhance glucose uptake in 3T3-L1 adipocytes. In skeletal and heart muscle cells, insulin directs the intracellular trafficking of the fatty acid translocase/CD36 to induce the uptake of cellular long-chain fatty acid (LCFA). The current study describes the effects of CrPic and insulin on the translocation of CD36 from intracellular storage pools to the PM in 3T3-L1 adipocytes in comparison with that of GLUT4. Immunofluorescence microscopy and immunoblotting revealed that both CD36 and GLUT4 were expressed and primarily located intracellularly in 3T3-L1 adipocytes. Upon insulin or CrPic stimulation, PM expression of CD36 increased in a similar manner as that for GLUT4; the CrPic-stimulated PM expression was less strong than that of insulin. The increase in PM localization for these two proteins by insulin paralleled LCFA ([1-(14)C]palmitate) or [(3)H]deoxyglucose uptake in 3T3-L1 adipocytes. The induction of the PM expression of GLUT4, but not CD36, or substrate uptake by insulin and CrPic appears to be additive in adipocytes. Furthermore, wortmannin completely inhibited the insulin-stimulated translocation of GLUT4 or CD36 and prevented the increased uptake of glucose or LCFA in these cells. Taken together, for the first time, these findings suggest that both insulin and CrPic induce CD36 translocation to the PM in 3T3-L1 adipocytes and that their translocation-inducing effects are not additive. The signaling pathway inducing the translocations is different, apparently resulting in a differential activity of CD36.

  3. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    SciTech Connect

    Lai, Peng-Yeh; Tsai, Chong-Bin; Tseng, Min-Jen

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  4. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayoshi; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  5. Illudins C2 and C3 stimulate lipolysis in 3T3-L1 adipocytes and suppress adipogenesis in 3T3-L1 preadipocytes.

    PubMed

    Kim, Sun-Ok; Sakchaisri, Krisada; Asami, Yukihiro; Ryoo, In-Ja; Choo, Soo-Jin; Yoo, Ick-Dong; Soung, Nak-Kyun; Kim, Young Sang; Jang, Jae-Hyuk; Kim, Bo Yeon; Ahn, Jong Seog

    2014-04-25

    The secondary metabolites illudins C2 (1) and C3 (2), obtained from the culture broth of Coprinus atramentarius, have been shown to possess antimicrobial activity. In the present study, we discovered novel biological activities of 1 and 2 in lipolysis of differentiated 3T3-L1 adipocytes and adipogenesis of 3T3-L1 preadipocytes. Compounds 1 and 2 exhibit a dose-dependent increase in glycerol release and thereby reduce intracellular lipid accumulation. The stimulatory effects of 1 and 2 on lipolysis are prevented by cAMP-dependent protein kinase (PKA) and extracellular signal-regulated kinase (ERK) inhibitors. Compounds 1 and 2 down-regulated perilipin and also affected the mRNA and protein levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). However, 1 and 2 treatment leads to a significant increase in PKA-mediated phosphorylation of HSL at S563 and S660. In addition, 1 and 2 treatment in 3T3-L1 preadipocytes induces down-regulation of the critical transcription factors, CCAAT/enhancer binding protein α and β (C/EBPα and C/EBPβ), and peroxisome proliferator activated receptor γ (PPARγ), which are required for adipogenesis, and accordingly inhibits adipogenesis. These results suggest that 1 and 2 might be useful for treating obesity due to their modulatory effects on fat by affecting adipocyte differentiation and fat mobilization.

  6. Inhibition of fat cell differentiation in 3T3-L1 pre-adipocytes by all-trans retinoic acid: Integrative analysis of transcriptomic and phenotypic data.

    PubMed

    Stoecker, Katharina; Sass, Steffen; Theis, Fabian J; Hauner, Hans; Pfaffl, Michael W

    2017-03-01

    The process of adipogenesis is controlled in a highly orchestrated manner, including transcriptional and post-transcriptional events. In developing 3T3-L1 pre-adipocytes, this program can be interrupted by all-trans retinoic acid (ATRA). To examine this inhibiting impact by ATRA, we generated large-scale transcriptomic data on the microRNA and mRNA level. Non-coding RNAs such as microRNAs represent a field in RNA turnover, which is very important for understanding the regulation of mRNA gene expression. High throughput mRNA and microRNA expression profiling was performed using mRNA hybridisation microarray technology and multiplexed expression assay for microRNA quantification. After quantitative measurements we merged expression data sets, integrated the results and analysed the molecular regulation of in vitro adipogenesis. For this purpose, we applied local enrichment analysis on the integrative microRNA-mRNA network determined by a linear regression approach. This approach includes the target predictions of TargetScan Mouse 5.2 and 23 pre-selected, significantly regulated microRNAs as well as Affymetrix microarray mRNA data. We found that the cellular lipid metabolism is negatively affected by ATRA. Furthermore, we were able to show that microRNA 27a and/or microRNA 96 are important regulators of gap junction signalling, the rearrangement of the actin cytoskeleton as well as the citric acid cycle, which represent the most affected pathways with regard to inhibitory effects of ATRA in 3T3-L1 preadipocytes. In conclusion, the experimental workflow and the integrative microRNA-mRNA data analysis shown in this study represent a possibility for illustrating interactions in highly orchestrated biological processes. Further the applied global microRNA-mRNA interaction network may also be used for the pre-selection of potential new biomarkers with regard to obesity or for the identification of new pharmaceutical targets.

  7. Anti-Inflammatory Effect of Spirulina platensis in Macrophages Is Beneficial for Adipocyte Differentiation and Maturation by Inhibiting Nuclear Factor-κB Pathway in 3T3-L1 Adipocytes.

    PubMed

    Pham, Tho X; Lee, Ji-Young

    2016-06-01

    We previously showed that the organic extract of a blue-green alga, Spirulina platensis (SPE), had potent anti-inflammatory effects in macrophages. As the interplay between macrophages and adipocytes is critical for adipocyte functions, we investigated the contribution of the anti-inflammatory effects of SPE in macrophages to adipogenesis/lipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were treated with 10% conditioned medium from lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages (CMC) or LPS-stimulated, but SPE-pretreated, macrophages (CMS) at different stages of adipocyte differentiation. The expression of adipocyte differentiation markers, such as CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, and perilipin, was significantly repressed by CMC when added on day 3, while the repression was attenuated by CMS. Oil Red O staining confirmed that adipocyte maturation in CMS-treated cells, but not in CMC-treated cells, was equivalent to that of control cells. Nuclear translocation of nuclear factor κB (NF-κB) p65 was decreased by CMS compared to CMC. In lipid-laden adipocytes, CMC promoted the loss of lipid droplets, while CMS had minimal effects. Histone deacetylase 9 mRNA and protein levels were increased during adipocyte maturation, which were decreased by CMC. In conclusion, by cross-talking with adipocytes, the anti-inflammatory effects of SPE in macrophages promoted adipocyte differentiation/maturation, at least in part, by repressing the activation of NF-κB inflammatory pathways, which otherwise can be compromised in inflammatory conditions.

  8. Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway

    PubMed Central

    Liou, Chian-Jiun; Lai, Xuan-Yu; Chen, Ya-Ling; Wang, Chia-Ling; Wei, Ciao-Han; Huang, Wen-Chung

    2015-01-01

    Ginkgolide C, isolated from Ginkgo biloba leaves, is a flavone reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK), resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C), ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway. PMID:26413119

  9. Traditional Herbal Formula Oyaksungi-San Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2015-01-01

    Background. Oyaksungi-san (OYSGS) is a herbal formula that has been used for treating cardiovascular diseases in traditional Asian medicine. Here, we investigated the antiadipogenic effect of OYSGS extract in 3T3-L1 adipose cells. Methods. 3T3-L1 preadipocytes were differentiated into adipocytes with or without OYSGS. After differentiation, we measured Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, leptin production, mRNA, and protein levels of adipogenesis-related factors. Results. OYSGS extract dramatically inhibited intracellular lipid accumulation in the differentiated adipocytes. It also significantly suppressed the (GPDH) activity, triglyceride (TG) content, and leptin production by reducing the expression of adipogenesis-related genes including lipoprotein lipase, fatty acid binding protein 4, CCAAT/enhancer-binding protein-alpha (C/EBP-α), and peroxisome proliferator-activated receptor gamma (PPAR-γ). Furthermore, OYSGS clearly enhanced phosphorylation of AMP-activated protein kinase (AMPK) as well as its substrate acetyl CoA (ACC) carboxylase. Conclusions. Our results demonstrate that OYSGS negatively controls TG accumulation in 3T3-L1 adipocytes. We suggest antiadipogenic activity of OYSGS and its potential benefit in preventing obesity. PMID:25802547

  10. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ramani, Umed V; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  11. Sida rhomboidea. Roxb Leaf Extract Down-Regulates Expression of PPARγ2 and Leptin Genes in High Fat Diet Fed C57BL/6J Mice and Retards in Vitro 3T3L1 Pre-Adipocyte Differentiation

    PubMed Central

    Thounaojam, Menaka C.; Jadeja, Ravirajsinh N.; Ramani, Umed V.; Devkar, Ranjitsinh V.; Ramachandran, A. V.

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity. PMID:21845103

  12. Interferon inhibits the conversion of 3T3-L1 mouse fibroblasts into adipocytes.

    PubMed Central

    Keay, S; Grossberg, S E

    1980-01-01

    Confluent Swiss mouse 3T3-L1 fibroblasts slowly differentiate functionally and morphologically into adipocytes, a conversion hastened by insulin. The cells are sensitive (although less than L929 cells) to the antiviral action of mouse fibroblast interferons but not to interferons from heterologous species (human and chicken). Cultures stimulated with insulin in the presence of partially purified or electrophoretically pure mouse interferons have a much lower percentage of cells accumulating lipid than do insulin-treated control cultures. Interferon-treated cell cultures also contain much less triglyceride, cholesterol, and cholesterol esters than do replicate control cultures stimulated by insulin to differentiate. Increased de novo lipid biosynthesis that occurs during differentiation is inhibited, as determined by incorporation of [14C]acetate into lipids extractable by the Folch method. This incorporation is a sensitive bioassay of the antidifferentiation effect of interferon; less than 1 antiviral unit is inhibitory. Variously inactivated or mock interferon preparations as well as interferons from several heterologous species fail to inhibit 3T3-L1 adipocyte conversion. Interferon is inhibitory even when applied as long as 3 days after insulin stimulation. The effect of interferon does not appear to depend upon its competition with insulin for cell surface receptors. Because interferon can alter the program of events involved in conversion of 3T3-L1 fibroblasts into adipose cells, it may be able to affect the regulation of eukaryotic cell differentiation. Images PMID:6159626

  13. Paprika Pigments Attenuate Obesity-Induced Inflammation in 3T3-L1 Adipocytes

    PubMed Central

    Maeda, Hayato; Saito, Shuuichi; Nakamura, Nozomi; Maoka, Takashi

    2013-01-01

    Obesity is related to various diseases, such as diabetes, hyperlipidemia, and hypertension. Adipocytokine, which is released from adipocyte cells, affects insulin resistance and blood lipid level disorders. Further, adipocytokine is related to chronic inflammation in obesity condition adipocyte cells. Paprika pigments (PPs) contain large amounts of capsanthin and capsorubin. These carotenoids affect the liver and improve lipid disorders of the blood. However, how these carotenoids affect adipocyte cells remains unknown. Present study examined the effects of PP on adipocytokine secretion, which is related to improvement of metabolic syndrome. In addition, suppressive effects of PP on chronic inflammation in adipocyte cells were analyzed using 3T3-L1 adipocyte cells and macrophage cell coculture experiments. PP promoted 3T3-L1 adipocyte cells differentiation upregulated adiponectin mRNA expression and secretion. Further, coculture of adipocyte and macrophage cells treated with PP showed suppressed interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), and resistin mRNA expression, similarly to treatment with troglitazone, which is a PPARγ ligand medicine. Conclusion. These results suggest that PP ameliorates chronic inflammation in adipocytes caused by obesity. PP adjusts adipocytokine secretion and might, therefore, affect antimetabolic syndrome diseases. PMID:24049664

  14. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    NASA Astrophysics Data System (ADS)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  15. Anti-adipogenic effect of mulberry leaf ethanol extract in 3T3-L1 adipocytes.

    PubMed

    Yang, Soo Jin; Park, Na-Young; Lim, Yunsook

    2014-12-01

    Adipogenesis is part of the cell differentiation process in which undifferentiated fibroblasts (pre-adipocytes) become mature adipocytes with the accumulation of lipid droplets and subsequent cell morphological changes. Several transcription factors and food components have been suggested to be involved in adipogenesis. The aim of this study was to determine whether mulberry leaf ethanol extract (MLEE) affects adipogenesis in 3T3-L1 adipocytes. The 3T3-L1 adipocytes were treated with different doses of MLEE for 8 days starting 2 days post-confluence. Cell viability, fat accumulation, and adipogenesis-related factors including CCAAT-enhancer-binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), PPARγ coactivator 1 alpha (PGC-1α), fatty acid synthase (FAS), and adiponectin were analyzed. Results showed that MLEE treatments at 10, 25, 50, and 100 µg/ml had no effect on cell morphology and viability. Without evident toxicity, all MLEE treated cells had lower fat accumulation compared with control as shown by lower absorbances of Oil Red O stain. MLEE at 50 and 100 µg/ml significantly reduced protein levels of PPARγ, PGC-1α, FAS, and adiponectin in differentiated adipocytes. Furthermore, protein level of C/EBPα was significantly decreased by the treatment of 100 µg/ml MLEE. These results demonstrate that MLEE treatment has an anti-adipogenic effect in differentiated adipocytes without toxicity, suggesting its potential as an anti-obesity therapeutic.

  16. Anti-adipogenic effect of mulberry leaf ethanol extract in 3T3-L1 adipocytes

    PubMed Central

    Yang, Soo Jin; Park, Na-Young

    2014-01-01

    BACKGROUND/OBJECTIVES Adipogenesis is part of the cell differentiation process in which undifferentiated fibroblasts (pre-adipocytes) become mature adipocytes with the accumulation of lipid droplets and subsequent cell morphological changes. Several transcription factors and food components have been suggested to be involved in adipogenesis. The aim of this study was to determine whether mulberry leaf ethanol extract (MLEE) affects adipogenesis in 3T3-L1 adipocytes. MATERIALS/METHODS The 3T3-L1 adipocytes were treated with different doses of MLEE for 8 days starting 2 days post-confluence. Cell viability, fat accumulation, and adipogenesis-related factors including CCAAT-enhancer-binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), PPARγ coactivator 1 alpha (PGC-1α), fatty acid synthase (FAS), and adiponectin were analyzed. RESULTS Results showed that MLEE treatments at 10, 25, 50, and 100 µg/ml had no effect on cell morphology and viability. Without evident toxicity, all MLEE treated cells had lower fat accumulation compared with control as shown by lower absorbances of Oil Red O stain. MLEE at 50 and 100 µg/ml significantly reduced protein levels of PPARγ, PGC-1α, FAS, and adiponectin in differentiated adipocytes. Furthermore, protein level of C/EBPα was significantly decreased by the treatment of 100 µg/ml MLEE. CONCLUSION These results demonstrate that MLEE treatment has an anti-adipogenic effect in differentiated adipocytes without toxicity, suggesting its potential as an anti-obesity therapeutic. PMID:25489399

  17. Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes

    PubMed Central

    Mohd-Radzman, Nabilatul Hani; Ismail, Wan Iryani Wan; Jaapar, Siti Safura; Adam, Zainah; Adam, Aishah

    2013-01-01

    Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p < 0.001) in normal conditions and up to 4.4 times (p < 0.001) in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway. PMID:24391675

  18. Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes.

    PubMed

    Mohd-Radzman, Nabilatul Hani; Ismail, Wan Iryani Wan; Jaapar, Siti Safura; Adam, Zainah; Adam, Aishah

    2013-01-01

    Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p < 0.001) in normal conditions and up to 4.4 times (p < 0.001) in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway.

  19. Effect of yellow capsicum extract on proliferation and differentiation of 3T3-L1 preadipocytes.

    PubMed

    Feng, Zhang; Hai-ning, Yu; Xiao-man, Cui; Zun-chen, Wang; Sheng-rong, Shen; Das, Undurti N

    2014-03-01

    To evaluate the effect of effect of Yellow Capsicum extract (YCE) that is rich in capsaicin on the proliferation and differentiation of 3T3-L1 preadipocytes in vitro. 3T3 L1 cells that were exposed to differentiation-inducing medium containing high glucose DMEM (Dulbecco's Modified Eagle's Medium) and subsequently were treated with capsaicin and YCE for their effect on adipocyte differentiation, changes in their triglyceride content, leptin secretion, expression of lipoprotein lipase, PPARγ, and CCAAT/enhancer-binding protein alpha (C/EBPα). Both YCE and capsaicin inhibited proliferation and differentiation 3T3-L1 preadipocytes and suppressed accumulation of intracellular triglyceride in a dose-dependent manner. In addition, a significant decrease in the expression of lipoprotein lipase (LPL), leptin, PPARγ, and C/EBPα was noted in 3T3-L1 preadipocytes when induced to differentiate by YCE and Capsaicin. The potent inhibitory action of YCE and Capsaicin on the differentiation of 3T3-L1 preadipocyte observed suggests that they (YCE and Capsaicin) have the potential to inhibit obesity that needs to be explored in future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Differentiation of 3T3-L1 preadipocytes is inhibited under a modified ceiling culture.

    PubMed

    Song, Ziyi; Cheng, Jia; Yang, Hao; Li, Yuefeng; Gao, Qian; Shi, Xin'e; Yang, Gongshe

    2015-05-01

    Ceiling culture is an inverted and closed cell culture system which represents a novel method for exploring adipocyte characteristics and function. Although the role of ceiling culture in mature adipocyte dedifferentiation has been extensively studied, its potential effects on preadipocyte differentiation remain unclear. In this study, we established a simplified dish ceiling culture method for 3T3-L1 preadipocytes and showed that our novel ceiling culture method could reproduce the function of the traditional flask ceiling culture. Then, we investigated the effects of ceiling culture on 3T3-L1 preadipocyte differentiation by Oil red O staining and RT-qPCR. The results showed that ceiling culture significantly impaired triglyceride accumulation and adipogenic marker genes expression in 3T3-L1 preadipocytes. These findings suggest that ceiling culture inhibited 3T3-L1 preadipocyte differentiation while inducing mature adipocytes dedifferentiation. Taken together, our data facilitate the understanding of the property of ceiling culture and promote the study of revealing the underlying mechanisms of mature adipocytes dedifferenatiation. © 2015 International Federation for Cell Biology.

  1. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes.

    PubMed

    Lin, Xiaofen; Li, Yi; Leung, Polly Hangmei; Li, Jiashen; Hu, Junyan; Liu, Xuan; Li, Zhi

    2016-05-01

    Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39°C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4h exposure to cooler temperatures of 31-33°C (P<0.01). ROS, chemically reactive molecules containing oxygen, are currently understood to be a major contributor to oxidantive stress in obesity. Additionally, cooler temperatures (31-33°C) could improve the size of lipid droplets in 3T3-L1 adipocytes (P<0.01), but no significant effect was generated by temperature change on lipid droplets in palmitate-treated adipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (P<0.01), it still does not positively modulate lipid droplet size (P>0.05) and remedy the palmitate damage induced cell death (P<0.01). These findings provide preliminary support for potential interventions based on temperature manipulation for cell metabolism of adipocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Impact of stress hormone on adipogenesis in the 3T3-L1 adipocytes.

    PubMed

    Pandurangan, Muthuraman; Ravikumar, Sambandam

    2014-08-01

    Stress hormone is known to play a vital role in lipolysis and adipogenesis in fat cells. The present study was carried out to evaluate the effect of epinephrine on adipogenesis in the 3T3-L1 cells. The investigation on adipogenesis was done in both mono and co-cultured 3T3-L1 cells. 3T3-L1 preadipocytes and C2C12 cells were grown independently on transwell plates and transferred to differentiation medium. Following differentiation, C2C12 cells transferred to 3T3-L1 plate and treated with medium containing 10 μg/ml of epinephrine. Adipogenic markers such as fatty acid binding protein 4, peroxisome proliferator activating receptor, CCAAT/enhancer-binding protein, adiponectin, lipoprotein lipase and fatty acid synthase mRNA expressions were evaluated in the 3T3-L1 cells. Epinephrine treatment reduced adipogenesis, evidenced by reducing adipogenic marker mRNA expression in the 3T3-L1 cells. In addition, glycerol accumulation and oil red-O staining supported the reduced rate of adipogenesis. Taking all together, it is concluded that the stress hormone, epinephrine reduces the rate of adipogenesis in the mono and co-cultured 3T3-L1 cells. In addition, the rate of adipogenesis is much reduced in the co-cultured 3T3-L1 cells compared monocultured 3T3-L1 cells.

  3. Suppressed intrinsic catalytic activity of GLUT1 glucose transporters in insulin-sensitive 3T3-L1 adipocytes

    SciTech Connect

    Harrison, S.A.; Buxton, J.M.; Czech, M.P. )

    1991-09-01

    Previous studies indicated that the erythroid-type (GLUT1) glucose transporter isoform contributes to basal but not insulin-stimulated hexose transport in mouse 3T3-L1 adipocytes. In the present studies it was found that basal hexose uptake in 3T3-L1 adipocytes was about 50% lower than that in 3T3-L1 or CHO-K1 fibroblasts. Intrinsic catalytic activities of GLUT1 transporters in CHO-K1 and 3T3-L1 cells were compared by normalizing these hexose transport rates to GLUT1 content on the cell surface, as measured by two independent methods. Cell surface GLUT1 levels in 3T3-L1 fibroblasts and adipocytes were about 10- and 25-fold higher, respectively, than in CHO-K1 fibroblasts, as assessed with an anti-GLUT1 exofacial domain antiserum, delta. The large excess of cell surface GLUT1 transporters in 3T3-L1 adipocytes relative to CHO-K1 fibroblasts was confirmed by GLUT1 protein immunoblot analysis and by photoaffinity labeling (with 3-({sup 125}I)iodo-4-azidophenethylamido-7-O-succinyldeacetylforskolin) of glucose transporters in isolated plasma membranes. Thus, GLUT1 intrinsic activity is markedly reduced in 3T3-L1 fibroblasts compared with the CHO-K1 fibroblasts, and further reduction occurs upon differentiation to adipocytes. The authors conclude that a mechanism that markedly suppresses basal hexose transport catalyzed by GLUT1 is a major contributor to the dramatic insulin sensitivity of glucose uptake in 3T3-L1 adipocytes.

  4. Differentiation-specific element binding protein (DSEB) binds to a defined element in the promoter of the angiotensinogen gene required for the irreversible induction of gene expression during differentiation of 3T3-L1 adipoblasts to adipocytes.

    PubMed

    McGehee, R E; Habener, J F

    1995-04-01

    The differentiation-specific element (DSE) is a cis-acting transcriptional element located at nucleotide--1000 in the 5'-flanking promoter of the angiotensinogen gene. It is required for the irreversible and sustained increase in transcription of the angiotensinogen gene that occurs during differentiation of 3T3-L1 adipoblasts into adipocytes induced by a 3-day hormonal pulse. We report here the cloning of 3T3-L1 adipocyte cDNA encoding a 150 kilodalton protein designated Differentiation Specific Element Binding Protein (DSEB) that exhibits sequence-specific binding to a DSE oligonucleotide. Two DSEB mRNAs (3.6 and 4.2 kilobases) are observed in adipose, brain, kidney, testis, liver, and lung. Both DSEB mRNA and protein are induced during, and remain elevated after, 3T3-L1 cell adipogenesis. Analysis of adipoblasts by immunocytochemistry with an antiserum directed to bacterial expressed DSEB reveals that DSEB is localized to the nucleus and is induced during differentiation. DNA-binding assays show that binding is specific and exhibits high affinity and specificity for the DSE. Deletional analyses of bacterial expressed recombinant DSEB identifies a DNA-binding domain of 120 amino acids that contains two predicted helical regions. A sequence of 72 amino acids within the DNA-binding domain of DSEB is 60% identical to domains found in the sequences of several bacterial ligases. Further, DSEB is homologous to several proteins reported recently that are proposed to be a component(s) of the DNA replication-C complex raising the possibility that DSEB may be both a transcription factor and a DNA-replication factor.

  5. Testosterone regulates 3T3-L1 pre-adipocyte differentiation and epididymal fat accumulation in mice through modulating macrophage polarization.

    PubMed

    Ren, Xiaojiao; Fu, Xiaojian; Zhang, Xinhua; Chen, Shiqiang; Huang, Shuguang; Yao, Lun; Liu, Guoquan

    2017-09-15

    Low testosterone levels are strongly related to obesity in males. The balance between the classically M1 and alternatively M2 polarized macrophages also plays a critical role in obesity. It is not clear whether testosterone regulates macrophage polarization and then affects adipocyte differentiation. In this report, we demonstrate that testosterone strengthens interleukin (IL) -4-induced M2 polarization and inhibits lipopolysaccharide (LPS)-induced M1 polarization, but has no direct effect on adipocyte differentiation. Cellular signaling studies indicate that testosterone regulates macrophage polarization through the inhibitory regulative G-protein (Gαi) mainly, rather than via androgen receptors, and phosphorylation of Akt. Moreover, testosterone inhibits pre-adipocyte differentiation induced by M1 macrophage medium. Lowering of serum testosterone in mice by injecting a luteinizing hormone receptor (LHR) peptide increases epididymal white adipose tissue. Testosterone supplementation reverses this effect. Therefore, our findings indicate that testosterone inhibits pre-adipocyte differentiation by switching macrophages to M2 polarization through the Gαi and Akt signaling pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Simvastatin enhances induction of inducible nitric oxide synthase in 3T3-L1 adipocytes.

    PubMed

    Araki, Shunsuke; Dobashi, Kazushige; Asayama, Kohtaro; Shirahata, Akira

    2007-09-01

    The present study was designed to determine whether hydroxymethylglutaryl-CoA reductase inhibitors (statins) modulate the NO production via iNOS in adipocytes stimulated by lipopolysaccharide (L) and tumour necrosis factor-alpha (T). Well-differentiated 3T3-L1 adipocytes significantly produced NO by LT-treatment. Pre-incubation with simvastatin, a lipophilic statin, pravastatin, a hydrophilic one, or Y27632, an inhibitor of Rho kinase, further enhanced the production of NO. The effect of simvastatin was offset by mevalonate and geranylgeranyl pyrophosphate (GGPP) but not by squalene. The mRNA level for iNOS parallelled the NO production. The NF-kappaB was activated by the LT-treatment and was further enhanced by simvastatin, pravastatin or Y27632 addition. Mevalonate and GGPP completely offset the effect of simvastatin. Statins and Y27632 also further increased the interleukin-6 secretion in the LT-treated 3T3-L1 adipocytes. These results suggest that statins, especially lipophilic type, enhance induction of iNOS by inhibiting the small GTP-binding protein signal in adipocytes.

  7. Differentiation-specific decrease in heat shock protein synthesis in 3T3-L1 cells

    SciTech Connect

    Sorhage, F.; Kim, J.; Liu, A.Y.C.; Chen, K.Y.

    1986-05-01

    The regulation of synthesis of heat shock proteins (HSPs) in 3T3-L1 preadipocytes (fibroblasts) and adipocytes was examined using the techniques of pulse labeling with (/sup 35/S)methionine followed by analysis of the pattern and amount of radioactivity incorporated by SDS-polyacrylamide gel electrophoresis and autoradiography. Exposure of the 3T3-L1 preadipocyte cultures either to elevated temperature (42..mu..C) or to the amino acid analogue canavanine (400 ..mu..g/ml), markedly induced the synthesis of six major HSPs with apparent molecular weights of 105,000, 89,000, 74,000, 72,000, 50,000, and 42,000. The time course of induction of the HSPs by canavanine was significantly delayed as compared to that of heat shock; maximal increase in synthesis of the HSPs was observed at 3-7 hrs after incubation at 42..mu..c and at 22-24 hrs after incubation with 400 ..mu..g/ml canavanine. The magnitude of induction of HSP in the differentiated adipocytes was significantly reduced as compared to that of the undifferentiated fibroblast cells. The reduced expression of HSPs in 3T3-L1 adipocytes appears to be related to the terminal adipogenic differentiation process. The phenomenon was not observed in the control 3T3-C2 cells nor in a transformed variant of the 3T3-L1 cells.

  8. Differentiation with elaidate tends to impair insulin-dependent glucose uptake and GLUT4 translocation in 3T3-L1 adipocytes.

    PubMed

    Ishibashi, Kenichi; Nehashi, Kana; Oshima, Toshiyuki; Ohkura, Naoki; Atsumi, Gen-Ichi

    2016-01-01

    Development of type 2 diabetes mellitus and insulin resistance is associated with a quality of dietary fatty acids such as saturated and unsaturated fatty acids. Dietary fatty acids also include transform of unsaturated fatty acids and intake of transform of oleate (elaidate) is associated with cardiovascular disease. However, little is known about the roles of elaidate in insulin responsiveness. We show here that elaidate impairs insulin-dependent glucose uptake in adipocytes. Differentiation with 10 μM elaidate, which is close to physiological plasma concentration, reduces insulin-dependent glucose uptake. Furthermore, insulin-dependent GLUT4 translocation is disturbed in adipocytes differentiated with elaidate. In addition, analysis of lipolysis and gene expression shows that deteriorative effects of elaidate on insulin responsiveness are limited but not general. Thus, our findings reveal that differentiation with elaidate tends to affect insulin-dependent glucose uptake through alternation of GLUT4 translocation from cytosol to the plasma membrane.

  9. Berberine increases adipose triglyceride lipase in 3T3-L1 adipocytes through the AMPK pathway.

    PubMed

    Jiang, Dongqing; Wang, Dianhui; Zhuang, Xianghua; Wang, Zhanqing; Ni, Yihong; Chen, Shihong; Sun, Fudun

    2016-12-09

    Obesity is closely related to the metabolism of triacylglycerol (TG) in adipocytes. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are rate-limiting enzymes that control the hydrolysis of TG. Effects on ATGL and HSL to increase lipolysis may counteract obesity. Berberine (BBR) is a compound derived from the Chinese medicine plant Coptis chinensis. In the present study we show the effects of BBR on ATGL and HSL and explore the potential underlying mechanisms of these effects. The TG content in cells was measured using a colorimetric assay. The expressions of HSL, ATGL and GPAT3 were evaluated by Western-blotting. The expression of ATGL was also evaluated by real-time PCR and radioimmunoassay. Compound C, an inhibitor of AMP-activated protein kinase (AMPK), was used to explore the possible pathway that involved in the effect of BBR on ATGL. TG content of differentiated 3T3-L1 cells was significantly decreased by more than 10% after treated with BBR. In differentiated 3T3-L1 adipocytes, BBR increased the expression of p-HSL and ATGL, and these effects were time-depended (p <0.01). The effect of BBR on ATGL expression could be abolished by Compound C which suggested that AMPK pathway was involved in the effects of BBR on p-HSL and ATGL. BBR could increase the expression of ATGL and therefore stimulate basal lipolysis in mature adipocytes through the associated mechanisms related to the AMPK pathway.

  10. Evaluation of chylomicron effect on ASP production in 3T3-L1 adipocytes.

    PubMed

    Gao, Ying; Gauvreau, Danny; Cui, Wei; Lapointe, Marc; Paglialunga, Sabina; Cianflone, Katherine

    2011-02-01

    In the past few years, there has been increasing interest in the production and physiological role of acylation-stimulating protein (ASP), identical to C3adesArg, a product of the alternative complement pathway generated through C3 cleavage. Recent studies in C3 (-/-) mice that are ASP deficient have demonstrated a role for ASP in postprandial triglyceride clearance and fat storage. The aim of the present study was to establish a cell model and sensitive ELISA assay for the evaluation of ASP production using 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated into adipocytes, then cultured in different media such as serum-free (SF), Dulbecco's modified Eagle's medium (DMEM)/F12 + 10% fetal calf serum (FBS), and at varying concentrations of chylomicrons and insulin + chylomicrons up to 48 h. ASP production in SF and DMEM/F12 + 10% FBS was compared. Chylomicrons stimulated ASP production in a concentration- and time-dependent manner. By contrast, chylomicron treatment had no effect on the production of C3, the precursor protein of ASP, which was constant over 48 h. Addition of insulin (100 nM) to a low-dose of chylomicrons (100 µg TG/ml) significantly increased ASP production compared with chylomicrons alone at 48 h (P < 0.001). Furthermore, addition of insulin significantly increased C3 secretion at both 18 and 48 h of incubation (P < 0.05, P < 0.001, respectively). Overall, the proportion of ASP to C3 remained constant, indicating no change in the ratio of C3 cleaved to generate ASP. This study demonstrated that 3T3-L1 adipocyte is a useful model for the evaluation of C3 secretion and ASP production by using a sensitive mouse-specific ELISA assay. The stimulation of ASP production with chylomicrons demonstrates a physiologically relevant response, and provides a strategy for further studies on ASP production and function.

  11. Persicaria hydropiper (L.) spach and its flavonoid components, isoquercitrin and isorhamnetin, activate the Wnt/β-catenin pathway and inhibit adipocyte differentiation of 3T3-L1 cells.

    PubMed

    Lee, Soung-Hoon; Kim, Bora; Oh, Myoung Jin; Yoon, Juyong; Kim, Hyun Yi; Lee, Kye Jong; Lee, Joo Dong; Choi, Kang-Yell

    2011-11-01

    Obesity, which is related to metabolic syndrome and is associated with liver disease, represents an epidemic problem demanding effective therapeutic strategies. Evidence shows that the Wnt/β-catenin pathway is closely associated with obesity and that small molecules regulating the Wnt/β-catenin pathway can potentially control adipogenesis related to obesity. Eleven plant extracts activating the Wnt/β-catenin pathway were screened by using HEK 293-TOP cells retaining the Wnt/β-catenin signaling reporter gene. An extract of Persicaria hydropiper (L.) Spach was found to activate Wnt/β-catenin signaling. P. hydropiper is grown worldwide in temperate climates and is found widely in Southeast Asia. The P. hydropiper extract inhibited the differentiation of adipocyte 3T3-L1 cells. Isoquercitrin and isorhamnetin, constituents of P. hydropiper, also activated Wnt/β-catenin signaling and suppressed the differentiation of 3T3-L1 cells. These results indicate that isoquercitrin in P. hydropiper suppresses the adipogenesis of 3T3-L1 cells via the inhibition of Wnt/β-catenin signaling. P. hydropiper and isoquercitrin may therefore be potential therapeutic agents for obesity and its associated disorders.

  12. Fipronil promotes adipogenesis via AMPKα-mediated pathway in 3T3-L1 adipocytes.

    PubMed

    Sun, Quancai; Qi, Weipeng; Yang, Jeremy J; Yoon, Kyong Sup; Clark, John M; Park, Yeonhwa

    2016-06-01

    Emerging evidence suggests that organochlorine, organophosphorus and neonicotinoid insecticide exposure may be linked to the development of obesity and type 2 diabetes. However, there is no knowledge of the potential influence of fipronil, which belongs to the phenylpyrazole chemical family, on obesity. Thus, the goal of this study was to determine the role of fipronil in adipogenesis using 3T3-L1 adipocytes. Fipronil treatment, at 10 μM, increased fat accumulation in 3T3-L1 adipocytes as well as promoted key regulators of adipocyte differentiation (CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor gamma-γ), and key regulators of lipogenesis (acetyl-CoA carboxylase and fatty acid synthase). The activation of AMPKα with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) abolished effects of fipronil on increased adipogenesis. These results suggest that fipronil alters adipogenesis and results in increased lipid accumulation through a AMPKα-mediated pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. 3T3-L1 cells and perivascular adipocytes are not equivalent in amine transporter expression.

    PubMed

    Ismail, Alex; Ayala-Lopez, Nadia; Ahmad, Maleeha; Watts, Stephanie W

    2017-01-01

    Rat perivascular adipose tissue (PVAT) stores, takes up, and releases norepinephrine (NE; Ayala-Lopez et al. (2014) Pharmacol Res Perspect 2, e00041). We hypothesized that 3T3-L1 adipocytes would exhibit similar behaviors and, thus, could serve as a model for PVAT adipocytes. However, basal levels of NE were not detected in 3T3-L1 adipocytes. While incubation of 3T3-L1 adipocytes with exogenous NE increased their cellular NE content, the mRNA expression of several NE transporters [e.g., norepinephrine transporter (NET)] were not detected in these cells. Similarly, we observed expression of the vesicular monoamine transporter 1 (VMAT1) in 3T3-L1 adipocytes by qRT-PCR and immunostaining, but stimulation of the cells with tyramine (100 μm) did not cause a significant release of NE. These studies support that 3T3-L1 adipocytes are not an adequate model of perivascular adipocytes for studying NE handling. © 2016 Federation of European Biochemical Societies.

  14. Effects of Black Adzuki Bean (Vigna angularis) Extract on Proliferation and Differentiation of 3T3-L1 Preadipocytesinto Mature Adipocytes

    PubMed Central

    Kim, Mina; Park, Jeong-Eun; Song, Seok-Bo; Cha, Youn-Soo

    2015-01-01

    The aim of this work was to investigate the effects of black adzuki bean (BAB) extract on adipocytes, and to elucidate the cellular mechanisms. In order to examine the proliferation of preadipocytes and differentiating adipocytes, cell viability and DNA content were measured over a period of time. Lipid accumulation during cell differentiation and the molecular mechanisms underlying the effects of BAB on the transcriptional factors involved, with their anti-adipogenic effects, were also identified. We observed that BAB exhibits anti-adipogenic effects through the inhibition of proliferation, thereby lowering mRNA expression of C/EBPβ and suppressing adipogenesis during the early stage of differentiation. This, in turn, resulted in a reduction of TG accumulation in a dose- and time-dependent manner. Treating the cells with BAB not only suppressed the adipogenesis-associated key transcription factors PPARγ and C/EBPα but also significantly decreased the mRNA expression of GLUT4, FABP4, LPL and adiponectin. The expression of lipolytic genes like ATGL and HSL were higher in the treatment group than in the control. Overall, the black adzuki bean extract demonstrated an anti-adipogenic property, which makes it a potential dietary supplement for attenuation of obesity. PMID:25569623

  15. Giant Oyster Mushroom Pleurotus giganteus (Agaricomycetes) Enhances Adipocyte Differentiation and Glucose Uptake via Activation of PPARγ and Glucose Transporters 1 and 4 in 3T3-L1 Cells.

    PubMed

    Paravamsivam, Puvaneswari; Heng, Chua Kek; Malek, Sri Nurestri Abdul; Sabaratnam, Vikineswary; M, Ravishankar Ram; Kuppusamy, Umah Rani

    2016-01-01

    The edible mushroom Pleurotus giganteus was tested for its effect on adipocyte differentiation and glucose uptake activity in 3T3-L1 cells. The basidiocarps of P. giganteus were soaked in methanol to obtain a crude methanol extract and then fractionated to obtain an ethyl acetate extract. In this study, cell proliferation was measured using an MTT assay, lipid accumulation using an Oil Red O assay, and glucose uptake using a fluorescence glucose uptake assay. Gene expression was measured via real-time polymerase chain reaction analysis with TaqMan primer. Ethyl acetate extract significantly enhanced adipogenic differentiation and glucose uptake in 3T3-L1 adipocytes via the expression of sterol regulatory element-binding protein, peroxisome proliferator-activated receptor γ, and phos-phatidylinositol 3-kinase/Akt. Glucose uptake was facilitated by the highly expressed glucose transporters Glut1 and Glut4. Taken together, these results suggest that P. giganteus ethyl acetate extract has an insulin-sensitizing effect on adipocytes and has potential as an adjuvant for the management of type 2 diabetes.

  16. Effect of pycnogenol on glucose transport in mature 3T3-L1 adipocytes.

    PubMed

    Lee, Hee-Hyun; Kim, Kui-Jin; Lee, Ok-Hwan; Lee, Boo-Yong

    2010-08-01

    Pycnogenol, a procyanidins-enriched extract of Pinus maritima bark, possesses antidiabetic properties, which improves the altered parameters of glucose metabolism that are associated with type 2 diabetes mellitus (T2DM). Since the insulin-stimulated antidiabetic activities of natural bioactive compounds are mediated by GLUT4 via the phosphatidylinositol-3-kinase (PI3K) and/or p38 mitogen activated protein kinase (p38-MAPK) pathway, the effects of pycnogenol were examined on the molecular mechanism of glucose uptake by the glucose transport system. 3T3-L1 adipocytes were treated with various concentrations of pycnogenol, and glucose uptake was examined using a non-radioisotope enzymatic assay and by molecular events associated with the glucose transport system using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results show that pycnogenol increased glucose uptake in fully differentiated 3T3-L1 adipocytes and increased the relative abundance of both GLUT4 and Akt mRNAs through the PI3K pathway in a dose dependent manner. Furthermore, pycnogenol restored the PI3K antagonist-induced inhibition of glucose uptake in the presence of wartmannin, an inhibitor of the PI3K. Overall, these results indicate that pycnogenol may stimulate glucose uptake via the PI3K dependent tyrosine kinase pathways involving Akt. Further the results suggest that pycnogenol might be useful in maintaining blood glucose control.

  17. Ginsenoside Rb1 promotes browning through regulation of PPARγ in 3T3-L1 adipocytes.

    PubMed

    Mu, Qianqian; Fang, Xin; Li, Xiaoke; Zhao, Dandan; Mo, Fangfang; Jiang, Guangjian; Yu, Na; Zhang, Yi; Guo, Yubo; Fu, Min; Liu, Jun-Li; Zhang, Dongwei; Gao, Sihua

    2015-10-23

    Browning of white adipocyte tissue (WAT) has received considerable attention due to its potential implication in preventing obesity and related comorbidities. Ginsenoside Rb1 is reported to improve glycolipid metabolism and reduce body weight in obese animals. However whether the body reducing effect mediates by browning effect remains unclear. For this purpose, 3T3-L1 adipocytes were used to study the effect of ginsenoside Rb1 on browning adipocytes specific genes and oxygen consumptions. The results demonstrate that 10 μM of ginsenoside Rb1 increases basal glucose uptake and promoted browning evidenced by significant increases in mRNA expressions of UCP-1, PGC-1α and PRDM16 in 3T3-L1 mature adipocytes. Further, ginsenoside Rb1 also increases PPARγ activity. And the browning effect is abrogated by GW9692, a PPARγ antagonist. In addition, ginsenoside Rb1 increases basal respiration rate, ATP production and uncoupling capacity in 3T3-L1 adipocytes. Those effects are also blunted by GW9692. The results suggest that ginsenoside Rb1 promote browning of 3T3-L1 adipocytes through induction of PPARγ. Our finding offer a new source to discover browning agonists and also useful to understand and extend the applications of ginseng and its constituents. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Characterization of the visfatin gene and its expression pattern and effect on 3T3-L1 adipocyte differentiation in chickens.

    PubMed

    Li, Zhuanjian; Wang, Yongcai; Tian, Xiaoxiao; Shang, Pengfei; Chen, Hong; Kang, Xiangtao; Tian, Yadong; Han, Ruili

    2017-10-20

    Visfatin is a newly identified adipocytokine that plays an important role in the determination of fat traits. In this study, we investigated the characterization of visfatin and the relationship between gene expression and chicken development to provide a theoretical basis for studying visfatin functions. The main results are summarized as follows: The 1482-bp full coding sequence of the visfatin gene of silky fowl was obtained and found to encode 493 amino acids. This gene contains 26 phosphorylation sites and a conserved domain of the NAPRTase family but no signal peptide sequence. It exhibits six functional motifs, including an amidation site. In chickens, visfatin is a highly conserved protein. The highest expression of visfatin was found in breast muscle and the lowest in bone marrow. There was no difference in expression between visceral fat and subcutaneous fat. However, the expression of visfatin in the bone marrow, liver, kidneys, and subcutaneous and visceral fat of broiler chickens was significantly higher than that in silky fowl (P<0.05). Visfatin mRNA levels in the bone marrow decreased with development (P<0.05) but increased in the liver and leg muscle. Visfatin gene expression in the liver, heart and bone marrow did not differ in silky fowl according to sex. A visfatin fusion protein caused a significant increase in the expression of adipocyte differentiation markers (PPARγ, aP2, C/EBPα, and FAS) compared with the control group and a decrease compared with the insulin group. Taken together, the results of the present study contribute to a better understanding of the expression and role of the visfatin gene in chickens. Copyright © 2017. Published by Elsevier B.V.

  19. Brd2 Inhibits Adipogenesis via the ERK1/2 Signaling Pathway in 3T3-L1 Adipocytes

    PubMed Central

    Zang, Kun; Wang, Jingyu; Dong, Miaofang; Sun, Ruixin; Wang, Yuxiong; Huang, Yinong; Liu, Xiaoxia; Li, Yimin

    2013-01-01

    Bromodomain-containing protein 2 (Brd2) is a nuclear serine/threonine kinase involved in transcriptional regulation. In 3T3-L1 adipocytes, Brd2 normally co-represses PPARγ (peroxisome proliferator-activated receptor gamma) and inhibits adipogenesis. Here, we show that Brd2 over-expression in preadipocytes inhibits their differentiation into adipocytes, while Brd2 knockdown promotes adipogenic differentiation in vitro and forces cells to undergo adipogenesis independent of the MDI (methyisobutylxanthane, dexamethasone and insulin) induction. In this study, the two key transcription factors for adipogenesis, PPARγ and C/EBPα (CCAAT/enhancer binding protein-α) were persistently expressed during the differentiation of preadipocytes to mature adipocytes in Brd2 knockdown 3T3-L1 cells, but their expression was inhibited in cells in which Brd2 was overexpressed. To investigate the role of Brd2 in signal transduction we examined the expression of several signaling molecules involved in the regulation of gene expression and cell differentiation by immunoblotting assay. Down-regulation of Brd2 expression in 3T3-L1 cells led to a decrease in extracellular signal-regulated kinase1/2 (ERK1/2) activity and, conversely, the up-regulation of Brd2 leads to increase in ERK1/2 phosphorylation. Nevertheless, changes in Brd2 expression do not affect the activities of JNK and p38 MAPK. In addition, the phosphorylation of Rafs is not affected by changes in Brd2 expression in 3T3-L1 cells. MEK inhibitor UO126 partly restores differentiation of 3T3-L1 cells that overexpress Brd2. In conclusion, these results indicate that Brd2 regulates ERK1/2 activity independently of Raf signaling in 3T3-L1 adipocytes. PMID:24194944

  20. Early endocrine disruptors exposure acts on 3T3-L1 differentiation and endocrine activity

    PubMed Central

    Boudalia, Sofiane; Belloir, Christine; Miller, Marie-Louise; Canivenc-Lavier, Marie-Chantal

    2017-01-01

    Introduction: Data from last years suggested that early exposure to endocrine disruptors (EDs) can predispose newborns to endocrine dysfunction of adipocytes, obesity, and associated disorders. The implication of EDs at low doses on adipocyte development has been poorly investigated. For instance, vinclozolin (V) is a dicarboximide fungicide widely used in agriculture since the 90's, alone or in mixture with genistein (G), an isoflavonoid from Leguminosae. This study aims to identify the effect of vinclozolin alone or with genistein, on adipose tissue properties using cell culture. Methods: In steroid-free conditions, 3T3-L1 pre-adipocytes were induced to differentiate in the presence of EDs, singularly or in mixtures, for 2 days. DNA and triglyceride (TG) levels were measured on days 0, 2 and 8 of differentiation. Leptin secretion was measured only on the eighth day. Results: We show that low doses of G (25 µM) and V (0.1 µM) inhibit pre-adipocytes differentiation. This inhibition has been represented by a decreasing in DNA content (µg/well) and decreasing in TG accumulation (mg/mL) in 3T3-L1 cells. Nevertheless, V increased the anti-adipogenic properties of G. Conclusion: This study confirms that EDs singularly or in mixtures, introduced during early stages of life, could affect the differentiation and the endocrine activity of adipocytes, and can act as potential factors for obesity. PMID:28752072

  1. Early endocrine disruptors exposure acts on 3T3-L1 differentiation and endocrine activity.

    PubMed

    Boudalia, Sofiane; Belloir, Christine; Miller, Marie-Louise; Canivenc-Lavier, Marie-Chantal

    2017-01-01

    Introduction: Data from last years suggested that early exposure to endocrine disruptors (EDs) can predispose newborns to endocrine dysfunction of adipocytes, obesity, and associated disorders. The implication of EDs at low doses on adipocyte development has been poorly investigated. For instance, vinclozolin (V) is a dicarboximide fungicide widely used in agriculture since the 90's, alone or in mixture with genistein (G), an isoflavonoid from Leguminosae. This study aims to identify the effect of vinclozolin alone or with genistein, on adipose tissue properties using cell culture. Methods: In steroid-free conditions, 3T3-L1 pre-adipocytes were induced to differentiate in the presence of EDs, singularly or in mixtures, for 2 days. DNA and triglyceride (TG) levels were measured on days 0, 2 and 8 of differentiation. Leptin secretion was measured only on the eighth day. Results: We show that low doses of G (25 µM) and V (0.1 µM) inhibit pre-adipocytes differentiation. This inhibition has been represented by a decreasing in DNA content (µg/well) and decreasing in TG accumulation (mg/mL) in 3T3-L1 cells. Nevertheless, V increased the anti-adipogenic properties of G. Conclusion: This study confirms that EDs singularly or in mixtures, introduced during early stages of life, could affect the differentiation and the endocrine activity of adipocytes, and can act as potential factors for obesity.

  2. Effect of pioglitazone on visfatin expression in 3T3-L1 adipocytes and SD rats.

    PubMed

    Lv, Qihuan; Wang, Youmin; Wang, Wenping; Wang, Liping; Zhou, Xiaohui

    2009-01-01

    To investigate the effect of pioglitazone on visfatin expression. We studied the effect of pioglitazone on visfatin expression in 3T3-L1 adipocytes and serum concentrations and tissue expression of visfatin in normal Sprague-Dawley rats and rats with insulin resistance induced by high-fat diet (HF). Metabolic and anatomical parameters of the rats were also performed. In 3T3-L1 adipocytes, visfatin expression increased during the differentiation and it was not regulated by pioglitazone. In the rats, 12 weeks of HF feeding induced obesity and increased fast blood glucose (FBG), serum insulin and circulating visfatin. Pioglitazone treatment ameliorated insulin resistance with concomitant reduction in serum visfatin, free fatty acid, and triglyceride (TG) of the rats fed HF. Compared with subcutaneous adipose tissue and muscle, visfatin protein expression was much higher in visceral adipose tissue on both diets (p < 0.05 for all). Visfatin expression decreased in visceral adipose tissue but not subcutaneous adipose tissue or muscle after pioglitazone treatment in HF-fed rats. Visfatin expression in the rats fed chow diet was not affected by pioglitazone. Additionally, we demonstrated that serum visfatin was positively correlated with visceral adipose tissue weight, visfatin in visceral adipose tissue, TG and FBG (p < 0.05 for all). Visfatin is preferentially produced by visceral fat and peroxisome proliferator-activated receptor-gamma agonist ameliorates the development of insulin resistance in HF-fed rats with a major decrease in visfatin expression, the effect of pioglitazone on visfatin in HF-fed rats is dependent on glucose and lipid metabolism in the animals.

  3. Iodothyronine Interactions with the System L1 Amino Acid Exchanger in 3T3-L1 Adipocytes.

    PubMed

    Mitchell, Fiona E; Roy, Lisa A; Taylor, Peter M

    2010-06-24

    Thyroid hormones enter isolated white adipocytes largely by a System L1-type amino acid transporter en route to exerting genomic actions. Differentiated 3T3-L1 mouse adipocytes in culture express mRNA for LAT1 (the catalytic subunit of high-affinity System L1). L-[(125)I]-T(3) uptake into 3T3-L1 adipocytes included a substantial saturable component inhibited by leucine. L-[(3)H]phenylalanine uptake into 3T3-L1 cells was saturable (K(m) of 31 μM), competitively inhibited by T(3) (K(i) of 1.2 μM) and blocked by leucine, BCH, and rT(3) as expected for substrate interactions of System L1. Efflux of preloaded L-[(3)H]phenylalanine from 3T3-L1 adipocytes was trans stimulated by external leucine, demonstrating the obligatory exchange mechanism of System L1 transport. T(3) (10 μM) did not significantly trans stimulate L-[(3)H]phenylalanine efflux, but did competitively inhibit the trans stimulatory effect of 10 μM leucine. The results highlight strong competitive interactions between iodothyronines (T(3), rT(3)) and amino acids for transport by System L1 in adipocytes, which may impact cellular iodothyronine exchanges during altered states of protein nutrition.

  4. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I.

    PubMed

    Sultana, Afroza; Cochran, Blake J; Tabet, Fatiha; Patel, Mili; Torres, Luisa Cuesta; Barter, Philip J; Rye, Kerry-Anne

    2016-06-01

    Activation of inflammatory signaling pathways links obesity with metabolic disorders. TLR4-mediated activation of MAPKs and NF-κB are 2 such pathways implicated in obesity-induced inflammation. Apolipoprotein A-I (apoA-I) exerts anti-inflammatory effects on adipocytes by effluxing cholesterol from the cells via the ATP binding cassette transporter A1 (ABCA1). It is not known if these effects involve inhibition of inflammatory signaling pathways by apoA-I. This study asks if apoA-I inhibits activation of MAPKs and NF-κB in mouse 3T3-L1 adipocytes and whether this inhibition is ABCA1 dependent. Incubation of differentiated 3T3-L1 adipocytes with apoA-I decreased cell surface expression of TLR4 by 16 ± 2% and synthesis of the TLR4 adaptor protein, myeloid differentiation primary response 88, by 24 ± 4% in an ABCA1-dependent manner. ApoA-I also inhibited downstream activation of MAPKs, such as ERK, p38MAPK, and JNK, as well as expression of proinflammatory adipokines in bacterial LPS-stimulated 3T3-L1 adipocytes in an ABCA1-dependent manner. ApoA-I, by contrast, suppressed nuclear localization of the p65 subunit of NF-κB by 30 ± 3% in LPS-stimulated 3T3-L1 adipocytes in an ABCA1-independent manner. In conclusion, apoA-I inhibits TLR4-mediated inflammatory signaling pathways in adipocytes by preventing MAPK and NF-κB activation.-Sultana, A., Cochran, B. J., Tabet, F., Patel, M., Cuesta Torres, L., Barter, P. J., Rye, K.-A. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I. © FASEB.

  5. Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes.

    PubMed

    Kim, So Hui; Shin, Eun-Jung; Kim, Eun-Do; Bayaraa, Tsenguun; Frost, Susan Cooke; Hyun, Chang-Kee

    2007-11-01

    It has recently been known that berberine, an alkaloid of medicinal plants, has anti-hyperglycemic effects. To explore the mechanism underlying this effect, we used 3T3-L1 adipocytes for analyzing the signaling pathways that contribute to glucose transport. Treatment of berberine to 3T3-L1 adipocytes for 6 h enhanced basal glucose uptake both in normal and in insulin-resistant state, but the insulin-stimulated glucose uptake was not augmented significantly. Inhibition of phosphatidylinositol 3-kinase (PI 3-K) by wortmannin did not affect the berberine effect on basal glucose uptake. Berberine did not augment tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate (IRS)-1. Further, berberine had no effect on the activity of the insulin-sensitive downstream kinase, atypical protein kinase C (PKCzeta/lambda). However, interestingly, extracellular signal-regulated kinases (ERKs), which have been known to be responsible for the expression of glucose transporter (GLUT)1, were significantly activated in berberine-treated 3T3-L1 cells. As expected, the level of GLUT1 protein was increased both in normal and insulin-resistant cells in response to berberine. But berberine affected the expression of GLUT4 neither in normal nor in insulin-resistant cells. In addition, berberine treatment increased AMP-activated protein kinase (AMPK) activity in 3T3-L1 cells, which has been reported to be associated with GLUT1-mediated glucose uptake. Together, we concluded that berberine increases glucose transport activity of 3T3-L1 adipocytes by enhancing GLUT1 expression and also stimulates the GLUT1-mediated glucose uptake by activating GLUT1, a result of AMPK stimulation.

  6. EFFECT OF UNCOUPLING PROTEIN–1 EXPRESSION ON 3T3-L1 ADIPOCYTE GENE EXPRESSION

    PubMed Central

    Senocak, Fatih S.; Si, Yaguang; Moya, Colby; Russell, William K.; Russell, David H.; Lee, Kyongbum; Jayaraman, Arul

    2008-01-01

    The mitochondrial respiratory uncoupling protein 1 (UCP1) partially uncouples substrate oxidation and oxidative phosphorylation to promote the dissipation of cellular biochemical energy as heat in brown adipose tissue. We have recently shown that expression of UCP1 in 3T3-L1 white adipocytes reduces the accumulation of triglycerides. Here, we investigated the molecular basis underlying UCP1 expression in 3T3-L1 adipocytes. Gene expression data show that forced UCP1 expression down-regulated several energy metabolism pathways; but ATP levels were constant. A metabolic flux analysis model was used to reflect the gene expression changes onto metabolic processes and concordance was observed in the down-regulation of energy consuming pathways. Our data suggest that adipocytes respond to long-term mitochondrial uncoupling by minimizing ATP utilization. PMID:18061577

  7. Metabolic Flux Analysis of Mitochondrial Uncoupling in 3T3-L1 Adipocytes

    PubMed Central

    Si, Yaguang; Shi, Hai; Lee, Kyongbum

    2009-01-01

    Background Increasing energy expenditure at the cellular level offers an attractive option to limit adiposity and improve whole body energy balance. In vivo and in vitro observations have correlated mitochondrial uncoupling protein-1 (UCP1) expression with reduced white adipose tissue triglyceride (TG) content. The metabolic basis for this correlation remains unclear. Methodology/Principal Findings This study tested the hypothesis that mitochondrial uncoupling requires the cell to compensate for the decreased oxidation phosphorylation efficiency by up-regulating lactate production, thus redirecting carbon flux away from TG synthesis. Metabolic flux analysis was used to characterize the effects of non-lethal, long-term mitochondrial uncoupling (up to 18 days) on the pathways of intermediary metabolism in differentiating 3T3-L1 adipocytes. Uncoupling was induced by forced expression of UCP1 and chemical (FCCP) treatment. Chemical uncoupling significantly decreased TG content by ca. 35%. A reduction in the ATP level suggested diminished oxidative phosphorylation efficiency in the uncoupled adipocytes. Flux analysis estimated significant up-regulation of glycolysis and down-regulation of fatty acid synthesis, with chemical uncoupling exerting quantitatively larger effects. Conclusions/Significance The results of this study support our hypothesis regarding uncoupling-induced redirection of carbon flux into glycolysis and lactate production, and suggest mitochondrial proton translocation as a potential target for controlling adipocyte lipid metabolism. PMID:19746157

  8. Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans.

    PubMed

    Shen, Peiyi; Hsieh, Tsung-Hsiu; Yue, Yiren; Sun, Quancai; Clark, John M; Park, Yeonhwa

    2017-03-01

    Research has shown that permethrin, a Type-I pyrethroid, increases triglyceride (fat) accumulation in adipocytes. Little is known, however, about any similar effect of deltamethrin, a Type-II pyrethroid, which produces a distinct syndrome of poisoning in mammals compared with permethrin. This study was therefore aimed to explore the role of deltamethrin on fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans. Deltamethrin (10 μM) significantly increased the fat accumulation in 3T3-L1 adipocytes and wild type C. elegans compared to respective controls. Deltamethrin decreased the ratio of phosphorylated AMP-activated kinase (pAMPKα) over AMPKα and phosphorylated acetyl-CoA carboxylase (ACC) over ACC, while it increased expression of CCAAT/enhancer-binding protein (C/EBPα) and peroxisome proliferator-activated receptor-γ (PPARγ) in 3T3-L1 adipocytes. Similarly, deltamethrin potentiated fat accumulation in C. elegans without affecting growth or pharyngeal pumping rate. Moreover, deltamethrin significantly reduced the total progeny number and locomotive activities in C. elegans in a dose-dependent manner. Deltamethrin increased fat accumulation via aak-2 (an ortholog of AMPKα) and nhr-49 (a homolog of peroxisome proliferator-activated receptor-α and also downstream target of aak-2) mediated mechanisms. The current work is the first report of the effects of deltamethrin on increased fat storage by 3T3- L1 adipocytes and C. elegans via aak-2 (AMPKα ortholog)-mediated mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sparstolonin B inhibits lipopolysaccharide-induced inflammation in 3T3-L1 adipocytes.

    PubMed

    Wang, Ming; Xiu, Liangchang; Diao, Jianxin; Wei, Lianbo; Sun, Jia

    2015-12-15

    Sparstolonin B (SsnB), an isocoumarin compound isolated from the tubers of both Sparganium stoloniferum and Scirpus yagara, has been reported to have anti-inflammatory effects. However, whether SsnB has anti-inflammatory effects on LPS-stimulated 3T3-L1 adipocytes remains unclear. In this study, we investigated the effects of SsnB on adipocyte inflammation in 3T3-L1 adipocytes and anti-obesity properties in high fat diet (HFD)-induced obese rats. 3T3-L1 adipocytes were pretreated with SsnB 1h before LPS treatment. The expression of MCP-1, IL-6, TNF-α, and IL-10 were measured by qRT-PCR and ELISA. The expression of PPAR-γ, TLR4 and NF-κB were detected by western blotting. SsnB was administered to HFD-induced obese rats to confirm its effects in vivo. Our results showed that SsnB dose-dependently inhibited LPS-induced MCP-1, IL-6, and TNF-α production. SsnB was found to inhibit LPS-induced TLR4 expression and NF-κB activition. Furthermore, SsnB was found to activate PPAR-γ and the inhibitory effects of SsnB on MCP-1, IL-6, and TNF-α production can be reversed by PPAR-γ antagonist GW9662. In vivo, SsnB was found to reduce the body weight of rats fed with HFD. SsnB also inhibited the levels of serum triglyceride (TG) and cholesterol (TC) induced by HFD. In conclusion, the results suggested that SsnB could reduce HFD-induced obesity in rats and inhibited LPS-induced cytokines production in 3T3-L1 adipocytes by activating PPAR-γ. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Retinoic acid inhibits inducible nitric oxide synthase expression in 3T3-L1 adipocytes.

    PubMed

    Yang, Jeong-Yeh; Koo, Bon-Sun; Kang, Mi-Kyung; Rho, Hye-Won; Sohn, Hee-Sook; Jhee, Eun-Chung; Park, Jin-Woo

    2002-11-30

    The present study was undertaken to explore whether retinoids, which are known to have immunomodulatory actions, could attenuate tumor necrosis factor-alpha (TNF)-stimulated inducible nitric oxide synthase (iNOS) expression in 3T3-L1 adipocytes. Adipocytes incubated with TNF induced dose- and time-dependent accumulation of nitrite in the culture medium through the iNOS induction as confirmed by Western blotting. Treatment of cells with TNF in the presence of all-trans-retinoic acid (RA) significantly decreased their ability to produce nitrite and iNOS induction. Both 13-cis- and all- trans-RA-induced suppression was dose-dependent, and all-trans-RA was somewhat potent than 13-cis-RA. The inhibitory effect of RA on TNF-induced iNOS induction was reversible, completely recovered after 2 days, and was exerted through the inhibition of NF-kappaB activation. TNF also suppressed the lipoprotein lipase (LPL) activity of 3T3-L1 adipocytes. RA could not reverse the TNF- induced LPL suppression at RA levels causing near complete inhibition of the TNF-induced NO production. These results indicate that RAs attenuate iNOS expression reversibly in TNF-stimulated 3T3-L1 adipocytes, and that the TNF-induced LPL suppression is not the result of NO overproduction.

  11. Vaspin suppresses cytokine-induced inflammation in 3T3-L1 adipocytes via inhibition of NFκB pathway.

    PubMed

    Zieger, Konstanze; Weiner, Juliane; Krause, Kerstin; Schwarz, Maximilian; Kohn, Martin; Stumvoll, Michael; Blüher, Matthias; Heiker, John T

    2017-07-26

    Vaspin expression is increased in white adipose tissue (WAT) of diet-induced obese mice and rats and is supposed to compensate HFD-induced inflammatory processes and insulin resistance in adipose tissue by counteracting pro-inflammatory gene expression in obesity. Multiple studies have also demonstrated strong anti-inflammatory effects in vascular and skin cells. Here, we used vaspin treated 3T3-L1 murine adipocytes as well as 3T3-L1 cells with stable vaspin expression to investigate the effect of exogenous and endogenous vaspin on inflammatory processes and insulin signaling in adipocytes. Our stably transfected cells secreted significant amounts of vaspin which was in the physiological range of ∼0.5 ng/ml in cell supernatants. Adipocyte differentiation was not affected by vaspin as expression of adipogenic marker genes as well as lipid accumulation after full differentiation was similar to control cells. We found that IL-1β induced expression and secretion of pro-inflammatory cytokines, such as IL-6, MCP1 and TNFα was significantly blunted in vaspin expressing 3T3-L1 cells. Treatment of 3T3-L1 cells with exogenous vaspin resulted in reduced cytokine-induced activation of the intracellular and pro-inflammatory NFκB signaling cascades (IKKα/β, IκB and NFκB). Moreover, endogenous vaspin positively affected insulin signaling by increasing insulin-stimulated phosphorylation of the key mediator protein kinase B (AKT). Together, we demonstrate anti-inflammatory effects of vaspin in 3T3-L1 adipocytes as well as increased insulin signaling by endogenous expression or exogenous treatment. The results provide evidence for potent anti-inflammatory action of vaspin not only in vascular cells but also in adipose tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of bovine colostral ultrafiltrates on growth and differentiation of 3T3-L1 preadipocytes.

    PubMed

    Lee, Seong-Ho; Hossner, Kim L

    2002-12-01

    This study was designed to compare the effects of whole and size-fractionated bovine colostrum with bovine calf serum (BCS) on the growth and differentiation of 3T3-L1 fibroblasts. High (HMW) and low (LMW)-molecular-mass ultrafiltrate fractions of colostrum were prepared from defatted colostrum (COL) by diafiltration through membranes with a molecular-mass cut-off of 30 kDa. Incorporation of [(3)H]thymidine into the cells was used as a reflection of DNA synthesis/cell proliferation. The growth-promoting activity of LMW was 2.3- and 2.5-fold higher than COL and HMW, respectively (P <0.05), and 185 microg/ml LMW stimulated cell proliferation equivalent to 10% BCS. Although insulin-like growth factor (IGF)-I, IGF-II and platelet-derived growth factor AB stimulated 3T3-L1 cells, antibodies to these factors did not inhibit the LMW effects. The LMW fraction was about twice as effective as COL and HMW in stimulating differentiation of the cells into adipocytes, but maximal differentiation was only 60% of that seen with 10% fetal bovine serum (FBS). Treatment with COL, HMW, IGF-I and insulin induced peroxisome-proliferator-activated receptor gamma RNA, but levels were about half of that with 10% FBS treatment and LMW induction was 80% of FBS. Low amounts of leptin mRNA were detected in adipocytes and abundance did not differ between treatments with BCS, hormones or COL fractions. This study showed that bovine colostral LMW stimulated the growth and differentiation of 3T3-L1 preadipocytes and may be a useful serum substitute to support the growth of these cells.

  13. Rosmarinic acid suppresses adipogenesis, lipolysis in 3T3-L1 adipocytes, lipopolysaccharide-stimulated tumor necrosis factor-α secretion in macrophages, and inflammatory mediators in 3T3-L1 adipocytes.

    PubMed

    Rui, Yehua; Tong, Lingxia; Cheng, Jinbo; Wang, Guiping; Qin, Liqiang; Wan, Zhongxiao

    2017-01-01

    Background: Rosmarinic acid (RA) is a natural phenol carboxylic acid with many promising biological effects. It may be a suitable candidate for improving obesity-related adipose tissue dysfunction. Objective: We aimed to investigate the therapeutic use of RA as an anti-obesity agent by measuring its effects on adipogenesis, lipolysis, and messenger RNA (mRNA) expression of major adipokines in 3T3-L1 adipocytes; and its effects on lipopolysaccharide (LPS)-induced tumor necrosis factor-α (TNF-α) secretion in macrophages and inflammatory mediators in 3T3-L1 adipocytes incubated with macrophage-conditioned medium (MCM). Methods: 3T3-L1 preadipocytes were used to explore how RA affects adipogenesis, as well as the involvement of phosphorylated extracellular signal-regulated kinase-1/2 (p-ERK1/2) and mothers against decapentaplegic homolog 3 (p-Smad3). 3T3-L1 preadipocytes were also differentiated into mature adipocytes to explore how RA affects basal and isoproterenol- and forskolin-stimulated lipolysis; and how RA affects key adipokines' mRNA expression. RAW 264.7 macrophages were stimulated with LPS in the absence or presence of RA to explore RA's effects on TNF-α secretion. MCM was collected and 3T3-L1 adipocytes were incubated with MCM to explore RA's effects on interleukin-6 (IL-6), IL-1β, monocyte chemoattractant protein-1 (MCP-1), and RANTES mRNA expression. Results: During the preadipocyte differentiation process, RA suppressed peroxisome proliferator-activated receptor-γ and CCAAT/enhancer binding protein-α, and activated p-ERK1/2 and p-Smad3; inhibition of adipogenesis by RA was partially restored following treatment with p-ERK1/2 and p-Smad3 inhibitors. In mature adipocytes, RA inhibited basal lipolysis; phosphodiesterase-3 inhibitor reversed this. RA also inhibited isoproterenol- and forskolin-stimulated glycerol and free fatty acid release, and the phosphorylation of hormone-sensitive lipase and perilipin. RA had no effects on leptin, adiponectin

  14. Hyperglycemia and advanced glycation end products (AGEs) suppress the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Chang, Chia-Chu; Chen, Chen-Yu; Chang, Geen-Dong; Chen, Ting-Huan; Chen, Woan-Ling; Wen, Hui-Chin; Huang, Chih-Yang; Chang, Chung-Ho

    2017-08-15

    Aging is characterized by mild hyperglycemia and accumulation of advanced glycation end products (AGEs). Effects of chronic exposure to hyperglycemia or AGEs on the adipogenic differentiation of 3T3-L1 preadipocytes remain unclear. We examined the chronic effect of AGEs and high glucose on the differentiation of 3T3-L1 cells by culturing 3T3-L1 cells in the presence of AGEs or 25 mM glucose for 1 month. Chronic incubation of 3T3-L1 cells with AGEs or high glucose blocked their differentiation into mature adipocytes as evidenced by reduced levels of adipocyte markers such as accumulated oil droplets, GPDH, aP2, adiponectin and of adipogenesis regulators PPARγ and C/EBPα. Levels or activities of Src, PDK1, Akt, and NF-κB were higher in AGEs- and high glucose-treated cells than those in 3T3-L1 cells. Levels of Bcl-2 were elevated in AGEs- and high glucose-treated cells, and were attenuated by inhibitors of PI3-kinase, Akt and NF-κB. Moreover, adipogenesis was attenuated in 3T3-L1 cells stably expressing Bcl-2 or YAP. These results suggest that chronic AGEs and high glucose treatments up-regulate Bcl-2 and YAP via the Akt-NF-κB pathway and impair adipogenesis.

  15. Hyperglycemia and advanced glycation end products (AGEs) suppress the differentiation of 3T3-L1 preadipocytes

    PubMed Central

    Chang, Geen-Dong; Chen, Ting-Huan; Chen, Woan-Ling; Wen, Hui-Chin; Huang, Chih-Yang; Chang, Chung-Ho

    2017-01-01

    Aging is characterized by mild hyperglycemia and accumulation of advanced glycation end products (AGEs). Effects of chronic exposure to hyperglycemia or AGEs on the adipogenic differentiation of 3T3-L1 preadipocytes remain unclear. We examined the chronic effect of AGEs and high glucose on the differentiation of 3T3-L1 cells by culturing 3T3-L1 cells in the presence of AGEs or 25 mM glucose for 1 month. Chronic incubation of 3T3-L1 cells with AGEs or high glucose blocked their differentiation into mature adipocytes as evidenced by reduced levels of adipocyte markers such as accumulated oil droplets, GPDH, aP2, adiponectin and of adipogenesis regulators PPARγ and C/EBPα. Levels or activities of Src, PDK1, Akt, and NF-κB were higher in AGEs- and high glucose-treated cells than those in 3T3-L1 cells. Levels of Bcl-2 were elevated in AGEs- and high glucose-treated cells, and were attenuated by inhibitors of PI3-kinase, Akt and NF-κB. Moreover, adipogenesis was attenuated in 3T3-L1 cells stably expressing Bcl-2 or YAP. These results suggest that chronic AGEs and high glucose treatments up-regulate Bcl-2 and YAP via the Akt-NF-κB pathway and impair adipogenesis.

  16. LMO4 modulates proliferation and differentiation of 3T3-L1 preadipocytes.

    PubMed

    Wang, Ning; Wang, Xichen; Shi, Mingxin; Shi, Hongyan; Yan, Xiaohong; Li, Hui; Wang, Shouzhi; Wang, Yuxiang

    2013-09-17

    Previous microarray analyses revealed that LMO4 is expressed in 3T3-L1 preadipocytes, however, its roles in adipogenesis are unknown. In the present study, using RT-PCR sequencing and quantitative real-time RT-PCR, we confirmed that LMO4 gene is expressed in 3T3-L1 preadipocytes and its expression peaks at the early stage of 3T3-L1 preadipocyte differentiation. Further analyses showed that LMO4 knockdown decreased the proliferation of 3T3-L1 preadipocytes, and attenuated the differentiation of 3T3-L1 preadipocytes, as evidenced by reduced lipid accumulation and down-regulation of PPARγ gene expression. Collectively, our findings indicate that LMO4 is a novel modulator of adipogenesis. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    SciTech Connect

    Park, Yu-Kyoung; Lee, Tae-Yoon; Choi, Jong-Soon; Hong, Victor Sukbong; Lee, Jinho; Park, Jong-Wook; Jang, Byeong-Churl

    2014-10-03

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5.

  18. Vitamin D decreases adipocyte lipid storage and increases NAD-SIRT1 pathway in 3T3-L1 adipocytes.

    PubMed

    Chang, Eugene; Kim, Yangha

    2016-06-01

    Previous studies suggest that low vitamin D status is associated with obesity characterized by excess lipid storage in adipocytes. The aim of the present study was to determine the effects of the most hormonally active form of vitamin D 1,25-dihydroxyvitamin D [1,25(OH)2D] on adipocyte fat storage and lipid metabolism in mature 3T3-L1 cells. Differentiated 3T3-L1 cells were treated with various concentrations of 1,25(OH)2D. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell proliferation, intracellular lipid content, and basal and isoproterenol-stimulated lipolysis were measured to investigate the regulatory role of 1,25(OH)2D in adipocyte lipid metabolism. Reverse transcription polymerase chain reaction was performed to determine the effects of 1,25(OH)2D on adipogenesis-related markers, fatty acid oxidation-associated genes, and lipolytic enzymes. Sirtulin 1 (SIRT1) activity, nicotinamide adenine dinucleotide (NAD) and NADH were measured. 1,25(OH)2D treatment (24 h, 100 nmol/L) induced a decrease in intracellular fat accumulation and an increase of basal and isoproterenol-stimulated lipolysis without cell toxicity in adipocytes. Adipogenic gene levels were decreased. In contrast, mRNA levels of β-oxidation-related genes, lipolytic enzymes, and vitamin D responsive gene were elevated by 1,25(OH)2D. Additionally, significant incremental changes in NAD levels, the ratio of NAD to NADH, and SIRT1 expression and activity were noted in 1,25(OH)2D-treated 3T3-L1 adipocytes. The observed potent inhibitory effect of 1,25(OH)2D on adipocyte fat storage in mature 3T3-L1 cells suggests that vitamin D might improve adipocyte metabolic function and protect against obesity. Increased NAD concentrations and SIRT1 ​activity may play a role in the mechanism of 1,25(OH)2D action. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Hormone and pharmaceutical regulation of ASP production in 3T3-L1 adipocytes.

    PubMed

    Gao, Ying; Gauvreau, Danny; Cianflone, Katherine

    2010-04-01

    Several studies have demonstrated increases in acylation stimulating protein (ASP), and precursor protein C3 in obesity, diabetes and dyslipidemia, however the nature of the regulation is unknown. To evaluate chronic hormonal and pharmaceutical mediated changes in ASP and potential mechanisms, 3T3-L1 adipocytes were treated with physiological concentrations of relevant hormones and drugs currently used in treatment of metabolic diseases for 48 h. Medium ASP production and C3 secretion were evaluated in relation to changes in adipocyte lipid metabolism (cellular triglyceride (TG) mass, non-esterified fatty acid (NEFA) release and real-time FA uptake). Chylomicrons increased ASP production (up to 411 +/- 133% P < 0.05), while leptin, triiodothyronine, and beta-blockers atenolol and propranolol had no effect. Dexamethasone, lovastatin, rosiglitazone and rimonabant decreased ASP production (-53 to -85%, P < 0.05), associated with a decrease in the precursor protein C3 (-37% to -65%, P < 0.01). By contrast, epinephrine, progesterone, testosterone, angiotensin II and metformin also decreased ASP (-54% to -100%, P < 0.05), but without change in precursor protein C3, suggesting a direct effect on convertase activity, possibly mediated by interference (except metformin) due to marked increases in NEFA (5.6-31-fold, increased P < 0.05). Both lovastatin and metformin induced decreases in ASP were also associated with decreased TG mass (maximal -60%, P < 0.05) and real-time FA uptake (maximum -75%, P < 0.05), suggesting a change in adipocyte differentiation status. These in vitro results are consistent with in vivo ASP profiles in subjects, and suggest that ASP may be regulated through precursor C3 availability, convertase activity and differentiation status.

  20. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structure-function correlations at the molecular level.

    PubMed

    Halevas, E; Tsave, O; Yavropoulou, M P; Hatzidimitriou, A; Yovos, J G; Psycharis, V; Gabriel, C; Salifoglou, A

    2015-06-01

    Among the various roles of vanadium in the regulation of intracellular signaling, energy metabolism and insulin mimesis, its exogenous activity stands as a contemporary challenge currently under investigation and a goal to pursue as a metallodrug against Diabetes mellitus II. In this regard, the lipogenic activity of vanadium linked to the development of well-defined anti-diabetic vanadodrugs has been investigated through: a) specifically designing and synthesizing Schiff base organic ligands L, bearing a variable number of terminal alcohols, b) a series of well-defined soluble binary V(V)-L compounds synthesized and physicochemically characterized, c) a study of their cytotoxic effect and establishment of adipogenic activity in 3T3-L1 fibroblasts toward mature adipocytes, and d) biomarker examination of a closely-linked molecular target involving or influenced by the specific V(V) forms, cumulatively delineating factors involved in potential pathways linked to V(V)-induced insulin-like activity. Collectively, the results a) project the importance of specific structural features in Schiff ligands bound to V(V), thereby influencing the emergence of its (a)toxicity and for the first time its insulin-like activity in pre-adipocyte differentiation, b) contribute to the discovery of molecular targets influenced by the specific vanadoforms seeking to induce glucose uptake, and c) indicate an interplay of V(V) structural speciation and cell-differentiation biological activity, thereby gaining insight into vanadium's potential as a future metallodrug in Diabetes mellitus.

  1. Overexpression of NYGGF4 (PID1) induces mitochondrial impairment in 3T3-L1 adipocytes.

    PubMed

    Zhao, Yaping; Zhang, Chunmei; Chen, Xiaohui; Gao, Chunlin; Ji, Chenbo; Chen, Fukun; Zhu, Chun; Zhu, Jingai; Wang, Jialin; Qian, Lingmei; Guo, Xirong

    2010-07-01

    NYGGF4 is a recently discovered gene that is involved in obesity-associated insulin resistance. The exact mechanism by which NYGGF4 induces insulin resistance has not yet been fully elucidated. In this study, we demonstrated that the overexpression of NYGGF4 in 3T3-L1 adipocytes decreased mitochondrial mass, mitochondrial DNA, and intracellular ATP synthesis. In addition, NYGGF4 overexpression also led to an imbalance of the mitochondrial dynamics and excess intracellular ROS production. Collectively, our results indicated that the overexpression of NYGGF4 caused mitochondrial dysfunction in adipocytes, which might be responsible for the development of NYGGF4-induced insulin resistance.

  2. Effect of Gambisan on the Inhibition of Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Kang, Jung Won; Nam, Dongwoo; Kim, Kun Hyung; Huh, Jeong-Eun; Lee, Jae-Dong

    2013-01-01

    This study was conducted to explore the antiadipogenic effect and possible mechanism of Gambisan on 3T3-L1 cells. For quality control, Gambisan was standardized by HPLC and the standard compounds ephedrine, epigallocatechin-3-gallate, and caffeine were screened. Cultured 3T3-L1 cells that had been induced to differentiate were treated with various concentrations of Gambisan or its major component extracts (Ephedra intermedia Schrenk, Atractylodes lancea DC., and Thea sinensis L.) for 72 hours for MTT assay to determine cell viability or 10 days for LDH assay, triglyceride assay, DNA content measurement, Oil red O staining, RT-PCR, and western blot. Gambisan significantly inhibited adipogenesis in 3T3-L1 cells by reducing triglyceride contents and lipid accumulation in a dose-dependent manner without obvious cytotoxicity. Viability and DNA content in 3T3-L1 cells treated with Gambisan were significantly higher than cells treated with the major component extracts at every concentration. The anti-adipogenic effects of Gambisan appeared to be mediated by a significant downregulation of the expression of lipoprotein lipase mRNA and PPARγ, C/EBPα, and SREBP-1 protein apart from the expression of hormone-sensitive lipase. Gambisan could act as a possible therapeutic agent for obesity. However, further studies including in vivo assays and clinical trials are needed to confirm the efficacy, safety and mechanisms of the antiobesity effects of Gambisan. PMID:24069055

  3. HuB localizes to polysomes and alters C/EBP-beta expression in 3T3-L1 adipocytes.

    PubMed

    Gantt, Kira R; Jain, Renu G; Dudek, Ronald W; Pekala, Phillip H

    2004-01-16

    The RNA binding protein HuB was ectopically expressed in 3T3-L1 preadipocytes and localized primarily to the nucleus, as the cells differentiated HuB redistributed to the cytosol and on analysis localized to the dense polysomes. Electron micrographs confirm association of HuB with the ribosomes in the adipocytes consistent with a proposed role in control of translation and mRNA stability. Examination of the expression of C/EBP-beta in the cells expressing HuB relative to the parental 3T3-L1 adipocytes demonstrated an alteration in the LAP to LIP ratio. The data support a role for endogenous Hu proteins in the differentiation process, potentially affecting the rate of differentiation by controlling the concentration of the dominant negative transcription inhibitor, LIP.

  4. Inhibitory effects of green tea catechin on the lipid accumulation in 3T3-L1 adipocytes.

    PubMed

    Lee, Mak-Soon; Kim, Chong-Tai; Kim, In-Hwan; Kim, Yangha

    2009-08-01

    The aim of the present study was to evaluate the effects of green tea (-)-epigallocatechin-3-gallate (EGCG) on the depletion of accumulated fat in differentiated 3T3-L1 adipocytes. Intracellular lipid accumulation was decreased significantly after 24 h of incubation with 10 microm EGCG, while the viability of adipocytes was reported to be unaffected. Under the same experimental conditions, the amount of glycerol released from cells into the medium was increased by 10 microm EGCG. The level of mRNA in the 3T3-L1 adipocytes was analysed by quantitative real-time RT-PCR. EGCG notably increased the mRNA level of hormone sensitive lipase (HSL), which catalyses the rate-limiting stage in hydrolysis of stored triacylglycerol to monoacylglycerol and free fatty acids. In conclusion, the experiment produced results which showed that green tea EGCG effectively depleted fat accumulation via the stimulation of lipolysis and increased HSL gene expression in 3T3-L1 adipocytes. These results may relate to the mechanism by which EGCG modulates lipolysis in adipocytes. Copyright 2009 John Wiley & Sons, Ltd.

  5. Shp2 suppresses the adipogenic differentiation of preadipocyte 3T3-L1 cells at an early stage

    PubMed Central

    Tao, J; Zheng, L; Meng, M; Li, Y; Lu, Z

    2016-01-01

    Tyrosine phosphatase protein Shp2 is a potential therapeutic target for obesity. However, the mechanism of Shp2 during adipogenesis is not fully understood. The present study investigated the role of Shp2 in the terminal differentiation of preadipocytes. The results showed that Shp2 suppressed adipocyte differentiation in 3T3-L1 cells; overexpression of Shp2 reduced lipid droplet production in 3T3-L1 cells, whereas Shp2 knockdown increased lipid droplet production in 3T3-L1 cells. Furthermore, inhibition of Shp2 activity also enhanced adipocyte differentiation. Interestingly, Shp2 expression was specifically decreased early during differentiation in response to stimulation with the dexamethasone–methylisobutylxanthine–insulin (DMI) hormone cocktail. During the first 2 days of differentiation, Shp2 overexpression impaired the DMI-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in 3T3-L1 cells and blocked the peak expression of CCAAT/enhancer-binding proteins β and δ during preadipocyte differentiation. In conclusion, Shp2 downregulated the early stages of hormone-induced differentiation of 3T3-L1 cells and inhibited the expression of the first wave of transcription factors by suppressing the DMI-induced STAT3 signaling pathway. These discoveries point to a novel role of Shp2 during adipogenesis and support the hypothesis that Shp2 could be a therapeutic target for the control of obesity. PMID:27551539

  6. Beta-conglycinin embeds active peptides that inhibit lipid accumulation in 3T3-L1 adipocytes in vitro.

    PubMed

    Martinez-Villaluenga, Cristina; Bringe, Neal A; Berhow, Mark A; Gonzalez de Mejia, Elvira

    2008-11-26

    Obesity is a worldwide health concern because it is a well-recognized predictor of premature mortality. The objective was to identify soybean varieties that have improved potential to inhibit fat accumulation in adipocytes by testing the effects of soy hydrolysates having a range of protein subunit compositions on lipid accumulation and adiponectin expression in 3T3-L1 adipocytes. The results showed that differences in the protein distribution of 15 soy genotypes led to different potentials for the reduction of fat accumulation. The inhibition of lipid accumulation of soy alcalase hydrolysates in 3T3-L1 adipocytes ranged from 29 to 46%. Soy hydrolysates made from genotypes with 45.3 +/- 3.3% of total protein as beta-conglycinin, on average, showed significantly higher inhibition of lipid accumulation compared to those with 24.7 +/- 1.5% of extracted total protein as beta-conglycinin. Moreover, after in vitro simulated digestion with pepsin-pancreatin of the soy alcalase hydrolysates, 86% of the original activity remained. Adiponectin expression was induced in 3T3-L1 adipocytes treated with 15 soy hydrolysates up to 2.49- and 2.63-fold for high and low molecular weight adiponectin, respectively. The inhibition of lipid accumulation calculated from a partial least squares (PLS) analysis model correlated well with experimental data (R(2) = 0.91). In conclusion, it was feasible to differentiate soy varieties on the basis of the potential of their proteins to reduce fat accumulation using a statistical model and a cell-based assay in vitro. Furthermore, beta-conglycinin embeds more peptides than glycinin subunits that inhibit lipid accumulation and induce adiponectin in 3T3-L1 adipocytes. Therefore, soy ingredients containing beta-conglycinin may be important food components for the control of lipid accumulation in adipose tissue.

  7. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    SciTech Connect

    Huang, Chenglin; Chen, Dongrui; Xie, Qihai; Yang, Ying; Shen, Weili

    2013-08-16

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.

  8. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes

    SciTech Connect

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Jiang, Ping; Gong, Huan; Wang, Zai; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2016-08-05

    Insulin stimulates adiponectin secretion and glucose transporter type 4 (GLUT4) translocation in adipocyte to regulate metabolism homeostasis. Similar to GLUT4 translocation, intracellular trafficking and release of adiponectin in adipocytes relies on the trans-Golgi network and endosomal system. Recent studies show that the heavy chain of conventional kinesin (KIF5B) mediates GLUT4 translocation in murine 3T3-L1 adipocytes, however, the motor machinery involved in mediating intracellular trafficking and release of adiponectin is unknown. Here, we examined the role of KIF5B in the regulation of adiponectin secretion. The KIF5B level was up-regulated during 3T3-L1 adipogenesis. This increase in cytosolic KIF5B was synchronized with the induction of adiponectin. Endogenous KIF5B and adiponectin were partially colocalized at the peri-nuclear and cytosolic regions. In addition, adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. Knockdown of KIF5B resulted in a marked inhibition of adiponectin secretion and overexpression of KIF5B enhanced adiponectin release, whereas leptin secretion was not affected by changes in KIF5B expression. These data suggest that the secretion of adiponectin, but not leptin, is dependent on functional KIF5B. - Highlights: • The KIF5B level was up regulated during 3T3-L1 adipogenesis. • Endogenous KIF5B and adiponectin were partially colicalized. • Adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. • The secretion of adiponectin, but not leptin, is dependent on functional KIF5B.

  9. Glucose deprivation does not affect GLUT1 targeting in 3T3-L1 adipocytes.

    PubMed

    McMahon, R J; Hwang, J B; Frost, S C

    2000-07-14

    We have previously demonstrated that glucose deprivation alters the glycosylation of the GLUT1 glucose transporter in 3T3-L1 adipocytes. Many aberrantly glycosylated proteins are retained in the endoplasmic reticulum by interaction with chaperones. Herein, we use three independent procedures to show that GLUT1 is targeted to the plasma membrane, despite alterations in glycosylation. While earlier experiments revealed that plasma membrane targeting of aglyco GLUT 1 transporter was significantly reduced, our data show for the first time that altered glycosylation provides sufficient information to drive appropriate trafficking.

  10. Wogonin enhances intracellular adiponectin levels and suppresses adiponectin secretion in 3T3-L1 adipocytes.

    PubMed

    Yang, Tan; Liu, Hua; Zhao, Bo; Xia, Zhongyuan; Zhang, Yemin; Zhang, Deling; Li, Mingxin; Cao, Yingkang; Zhang, Zhijiang; Bi, Yongyi; Wang, Changhua

    2017-01-30

    As an insulin sensitizer and modulator of inflammatory responses, adiponectin has become a therapeutic target for insulin resistance, diabetes, and diabetes-related complications. Wogonin possesses anti-oxidative, anti-inflammatory, and anti-diabetic abilities. However, its effect on generation and secretion of adiponectin is ill-defined in adipocytes. Here, we demonstrated that wogonin administration augmented intracellular adiponectin levels and attenuated adiponectin release in a dose- and time-dependent manner in mature 3T3-L1 adipocytes, along with a suppression of PKCδ phosphorylation. Wogonin treatment also prevented PKCδ overexpression-induced reduction of intracellular adiponectin levels and enhancement of adiponectin release. In addition, wogonin supplementation dramatically increased AMPK phosphorylation and SirT1 expression. Inhibition of either AMPK or SirT1 mitigated wogonin action on adiponectin production and release. Furthermore, inhibition of AMPK by its specific inhibitor markedly reduced wogonin-enhanced mRNA and protein expressions of SirT1. These results suggested that wogonin regulated expression and secretion of adiponectin via PKCδ/AMPK/SirT1 signaling pathway in mature 3T3-L1 adipocytes.

  11. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes.

    PubMed

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Jiang, Ping; Gong, Huan; Wang, Zai; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2016-08-05

    Insulin stimulates adiponectin secretion and glucose transporter type 4 (GLUT4) translocation in adipocyte to regulate metabolism homeostasis. Similar to GLUT4 translocation, intracellular trafficking and release of adiponectin in adipocytes relies on the trans-Golgi network and endosomal system. Recent studies show that the heavy chain of conventional kinesin (KIF5B) mediates GLUT4 translocation in murine 3T3-L1 adipocytes, however, the motor machinery involved in mediating intracellular trafficking and release of adiponectin is unknown. Here, we examined the role of KIF5B in the regulation of adiponectin secretion. The KIF5B level was up-regulated during 3T3-L1 adipogenesis. This increase in cytosolic KIF5B was synchronized with the induction of adiponectin. Endogenous KIF5B and adiponectin were partially colocalized at the peri-nuclear and cytosolic regions. In addition, adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. Knockdown of KIF5B resulted in a marked inhibition of adiponectin secretion and overexpression of KIF5B enhanced adiponectin release, whereas leptin secretion was not affected by changes in KIF5B expression. These data suggest that the secretion of adiponectin, but not leptin, is dependent on functional KIF5B. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Monoterpene limonene induces brown fat-like phenotype in 3T3-L1 white adipocytes.

    PubMed

    Lone, Jameel; Yun, Jong Won

    2016-05-15

    Several dietary compounds that are able to induce the brown fat-like phenotype in white adipocytes have been considered for treatment of obesity due to their ability to increase energy expenditure. Here, we report that limonene induces the brown fat-like phenotype in 3T3-L1 adipocytes by increasing expression of brown adipocyte-specific genes and proteins. Limonene-induced browning in white adipocytes was investigated by determining expression levels of brown fat-specific genes and proteins by real-time RT-PCR, immunoblot analysis, and immunocytochemical staining. Limonene enhanced mitochondrial biogenesis, as evidenced by increased mitochondrial content and immunofluorescent intensity. Limonene also significantly elevated protein levels of HSL, PLIN, p-AMPK, p-ACC, ACO, COX4, CPT1, and CYT C, suggesting its possible role in enhancement of lipolysis and lipid catabolism. Increased expression of PRDM16, UCP1, C/EBPβ, and other brown fat-specific markers by limonene was possibly mediated by activation of β3-adnergenic receptor (β3-AR), as inhibition of β3-AR inhibited up-regulation of brown fat-specific markers. Similarly, limonene-mediated activation of ERK and up-regulation of key brown adipocyte specific markers were eliminated by treatment with ERK antagonist. Taken together, these results suggest that limonene induces browning of 3T3-L1 adipocytes via activation of β3-AR and the ERK signaling pathway. In conclusion, our findings suggest that limonene plays a dual modulatory role in induction of the brown adipocyte-like phenotype as well as promotion of lipid metabolism and thus may have potential therapeutic implications for treatment of obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effect of scopoletin on lipoprotein lipase activity in 3T3-L1 adipocytes.

    PubMed

    Yang, Jeong-Yeh; Koo, Jeung-Hyun; Yoon, Ha-Yong; Lee, Ju-Hyung; Park, Byung-Hyun; Kim, Jong-Suk; Chi, Myung S; Park, Jin-Woo

    2007-10-01

    Hypertriglyceridemia is an independent risk factor of cardiovascular diseases. It is caused by the imbalance between hepatic triglyceride production and peripheral removal. Lipoprotein lipase (LPL) plays a central role in the removal of plasma triglyceride. During the screening of possible anti-dyslipidemic drugs, we observed that scopoletin (6-methoxy-7-hydroxycoumarin) significantly increased LPL activity in adipocytes. Scopoletin increased LPL activity in culture medium of 3T3-L1 adipocytes in dose- and time-dependent manners. It did not release LPL from the adipocyte membrane and, instead, increased the LPL mRNA level, suggesting transcriptional control. Scopoletin also partially reversed tumor necrosis factor-alpha-induced suppression of LPL activity. These results suggest the possible action of scopoletin as a facilitator of plasma triglyceride clearance.

  14. Glucose induces expression of stearoyl-CoA desaturase in 3T3-L1 adipocytes.

    PubMed Central

    Jones, B H; Standridge, M K; Claycombe, K J; Smith, P J; Moustaïd-Moussa, N

    1998-01-01

    Stearoyl-CoA desaturase (SCD; EC 1.14.99.5) is a key enzyme in the synthesis polyunsaturated fatty acids. Liver and ose tissue are the predominant sites of SCD expression. Regulation of tic SCD by various nutritional and hormonal ors, such as insulin, dietary carbohydrates and polyunsaturated fatty s, has been well documented. Little is known, ver, about adipocyte SCD regulation despite high levels of SCD activity adipose tissue. The present study was gned to investigate SCD regulation in adipocytes by examining the cts of glucose and insulin on SCD expression. We rt here that glucose availability directly increased SCD gene scription in 3T3-L1 adipocytes. This response was pendent of insulin, and insulin alone in the absence of glucose had no ct on SCD mRNA levels. SCD thus represents a l model in which to investigate the mechanisms of direct regulation of expression by glucose in adipose cells. PMID:9867800

  15. Antagonistic effects of a covalently dimerized insulin derivative on insulin receptors in 3T3-L1 adipocytes

    SciTech Connect

    Weiland, M.; Joost, H.G. ); Brandenburg, C.; Brandenburg, D. )

    1990-02-01

    In the present study the authors describe the antagonistic effects of the covalently dimerized insulin derivative B29,B29{prime}-suberoyl-insulin on insulin receptors in 3T3-L1 mouse cells. In differentiated 3T3-L1 adipocytes, the derivative fully inhibits binding of {sup 125}I-labeled insulin to its receptor with about the same affinity as unlabeled insulin. In contrast, the dimerized derivative only partially (approximately 20%) mimics insulin's effects on glucose transport and DNA synthesis in the absence of insulin. In the presence of insulin, the agent competitively inhibits insulin-stimulated DNA synthesis (({sup 3}H)thymidine incorporation into total DNA), glucose transport activity (2-deoxyglucose uptake rate), and insulin receptor tyrosine kinase activity. In rat adipocytes, in contrast, the dimerized derivative stimulates glucose transport (initial 3-O-methylglucose as well as 2-deoxyglucose uptake rates) to the same extent as insulin does, and it fails to inhibit the effect of insulin. The data indicate that the dimerized insulin derivative B29,B29{prime}-suberoyl-insulin is an insulin receptor antagonist (partial agonist) which retains a moderate intrinsic activity. The effects of this agent reveal a striking difference in insulin receptor-mediated stimulation of glucose transport between 3T3-L1 fatty fibroblasts and the mature rat adipocyte.

  16. Capsaicin Induces “Brite” Phenotype in Differentiating 3T3-L1 Preadipocytes

    PubMed Central

    Baboota, Ritesh K.; Singh, Dhirendra P.; Sarma, Siddhartha M.; Kaur, Jaspreet; Sandhir, Rajat; Boparai, Ravneet K.; Kondepudi, Kanthi K.; Bishnoi, Mahendra

    2014-01-01

    Objective Targeting the energy storing white adipose tissue (WAT) by pharmacological and dietary means in order to promote its conversion to energy expending “brite” cell type holds promise as an anti-obesity approach. Present study was designed to investigate/revisit the effect of capsaicin on adipogenic differentiation with special reference to induction of “brite” phenotype during differentiation of 3T3-L1 preadipocytes. Methods Multiple techniques such as Ca2+ influx assay, Oil Red-O staining, nutrigenomic analysis in preadipocytes and matured adipocytes have been employed to understand the effect of capsaicin at different doses. In addition to in-vitro experiments, in-vivo studies were carried out in high-fat diet (HFD) fed rats treated with resiniferatoxin (RTX) (a TRPV1 agonist) and in mice administered capsaicin. Results TRPV1 channels are expressed in preadipocytes but not in adipocytes. In preadipocytes, both capsaicin and RTX stimulate Ca2+ influx in dose-dependent manner. This stimulation may be prevented by capsazepine, a TRPV1 antagonist. At lower doses, capsaicin inhibits lipid accumulation and stimulates TRPV1 gene expression, while at higher doses it enhances accumulation of lipids and suppresses expression of its receptor. In doses of 0.1–100 µM, capsaicin promotes expression of major pro-adipogenic factor PPARγ and some of its downstream targets. In concentrations of 1 µM, capsaicin up-regulates anti-adipogenic genes. Low-dose capsaicin treatment of 3T3-L1 preadipocytes differentiating into adipocytes results in increased expression of brown fat cell marker genes. In white adipose of mice, capsaicin administration leads to increase in browning-specific genes. Global TRPV1 ablation (i.p. by RTX administration) leads to increase in locomotor activity with no change in body weight. Conclusion Our findings suggest the dual modulatory role of capsaicin in adipogenesis. Capsaicin inhibits adipogenesis in 3T3-L1 via TRPV1 activation and

  17. Resveratrol Metabolites Modify Adipokine Expression and Secretion in 3T3-L1 Pre-Adipocytes and Mature Adipocytes

    PubMed Central

    Eseberri, Itziar; Lasa, Arrate; Churruca, Itziar; Portillo, María P.

    2013-01-01

    Objective Due to the low bioavailability of resveratrol, determining whether its metabolites exert any beneficial effect is an interesting issue. Methods 3T3-L1 maturing pre-adipocytes were treated during differentiation with 25 µM of resveratrol or with its metabolites and 3T3-L1 mature adipocytes were treated for 24 hours with 10 µM resveratrol or its metabolites. The gene expression of adiponectin, leptin, visfatin and apelin was assessed by Real Time RT-PCR and their concentration in the incubation medium was quantified by ELISA. Results Resveratrol reduced mRNA levels of leptin and increased those of adiponectin. It induced the same changes in leptin secretion. Trans-resveratrol-3-O-glucuronide and trans-resveratrol-4′-O-glucuronide increased apelin and visfatin mRNA levels. Trans-resveratrol-3-O-sulfate reduced leptin mRNA levels and increased those of apelin and visfatin. Conclusions The present study shows for the first time that resveratrol metabolites have a regulatory effect on adipokine expression and secretion. Since resveratrol has been reported to reduce body-fat accumulation and to improve insulin sensitivity, and considering that these effects are mediated in part by changes in the analyzed adipokines, it may be proposed that resveratrol metabolites play a part in these beneficial effects of resveratrol. PMID:23717508

  18. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes

    SciTech Connect

    Hashimoto, Takeshi; Yokokawa, Takumi; Endo, Yuriko; Iwanaka, Nobumasa; Higashida, Kazuhiko; Taguchi, Sadayoshi

    2013-10-11

    Highlights: •Long-term hypoxia decreased the size of LDs and lipid storage in 3T3-L1 adipocytes. •Long-term hypoxia increased basal lipolysis in 3T3-L1 adipocytes. •Hypoxia decreased lipid-associated proteins in 3T3-L1 adipocytes. •Hypoxia decreased basal glucose uptake and lipogenic proteins in 3T3-L1 adipocytes. •Hypoxia-mediated lipogenesis may be an attractive therapeutic target against obesity. -- Abstract: Background: A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modest hypoxia on adipocyte function. Methods: Differentiated 3T3-L1 adipocytes were incubated at 5% O{sub 2} for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC). Results: HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01). Conclusion: We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet size via

  19. Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes.

    PubMed

    Ueda, Manabu; Furuyashiki, Takashi; Yamada, Kayo; Aoki, Yukiko; Sakane, Iwao; Fukuda, Itsuko; Yoshida, Ken-Ichi; Ashida, Hitoshi

    2010-11-01

    In this study, we investigated the effects of tea catechins on the translocation of glucose transporter (GLUT) 4 in 3T3-L1 adipocytes. We found that the ethyl acetate fraction of green tea extract, containing abundant catechins, most decreased insulin-induced glucose uptake activity in 3T3-L1 cells. When the cells were treated with 50 μM catechins in the absence or presence of insulin for 30 min, nongallate-type catechins increased glucose uptake activity without insulin, whereas gallate-type catechins decreased insulin-induced glucose uptake activity. (-)-Epicatechin (EC) and (-)-epigallocatechin (EGC), nongallate-type catechins, increased glucose uptake activity in the dose- and time-dependent manner, whereas (-)-catechin 3-gallate (Cg) and (-)-epigallocatechin 3-gallate (EGCg), gallate-type catechins, decreased insulin-induced glucose uptake activity in the dose- and time-dependent manner. When the cells were treated with 50 μM catechins for 30 min, EC and EGC promoted GLUT4 translocation, whereas Cg and EGCg decreased the insulin-induced translocation in the cells. EC and EGC increased phosphorylation of PKCλ/ζ without phosphorylation of insulin receptor (IR) and Akt. Wortmannin and LY294002, inhibitors for phosphatidylinositol 3'-kinase (PI3K), decreased EC- and EGC-induced glucose uptake activity in the cells. Cg and EGCg decreased phosphorylation of PKCλ/ζ in the presence of insulin without affecting insulin-induced phosphorylation of IR, and Akt. Therefore, EC and EGC promote the translocation of GLUT4 through activation of PI3K, and Cg and EGCg inhibit insulin-induced translocation of GLUT4 by the insulin signaling pathway in 3T3-L1 cells.

  20. Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation. Inter-tissue and inter-species expression of CPT I and CPT II enzymes.

    PubMed Central

    Brown, N F; Hill, J K; Esser, V; Kirkland, J L; Corkey, B E; Foster, D W; McGarry, J D

    1997-01-01

    The outer mitochondrial membrane enzyme carnitine palmitoyltransferase I (CPT I) represents the initial and regulated step in the beta-oxidation of fatty acids. It exists in at least two isoforms, denoted L (liver) and M (muscle) types, with very different kinetic properties and sensitivities to malonyl-CoA. Here we have examined the relative expression of the CPT I isoforms in two different models of adipocyte differentiation and in a number of rat tissues. Adipocytes from mice, hamsters and humans were also evaluated. Primary monolayer cultures of undifferentiated rat preadipocytes expressed solely L-CPT I, but significant levels of M-CPT I emerged after only 3 days of differentiation in vitro; in the mature cell M-CPT I predominated. In sharp contrast, the murine 3T3-L1 preadipocyte expressed essentially exclusively L-CPT I, both in the undifferentiated state and throughout the differentiation process in vitro. This was also true of the mature mouse white fat cell. Fully developed adipocytes from the hamster and human behaved similarly to those of the rat. Thus the mouse white fat cell differs fundamentally from those of the other species examined in terms of tis choice of a key regulatory enzyme in fatty acid metabolism. In contrast, brown adipose tissue from all three rodents displayed the same isoform profiles, each expressing overwhelmingly M-CPT I. Northern blot analysis of other rat tissues established L-CPT I as the dominant isoform not only in liver but also in kidney, lung, ovary, spleen, brain, intestine and pancreatic islets. In addition to its primacy in skeletal muscle, heart and fat, M-CPT I was also found to dominate the testis. The same inter-tissue isoform pattern (with the exception of white fat) was found in the mouse. Taken together, the data bring to light an intriguing divergence between white adipocytes of the mouse and other mammalian species. They also raise a cautionary note that should be considered in the choice of animal model used

  1. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  2. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes.

    PubMed

    Ariemma, Fabiana; D'Esposito, Vittoria; Liguoro, Domenico; Oriente, Francesco; Cabaro, Serena; Liotti, Antonietta; Cimmino, Ilaria; Longo, Michele; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1 nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2) and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases.

  3. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes

    PubMed Central

    Ariemma, Fabiana; D’Esposito, Vittoria; Liguoro, Domenico; Oriente, Francesco; Cabaro, Serena; Liotti, Antonietta; Cimmino, Ilaria; Longo, Michele; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2) and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases. PMID:26942597

  4. Prednisolone induces the Wnt signalling pathway in 3T3-L1 adipocytes.

    PubMed

    Fleuren, Wilco W M; Linssen, Margot M L; Toonen, Erik J M; van der Zon, Gerard C M; Guigas, Bruno; de Vlieg, Jacob; Dokter, Wim H A; Ouwens, D Margriet; Alkema, Wynand

    2013-05-01

    Synthetic glucocorticoids are potent anti-inflammatory drugs but show dose-dependent metabolic side effects such as the development of insulin resistance and obesity. The precise mechanisms involved in these glucocorticoid-induced side effects, and especially the participation of adipose tissue in this are not completely understood. We used a combination of transcriptomics, antibody arrays and bioinformatics approaches to characterize prednisolone-induced alterations in gene expression and adipokine secretion, which could underlie metabolic dysfunction in 3T3-L1 adipocytes. Several pathways, including cytokine signalling, Akt signalling, and Wnt signalling were found to be regulated at multiple levels, showing that these processes are targeted by prednisolone. These results suggest that mechanisms by which prednisolone induce insulin resistance include dysregulation of wnt signalling and immune response processes. These pathways may provide interesting targets for the development of improved glucocorticoids.

  5. Prednisolone induces the Wnt signalling pathway in 3T3-L1 adipocytes

    PubMed Central

    Fleuren, Wilco W. M.; Linssen, Margot M. L.; Toonen, Erik J. M.; van der Zon, Gerard C. M.; Guigas, Bruno; de Vlieg, Jacob; Dokter, Wim H. A.; Ouwens, D. Margriet

    2013-01-01

    Synthetic glucocorticoids are potent anti-inflammatory drugs but show dose-dependent metabolic side effects such as the development of insulin resistance and obesity. The precise mechanisms involved in these glucocorticoid-induced side effects, and especially the participation of adipose tissue in this are not completely understood. We used a combination of transcriptomics, antibody arrays and bioinformatics approaches to characterize prednisolone-induced alterations in gene expression and adipokine secretion, which could underlie metabolic dysfunction in 3T3-L1 adipocytes. Several pathways, including cytokine signalling, Akt signalling, and Wnt signalling were found to be regulated at multiple levels, showing that these processes are targeted by prednisolone. These results suggest that mechanisms by which prednisolone induce insulin resistance include dysregulation of wnt signalling and immune response processes. These pathways may provide interesting targets for the development of improved glucocorticoids. PMID:23506355

  6. Effects of crude drugs on glucose uptake in 3T3-L1 adipocytes.

    PubMed

    Hong, S J; Fong, J C; Hwang, J H

    2000-09-01

    In this study, various water-extracted crude drugs from Radix Asparagi, Radix Ginseng, Radix Scutellariae, Cortex Lycii Radicis, Cortex Phellodendri and Radix Ophiopogonis were investigated in their effects on [3H]-2-deoxyglucose uptake in 3T3-L1 adipocytes. Following treatment of cells with various crude drugs for 60 mim, the basal [3H]-2-deoxyglucose uptake in cultured 3T3-L1 cells was changed by Radix Asparagi from 140 pmole/min/mg protein of control to 513 (0.1 mg/ml), 201 (1 mg/ml) and 97 (10 mg/ml). Glucose uptake was changed to 324 (0.1 mg/ml), 146 (1 mg/ml) and 46 (10 mg/ml) with Radix Ginseng. In the presence of Radix Scutellariae, glucose uptake was changed to 215 (0.1 mg/ml), 213 (1 mg/ml) and 34 (10 mg/ml). In the presence of Cortex Lycii Radicis, glucose uptake was 230 (0.1 mg/ml), 188 (1 mg/ml) and 38 (10 mg/ml). In the case of Cortex Phellodendri and Radix Ophiopogonis, uptake was changed to 142 (0.1 mg/ml), 132 (1 mg/ml), 24 (10 mg/ml) and 489 (0.1 mg/ml), 374 (1 mg/ml), 344 (10 mg/ml), respectively. In insulin-stimulated cells, the [3H]-2-deoxyglucose uptake was changed by Radix Asparagi from 570 pmole/min/mg protein of the control to 816 (0.1 mg/ml), 674 (1 mg/ml) and 532 (10 mg/ml). After incubation with Radix Ginseng, the glucose uptake was changed to 254 (0.1 mg/mi), 123 (1 mg/mi) to 76 (10 mg/mi). In the presence of Radix Scutellariae, the glucose uptake was changed to 315 (0.1 mg/ml), 265 (1 mg/ml) and 33 (10 mg/ml). After incubation of Cortex Lycii Radicis, the uptake activity was changed to 281 (0.1 mg/ml), 248 (1 mg/ml) and 37 (10 mg/ml). In the case of Cortex Phellodendri and Radix Ophiopogonis, the activity of glucose uptake was measured as 747 (0.1 mg/ml), 523 (1 mg/ml), 33 (10 mg/ml) and 753 (0.1 mg/ml), 740 (1 mg/ml), and 421 (10 mg/ml), respectively. These results indicate that the water-extracted materials of Radix Asparagi and Radix Ophiopogonis increase the glucose uptake in basal and insulin-stimulated 3T3-L1 adipocytes.

  7. Permethrin potentiates adipogenesis via intracellular calcium and endoplasmic reticulum stress-mediated mechanisms in 3T3-L1 adipocytes.

    PubMed

    Xiao, Xiao; Qi, Weipeng; Clark, John M; Park, Yeonhwa

    2017-09-06

    Permethrin, a pyrethroid insecticide, was previously reported to promote adipogenesis in vitro and weight gain in vivo. The mechanism by which permethrin promotes adipogenesis/obesity, however, has not been fully explored. Intracellular calcium and endoplasmic reticulum (ER) stress have been reported to be linked with adipogenesis and obesity. Because pyrethroid insecticides have been determined to influence intracellular calcium and ER stress in vitro, the purpose of this current study was to investigate whether permethrin potentiates adipogenesis via a change in intracellular calcium, leading to endoplasmic reticulum (ER) stress in 3T3-L1 adipocytes. 3T3-L1 cells were exposed to four different concentrations of permethrin (0.01, 0.1, 1 & 10 μM) for 6 days during differentiation. Treatment of permethrin increased intracellular calcium level in a concentration-dependent manner. Similarly, permethrin treatment increased protein levels of ER stress markers in a concentration-dependent manner. These data suggest that intracellular calcium and ER stress may be involved in permethrin-induced adipogenesis of 3T3-L1 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The role and possible mechanism of lncRNA U90926 in modulating 3T3-L1 preadipocyte differentiation.

    PubMed

    Chen, J; Liu, Y; Lu, S; Yin, L; Zong, C; Cui, S; Qin, D; Yang, Y; Guan, Q; Li, X; Wang, X

    2017-02-01

    Obesity is a risk factor for metabolic diseases, while preadipocyte differentiation or adipogenesis is closely related to obesity occurrence. Long noncoding RNAs (lncRNAs) are a unique class of transcripts in regulation of a variety of biological processes. Using cDNA microarray, we found lncRNA U90926 is negatively correlated with 3T3-L1 preadipocyte differentiation. The aim of this study was to explore the role of lncRNA U90926 (lnc-U90926) in adipogenesis and the underlying mechanisms. Quantitative real-time PCR (qPCR) was performed to determine lnc-U90926 expression in 3T3-L1 preadipocytes, differentiated adipocytes, and in adipose tissues form mice. RNA fluorescent in situ hybridization (FISH) was performed to determine the localization of lnc-U90926 in 3T3-L1 preadipocytes. The effects of lnc-U90926 on 3T3-L1 adipogenesis were analyzed with lentivirus-mediated gain- and loss-of-function experiments. Lipid accumulation was evaluated by oil red O staining; several adipogenesis makers were analyzed by qPCR and western blotting. Dual luciferase assay was applied to explore the transactivation of target genes modulated by lnc-U90926. All measurements were performed at least for three times. Lnc-U90926 expression decreased along the differentiation of 3T3-L1 preadipocytes. In mice, lnc-U90926 is predominantly expressed in adipose tissue. Obese mice have lower lnc-U90926 expression in subcutaneous and visceral adipose tissue than non-obese mice. FISH results showed that lnc-U90926 was mainly located in the cytoplasm. Overexpression lnc-U90926 attenuated 3T3-L1 adipocyte differentiation as evidenced by its ability to inhibit lipid accumulation, to decrease the mRNA levels of peroxisome proliferator-activated receptor gamma 2 (PPARγ2), fatty acid binding protein 4 (FABP4) and adiponectin (AdipoQ) as well as to reduce the protein levels of PPARγ and FABP4 (P<0.05). Knockdown of lnc-U90926 showed opposite effects, which increased mRNA expression of PPARγ2, FABP4

  9. The role and possible mechanism of lncRNA U90926 in modulating 3T3-L1 preadipocyte differentiation

    PubMed Central

    Chen, J; Liu, Y; Lu, S; Yin, L; Zong, C; Cui, S; Qin, D; Yang, Y; Guan, Q; Li, X; Wang, X

    2017-01-01

    Background: Obesity is a risk factor for metabolic diseases, while preadipocyte differentiation or adipogenesis is closely related to obesity occurrence. Long noncoding RNAs (lncRNAs) are a unique class of transcripts in regulation of a variety of biological processes. Using cDNA microarray, we found lncRNA U90926 is negatively correlated with 3T3-L1 preadipocyte differentiation. Objective: The aim of this study was to explore the role of lncRNA U90926 (lnc-U90926) in adipogenesis and the underlying mechanisms. Methods: Quantitative real-time PCR (qPCR) was performed to determine lnc-U90926 expression in 3T3-L1 preadipocytes, differentiated adipocytes, and in adipose tissues form mice. RNA fluorescent in situ hybridization (FISH) was performed to determine the localization of lnc-U90926 in 3T3-L1 preadipocytes. The effects of lnc-U90926 on 3T3-L1 adipogenesis were analyzed with lentivirus-mediated gain- and loss-of-function experiments. Lipid accumulation was evaluated by oil red O staining; several adipogenesis makers were analyzed by qPCR and western blotting. Dual luciferase assay was applied to explore the transactivation of target genes modulated by lnc-U90926. All measurements were performed at least for three times. Results: Lnc-U90926 expression decreased along the differentiation of 3T3-L1 preadipocytes. In mice, lnc-U90926 is predominantly expressed in adipose tissue. Obese mice have lower lnc-U90926 expression in subcutaneous and visceral adipose tissue than non-obese mice. FISH results showed that lnc-U90926 was mainly located in the cytoplasm. Overexpression lnc-U90926 attenuated 3T3-L1 adipocyte differentiation as evidenced by its ability to inhibit lipid accumulation, to decrease the mRNA levels of peroxisome proliferator-activated receptor gamma 2 (PPARγ2), fatty acid binding protein 4 (FABP4) and adiponectin (AdipoQ) as well as to reduce the protein levels of PPARγ and FABP4 (P<0.05). Knockdown of lnc-U90926 showed opposite effects, which

  10. Differential expression of fatty acid uptake in 3T3-L1 cells

    SciTech Connect

    Waggoner, D.; Bernlohr, D.A.

    1987-05-01

    Cultured 3T3-L1 cells have been used as a model system to investigate the mechanism of fatty acid uptake by adipose tissue. Using a 1:1 molar ratio of /sup 14/C-oleate and defatted bovine serum albumin (BSA), fatty acid (FA) uptake was quantitated at 4/sup 0/ and 37/sup 0/ as cell associated radioactivity. The profile of FA uptake in preadipocytes and adipocytes was biphasic; an initial rapid phase (1-20s) followed by a second slower phase (60-480s). At 37/sup 0/ the initial rate of FA accumulation in preadipocytes was identical to that in adipocytes, whereas the rate of accumulation during the second phase increased 7-fold (100 ..mu..M total FA) as a consequence of adipose conversion. When uptake measurements were made at 4/sup 0/ in adipocytes, the initial rate was identical to that at 37/sup 0/, however the rate of second phase decreased 5-fold. Incubation of /sup 14/C-BSA and nonradiolabeled FA with adipocyte monolayers (100 ..mu..M total FA) resulted in the rapid association (t/sub 1/2/ = 20s) of the BSA-FA complex with the cell surface. Incubation of 100, 10, and 1 ..mu..M total FA with adipocytes resulted in a 50-fold change in FA accumulation during the second phase. These results suggest that (1) FA uptake is significantly increased after differentiation, suggesting the participation of specialized proteins, (2) the temperature-insensitive initial FA accumulation can be attributed to rapid association of the BSA-FA complex to the cell surface, (3) the second phase of FA accumulation represents uptake.

  11. Ursolic Acid Inhibits Adipogenesis in 3T3-L1 Adipocytes through LKB1/AMPK Pathway

    PubMed Central

    He, Yonghan; Li, Ying; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-01-01

    Background Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. Objective As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. Methods and Results The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. Conclusions Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway

  12. Sortilin and retromer mediate retrograde transport of Glut4 in 3T3-L1 adipocytes

    PubMed Central

    Pan, Xiang; Zaarur, Nava; Singh, Maneet; Morin, Peter; Kandror, Konstantin V.

    2017-01-01

    Sortilin is a multiligand sorting receptor responsible for the anterograde transport of lysosomal enzymes and substrates. Here we demonstrate that sortilin is also involved in retrograde protein traffic. In cultured 3T3-L1 adipocytes, sortilin together with retromer rescues Glut4 from degradation in lysosomes and retrieves it to the TGN, where insulin-­responsive vesicles are formed. Mechanistically, the luminal Vps10p domain of sortilin interacts with the first luminal loop of Glut4, and the cytoplasmic tail of sortilin binds to retromer. Ablation of the retromer does not affect insulin signaling but decreases the stability of sortilin and Glut4 and blocks their entry into the small vesicular carriers. As a result, Glut4 cannot reach the insulin-responsive compartment, and insulin-stimulated glucose uptake in adipocytes is suppressed. We suggest that sortilin- and retromer-mediated Glut4 retrieval from endosomes may represent a step in the Glut4 pathway vulnerable to the development of insulin resistance and diabetes. PMID:28450454

  13. Mogrol Derived from Siraitia grosvenorii Mogrosides Suppresses 3T3-L1 Adipocyte Differentiation by Reducing cAMP-Response Element-Binding Protein Phosphorylation and Increasing AMP-Activated Protein Kinase Phosphorylation

    PubMed Central

    Harada, Naoki; Ishihara, Mikako; Horiuchi, Hiroko; Ito, Yuta; Tabata, Hiromitsu; Suzuki, Yasushi A.; Nakano, Yoshihisa; Yamaji, Ryoichi; Inui, Hiroshi

    2016-01-01

    This study investigated the effects of mogrol, an aglycone of mogrosides from Siraitia grosvenorii, on adipogenesis in 3T3-L1 preadipocytes. Mogrol, but not mogrosides, suppressed triglyceride accumulation by affecting early (days 0–2) and late (days 4–8), but not middle (days 2–4), differentiation stages. At the late stage, mogrol increased AMP-activated protein kinase (AMPK) phosphorylation and reduced glycerol-3-phosphate dehydrogenase activity. At the early stage, mogrol promoted AMPK phosphorylation, inhibited the induction of CCAAT/enhancer-binding protein β (C/EBPβ; a master regulator of adipogenesis), and reduced 3T3-L1 cell contents (e.g., clonal expansion). In addition, mogrol, but not the AMPK activator AICAR, suppressed the phosphorylation and activity of the cAMP response element-binding protein (CREB), which regulates C/EBPβ expression. These results indicated that mogrol suppressed adipogenesis by reducing CREB activation in the initial stage of cell differentiation and by activating AMPK signaling in both the early and late stages of this process. PMID:27583359

  14. Advanced oxidation protein products inhibit differentiation and activate inflammation in 3T3-L1 preadipocytes.

    PubMed

    Zhou, Qiu Gen; Peng, Xin; Hu, Li Li; Xie, Di; Zhou, Min; Hou, Fan Fan

    2010-10-01

    Accumulation of advanced oxidation protein products (AOPPs) is prevalent in metabolic syndromes, a condition with impaired preadipocytes differentiation. In the present study, we tested the hypothesis that AOPPs disturb preadipocyte differentiation. Exposure of 3T3-L1 preadipocytes to increased levels of AOPPs inhibited accumulation of intracellular triglyceride and decreased the expression of the essential markers of matured adipocytes, such as adipocyte fatty-acid-binding protein (aP2), CAAT/enhancer-binding protein (C/EBP)-alpha, and peroxisome proliferator-activated receptor (PPAR)-gamma, in response to standard adipogenic induction. Inhibitory effects of AOPPs on preadipocytes differentiation was time sensitive, which occurred at the early stage of differentiation. In the presence of AOPPs, induction of preadipocytes differentiation resulted in upregulated expression of C/EBP homologous protein (CHOP) and CUG-Triplet repeat-binding protein (CUGBP), two important inhibitors of preadipocytes differentiation. In addition, treatment with AOPPs increased abundance of C/EBP-beta-liver enriched inhibitory protein (C/EBP-beta-LIP), a truncated C/EBP-beta isoform without adipogenic activity. Moreover, AOPPs-treated preadipocytes expressed a macrophage marker F4/80 and overexpressed tumor necrosis factor-alpha and interleukin-6 via nuclear factor-kappaB (NF-kappaB)-dependent pathway. However, blocking inflammation with NF-kappaB inhibitor failed to improve AOPPs-induced inhibition of preadipocytes differentiation. These data suggest that accumulation of AOPPs may inhibit differentiation of preadipocytes and activate inflammation in these cells. This information might have implication for understanding the impairment of preadipocytes differentiation and fat inflammation seen in metabolic syndrome.

  15. Kisspeptin-10 inhibits proliferation and regulates lipolysis and lipogenesis processes in 3T3-L1 cells and isolated rat adipocytes.

    PubMed

    Pruszyńska-Oszmałek, Ewa; Kołodziejski, Paweł A; Sassek, Maciej; Sliwowska, Joanna H

    2017-04-01

    Kisspeptin, which is encoded by the KISS1 gene and acts via GPR54, plays a role in the regulation of reproductive functions. Expression of KISS1 and GRPR54 has been found in peripheral tissues, including adipose tissue, and was shown to be influenced by metabolic status. We hypothesized that kisspeptin could be involved in regulation of lipid metabolism in the mouse 3T3-L1 cell line and in isolated rat adipocytes. First, we characterized expression profiles of KISS1 and GPR54 mRNA and proteins in adipose cells isolated from male rats. Secondly, we studied the effects of kisspeptin-10 on cell proliferation and survival in 3T3-L1 cells. Thirdly, we assessed the rapid action of kisspeptin-10 on lipid metabolism and glucose uptake using 3T3-L1 cells and rat primary adipocytes. Finally, we examined the effects of kisspeptin-10 on the secretion of leptin and adiponectin in rat adipocytes. We have found that: (1) KISS1 and GPR54 were expressed in mouse 3T3-L1 cells and isolated rat adipocytes; (2) kisspeptin-10: (i) inhibited cell proliferation, viability and adipogenesis in 3T3-L1 and decreased expression of PPAR-γ and CEBPβ-genes, which are involved in the differentiation processes and adipogenesis; (ii) increased lipolysis in 3T3-L1 cells and rat adipocytes by enhancing expression of periliphin and hormone-sensitive lipase; (iii) modulated glucose uptake and lipogenesis; (iv) stimulated leptin and decreased adiponectin secretion from rat adipocytes. Kisspeptin-10 could play a role in the regulation of lipid metabolism in mouse 3T3-L1 cells and rat adipocytes.

  16. Nigericin inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes.

    PubMed

    Chu, Chih-Ying; Kao, Ying-Shun; Fong, Jim C

    2002-01-01

    We used nigericin, a K+/H+ exchanger, to test whether glucose transport in 3T3-L1 adipocytes was modulated by changes in intracellular pH. Our results showed that nigericin increased basal but decreased insulin-stimulated glucose uptake in a time- and dose-dependent manner. Whereas the basal translocation of GLUT1 was enhanced, insulin-stimulated GLUT4 translocation was inhibited by nigericin. On the other hand, the total amount of neither transporter protein was altered. The finding that insulin-stimulated phosphoinositide 3-kinase (PI 3-kinase) activity was not affected by nigericin implies that nigericin exerted its inhibition at a step downstream of PI 3-kinase activation. At maximal dose, nigericin rapidly lowered cytosolic pH to 6.7; however, this effect was transient and cytosolic pH was back to normal in 20 min. Removal of nigericin from the incubation medium after 20 min abolished its enhancing effect on basal but had little influence on its inhibition of insulin-stimulated glucose transport. Moreover, lowering cytosolic pH to 6.7 with an exogenously added HCl solution had no effect on glucose transport. Taken together, it appears that nigericin may inhibit insulin-stimulated glucose transport mainly by interfering with GLUT4 translocation, probably by a mechanism not related to changes in cytosolic pH.

  17. A new diarylheptanoid from Alpinia officinarum promotes the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Zhang, Xuguang; Zhang, Xiaopo; Wang, Yong; Chen, Feng; Li, Youbin; Li, Yonghui; Tan, Yinfeng; Gong, Jingwen; Zhong, Xia; Li, Hailong; Zhang, Junqing

    2017-05-25

    A new diarylheptanoid, namely trans-(4R,5S)-epoxy-1,7-diphenyl-3-heptanone (1), and a new natural product, 7-(4″-hydroxy-3″-methoxyphenyl)-1-phenyl-hepta-4E,6E-dien-3-one (2), were obtained from the aqueous extract of Alpinia officinarum Hance, together with three other diarylheptanoids, 5-hydroxy-1,7-diphenyl-3-heptanone (3), 1,7-diphenyl-4E-en-3-heptanone (4) and 5-methoxy-1,7-diphenyl-3-heptanone (5). The structures were characterised mainly by analysing their physical data including IR, NMR and HRMS. This study highlights that the 4,5-epoxy moiety in 1 is rarely seen in diarylheptanoids. In addition, the five isolates were tested for their differentiation activity of 3T3-L1 preadipocytes. The results showed that these compounds could dose-dependently promote adipocyte differentiation without cytotoxicity (IC50 > 100 μM).

  18. Microsomal Triglyceride Transfer Protein (MTP) Associates with Cytosolic Lipid Droplets in 3T3-L1 Adipocytes.

    PubMed

    Love, Joseph D; Suzuki, Takashi; Robinson, Delia B; Harris, Carla M; Johnson, Joyce E; Mohler, Peter J; Jerome, W Gray; Swift, Larry L

    2015-01-01

    Lipid droplets are intracellular energy storage organelles composed of a hydrophobic core of neutral lipid, surrounded by a monolayer of phospholipid and a diverse array of proteins. The function of the vast majority of these proteins with regard to the formation and/or turnover of lipid droplets is unknown. Our laboratory was the first to report that microsomal triglyceride transfer protein (MTP), a lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins, was expressed in adipose tissue of humans and mice. In addition, our studies suggested that MTP was associated with lipid droplets in both brown and white fat. Our observations led us to hypothesize that MTP plays a key role in lipid droplet formation and/or turnover. The objective of these studies was to gain insight into the function of MTP in adipocytes. Using molecular, biochemical, and morphologic approaches we have shown: 1) MTP protein levels increase nearly five-fold as 3T3-L1 cells differentiate into adipocytes. 2) As 3T3-L1 cells undergo differentiation, MTP moves from the juxtanuclear region of the cell to the surface of lipid droplets. MTP and perilipin 2, a major lipid droplet surface protein, are found on the same droplets; however, MTP does not co-localize with perilipin 2. 3) Inhibition of MTP activity has no effect on the movement of triglyceride out of the cell either as a lipid complex or via lipolysis. 4) MTP is found associated with lipid droplets within hepatocytes from human fatty livers, suggesting that association of MTP with lipid droplets is not restricted to adipocytes. In summary, our data demonstrate that MTP is a lipid droplet-associated protein. Its location on the surface of the droplet in adipocytes and hepatocytes, coupled with its known function as a lipid transfer protein and its increased expression during adipocyte differentiation suggest a role in lipid droplet biology.

  19. Microsomal Triglyceride Transfer Protein (MTP) Associates with Cytosolic Lipid Droplets in 3T3-L1 Adipocytes

    PubMed Central

    Robinson, Delia B.; Harris, Carla M.; Johnson, Joyce E.; Mohler, Peter J.; Jerome, W. Gray; Swift, Larry L.

    2015-01-01

    Lipid droplets are intracellular energy storage organelles composed of a hydrophobic core of neutral lipid, surrounded by a monolayer of phospholipid and a diverse array of proteins. The function of the vast majority of these proteins with regard to the formation and/or turnover of lipid droplets is unknown. Our laboratory was the first to report that microsomal triglyceride transfer protein (MTP), a lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins, was expressed in adipose tissue of humans and mice. In addition, our studies suggested that MTP was associated with lipid droplets in both brown and white fat. Our observations led us to hypothesize that MTP plays a key role in lipid droplet formation and/or turnover. The objective of these studies was to gain insight into the function of MTP in adipocytes. Using molecular, biochemical, and morphologic approaches we have shown: 1) MTP protein levels increase nearly five-fold as 3T3-L1 cells differentiate into adipocytes. 2) As 3T3-L1 cells undergo differentiation, MTP moves from the juxtanuclear region of the cell to the surface of lipid droplets. MTP and perilipin 2, a major lipid droplet surface protein, are found on the same droplets; however, MTP does not co-localize with perilipin 2. 3) Inhibition of MTP activity has no effect on the movement of triglyceride out of the cell either as a lipid complex or via lipolysis. 4) MTP is found associated with lipid droplets within hepatocytes from human fatty livers, suggesting that association of MTP with lipid droplets is not restricted to adipocytes. In summary, our data demonstrate that MTP is a lipid droplet-associated protein. Its location on the surface of the droplet in adipocytes and hepatocytes, coupled with its known function as a lipid transfer protein and its increased expression during adipocyte differentiation suggest a role in lipid droplet biology. PMID:26267806

  20. Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes

    PubMed Central

    de Oliveira, Miriane; Síbio, Maria Teresa De; Olimpio, Regiane Marques Castro; Moretto, Fernanda Cristina Fontes; Luvizotto, Renata de Azevedo Melo; Nogueira, Celia Regina

    2015-01-01

    Objective To study the effect of different doses of triiodothyronine on gene expression of the adipokines leptin and adiponectin, at different times, and to evaluate the difference in expression between the two adipokines in each group. Methods 3T3-L1 adipocytes were incubated with triiodothyronine at physiological dose (10nM) and supraphysiological doses (100nM or 1,000nM), or without triiodothyronine (control, C) for 0.5, 6, or 24 hours. Leptin and adiponectin mRNA was detected using real-time polymerase chain reaction (RT-PCR). One-way analyses of variance, Tukey’s test or Student’s t test, were used to analyze data, and significance level was set at 5%. Results Leptin levels decreased in the 1,000nM-dose group after 0.5 hour. Adiponectin levels dropped in the 10nM-dose group, but increased at the 100nM dose. After 6 hours, both genes were suppressed in all hormone concentrations. After 24 hours, leptin levels increased at 10, 100 and 1,000nM groups as compared to the control group; and adiponectin levels increased only in the 100nM group as compared to the control group. Conclusion These results demonstrated fast actions of triiodothyronine on the leptin and adiponectin expression, starting at 0.5 hour, at a dose of 1,000nM for leptin and 100nM for adiponectin. Triiodothyronine stimulated or inhibited the expression of adipokines in adipocytes at different times and doses which may be useful to assist in the treatment of obesity, assuming that leptin is increased and adiponectin is decreased, in obesity cases. PMID:25993072

  1. Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes.

    PubMed

    Hao, Jiejie; Shen, Weili; Yu, Guangli; Jia, Haiqun; Li, Xuesen; Feng, Zhihui; Wang, Ying; Weber, Peter; Wertz, Karin; Sharman, Edward; Liu, Jiankang

    2010-07-01

    Hydroxytyrosol (HT) in extra-virgin olive oil is considered one of the most important polyphenolic compounds responsible for the health benefits of the Mediterranean diet for lowering incidence of cardiovascular disease, the most common and most serious complication of diabetes. We propose that HT may prevent these diseases by a stimulation of mitochondrial biogenesis that leads to enhancement of mitochondrial function and cellular defense systems. In the present study, we investigated effects of HT that stimulate mitochondrial biogenesis and promote mitochondrial function in 3T3-L1 adipocytes. HT over the concentration range of 0.1-10 micromol/L stimulated the promoter transcriptional activation and protein expression of peroxisome proliferator-activated receptor (PPAR) coactivator 1 alpha (PPARGC1 alpha, the central factor for mitochondrial biogenesis) and its downstream targets; these included nuclear respiration factors 1 and 2 and mitochondrial transcription factor A, which leads to an increase in mitochondrial DNA (mtDNA) and in the number of mitochondria. Knockdown of Ppargc1 alpha by siRNA blocked HT's stimulating effect on Complex I expression and mtDNA copy number. The HT treatment resulted in an enhancement of mitochondrial function, including an increase in activity and protein expression of Mitochondrial Complexes I, II, III and V; increased oxygen consumption; and a decrease in free fatty acid contents in the adipocytes. The mechanistic study of the PPARGC1 alpha activation signaling pathway demonstrated that HT is an activator of 5'AMP-activated protein kinase and also up-regulates gene expression of PPAR alpha, CPT-1 and PPAR gamma. These data suggest that HT is able to promote mitochondrial function by stimulating mitochondrial biogenesis. (c) 2010 Elsevier Inc. All rights reserved.

  2. Soyasaponins Aa and Ab exert an anti-obesity effect in 3T3-L1 adipocytes through downregulation of PPARγ.

    PubMed

    Yang, Seung Hwan; Ahn, Eun-Kyung; Lee, Jung A; Shin, Tai-Sun; Tsukamoto, Chigen; Suh, Joo-won; Mei, Itabashi; Chung, Gyuhwa

    2015-02-01

    Saponins are a diverse group of biologically functional products in plants. Soyasaponins are usually glycosylated, which give rise to a wide diversity of structures and functions. In this study, we investigated the effects and molecular mechanism of soyasaponins Aa and Ab in regulating adipocyte differentiation and expression of adipogenic marker genes in 3T3-L1 adipocytes. Soyasaponins Aa and Ab dose-dependently inhibited the accumulation of lipids and the expression of adiponectin, adipocyte determination and differentiation factor 1/sterol regulatory element binding protein 1c, adipocyte fatty acid-binding protein 2, fatty acid synthase, and resistin in 3T3-L1 adipocytes. In addition, soyasaponins Aa and Ab suppressed the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ) in HEK 293T cells. Furthermore, we confirmed that the expression of PPARγ and of CCAAT-enhancer-binding protein α (C/EBPα) was suppressed at both the mRNA and protein levels in 3T3-L1 adipocytes by treatment with soyasaponins Aa and Ab. Taken together, these findings indicate that soyasaponin Aa and Ab markedly inhibit adipocyte differentiation and expression of various adipogenic marker genes through the downregulation of the adipogenesis-related transcription factors PPARγ and C/EBPα in 3T3-L1 adipocytes.

  3. Soluble extract of soybean fermented with Aspergillus oryzae GB107 inhibits fat accumulation in cultured 3T3-L1 adipocytes.

    PubMed

    So, Kyoung-Ha; Suzuki, Yasuki; Yonekura, Shinichi; Suzuki, Yutaka; Lee, Chan Ho; Kim, Sung Woo; Katoh, Kazuo; Roh, Sang-Gun

    2015-08-01

    This study was conducted to investigate the effects of fermented soybean (FS) extract on adipocyte differentiation and fat accumulation using cultured 3T3-L1 adipocytes. 3T3-L1 adipocytes were treated with FS and nonfermented soybean (NFS) extract during differentiation for 10 days in vitro. Oil red O staining was performed and glycerol-3-phosphate dehydrogenase (GPDH) activity was measured for analysis of fat accumulation. Expressions of adipogenic genes were measured. Soluble extract of soybean fermented with Aspergillus oryzae GB107 contained higher levels of low-molecular-weight protein than conventional soybean protein did. FS extract (50 µg/ml) inhibited adipocyte differentiation and fat accumulation during differentiation of 3T3-L1 preadipocytes for 10 days in vitro. Significantly lower GPDH activity was observed in differentiated adipocytes treated with the FS extract than those treated with NFS extract. Treatment with FS extract resulted in decreased expression levels of leptin, adiponectin, and adipogenin genes, which are associated with adipogenesis. This report is the first to demonstrate that the water-soluble extract from FS inhibits fat accumulation and lipid storage in 3T3-L1 adipocytes. Thus, the soybean extract fermented with A. oryzae GB107 could be used to control lipid accumulation in adipocytes.

  4. Effects of alpha-lipoic acid on chemerin secretion in 3T3-L1 and human adipocytes.

    PubMed

    Prieto-Hontoria, Pedro L; Pérez-Matute, Patricia; Fernández-Galilea, Marta; López-Yoldi, Miguel; Sinal, Christopher J; Martínez, J Alfredo; Moreno-Aliaga, María J

    2016-03-01

    Chemerin is a novel adipokine associated with obesity and insulin resistance. α-Lipoic acid (α-LA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of α-LA on chemerin production in adipocytes in absence or presence of TNF-α, insulin and AICAR. The potential signaling pathways involved in α-LA effects on chemerin were also analyzed. α-LA actions on chemerin were tested in differentiated 3T3-L1 adipocytes and in some cases in human subcutaneous and omental adipocytes. Chemerin mRNA levels were measured by RT-PCR and the amount of chemerin secreted to culture media was determined by ELISA. α-LA induced a concentration-dependent inhibition on both chemerin secretion and mRNA levels in 3T3-L1 adipocytes. The AMPK activator AICAR and the PI3K inhibitor LY294002 dramatically abrogated both chemerin secretion and gene expression, and further potentiated the inhibitory effect of α-LA on chemerin secretion. Insulin was able to partially reverse the inhibitory action of α-LA on chemerin secretion. α-LA also reduced basal chemerin secretion in both subcutaneous and omental adipocytes from overweight/obese subjects. Moreover, α-LA was able to abolish the stimulatory effects of the pro-inflammatory cytokine TNF-α on chemerin secretion. Our data demonstrated the ability of α-LA to inhibit chemerin production, an adipokine associated to obesity and metabolic syndrome, suggesting that the reduction of chemerin could contribute to the antiobesity/antidiabetic properties described for α-LA. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Pronuciferine and nuciferine inhibit lipogenesis in 3T3-L1 adipocytes by activating the AMPK signaling pathway.

    PubMed

    Ma, Chengjun; Li, Gang; He, Yanfeng; Xu, Bo; Mi, Xiangquan; Wang, Honglun; Wang, Zhenhua

    2015-09-01

    Nelumbo nucifera (Gaertn.) leaves are used widely in modulating obesity in traditional Chinese medicine. Our previous work demonstrated that aporphine alkaloids from it increased the glucose consumption in mature 3T3-L1 adipocytes. However, the underlying mechanisms of this increase remain unclear. Here we investigated the modulating effects of pronuciferine and nuciferine on lipogenesis and glucose uptake in insulin resistant 3T3-L1 adipocytes in vitro. Insulin resistant 3T3-L1 mature adipocytes were induced with dexamethasone, 3-isobutyl-methylxanthine and insulin. The lipid droplets and the intracellular triglyceride contents in mature adipocytes were detected by Oil red O staining and colorimetry respectively. The glucose uptake was measured with a fluorescent deoxyglucose analog (2-NBDG). The glucose transporter type 4 (GLUT-4) expression was measured by fluorescent-immunohistochemistry and the activation of 5'-AMP-activated protein kinase (AMPK) was detected by its alpha subunit phosphorylation. Both nuciferine and pronuciferine treatments significantly decreased the lipid droplets and the intracellular triglyceride contents but increased the glucose uptake in the insulin resistant 3T3-L1 adipocytes. Furthermore, both pronuciferine and nuciferine showed the ability to up-regulate the expression of GLUT4, triggering the phosphorylation of AMPK in mature 3T3-L1 adipocytes, although pronuciferine exhibited a more powerful effect compared to nuciferine. In summary, all the results demonstrate that pronuciferine and nuciferine ameliorate the glucose and lipid metabolism in insulin-resistant 3T3-L1 adipocytes, which might be due to the activation of the AMPK signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Pseudoginsenoside F11, a Novel Partial PPARγ Agonist, Promotes Adiponectin Oligomerization and Secretion in 3T3-L1 Adipocytes

    PubMed Central

    Wu, Guoyu; Yi, Junyang; Liu, Ling; Wang, Pengcheng; Zhang, Zhijie

    2013-01-01

    PPARγ is a nuclear hormone receptor that functions as a master regulator of adipocyte differentiation and development. Full PPARγ agonists, such as the thiazolidinediones (TZDs), have been widely used to treat type 2 diabetes. However, they are characterized by undesirable side effects due to their strong agonist activities. Pseudoginsenoside F11 (p-F11) is an ocotillol-type ginsenoside isolated from Panax quinquefolium L. (American ginseng). In this study, we found that p-F11 activates PPARγ with modest adipogenic activity. In addition, p-F11 promotes adiponectin oligomerization and secretion in 3T3-L1 adipocytes. We also found that p-F11 inhibits obesity-linked phosphorylation of PPARγ at Ser-273 by Cdk5. Therefore, p-F11 is a novel partial PPARγ agonist, which might have the potential to be developed as a new PPARγ-targeted therapeutics for type 2 diabetes. PMID:24454336

  7. Dimethylfumarate suppresses adipogenic differentiation in 3T3-L1 preadipocytes through inhibition of STAT3 activity.

    PubMed

    Kang, Hyeon-Ji; Seo, Hyun-Ae; Go, Younghoon; Oh, Chang Joo; Jeoung, Nam Ho; Park, Keun-Gyu; Lee, In-Kyu

    2013-01-01

    The excessive accumulation of adipocytes contributes to the development of obesity and obesity-related diseases. The interactions of several transcription factors, such as C/EBPβ, PPARγ, C/EBPα, Nrf2, and STAT3, are required for adipogenic differentiation. Dimethylfumarate (DMF), an immune modulator and antioxidant, may function as an inhibitor of STAT3 and an activator of Nrf2. This study examined whether DMF inhibits adipogenic differentiation of 3T3-L1 preadipocytes by inhibiting STAT3 or activating Nrf2. DMF suppressed 3T3-L1 preadipocyte differentiation to mature adipocytes in a dose-dependent manner as determined by Oil Red O staining. The mRNA and protein levels of adipogenic genes, including C/EBPβ, C/EBPα, PPARγ, SREBP-1c, FAS, and aP2, were significantly lower in DMF-treated 3T3-L1 preadipocytes. Suppression of adipogenic differentiation by DMF treatment resulted primarily from inhibition of the early stages of differentiation. DMF inhibits clonal expansion during adipogenic differentiation through induction of a G1 cell cycle arrest. Additionally, DMF regulates cell cycle-related proteins, such as p21, pRb, and cyclin D. DMF treatment markedly inhibited differentiation medium-induced STAT3 phosphorylation and inhibited STAT3 transcriptional activation of a reporter construct composed of four synthetic STAT3-response elements. Moreover, inhibition of endogenous Nrf2 activity using a dominant negative Nrf2 did not abolish the DMF-induced inhibition of adipogenic differentiation of 3T3-L1 preadipocytes. In summary, DMF is a negative regulator of adipogenic differentiation based on its regulation of adipogenic transcription factors and cell cycle proteins. This negative regulation by DMF is mediated by STAT3 inhibition, but is unlikely to involve Nrf2 activation.

  8. HMGB1 is secreted by 3T3-L1 adipocytes through JNK signaling and the secretion is partially inhibited by adiponectin.

    PubMed

    Shimizu, Toshiaki; Yamakuchi, Munekazu; Biswas, Kamal Krishna; Aryal, Bibek; Yamada, Shingo; Hashiguchi, Teruto; Maruyama, Ikuro

    2016-09-01

    Obesity is a chronic inflammatory disease, and adipocytes contribute to obesity-associated inflammation by releasing inflammatory mediators. High mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, mainly localized to cell nuclei, has been recently recognized as an innate pro-inflammatory mediator when released extracellularly. It was hypothesized that HMGB1 is an adipocytokine that acts as an innate pro-inflammatory mediator in white adipose tissue (WAT) of patients with obesity and is associated with insulin resistance. Additionally, it was hypothesized that HMGB1 secretion is regulated by adiponectin. 3T3-L1 cells were differentiated into mature adipocytes. After tumor necrosis factor-α (TNF-α) stimulation, HMGB1 in culture media was measured. Localizations of HMGB1 in 3T3-L1 adipocytes and human WAT were examined by immunostaining. HMGB1 was secreted from TNF-α-induced 3T3-L1 adipocytes through JNK signaling. HMGB1-activated MAP kinases (ERK1/2, JNK) and suppressed insulin-stimulated Akt phosphorylation in 3T3-L1 adipocytes. The cytoplasm in 3T3-L1 adipocytes and adipocytes of WAT from a patient with obesity was intensely stained with HMGB1. Adiponectin partially inhibited TNF-α-induced HMGB1 secretion from 3T3-L1 adipocytes. These findings suggest that HMGB1 is a pro-inflammatory adipocytokine involved in WAT inflammation and insulin resistance in patients with obesity, which may contribute to the progression of metabolic syndrome, and that adiponectin protects against HMGB1-induced adipose tissue inflammation. © 2016 The Obesity Society.

  9. Effects of high glucose on caveolin-1 and insulin signaling in 3T3-L1 adipocytes.

    PubMed

    Palacios-Ortega, Sara; Varela-Guruceaga, Maider; Martínez, J Alfredo; de Miguel, Carlos; Milagro, Fermín I

    2016-01-01

    Adipocytes exposed to high glucose concentrations exhibit impaired metabolic function, including an increase of oxidative and proinflammatory factors that might favor the development of insulin resistance. Caveolin-1 (Cav-1) is a key mediator of the insulin transduction pathway whose expression is significantly enhanced during adipocyte differentiation. In this work, we studied the effects of high glucose concentration on the regulation of Cav-1 expression and activation and its relation to the insulin signaling pathway during the adipogenic process and in long-term differentiated adipocytes. Both, long-term high glucose exposure during adipogenesis and short-term glucose incubation of mature adipocytes, promoted triglyceride accumulation in 3T3-L1 cells. The short-term exposure of mature adipocytes to high glucose significantly reduced the sensitivity to insulin of Cav-1, insulin receptor (IR) and potein kinase B (AKT-2) phosphorylation, as well as insulin-induced deoxyglucose uptake. Adipocytes differentiated in the presence of high glucose lost Cav-1 and IR response to insulin-stimulated phosphorylation, but maintained the insulin sensitivity of AKT-2 phosphorylation and deoxyglucose uptake. Although long-term high glucose exposure increased DNA methylation in Cav-1 promoter, Cav-1 expression was not affected. Moreover, these cells showed an increase of Cav-1, IR and AKT-2 protein content, pointing to an adaptive response induced by the long-term high glucose exposure.

  10. Effects of high glucose on caveolin-1 and insulin signaling in 3T3-L1 adipocytes

    PubMed Central

    Palacios-Ortega, Sara; Varela-Guruceaga, Maider; Martínez, J. Alfredo; de Miguel, Carlos; Milagro, Fermín I.

    2016-01-01

    ABSTRACT Adipocytes exposed to high glucose concentrations exhibit impaired metabolic function, including an increase of oxidative and proinflammatory factors that might favor the development of insulin resistance. Caveolin-1 (Cav-1) is a key mediator of the insulin transduction pathway whose expression is significantly enhanced during adipocyte differentiation. In this work, we studied the effects of high glucose concentration on the regulation of Cav-1 expression and activation and its relation to the insulin signaling pathway during the adipogenic process and in long-term differentiated adipocytes. Both, long-term high glucose exposure during adipogenesis and short-term glucose incubation of mature adipocytes, promoted triglyceride accumulation in 3T3-L1 cells. The short-term exposure of mature adipocytes to high glucose significantly reduced the sensitivity to insulin of Cav-1, insulin receptor (IR) and potein kinase B (AKT-2) phosphorylation, as well as insulin-induced deoxyglucose uptake. Adipocytes differentiated in the presence of high glucose lost Cav-1 and IR response to insulin-stimulated phosphorylation, but maintained the insulin sensitivity of AKT-2 phosphorylation and deoxyglucose uptake. Although long-term high glucose exposure increased DNA methylation in Cav-1 promoter, Cav-1 expression was not affected. Moreover, these cells showed an increase of Cav-1, IR and AKT-2 protein content, pointing to an adaptive response induced by the long-term high glucose exposure. PMID:27144098

  11. [Comparison of Adipogenesis and Adipocyte Functions of 3T3-L1 Cells and Human Bone Marrow Mesenchymal Stem Cells In Vitro].

    PubMed

    Liu, Si-Hong; Wang, Hui; Zhai, Yuan-Mei; Zhu, Xiao-Yu; Zhang, Jing; Wan, Yun; Lu, Wei; Shi, Jun

    2015-12-01

    To compare the adipogenesis and the adipocyte function between 3T3-L1 cells and human bone marrow mesenchymal stem cells (MSCs) in vitro. By density gradient centrifugation and adherent culture, the MSCs were isolated from human bone marrow and purified. The cell morphology was observed under an inverted microscope. After the induction of adipogenic differentiation, the differentiation level was detected by oil red O staining and OD values. The expression of PPARγ, FABP4 and C/EBPα mRNA was detected by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Adipocytes and THP-1 cells were co-cultured by adding 1 µg/ml cytarabine. The ability of chemotherapy resistance was measured after 48 h. The Oil Red O staining and measuring the absorbance showed that the lipid content in 3T3-L1 cells group was more than that in MSCs group, and the OD value was higher than that in MSCs group (P < 0.05). The results of qRT-PCR showed that the relative expression of PPARγ, FABP4 and C/EBPα mRNA of 3T3-L1-derived adipocytes was higher than that of human bone marrow MSCs-derived adipocytes (P < 0.05). Coculture experiments showed that the number of viable THP-1 cells in the group containing adipocytes was more than that in the control group (P < 0.05). The difference between 3T3-L1 cell group and MSC group was statistically significant (P < 0.05). The ability of adipogenesis of 3T3-L1 cells is higher than that of human bone marrow MSCs in vitro. Adipocytes can protect THP-1 cell line against cytarabine, and the effect of adipocytes from 3T3-L1 cell group is greater than that from the human bone marrow MSC group.

  12. Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte.

    PubMed

    Choi, Bong-Hyuk; Ahn, In-Sook; Kim, Yu-Hee; Park, Ji-Won; Lee, So-Young; Hyun, Chang-Kee; Do, Myoung-Sool

    2006-12-31

    Berberine (BBR), an isoquinoline alkaloid, has a wide range of pharmacological effects, yet its exact mechanism is unknown. In order to understand the anti-adipogenic effect of BBR, we studied the change of expression of several adipogenic enzymes of 3T3-L1 cells by BBR treatment. First, we measured the change of leptin and glycerol in the medium of 3T3-L1 cells treated with 1 micrometer, 5 micrometer and 10 micrometer concentrations of BBR. We also measured the changes of adipogenic and lipolytic factors of 3T3-L1. In 3T3-L1 cells, both leptin and adipogenic factors (SREBP-1c, C/EBP-alpha, PPAR-gamma, fatty acid synthase, acetyl-CoA carboxylase, acyl-CoA synthase and lipoprotein lipase) were reduced by BBR treatment. Glycerol secretion was increased, whereas expression of lipolytic enzymes (hormone-sensitive lipase and perilipin) mRNA was slightly decreased. Next, we measured the change of inflammation markers of 3T3-L1 cells by BBR treatment. This resulted in the down-regulation of mRNA level of inflammation markers such as TNF-alpha, IL-6, C- reactive protein and haptoglobin. Taken together, our data shows that BBR has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect seems to be due to the down-regulation of adipogenic enzymes and transcription factors.

  13. Inhibition of Adipogenesis and Induction of Apoptosis and Lipolysis by Stem Bromelain in 3T3-L1 Adipocytes

    PubMed Central

    Dave, Sandeep; Kaur, Naval Jit; Nanduri, Ravikanth; Dkhar, H. Kitdorlang; Kumar, Ashwani; Gupta, Pawan

    2012-01-01

    The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt–TSC2–mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein Giα1, as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes. PMID:22292054

  14. Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes.

    PubMed

    Dave, Sandeep; Kaur, Naval Jit; Nanduri, Ravikanth; Dkhar, H Kitdorlang; Kumar, Ashwani; Gupta, Pawan

    2012-01-01

    The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein G(i)α(1), as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.

  15. MiR-185 inhibits 3T3-L1 cell differentiation by targeting SREBP-1.

    PubMed

    Ning, Chunyou; Li, Guilin; You, Lu; Ma, Yao; Jin, Long; Ma, Jideng; Li, Xuewei; Li, Mingzhou; Liu, Haifeng

    2017-09-01

    Adipogenesis involves a highly orchestrated series of complex events in which microRNAs (miRNAs) may play an essential role. In this study, we found that the miR-185 expression increased gradually during 3T3-L1 cells differentiation. To explore the role of miR-185 in adipogenesis, miRNA agomirs and antagomirs were used to perform miR-185 overexpression and knockdown, respectively. Overexpression of miR-185 dramatically reduced the mRNA expression of the adipogenic markers, PPARγ, FABP4, FAS, and LPL, and the protein level of PPARγ and FAS. MiR-185 overexpression also led to a notable reduction in lipid accumulation. In contrast, miR-185 inhibition promoted differentiation of 3T3-L1 cells. By target gene prediction and luciferase reporter assay, we demonstrated that sterol regulatory element binding protein 1 (SREBP-1) may be the target of miR-185. These results indicate that miR-185 negatively regulates the differentiation of 3T3-L1 cells by targeting SREBP-1, further highlighting the importance of miRNAs in adipogenesis.

  16. Real Time Monitoring of Inhibition of Adipogenesis and Angiogenesis by (−)-Epigallocatechin-3-Gallate in 3T3-L1 Adipocytes and Human Umbilical Vein Endothelial Cells

    PubMed Central

    Tang, Wenjing; Song, Huanlei; Cai, Wei; Shen, Xiuhua

    2015-01-01

    Little is known about the effect of (−)-epigallocatechin-3-gallate (EGCG) on angiogenesis in adipocytes. We aimed to test the effect of EGCG on the expression of vascular endothelial growth factor (VEGF) in adipocytes. The levels of VEGF secretion, the expression of VEGF message ribonucleic acid (mRNA) and VEGF protein in 3T3-L1 cells were measured by enzyme linked immunosorbent assay (ELISA), real time polymerase chain reaction (PCR), and immunofluorescence staining, respectively. The xCELLigence real time cell analysis system was used to study the growth and differentiation of 3T3-L1 preadipocytes. A coculture system was used to test the effects of 3T3-L1 cells on proliferation of human umbilical vein endothelial cells (HUVECs). The conditioned media derived from 3T3-L1 cells treated with or without EGCG was used to culture the HUVECs for a tube formation assay. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα), two transcription factors related to both adipogenesis and angiogenesis, were examined to explore the potential mechanism. We found that all the three measurements of VEGF expression in adipocytes (mRNA, protein and secretion in media) were reduced after EGCG treatment. The growth of HUVECs co-cultured with 3T3-L1 cells was significantly increased and the conditioned media from EGCG treated 3T3-L1 adipocytes inhibited tube formation in HUVECs. Both PPARγ and C/EBPα expression in adipocytes were decreased with EGCG treatment. In conclusion, findings from this study suggest that EGCG may inhibit angiogenesis by regulating VEGF expression and secretion in adipocytes. PMID:26516907

  17. Real Time Monitoring of Inhibition of Adipogenesis and Angiogenesis by (-)-Epigallocatechin-3-Gallate in 3T3-L1 Adipocytes and Human Umbilical Vein Endothelial Cells.

    PubMed

    Tang, Wenjing; Song, Huanlei; Cai, Wei; Shen, Xiuhua

    2015-10-27

    Little is known about the effect of (-)-epigallocatechin-3-gallate (EGCG) on angiogenesis in adipocytes. We aimed to test the effect of EGCG on the expression of vascular endothelial growth factor (VEGF) in adipocytes. The levels of VEGF secretion, the expression of VEGF message ribonucleic acid (mRNA) and VEGF protein in 3T3-L1 cells were measured by enzyme linked immunosorbent assay (ELISA), real time polymerase chain reaction (PCR), and immunofluorescence staining, respectively. The xCELLigence real time cell analysis system was used to study the growth and differentiation of 3T3-L1 preadipocytes. A coculture system was used to test the effects of 3T3-L1 cells on proliferation of human umbilical vein endothelial cells (HUVECs). The conditioned media derived from 3T3-L1 cells treated with or without EGCG was used to culture the HUVECs for a tube formation assay. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα), two transcription factors related to both adipogenesis and angiogenesis, were examined to explore the potential mechanism. We found that all the three measurements of VEGF expression in adipocytes (mRNA, protein and secretion in media) were reduced after EGCG treatment. The growth of HUVECs co-cultured with 3T3-L1 cells was significantly increased and the conditioned media from EGCG treated 3T3-L1 adipocytes inhibited tube formation in HUVECs. Both PPARγ and C/EBPα expression in adipocytes were decreased with EGCG treatment. In conclusion, findings from this study suggest that EGCG may inhibit angiogenesis by regulating VEGF expression and secretion in adipocytes.

  18. Phloretin and phlorizin promote lipolysis and inhibit inflammation in mouse 3T3-L1 cells and in macrophage-adipocyte co-cultures.

    PubMed

    Huang, Wen-Chung; Chang, Wei-Tien; Wu, Shu-Ju; Xu, Pei-Yin; Ting, Nai-Chun; Liou, Chian-Jiun

    2013-10-01

    Previous studies found that phloretin (PT) and phlorizin (PZ) could inhibit glucose transport, with PT being a better inhibitor of lipid peroxidation. This study aimed to evaluate the antiobesity effects of PT and PZ in 3T3-L1 cells and if they can modulate the relationship between adipocytes and macrophages. Differentiated 3T3-L1 cells were treated with PT or PZ. Subsequently, transcription factors of adipogenesis and lipolysis proteins were measured. In addition, RAW 264.7 macrophages treated with PT or PZ were cultured in differentiated media from 3T3-L1 cells to analyze inflammatory mediators and signaling pathways. PT significantly enhanced glycerol release and inhibited the adipogenesis-related transcription factors. PT also promoted phosphorylation of AMP-activated protein kinase and increased activity of adipose triglyceride lipase and hormone-sensitive lipase. PT suppressed the nuclear transcription factor kappa-B and mitogen-activated protein kinase pathways when RAW 264.7 cells were cultured in differentiated media from 3T3-L1 cells. PZ improved lipolysis and inhibited the macrophage inflammatory response less effectively than PT. This study suggests that PT is more effective than PZ at increasing lipolysis in adipocytes. In addition, PT also suppresses inflammatory response in macrophage that is stimulated by differentiated media from 3T3-L1 cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fas activates lipolysis in a Ca2+-CaMKII-dependent manner in 3T3-L1 adipocytes.

    PubMed

    Rapold, Reto A; Wueest, Stephan; Knoepfel, Adrian; Schoenle, Eugen J; Konrad, Daniel

    2013-01-01

    Fas (CD95) is a member of the tumor necrosis factor (TNF) receptor superfamily and plays a crucial role in the induction of apoptosis. However, like TNF, Fas can induce nonapoptotic signaling pathways. We previously demonstrated that mice lacking Fas specifically in adipocytes are partly protected from diet-induced insulin resistance, potentially via decreased delivery of FAs to the liver, as manifested by lower total liver ceramide content. In the present study, we aimed to delineate the signaling pathway involved in Fas-mediated adipocyte lipid mobilization. Treatment of differentiated 3T3-L1 adipocytes with membrane-bound Fas ligand (FasL) significantly increased lipolysis after 12 h without inducing apoptosis. In parallel, Fas activation increased phosphorylation of ERK1/2, and FasL-induced lipolysis was blunted in the presence of the ERK-inhibitor U0126 or in ERK1/2-depleted adipocytes. Furthermore, Fas activation increased phosphorylation of the Ca(2+)/calmodulin-dependent protein kinases II (CaMKII), and blocking of the CaMKII-pathway (either by the Ca(2+) chelator BAPTA or by the CaMKII inhibitor KN62) blunted FasL-induced ERK1/2 phosphorylation and glycerol release. In conclusion, we propose a novel role for CaMKII in promoting lipolysis in adipocytes.

  20. Sp1 mediates repression of the resistin gene by PPAR{gamma} agonists in 3T3-L1 adipocytes

    SciTech Connect

    Chung, S.S.; Choi, H.H.; Cho, Y.M.; Lee, H.K.; Park, K.S. . E-mail: kspark@snu.ac.kr

    2006-09-15

    Resistin is an adipokine related to obesity and insulin resistance. Expression of the resistin gene is repressed by the treatment of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists, thiazolidinediones (TZDs). In this study, we investigated the mechanism by which TZDs inhibit the resistin gene expression. Resistin gene expression was decreased by TZD in fully differentiated 3T3-L1 adipocytes, which was abolished after treatment of cycloheximide (a protein synthesis inhibitor). TZD could not repress the expression of the resistin gene in the presence of mithramycin A (an Sp1 binding inhibitor). Sp1 binding site of the resistin promoter (-122/-114 bp) was necessary for the repression. Further investigation of the effect of TZDs on the modification of Sp1 showed that the level of O-glycosylation of Sp1 was decreased in this process. These results suggest that PPAR{gamma} activation represses the expression of the resistin gene by modulating Sp1 activity.

  1. Effects of orexin A on GLUT4 expression and lipid content via MAPK signaling in 3T3-L1 adipocytes.

    PubMed

    Shen, Yang; Zhao, Yuyan; Zheng, Delu; Chang, Xiaocen; Ju, Shujing; Guo, Lei

    2013-11-01

    Orexin A regulates food intake, energy metabolism and gastrointestinal function; it also increases glucose uptake and inhibits lipolysis, suggesting a role for orexin A in glucose and lipid metabolism. In this study, the effects of orexin A on glucose transporter 4 (GLUT4) mRNA level and lipid content were explored in 3T3-L1 preadipocytes and adipocytes. Orexin receptor 1 (OX1R) protein expression was determined in the adipose tissue of normal and obese rats. In addition, 3T3-L1 preadipocytes and differentiated 3T3-L1 adipocytes were incubated with different concentrations of orexin A (10(-9) to 10(-7)M), without or with OX1R specific antagonist, then the peroxisome proliferator-activated receptor-γ2 (PPARγ2) mRNA expression was analyzed. Differentiated 3T3-L1 adipocytes were exposed to orexin A, without or with MAPK and OX1R antagonist, after which the GLUT4 and ERK1/2, JNK, and p38 MAPK activation, and triglyceride (TG) content were measured. We observed that OX1R protein expression was decreased in obese rats, and OX1R protein level was negatively correlated with body fat, Lee's index, TG, total cholesterol, and fasting insulin levels. Orexin A enhanced PPARγ2 mRNA expression in a dose-dependent manner in 3T3-L1 preadipocytes through OX1R. In differentiated 3T3-L1 adipocytes, orexin A significantly increased GLUT4 mRNA levels, which was blocked by the ERK1/2, JNK, and p38 MAPK inhibitors as well as OX1R antagonist. Furthermore, orexin A increased cellular TG content via ERK1/2, JNK, and p38 MAPK as well as OX1R. Thus, orexin A increases GLUT4 mRNA expression and lipid accumulation in differentiated 3T3-L1 adipocytes via ERK1/2, JNK, and p38 MAPK signaling. In addition, orexin A increases PPARγ2 mRNA expression in 3T3-L1 preadipocytes. Further studies are necessary to elucidate the impact of orexin A in metabolic disorders and adipocyte differentiation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Knockdown of LYRM1 rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes.

    PubMed

    Zhang, Min; Qin, Zhen-Ying; Dai, Yong-mei; Wang, Yu-Mei; Zhu, Guan-zhong; Zhao, Ya-Ping; Ji, Chen-Bo; Zhu, Jin-Gai; Shi, Chun-Mei; Qiu, Jie; Cao, Xin-Guo; Guo, Xi-Rong

    2014-09-01

    LYR motif-containing 1 (LYRM1) was recently discovered to be involved in adipose tissue homeostasis and obesity-associated insulin resistance. We previously demonstrated that LYRM1 overexpression might contribute to insulin resistance and mitochondrial dysfunction. Additionally, knockdown of LYRM1 enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. We investigated whether knockdown of LYRM1 in 3T3-L1 adipocytes could rescue insulin resistance and mitochondrial dysfunction induced by the cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP), a mitochondrion uncoupler, to further ascertain the mechanism by which LYRM1 is involved in obesity-associated insulin resistance. Incubation of 3T3-L1 adipocytes with 1 µM FCCP for 12 h decreased insulin-stimulated glucose uptake, reduced intracellular ATP synthesis, increased intracellular reactive oxygen species (ROS) production, impaired insulin-stimulated Glucose transporter type 4 (GLUT4) translocation, and diminished insulin-stimulated tyrosine phosphorylation of Insulin receptor substrate-1 (IRS-1) and serine phosphorylation of Protein Kinase B (Akt). Knockdown of LYRM1 restored insulin-stimulated glucose uptake, rescued intracellular ATP synthesis, reduced intracellular ROS production, restored insulin-stimulated GLUT4 translocation, and rescued insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt in FCCP-treated 3T3-L1 adipocytes. This study indicates that FCCP-induced mitochondrial dysfunction and insulin resistance are ameliorated by knockdown of LYRM1.

  3. Piromelatine decreases triglyceride accumulation in insulin resistant 3T3-L1 adipocytes: role of ATGL and HSL.

    PubMed

    Wang, Ping-Ping; She, Mei-Hua; He, Ping-Ping; Chen, Wu-Jun; Laudon, Moshe; Xu, Xuan-Xuan; Yin, Wei-Dong

    2013-08-01

    Piromelatine, a novel investigational multimodal sleep medicine, is developed for the treatment of patients with primary and co-morbid insomnia. Piromelatine has been shown to inhibit weight gain and improve insulin sensitivity in high-fat/high-sucrose-fed (HFHS) rats. Considering that piromelatine has also been implicated in lowering of triglyceride levels in HFHS rats, this work elucidated whether this effect involves in the regulation of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) in triglyceride (TG) metabolism. In this study, we investigated the effects of piromelatine and MT2 receptors inhibition on TG content, insulin-stimulated glucose uptake, and the expressions of ATGL and HSL in 3T3-L1 adipocytes preincubated in high glucose and high insulin (HGI) conditions. Our results showed that culturing 3T3-L1 adipocytes under HGI conditions increased triglyceride accumulation with concomitant decrease of ATGL and HSL expression, inducing insulin resistance in 3T3-L1 adipocytes. We also found that triglyceride accumulation was significantly inhibited and the levels of ATGL/HSL increased after melatonin or piromelatine treatment. The effects of melatonin/piromelatine (10 nM) were counteracted by pretreatment with the relatively selective MT2 receptor antagonist luzindole (100 nM). In this study, our data demonstrate that piromelatine reverses high glucose and high insulin-induced triglyceride accumulation in 3T3-L1 adipocytes, possibly through up-regulating of ATGL and HSL expression via a melatonin-dependent manner.

  4. MicroRNA-125b-5p inhibits proliferation and promotes adipogenic differentiation in 3T3-L1 preadipocytes.

    PubMed

    Ouyang, Dan; Ye, Yaqiong; Guo, Dongguang; Yu, Xiaofang; Chen, Jian; Qi, Junjie; Tan, Xiaotong; Zhang, Yuan; Ma, Yongjiang; Li, Yugu

    2015-05-01

    Previous evidence has indicated that the microRNA-125b (miR-125b) family plays important roles in the regulation of cancer cell growth, development, differentiation, and apoptosis. However, whether they contribute to the process of adipocyte differentiation remains unclear. In the present study, we revealed that the expression level of miR-125b-5p, a member of miR-125b family, was dramatically up-regulated during differentiation of 3T3-L1 preadipocyte into mature adipocyte. Supplement of miR-125b-5p into 3T3-L1 cells promoted adipogenic differentiation as evidenced by increased lipid droplets and mRNA levels of adipocyte-specific molecular markers, including peroxisome proliferators-activated receptor γ, CCAAT/enhancer-binding protein α, fatty acid-binding protein 4, and lipoprotein lipase, and by triglyceride accumulation. CCK-8 assay showed that miR-125b-5p supplementation significantly inhibited cell proliferation. Flow cytometry analysis showed that miR-125b-5p impaired G1/S phase transition as well as the mRNA and protein expression of G1/S-related genes, such as Cyclin D2, Cyclin D3, and CDK4. Nevertheless, it had no effect on apoptosis. Additionally, by target gene prediction, we demonstrated that smad4 may be a potential target of miR-125b-5p in mouse 3T3-L1 preadipocytes, accounting for some of miR-125b-5p's functions. Taken together, these data indicated that miR-125b-5p may serve as an important positive regulator in adipocyte differentiation, at least partially through down-regulating smad4.

  5. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    SciTech Connect

    He, Yonghan; Li, Ying; Zhang, Shuocheng; Perry, Ben; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  6. Antidiabetic screening of commercial botanical products in 3T3-L1 adipocytes and db/db mice.

    PubMed

    Babish, John G; Pacioretty, Linda M; Bland, Jeffrey S; Minich, Deanna M; Hu, Jeffrey; Tripp, Matthew L

    2010-06-01

    Numerous botanicals are purported to improve glucose metabolism and diabetic risk factors with varying degrees of supportive evidence. We investigated 203 commercially available botanical products representing 90 unique botanical species for effects on lipogenic activity in differentiating 3T3-L1 adipocytes. Anti-inflammatory activity of 21 of these products was further assessed in tumor necrosis factor alpha (TNFalpha)-stimulated, mature 3T3-L1 adipocytes. From these results, rho-isoalpha acids, Acacia nilotica bark, fennel, and wasabi were tested in the db/db mouse model. Fifty-nine percent of the 90 unique botanicals increased adipogenesis as did the standard troglitazone relative to the solvent controls. Botanical species with the greatest percentage of positive products were Centella asiatica, Panax quinquefolius, and Phyllanthus amarus at 100%, Vitis vinifera at 80%, Humulus lupulus at 71%, Aloe barbadensis at 66%, and Momordica charantia, Phaseolus vulgaris, and Punica granatum at 60%. All 21 subset samples inhibited TNFalpha-stimulated free fatty acid release and attenuated TNFalpha inhibition of adiponectin secretion. Both rho-isoalpha acids and A. nilotica reduced nonfasting glucose in the db/db mouse model, whereas A. nilotica also decreased nonfasting insulin levels. A post hoc analysis of the screening results indicated that the positive predictive value of the lipogenesis assay alone was 72%, while adding the criterion of a positive response in the anti-inflammatory assays increased this figure to 82%. Moreover, this large-scale evaluation demonstrates that antidiabetic, in vitro efficacy of botanicals is more a function of manufacturing or quality control differences than the presence of marker compounds and further underscores the need to develop functional as well as analytical bases for standardization of dietary supplements.

  7. Acacetin from Traditionally Used Saussurea involucrata Kar. et Kir. Suppressed Adipogenesis in 3T3-L1 Adipocytes and Attenuated Lipid Accumulation in Obese Mice

    PubMed Central

    Liou, Chian-Jiun; Wu, Shu-Ju; Chen, Li-Chen; Yeh, Kuo-Wei; Chen, Chih-Ying; Huang, Wen-Chung

    2017-01-01

    Acacetin, a flavone that can be isolated from the Saussurea involucrata plant, has anti-tumor and anti-inflammatory properties that ameliorate airway hyperresponsiveness in asthmatic mice. This study investigated whether acacetin has anti-adipogenic effects in 3T3-L1 adipocytes and whether it regulates the inflammatory response in adipocytes and macrophages. It also investigated whether acacetin ameliorates lipid accumulation in high-fat diet- (HFD) induced obese mice. Differentiated 3T3-L1 cells were treated with acacetin. The glycerol levels in the culture medium were measured, and the expression of proteins and genes involved in adipogenesis and lipolysis were assayed by Western blot and real-time PCR, respectively. Inflammatory cytokine signaling pathway activity was assessed in macrophages that were treated with acacetin and cultured with differentiated medium from 3T3-L1 cells. Intraperitoneal injections of acacetin were administered to HFD-induced obese mice twice a week for 10 weeks. Acacetin significantly increased the levels of glycerol in the culture medium and significantly inhibited lipid accumulation in adipocytes. Acacetin reduced the expression of adipogenesis-related transcription factors, including the expression of the CCAAT/enhancer-binding protein; it also increased sirtuin 1 expression and AMPK phosphorylation in adipocytes. In macrophages cultured with differentiated media from 3T3-L1 adipocytes, acacetin reduced the levels of inflammatory mediators and the activity of the mitogen-activated protein kinase and NF-κB pathways. In obese mice, acacetin reduced both body weight and visceral adipose tissue weight. These results demonstrate that acacetin inhibited adipogenesis in adipocytes and in obese mice. Acacetin also reduced the inflammatory response of macrophages that were stimulated with differentiated media from 3T3-L1 cells.

  8. Acacetin from Traditionally Used Saussurea involucrata Kar. et Kir. Suppressed Adipogenesis in 3T3-L1 Adipocytes and Attenuated Lipid Accumulation in Obese Mice.

    PubMed

    Liou, Chian-Jiun; Wu, Shu-Ju; Chen, Li-Chen; Yeh, Kuo-Wei; Chen, Chih-Ying; Huang, Wen-Chung

    2017-01-01

    Acacetin, a flavone that can be isolated from the Saussurea involucrata plant, has anti-tumor and anti-inflammatory properties that ameliorate airway hyperresponsiveness in asthmatic mice. This study investigated whether acacetin has anti-adipogenic effects in 3T3-L1 adipocytes and whether it regulates the inflammatory response in adipocytes and macrophages. It also investigated whether acacetin ameliorates lipid accumulation in high-fat diet- (HFD) induced obese mice. Differentiated 3T3-L1 cells were treated with acacetin. The glycerol levels in the culture medium were measured, and the expression of proteins and genes involved in adipogenesis and lipolysis were assayed by Western blot and real-time PCR, respectively. Inflammatory cytokine signaling pathway activity was assessed in macrophages that were treated with acacetin and cultured with differentiated medium from 3T3-L1 cells. Intraperitoneal injections of acacetin were administered to HFD-induced obese mice twice a week for 10 weeks. Acacetin significantly increased the levels of glycerol in the culture medium and significantly inhibited lipid accumulation in adipocytes. Acacetin reduced the expression of adipogenesis-related transcription factors, including the expression of the CCAAT/enhancer-binding protein; it also increased sirtuin 1 expression and AMPK phosphorylation in adipocytes. In macrophages cultured with differentiated media from 3T3-L1 adipocytes, acacetin reduced the levels of inflammatory mediators and the activity of the mitogen-activated protein kinase and NF-κB pathways. In obese mice, acacetin reduced both body weight and visceral adipose tissue weight. These results demonstrate that acacetin inhibited adipogenesis in adipocytes and in obese mice. Acacetin also reduced the inflammatory response of macrophages that were stimulated with differentiated media from 3T3-L1 cells.

  9. GAL3ST2 from mammary gland epithelial cells affects differentiation of 3T3-L1 preadipocytes.

    PubMed

    Guerra, L N; Suarez, C; Soto, D; Schiappacasse, A; Sapochnik, D; Sacca, P; Piwien-Pilipuk, G; Peral, B; Calvo, J C

    2015-07-01

    In the mammary gland, the involution that occurs when lactation ends is an important period for cancer development. We have previously demonstrated stromal-epithelium interactions evaluating conditioned medium of adipose tissue on breast epithelial metalloproteases activity (Creydt et al., Clin Transl Oncol 15:124-131, 2013). Here, we evaluated the effects of conditioned medium of breast epithelial mammary cells on stromal cells. Conditioned medium from normal murine mammary gland cell line (NMuMG) and conditioned medium proteins were obtained. Then, they were evaluated on modulation of adipocyte differentiation, using 3T3-L1 cell line. We described, for the first time, that breast epithelial mammary cells could produce the enzyme galactose 3-O-sulfotransferase 2 (GAL3ST2). Importantly, GAL3ST2 is present in NMMuMG and two human breast cancer cell lines, and it is more strongly expressed in more metastatic tumors. When 3T3-L1 preadipocyte differentiation was triggered in the presence of conditioned medium from NMuMG or GAL3ST2, triglyceride accumulation was decreased by 40 % and C/EBPβ expression by 80 % in adipocytes. In addition, the expression of FABP4 (aP2), another marker of adipocyte differentiation, was inhibited by 40 % in GAL3ST2-treated cells. Taken together, these results suggest that GAL3ST2 would interfere with normal differentiation of 3T3-L1 preadipocytes; raising the possibility that it may affect normal differentiation of stromal preadipocytes and be a link to tumor metastatic capacity.

  10. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes.

    PubMed

    Lin, Ji; Della-Fera, Mary Anne; Baile, Clifton A

    2005-06-01

    Green tea catechins have been shown to promote loss of body fat and to inhibit growth of many cancer cell types by inducing apoptosis. The objective of this study was to determine whether epigallocatechin gallate (EGCG), the primary green tea catechin, could act directly on adipocytes to inhibit adipogenesis and induce apoptosis. Mouse 3T3-L1 preadipocytes and mature adipocytes were used. To test the effect of EGCG on viability, cells were incubated for 3, 6, 12, or 24 hours with 0, 50, 100, or 200 microM EGCG. Viability was quantitated by MTS assay. To determine the effect of EGCG on apoptosis, adipocytes were incubated for 24 hours with 0 to 200 microM EGCG, then stained with annexin V and propidium iodide and analyzed by laser scanning cytometry. Both preadipocytes and adipocytes were also analyzed for apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. To determine the effect of EGCG on adipogenesis, maturing preadipocytes were incubated during the 6-day induction period with 0 to 200 microM EGCG, then stained with Oil-Red-O and analyzed for lipid content. EGCG had no effect on either viability or apoptosis of preconfluent preadipocytes. EGCG also did not affect viability of mature adipocytes; however, EGCG increased apoptosis in mature adipocytes, as demonstrated by both laser scanning cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays. Furthermore, EGCG dose-dependently inhibited lipid accumulation in maturing preadipocytes. These results demonstrate that EGCG can act directly to inhibit differentiation of preadipocytes and to induce apoptosis of mature adipocytes and, thus, could be an important adjunct in the treatment of obesity.

  11. Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway

    PubMed Central

    Toriuchi, Yuriko; Aki, Yuka; Mizuno, Yuto; Kawakami, Takashige; Nakaya, Tomoko; Sato, Masao; Suzuki, Shinya

    2017-01-01

    Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes. PMID:28426713

  12. Resveratrol attenuates triglyceride accumulation associated with upregulation of Sirt1 and lipoprotein lipase in 3T3-L1 adipocytes.

    PubMed

    Imamura, Haruki; Nagayama, Daiji; Ishihara, Noriko; Tanaka, Syo; Watanabe, Rena; Watanabe, Yasuhiro; Sato, Yuta; Yamaguchi, Takashi; Ban, Noriko; Kawana, Hidetoshi; Ohira, Masahiro; Endo, Kei; Saiki, Atsuhito; Shirai, Kohji; Tatsuno, Ichiro

    2017-09-01

    We aimed to investigate the effect of resveratrol (Rsv) on expression of genes regulating triglyceride (TG) accumulation and consumption in differentiated 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were cultured in DMEM supplemented with 10% fetal calf serum. Upon reaching confluence, cells were induced to differentiate for 4 days, cultured for 10 days for TG accumulation, and then incubated with Rsv (0, 25 or 50 μM) for 3 days. TG accumulation was analyzed by Oil Red-O staining. To understand how Rsv regulates TG accumulation and consumption, changes in gene and protein expressions of several factors associated with free fatty acid (FFA) uptake and β-oxidation were investigated by real-time RT-PCR and Western blot. For further elucidation of underlying mechanisms, we also investigated gene expressions using Sirtuin1 (Sirt1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) siRNA. Rsv dose dependently enhanced Sirt1 expression and reduced TG accumulation. Rsv-induced reduction of TG accumulation was abolished by inhibition of Sirt1 and PGC1α. Rsv also enhanced expressions of genes involved in FFA uptake [peroxisome proliferator-activated receptor-gamma (PPARγ) and lipoprotein lipase] and in β-oxidation regulation [PGC1-α and carnitine palmitoyl-transferase 1a (CPT1a)]. All these effects were abolished by Sirt1 inhibition. The present results suggest that Rsv may augment synthesis and oxidation of fatty acid, and possibly increases energy utilization efficiency in adipocytes through activation of Sirt1. The present study may provide meaningful evidence supporting the efficacy of Rsv in the treatment of obesity.

  13. Flavonoids from Tetracera indica Merr. induce adipogenesis and exert glucose uptake activities in 3T3-L1 adipocyte cells.

    PubMed

    Hasan, Md Mahmudul; Ahmed, Qamar Uddin; Soad, Siti Zaiton Mat; Latip, Jalifah; Taher, Muhammad; Syafiq, Tengku Muhamad Faris; Sarian, Murni Nazira; Alhassan, Alhassan Muhammad; Zakaria, Zainul Amiruddin

    2017-08-30

    Tetracera indica Merr. (Family: Dilleniaceae), known to the Malay as 'Mempelas paya', is one of the medicinal plants used in the treatment of diabetes in Malaysia. However, no proper scientific study has been carried out to verify the traditional claim of T. indica as an antidiabetic agent. Hence, the aims of the present study were to determine the in vitro antidiabetic potential of the T. indica stems ethanol extract, subfractions and isolated compounds. The ethanol extract and its subfractions, and isolated compounds from T. indica stems were subjected to cytotoxicity test using MTT viability assay on 3T3-L1 pre-adipocytes. Then, the test groups were subjected to the in vitro antidiabetic investigation using 3T3-L1 pre-adipocytes and differentiated adipocytes to determine the insulin-like and insulin sensitizing activities. Rosiglitazone was used as a standard antidiabetic agent. All compounds were also subjected to fluorescence glucose (2-NBDG) uptake test on differentiated adipocytes. Test solutions were introduced to the cells in different safe concentrations as well as in different adipogenic cocktails, which were modified by the addition of compounds to be investigated and in the presence or absence of insulin. Isolation of bioactive compounds from the most effective subfraction (ethyl acetate) was performed through repeated silica gel and sephadex LH-20 column chromatographies and their structures were elucidated through (1)H-and (13)C-NMR spectroscopy. Four monoflavonoids, namely, wogonin, norwogonin, quercetin and techtochrysin were isolated from the T. indica stems ethanol extract. Wogonin, norwogonin and techtochrysin induced significant (P < 0.05) adipogenesis like insulin and enhanced adipogenesis like rosiglitazone. Wogonin and norwogonin also exhibited significant (P < 0.05) glucose uptake activity. The present study demonstrated that the flavonoids isolated from the T. indica stems possess antidiabetic potential revealing insulin-like and

  14. Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and AMPK activation in 3T3-L1 adipocytes.

    PubMed

    Lee, Hyejin; Li, Hua; Jeong, Ji Hye; Noh, Minsoo; Ryu, Jae-Ha

    2016-07-01

    In this study, we evaluated the insulin-sensitizing effect of flavans purified from Broussonetia kazinoki Siebold (BK) on 3T3-L1 adipocytes. Among the tested compounds, kazinol B enhanced intracellular lipid accumulation, gene expression of proliferator-activated receptorγ (PPARγ) and CCAAT/enhancer binding protein-alpha (C/EBPα), and consistently induced PPARγ transcriptional activation. To further investigate the insulin-sensitizing effect of kazinol B, we measured glucose analogue uptake by fully differentiated adipocytes and myotubes. Kazinol B increased 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) uptake by cells by upregulating the gene expression and translocation of glucose transporter 4 (GLUT-4) into the plasma membrane in adipocytes. Kazinol B stimulated the gene expression and secretion of adiponectin, which is associated with a low risk of types 1 and 2 diabetes mellitus. We also suggested the mechanism of the antidiabetic effect of kazinol B by assaying Akt and AMP-activated protein kinase (AMPK) phosphorylation. In conclusion, kazinol B isolated from BK improved insulin sensitivity by enhancing glucose uptake via the insulin-Akt signaling pathway and AMPK activation. These results suggest that kazinol B might be a therapeutic candidate for diabetes mellitus. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Pulicaria jaubertii extract prevents triglyceride deposition in 3T3-L1 adipocytes

    USDA-ARS?s Scientific Manuscript database

    Currently, levels of obesity in Middle Eastern countries are increasing. Phytochemicals have anti-obesogenic properties as evidenced by prevention of adipocyte differentiation. In Yemen, Pulicaria jaubertii E.Gamal-Eldin (PJ) is a food additive and a traditional medicine. We tested the ability of ex...

  16. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    SciTech Connect

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka; Kawada, Teruo

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  17. Discovery of natural alkaloid bouchardatine as a novel inhibitor of adipogenesis/lipogenesis in 3T3-L1 adipocytes.

    PubMed

    Rao, Yong; Liu, Hong; Gao, Lin; Yu, Hong; Tan, Jia-Heng; Ou, Tian-Miao; Huang, Shi-Liang; Gu, Lian-Quan; Ye, Ji-Ming; Huang, Zhi-Shu

    2015-08-01

    Bouchardatine (1), a naturally occurring β-indoloquinazoline alkaloid, was synthesized. For the first time, the lipid-lowering effect and mechanism of 1 was investigated in 3T3-L1 adipocytes. Our study showed that 1 could significantly reduce lipid accumulation without cytotoxicity and mainly inhibited early differentiation of adipocyte through proliferation inhibition and cell cycle arrested in dose-dependent manner. Furthermore, the inhibition of early differentiation was reflected by down-regulation of key regulators of adipogenesis/lipogenesis, including CCAAT enhancer binding proteins (C/EBPβ, C/EBPδ, C/EBPα), peroxisome proliferator-activated receptors γ (PPARγ) and sterol-regulatory element binding protein-1c (SREBP-1c), in both of mRNA and protein levels. Subsequently decreasing the protein levels of acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), and stearyl coenzyme A desaturated enzyme 1 (SCD-1), the rate-limited metabolic enzymes of fatty acid synthesis, were also observed. Further studies revealed that 1 persistently activated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) during differentiation, suggesting that the AMPK may be an upstream mechanism for the effect of 1 on adipogenesis and lipogenesis. Our data suggest that 1 can be a candidate for the development of new therapeutic drugs against obesity and related metabolic disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. WSF-P-1, a novel AMPK activator, promotes adiponectin multimerization in 3T3-L1 adipocytes.

    PubMed

    Wang, Yao; Zhang, Yudian; Wang, Yunyun; Peng, Han; Rui, Jian; Zhang, Zhijie; Wang, Shifa; Li, Zhen

    2017-08-01

    Adiponectin, an adipokine with insulin-sensitizing effect, is secreted from adipocytes into circulation as high, medium, and low molecular weight forms (HMW, MMW, and LMW). The HMW adiponectin oligomers possess the most potent insulin-sensitizing activity. WSF-P-1(N-methyl-1,2,3,4,5,6-hexahydro-1,1,5,5-tetramethyl-7H-2,4α-methanonaphthalen-7-amine) is derived from natural sesquiterpene longifolene by chemical modifications. We found that WSF-P-1 activates AMPK in both 3T3-L1 adipocytes and 293T cells in this study. Activation of AMPK by WSF-P-1 promotes the assembly of HMW adiponectin and increases the HMW/total ratio of adiponectin in 3T3-L1 adipocytes. We demonstrated that the Ca(2+)-dependent CaMKK signaling pathway is involved in WSF-P-1-induced AMPK activation and adiponectin multimerization. WSF-P-1 also activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes, making it a potential drug candidate for the treatment of type 2 diabetes, obesity, and other obesity-related metabolic diseases.

  19. Automated Image Processing for Spatially Resolved Analysis of Lipid Droplets in Cultured 3T3-L1 Adipocytes

    PubMed Central

    Sims, James Kenneth; Rohr, Brian; Miller, Eric

    2015-01-01

    Cellular hypertrophy of adipose tissue underlies many of the proposed proinflammatory mechanisms for obesity-related diseases. Adipose hypertrophy results from an accumulation of esterified lipids (triglycerides) into membrane-enclosed intracellular lipid droplets (LDs). The coupling between adipocyte metabolism and LD morphology could be exploited to investigate biochemical regulation of lipid pathways by monitoring the dynamics of LDs. This article describes an image processing method to identify LDs based on several distinctive optical and morphological characteristics of these cellular bodies as they appear under bright-field. The algorithm was developed against images of 3T3-L1 preadipocyte cultures induced to differentiate into adipocytes. We show that the calculated lipid volumes are in excellent agreement with enzymatic assay data on total intracellular triglyceride content. We also demonstrate that the image processing method can efficiently characterize the highly heterogeneous spatial distribution of LDs in a culture by showing that differentiation occurs in distinct clusters separated by regions of nearly undifferentiated cells. Prospectively, the LD detection method described in this work could be applied to time-lapse data collected with simple visible light microscopy equipment to quantitatively investigate LD dynamics. PMID:25390760

  20. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene

    SciTech Connect

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli; Sun, Wenxing; Gao, Ying; Zhang, Lifan; Chen, Jie

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. - Highlights: • C2C12 myotubes inhibited proliferation and differentiation of 3T3-L1 preadipocytes. • C2C12 myotubes arrested cell cycle of 3T3-L1 preadipocytes. • C2C12 myotubes induced apoptosis of 3T3-L1 preadipocytes. • C2C12 inhibit 3T3-L1 cells by reducing the expression of glucocorticoid receptor gene.

  1. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    SciTech Connect

    Yuan, Guoyue; Jia, Jue; Di, Liangliang; Zhou, Libin; Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang; Li, Lianxi; Yang, Ying; Mao, Chaoming; Chen, Mingdao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  2. Increasing cAMP levels of preadipocytes by cyanidin-3-glucoside treatment induces the formation of beige phenotypes in 3T3-L1 adipocytes.

    PubMed

    Matsukawa, Toshiya; Villareal, Myra O; Motojima, Hideko; Isoda, Hiroko

    2017-02-01

    Obesity is a serious health problem and a major risk factor for the onset of several diseases such as heart disease, diabetes, stroke and cancer. The conversion of white adipocytes to brown-like adipocytes, also called beige or brite adipocytes, by pharmacological and dietary compounds has gained attention as an effective treatment for obesity. Cyanidin-3-glucoside (Cy3G), a polyphenolic compound contained in black soybean, blueberry and grape, has several antiobesity effects. However, there are no reports on the role of Cy3G in the induction of differentiation of preadipocytes to beige adipocytes and corresponding phenotypes. Here, the formation of beige adipocyte phenotypes following treatment with Cy3G was evaluated using 3T3-L1 adipocytes. Cy3G induced phenotypic changes to white adipocytes, such as increased multilocular lipid droplets and mitochondrial content. Additionally, the expression of mitochondrial genes (TFAM, SOD2, UCP-1 and UCP-2), UCP-1 protein and beige adipocyte markers (CITED1 and TBX1) in 3T3-L1 adipocytes was increased by Cy3G. Furthermore, Cy3G promoted preadipocyte differentiation by up-regulating of C/EBPβ through the elevation of the intracellular cAMP levels. These results indicated that Cy3G elevates the intracellular cAMP levels, which induces beige adipocyte phenotypes. This is the first report on the effect of Cy3G on induction of differentiation of preadipocytes into beige adipocyte phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effect of Ganoderma applanatum mycelium extract on the inhibition of adipogenesis in 3T3-L1 adipocytes.

    PubMed

    Kim, Ji-Eun; Park, Sung-Jin; Yu, Mi-Hee; Lee, Sam-Pin

    2014-10-01

    Ganoderma applanatum (GA) and related fungal species have been used for over 2000 years in China to prevent and treat various human diseases. However, there is no critical research evaluating the functionality of GA grown using submerged culture technology. This study aimed to evaluate the effects of submerged culture GA mycelium (GAM) and its active components (protocatechualdehyde [PCA]) on preadipocyte differentiation of 3T3-L1 cells. Mouse-derived preadipocyte 3T3-L1 cells were treated with differentiation inducers in the presence or absence of GAM extracts. We determined triglyceride accumulations, glycerol-3-phosphate dehydrogenase (GPDH) activities, and differentiation makers. PCA, the active component of GAM extract, was also used to treat 3T3-L1 cells. The MTT assay showed that the GAM extract (0.01-1 mg/mL) was not toxic to 3T3-L1 preadipocyte. Treatment of cells with GAM extracts and its active components significantly decreased the GPDH activity and lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. Western blot analysis results showed that the protein expression levels of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1) were inhibited by the GAM extract. In addition, adipogenic-specific genes such as perilipin, fatty acid synthase (FAS), fatty acid transport protein 1 (FATP1), and fatty acid-binding protein 4 (FABP4) decreased in a dose-dependent manner. Quantitative high-performance liquid chromatography analysis showed that the GAM extract contained 1.14 mg/g PCA. GAM extracts suppressed differentiation of 3T3-L1 preadipocytes, in part, through altered regulation of PPARγ, C/EBPα, and SREBP1. These results suggest that GAM extracts and PCA may suppress adipogenesis by inhibiting differentiation of preadipocytes.

  4. Depletion of mitoferrins leads to mitochondrial dysfunction and impairment of adipogenic differentiation in 3T3-L1 preadipocytes.

    PubMed

    Chen, Y-C; Wu, Y-T; Wei, Y-H

    2015-01-01

    Dysregulation of iron homeostasis is a potential risk factor for type 2 diabetes mellitus (T2DM) and insulin resistance. Iron transported into mitochondria by mitoferrins is mainly utilized for the biosynthesis of iron-sulfur clusters, heme, and other cofactors. Recent studies revealed that mitochondrial dysfunction leads to impaired adipogenesis and insulin insensitivity in adipocytes. However, it is unknown whether mitochondrial iron import and iron status affect the biogenesis and function of mitochondria during adipogenic differentiation. In this study, we used double knockdown of mitoferrin 1 and mitoferrin 2 (Mfrn1/2) to investigate the role of mitochondrial iron homeostasis in mitochondrial bioenergetic function and adipogenic differentiation. The results showed that depletion of Mfrn1/2 in 3T3-L1 preadipocytes impaired the biosynthesis of iron-sulfur proteins in mitochondria due to a decrease in mitochondrial iron content. This was associated with a decrease in mitochondrial oxygen consumption rate and intracellular ATP level in adipocytes with Mfrn1/2 knockdown. Remarkably, Mfrn1/2 deficiency reduced the expression of adipogenic genes and lipid production during adipogenic differentiation. Moreover, insulin-induced glucose uptake and Akt phosphorylation at the Ser473 residue were decreased concurrently in adipocytes differentiated from 3T3-L1 preadipocytes after knockdown of Mfrn1/2. These findings suggest that dysregulation of mitochondrial iron metabolism elicited by knockdown of Mfrn1/2 results in mitochondrial dysfunction, which culminates in the compromise of differentiation and insulin insensitivity of adipocytes. This scenario may explain the recent findings that iron deficiency or alterations in iron metabolism are associated with the pathogenesis of T2DM.

  5. S-resistin, a non secretable resistin isoform, impairs the insulin signalling pathway in 3T3-L1 adipocytes.

    PubMed

    Rodríguez, María; Moltó, Eduardo; Aguado, Lidia; Gallardo, Nilda; Andrés, Antonio; Arribas, Carmen

    2015-09-01

    S-resistin is a non-secretable resistin spliced variant, which is expressed mainly in the white adipose tissue from Wistar rats. Previous results confirmed that 3T3-L1 cells expressing s-resistin (3T3-L1-s-res) showed an inflammatory response and exhibited a decrease in glucose transport, both basal and insulin-stimulated. Here we present evidences demonstrating for the first time that s-resistin, like resistin, blocks insulin signalling pathway by inhibiting insulin receptor, insulin receptor substrate 1, protein kinase B/Akt and the mammalian target of rapamycin phosphorylation, and increasing the suppressor of cytokine signalling 3 levels being the later probably due to augmented of leptin expression. Thus, our data suggest that s-resistin could act by a still unknown intracrine pathway as an intracellular sensor, regulating the adipocyte insulin sensitivity.

  6. Peptide Fraction pOh2 Exerts Antiadipogenic Activity through Inhibition of C/EBP-α and PPAR-γ Expression in 3T3-L1 Adipocytes.

    PubMed

    Nguyen, Thi Tuyet Nhung; Ha, Thi Thu; Nguyen, Thi Hoa; Vu, Thi Hien; Truong, Nam Hai; Chu, Hoang Ha; Van Quyen, Dong

    2017-01-01

    Many studies have comprehensively examined the venom of Ophiophagus hannah snake. Its venom comprises different compounds exhibiting a wide range of pharmacological activities. In this investigation, four peptide fractions (PFs), ranging from 3 kDa to 10 kDa, isolated from the Vietnamese snake venom of O. hannah were separated by HPLC and investigated for their inhibitory activity on adipogenesis in 3T3-L1 adipocytes. The most effective PF was then further purified, generating two peptides, pOh1 and pOh2. Upon investigation of these two peptides on 3T3-L1 adipocytes, it was revealed that, at 10 μg/mL, pOh2 was able to inhibit the lipid accumulation in 3T3-L1 adipocytes by up to 56%, without affecting cell viability. Furthermore, the pOh2 downregulated the gene expression of important transcription factors C/EBP-α and PPAR-γ. In addition, aP2 and GPDH adipocyte-specific markers were also significantly reduced compared to untreated differentiated cells. Taken together, pOh2 inhibited the expression of key transcription factors C/EBP-α and PPAR-γ and their target genes, aP2 and GPDH, thereby blocking the adipocyte differentiation. In conclusion, this novel class of peptide might have potential for in vivo antiobesity effects.

  7. Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes.

    PubMed

    Kowalska, Katarzyna; Olejnik, Anna; Rychlik, Joanna; Grajek, Włodzimierz

    2015-10-15

    It has previously been shown that lyophilized cranberries (LCB) decreased lipid accumulation in 3T3-L1 cells and inhibited preadipocyte differentiation by down-regulation of the expression of key transcription factors (PPARγ, C/EBPα, SREBP1) of the adipogenesis pathway. To elucidate the molecular basis of anti-lipogenic activity of LCB, the expression of several genes involved in lipid metabolism, such as adipocyte fatty acid-binding protein (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), hormone sensitive lipase (HSL) and perilipin 1 (PLIN1), was examined in the present study. Additionally, the effects of LCB on adiponectin and leptin expression and protein secretion were also investigated. LCB reduced lipid accumulation during preadipocyte differentiation by down-regulation of the mRNA level of aP2, FAS, LPL, HSL and PLIN1. Moreover, LCB decreased leptin gene expression and increased adiponectin gene expression and protein secretion in a dose-dependent manner. Therefore cranberries could be considered as bioactive factors, which are effective in the inhibition of adipose tissue mass production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Palmitate Antagonizes Wnt/Beta-catenin Signaling in 3T3-L1 Pre-adipocytes

    USDA-ARS?s Scientific Manuscript database

    Long chain saturated free fatty acids such as palmitate (PA) produce insulin resistance, endoplasmic reticulum stress, and apoptosis in mature adipocytes and pre-adipocytes. In pre-adipocytes, saturated free fatty acids also promote adipogenic induction in the presence of adipogenic hormones. Wnt/be...

  9. Aspirin Breaks the Crosstalk between 3T3-L1 Adipocytes and 4T1 Breast Cancer Cells by Regulating Cytokine Production.

    PubMed

    Hsieh, Chia-Chien; Huang, Yu-Shan

    2016-01-01

    Breast cancer is one of the most common cancers in women worldwide. The obesity process is normally accompanied by chronic, low-grade inflammation. Infiltration by inflammatory cytokines and immune cells provides a favorable microenvironment for tumor growth, migration, and metastasis. Epidemiological evidence has shown that aspirin is an effective agent against several types of cancer. The aim of this study is to investigate the anti-inflammatory and anti-cancer effects of aspirin on 3T3-L1 adipocytes, 4T1 murine breast cancer cells, and their crosstalk. The results showed that aspirin treatment inhibited differentiation and lipid accumulation by 3T3-L1 preadipocytes, and decreased the secretion of the inflammatory adipokine MCP-1 after stimulation with tumor necrosis factor (TNF)-α or conditioned medium from RAW264.7 cells. In 4T1 cells, treatment with aspirin decreased cell viability and migration, possibly by suppressing MCP-1 and VEGF secretion. Subsequently, culture of 4T1 cells in 3T3-L1 adipocyte-conditioned medium (Ad-CM) and co-culture of 3T3-L1 and 4T1 cells using a transwell plate were performed to clarify the relationship between these two cell lines. Aspirin exerted its inhibitory effects in the transwell co-culture system, as well as the conditioned-medium model. Aspirin treatment significantly inhibited the proliferation of 4T1 cells, and decreased the production of MCP-1 and PAI-1 in both the Ad-CM model and co-culture system. Aspirin inhibited inflammatory MCP-1 adipokine production by 3T3-L1 adipocytes and the cell growth and migration of 4T1 cells. It also broke the crosstalk between these two cell lines, possibly contributing to its chemopreventive properties in breast cancer. This is the first report that aspirin's chemopreventive activity supports the potential application in auxiliary therapy against obesity-related breast cancer development.

  10. Inhibitory Effect of Piceatannol on TNF-α-Mediated Inflammation and Insulin Resistance in 3T3-L1 Adipocytes.

    PubMed

    Li, Yanfang; Yang, Puyu; Chang, Qimeng; Wang, Jing; Liu, Jie; Lv, Yuan; Wang, Thomas T Y; Gao, Boyan; Zhang, Yaqiong; Yu, Liangli Lucy

    2017-06-14

    Piceatannol, a bioactive component in grape and blueberry, was examined for its potential in decreasing the inflammatory activities in adipocytes using a cocultured adipocyte and macrophage system, and suppressing tumor necrosis factor-α (TNF-α)-mediated inflammation and the related insulin resistance using a 3T3-L1 adipocyte model. Piceatannol at 10 μM significantly reduced the release of inflammatory cytokines of TNF-α and monocyte chemoattractant protein-1 (MCP-1) by 19 and 31% in the cocultured system, respectively. Pretreatment with piceatannol also inhibited TNF-α-induced expression of interleukin-6 (IL-6) and MCP-1 at both mRNA and protein levels in the 3T3-L1 adipocytes. Piceatannol also partially improved the malfunction of insulin-stimulated glucose uptake, which was reduced by TNF-α in 3T3-L1 adipocytes. Furthermore, the inhibitions were mediated by significant blocking of IκBα phosphorylation and nuclear factor-κB (NF-κB) activation through suppressing nuclear translocation of NF-κB p65 along with c-Jun N-terminal kinase (JNK)-mitogen activated protein kinase (MAPK) activation. In addition, the Akt-dependent forkhead box O1 (FoxO1) signaling pathway was involved in the restoration of insulin-stimulated glucose uptake through suppressing the down-regulation of phosphorylation of Akt and FoxO1 expressions. These results suggested the potential of piceatannol in improving chronic inflammatory condition and insulin sensitivity in obese adipose tissues.

  11. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes.

    PubMed

    Kim, Mi-Bo; Song, Youngwoo; Kim, Changhee; Hwang, Jae-Kwan

    2014-03-07

    Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element binding protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Inhibition of Adipogenesis by Oligonol through Akt-mTOR Inhibition in 3T3-L1 Adipocytes

    PubMed Central

    Park, Jae-Yeo; Kim, Younghwa; Im, Jee Ae; You, Seungkwon

    2014-01-01

    Polyphenols have recently become an important focus of study in obesity research. Oligonol is an oligomerized polyphenol, typically comprised of catechin-type polyphenols from a variety of fruits, which has been found to exhibit better bioavailability and bioreactivity than natural polyphenol compounds. Here, we demonstrated that Oligonol inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression. During adipogenesis, Oligonol downregulated the mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and δ (C/EBPδ) in a dose-dependent manner and the expression of genes involved in lipid biosynthesis. The antiadipogenic effect of Oligonol appears to originate from its ability to inhibit the Akt and mammalian target of rapamycin (mTOR) signaling pathway by diminishing the phosphorylation of ribosomal protein S6 kinase (p70S6K), a downstream target of mTOR and forkhead box protein O1 (Foxo1). These results suggest that Oligonol may be a potent regulator of obesity by repressing major adipogenic genes through inhibition of the Akt signaling pathway, which induces the inhibition of lipid accumulation, ultimately inhibiting adipogenesis. PMID:25295069

  13. Pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside suppresses adipogenesis and regulates lipid metabolism in 3T3-L1 adipocytes.

    PubMed

    Peng, Li; Lu, Yanting; Xu, Yuhui; Hu, Jing; Wang, Fang; Zhang, Yumei; Xiong, Wenyong

    2017-06-01

    Obesity is crucially involved in many metabolic diseases, such as type 2 diabetes, cardiovascular disease and cancer. Regulating the number or size of adipocytes has been suggested to be a potential treatment for obesity. In this study, we investigated the effect of pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside (PAQG), a 27-nor-oleanolic acid saponin extracted from Metadina trichotoma, on adipogenesis and lipid metabolism in 3T3-L1 adipocytes. The 3T3-L1 pre-adipocytes were incubated with vehicle or PAQG for 6 days in differentiation process. PAQG significantly reduced the adipogenesis, adiponectin secretion and the expression level of key transcription factors related to adipogenesis, such as PPARγ, C/EBPβ, C/EBPα, and FABP4. Moreover, PAQG increased the levels of FFA and glycerol in medium and reduced TG level in mature adipocytes. Interestingly, PAQG not only promoted the activation of AMPK and genes involved in fatty oxidation including PDK4 and CPT1a, but also inhibited those genes involved in fatty acid biosynthesis, such as SREBP1c, FAS, ACCα and SCD1. In conclusion, PAQG inhibits the differentiation and regulates lipid metabolism of 3T3-L1 cells via AMPK pathway, suggesting that PAQG may be a novel and promising natural product for the treatment of obesity and hyperlipidemia.

  14. Astragaloside IV attenuates lipolysis and improves insulin resistance induced by TNFalpha in 3T3-L1 adipocytes.

    PubMed

    Jiang, Boren; Yang, Ying; Jin, Hua; Shang, Wenbin; Zhou, Libin; Qian, Lei; Chen, Mingdao

    2008-11-01

    Increased circulating free fatty acid (FFA) concentrations have been demonstrated to potentially link obesity, insulin resistance and cardiovascular diseases. Astragaloside IV (AS-IV) is a saponin which is widely used in traditional Chinese medicine to treat type 2 diabetes and cardiovascular diseases. The purpose of the present study was to examine the effects of AS-IV on the lipolysis and insulin resistance induced by tumor necrosis factor-alpha (TNFalpha) in cultured 3T3-L1 adipocytes. TNFalpha promotes lipolysis in mammal adipocytes via the mitogen activated protein kinase (MAPK) family resulting in reduced expression/function of perilipin. Application of AS-IV inhibited TNFalpha-induced accelerated lipolysis in a dose-dependent manner, which was compatible with suppressed phosphorylation of ERK1/2 and reversed the downregulation of perilipin. Moreover, TNFalpha induced downregulation of key enzymes in lipogenesis, including LPL, FAS and GPAT, were also attenuated by AS-IV. Further studies showed that AS-IV improved TNFalpha-induced insulin resistance in 3T3-L1 adipocytes. This study provides the first direct evidence of the antilipolytic action of AS-IV in adipocytes, which may allow this agent to decrease the circulating FFA levels, thus increase insulin sensitivity and treat cardiovascular diseases.

  15. Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes.

    PubMed

    Mitsuhashi, Kazuteru; Senmaru, Takafumi; Fukuda, Takuya; Yamazaki, Masahiro; Shinomiya, Katsuhiko; Ueno, Morio; Kinoshita, Shigeru; Kitawaki, Jo; Katsuyama, Masato; Tsujikawa, Muneo; Obayashi, Hiroshi; Nakamura, Naoto; Fukui, Michiaki

    2016-01-01

    Decreases in serum testosterone concentrations in aging men are associated with metabolic disorders. Testosterone has been reported to increase GLUT4-dependent glucose uptake in skeletal muscle cells and cardiomyocytes. However, studies on glucose uptake occurring in response to testosterone stimulation in adipocytes are currently not available. This study was designed to determine the effects of testosterone on glucose uptake in adipocytes. Glucose uptake was assessed with 2-[(3)H] deoxyglucose in 3T3-L1 adipocytes. GLUT4 translocation was evaluated in plasma membrane (PM) sheets and PM fractions by immunofluorescence and immunoblotting, respectively. Activation of GLUT4 translocation-related protein kinases, including Akt, AMPK, LKB1, CaMKI, CaMKII, and Cbl was followed by immunoblotting. Expression levels of androgen receptor (AR) mRNA and AR translocation to the PM were assessed by real-time RT-PCR and immunoblotting, respectively. The results showed that both high-dose (100 nM) testosterone and testosterone-BSA increased glucose uptake and GLUT4 translocation to the PM, independently of the intracellular AR. Testosterone and testosterone-BSA stimulated the phosphorylation of AMPK, LKB1, and CaMKII. The knockdown of LKB1 by siRNA attenuated testosterone- and testosterone-BSA-stimulated AMPK phosphorylation and glucose uptake. These results indicate that high-dose testosterone and testosterone-BSA increase GLUT4-dependent glucose uptake in 3T3-L1 adipocytes by inducing the LKB1/AMPK signaling pathway.

  16. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes.

    PubMed

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  17. Alliin, a Garlic (Allium sativum) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    PubMed Central

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile. PMID:24453416

  18. Over-expression of NYGGF4 inhibits glucose transport in 3T3-L1 adipocytes via attenuated phosphorylation of IRS-1 and Akt.

    PubMed

    Zhang, Chun-mei; Chen, Xiao-hui; Wang, Bin; Liu, Feng; Chi, Xia; Tong, Mei-ling; Ni, Yu-hui; Chen, Rong-hua; Guo, Xi-rong

    2009-01-01

    NYGGF4 is a novel gene that is abundantly expressed in the adipose tissue of obese patients. The purpose of this study was to investigate the effects of NYGGF4 on basal and insulin-stimulated glucose uptake in mature 3T3-L1 adipocytes and to understand the underlying mechanisms. 3T3-L1 preadipocytes transfected with either an empty expression vector (pcDNA3.1Myc/His B) or an NYGGF4 expression vector were differentiated into mature adipocytes. Glucose uptake was determined by measuring 2-deoxy-D-[3H]glucose uptake into the adipocytes. Immunoblotting was performed to detect the translocation of insulin-sensitive glucose transporter 4 (GLUT4). Immunoblotting also was used to measure the phosphorylation and total protein contents of insulin signaling proteins such as the insulin receptor (IR), insulin receptor substrate (IRS)-1, Akt, ERK1/2, p38, and JNK. NYGGF4 over-expression in 3T3-L1 adipocytes reduced insulin-stimulated glucose uptake and impaired insulin-stimulated GLUT4 translocation. It also diminished insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt without affecting the phosphorylation of IR, ERK1/2, p38, and JNK. NYGGF4 regulates the functions of IRS-1 and Akt, decreases GLUT4 translocation and reduces glucose uptake in response to insulin. These observations highlight the potential role of NYGGF4 in glucose homeostasis and possibly in the pathogenesis of obesity.

  19. Sanguisorba officinalis L. Extracts Exert Antiobesity Effects in 3T3-L1 Adipocytes and C57BL/6J Mice Fed High-Fat Diets.

    PubMed

    Jung, Da-Woon; Lee, Ok-Hwan; Kang, Il-Jun

    2016-08-01

    The purpose of this study was to investigate the antiobesity effect of Sanguisorba officinalis L. (SOL) in 3T3-L1 adipocytes and obese C57BL/6J mice. SOL was extracted with water and 30%, 50%, 70%, and 100% ethanol (EtOH). 3T3-L1 adipocytes were treated with SOL extracts (100 μg/mL) during the differentiation period. Triglyceride (TG) accumulation was determined by Oil Red O staining, and the expression of adipocyte-specific proteins was measured by Western blot analysis. C57BL/6J mice were fed a high-fat diet to induce obesity and were orally administered SOL 50% ethanol extract (50, 100, and 200 mg/kg) for 8 weeks. Among the SOL extracts, the 50% EtOH extract considerably inhibited TG accumulation through the downregulation of PPARγ, C/EBPα, and SREBP-1c in 3T3-L1 adipocytes. In addition, the 50% ethanol extract reduced body weight and adipose tissue weight and improved serum lipid profiles through downregulation of PPARγ, C/EBPα, FABP4, and ACC and upregulation of adiponectin and CPT-1 in obese C57BL/6J mice fed a high-fat diet. These results suggested that the SOL 50% EtOH extract may have an antiobesity effect through the regulation of transcription factors related to adipogenesis, lipogenesis, and lipolysis.

  20. Specific visible radiation facilitates lipolysis in mature 3T3-L1 adipocytes via rhodopsin-dependent β3-adrenergic signaling.

    PubMed

    Park, Phil June; Cho, Jae Youl; Cho, Eun-Gyung

    2017-06-01

    The regulation of fat metabolism is important for maintaining functional and structural tissue homeostasis in biological systems. Reducing excessive lipids has been an important concern due to the concomitant health risks caused by metabolic disorders such as obesity, adiposity and dyslipidemia. A recent study revealed that unlike conventional care regimens (e.g., diet or medicine), low-energy visible radiation (VR) regulates lipid levels via autophagy-dependent hormone-sensitive lipase (HSL) phosphorylation in differentiated human adipose-derived stem cells. To clarify the underlying cellular and molecular mechanisms, we first verified the photoreceptor and photoreceptor-dependent signal cascade in nonvisual 3T3-L1 adipocytes. For a better understanding of the concomitant phenomena that result from VR exposure, mature 3T3-L1 adipocytes were exposed to four different wavelengths of VR (410, 505, 590 and 660nm) in this study. The results confirmed that specific VR wavelengths, especially 505nm than 590nm, increase intracellular cyclic adenosine monophosphate (cAMP) levels and decrease lipid droplets. Interestingly, the mRNA and protein levels of the Opn2 (rhodopsin) photoreceptor increased after VR exposure in mature 3T3-L1 adipocytes. Subsequent treatment of mature 3T3-L1 adipocytes at a specific VR wavelength induced rhodopsin- and β3-adrenergic receptor (AR)-dependent lipolytic responses that consequently led to increases in intracellular cAMP and phosphorylated HSL protein levels. Our study indicates that photoreceptors are expressed and exert individual functions in nonvisual cells, such as adipocytes. We suggest that the VR-induced photoreceptor system could be a potential therapeutic target for the regulation of lipid homeostasis in a non-invasive manner. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. The effects of COST on the differentiation of 3T3-L1 preadipocytes and the mechanism of action.

    PubMed

    Kong, Shang; Ding, Chen; Huang, Lanlan; Bai, Yan; Xiao, Tiancun; Guo, Jiao; Su, Zhengquan

    2017-02-01

    The objectives of this study were to explore the effect of COST (one thousand Da molecular weight chitosan oligosaccharide) on the differentiation of 3T3-L1 preadipocytes and to determine the mechanism of action. 3T3-L1 preadipocytes were used as the target cells, and the induction of the methods for the differentiation of 3T3-L1 preadipocytes was based on classic cocktails. The MTT assay was used to filtrate the concentration of COST. On the 6th day of induced-differentiation, the differentiation of 3T3-L1 cells was detected by Oil Red O staining. The expression of PPARγ and C/EBPα mRNA was determined using real-time fluorescence quantitative PCR (Q-PCR). COST inhibited 3T3-L1 preadipocyte differentiation in a dose-dependent manner and decreased lipid accumulation. At the molecular level, the expression of the transcription factors, PPARγ and C/EBPα, was reduced by COST during adipogenesis. These results indicate that COST effectively inhibited the differentiation of 3T3-L1 preadipocytes. The mechanism is related to the down-regulation expression of PPARγ and C/EBPα.

  2. Chromium and vanadate combination increases insulin-induced glucose uptake by 3T3-L1 adipocytes.

    PubMed

    Brautigan, David L; Kruszewski, Allison; Wang, Hong

    2006-09-01

    Insulin activates signaling pathways in target tissues through the insulin receptor and Tyr phosphorylation of intracellular proteins. Vanadate mimics insulin and enhances its actions through inhibition of protein Tyr phosphatases. Chromium is a micronutrient that enhances insulin action to normalize blood glucose, but the mechanism is not understood. Here we show that either vanadate or chromium stimulates Tyr phosphorylation of insulin receptor in mouse 3T3-L1 adipocytes compared to insulin alone, but a combination of vanadate and chromium is not additive. Phosphorylation of MAPK or 4E-BP1 as markers for insulin signaling is stimulated by vanadate plus insulin, and chromium does not enhance the effects. Vanadate robustly activates glucose uptake by 3T3-L1 adipocytes even without added insulin and increases insulin-stimulated glucose uptake. Chromium pretreatment of adipocytes slightly enhances glucose uptake in response to insulin, but significantly increases glucose uptake above that induced by insulin plus vanadate. These data show that chromium enhances glucose uptake even when Tyr phosphorylation levels are elevated by vanadate plus insulin, suggesting separate mechanisms of action for vanadate and chromium.

  3. Insulin increases tristetraprolin and decreases VEGF gene expression in mouse 3T3-L1 adipocytes

    USDA-ARS?s Scientific Manuscript database

    Tristetraprolin (TTP/ZFP36) family proteins bind and destabilize AU-rich element-containing mRNAs encoding cytokines such as vascular endothelial growth factor (VEGF). Little is known about the expression and insulin-regulation of TTP family and related genes in adipocytes. We analyzed the relative ...

  4. Inhibitory effects of the constituents of Hippophae rhamnoides on 3T3-L1 cell differentiation and nitric oxide production in RAW264.7 cells.

    PubMed

    Yang, Zhi-Gang; Wen, Xiu-Feng; Li, Yong-Hai; Matsuzaki, Keiichi; Kitanaka, Susumu

    2013-01-01

    Three new flavonol glycosides, hippophaeosides A-C (1-3), together with 27 known constituents, were isolated from Hippophae rhamnoides L. leaves. Their structures were determined by spectroscopic analyses. Their inhibitory activities on 3T3-L1 preadipocyte differentiation and triglyceride accumulation in maturing adipocytes, and nitric oxide production in RAW264.7 cells were examined.

  5. Sphingosine-1-phosphate inhibits the adipogenic differentiation of 3T3-L1 preadipocytes.

    PubMed

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2014-10-01

    Sphingosine-1-phosphate (S1P) is a pluripotent lipid mediator that transmits signals through G-protein-coupled receptors to control diverse biological processes. The novel biological activity of S1P in the adipogenesis of 3T3-L1 preadipocytes was identified in the present study. S1P significantly decreased lipid accumulation in maturing preadipocytes in a dose‑dependent manner. In order to understand the anti‑adipogenic effects of S1P, preadipocytes were treated with S1P, and the change in the expression of several adipogenic transcription factors and enzymes was investigated using quantitative RT-PCR. S1P downregulated the transcriptional levels of the peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding proteins and adiponectin, which are markers of adipogenic differentiation. The effects of S1P on the levels of mitogen‑activated protein kinase (MAPK) signals in preadipocytes were also investigated. The activation of JNK and p38 were downregulated by S1P treatment in human preadipocytes. In conclusion, the results of this study suggest that S1P alters fat mass by directly affecting adipogenesis. This is mediated by the downregulation of adipogenic transcription factors and by inactivation of the JNK and p38 MAPK pathways. Thus, selective targeting of the S1P receptors and sphingosine kinases may have clinical applications for the treatment of obesity.

  6. Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability

    PubMed Central

    Sabater, David; Arriarán, Sofía; Romero, María del Mar; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2014-01-01

    White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation. PMID:24413028

  7. Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability

    NASA Astrophysics Data System (ADS)

    Sabater, David; Arriarán, Sofía; Romero, María Del Mar; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2014-01-01

    White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.

  8. Biological effects of THC and a lipophilic cannabis extract on normal and insulin resistant 3T3-L1 adipocytes.

    PubMed

    Gallant, M; Odei-Addo, F; Frost, C L; Levendal, R-A

    2009-10-01

    Type 2 diabetes, a chronic disease, affects about 150 million people world wide. It is characterized by insulin resistance of peripheral tissues such as liver, skeletal muscle, and fat. Insulin resistance is associated with elevated levels of tumor necrosis factor alpha (TNF-alpha), which in turn inhibits insulin receptor tyrosine kinase autophosphorylation. It has been reported that cannabis is used in the treatment of diabetes. A few reports indicate that smoking cannabis can lower blood glucose in diabetics. Delta(9)-tetrahydrocannabinol (THC) is the primary psychoactive component of cannabis. This study aimed to determine the effect of a lipophilic cannabis extract on adipogenesis, using 3T3-L1 cells, and to measure its effect on insulin sensitivity in insulin resistant adipocytes. Cells were cultured in Dulbecco's modified eagle medium (DMEM) with 10% fetal bovine serum (FBS) and differentiated over a 3 day period for all studies. In the adipogenesis studies, differentiated cells were exposed to the extract in the presence and absence of insulin. Lipid content and glucose uptake was subsequently measured. Insulin-induced glucose uptake increased, while the rate of adipogenesis decreased with increasing THC concentration. Insulin-resistance was induced using TNF-alpha, exposed to the extract and insulin-induced glucose uptake measured. Insulin-induced glucose was increased in these cells after exposure to the extract. Semiquantitative real time polymerase chain reaction (RT-PCR) was performed after ribonucleic acid (RNA) extraction to evaluate the effects of the extract on glucose transporter isotype 4 (GLUT-4), insulin receptor substrate-1 (IRS-1) and IRS-2 gene expression.

  9. Curcumin attenuates lipolysis stimulated by tumor necrosis factor-α or isoproterenol in 3T3-L1 adipocytes.

    PubMed

    Xie, Xiao-yun; Kong, Po-Ren; Wu, Jin-feng; Li, Ying; Li, Yan-xiang

    2012-12-15

    Curcumin, an active component derived from dietary spice turmeric (Curcuma longa), has been demonstrated antihyperglycemic, antiinflammatory and hypocholesterolemic activities in obesity and diabetes. These effects are associated with decreased level of circulating free fatty acids (FFA), however the mechanism has not yet been elucidated. The flux of FFA and glycerol from adipose tissue to the blood stream primarily depends on the lipolysis of triacylglycerols in the adipocytes. Adipocyte lipolysis is physiologically stimulated by catecholamine hormones. Tumor necrosis factor-α (TNFα) stimulates chronic lipolysis in obesity and type 2 diabetes. In this study, we examined the role of curcumin in inhibiting lipolytic action upon various stimulations in 3T3-L1 adipocytes. Glycerol release from TNFα or isoproterenol-stimulated 3T3-L1 adipocytes in the absence or presence of curcumin was determined using a colorimetric assay (GPO-Trinder). Western blotting was used to investigate the TNFα-induced phosphorylation of MAPK and perilipin expression. Fatcake and cytosolic fractions were prepared to examine the isoproterenol-stimulated hormone-sensitive lipase translocation. Treatment with curcumin attenuated TNFα-mediated lipolysis by suppressing phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2) and reversing the downregulation of perilipin protein in TNFα-stimulated adipocytes (p<0.05). The acute lipolytic response to adrenergic stimulation of isoproterenol was also restricted by curcumin (10-20 μM, p<0.05), which was compatible with reduced perilipin phosphorylation(29%, p<0.05) and hormone-sensitive lipase translocation(20%, p<0.05). This study provides evidence that curcumin acts on adipocytes to suppress the lipolysis response to TNFα and catecholamines. The antilipolytic effect could be a cellular basis for curcumin decreasing plasma FFA levels and improving insulin sensitivity. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Activation of AMPK by berberine promotes adiponectin multimerization in 3T3-L1 adipocytes.

    PubMed

    Li, Yun; Wang, Pengcheng; Zhuang, Yuan; Lin, Huan; Li, Yehua; Liu, Ling; Meng, Qinghang; Cui, Ting; Liu, Jing; Li, Zhen

    2011-06-23

    Adiponectin is assembled into trimer (LMW), hexamer (MMW) and high-molecular-weight (HMW) multimer in adipocytes. The HMW adiponectin is more metabolically active and closely associated with peripheral insulin sensitivity. In this study, we reported that berberine, an isoquinoline alkaloid with insulin-sensitizing effect, inhibits the expression of adiponectin, but promotes the assembly of HMW adiponectin and increases the ratio of HMW to total adiponectin. Berberine activates AMPK. Knockdown of AMPKα1 abolishes the effect of berberine. Activation of AMPK by AICAR also increases the level of HMW adiponectin. Our study suggested that activation of AMPK by berberine promotes adiponectin multimerization.

  11. Anti-obesity effects of hispidin and Alpinia zerumbet bioactives in 3T3-L1 adipocytes.

    PubMed

    Tu, Pham Thi Be; Tawata, Shinkichi

    2014-10-15

    Obesity and its related disorders have become leading metabolic diseases. In the present study, we used 3T3-L1 adipocytes to investigate the anti-obesity activity of hispidin and two related compounds that were isolated from Alpinia zerumbet (alpinia) rhizomes. The results showed that hispidin, dihydro-5,6-dehydrokawain (DDK), and 5,6-dehydrokawain (DK) have promising anti-obesity properties. In particular, all three compounds significantly increased intracellular cyclic adenosine monophosphate (cAMP) concentrations by 81.2% ± 0.06%, 67.0% ± 1.62%, and 56.9% ± 0.19%, respectively. Hispidin also stimulated glycerol release by 276.4% ± 0.8% and inhibited lipid accumulation by 47.8% ± 0.16%. Hispidin and DDK decreased intracellular triglyceride content by 79.5% ± 1.37% and 70.2% ± 1.4%, respectively, and all three compounds inhibited glycerol-3-phosphate dehydrogenase (GPDH) and pancreatic lipase, with hispidin and DDK being the most potent inhibitors. Finally, none of the three compounds reduced 3T3-L1 adipocyte viability. These results highlight the potential for developing hispidin and its derivatives as anti-obesity compounds.

  12. Effects and Molecular Mechanism of GST-Irisin on Lipolysis and Autocrine Function in 3T3-L1 Adipocytes.

    PubMed

    Gao, Shanshan; Li, Fangmin; Li, Huimin; Huang, Yibing; Liu, Yu; Chen, Yuxin

    2016-01-01

    Irisin, which was recently identified as a myokine and an adipokine, transforms white adipose tissue to brown adipose tissue and has increasingly caught the attention of the medical and scientific community. However, the signaling pathway of irisin and the molecular mechanisms responsible for the lipolysis effect remain unclear. In this study, we established an efficient system for the expression and purification of GST-irisin in Escherichia coli. The biological activity of GST-irisin was verified using the cell counting kit-8 assay and by detecting the mRNA expression of uncoupling protein 1. Our data showed that GST-irisin regulates mRNA levels of lipolysis-related genes such as adipose triglyceride lipase and hormone-sensitive lipase and proteins such as the fatty acid-binding protein 4, leading to increased secretion of glycerol and decreased lipid accumulation in 3T3-L1 adipocytes. In addition, exogenous GST-irisin can increase its autocrine function in vitro by regulating the expression of fibronectin type III domain-containing protein 5. GST-irisin could regulate glucose uptake in 3T3-L1 adipocytes. Hence, we believe that recombinant GST-irisin could promote lipolysis and its secretion in vitro and can potentially prevent obesity and related metabolic diseases.

  13. Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and in 3T3-L1 adipocytes

    PubMed Central

    Vazquez Prieto, Marcela A.; Bettaieb, Ahmed; Rodriguez Lanzi, Cecilia; Soto, Verónica C.; Perdicaro, Diahann J.; Galmarini, Claudio R.; Haj, Fawaz G.; Miatello, Roberto M.; Oteiza, Patricia I.

    2015-01-01

    Scope This study evaluated the capacity of dietary catechin (C), quercetin (Q) and the combination of both (CQ), to attenuate adipose inflammation triggered by high fructose (HFr) consumption in rats and by tumor necrosis factor alpha (TNFα) in 3T3-L1 adipocytes. Methods and results In rats, HFr consumption for 6 wk caused dyslipidemia, insulin resistance, reduced plasma adiponectin, adiposity, and adipose tissue inflammation. Dietary supplementation with 20 mg/kg/d of C, Q and CQ improved all these parameters. In 3T3-L1 adipocytes, C and Q attenuated TNFα-induced elevated protein carbonyls, increased pro-inflammatory cytokine expression (MCP-1, resistin), and decreased adiponectin. The protective effects of C and Q on adipose inflammation are in part associated with their capacity to: i) decrease the activation of the mitogen activated kinases (MAPKs) JNK and p38; and ii) prevent the downregulation of PPARγ. In summary, C and Q, and to a larger extent the combination of both, attenuated adipose pro-inflammatory signaling cascades and regulated the balance of molecules that improve (adiponectin) or impair (TNFα, MCP-1, resistin) insulin sensitivity. Conclusion Together, these findings suggest that dietary Q and C may have potential benefits in mitigating MetS associated adipose inflammation, oxidative stress, and insulin resistance. PMID:25620282

  14. Effects and Molecular Mechanism of GST-Irisin on Lipolysis and Autocrine Function in 3T3-L1 Adipocytes

    PubMed Central

    Gao, Shanshan; Li, Fangmin; Li, Huimin; Huang, Yibing; Liu, Yu; Chen, Yuxin

    2016-01-01

    Irisin, which was recently identified as a myokine and an adipokine, transforms white adipose tissue to brown adipose tissue and has increasingly caught the attention of the medical and scientific community. However, the signaling pathway of irisin and the molecular mechanisms responsible for the lipolysis effect remain unclear. In this study, we established an efficient system for the expression and purification of GST-irisin in Escherichia coli. The biological activity of GST-irisin was verified using the cell counting kit-8 assay and by detecting the mRNA expression of uncoupling protein 1. Our data showed that GST-irisin regulates mRNA levels of lipolysis-related genes such as adipose triglyceride lipase and hormone-sensitive lipase and proteins such as the fatty acid-binding protein 4, leading to increased secretion of glycerol and decreased lipid accumulation in 3T3-L1 adipocytes. In addition, exogenous GST-irisin can increase its autocrine function in vitro by regulating the expression of fibronectin type III domain-containing protein 5. GST-irisin could regulate glucose uptake in 3T3-L1 adipocytes. Hence, we believe that recombinant GST-irisin could promote lipolysis and its secretion in vitro and can potentially prevent obesity and related metabolic diseases. PMID:26799325

  15. Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and 3T3-L1 adipocytes.

    PubMed

    Vazquez Prieto, Marcela A; Bettaieb, Ahmed; Rodriguez Lanzi, Cecilia; Soto, Verónica C; Perdicaro, Diahann J; Galmarini, Claudio R; Haj, Fawaz G; Miatello, Roberto M; Oteiza, Patricia I

    2015-04-01

    This study evaluated the capacity of dietary catechin (C), quercetin (Q), and the combination of both (CQ), to attenuate adipose inflammation triggered by high fructose (HFr) consumption in rats and by tumor necrosis factor alpha (TNF-α) in 3T3-L1 adipocytes. In rats, HFr consumption for 6 wk caused dyslipidemia, insulin resistance, reduced plasma adiponectin, adiposity, and adipose tissue inflammation. Dietary supplementation with 20 mg/kg/day of C, Q, and CQ improved all these parameters. In 3T3-L1 adipocytes, C and Q attenuated TNF-α-induced elevated protein carbonyls, increased proinflammatory cytokine expression (MCP-1, resistin), and decreased adiponectin. The protective effects of C and Q on adipose inflammation are in part associated with their capacity to (i) decrease the activation of the mitogen-activated kinases (MAPKs) JNK and p38; and (ii) prevent the downregulation of PPAR-γ. In summary, C and Q, and to a larger extent the combination of both, attenuated adipose proinflammatory signaling cascades and regulated the balance of molecules that improve (adiponectin) or impair (TNF-α, MCP-1, resistin) insulin sensitivity. Together, these findings suggest that dietary Q and C may have potential benefits in mitigating MetS-associated adipose inflammation, oxidative stress, and insulin resistance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 1'-acetoxychavicol acetate inhibits adipogenesis in 3T3-L1 adipocytes and in high fat-fed rats.

    PubMed

    Ohnishi, Rie; Matsui-Yuasa, Isao; Deguchi, Yohei; Yaku, Keisuke; Tabuchi, Masaki; Munakata, Hiroshi; Akahoshi, Yasumitsu; Kojima-Yuasa, Akiko

    2012-01-01

    Alpinia galanga and Languas galanga, which are plants belonging to the ginger family, are frequently used for cooking, especially in Thai and Indonesian cuisine. The compound 1'-acetoxychavicol acetate (ACA), which is naturally obtained from the rhizomes and seeds of these gingers, has antioxidant and anti-inflammatory properties. We investigated the anti-obesity effects of ACA in 3T3-L1 adipocytes and in high fat diet (HFD)-induced rat models of obesity. ACA caused a significant decrease in the activity of GPDH in 3T3-L1 adipocytes without eliciting cell cytotoxicity, and it inhibited cellular lipid accumulation through the down-regulation of transcription factors such as PPARγ and C/EBPα. ACA also induced a dose-dependent phosphorylation of AMP-activated protein kinase (AMPK). In the animal model, rats fed an HFD containing 0.05% ACA gained less weight than rats fed an HFD alone. The visceral fat mass in rats fed an HFD containing 0.05% ACA tended to be lower than that in rats fed an HFD alone. Furthermore, a histological examination of livers from rats fed an HFD showed steatohepatitis. However, rats fed an HFD containing 0.05% ACA showed no histopathological changes in the liver tissue. Our results show that ACA exerts anti-obesity activities both in vitro and in vivo and suggests that ACA may have a novel preventive activity against obesity and possibly other metabolic diseases.

  17. Phenethyl isothiocyanate protects against H2O2-induced insulin resistance in 3T3-L1 adipocytes.

    PubMed

    Nagami, Moe; Ito, Yoshiaki; Nagasawa, Takashi

    2017-09-13

    Obesity is associated with systemic oxidative stress and leads to insulin resistance. Phenethyl isothiocyanate (PEITC), a natural dietary isothiocyanate, has been shown to have beneficial effects in improving cellular defense activities against oxidative stress through activation of nuclear factor erythroid-2 related factor 2 (Nrf2) pathway. However, little evidence exists if the antioxidative activity has beneficial effects on glucose metabolism. Here, we tested the preventive potential of PEITC for impaired insulin-induced glucose uptake by oxidative stress in 3T3-L1 adipocytes. Treatment with PEITC increased the expression of antioxidative enzymes regulated by Nrf2 such as γ-glutamylcysteine-synthetase, heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1 and glutathione S-transferase, and reduced oxidative stress induced by H2O2. Furthermore, PEITC restored impaired insulin-stimulated glucose uptake, translocation of glucose transporter 4 and insulin signaling by H2O2. These results indicate that PEITC protected insulin-regulated glucose metabolism impaired by oxidative stress through the antioxidative activity in 3T3-L1 adipocytes.

  18. Inhibition of preadipocyte differentiation and lipid accumulation by Orengedokuto treatment of 3T3-L1 cultures.

    PubMed

    Ikarashi, Nobutomo; Tajima, Masataka; Suzuki, Kunihiro; Toda, Takahiro; Ito, Kiyomi; Ochiai, Wataru; Sugiyama, Kiyoshi

    2012-01-01

    Obesity is a major cause of metabolic syndrome and is due to an increase in the number and hypertrophy of adipocytes. Accordingly, inhibition of the differentiation and proliferation of adipocytes may be used in the treatment and prevention of metabolic syndrome. This study investigated the effects of 50 commonly used Kampo medicines on the differentiation of 3T3-L1 preadipocytes to search for a drug with an antiobesity effect. Kampo medicines were screened, and the strongest differentiation-inhibitory effect was noted with Orengedokuto. To explore the active ingredients in Orengedokuto, the effects of four crude drug components of Orengedokuto were investigated. It was found that the differentiation-inhibitory effect of Orengedokuto was accounted for by Coptidis rhizome and Phellodendri cortex. Furthermore, berberine, a principal ingredient common to Coptidis rhizome and Phellodendri cortex, showed a differentiation-inhibitory effect. The effect of berberine involves an inhibition of the mRNA and protein expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα). Moreover, berberine inhibited lipid accumulation in adipocytes. These findings suggest that an antiobesity effect could be a new indication for Orengedokuto and that its active ingredient is berberine, with a mechanism involving the inhibition of PPARγ and C/EBPα expression.

  19. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes

    SciTech Connect

    Kim, Mi-Bo; Song, Youngwoo; Kim, Changhee; Hwang, Jae-Kwan

    2014-03-07

    Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element binding protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.

  20. Sodium acetate decreases phosphorylation of hormone sensitive lipase in isoproterenol-stimulated 3T3-L1 mature adipocytes.

    PubMed

    Aberdein, Nicola; Schweizer, Michael; Ball, Derek

    2014-04-01

    Lipolysis, the process of hydrolysis of stored triacylglycerol into glycerol and non-esterified fatty acids (NEFA), is reported to be reduced by short chain fatty acids (SCFA) but the mechanism of this inhibition is poorly understood. The aim of this study was to measure the phosphorylation at serine residue 563 of hormone sensitive lipase with and without exposure to sodium acetate. Using the 3T3-L1 cell line, we identified that stimulating the cells with isoproterenol increased phosphorylated hormone sensitive lipase (pHSL) expression by 60% compared with the basal state. In the presence of the SCFA acetate in stimulated cells, pHSL decreased by 15% compared with stimulated cells alone. These results were mirrored by the NEFA release from stimulated cells that had significantly decreased in the presence of sodium acetate after 60 min (from 0.53 µmol mg(-1) protein to 0.41 µmol mg(-1) protein, respectively, P = 0.004); and 180 min (1.73 µmol mg(-1) protein to 1.13 µmol mg(-1) protein, P = 0.020); however, treatment had no effect on glycerol release (P = 0.109). In conclusion, exposure to 4 mM acetate reduced the level of phosphorylation of HSL(SER563) in mature 3T3-L1 adipocytes and led to a significant reduction in NEFA release, although glycerol release was not affected.

  1. AICAR Attenuates TNFα-Induced Inappropriate Secretion of Monocyte Chemoattractant Protein-1 and Adiponectin in 3T3-L1 Adipocytes

    PubMed Central

    Nagahara, Keiko; Ishikawa, Takuya; Nakano, Yuya; Abe, Yoshifusa; Tanaka, Daisuke; Itabashi, Kazuo

    2016-01-01

    Aim: The increase in monocyte chemoattractant protein-1 (MCP-1) and the decrease in adiponectin production from hypertrophic adipocytes are associated with adipose tissue inflammation and its metabolic complications. The aim of this study was to determine whether 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an adenosine monophosphate-activated protein kinase (AMPK) activator, modulates these adipocytokine productions in tumor necrosis factor-α (TNFα)-treated adipocytes. Methods: AICAR and/or other reagents were added to the culture medium, and then, TNFα was added to fully differentiated 3T3-L1 adipocytes. The MCP-1 and adiponectin production in the culture supernatant was measured by ELISA. AMPK, phosphatidylinositol 3-kinase (PI3K), and nuclear factor-κB (NF-κB) activities were also assayed. Results: Treatment with TNFα increased MCP-1 and decreased adiponectin secretion dose-dependently in the 3T3-L1 adipocytes, and AICAR significantly inhibited these TNFα-mediated changes. Interestingly, metformin, another AMPK activator, did not have such effects on these adipocytokines. Both the AMPK and PI3K systems in the cells were significantly activated by the AICAR treatment, but the effects of AICAR on adipocytokines were not weakened by the addition of dorsomorphin, an AMPK inhibitor, or LY294002, a PI3K inhibitor. Pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, showed protective effects similar to those as AICAR. AICAR, but not metformin, significantly inhibited the TNFα-stimulated activation of NF-κB, and dorsomorphin did not change AICAR's effect. Conclusion: AICAR attenuates the TNFα-induced secretion of MCP-1 and adiponectin in 3T3-L1 adipocytes. The observed effects of AICAR seem to be mainly due to the inhibition of NF-κB activation rather than the activation of the AMPK pathway, at least in TNFα-treated adipocytes. PMID:27170207

  2. Enzyme-treated Ecklonia cava extract inhibits adipogenesis through the downregulation of C/EBPα in 3T3-L1 adipocytes

    PubMed Central

    Kim, In-Hye; Nam, Taek-Jeong

    2017-01-01

    In this study, we examined the inhibitory effects of enzyme-treated Ecklonia cava (EEc) extract on the adipogenesis of 3T3-L1 adipocytes. The components of Ecklonia cava (E. cava) were first separated and purified using the digestive enzymes pectinase (Rapidase® X-Press L) and cellulase (Rohament® CL). We found that the EEc extract contained three distinct phlorotannins: eckol, dieckol and phlorofucofuroeckol-A. Among the phlorotannins, dieckol was the most abundant in the EEc extract at 16 mg/g. Then we examined the inhibitory effects of EEc extract treatment on differentiation-related transcription factors and on adipogenesis-related gene expression in vitro using 3T3-L1 adipocytes. 3T3-L1 pre-adipocytes were used to determine the concentrations of the EEc extract and Garcinia cambogia (Gar) extract that did not result in cytotoxicity. Glucose utilization and triglyceride (TG) accumulation in the EEc-treated adipocytes were similarly inhibited by 50 µg/ml EEc and 200 µg/ml Gar, and these results were confirmed by Oil Red O staining. Protein expression of adipogenesis differentiation-related transcription factors following treatment with the EEc extract was also examined. Only the expression of CCAAT/enhancer-binding protein (C/EBP)α was decreased, while there was no effect on the expression of C/EBPβ, C/EBPδ, and peroxisome proliferator-activated receptor γ (PPARγ). Treatment with the EEc extract decreased the expression levels of adipogenesis-related genes, in particular sterol regulatory element binding protein-1c (SREBP-1c), adipocyte fatty acid binding protein (A-FABP), fatty acid synthase (FAS) and adiponectin. These results suggest that EEc extract treatment has an inhibitory effect on adipogenesis, specifically by affecting the activation of the C/EBPα signaling pathway and the resulting adipogenesis-related gene expression. PMID:28204815

  3. Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells.

    PubMed

    Lee, Yun K; Lee, Won S; Hwang, Jin T; Kwon, Dae Y; Surh, Young J; Park, Ock J

    2009-01-14

    Curcumin has been reported to have the potential to prevent obesity as well as cancers. The downstream targets regulated by AMP-activated protein kinase (AMPK) for inhibiting adipocyte differentiation or cancer cell proliferation of curcumin were investigated. The activation of AMPK by curcumin was crucial for the inhibition of differentiation or growth in both adipocytes and cancer cells. Stimulation of AMPK by curcumin resulted in the down-regulation of PPAR (peroxisome proliferator-activated receptor)-gamma in 3T3-L1 adipocytes and the decrease in COX-2 in MCF-7 cells. Application of a synthetic AMPK activator also supported the evidence that AMPK acts as an upstream signal of PPAR-gamma in 3T3-L1 adipocytes. In cancer cells, AMPK was found to act as a regulator of ERK1/2, p38, and COX-2. Regulation of AMPK and its downstream targets such as PPAR-gamma, Mapkinases, and COX-2 by curcumin appears to be important in controlling adipocytes and cancerous cells.

  4. Proteomic analysis of cAMP-mediated signaling during differentiation of 3 T3-L1 preadipocytes.

    PubMed

    Borkowski, Kamil; Wrzesinski, Krzysztow; Rogowska-Wrzesinska, Adelina; Audouze, Karine; Bakke, Jesse; Petersen, Rasmus Koefoed; Haj, Fawaz G; Madsen, Lise; Kristiansen, Karsten

    2014-12-01

    Initiation of adipocyte differentiation is promoted by the synergistic action of insulin/insulin-like growth factor, glucocorticoids, and agents activating cAMP-dependent signaling. The action of cAMP is mediated via PKA and Epac, where at least part of the PKA function relates to strong repression of Rho kinase activity, whereas Epac counteracts the reduction in insulin/insulin-like growth factor signaling associated with complete repression of Rho kinase activity. However, detailed knowledge of the Epac-dependent branch and the interplay with PKA is still limited. In the present study, we present a comprehensive evaluation of Epac-mediated processes and their interplay with PKA during the initiation of 3 T3-L1 preadipocyte differentiation using a combination of proteomics, molecular approaches, and bioinformatics. Proteomic analyses revealed 7 proteins specifically regulated in response to Epac activation, 4 in response to PKA activation, and 11 in response to the combined activation of Epac and PKA during the initial phase of differentiation. Network analyses indicated that the identified proteins are involved in pathways of importance for glucose metabolism, inositol metabolism, and calcium-dependent signaling thereby adding a novel facet to our understanding of cAMP-mediated potentiation of adipocyte differentiation.

  5. NYGGF4 (PID1) effects on insulin resistance are reversed by metformin in 3T3-L1 adipocytes.

    PubMed

    Qiu, Jie; Wang, Yu-Mei; Shi, Chun-Mei; Yue, Hong-Ni; Qin, Zhen-Ying; Zhu, Guan-Zhong; Cao, Xin-Guo; Ji, Chen-Bo; Cui, Yan; Guo, Xi-Rong

    2012-12-01

    NYGGF4 (also called PID1) is a recently discovered gene that is involved in obesity-related insulin resistance (IR). We aimed in the present study to further elucidate the effects of NYGGF4 on IR and the underlying mechanisms through using metformin treatment in 3T3-L1 adipocytes. Our data showed that the metformin pretreatment strikingly enhanced insulin-stimulated glucose uptake through increasing GLUT4 translocation to the PM in NYGGF4 overexpression adipocytes. NYGGF4 overexpression resulted in significant inhibition of tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt, whereas incubation with metformin strongly activated IRS-1 and Akt phosphorylation in NYGGF4 overexpression adipocytes. The reactive oxygen species (ROS) levels in NYGGF4 overexpression adipocytes were strikingly enhanced, which could be decreased by the metformin pretreatment. Our data also showed that metformin increased the expressions of PGC1-α, NRF-1, and TFAM, which were reduced in the NYGGF4 overexpression adipocytes. These results suggest that NYGGF4 plays a role in IR and its effects on IR could be reversed by metformin through activating IRS-1/PI3K/Akt and AMPK-PGC1-α pathways.

  6. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene.

    PubMed

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli; Sun, Wenxing; Gao, Ying; Zhang, Lifan; Chen, Jie

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes.

  7. Hydroxytyrosol stimulates lipolysis via A-kinase and extracellular signal-regulated kinase activation in 3T3-L1 adipocytes.

    PubMed

    Drira, Riadh; Sakamoto, Kazuichi

    2014-04-01

    The principal function of the adipose tissue is the storage of energy in the form of triglyceride through the process of adipogenesis, as well as the provision of the stored energy through lipolysis. In the present study, we investigated the effect of hydroxytyrosol on lipolysis in 3T3-L1 adipocytes. 3T3-L1 adipocytes, used as in vitro model in this study, were treated with several concentration of hydroxytyrosol. Glycerol release was measured to identify the lipolytic rate activation. All factors activation and expression were carried out via Western blotting and qRT-PCR. Our results showed that hydroxytyrosol, over a range of concentrations, attenuated triglyceride accumulation and stimulated glycerol release in fully differentiated adipocytes in a dose- and time-dependent manner. Moreover, hydroxytyrosol had no effect on adipocyte viability. To understand the mechanism underlying hydroxytyrosol-stimulated lipolysis, we used inhibitors of PKA, PKC, PKG, ERK1/2, and nitric oxide production. Pretreatment with a PKA inhibitor (Rp-cAMPs) and an ERK1/2 inhibitor (U0126) significantly attenuated hydroxytyrosol-stimulated lipolysis. In contrast, a PKC inhibitor (Calphostin C), 2 PKG inhibitors (KT 5823 and Rp-cGMPs), and a nitric oxide inhibitor (S-ethyl ITU) had no effect on hydroxytyrosol-stimulated lipolysis. Over the same range of concentrations, hydroxytyrosol downregulated the expression of adipose triglyceride lipase, hormone sensitive lipase (HSL), and adipogenesis-related transcription factors PPARγ and C/EBPα. In addition, hydroxytyrosol increased the phosphorylation rate of HSL at Ser563 and Ser660, as well as perilipin and ERK phosphorylation. Hydroxytyrosol induced lipolysis in 3T3-L1 adipocytes via the activation of PKA and ERK1/2 pathway.

  8. Lipolytic effect of compounds isolated from leaves of mulberry (Morus alba L.) in 3T3-L1 adipocytes.

    PubMed

    Li, Hong Xu; Jo, Eunji; Myung, Chang-Seon; Kim, Young Ho; Yang, Seo Young

    2017-07-19

    In this study, 19 known compounds were isolated from mulberry (Morus alba L.) leaves. The lipid accumulation inhibitory activity of the isolated compounds was investigated. Compounds 4 and 12 showed good anti-adipogenic activity based on 3T3-L1 adipocytes with values of 36.6 ± 9.0 and 34.7 ± 4.0%, respectively. In addition, compounds 3, 6 and 15 showed significant inhibitory activity with values from 15.4 to 21.2% and compounds 2, 8-9 and 17-18 exhibited weak activity with values ranging from 2.1 to 10.7% at a concentration of 40.0 μM. These results show the potentiality that mulberry leaf is an excellent inhibitory phytochemical source against lipid accumulation.

  9. Peroxynitrite activates glucose uptake in 3T3-L1 adipocytes through a PI3-K-dependent mechanism.

    PubMed

    Guzman-Grenfell, Alberto M; Garcia-Macedo, Rebeca; Gonzalez-Martinez, Marco T; Hicks, Juan Jose; Medina-Navarro, Rafael

    2005-01-01

    Peroxynitrite, the product of the reaction between *NO and O2*-, is a strong oxidant and nitrating molecule, and it has been recently consideredas a component of some important signaling pathways. Herein, we report the effect of peroxynitrite on glucose uptake in 3T3-L1 adipocytes. Peroxynitrite stimulated glucose uptake and this effect was inhibited by citochalasin B, indicating the participation of facilitated GLUT transporters. Peroxynitrite-induced glucose uptake was not related to intracellular ATP, nor to external or internal calcium, but it was inhibited by the phosphatidylinositol 3-kinase (PI3-K) inhibitor, wortmannin. Additionally, we also found that peroxynitrite did not activate the insulin receptor nor the PI3-K downstream signaling protein kinase B (PKB/Akt). The dose-dependent inhibitory action of wortmannin suggests that peroxynitrite activates glucose transport without affecting GLUT transporters translocation.

  10. Germinated brown rice extract inhibits adipogenesis through the down-regulation of adipogenic genes in 3T3-L1 adipocytes.

    PubMed

    Ho, Jin-Nyoung; Son, Mi-Eun; Lim, Won-Chul; Lim, Seung-Taik; Cho, Hong-Yon

    2013-09-01

    The aim of this study was to examine the anti-adipogenic effect of germinated brown rice methanol extract (GBR) in 3T3-L1 adipocytes. The GBR inhibited adipocyte differentiation was measured by Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity in a dose-dependent manner without initiating any cytotoxicity. The mRNA levels of adipogenic transcription factors such as CCAAT/enhancer binding protein (C/EBPα), proliferator-activated receptorγ (PPARγ), and sterol regulatory element-binding protein-1c (SREBP-1c), and adipogenic genes, such as fatty acid synthase (FAS), adipocyte fatty acid-binding protein (aP2), and lipoprotein lipase (LPL), were significantly down-regulated by treatment with GBR when compared to that of untreated control cells. Moreover, tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) mRNA expressions were attenuated by GBR in mature adipocytes. These data suggest that GBR exhibits an anti-adipogenic effect through the suppression of adipogenesis in 3T3-L1 adipocytes.

  11. HSD1 and AQP7 short-term gene regulation by cortisone in 3T3-L1 adipocytes.

    PubMed

    Quesada-López, Tania; González-Dávalos, Laura; Piña, Enrique; Mora, Ofelia

    2016-01-01

    Adipose Tissue (AT) is a complex organ with a crucial regulatory role in energy metabolism and in the development of obesity and the Metabolic Syndrome (MS). Modified responses and the metabolism of hormones have been observed in visceral adiposity during obesity, specifically as related with cortisone. The objective of this study was to assess, in the 3T3-L1 adipocyte cell line, the short-term effect of cortisone on the expression of 11β-Hydroxysteroid dehydrogenase 1 (Hsd1), which is responsible for activation of cortisone into cortisol, and for Aquaporin 7 (Aqp7), involved in glycerol transport through the cell membrane. Total RNA (tRNA) and complementary DNA (cDNA) were obtained from cell samples treated with cortisone (0.1, 1, and 10 μM) during different times (0, 5, 10, 15, and 20 min, and 48 h) to quantify the expression of the aforementioned genes by real time PCR employing MnSOD and Ppia as housekeeping genes. There was a time-dependent response of Aqp7, a dose-dependent response of Hsd1, and an increase observed in the expression of both genes during min 1 of treatment (5- and 6-fold, respectively), followed by a decrease during the following 5-10 min (P < 0.05). With the 1-μM cortisone treatment, both genes showed cubic tendencies in their expression; the Hsd1 tendency is described by the equation y = 0.18×(3)-1.65×(2)+3.59x+1.31, while the Aqp7 tendency is described by y = 0.33×(3)-2.67×(2)+4.93x+1.84. There are immediate and quantitatively important actions of cortisone on the expression of Aqp7 and Hsd1 in 3T3-L1 adipocytes.

  12. Apigenin isolated from Daphne genkwa Siebold et Zucc. inhibits 3T3-L1 preadipocyte differentiation through a modulation of mitotic clonal expansion.

    PubMed

    Kim, Mi-Ae; Kang, Kyungsu; Lee, Hee-Ju; Kim, Myungsuk; Kim, Chul Young; Nho, Chu Won

    2014-04-17

    Obesity develops when energy intake chronically exceeds total energy expenditure. We sought to assess whether the flavonoid-rich fraction of crude extracts from Daphne genkwa Siebold et Zuccarini (GFF) might inhibit adipogenesis of 3T3-L1 cells. Cell viability of 3T3-L1 preadipocytes was assessed by MTT assays, and lipid accumulation was measured by Oil Red O. Adipogenesis related factors were checked by Western blot analysis. Flow cytometry was used to analyze the mitotic cell cycle during the mitotic clonal expansion phase. Among five flavonoids isolated from GFF, only apigenin potently inhibited the differentiation of 3T3-L1 cells. Apigenin reduced CCAAT/enhancer binding protein (C/EBP) α and peroxisome proliferator-activated receptor γ levels. Apigenin-treated 3T3-L1 cells failed to undergo clonal expansion during the early phase of adipocyte differentiation. Apigenin arrested cell cycle progression at the G0/G1 phase. This effect was associated with a marked decrease in cyclin D1 and cyclin-dependent kinase 4 expression, with the concomitant and sustained expression of p27(Kip1). In addition, apigenin inhibited the DNA-binding activity of C/EBPβ in differentiating 3T3-L1 cells by down-regulating the 35kDa isoform of C/EBPβ (liver-enriched activating protein) and up-regulating the expression of two different sets of C/EBP inhibitors: C/EBP homologous protein and the phospho-liver-enriched inhibitory protein isoform of C/EBPβ. These findings suggest that apigenin can prevent 3T3-L1 preadipocyte differentiation by the inhibition of the mitotic clonal expansion and the adipogenesis related factors and upregulation of the expression of multiple C/EBPβ inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes.

    PubMed

    Lone, Jameel; Choi, Jae Heon; Kim, Sang Woo; Yun, Jong Won

    2016-01-01

    Recent advances have been made in the understanding of pharmacological and dietary agents that contribute to browning of white adipose tissue in order to combat obesity by promoting energy expenditure. Here, we show that curcumin induces browning of 3T3-L1 and primary white adipocytes via enhanced expression of brown fat-specific genes. Curcumin-induced browning in white adipocytes was investigated by determining expression levels of brown adipocyte-specific genes/proteins by real-time reverse transcriptase polymerase chain reaction, immunoblot analysis and immunocytochemical staining. Curcumin increased mitochondrial biogenesis, as evidenced by transmission electronic microscopic detection and enhanced expression of proteins involved in fat oxidation. Cucurmin also increased protein levels of hormone-sensitive lipase and p-acyl-CoA carboxylase, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis. Increased expression of UCP1 and other brown adipocyte-specific markers was possibly mediated by curcumin-induced activation of AMP-activated protein kinase (AMPK) based on the fact that inhibition of AMPK by dorsomorphin abolished expression of PRDM16, UCP1 and peroxisome proliferator-activated receptor gamma co-activator 1-alpha while the activator 5-Aminoimidazole-4-carboxamide ribonucleotide elevated expression of these brown marker proteins. Our findings suggest that curcumin plays a dual modulatory role in inhibition of adipogenesis as well as induction of the brown fat-like phenotype and thus may have potential therapeutic implications for treatment of obesity.

  14. Fatty Acid 2-Hydroxylase Mediates Diffusional Mobility of Raft-associated Lipids, GLUT4 Level, and Lipogenesis in 3T3-L1 Adipocytes*

    PubMed Central

    Guo, Lin; Zhou, Dequan; Pryse, Kenneth M.; Okunade, Adewole L.; Su, Xiong

    2010-01-01

    Straight chain fatty acid α-oxidation increases during differentiation of 3T3-L1 adipocytes, leading to a marked accumulation of odd chain length fatty acyl moieties. Potential roles of this pathway in adipocyte differentiation and lipogenesis are unknown. Mammalian fatty acid 2-hydroxylase (FA2H) was recently identified and suggested to catalyze the initial step of straight chain fatty acid α-oxidation. Accordingly, we examined whether FA2H modulates adipocyte differentiation and lipogenesis in mature adipocytes. FA2H level markedly increases during differentiation of 3T3-L1 adipocytes, and small interfering RNAs against FA2H inhibit the differentiation process. In mature adipocytes, depletion of FA2H inhibits basal and insulin-stimulated glucose uptake and lipogenesis, which are partially rescued by the enzymatic product of FA2H, 2-hydroxy palmitic acid. Expression of fatty-acid synthase and SCD1 was decreased in FA2H-depleted cells, and levels of GLUT4 and insulin receptor proteins were reduced. 2-Hydroxy fatty acids are enriched in cellular sphingolipids, which are components of membrane rafts. Accelerated diffusional mobility of raft-associated lipids was shown to enhance degradation of GLUT4 and insulin receptor in adipocytes. Consistent with this, depletion of FA2H appeared to increase raft lipid mobility as it significantly accelerated the rates of fluorescence recovery after photobleaching measurements of lipid rafts labeled with Alexa 488-conjugated cholera toxin subunit B. Moreover, the enhanced recovery rates were partially reversed by treatment with 2-hydroxy palmitic acid. In conclusion, our findings document the novel role of FA2H in adipocyte lipogenesis possibly by modulation of raft fluidity and level of GLUT4. PMID:20519515

  15. Centipede grass exerts anti-adipogenic activity through inhibition of C/EBPβ, C/EBPα, and PPARγ expression and the AKT signaling pathway in 3T3-L1 adipocytes

    PubMed Central

    2012-01-01

    Background Centipede grass (CG) originates from China and South America and is reported to contain several C-glycosyl flavones and phenolic constituents, including maysin and luteolin derivatives. This study aimed to investigate, for the first time, the antiobesity activity of CG and its potential molecular mechanism in 3T3-L1 cells. Methods To study the effect of CG on adipogenesis, differentiating 3T3-L1 cells were treated every day with CG at various concentrations (0–100 μg/ml) for six days. Oil-red O staining and triglyceride content assay were performed to determine the lipid accumulation in 3T3-L1 cells. The expression of mRNAs or proteins associated with adipogenesis was measured using RT-PCR and Western blotting analysis. We examined the effect of CG on level of phosphorylated Akt in 3T3-L1 cells treated with CG at various concentration s during adipocyte differentiation. Results Differentiation was investigated with an Oil-red O staining assay using CG-treated 3T3-L1 adipocytes. We found that CG suppressed lipid droplet formation and adipocyte differentiation in 3T3-L1 cells in a dose-dependent manner. Treatment of the 3T3-L1 adipocytes with CG resulted in an attenuation of the expression of adipogenesis-related factors and lipid metabolic genes. The expression of C/EBPα and PPARγ, the central transcriptional regulators of adipogenesis, was decreased by the treatment with CG. The expression of genes involved in lipid metabolism, aP2 were significantly inhibited following the CG treatment. Moreover, the CG treatment down-regulated the phosphorylation levels of Akt and GSK3β. Conclusions Taken collectively, these data indicated that CG exerts antiadipogenic activity by inhibiting the expression of C/EBPβ, C/EBPα, and PPARγ and the Akt signaling pathway in 3T3-L1 adipocytes. PMID:23181522

  16. The influence of eicosapentaenoic acid and docosahexaenoic acid on expression of genes connected with metabolism and secretory functions of ageing 3T3-L1 adipocytes.

    PubMed

    Prostek, Adam; Gajewska, Małgorzata; Bałasińska, Bożena

    2016-09-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 long chain polyunsaturated fatty acids. The purpose of our study was to evaluate the influence of EPA and DHA on expression of genes connected with metabolism and secretory functions of ageing adipocytes. Young, mature and old differentiated 3T3-L1 adipocytes were cultured for 48h in the presence of EPA, or DHA. Both fatty acids increased the expression of Pparg, FATP1, FATP4 and ATGL genes, but only in young 3T3-L1 adipocytes. Moreover, in young, mature and old cells DHA elevated the expression of CPT1 gene. In addition, EPA and DHA enhanced the expression of leptin, adiponectin and apelin genes only in young cells. Investigated fatty acids changed mRNA levels of IL6 and MCP1 in young, mature and old cells. EPA increased the expression of these two genes, whereas DHA decreased it. Furthermore, EPA and DHA treatment changed the expression of IRS1 and GLUT4 genes involved in insulin signalling pathway, but their effects were opposite. Expression of these genes was decreased by EPA and increased by DHA in young, mature and old cells. In summary, the investigated fatty acids are able to affect the expression of genes associated with lipid metabolism, secretory functions and insulin resistance in ageing 3T3-L1 adipocytes, but their impact is age-dependant. Young cells seem to be more sensitive to EPA and DHA than mature and old ones. Furthermore, the effect of these two fatty acids is not always identical, and therefore requires further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The effect of cultureware surfaces on functional and structural components of differentiated 3T3-L1 preadipocytes.

    PubMed

    Pavlikova, Nela; Weiszenstein, Martin; Pala, Jan; Halada, Petr; Seda, Ondrej; Elkalaf, Moustafa; Trnka, Jan; Kovar, Jan; Polak, Jan

    2015-12-01

    Experiments using cultured primary cells or cell lines are a routine in vitro approach used across multiple biological disciplines, However, the structural and functional influences of various cultureware materials on cultured cells is not clearly understood. Surface treatments of cultureware have proven to have profound effects on cell viability and proliferation. In this study, we investigated the impact of polystyrene and fluorocarbon cultureware dishes on the proteomic profile of differentiated 3T3-L1 preadipocytes. After expansion and differentiation of cells on appropriate cultureware dishes, cell lysates were separated using two-dimensional gel electrophoresis and proteins were visualized with Coomassie blue staining. Spots with the highest differential expression between the two culture conditions were subsequently analyzed using matrix-assisted laser desorption/ionization mass spectrometry and the identified proteins were subjected to pathway analysis. We observed that 43% of all spots were differentially expressed depending on the cultureware. Pathway analysis revealed that glucose metabolism, mitochondrial structure and cell differentiation, represented by 14-3-3 protein-mediated signaling and the mitochondrial inner membrane organizing system (MINOS), were significantly affected by cultureware material. These results indicate that cultureware material can have a profound effect on key adipocyte functional pathways. These effects modifications of the cells should be reflected in the design of in vitro experiments and interpretation of their results.

  18. Effects of clozapine on adipokine secretions/productions and lipid droplets in 3T3-L1 adipocytes.

    PubMed

    Tsubai, Tomomi; Yoshimi, Akira; Hamada, Yoji; Nakao, Makoto; Arima, Hiroshi; Oiso, Yutaka; Noda, Yukihiro

    2017-02-01

    Clozapine, a second-generation antipsychotic (SGA), is a cause of side effects related to metabolic syndrome. The participation of serotonin 5-HT2C and histamine H1 receptors in the central nervous system has been reported as a mechanism of the weight gain caused by clozapine. In the present study, we investigated the direct pharmacological action of clozapine on the 3T3-L1 adipocytes and compared it to that of blonanserin, an SGA with low affinity for both receptors. Short-term exposure to clozapine decreased secretion and mRNA expression of leptin. Long-term exposure decreased leptin as well as adiponectin secretion, and further increased lipid droplets accumulation. However, short- and long-term exposures to blonanserin did not affect these parameters. A selective serotonin 5-HT2C, but not a histamine H1, receptor antagonist enhanced the decreased secretion of leptin induced by short-term exposure to clozapine, but did not affect the increased accumulation of lipid droplets. Our findings indicate that clozapine, but not blonanserin, strongly and directly affected the secretion of adipokines, such as leptin, in adipocytes and caused adipocyte enlargement. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Betel nut extract and arecoline block insulin signaling and lipid storage in 3T3-L1 adipocytes.

    PubMed

    Hsieh, Tusty-Jiuan; Hsieh, Pei-Chen; Wu, Ming-Tsang; Chang, Wei-Chiao; Hsiao, Pi-Jung; Lin, Kun-Der; Chou, Pong-Chun; Shin, Shyi-Jang

    2011-12-01

    According to several population-based studies, betel nut chewing is associated with metabolic syndrome and diabetes in British South Asians and Taiwanese. However, the underlying molecular mechanism is not yet clear. Arecoline is an alkaloid-type natural product found in betel nuts. Our aim was to clarify the influence of betel nut extract and arecoline on lipid accumulation and insulin signaling in adipocytes. We found that betel nut extract and arecoline blocked lipid storage in 3T3-L1 adipocytes. The possible mechanism may function by inhibiting the expression of the insulin receptor, glucose transporter-4, fatty acid synthase, and the lipid droplet proteins perilipin and adipophilin. In addition, betel nut extract and arecoline increased the basal level of IRS-1 serine(307) phosphorylation and decreased insulin-stimulated IRS-1 tyrosine, Akt, and PI3 kinase phosphorylation. In conclusion, betel nut extract and arecoline have diabetogenic potential on adipocytes that may result in insulin resistance and diabetes at least in part via the obstruction of insulin signaling and the blockage of lipid storage.

  20. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    SciTech Connect

    Milton, Flora Aparecida; Cvoro, Aleksandra; Amato, Angelica A.; Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani; Caro Alves de Lima, Maria do; Rocha Pitta, Ivan; Assis Rocha Neves, Francisco de; Webb, Paul

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  1. Pulicaria jaubertii E. Gamal-Eldin reduces triacylglyceride content and modifies cellular antioxidant pathways in 3T3-L1 adipocytes.

    PubMed

    Al-Naqeb, Ghanya; Rousová, Jana; Kubátová, Alena; Picklo, Matthew J

    2016-06-25

    Levels of obesity in Middle Eastern countries are increasing. Phytochemicals have anti-obesogenic properties as evidenced by prevention of adipocyte differentiation and blocking triacylglyceride (TG) accumulation. In Yemen, Pulicaria jaubertii E. Gamal-Eldin (PJ) is a food additive and a traditional medicine. We tested the hypothesis that phytochemicals present in PJ inhibit adipocytic responses during differentiation of 3T3-L1 preadipocytes to adipocytes. Methanolic extracts of PJ did not block expression of fatty acid binding protein 4 (FABP4) a marker of differentiation but did inhibit TG accumulation. Treatment of 3T3-L1 preadipocytes increased NADPH:quinone oxidoreductase 1 (NQO1), a suppressor of TG accumulation. Further fractionation of the methanolic PJ extract with hexane and dichloromethane (DCM) demonstrated that bioactivity towards TG reduction and elevated expression of NQO1 and other antioxidant genes (glutamate cysteine ligase catalytic unit, glutathione disulfide reductase, glutathione peroxidase (GPx) 4 resided in the DCM fraction. Activity towards depleting GSH and elevating the expression of catalase and GPx3 were found in the DCM and hexane fractions. Analysis by gas chromatography and liquid chromatography coupled with mass spectrometry demonstrated the presence of catechin-like moieties in the DCM and methanolic fractions and suggest that these components were partially responsible for the bioactivity of these fractions. In summary, our data indicate that fractions derived PJ exhibit anti-adipogenic properties in part through the presence of catechin-like compounds.

  2. Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes.

    PubMed

    Kim, Ah-Reum; Yoon, Bo Kyung; Park, Hyounkyoung; Seok, Jo Woon; Choi, Hyeonjin; Yu, Jung Hwan; Choi, Yoonjeong; Song, Su Jin; Kim, Ara; Kim, Jae-Woo

    2016-02-01

    Caffeine has been proposed to have several beneficial effects on obesity and its related metabolic diseases; however, how caffeine affects adipocyte differentiation has not been elucidated. In this study, we demonstrated that caffeine suppressed 3T3-L1 adipocyte differentiation and inhibited the expression of CCAAT/enhancer binding protein (C/EBP)α and peroxisome proliferator-activated receptor (PPAR)γ, two main adipogenic transcription factors. Anti-adipogenic markers, such as preadipocyte secreted factor (Pref)-1 and Krüppel-like factor 2, remained to be expressed in the presence of caffeine. Furthermore, 3T3-L1 cells failed to undergo typical mitotic clonal expansion in the presence of caffeine. Investigation of hormonal signaling revealed that caffeine inhibited the activation of AKT and glycogen synthase kinase (GSK) 3 in a dose-dependent manner, but not extracellular signal-regulated kinase (ERK). Our data show that caffeine is an anti-adipogenic bioactive compound involved in the modulation of mitotic clonal expansion during adipocyte differentiation through the AKT/GSK3 pathway. [BMB Reports 2016; 49(2): 111-115].

  3. Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes

    PubMed Central

    Kim, Hyo Jung; Yoon, Bo Kyung; Park, Hyounkyoung; Seok, Jo Woon; Choi, Hyeonjin; Yu, Jung Hwan; Choi, Yoonjeong; Song, Su Jin; Kim, Ara; Kim, Jae-woo

    2016-01-01

    Caffeine has been proposed to have several beneficial effects on obesity and its related metabolic diseases; however, how caffeine affects adipocyte differentiation has not been elucidated. In this study, we demonstrated that caffeine suppressed 3T3-L1 adipocyte differentiation and inhibited the expression of CCAAT/enhancer binding protein (C/EBP)α and peroxisome proliferator-activated receptor (PPAR)γ, two main adipogenic transcription factors. Anti-adipogenic markers, such as preadipocyte secreted factor (Pref)-1 and Krüppel-like factor 2, remained to be expressed in the presence of caffeine. Furthermore, 3T3-L1 cells failed to undergo typical mitotic clonal expansion in the presence of caffeine. Investigation of hormonal signaling revealed that caffeine inhibited the activation of AKT and glycogen synthase kinase (GSK) 3 in a dose-dependent manner, but not extracellular signal-regulated kinase (ERK). Our data show that caffeine is an anti-adipogenic bioactive compound involved in the modulation of mitotic clonal expansion during adipocyte differentiation through the AKT/GSK3 pathway. [BMB Reports 2016; 49(2): 111-115] PMID:26350746

  4. [8-hydroxy-dihydroberberine ameliorated insulin resistance induced by high FFA and high glucose in 3T3-L1 adipocytes].

    PubMed

    Xu, Li-jun; Lu, Fu-er; Yi, Ping; Wang, Zeng-si; Wei, Shi-chao; Chen, Guang; Dong, Hui; Zou, Xin

    2009-11-01

    The purpose of the study is to investigate the effect of 8-hydroxy-dihydroberberine on insulin resistance induced by high free fatty acid (FFA) and high glucose in 3T3-L1 adipocytes and its possible molecular mechanism. Palmic acid or glucose in combination with insulin was used to induce insulin resistance in 3T3-L1 adipocytes. 8-Hydroxy-dihydroberberine and berberine were added to the cultured medium separately, which were considered as treated group and positive control group. The rate of glucose uptake was determined by 2-deoxy-[3H]-D-glucose method. The amount of glucose consumption in the medium was measured by glucose oxidase method. Cell growth and proliferation of 3T3-L1 adipocytes were detected with Cell Counting Kit-8 (CCK-8) assay. After incubated with palmic acid for 24 hours or glucose with insulin for 18 hours, the rate of glucose transport in 3T3-L1 adipocytes was inhibited by 67% and 58%, respectively. The amount of glucose consumption in 3T3-L1 adipose cells was decreased by 41% after cells were incubated with palmic acid for 24 h. However, the above changes were reversed by pretreatment with 8-hydroxy-dihydroberberine for 24 and 48 h. Significant difference existed between groups. Insulin resistance in 3T3-L1 adipocytes, which is induced by high FFA and high glucose, could be ameliorated by 8-hydroxy-dihydroberberine.

  5. Soshiho-Tang Aqueous Extract Exerts Antiobesity Effects in High Fat Diet-Fed Mice and Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Lee, Mee-young; Kang, Byoung-Kab

    2016-01-01

    Soshiho-tang (SST; sho-saiko-to in Japanese; xiaochaihu-tang in Chinese) has generally been used to improve liver fibrosis- and cirrhosis-related symptoms in traditional Korean medicine. Although many studies have investigated the pharmacological properties of SST, its antiobesity effect has not been elucidated. Thus, our present study was carried out to evaluate the antiobesity effect of SST using a high fat diet- (HFD) induced obese mouse model and 3T3-L1 adipose cells. C57BL/6J mice were randomly divided into four groups (n = 6/group), normal diet (ND), HFD-fed group, and HFD- and SST-fed groups (S200: 200 mg/kg of SST; S600: 600 mg/kg of SST) and given HFD with or without SST extract for 8 weeks. 3T3-L1 preadipocytes were differentiated into adipocytes for 8 days with or without SST. In the HFD-fed obese mice, body weight and fat accumulation in adipose tissue were significantly reduced by SST administration. Compared with control-differentiated adipocytes, SST significantly inhibited lipid accumulation by decreasing the triglyceride (TG) content and leptin concentration in 3T3-L1 adipocytes. SST also decreased the expression of adipogenesis-related genes including lipoprotein lipase (LPL), fatty acid binding protein 4 (FABP4), CCAAT/enhancer-binding protein-alpha (C/EBP-α), and peroxisome proliferator-activated receptor-gamma (PPAR-γ). Our findings suggest that SST has potential as a nontoxic antiobesity medication. PMID:27777595

  6. Uncovering potential of Indonesian medicinal plants on glucose uptake enhancement and lipid suppression in 3T3-L1 adipocytes.

    PubMed

    Lahrita, Lucy; Kato, Eisuke; Kawabata, Jun

    2015-06-20

    As obesity is a key factor in the development of type 2 diabetes, lowering lipid accumulation in adipose tissues is as important as increasing insulin sensitivity in diabetic patients. The selected plant extracts used in this screen have been traditionally used in Indonesian medicine for the treatment of diabetes and its complications. To investigate the ability of the selected plants to both increase insulin sensitivity through the enhancement of glucose uptake after insulin induction in adipocytes and suppress lipid production in the same target cells. Dried Indonesian medicinal plants were extracted with 50% (v/v) aq. methanol. The extracts were dissolved in 50% DMSO when tested in 3T3-L1 adipocytes. The screening platform consists of insulin-induced glucose uptake, lipid accumulation, and cell viability. Initially, an enzymatic fluorescence assay was designed to demonstrate the enhancement of 2-deoxyglucose (2-DG) uptake after insulin induction. Different concentrations of the extracts that enhanced glucose uptake were subjected to lipid accumulation assay using Oil Red O staining. Potential extracts based on lipid suppression were subsequently assessed by CCK-8 cell viability assay to distinguish lipid reduction activity from cytotoxicity. Out of 59 plants, 13 plants demonstrated their ability to increase glucose uptake in 3T3-L1 adipocytes after insulin induction, and 4 of these plants' extracts suppressed lipid production of the cells. The CCK-8 assay results of those 4 plant extracts suggest that the lipid inhibition activity of Eurycoma longifolia Jack (root) and Piper nigrum L. (fruits) extracts is not attributed to their cytotoxicity in the adipose cells. Both of the plant extracts increased glucose uptake by more than 200% at 50 μg/mL and suppressed lipid accumulation in a concentration-dependent manner. Screening of selected Indonesian medicinal plants has uncovered the potentials of E. longifolia Jack (root) and P. nigrum L. (fruits) with dual active

  7. Cardiotrophin-1 Regulates Adipokine Production in 3T3-L1 Adipocytes and Adipose Tissue From Obese Mice.

    PubMed

    López-Yoldi, Miguel; Marcos-Gomez, Beatriz; Romero-Lozano, María Asunción; Sáinz, Neira; Prieto, Jesús; Martínez, Jose Alfredo; Bustos, Matilde; Moreno-Aliaga, Maria J

    2017-09-01

    Cardiotrophin-1 (CT-1) belongs to the IL-6 family of cytokines. Previous studies of our group revealed that CT-1 is a key regulator of glucose and lipid metabolism. The aim of the present study was to analyze the in vitro and in vivo effects of CT-1 on the production of several adipokines involved in body weight regulation, nutrient metabolism, and inflammation. For this purpose, 3T3-L1 adipocytes were incubated with recombinant protein CT-1 (rCT-1) (1-40 ng/ml) for 1 and 18 h. Moreover, the acute effects of rCT-1 administration (0.2 mg/kg, i.v.) for 30 min and 3 h on adipokines levels were also evaluated in high-fat fed obese mice. In 3T3-L1 adipocytes, rCT-1 treatment downregulated the expression and secretion of leptin, resistin, and visfatin. However, rCT-1 significantly stimulated apelin mRNA and secretion. rCT-1 (18 h) also promoted the activation by phosphorylation of AKT, ERK 1/2, and STAT3. Interestingly, pre-treatment with the PI3K inhibitor LY294002 reversed the stimulatory effects of rCT-1 on apelin expression, suggesting that this pathway could be mediating the effects of rCT-1 on apelin production. In contrast, acute administration of rCT-1 (30 min and 3 h) to diet-induced obese mice downregulated leptin and resistin, without significantly modifying apelin or visfatin mRNA in adipose tissue. Furthermore, CT-1 null mice exhibited altered expression of adipokines in adipose tissue. The present study demonstrates that rCT-1 modulates the production of adipokines in vitro and in vivo, suggesting that the regulation of the secretory function of adipocytes could be involved in the metabolic actions of this cytokine. J. Cell. Physiol. 232: 2469-2477, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways.

    PubMed

    Jang, Yeon Jeong; Koo, Hyun Jung; Sohn, Eun-Hwa; Kang, Se Chan; Rhee, Dong-Kwon; Pyo, Suhkneung

    2015-07-01

    Obesity is characterized by hypertrophy and/or by the differentiation or adipogenesis of pre-existing adipocytes. In this study, we investigated the inhibitory effects of theobromine, a type of alkaloid in cocoa, on adipocyte differentiation of 3T3-L1 preadipocytes and its mechanisms of action. Theobromine inhibited the accumulation of lipid droplets, the expression of PPARγ and C/EBPα, and the mRNA expression of aP2 and leptin. The inhibition of adipogenic differentiation by theobromine occurred primarily in the early stages of differentiation. In addition, theobromine arrested the cell cycle at the G0/G1 phase and regulated the expressions of CDK2, p27, and p21. Theobromine treatment increased AMPK phosphorylation and knockdown of AMPKα1/α2 prevented the ability of theobromine to inhibit PPARγ expression in the differentiating 3T3-L1 cells. Theobromine reduced the phosphorylation of ERK and JNK. Moreover, the secretion and the mRNA level of TNF-α and IL-6 were inhibited by theobromine treatment. These data suggest that theobromine inhibits adipocyte differentiation during the early stages of adipogenesis by regulating the expression of PPARγ and C/EBPα through the AMPK and ERK/JNK signaling pathways in 3T3-L1 preadipocytes.

  9. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ.

    PubMed

    Choi, Jae Sue; Kim, Ji-Hye; Ali, Md Yousof; Min, Byung-Sun; Kim, Gun-Do; Jung, Hyun Ah

    2014-10-01

    Obesity is a complex, multifactorial, and chronic disease that increases the risk for type 2 diabetes, coronary heart disease and hypertension, and has become a major worldwide health problem. Developing novel anti-obesity drugs from natural products is a promising solution to the global health problem of obesity. While screening anti-obesity potentials of natural products, the methanol extract of the rhizome of Coptis chinensis (Coptidis Rhizoma) was found to significantly inhibit adipocyte differentiation and lipid contents in 3T3-L1 cells, as assessed by Oil-Red O staining. Five known alkaloids, berberine, epiberberine, coptisine, palmatine, and magnoflorine, were isolated from the n-BuOH fraction of the methanol extract of Coptidis Rhizoma. We determined the chemical structure of these alkaloids through comparisons of published nuclear magnetic resonance (NMR) spectral data. Furthermore, we screened these alkaloids for their ability to inhibit adipogenesis over a range of concentrations (12.5-50 μM). All five Coptidis Rhizoma alkaloids significantly inhibited lipid accumulation in 3T3-L1 cells without affecting cell viability in a concentration dependent manner. In addition, the five alkaloids significantly reduced the expression levels of several adipocyte marker genes including proliferator activated receptor-γ (PPAR-γ) and CCAAT/enhancer-binding protein-α (C/EBP-α). In the present study, we found that the isolated alkaloids inhibited adipogenesis in a dose-dependent manner in 3T3-L1 cells; this inhibition was attributed to their abilities to downregulate the protein levels of the adipocyte marker proteins PPAR-γ and C/EBP-α. Thus, these results suggest that Coptidis Rhizoma extract and its isolated alkaloids may be of therapeutic interest with respect to the treatment of obesity.

  10. Autocrine/paracrine function of globular adiponectin: inhibition of lipid metabolism and inflammatory response in 3T3-L1 adipocytes.

    PubMed

    Lazra, Yulia; Falach, Alona; Frenkel, Lital; Rozenberg, Konstantin; Sampson, Sanford; Rosenzweig, Tovit

    2015-05-01

    Adiponectin is an adipose-derived hormone, with beneficial effects on insulin sensitivity and inflammation. The aim of this study was to clarify the autocrine/paracrine effects of globular adiponectin (gAd) administrated during differentiation on the function of the mature adipocytes. Experiments were performed on 3T3-L1 preadipocytes treated with gAd (10 nM), starting at an early stage of differentiation. gAd treatment during differentiation was without effect on mRNA expression of adiponectin and AdipoR2, but increased AdipoR1 expression. PPARgamma, perillipin and FABP4 mRNA expressions were lower in gAd-treated adipocytes, accompanied by a reduction in lipid accumulation. While mRNA expression of HSL was not affected by gAd compared to untreated adipocytes, both ATGL and FAS were reduced, indicating that gAd regulates both lipolysis and lipogenesis. PPARα, ACOX2 and UCPs mRNA expressions were not affected by gAd, indicating that the reduction in lipid content is not attributed to an increase in fatty-acid oxidation. In accord with the lower PPARγ expression, there was reduced Glut4 mRNA expression; however, insulin-induced PKB phosphorylation was enhanced by gAd, and glucose uptake was not altered. To investigate the effect of gAd on LPS-induced inflammatory response, cells were treated with gAd either during differentiation or 24 h before induction of inflammation in differentiated adipocytes. LPS-induced inflammatory response, as indicated by increase in IL6 and MCP-1 mRNA expression. gAd given through differentiation was much more effective in abrogating LPS-dependent cytokines production than gAd given to the mature adipocyte. In conclusion, elevated gAd at differentiation of 3T3-L1 cells leads to reduced lipid content, reduced lipid metabolism and high resistance to inflammation.

  11. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes.

    PubMed

    Brasaemle, Dawn L; Dolios, Georgia; Shapiro, Lawrence; Wang, Rong

    2004-11-05

    Adipocytes hold the body's major energy reserve as triacylglycerols packaged in large lipid droplets. Perilipins, the most abundant proteins on these lipid droplets, play a critical role in facilitating both triacylglycerol storage and hydrolysis. The stimulation of lipolysis by beta-adrenergic agonists triggers rapid phosphorylation of perilipin and translocation of hormone-sensitive lipase to the surfaces of lipid droplets and more gradual fragmentation and dispersion of micro-lipid droplets. Because few lipid droplet-associated proteins have been identified in adipocytes, we isolated lipid droplets from basal and lipolytically stimulated 3T3-L1 adipocytes and identified the component proteins by mass spectrometry. Structural proteins identified in both preparations include perilipin, S3-12, vimentin, and TIP47; in contrast, adipophilin, caveolin-1, and tubulin selectively localized to droplets in lipolytically stimulated cells. Lipid metabolic enzymes identified in both preparations include hormone-sensitive lipase, lanosterol synthase, NAD(P)-dependent steroid dehydrogenase-like protein, acyl-CoA synthetase, long chain family member (ACSL) 1, and CGI-58. 17-beta-Hydroxysteroid dehydrogenase, type 7, was identified only in basal preparations, whereas ACSL3 and 4 and two short-chain reductase/dehydrogenases were identified on droplets from lipolytically stimulated cells. Additionally, both preparations contained FSP27, ribophorin I, EHD2, diaphorase I, and ancient ubiquitous protein. Basal preparations contained CGI-49, whereas lipid droplets from lipolytically stimulated cells contained several Rab GTPases and tumor protein D54. A close association of mitochondria with lipid droplets was suggested by the identification of pyruvate carboxylase, prohibitin, and a subunit of ATP synthase in the preparations. Thus, adipocyte lipid droplets contain specific structural proteins as well as lipid metabolic enzymes; the structural reorganization of lipid droplets in

  12. A-type ECG and EGCG dimers inhibit 3T3-L1 differentiation by binding to cholesterol in lipid rafts.

    PubMed

    Zhu, Wei; Deng, Xiangyi; Peng, Jinming; Zou, Bo; Li, Chunmei

    2017-06-24

    The present study aimed to explore the underlying mechanisms of epicatechin-3-gallate-(4β→8, 2β→O→7)-epicatechin-3-gallate (A-type ECG dimer) and epigallocatechin-3-gallate-(4β→8, 2β→O→7)-epigallocatechin-3-gallate (A-type EGCG dimer) involved in their strong inhibitory effects on 3T3-L1 preadipocytes differentiation. In the synthetic "lipid raft-like" liposome, A-type ECG and EGCG dimers incorporated into the liposome with high affinity and decreased the fluidity of the liposome. In 3T3-L1 preadipocytes, A-type ECG and EGCG dimers possibly bonded to lipid rafts cholesterol and disrupted the integrity of lipid rafts, thus exerting their notable inhibitory effects on 3T3-L1 preadipocytes differentiation by suppressing mitotic clonal expansion process and mRNA levels of PPARγ, C/EBPα and SREBP1C. A highly positive correlation between the cholesterol binding capacity of the two dimers and their inhibitory effect on 3T3-L1 preadipocytes differentiation (R(2)=0.9328) was observed. Molecular dynamics simulation further verified that A-type ECG and EGCG dimers could bond to cholesterol via hydrogen bonding. The results of this study suggested that the disruption of A-type ECG and EGCG dimers on membrane lipid rafts by targeting cholesterol in the lipid rafts was involved in the underlying mechanisms of their strong inhibitory effects on 3T3-L1 preadipocytes differentiation. This broadens the understanding of the molecular mechanisms of polyphenols on modulating and controlling of metabolic dysregulation, particularly adipocyte differentiation, which is a significant risk factor associated with the development of cardiovascular disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Berberine attenuates cAMP-induced lipolysis via reducing the inhibition of phosphodiesterase in 3T3-L1 adipocytes.

    PubMed

    Zhou, Libin; Wang, Xiao; Yang, Ying; Wu, Ling; Li, Fengying; Zhang, Rong; Yuan, Guoyue; Wang, Ning; Chen, Mingdao; Ning, Guang

    2011-04-01

    Berberine, a hypoglycemic agent, has been shown to decrease plasma free fatty acids (FFAs) level in insulin-resistant rats. In the present study, we explored the mechanism responsible for the antilipolytic effect of berberine in 3T3-L1 adipocytes. It was shown that berberine attenuated lipolysis induced by catecholamines, cAMP-raising agents, and a hydrolyzable cAMP analog, but not by tumor necrosis factor α and a nonhydrolyzable cAMP analog. Unlike insulin, the inhibitory effect of berberine on lipolysis in response to isoproterenol was not abrogated by wortmannin, an inhibitor of phosphatidylinositol 3-kinase, but additive to that of PD98059, an extracellular signal-regulated kinase kinase inhibitor. Prior exposure of adipocytes to berberine decreased the intracellular cAMP production induced by isoproterenol, forskolin, and 3-isobutyl-1-methylxanthine (IBMX), along with hormone-sensitive lipase (HSL) Ser-563 and Ser-660 dephosphorylation, but had no effect on perilipin phosphorylation. Berberine stimulated HSL Ser-565 as well as adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. However, compound C, an AMPK inhibitor, did not reverse the regulatory effect of berberine on HSL Ser-563, Ser-660, and Ser-565 phosphorylation, nor the antilipolytic effect of berberine. Knockdown of AMPK using RNA interference also failed to restore berberine-suppressed lipolysis. cAMP-raising agents increased AMPK activity, which was not additive to that of berberine. Stimulation of adipocytes with berberine increased phosphodiesterase (PDE) 3B and PDE4 activity measured by hydrolysis of (3)[H]cAMP. These results suggest that berberine exerts an antilipolytic effect mainly by reducing the inhibition of PDE, leading to a decrease in cAMP and HSL phosphorylation independent of AMPK pathway.

  14. A role for Rab14 in the endocytic trafficking of GLUT4 in 3T3-L1 adipocytes.

    PubMed

    Reed, Sam E; Hodgson, Lorna R; Song, Shuang; May, Margaret T; Kelly, Eoin E; McCaffrey, Mary W; Mastick, Cynthia C; Verkade, Paul; Tavaré, Jeremy M

    2013-05-01

    Insulin enhances the uptake of glucose into adipocytes and muscle cells by promoting the redistribution of the glucose transporter isoform 4 (GLUT4) from intracellular compartments to the cell surface. Rab GTPases regulate the trafficking itinerary of GLUT4 and several have been found on immunopurified GLUT4 vesicles. Specifically, Rab14 has previously been implicated in GLUT4 trafficking in muscle although its role, if any, in adipocytes is poorly understood. Analysis of 3T3-L1 adipocytes using confocal microscopy demonstrated that endogenous GLUT4 and endogenous Rab14 exhibited a partial colocalisation. However, when wild-type Rab14 or a constitutively-active Rab14Q70L mutant were overexpressed in these cells, the colocalisation with both GLUT4 and IRAP became extensive. Interestingly, this colocalisation was restricted to enlarged 'ring-like' vesicular structures (mean diameter 1.3 µm), which were observed in the presence of overexpressed wild-type Rab14 and Rab14Q70L, but not an inactive Rab14S25N mutant. These enlarged vesicles contained markers of early endosomes and were rapidly filled by GLUT4 and transferrin undergoing endocytosis from the plasma membrane. The Rab14Q70L mutant reduced basal and insulin-stimulated cell surface GLUT4 levels, probably by retaining GLUT4 in an insulin-insensitive early endosomal compartment. Furthermore, shRNA-mediated depletion of Rab14 inhibited the transit of GLUT4 through early endosomal compartments towards vesicles and tubules in the perinuclear region. Given the previously reported role of Rab14 in trafficking between endosomes and the Golgi complex, we propose that the primary role of Rab14 in GLUT4 trafficking is to control the transit of internalised GLUT4 from early endosomes into the Golgi complex, rather than direct GLUT4 translocation to the plasma membrane.

  15. Disruption of Lipid Raft Function Increases Expression and Secretion of Monocyte Chemoattractant Protein-1 in 3T3-L1 Adipocytes

    PubMed Central

    Lin, Yu-Chun; Chang, Yu-Tzu; Lu, Chia-Yun; Chen, Tzu-Yu; Yeh, Chia-Shan

    2016-01-01

    The adipocyte is unique in its capacity to store lipids. In addition to triglycerides, the adipocyte stores a significant amount of cholesterol. Moreover, obese adipocytes are characterized by a redistribution of cholesterol with depleted cholesterol in the plasma membrane, suggesting that cholesterol perturbation may play a role in adipocyte dysfunction. We used methyl-β-cyclodextrin (MβCD), a molecule with high affinity for cholesterol, to rapidly deplete cholesterol level in differentiated 3T3-L1 adipocytes. We tested whether this perturbation altered adipocyte secretion of monocyte chemoattractant protein-1 (MCP-1), a chemokine that is elevated in obesity and is linked to obesity-associated chronic diseases. Depletion of cholesterol by MβCD increased MCP-1 secretion as well as the mRNA and protein levels, suggesting perturbation at biosynthesis and secretion. Pharmacological inhibition revealed that NF-κB, but not MEK, p38 and JNK, was involved in MβCD-stimulated MCP-1 biosynthesis and secretion in adipocytes. Finally, another cholesterol-binding drug, filipin, also induced MCP-1 secretion without altering membrane cholesterol level. Interestingly, both MβCD and filipin disturbed the integrity of lipid rafts, the membrane microdomains enriched in cholesterol. Thus, the depletion of membrane cholesterol in obese adipocytes may result in dysfunction of lipid rafts, leading to the elevation of proinflammatory signaling and MCP-1 secretion in adipocytes. PMID:28030645

  16. A novel IRS-1-associated protein, DGKζ regulates GLUT4 translocation in 3T3-L1 adipocytes

    PubMed Central

    Liu, TingYu; Yu, BuChin; Kakino, Mamoru; Fujimoto, Hitoshi; Ando, Yasutoshi; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2016-01-01

    Insulin receptor substrates (IRSs) are major targets of insulin receptor tyrosine kinases. Here we identified diacylglycerol kinase zeta (DGKζ) as an IRS-1-associated protein, and examined roles of DGKζ in glucose transporter 4 (GLUT4) translocation to the plasma membrane. When DGKζ was knocked-down in 3T3-L1 adipocytes, insulin-induced GLUT4 translocation was inhibited without affecting other mediators of insulin-dependent signaling. Similarly, knockdown of phosphatidylinositol 4-phosphate 5-kinase 1α (PIP5K1α), which had been reported to interact with DGKζ, also inhibited insulin-induced GLUT4 translocation. Moreover, DGKζ interacted with IRS-1 without insulin stimulation, but insulin stimulation decreased this interaction. Over-expression of sDGKζ (short-form DGKζ), which competed out DGKζ from IRS-1, enhanced GLUT4 translocation without insulin stimulation. Taking these results together with the data showing that cellular PIP5K activity was correlated with GLUT4 translocation ability, we concluded that IRS-1-associated DGKζ prevents GLUT4 translocation in the absence of insulin and that the DGKζ dissociated from IRS-1 by insulin stimulation enhances GLUT4 translocation through PIP5K1α activity. PMID:27739494

  17. A novel IRS-1-associated protein, DGKζ regulates GLUT4 translocation in 3T3-L1 adipocytes.

    PubMed

    Liu, TingYu; Yu, BuChin; Kakino, Mamoru; Fujimoto, Hitoshi; Ando, Yasutoshi; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2016-10-14

    Insulin receptor substrates (IRSs) are major targets of insulin receptor tyrosine kinases. Here we identified diacylglycerol kinase zeta (DGKζ) as an IRS-1-associated protein, and examined roles of DGKζ in glucose transporter 4 (GLUT4) translocation to the plasma membrane. When DGKζ was knocked-down in 3T3-L1 adipocytes, insulin-induced GLUT4 translocation was inhibited without affecting other mediators of insulin-dependent signaling. Similarly, knockdown of phosphatidylinositol 4-phosphate 5-kinase 1α (PIP5K1α), which had been reported to interact with DGKζ, also inhibited insulin-induced GLUT4 translocation. Moreover, DGKζ interacted with IRS-1 without insulin stimulation, but insulin stimulation decreased this interaction. Over-expression of sDGKζ (short-form DGKζ), which competed out DGKζ from IRS-1, enhanced GLUT4 translocation without insulin stimulation. Taking these results together with the data showing that cellular PIP5K activity was correlated with GLUT4 translocation ability, we concluded that IRS-1-associated DGKζ prevents GLUT4 translocation in the absence of insulin and that the DGKζ dissociated from IRS-1 by insulin stimulation enhances GLUT4 translocation through PIP5K1α activity.

  18. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators.

    PubMed

    Rabiee, Atefeh; Schwämmle, Veit; Sidoli, Simone; Dai, Jie; Rogowska-Wrzesinska, Adelina; Mandrup, Susanne; Jensen, Ole N

    2017-03-01

    Adipocytes (fat cells) are important endocrine and metabolic cells critical for systemic insulin sensitivity. Both adipose excess and insufficiency are associated with adverse metabolic function. Adipogenesis is the process whereby preadipocyte precursor cells differentiate into lipid-laden mature adipocytes. This process is driven by a network of transcriptional regulators (TRs). We hypothesized that protein PTMs, in particular phosphorylation, play a major role in activating and propagating signals within TR networks upon induction of adipogenesis by extracellular stimulus. We applied MS-based quantitative proteomics and phosphoproteomics to monitor the alteration of nuclear proteins during the early stages (4 h) of preadipocyte differentiation. We identified a total of 4072 proteins including 2434 phosphorylated proteins, a majority of which were assigned as regulators of gene expression. Our results demonstrate that adipogenic stimuli increase the nuclear abundance and/or the phosphorylation levels of proteins involved in gene expression, cell organization, and oxidation-reduction pathways. Furthermore, proteins acting as negative modulators involved in negative regulation of gene expression, insulin stimulated glucose uptake, and cytoskeletal organization showed a decrease in their nuclear abundance and/or phosphorylation levels during the first 4 h of adipogenesis. Among 288 identified TRs, 49 were regulated within 4 h of adipogenic stimulation including several known and many novel potential adipogenic regulators. We created a kinase-substrate database for 3T3-L1 preadipocytes by investigating the relationship between protein kinases and protein phosphorylation sites identified in our dataset. A majority of the putative protein kinases belong to the cyclin-dependent kinase family and the mitogen-activated protein kinase family including P38 and c-Jun N-terminal kinases, suggesting that these kinases act as orchestrators of early adipogenesis.

  19. Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBPα and PPARγ.

    PubMed

    Jung, Hyun Ah; Jung, Hee Jin; Jeong, Hyun Young; Kwon, Hyun Ju; Ali, Md Yousof; Choi, Jae Sue

    2014-01-01

    The dramatic increase in obesity-related diseases emphasizes the need to elucidate the cellular and molecular mechanisms underlying fat metabolism. Inhibition of adipocyte differentiation has been suggested to be an important strategy for preventing or treating obesity. In our previous study, we characterized an Ecklonia stolonifera extract and non-polar fractions thereof, including dichloromethane and ethyl acetate fractions. We showed that these fractions inhibited adipocyte differentiation and lipid formation/accumulation in 3T3-L1 preadipocytes, as assessed by Oil Red O staining. As part of our ongoing search for anti-obesity agents derived from E. stolonifera, in this work, we characterized five known phlorotannins, including phloroglucinol, eckol, dieckol, dioxinodehydroeckol, and phlorofucofuroeckol A, all of which were isolated from the active ethyl acetate fraction of E. stolonifera. We determined the chemical structures of these phlorotannins through comparisons of published nuclear magnetic resonance (NMR) spectral data. Furthermore, we screened these phlorotannins for their abilities to inhibit adipogenesis over a range of concentrations (12.5-100 μM). Of these five phlorotannins, phloroglucinol, eckol, and phlorofucofuroeckol A significantly concentration-dependently inhibited lipid accumulation in 3T3-L1 cells without affecting cell viability. In addition, the five isolated phlorotannins also significantly reduced the expression levels of several adipocyte marker genes, including proliferator activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), although they did so to different extents. These results suggest that the molecular weight of a phlorotannin is an important factor affecting its ability to inhibit adipocyte differentiation and modulate the expression levels of adipocyte marker genes.

  20. Long-term ritonavir exposure increases fatty acid and glycerol recycling in 3T3-L1 adipocytes as compensatory mechanisms for increased triacylglycerol hydrolysis.

    PubMed

    Adler-Wailes, Diane C; Guiney, Evan L; Wolins, Nathan E; Yanovski, Jack A

    2010-05-01

    Lipodystrophy with high nonesterified fatty acid (FA) efflux is reported in humans receiving highly active antiretroviral therapy (HAART) to treat HIV infection. Ritonavir, a common component of HAART, alters adipocyte FA efflux, but the mechanism for this effect is not established. To investigate ritonavir-induced changes in FA flux and recycling through acylglycerols, we exposed differentiated murine 3T3-L1 adipocytes to ritonavir for 14 d. FA efflux, uptake, and incorporation into acylglycerols were measured. To identify a mediator of FA efflux, we measured adipocyte triacylglycerol lipase (ATGL) transcript and protein. To determine whether ritonavir-treated adipocytes increased glycerol backbone synthesis for FA reesterification, we measured labeled glycerol and pyruvate incorporation into triacylglycerol (TAG). Ritonavir-treated cells had increased FA efflux, uptake, and incorporation into TAG (all P < 0.01). Ritonavir increased FA efflux without consistently increasing glycerol release or changing TAG mass, suggesting increased partial TAG hydrolysis. Ritonavir-treated adipocytes expressed significantly more ATGL mRNA (P < 0.05) and protein (P < 0.05). Ritonavir increased glycerol (P < 0.01) but not pyruvate (P = 0.41), utilization for TAG backbone synthesis. Consistent with this substrate utilization, glycerol kinase transcript (required for glycerol incorporation into TAG backbone) was up-regulated (P < 0.01), whereas phosphoenolpyruvate carboxykinase transcript (required for pyruvate utilization) was down-regulated (P < 0.001). In 3T3-L1 adipocytes, long-term ritonavir exposure perturbs FA metabolism by increasing ATGL-mediated partial TAG hydrolysis, thus increasing FA efflux, and leads to compensatory increases in FA reesterification with glycerol and acylglycerols. These changes in FA metabolism may, in part, explain the increased FA efflux observed in ritonavir-associated lipodystrophy.

  1. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    SciTech Connect

    Nagasaki, Haruka; Yoshimura, Takeshi; Aoki, Naohito

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  2. Anti-adipogenic activity of the edible brown alga Ecklonia stolonifera and its constituent fucosterol in 3T3-L1 adipocytes.

    PubMed

    Jung, Hyun Ah; Jung, Hee Jin; Jeong, Hyun Young; Kwon, Hyun Ju; Kim, Min-Sun; Choi, Jae Sue

    2014-06-01

    Fucosterol is a sterol metabolite of brown algae and regulates genes involved with cholesterol homeostasis. As a part of our continuous search for anti-obesity agents from natural marine sources, the anti-adipogenic activities of Ecklonia stolonifera and its sterol, fucosterol, were evaluated for the inhibition of adipocyte differentiation and lipid formation. Oil Red O staining was used to evaluate triglyceride contents in 3T3-L1 pre-adipocytes primed by differentiation medium (DM) I and DM II. The methanolic extract of E. stolonifera showed strong anti-adipogenic activity, and was thus fractionated with several solvents. Among the tested fractions, the dichloromethane (CH2Cl2) fraction was found to be the most active fraction, with significant inhibition (40.5 %) of intracellular lipid accumulation at a non-toxic concentration, followed by the ethyl acetate fraction (30.2 %) at the same concentration, while the n-butanol and water fractions did not show inhibitory activity within the tested concentrations. The strong anti-adipogenic CH2Cl2-soluble fraction was further purified by a repeated chromatography to yield fucosterol. Fucosterol reduced lipid contents in a concentration-dependent manner without showing any cytotoxicity. Fucosterol treatment also yielded a decrease in the expression of the adipocyte marker proteins peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) in a concentration-dependent manner. Taken together, these results suggest that fucosterol inhibits expression of PPARγ and C/EBPα, resulting in a decrease of lipid accumulation in 3T3-L1 pre-adipocytes, indicating that the potential use of E. stolonifera and its bioactive fucosterol as an anti-obesity agent.

  3. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    SciTech Connect

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E.; Pi, Jingbo

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  4. Orexin A stimulates glucose uptake, lipid accumulation and adiponectin secretion from 3T3-L1 adipocytes and isolated primary rat adipocytes.

    PubMed

    Skrzypski, M; T Le, T; Kaczmarek, P; Pruszynska-Oszmalek, E; Pietrzak, P; Szczepankiewicz, D; Kolodziejski, P A; Sassek, M; Arafat, A; Wiedenmann, B; Nowak, K W; Strowski, M Z

    2011-07-01

    Orexin A (OXA) modulates body weight, food intake and energy expenditure. In vitro, OXA increases PPARγ (also known as PPARG) expression and inhibits lipolysis, suggesting direct regulation of lipid metabolism. Here, we characterise the metabolic effects and mechanisms of OXA action in adipocytes. Isolated rat adipocytes and differentiated murine 3T3-L1 adipocytes were exposed to OXA in the presence or absence of phosphoinositide 3-kinase (PI3K) inhibitors. Pparγ expression was silenced using small interfering RNA. Glucose uptake, GLUT4 translocation, phosphatidylinositol (3,4,5)-trisphosphate production, lipogenesis, lipolysis, and adiponectin secretion were measured. Adiponectin plasma levels were determined in rats treated with OXA for 4 weeks. OXA PI3K-dependently stimulated active glucose uptake by translocating the glucose transporter GLUT4 from cytoplasm into the plasma membrane. OXA increased cellular triacylglycerol content via PI3K. Cellular triacylglycerol accumulation resulted from increased lipogenesis as well as from a decrease of lipolysis. Adiponectin levels in chow- and high-fat diet-fed rats treated chronically with OXA were increased. OXA stimulated adiponectin expression and secretion in adipocytes. Both pharmacological blockade of peroxisome proliferator-activated receptor γ (PPARγ) activity or silencing Pparγ expression prevented OXA from stimulating triacylglycerol accumulation and adiponectin production. Our study demonstrates that OXA stimulates glucose uptake in adipocytes and that the evolved energy is stored as lipids. OXA increases lipogenesis, inhibits lipolysis and stimulates the secretion of adiponectin. These effects are conferred via PI3K and PPARγ2. Overall, OXA's effects on lipids and adiponectin secretion resemble that of insulin sensitisers, suggesting a potential relevance of this peptide in metabolic disorders.

  5. [Effects of triterpenoid from Psidium guajava leaves ursolic acid on proliferation, differentiation of 3T3-L1 preadipocyte and insulin resistance].

    PubMed

    Lin, Juan-Na; Kuang, Qiao-Ting; Ye, Kai-He; Ye, Chun-Ling; Huang, Yi; Zhang, Xiao-Qi; Ye, Wen-Cai

    2013-08-01

    To investigate the influences of triterpenoid from Psidium guajava Leaves (ursolic acid) on the proliferation, differentiation of 3T3-L1 preadipocyte, and its possible mechanism treat for insulin resistance. 3T3-L1 preadipocyte was cultured in vitro. After adding ursolic acid to the culture medium for 48h, the cell viability was tested by MTT assay. Induced for 6 days, the lipid accumulation of adipocyte was measured by Oil Red O staining. The insulin resistant cell model was established with Dexamethasone. Cellular glucose uptake was determined with GOD-POD assays and FFA concentration was determined at the time of 48h. Secreted adiponectin were measured by ELISA. The protein levels of PPARgamma and PTP1B in insulin resistant adipocyte were measured by Western Blotting. Compared with medium control group, 30, 100 micromol/L ursolic acid could increase its proliferation and differentiation significantly (P < 0.05 or P < 0.01). Compared with the model group, ursolic acid at 100 micromol/L could enhance cellular glucose uptake of insulin resistant adipocyte significantly both in basic and insulin stimulation state (P < 0.01), while ursolic acid at 30 micromol/L could already enhance its glucose uptake significantly (P < 0.05), and could already decrease its FFA production significantly (P < 0.05). Ursolic acid at 30 micromol/L could increase the secretion of adiponectin on insulin resistant adipocyte significantly (P < 0.05), up-regulate the expression of PPARgamma protein (P < 0.05), but showed no effect on the PTP1B protein expression (P > 0.05). Ursolic acid can improve the proliferation and differentiation of 3T3-L1 preadipocyte, enhance cellular glucose uptake, inhibit the production of FFA, promote the secretion of adiponectin insulin resistant adipocyte, its mechanism may be related to upregulating the expression of PPARgamma protein.

  6. Peptide derived from desalinated boiled tuna extract inhibits adipogenesis through the downregulation of C/EBP-α and PPAR-γ in 3T3-L1 adipocytes.

    PubMed

    Kim, Young-Min; Kim, Eun-Young; Kim, In-Hye; Nam, Taek-Jeong

    2015-05-01

    Recently, obesity has increased due to a variety of reasons, including the availability of 'fast food' and high-fat diets. Developing anti-obesity functional drugs and foods from natural sources may offer solutions to this global concern. Generally, tuna is a high-protein, low-fat and low-calorie food with various bioactive effects. It may improve memory, reduce cholesterol levels and positively affect the development of brain cells. In this study, we screened the anti-obesity potential of peptides derived from tuna protein. We then observed protein bands by the Coomassie blue staining of a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel. The protein mixture was concentrated and desalted using in-gel trypsin digestion and a C18 nano column and Poros R2 reversed-phase preparation, prior to quadrupole time-of-flight mass spectrometry (Q-TOF MS/MS). We screened the peptides for their ability to affect adipogenesis in 3T3-L1 adipocytes. We also measured glucose uptake, triglyceride levels and lipid droplets using Oil Red O staining. As a result, we confirmed that one peptide inhibited adipocyte differentiation. We also observed the expression of obesity-related genes by western blot analysis and reverse transcription-polymerase chain reaction. The peptide from the tuna extract significantly reduced the expression levels of CCAAT/enhancer-binding protein α (C/EBP-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) adipocyte marker genes. Thus, our data suggest that this peptide from boiled tuna extract reduces lipid components and adipogenesis in 3T3-L1 cells, and these characteristics may be of value in the development of anti-obesity foods.

  7. Stearoyl-CoA Desaturase 1 Is a Key Determinant of Membrane Lipid Composition in 3T3-L1 Adipocytes

    PubMed Central

    Hagen, Rachel; Vidal-Puig, Antonio

    2016-01-01

    Stearoyl-CoA desaturase 1 (SCD1) is a lipogenic enzyme important for the regulation of membrane lipid homeostasis; dysregulation likely contributes to obesity associated metabolic disturbances. SCD1 catalyses the Δ9 desaturation of 12-19 carbon saturated fatty acids to monounsaturated fatty acids. To understand its influence in cellular lipid composition we investigated the effect of genetic ablation of SCD1 in 3T3-L1 adipocytes on membrane microdomain lipid composition at the species-specific level. Using liquid chromatography/electrospray ionisation-tandem mass spectrometry, we quantified 70 species of ceramide, mono-, di- and trihexosylceramide, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, bis(monoacylglycero)phosphate, phosphatidylinositol and cholesterol in 3T3-L1 adipocytes in which a 90% reduction in scd1 mRNA expression was achieved with siRNA. Cholesterol content was unchanged although decreases in other lipids resulted in cholesterol accounting for a higher proportion of lipid in the membranes. This was associated with decreased membrane lateral diffusion. An increased ratio of 24:0 to 24:1 in ceramide, mono- and dihexosylceramide, and sphingomyelin likely also contributed to this decrease in lateral diffusion. Of particular interest, we observed a decrease in phospholipids containing arachidonic acid. Given the high degree of structural flexibility of this acyl chain this will influence membrane lateral diffusion, and is likely responsible for the transcriptional activation of Lands’ cycle enzymes lpcat3 and mboat7. Of relevance these profound changes in the lipidome were not accompanied by dramatic changes in gene expression in mature differentiated adipocytes, suggesting that adaptive homeostatic mechanisms to ensure partial maintenance of the biophysical properties of membranes likely occur at a post-transcriptional level. PMID:27632198

  8. Knockdown of NYGGF4 (PID1) rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes.

    PubMed

    Shi, Chun-Mei; Wang, Yu-Mei; Zhang, Chun-Mei; Qiu, Jie; Shen, Ya-Hui; Zhu, Jin-Gai; Chen, Lin; Xu, Guang-Feng; Zhao, Ya-Ping; Ji, Chen-Bo; Guo, Xi-Rong

    2012-11-01

    NYGGF4 is a recently identified gene that is involved in obesity-associated insulin resistance. Previous data from this laboratory have demonstrated that NYGGF4 overexpression might contribute to the development of insulin resistance (IR) and to mitochondrial dysfunction. Additionally, NYGGF4 knockdown enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. We designed this study to determine whether silencing of NYGGF4 in 3T3-L1 adipocytes could rescue the effect of insulin sensitivity and mitochondrial function induced by the cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP), a mitochondrion uncoupler, to ascertain further the mechanism of NYGGF4 involvement in obesity-associated insulin resistance. We found that 3T3-L1 adipocytes, incubated with 5μM FCCP for 12h, had decreased levels of insulin-stimulated glucose uptake and had impaired insulin-stimulated GLUT4 translocation. Silencing also diminished insulin-stimulated tyrosinephosphorylation of IRS-1 and serine phosphorylation of Akt. This phenomenon contrasts with the effect of NYGGF4 knockdown on insulin sensitivity and describes the regulatory function of NYGGF4 in adipocytes insulin sensitivity. We next analyzed the mitochondrial function in NYGGF4-silenced adipocytes incubated with FCCP. NYGGF4 knockdown partly rescued the dissipation of mitochondrial mass, mitochondrial DNA, intracellular ATP synthesis, and intracellular reactive oxygen species (ROS) production occurred following the addition of FCCP, as well as inhibition of mitochondrial transmembrane potential (ΔΨm) in 3T3-L1 adipocytes incubated with FCCP. Collectively, our results suggested that addition of silencing NYGGF4 partly rescued the effect of insulin resistance and mitochondrial dysfunction in NYGGF4 silenced 3T3-L1 adipocytes incubated with FCCP, which might explain the involvement of NYGGF4-induced IR and the development of NYGGF4 in mitochondrial function.

  9. Cyanidin-3-rutinoside increases glucose uptake by activating the PI3K/Akt pathway in 3T3-L1 adipocytes.

    PubMed

    Choi, Kyung Ha; Lee, Hyun Ah; Park, Mi Hwa; Han, Ji-Sook

    2017-09-01

    In this study, the effect of cyanidin-3-rutinoside (C3R) on glucose uptake by 3T3-L1 adipocytes was studied. C3R significantly increased glucose uptake, which was associated with enhanced plasma membrane glucose transporter type 4 (PM-GLUT4) expression in 3T3-L1 adipocytes. The potentiating effect of C3R on glucose uptake and PM-GLUT4 expression was related to enhanced phosphorylation of insulin receptor substrate 1 (IRS-1) and Akt, as well as augmented activation of phosphatidylinositol-3-kinase (PI3K) in the insulin signaling pathway. C3R induced glucose uptake was inhibited only by the PI3K inhibitor, but not by an AMPK inhibitor in 3T3-L1 adipocytes. Therefore, C3R likely up-regulates glucose uptake and PM-GLUT4 expression in 3T3-L1 adipocytes by activating the PI3K/Akt pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Differential expression and accumulation of 14-3-3 paralogs in 3T3-L1 preadipocytes and differentiated cells.

    PubMed

    Gojanovich, Aldana D; Bustos, Diego M; Uhart, Marina

    2016-09-01

    The 14-3-3 protein family interacts with more than 2000 different proteins in mammals, as a result of its specific phospho-serine/phospho-threonine binding activity. Seven paralogs are strictly conserved in mammalian species. Here, we show that during adipogenic differentiation of 3T3-L1 preadipocytes, the level of each 14-3-3 protein paralog is regulated independently. For instance 14-3-3β, γ, and η protein levels are increased compared to untreated cells. In contrast, 14-3-3ε protein levels decreased after differentiation while others remained constant. In silico analysis of the promoter region of each gene showed differences that explain the results obtained at mRNA and protein levels.

  11. Bisphenol-A impairs insulin action and up-regulates inflammatory pathways in human subcutaneous adipocytes and 3T3-L1 cells.

    PubMed

    Valentino, Rossella; D'Esposito, Vittoria; Passaretti, Federica; Liotti, Antonietta; Cabaro, Serena; Longo, Michele; Perruolo, Giuseppe; Oriente, Francesco; Beguinot, Francesco; Formisano, Pietro

    2013-01-01

    Current evidence indicates that chemical pollutants may interfere with the homeostatic control of nutrient metabolism, thereby contributing to the increased prevalence of metabolic disorders. Bisphenol-A (BPA) is a lipophilic compound contained in plastic which is considered a candidate for impairing energy and glucose metabolism. We have investigated the impact of low doses of BPA on adipocyte metabolic functions. Human adipocytes derived from subcutaneous adipose tissue and differentiated 3T3-L1 cells were incubated with BPA, in order to evaluate the effect on glucose utilization, insulin sensitivity and cytokine secretion. Treatment with 1 nM BPA significantly inhibited insulin-stimulated glucose utilization, without grossly interfering with adipocyte differentiation. Accordingly, mRNA levels of the adipogenic markers PPARγ and GLUT4 were unchanged upon BPA exposure. BPA treatment also impaired insulin-activated receptor phosphorylation and signaling. Moreover, adipocyte incubation with BPA was accompanied by increased release of IL-6 and IFN-γ, as assessed by multiplex ELISA assays, and by activation of JNK, STAT3 and NFkB pathways. Treatment of the cells with the JNK inhibitor SP600125 almost fully reverted BPA effect on insulin signaling and glucose utilization. In conclusion, low doses of BPA interfere with inflammatory/insulin signaling pathways, leading to impairment of adipose cell function.

  12. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes

    PubMed Central

    Gu, Harvest F.; Östenson, Claes-Göran; Mannerås-Holm, Louise; Stener-Victorin, Elisabet; Wan Mohamud, Wan Nazaimoon

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP) standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50 mg/kg/day of LP) and PCOS-control (1 mL of deionised water) for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100 μg/mL LP and compared to untreated control and 10 μM of rosiglitazone (in type of thiazolidinediones). LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway. PMID:23935612

  13. E3 ubiquitin ligase DTX4 is required for adipogenic differentiation in 3T3-L1 preadipocytes cell line.

    PubMed

    Wang, Zonggui; Dai, Zhong; Pan, Yaqiong; Wu, Simin; Li, Zhengli; Zuo, Changqing

    2017-10-21

    Deltex4 (DTX4) is a member of the Deltex family of proteins. To date several lines of evidences suggest that Deltex family of proteins is closely linked to cell development and cell differentiation. However, little is known about the role of DTX4 in adipogenic differentiation. In this study, we assessed the impact of DTX4 on adipogenic differentiation in vitro, we found that DTX4 protein expression gradually increased during adipogenic differentiation of 3T3-L1 preadipocytes cell line. While DTX4 stable knockdown by recombinant shRNA lentivirus (sh-DTX4) notably reduced the number of lipid droplets and down-regulated the expression of adipogenic transcription factors C/EBPα and PPARγ and adipogenic markers gene FABP4 and Adipsin. Besides, cell numbers and incorporation of 5-Ethynyl-2'-deoxyuridine (EdU) into cells were significantly decreased during mitotic clonal expansion (MCE) in sh-DTX4 cells postinduction. Furthermore, compared to recombinant shRNA lentivirus control group (sh-CON), the mRNA levels of Wnt signaling genes such as Wnt6, Wnt10b and β-catenin, were obviously elevated in sh-DTX4 group at day 3 of postinduction. Taken together, our results indicate that DTX4 stable knockdown inhibits adipogenesis of 3T3-L1 cells through inhibiting C/EBPα and PPARγ, arresting mitotic clonal expansion and regulating Wnt signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Macrophage-conditioned medium inhibits differentiation-induced Rb phosphorylation in 3T3-L1 preadipocytes

    SciTech Connect

    Yarmo, Michelle N.; Landry, Anne; Molgat, Andre S.D.; Gagnon, AnneMarie; Sorisky, Alexander

    2009-02-01

    This study examines the mechanisms underlying the anti-adipogenic effect of macrophage-secreted products. 3T3-L1 preadipocytes were induced to differentiate over 8 days in medium conditioned by murine J774 macrophages (MacCM). The inhibitory effect on lipid accumulation and expression of adipogenic markers was diminished when addition of MacCM was delayed to day 2 of differentiation. Clonal expansion, an early event required for 3T3-L1 adipogenesis, was reduced in the presence of MacCM (89%; n = 3; p < 0.001), and BrdU incorporation was impaired by 55% (n = 3; p < 0.01). Activation of ERK1/2 was not affected by MacCM, and neither was the expression of p27{sup kip1}, a cyclin-dependent kinase inhibitor. However, phosphorylation of the retinoblastoma protein (Rb), required for cell cycle progression, was impaired by MacCM (94% inhibition; n = 3; p < 0.01). Differentiation-dependent expression, nuclear localization, and DNA binding ability of C/EBP{beta} were not inhibited by MacCM. Alterations in cell cycle-associated proteins may be important with respect to the anti-adipogenic action of MacCM.

  15. Regulation of FAT/CD36 mRNA gene expression by long chain fatty acids in the differentiated 3T3-L1 cells.

    PubMed

    Yang, Yingkui; Chen, Min; Loux, Tara J; Harmon, Carroll M

    2007-07-01

    Defects in fatty acid translocase (FAT/CD36) have been identified as a major factor in insulin resistance and defective fatty acid and glucose metabolism. Therefore, understanding of the regulation of FAT/CD36 expression and function is important for a potential therapeutic target for type II diabetes. We differentiated 3T3-L1 preadipocytes into matured adipocytes and examined the roles of insulin and long chain fatty acids on FAT/CD36 expression and function. Our results indicate that FAT/CD36 mRNA expression was not detected at preadipocyte but was significantly increased at matured adipocyte. In fully differentiated 3T3-L1 adipocytes, insulin significantly increased FAT/CD36 mRNA and protein expression in a dose dependent manner. The free fatty acid stearic acid reduced FAT/CD36 mRNA expression while the non-metabolizable free fatty acid alpha-bromopalmitate (2-BP) significantly increased FAT/CD36 mRNA and protein expression. Isoproterenol, in contrast, dose-dependently reduced FAT/CD36 mRNA expression and increased free fatty acid release. Mechanism analysis indicated that the effect of insulin and 2-BP on the FAT/CD36 mRNA gene expression may be mediated through activation of PPAR-gamma, suggesting that FAT/CD36 may have important implications in the pathophysiology of defective fatty acid metabolism.

  16. Chinese herbal medicine Yi-Gan-San decreases the lipid accumulation in mouse 3T3-L1 adipocytes by modulating the activities of transcription factors SREBP-1c and FoxO1.

    PubMed

    Izumi, Masayuki; Seki, Takashi; Iwasaki, Koh; Sakamoto, Kazuichi

    2009-09-01

    Abnormal lipid metabolism in adipose tissue is closely related to the occurrence and progression of a wide variety of metabolic syndromes. We have analyzed the pharmacological effects of Chinese herbal medicines on cell differentiation and lipid metabolism in adipocytes. Yi-Gan-San (YGS) is a Chinese herbal medicine that is effective in treating the behavioral and psychological symptoms of dementia; however, its physiological mechanism remains unclear. We analyzed the effects of YGS on lipid accumulation in mouse 3T3-L1 adipocytes. Adipocyte differentiation was induced in mouse 3T3-L1 preadipocytes by treatment with the mixture of dexamethasone, 3-iso-butyl-1-methylxanthine, and insulin, and cells were cultured for 8 days with Chinese herbal medicines, including YGS. YGS effectively reduced the lipid accumulation in the differentiated 3T3-L1 cells in a dose-dependent manner, but had no effect on cell viability. YGS also reduced the activity of glycerol-3-phosphate dehydrogenase, an enzyme involved in lipid synthesis. In contrast, YGS gave no noticeable effect on glucose uptake and fatty acid uptake in the differentiated 3T3-L1 cells. Moreover, we established the stably transfected 3T3-L1 cell lines, each of which expresses the luciferase reporter gene under the control of sterol regulatory element-binding protein-1c (SREBP-1c) or FoxO1. SREBP-1c is a transcription factor involved in fatty acid synthesis, and FoxO1 is a forkhead-type transcription factor involved in adipocyte differentiation. Using these cell lines, we showed that YGS reduced the transcriptional activity of SREBP-1c, whereas YGS increased the activity of FoxO1. Thus, YGS may suppress lipid synthesis and fat accumulation in adipocytes through modulating the activities of SREBP-1c and FoxO1.

  17. Lupenone isolated from Adenophora triphylla var. japonica extract inhibits adipogenic differentiation through the downregulation of PPARγ in 3T3-L1 cells.

    PubMed

    Ahn, Eun-Kyung; Oh, Joa Sub

    2013-05-01

    Adenophora triphylla var. japonica (Campanulaceae) is known to have anti-inflammatory and anti-tussive effects. Dysfunction of adipocytes and adipose tissue in obesity is related to various inflammatory cytokines or adipokines. In this study, we investigated whether lupenone isolated from A. triphylla var. japonica extract inhibits adipocyte differentiation and expression of adipogenic marker genes in 3T3-L1 preadipocytes. We demonstrated that lupenone resulted in a significant reduction in lipid accumulation and expression of adipogenic marker genes in a dose-dependent manner. In addition, lupenone decreased the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ) induced by troglitazone, and we also demonstrated that lupenone suppressed the PPARγ and CCAAT-enhancer-binding protein α (C/EBPα) protein levels. These findings demonstrated that lupenone isolated from A. triphylla var. japonica extract effectively inhibited adipocyte differentiation through downregulation of related transcription factor, particularly the PPARγ gene.

  18. The design and synthesis of a novel compound of berberine and baicalein that inhibits the efficacy of lipid accumulation in 3T3-L1 adipocytes.

    PubMed

    Hao, Mengjiao; Li, Yan; Liu, Lixian; Yuan, Xiao; Gao, Ying; Guan, Zhuoji; Li, Weimin

    2017-08-09

    The combination of berberine and baicalein may have a better therapeutic effect against disease. To explore the combined effect of baicalein and berberine in the treatment of obesity, we designed and synthesized a hybrid compound, and its biological activities were evaluated in 3T3-L1 adipocytes. The structures of the berberine-baicalein (BBS) compounds were confirmed by (1)H NMR, (13)C NMR, ultraviolet spectroscopy and high resolution mass spectrometry (HRMS). The present study showed that the IC50 values of the inhibitory effects of baicalein, berberine and BBS against 3T3-L1 cells were 29.81±0.90, 21.84±1.67 and 9.42±0.60µM, respectively. The expression of mRNAs related to lipolysis and lipogenesis were examined by quantitative real-time PCR. The results showed that BBS could up-regulate the expression of the Atgl gene and down-regulate the mRNA expression of Srebp-1c, Fasn, Scd1, and Acc in 3T3-L1 adipocytes. These results indicate that BBS may have a stronger effect than baicalein and berberine on the viability of 3T3-L1 preadipocytes. In addition, BBS may have therapeutic effects and pharmacological activities against obesity. This "medicine couple" may be beneficial for studies of traditional Chinese medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fucosterol, isolated from Ecklonia stolonifera, inhibits adipogenesis through modulation of FoxO1 pathway in 3T3-L1 adipocytes.

    PubMed

    Lee, Ji-Hyun; Jung, Hyun Ah; Kang, Min Jae; Choi, Jae Sue; Kim, Gun-Do

    2017-03-01

    The purpose of this study was to investigate the effects of fucosterol on adipogenesis of 3T3-L1 preadipocytes and its underlying mechanisms. Fucosterol, isolated from brown algae, Ecklonia stolonifera. We investigated the levels of lipid accumulation using Oil Red O staining. We conducted Western blot analysis to investigate regulatory effects of fucosterol on expression of phosphoinositide 3-kinase (PI3K), Akt, extracellular signal-regulated kinase (ERK), forkhead box protein O 1 (FoxO1) in 3T3-L1 adipocytes. Fucosterol significantly reduced intracellular lipid accumulation of 3T3-L1 adipocytes at concentrations of 25 and 50 μm. Fucosterol downregulated insulin-triggered PI3K/Akt, and ERK pathways. It subsequently decreased expression of adipogenic transcription factors, including PPARγ, C/EBPα and SREBP-1. In addition, fucosterol enhanced SirT1 expression while decreased phospho-FoxO1 expression which resulted in the activation of FoxO1. We revealed that fucosterol inhibited adipogenesis of 3T3-L1 preadipocytes through modulation of FoxO signalling pathway. Therefore, our results suggest that fucosterol may be used for novel agents for the treatment of obesity. © 2017 Royal Pharmaceutical Society.

  20. Cell-permeable ceramides increase basal glucose incorporation into triacylglycerols but decrease the stimulation by insulin in 3T3-L1 adipocytes.

    PubMed

    Mei, J; Wang, C-N; O'Brien, L; Brindley, D N

    2003-01-01

    To investigate mechanisms for the regulation of glucose incorporation into triacylgycerols in adipocytes by ceramides, which mediate some actions of tumour necrosis factor-alpha (TNFalpha). The effects of C(2)- and C(6)-ceramides (N-acetyl- and N-hexanoyl-sphingosines, respectively) on glucose uptake and incorporation into triacylglycerols and pathways of signal tansduction were measured in 3T3-L1 adipocytes. C(6)-ceramide increased basal 2-deooxyglucose uptake but decreased insulin-stimulated uptake without changing the EC(50) for insulin. Incubating 3T3-L1 adipocytes from 2 to 24 h with C(2)-ceramide progressively increased glucose incorporation into the fatty acid and especially the glycerol moieties of triacylglycerol. These effects were accompanied by increased GLUT1 synthesis resulting from ceramide-induced activation phosphatidylinositol 3-kinase, ribosomal S6 kinase and mitogen-activated protein kinase. C(2)-ceramide also increased p21-activated kinase and protein kinase B activities. However, C(2)-ceramide decreased the insulin-stimulated component of these signalling pathways and also glucose incorporation into triacylglycerol after 2 h. Cell-permeable ceramides can mimic some effects of TNFalpha in producing insulin resistance. However, ceramides also mediate long-term effects that enable 3T3 L1 adipocytes to take up glucose and store triacylglycerols in the absence of insulin. These observations help to explain part of the nature and consequence of TNFalpha-induced insulin resistance and the control of fat accumulation in adipocytes in insulin resistance and obesity.

  1. Akebia quinata extract exerts anti-obesity and hypolipidemic effects in high-fat diet-fed mice and 3T3-L1 adipocytes.

    PubMed

    Sung, Yoon-Young; Kim, Dong-Seon; Kim, Ho Kyoung

    2015-06-20

    The dry ripe fruit of the Akebia quinata (A. quinata) plant is used as an analgesic, an antiphlogistic, and a diuretic in traditional medicine. A. quinata has also been used in Korea as a crude drug for treating obesity. The aim of the study was to determine the anti-obesity and hypolipidemic effects of A. quinata extract (AQE) in mice consuming a high-fat diet and in 3T3-L1 adipocytes. We measured obesity-related physiological parameters, gene expression, and protein phosphorylation in mice consuming a high-fat diet supplemented with AQE (400mg/kg/day) for 6.5 weeks. AQE reduced gain in body weight, adipose tissue weight, and serum lipid levels in mice consuming a high-fat diet. AQE supplementation reduced expression of genes related to adipogenesis and increased expression of PPARα, acetyl-CoA oxidase, and adiponectin in the epididymal adipose tissue. Furthermore, AQE increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase, both of which are related to fatty acid oxidation, in vivo. HPLC analysis revealed that AQE contained chlorogenic acid, isochlorogenic acid A, and isochlorogenic acid C. AQE and all of these constituents inhibited differentiation of 3T3-L1 cells and enhanced AMPK phosphorylation. These results suggest the AQE exerted anti-obesity and hypolipidemic effects in mice consuming a high-fat diet by regulating adipogenesis and fatty acid oxidation via AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes.

    PubMed

    Lu, Juu-Chin; Chang, Yu-Tzu; Wang, Chih-Tien; Lin, Yu-Chun; Lin, Chun-Ken; Wu, Zhong-Sheng

    2013-01-01

    In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs). Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA), a pan HDAC inhibitor (HDACI) that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2) mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with TSA's effects

  3. Trichostatin A Modulates Thiazolidinedione-Mediated Suppression of Tumor Necrosis Factor α-Induced Lipolysis in 3T3-L1 Adipocytes

    PubMed Central

    Lu, Juu-Chin; Chang, Yu-Tzu; Wang, Chih-Tien; Lin, Yu-Chun; Lin, Chun-Ken; Wu, Zhong-Sheng

    2013-01-01

    In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs). Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA), a pan HDAC inhibitor (HDACI) that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2) mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with TSA

  4. Overexpression of TFAM protects 3T3-L1 adipocytes from NYGGF4 (PID1) overexpression-induced insulin resistance and mitochondrial dysfunction.

    PubMed

    Shi, Chun-Mei; Xu, Guang-Feng; Yang, Lei; Fu, Zi-Yi; Chen, Ling; Fu, Hai-Long; Shen, Ya-Hui; Zhu, Lu; Ji, Chen-Bo; Guo, Xi-Rong

    2013-07-01

    NYGGF4, also known as phosphotyrosine interaction domain containing 1(PID1), is a recently discovered gene which is involved in obesity-related insulin resistance (IR) and mitochondrial dysfunction. We aimed to further elucidate the effects and mechanisms underlying NYGGF4-induced IR by investigating the effect of overexpressing mitochondrial transcription factor A (TFAM), which is essential for mitochondrial DNA transcription and replication, on NYGGF4-induced IR and mitochondrial abnormalities in 3T3-L1 adipocytes. Overexpression of TFAM increased the mitochondrial copy number and ATP content in both control 3T3-L1 adipocytes and NYGGF4-overexpressing adipocytes. Reactive oxygen species (ROS) production was enhanced in NYGGF4-overexpressing adipocytes and reduced in TFAM-overexpressing adipocytes; co-overexpression of TFAM significantly attenuated ROS production in NYGGF4-overexpressing adipocytes. However, overexpression of TFAM did not affect the mitochondrial transmembrane potential (ΔΨm) in control 3T3-L1 adipocytes or NYGGF4-overexpressing adipocytes. In addition, co-overexpression of TFAM-enhanced insulin-stimulated glucose uptake by increasing Glucose transporter type 4 (GLUT4) translocation to the PM in NYGGF4-overexpressing adipocytes. Overexpression of NYGGF4 significantly inhibited tyrosine phosphorylation of Insulin receptor substrate 1 (IRS-1) and serine phosphorylation of Akt, whereas overexpression of TFAM strongly induced phosphorylation of IRS-1 and Akt in NYGGF4-overexpressing adipocytes. This study demonstrates that NYGGF4 plays a role in IR by impairing mitochondrial function, and that overexpression of TFAM can restore mitochondrial function to normal levels in NYGGF4-overexpressing adipocytes via activation of the IRS-1/PI3K/Akt signaling pathway.

  5. CHANGES IN microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes.

    PubMed

    Ling, Hong-Yan; Ou, He-Sheng; Feng, Shui-Dong; Zhang, Xiao-Ying; Tuo, Qin-Hui; Chen, Lin-Xi; Zhu, Bing-Yang; Gao, Zhi-Ping; Tang, Cao-Ke; Yin, Wei-Dong; Zhang, Liang; Liao, Duan-Fang

    2009-09-01

    1. MicroRNAs (miRNAs) play essential roles in many biological processes. It is known that aberrant miRNA expression contributes to some pathological conditions. However, it is not known whether miRNAs play any role in the development of insulin resistance in adipocytes, a key pathophysiological link between obesity and diabetes. 2. To investigate the function of miRNAs in the development of insulin resistance, using miRNA microarray analysis we compared miRNA expression profiles between normal insulinsensitive 3T3-L1 adipocytes and 3T3-L1 adipocytes rendered insulin resistant following treatment with high glucose (25mmol/L) and high insulin (1 mol/L). Furthermore, adipocytes were transfected with specific antisense oligonucleotides against miRNA-320 (anti-miR-320 oligo) and the effects on the development of insulin resistance were evaluated. 3. We identified 50 upregulated and 29 downregulated miRNAs in insulin-resistant (IR) adipocytes, including a 50-fold increase in miRNA-320 (miR-320) expression. Using bioinformatic techniques, the p85 subunit of phosphatidylinositol 3-kinase (PI3-K) was found to be a potential target of miR-320. In experiments with anti-miR-320 oligo, insulin sensitivity was increased in IR adipocytes, as evidenced by increases in p85 expression, phosphorylation of Akt and the protein expression of the glucose transporter GLUT-4, as well as insulin-stimulated glucose uptake. These beneficial effects of anti-miR-320 oligo were observed only in IR adipocytes and not in normal adipocytes. 4. In conclusion, the miRNA profile changes in IR adipocytes compared with normal 3T3-L1 adipocytes. Anti-miR-320 oligo was found to regulate insulin resistance in adipocytes by improving insulin–PI3-K signalling pathways. The findings provide information regarding a potentially new therapeutic strategy to control insulin resistance.

  6. A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells.

    PubMed

    Masubuchi, Yosuke; Nakagawa, Yuko; Ma, Jinhui; Sasaki, Tsutomu; Kitamura, Tadahiro; Yamamoto, Yoritsuna; Kurose, Hitoshi; Kojima, Itaru; Shibata, Hiroshi

    2013-01-01

    Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism.

  7. A Novel Regulatory Function of Sweet Taste-Sensing Receptor in Adipogenic Differentiation of 3T3-L1 Cells

    PubMed Central

    Masubuchi, Yosuke; Nakagawa, Yuko; Ma, Jinhui; Sasaki, Tsutomu; Kitamura, Tadahiro; Yamamoto, Yoritsuna; Kurose, Hitoshi; Kojima, Itaru; Shibata, Hiroshi

    2013-01-01

    Background Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. Methodology/Principal Findings In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. Conclusions 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism. PMID:23336004

  8. Effect of ambrex (a herbal formulation) on oxidative stress in hyperlipidemic rats and differentiation of 3T3-L1 preadipocytes

    PubMed Central

    Devi, A. Jamuna; Ravindran, Rekha; Sankar, M.; Rajkumar, Johanna

    2014-01-01

    Background: Ambrex is a polyherbal formulation which consists of Withania somnifera, Orchis mascula, Cycas circirnalis, Shorea robusta with amber. Objective: The present study was designed to explore the potential effects of ambrex on the antioxidant status in high fat diet fed rats and to investigate the possible mechanisms focusing on the gene expression involved in adipogenesis and inflammation in 3T3-L1 cell line. Materials and Methods: Male Wistar rats were divided into four groups (n = 6); Group A received normal diet, Group B received high fat diet for 30 days, Group C and D received high fat diet for 30 days and treated with ambrex (40 mg/kg b.w) and atorvastatin (10 mg/kg b.w) for successive 15 days respectively. This study also assesses the effect of ambrex on adipogenesis in 3T3-L1 adipocytes. Results: The serum total cholesterol and triglycerides were significantly decreased in ambrex treated hyperlipidemic animals when compared to untreated animals. The activities of catalase, superoxide dismutase and reduced glutathione were significantly augmented in the serum, liver, and heart of hyperlipidemic rats treated with ambrex when compared to control. Ambrex treated rats had significant reductions in malondiadehyde levels in the serum, liver and heart compared to untreated rats. In addition, we observed that treatment with ambrex resulted in a major inhibition of pre-adipocyte differentiation of 3T3-L1 cells in vitro by suppression of peroxisome proliferator activated receptor gamma, sterol regulatory binding proteins, tumor necrosis factor-α, inducible nitricoxide synthase, leptin, and upregulation of thioredoxin 1 (TRX1) and TRX2 mRNA expression. Conclusion: Therefore, ambrex may be a potential drug for treatment of hyperlipidemia and related disorders. PMID:24914283

  9. Effects of C-reactive protein on the expression of matrix metalloproteinases and their inhibitors via Fcγ receptors on 3T3-L1 adipocytes.

    PubMed

    Nakai, Kumiko; Tanaka, Hideki; Yamanaka, Kazuhiro; Takahashi, Yumi; Murakami, Fumiko; Matsuike, Rieko; Sekino, Jumpei; Tanabe, Natsuko; Morita, Toyoko; Yamazaki, Yoji; Kawato, Takayuki; Maeno, Masao

    2017-01-01

    The association between obesity and inflammation is well documented in epidemiological studies. Proteolysis of extracellular matrix (ECM) proteins is involved in adipose tissue enlargement, and matrix metalloproteinases (MMPs) collectively cleave all ECM proteins. Here, we examined the effects of C-reactive protein (CRP), an inflammatory biomarker, on the expression of MMPs and tissue inhibitors of metalloproteinases (TIMPs), which are natural inhibitors of MMPs, in adipocyte-differentiated 3T3-L1 cells. We analyzed the expression of Fcγ receptor (FcγR) IIb and FcγRIII, which are candidates for CRP receptors, and the effects of anti-CD16/CD32 antibodies, which can act as FcγRII and FcγRIII blockers on CRP-induced alteration of MMP and TIMP expression. Moreover, we examined the effects of CRP on the activation of mitogen-activated protein kinase (MAPK) signaling, which is involved in MMP and TIMP expression, in the presence or absence of anti-CD16/CD32 antibodies. Stimulation with CRP increased MMP-1, MMP-3, MMP-9, MMP-11, MMP-14, and TIMP-1 expression but did not affect MMP-2, TIMP-2, and TIMP-4 expression; TIMP-3 expression was not detected. Adipocyte-differentiated 3T3-L1cells expressed FcγRIIb and FcγRIII; this expression was upregulated on stimulation with CRP. Anti-CD16/CD32 antibodies inhibited CRP-induced expression of MMPs, except MMP-11, and TIMP-1. CRP induced the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and p38 MAPK but did not affect SAPK/JNK phosphorylation, and Anti-CD16/CD32 attenuated the CRP-induced phosphorylation of p38 MAPK, but not that of ERK1/2. These results suggest that CRP facilitates ECM turnover in adipose tissue by increasing the production of multiple MMPs and TIMP-1 in adipocytes. Moreover, FcγRIIb and FcγRIII are involved in the CRP-induced expression of MMPs and TIMP-1 and the CRP-induced phosphorylation of p38, whereas the FcγR-independent pathway may regulate the CRP-induced MMP-11 expression

  10. Interferon-stimulated gene ISG12b1 inhibits adipogenic differentiation and mitochondrial biogenesis in 3T3-L1 cells.

    PubMed

    Li, Bing; Shin, Jonghyun; Lee, Kichoon

    2009-03-01

    Microarray analysis was performed to find a new group of genes or pathways that might be important in adipocyte development and metabolism. Among them, a mouse interferon-stimulated gene 12b1 (ISG12b1) is expressed at a 400-fold higher level in adipocytes compared with stromal-vascular cells. It is predominantly expressed in adipose tissue among other tissues we tested. Developmentally, ISG12b1 mRNA expression was initially inhibited followed by a dramatic induction during both in vivo and in vitro adipogenic differentiation. Adenovirus-mediated overexpression of ISG12b1 inhibited adipogenic differentiation in 3T3-L1 cells as shown by decreased lipid staining with Oil-Red-O and reduction in adipogenic marker proteins including peroxisome proliferator-activated receptor-gamma (PPARgamma), and CCAAT/enhancer-binding protein-alpha (C/EBPalpha). Our bioinformatics analysis for the predicted localization of ISG12b1 protein suggested the mitochondrial localization, which was confirmed by the colocalization of hemagglutinin-tagged ISG12b1 protein with mitochondrial marker MitoTracker. In addition, ISG12b1 protein was exclusively detected in protein extract from the fractionated mitochondria by Western blot analysis. Furthermore, overexpression of ISG12b1 in adipocytes reduced mitochondrial DNA content and gene expression of mitochondrial transcription factor A (mtTFA), nuclear respiratory factor 1 (NRF1), and cytochrome oxidase II, suggesting an inhibitory role of ISG12b1 in mitochondrial biogenesis and function. Activation of mitochondrial biogenesis and function by treatment with PPARgamma and PPARalpha agonists in 3T3-L1 cells and cold exposure in mice induced mitochondrial transcription factors and reduced ISG12 expression. These data demonstrated that mitochondrial-localized ISG12b1 protein inhibits adipocyte differentiation and mitochondrial biogenesis and function, implying the important role of mitochondrial function in adipocyte development and associated

  11. Chromium picolinate inhibits resistin secretion in insulin-resistant 3T3-L1 adipocytes via activation of amp-activated protein kinase.

    PubMed

    Wang, Yi-Qun; Dong, Yi; Yao, Ming-Hui

    2009-08-01

    1. Chromium picolinate (CrPic) has been recommended as an alternative therapeutic regimen for Type 2 diabetes mellitus (T2DM). However, the molecular mechanism underlying the action of CrPic is poorly understood. 2. Using normal and insulin-resistant 3T3-L1 adipocytes, we examined the effects of CrPic on the gene transcription and secretion of adiponectin and resistin. In addition, using immunoblotting, ELISA and real-time reverse transcription-polymerase chain reaction (RT-PCR), we investigated the effects of 10 nmol/L CrPic for 24 h on AMP-activated protein kinase (AMPK) to determine whether this pathway contributed to the regulation of adiponectin and resistin expression and secretion. 3. Chromium picolinate did not modulate the expression of adiponectin and resistin; however, it did significantly inhibit the secretion of resistin, but not adiponectin, by normal and insulin-resistant 3T3-L1 adipocytes in vitro. Furthermore, although CrPic markedly elevated levels of phosphorylated AMPK and acetyl CoA carboxylase in 3T3-L1 adipocytes, it had no effect on the levels of AMPK alpha-1 and alpha-2 mRNA transcripts. Importantly, inhibition of AMPK by 2 h pretreatment of cells with 20 micromol/L compound C completely abolished the CrPic-induced suppression of resistin secretion. 4. In conclusion, the data suggest that CrPic inhibits resistin secretion via activation of AMPK in normal and insulin-resistant 3T3-L1 adipocytes.

  12. IL-17A synergistically enhances TNFα-induced IL-6 and CCL20 production in 3T3-L1 adipocytes.

    PubMed

    Shinjo, Takanori; Iwashita, Misaki; Yamashita, Akiko; Sano, Tomomi; Tsuruta, Mitsudai; Matsunaga, Hiroaki; Sanui, Terukazu; Asano, Tomoichiro; Nishimura, Fusanori

    2016-08-19

    Interleukin-17A (IL-17A) is known to induce inflammatory responses and to be involved in the pathogenesis of not only autoimmune diseases, but also several metabolic and infectious diseases. In this study, IL-17A is shown to induce IL-6 expression in 3T3-L1 mature adipocytes. Interestingly, we found that IL-17A synergistically amplified TNFα-induced secretion of IL-6 and upregulation of IL-17RA expression in 3T3-L1 adipocytes. Its synergistic effects on IL-6 production were inhibited by pre-treatment with inhibitors of IκBα and JNK. Furthermore, IL-17A cooperatively enhanced LPS-mediated IL-6 production in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. In addition, IL-17A also enhanced CCL20 production in 3T3-L1 adipocytes stimulated with TNFα or co-cultured with LPS-stimulated RAW macrophages. In high-fat diet-fed mouse epididymal adipose tissues, IL-17RA and RORγt mRNA levels were significantly increased and the serum level of CCL20 was also upregulated. Taken together, these data show that, in adipose tissues, IL-17A contributes to exacerbating insulin resistance-enhancing IL-6 production and promotes the infiltration of Th17 cells in cooperation with TNFα; these findings represent a novel hypothesis for the association between IL-17A-producing cells and type 2 diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte.

    PubMed

    Hwang, Jin-Taek; Kim, Soon-Hee; Lee, Myoung-Su; Kim, Sung Hee; Yang, Hye-Jeong; Kim, Min-Jung; Kim, Hak-Soo; Ha, Joohun; Kim, Myung Sunny; Kwon, Dae Young

    2007-12-28

    Metabolic disorders such as obesity are major obstacles in improving the average life span. Therefore, a therapeutic approach using natural compounds has been proposed as a novel strategy for preventing metabolic disorders. Ginsenoside Rh2 is one of the ginsenosides that exert anti-diabetes, anti-inflammatory, and anti-cancer effects. However, the anti-obesity effects of Ginsenoside Rh2 remain unclear. Here, we investigated the anti-obesity ability of ginsenoside Rh2 using cell culture systems. Ginsenoside Rh2 effectively inhibited adipocyte differentiation via PPAR-gamma inhibition. Next, to find specific target molecules based on this result, we used cell culture systems to examine whether AMPK activation was involved in the anti-obesity ability of ginsenoside Rh2 since several published papers have indicated that AMPK signaling is involved in the regulation of metabolic disorders. Ginsenoside Rh2 significantly activated AMPK in 3T3-L1 adipocytes. In addition, we also examined the effect of AMPK on lipolysis molecules such as CPT-1 and UCP-2 by using an AMPK inhibitor. Ginsenoside Rh2 effectively induced CPT-1 and UCP-2 and this induction was abolished by AMPK inhibitor treatment. Moreover, we observed that ROS is an important upstream signal for AMPK activation during ginsenoside Rh2 treatment. Taken together, these results indicate that ginsenoside Rh2 is the most effective candidate for preventing metabolic disorders such as obesity and that it acts via the AMPK signaling pathway. Thus, AMPK signaling might contribute toward improving human health.

  14. Cooperation between HMGA1 and HIF-1 Contributes to Hypoxia-Induced VEGF and Visfatin Gene Expression in 3T3-L1 Adipocytes

    PubMed Central

    Messineo, Sebastiano; Laria, Anna Elisa; Arcidiacono, Biagio; Chiefari, Eusebio; Luque Huertas, Raúl M.; Foti, Daniela P.; Brunetti, Antonio

    2016-01-01

    The architectural transcription factor high-mobility group AT-hook 1 (HMGA1) is a chromatin regulator with implications in several biological processes, including tumorigenesis, inflammation, and metabolism. Previous studies have indicated a role for this factor in promoting the early stages of adipogenesis, while inhibiting adipocyte terminal differentiation, and decreasing fat mass. It has been demonstrated that hypoxia – through the hypoxia-inducible factor 1 (HIF-1) – plays a major role in triggering changes in the adipose tissue of the obese, leading to inhibition of adipocyte differentiation, adipose cell dysfunction, inflammation, insulin resistance, and type 2 diabetes. To examine the possible cooperation between HMGA1 and HIF-1, herein, we investigated the role of HMGA1 in the regulation of Visfatin and VEGF, two genes normally expressed in adipose cells, which are both responsive to hypoxia. We demonstrated that HMGA1 enhanced Visfatin and VEGF gene expression in human embryonic kidney (HEK) 293 cells in hypoxic conditions, whereas HMGA1 knockdown in differentiated 3T3-L1 adipocytes reduced these effects. Reporter gene analysis showed that Visfatin and VEGF transcriptional activity was increased by the addition of either HMGA1 or HIF-1 and even further by the combination of both factors. As demonstrated by chromatin immunoprecipitation in intact cells, HMGA1 directly interacted with the VEGF gene, and this interaction was enhanced in hypoxic conditions. Furthermore, as indicated by co-immunoprecipitation studies, HMGA1 and HIF-1 physically interacted with each other, supporting the notion that this association may corroborate a functional link between these factors. Therefore, our findings provide evidence for molecular cross-talk between HMGA1 and HIF-1, and this may be important for elucidating protein and gene networks relevant to obesity. PMID:27445976

  15. Effect of desacyl ghrelin, obestatin and related peptides on triglyceride storage, metabolism and GHSR signaling in 3T3-L1 adipocytes.

    PubMed

    Miegueu, Pierre; St Pierre, David; Broglio, Fabio; Cianflone, Katherine

    2011-02-01

    Acyl-ghrelin (AG), desacyl-ghrelin (DAG) and obestatin are all derived from the same gene transcript; however their plasma levels do not necessarily change in parallel. The influence of these peptides towards the development of obesity and their direct effects on adipocyte physiology has not been thoroughly investigated. This study was designed to evaluate the direct effects of peptides of the ghrelin family on preadipocyte proliferation, differentiation and adipocyte lipid and glucose metabolism in 3T3-L1 cells. 3T3 cells were treated with physiological peptide concentrations for 1 h to 9 days, and the relevant assays measured. In preadipocytes, AG, GHRP-6 and DAG stimulated proliferation, measured as (3)H-thymidine incorporation (up to 200%, P < 0.05), while all peptides stimulated differentiation (up to 300%, P < 0.01) as compared to standard differentiation conditions. In adipocytes, FA uptake was increased in a concentration-dependent manner especially with obestatin (three- to fourfold, P < 0.001) and DAG (three- to fivefold, P < 0.001). By contrast, glucose transport was unchanged. DAG and obestatin significantly decreased lipolysis measured as non-esterified fatty acid and glycerol release by 50%, P < 0.05-0.01 and 51%, P < 0.01, respectively. Interestingly, DAG stimulation of FA uptake was blocked with GHSR1 antagonist (D-lys(3))-GHRP-6 (P < 0.05), phospholipase C inhibitor U73122 and phosphatidylinositol-3-kinase inhibitor wortmannin (P < 0.001). Finally, in omental but not subcutaneous human adipose tissue, GHSR1 correlated with BMI (r = 0.549, P < 0.05) and insulin (r = 0.681, P < 0.01). Taken together, these results suggest that ghrelin-related peptides may directly affect adipose tissue metabolism.

  16. Cysteine deprivation prevents induction of peroxisome proliferator-activated receptor gamma-2 and adipose differentiation of 3T3-L1 cells.

    PubMed

    Haj-Yasein, Nadia Nabil; Berg, Ole; Jernerén, Fredrik; Refsum, Helga; Nebb, Hilde I; Dalen, Knut Tomas

    2017-06-01

    Plasma cysteine is strongly associated with body fat mass in human cohorts and diets low in cysteine prevents fat accumulation in mice. It is unclear if plasma cysteine affects fat development or if fat accumulation raises plasma cysteine. To determine if cysteine affects adipogenesis, we differentiated 3T3-L1 preadipocytes in medium with reduced cysteine. Cells incubated in media with 10-20μM cysteine exhibited reduced capacity to differentiate into triacylglycerol-storing mature adipocytes compared with cells incubated with 50μM cysteine. Low cysteine severely reduced expression of peroxisome proliferator-activated receptor gamma2 (Pparγ2) and its target genes perlipin1 (Plin1) and fatty acid binding protein-4 (Fabp4). Expression of stearoyl-CoA desaturase-1 (Scd1), known to be repressed with cysteine depletion, was also reduced with low cysteine. Medium depletion of the essential amino acids leucine, valine, and isoleucine had only a modest effect on adipocyte specific gene expression and differentiation. Stimulation with the PPARγ agonist BRL-49653 or addition of a hydrogen sulfide donor enhanced differentiation of 3