Science.gov

Sample records for 4-amino-tetrahydro-l-biopterine prevents brain

  1. Endothelial nitric oxide synthase mediates arteriolar vasodilatation after traumatic brain injury in mice.

    PubMed

    Schwarzmaier, Susanne M; Terpolilli, Nicole A; Dienel, Ari; Gallozzi, Micaela; Schinzel, Reinhard; Tegtmeier, Frank; Plesnila, Nikolaus

    2015-05-15

    Brain edema and increased cerebral blood volume (CBV) contribute to intracranial hypertension and hence to unfavorable outcome after traumatic brain injury (TBI). The increased post-traumatic CBV may be caused in part by arterial vasodilatation. The aim of the current study was to uncover the largely unknown mechanisms of post-traumatic arteriolar vasodilatation. The diameter of pial arterioles and venules was monitored by intravital fluorescence microscopy before (baseline) and for 30 min after controlled cortical impact in C57BL/6 and endothelial nitric oxide synthase (eNOS)-/- mice (n=5-6/group) and in C57BL/6 mice (n=6/group) receiving vehicle (phosphate-buffered saline [PBS]) or 4-amino-tetrahydro-L-biopterine (VAS203), a NOS inhibitor previously shown to reduce post-traumatic intracranial hypertension. Temperature, end-tidal partial pressure of carbon dioxide (pCO₂), and mean arterial blood pressure were kept within the physiological range throughout the experiments. Arteriolar diameters were stable during baseline monitoring but increased significantly in C57BL/6 mice after controlled cortical impact (136±7% of baseline; p<0.001 vs. baseline). This response was reduced by 78% in eNOS-/- mice (108±3% of baseline; p<0.005 vs. wild-type). Application of VAS203, a NOS inhibitor, or PBS did not affect vessels diameter before TBI. After trauma, however, administration of VAS203 reduced arteriolar diameter to 92±2% of baseline (p<0.05). The diameter of pial veins was not affected. Our results suggest that arteriolar vasodilatation after TBI is largely mediated by excess production of endothelial nitric oxide. Accordingly, our data may explain the beneficial effects of the NOS inhibitor VAS203 in the early phase after TBI and suggest that inhibition of excess endothelial nitric oxide production may represent a novel therapeutic strategy following TBI.

  2. Mechanisms and prevention of secondary brain damage during intensive care.

    PubMed

    Dearden, N M

    1998-01-01

    The injured brain may be damaged by primary impact, secondary injury from secondary damage due to initiation of destructive inflammatory and biochemical cascades by the primary injury or secondary ischemic injury following secondary insults that initiate or augment these immunological and biochemical cascades. Cerebral ischemia will arise whenever delivery of oxygen and substrates to the brain fall below metabolic needs. Many factors lead to the development of secondary insults to the injured brain during initial resuscitation, transport, surgery, and subsequent intensive care. Continuous monitoring of cerebral oxygenation (jugular oximetry, brain tissue PO2) and cerebral blood flow velocity (transcranial Doppler ultrasonography) in patients with brain trauma reveals multiple episodes of transient hypoperfusion with an adverse relationship between incidence and outcome. Secondary brain insults arise through systemic or intracranial mechanisms that reduce cerebral blood flow from compromised CPP, vascular distortion or cerebrovascular narrowing or lower oxygen delivery from hypoxemia associated with airway obstruction, pulmonary pathology, or anemia. Secondary brain ischemia remains a common pathway to secondary brain damage in most critically ill neurosurgical patients. In the future prevention of secondary brain injury may well hinge on giving a cocktail of novel agents that modify destructive biochemical and inflammatory pathways, each having a potential therapeutic window possibly in a subgroup of patients. To date, phase 3 clinical trials of several agents including PEGSOD and tyrilizad mesylate have failed to show relevant efficacy after brain trauma or subarachnoid hemorrhage. The therapeutic role of calcium channel blockers in traumatic subarachnoid hemorrhage is currently under investigation following the results of subgroup metaanalysis. Several phase 3, NMDA receptor antagonist studies are underway in brain trauma with results expected soon. Although we

  3. Melatonin prevents learning disorders in brain-lesioned newborn mice.

    PubMed

    Bouslama, M; Renaud, J; Olivier, P; Fontaine, R H; Matrot, B; Gressens, P; Gallego, J

    2007-12-12

    Perinatal brain injuries often result in irreversible learning disabilities, which manifest in early childhood. These injuries are chiefly ascribable to marked susceptibility of the immature brain to glutamate-induced excitotoxicity. No treatments are available. One well-characterized model of perinatal brain injuries consists in injecting the glutamate analog ibotenate into the brain of 5-day-old mice. The resulting excitotoxic lesions resemble the hypoxic-ischemic gray-matter lesions seen in full-term and near-term newborns, as well as the white-matter lesions of preterm newborns. We previously reported that these lesions disrupted odor preference conditioning in newborn mice. The aim of this study was to assess the effectiveness of the neuroprotector melatonin in preventing learning disabilities in newborn mice with ibotenate-induced brain injury. In postnatal day (P) 6-P7 pups, we tested psychomotor reflexes, spontaneous preference for maternal odors as an index of memory, ultrasonic vocalization responses to stroking as an index of sensitivity to tactile stimuli, and conditioned preference for an odor previously paired with stroking as an index of learning abilities. Without melatonin, conditioning was abolished, whereas spontaneous odor preference, psychomotor reflexes, and sensitivity to tactile stimuli were normal. Thus, abolition of conditioning was not associated with sensorimotor impairments. Histological analysis confirmed the efficacy of melatonin in reducing white-matter lesions induced by ibotenate. Furthermore, treatment with melatonin protected the ability to develop conditioning. Thus, melatonin, which easily crosses the blood-brain barrier and has been proven safe in children, may be effective in preventing learning disabilities caused by perinatal brain injuries in human preterm infants. PMID:17950543

  4. Antenatal brain injury: aetiology and possibilities of prevention.

    PubMed

    Hagberg, H; Mallard, C

    2000-02-01

    Although the aetiology of antenatal brain injury is often unclear, procedures can be employed to prevent or reduce the risk of injury. Defective neuropore closure can be prevented by periconceptional administration of folic acid, and the incidence of other severe malformations and genetic disorders can be reduced by early identification and termination of pregnancy. Antenatal identification of IUGR, administration of corticosteroids to cases with pending preterm birth, and treatment of maternal/fetal infections would also reduce the incidence of injury. Mothers can decrease the risk of injury by maintaining a good diet, avoiding smoking, alcohol intake and exposure to TORCH infections during pregnancy. PMID:10802749

  5. Preventable deaths in patients with traumatic brain injury

    PubMed Central

    Kim, Seong Chun; Song, Kyoung Jun; Shin, Sang Do; Lee, Seung Chul; Park, Ju Ok; Holmes, James F.

    2015-01-01

    Objective The objective of this study is to evaluate the rate of and etiology for preventable deaths in patients with traumatic brain injuries (TBIs). Methods We conducted a retrospective, multicenter review of patients with TBIs who died within 7 days of their traumatic event from June 2008 to May 2009. Three board certified emergency physicians independently reviewed every case using a structured survey format. Cases were considered preventable deaths only if all physicians independently agreed the death was preventable. Management errors contributing to the preventable death were determined. Results Forty-one patients who died from TBI were eligible. Preventable deaths were identified in nine (22%; 95% confidence interval [CI], 11 to 28) cases. Fifty-six management errors were identified including 36 (64%; 95% CI, 50 to 77) in the emergency department and 13 (23%; 95% CI, 13 to 36) in the prehospital phase. Thirty (54%; 95% CI, 40 to 67) management errors were process-related, and 26 (46%; 95% CI, 33 to 60) were structure-related. Conclusion An important and measurable rate of preventable mortality occurs in the initial care of TBI patients. Errors were common and most occurred in the emergency department. In addition, errors were common in the prehospital phase but did not always lead to mortality. When analyzed by type of problem, both process-related and structure-related errors occurred in similar proportions.

  6. Traumatic Brain Injury: A Look at Alcohol and Other Drug Abuse Prevention.

    ERIC Educational Resources Information Center

    VSA Educational Services, Washington, DC. Resource Center on Substance Abuse Prevention and Disability.

    This leaflet examines alcohol and other drug abuse prevention for individuals with traumatic brain injury. The characteristics and incidence of traumatic brain injury (TBI) are noted. The implications of alcohol and other drug use are discussed, emphasizing that TBI is often related to lifestyles where alcohol and other drug abuse and risk taking…

  7. What Can I Do to Help Prevent Traumatic Brain Injury?

    MedlinePlus

    ... to Congress: Epidemiology and Rehabilitation Report to Congress: Military Personnel TBI in the US: Emergency Department Visits, Hospitalizations ... sustaining a traumatic brain injury, including: Buckling your child in the car using a child safety seat, ...

  8. [Prevention of brain infarction in patients with atrial fibrillation].

    PubMed

    Ogata, Toshiyasu; Yasaka, Masahiro

    2007-01-01

    The patients with cardioembolic stroke sometimes suffer from severe neurological deficit and from recurrent strokes. Since atrial fibrillation, especially non-valvular atrial fibrillation (NVAF) is associated with over half of the cardioembolic strokes, the prevention of cardioembolic stroke in patients with NVAF is important. There have been some reports about how to prevent stroke. They have indicated that the best medication for preventing from stroke was anticoagulation by warfarin. Therefore, the guidelines recommended the patients with NVAF to take warfarin. In case with the older patients under 70 years, prothrombin international normalized ratio (PT-INR) should be kept from 2.0 to 3.0. On the other hand, if the patients with NVAF are over 70 years, PT-INR has to be controlled from 1.6 to 2.6. Before extraction of a tooth, anticoagulation should not be call off.

  9. Aqueous Date Fruit Efficiency as Preventing Traumatic Brain Deterioration and Improving Pathological Parameters after Traumatic Brain Injury in Male Rats

    PubMed Central

    Badeli, Hamze; Shahrokhi, Nader; KhoshNazar, Mahdieosadat; Asadi-Shekaari, Majid; Shabani, Mohammad; Eftekhar Vaghefi, Hassan; Khaksari, Mohammad; Basiri, Mohsen

    2016-01-01

    Objective Following traumatic brain injury, disruption of blood-brain-barrier and consequent brain edema are critical events which might lead to increasing intracranial pressure (ICP), and nerve damage. The current study assessed the effects of aqueous date fruit extract (ADFE) on the aforementioned parameters. Materials and Methods In this experimental study, diffused traumatic brain injury (TBI) was generated in adult male rats using Marmarou’s method. Experimental groups include two pre-treatment (oral ADFE, 4 and 8 mL/kg for 14 days), vehicle (distilled water, for 14 days) and sham groups. Brain edema and neuronal injury were measured 72 hours after TBI. Veterinary coma scale (VCS) and ICP were determined at -1, 4, 24, 48 and 72 hours after TBI. Differences among multiple groups were assessed using ANOVA. Turkey’s test was employed for the ANOVA post-hoc analysis. The criterion of statistical significance was sign at P<0.05. Results Brain water content in ADFE-treated groups was decreased in comparison with the TBI+vehicle group. VCS at 24, 48 and 72 hours after TBI showed a significant increase in ADFE groups in comparison with the TBI+vehicle group. ICP at 24, 48 and 72 hours after TBI, was decreased in ADFE groups, compared to the TBI+vehicle. Brain edema, ICP and neuronal injury were also decreased in ADFE group, but VCS was increased following on TBI. Conclusion ADFE pre-treatment demonstrated an efficient method for preventing traumatic brain deterioration and improving pathological parameters after TBI.

  10. Aqueous Date Fruit Efficiency as Preventing Traumatic Brain Deterioration and Improving Pathological Parameters after Traumatic Brain Injury in Male Rats

    PubMed Central

    Badeli, Hamze; Shahrokhi, Nader; KhoshNazar, Mahdieosadat; Asadi-Shekaari, Majid; Shabani, Mohammad; Eftekhar Vaghefi, Hassan; Khaksari, Mohammad; Basiri, Mohsen

    2016-01-01

    Objective Following traumatic brain injury, disruption of blood-brain-barrier and consequent brain edema are critical events which might lead to increasing intracranial pressure (ICP), and nerve damage. The current study assessed the effects of aqueous date fruit extract (ADFE) on the aforementioned parameters. Materials and Methods In this experimental study, diffused traumatic brain injury (TBI) was generated in adult male rats using Marmarou’s method. Experimental groups include two pre-treatment (oral ADFE, 4 and 8 mL/kg for 14 days), vehicle (distilled water, for 14 days) and sham groups. Brain edema and neuronal injury were measured 72 hours after TBI. Veterinary coma scale (VCS) and ICP were determined at -1, 4, 24, 48 and 72 hours after TBI. Differences among multiple groups were assessed using ANOVA. Turkey’s test was employed for the ANOVA post-hoc analysis. The criterion of statistical significance was sign at P<0.05. Results Brain water content in ADFE-treated groups was decreased in comparison with the TBI+vehicle group. VCS at 24, 48 and 72 hours after TBI showed a significant increase in ADFE groups in comparison with the TBI+vehicle group. ICP at 24, 48 and 72 hours after TBI, was decreased in ADFE groups, compared to the TBI+vehicle. Brain edema, ICP and neuronal injury were also decreased in ADFE group, but VCS was increased following on TBI. Conclusion ADFE pre-treatment demonstrated an efficient method for preventing traumatic brain deterioration and improving pathological parameters after TBI. PMID:27602324

  11. Electroacupuncture Prevents Cognitive Impairments by Regulating the Early Changes after Brain Irradiation in Rats

    PubMed Central

    Fan, Xing-Wen; Chen, Fu; Chen, Yan; Chen, Guan-Hao; Liu, Huan-Huan; Guan, Shi-Kuo; Deng, Yun; Liu, Yong; Zhang, Sheng-Jian; Peng, Wei-Jun; Jiang, Guo-Liang; Wu, Kai-Liang

    2015-01-01

    Cognitive impairments severely affect the quality of life of patients who undergo brain irradiation, and there are no effective preventive strategies. In this study, we examined the therapeutic potential of electroacupuncture (EA) administered immediately after brain irradiation in rats. We detected changes in cognitive function, neurogenesis, and synaptic density at different time points after irradiation, but found that EA could protect the blood-brain barrier (BBB), inhibit neuroinflammatory cytokine expression, upregulate angiogenic cytokine expression, and modulate the levels of neurotransmitter receptors and neuropeptides in the early phase. Moreover, EA protected spatial memory and recognition in the delayed phase. At the cellular/molecular level, the preventative effect of EA on cognitive dysfunction was not dependent on hippocampal neurogenesis; rather, it was related to synaptophysin expression. Our results suggest that EA applied immediately after brain irradiation can prevent cognitive impairments by protecting against the early changes induced by irradiation and may be a novel approach for preventing or ameliorating cognitive impairments in patients with brain tumors who require radiotherapy. PMID:25830357

  12. Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage.

    PubMed

    Jiang, Jun; Wang, Wei; Sun, Yong Jun; Hu, Mei; Li, Fei; Zhu, Dong Ya

    2007-04-30

    Curcumin, a member of the curcuminoid family of compounds, is a yellow colored phenolic pigment obtained from powdered rhizome of C. longa Linn. Recent studies have demonstrated that curcumin has protective effects against cerebral ischemia/reperfusion injury. However, little is known about its mechanism. Disruption of the blood-brain barrier occurs after stroke. Protection of the blood-brain barrier has become an important target of stroke interventions in experimental therapeutic. The objective of the present study was to determine whether curcumin prevents cerebral ischemia/reperfusion injury by protecting blood-brain barrier integrity. We report that a single injection of curcumin (1 and 2 mg/kg, i.v.) 30 min after focal cerebral ischemia/reperfusion in rats significantly diminished infarct volume, improved neurological deficit, decreased mortality, reduced the water content of the brain and the extravasation of Evans blue dye in ipsilateral hemisphere in a dose-dependent manner. In cultured astrocytes, curcumin significantly inhibited inducible nitric oxide synthase (iNOS) expression and NO(x) (Nitrites/nitrates contents) production induced by lipopolysaccharide (LPS)/tumor necrosis factor alpha (TNF(alpha)). Furthermore, curcumin prevented ONOO(-) donor SIN-1-induced cerebral capillaries endothelial cells damage. We concluded that curcumin ameliorates cerebral ischemia/reperfusion injury by preventing ONOO(-) mediated blood-brain barrier damage. PMID:17303117

  13. Levetiracetam for seizure prevention in brain tumor patients: a systematic review.

    PubMed

    Nasr, Ziad Ghantous; Paravattil, Bridget; Wilby, Kyle John

    2016-08-01

    Seizures are common complications for patients with brain tumors. No clear evidence exists regarding the use of antiepileptic agents for prophylactic use yet newer agents are being favoured in many clinical settings. The objective of this systematic review was to determine the efficacy of levetiracetam for preventing seizures in patients with brain tumors. A literature search was completed using the databases PubMed (1948 to December 2015), EMBASE (1980 to December 2015), Cochrane Database of Systematic Reviews, and Google Scholar. Studies were included if they reported seizure frequency data pertaining to levetiracetam use in patients with brain tumors as either monotherapy or as an add on agent. The literature search produced 21 articles (3 randomized controlled trials, seven prospective observational studies, and 11 retrospective observational studies). All studies were found to be at high risk of bias. Overall, studies show levetiracetam decreased seizure frequency in brain tumor patients with or without craniotomy. Safety outcomes were also favourable. As such, levetiracetam appears effective for reducing seizures in patients with brain tumors and may be considered a first-line agent. However, there is an urgent need for more high quality prospective data assessing levetiracetam and other antiepileptic drugs in this population. PMID:27168191

  14. Curcumin boosts DHA in the brain: implications for the prevention of anxiety disorders

    PubMed Central

    Wu, Aiguo; Noble, Emily E.; Tyagi, Ethika; Ying, Zhe; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2015-01-01

    Dietary deficiency of docosahexaenoic acid (C22: 6n-3; DHA) is linked to the neuropathology of several cognitive disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained through the diet or synthesized from dietary precursors, however the conversion efficiency is low. Curcumin (diferuloylmethane), which is a principal component of the spice turmeric, complements the action of DHA in the brain, and this study was performed to determine molecular mechanisms involved. We report that curcumin enhances the synthesis of DHA from its precursor, α-linolenic acid (C18: 3n-3; ALA) and elevates levels of enzymes involved in the synthesis of DHA such as FADS2 and elongase 2 in both liver and brain tissue. Furthermore, in vivo treatment with curcumin and ALA reduced anxiety-like behavior in rodents. Taken together, these data suggest that curcumin enhances DHA synthesis, resulting in elevated brain DHA content. These findings have important implications for human health and the prevention of cognitive disease, particularly for populations eating a plant-based diet or who do not consume fish, a primary source of DHA, since DHA is essential for brain function and its deficiency is implicated in many types of neurological disorders. PMID:25550171

  15. Long-term food restriction prevents aging-associated sphingolipid turnover dysregulation in the brain.

    PubMed

    Babenko, Nataliya A; Shakhova, Elena G

    2014-01-01

    Abnormalities of sphingolipid turnover in the brain during normal aging and age-related neurological disorders were associated with the neurons loss and cognitive malfunction. Calorie restriction (CR) prevented age-related deficits in hippocampal long-term potentiation and improved cognitive function at old age. In the paper we investigated the ceramide and sphingomyelin (SM) levels in the brain regions, which are critical for learning and memory of 3- and 24-month-old rats, as well as the correction of sphingolipid turnover in the brain of old rats, by means of the CR diet and modulators of SM turnover. Using the [methyl-(14)C-choline]SM, the neutral, but not the acid SMase activity has been observed to increase in both the hippocampus and brain cortex of 24-month-old rats with respect to 3-month-old animals. Age-dependent changes of neutral SMase activities were associated with ceramide accumulation and SM level drop in the brain structures studied. Treatment of the rats with the CR diet or N-acetylcysteine (NAC) or α-tocopherol acetate, but not an inhibitor of acid SMase imipramine, reduced the ceramide content and neutral SMase activity in the hippocampus of 24-month-old animals with respect to control rats of the same age. These results suggest that redox-sensitive neutral SMase plays important role in SM turnover dysregulation in both the hippocampus and neocortex at old age and that the CR diet can prevent the age-dependent accumulation of ceramide mainly via neutral SMase targeting.

  16. Metformin Prevents Cisplatin-Induced Cognitive Impairment and Brain Damage in Mice

    PubMed Central

    Zhou, Wenjun; Kavelaars, Annemieke; Heijnen, Cobi J.

    2016-01-01

    Rationale Chemotherapy-induced cognitive impairment, also known as ‘chemobrain’, is now widely recognized as a frequent adverse side effect of cancer treatment that often persists into survivorship. There are no drugs available to prevent or treat chemotherapy-induced cognitive deficits. The aim of this study was to establish a mouse model of cisplatin-induced cognitive deficits and to determine the potential preventive effects of the anti-diabetic drug metformin. Results Treatment of C57/BL6J mice with cisplatin (cumulative dose 34.5mg/kg) impaired performance in the novel object and place recognition task as well as in the social discrimination task indicating cognitive deficits. Co-administration of metformin prevented these cisplatin-induced cognitive impairments. At the structural level, we demonstrate that cisplatin reduces coherency of white matter fibers in the cingulate cortex. Moreover, the number of dendritic spines and neuronal arborizations as quantified on Golgi-stained brains was reduced after cisplatin treatment. Co-administration of metformin prevented all of these structural abnormalities in cisplatin-treated mice. In contrast to what has been reported in other models of chemobrain, we do not have evidence for persistent microglial or astrocyte activation in the brains of cisplatin-treated mice. Finally, we show that co-administration of metformin also protects against cisplatin-induced peripheral neuropathy. Conclusion In summary, we show here for the first time that treatment of mice with cisplatin induces cognitive deficits that are associated with structural abnormalities in the brain. Moreover, we present the first evidence that the widely used and safe anti-diabetic drug metformin protects against these deleterious effects of cancer treatment. In view of the ongoing clinical trials to examine the potential efficacy of metformin as add-on therapy in patients treated for cancer, these findings should allow rapid clinical translation. PMID

  17. Dexamethasone prevents long-lasting learning impairment following neonatal hypoxic-ischemic brain insult in rats.

    PubMed

    Ikeda, Tomoaki; Mishima, Kenichi; Yoshikawa, Tetsuya; Iwasaki, Katsunori; Fujiwara, Michihiro; Xia, Yi X; Ikenoue, Tsuyomu

    2002-10-17

    We examined for 18 weeks the effect of dexamethasone treatment on learning and memory impairment produced by hypoxic-ischemic stress at postnatal day 7 in rat in addition to brain histological study. Dexamethasone of 0.5 mg/kg was injected i.p. 4 h before hypoxic-ischemic stress, in which the left carotid artery was ligated followed by 2 h hypoxia (8% oxygen). Dexamethasone treatment improved behavior in each learning task: in choice reaction time tasks relating to the attention process, in 8-arm radial maze task examining working and reference memory, and in water maze task relating to reference memory. Improvement to the extent of the sham-control level was observed. Dexamethasone treatment also completely prevented histological brain damage. No adverse effect in learning and memory tests was observed in the animals treated with dexamethasone without hypoxic-ischemic stress. It is concluded that dexamethasone treatment is significantly effective in prevention not only of histological brain damage but also of learning and memory impairment occasioned by subsequent hypoxic-ischemic insult, warranting further clinical investigation.

  18. Prevention of brain trauma by legislation, regulation, and improved technology: a focus on motor vehicles.

    PubMed

    Jagger, J

    1992-03-01

    More than half of all brain trauma is caused by motor vehicle crashes. Prevention strategies that reduce the likelihood of motor vehicle crashes or injuries to occupants will also prevent trauma. Many effective strategies have yet to be applied on a large scale. Roadway design improvements such as removal of fixed objects from roadsides, widening roadside recovery zones, installing dividers between opposing lanes of traffic, and replacing fixed utility poles with breakaway designs, have been effective in reducing crashes and injuries. Driver measures of documented benefit include the 55 mph speed limit, safety belt use laws, 21 year legal drinking age, administrative license suspension for drinking drivers, and driving curfews and postponement of licensure for teenagers. Motor vehicle safety has improved greatly since the National Highway Traffic Safety Administration began regulating vehicle design. Significant design requirements include lap and shoulder belts in front seat positions, and, more recently, automatic safety belts or air bags in front seat positions, head restraints in front seat positions, reinforcing side and roof beams, and the center-mounted brake light. The most significant future advance will be the provision of full front seat air bags in all passenger vehicles. As much as one-quarter of brain trauma can be prevented or reduced in severity by this measure alone. Further safety requirements should include head restraints in rear positions, a-pillar, b-pillar, and roof padding, antilock brakes, and a vehicle rollover standard. PMID:1588622

  19. Prevention of brain trauma by legislation, regulation, and improved technology: a focus on motor vehicles.

    PubMed

    Jagger, J

    1992-03-01

    More than half of all brain trauma is caused by motor vehicle crashes. Prevention strategies that reduce the likelihood of motor vehicle crashes or injuries to occupants will also prevent trauma. Many effective strategies have yet to be applied on a large scale. Roadway design improvements such as removal of fixed objects from roadsides, widening roadside recovery zones, installing dividers between opposing lanes of traffic, and replacing fixed utility poles with breakaway designs, have been effective in reducing crashes and injuries. Driver measures of documented benefit include the 55 mph speed limit, safety belt use laws, 21 year legal drinking age, administrative license suspension for drinking drivers, and driving curfews and postponement of licensure for teenagers. Motor vehicle safety has improved greatly since the National Highway Traffic Safety Administration began regulating vehicle design. Significant design requirements include lap and shoulder belts in front seat positions, and, more recently, automatic safety belts or air bags in front seat positions, head restraints in front seat positions, reinforcing side and roof beams, and the center-mounted brake light. The most significant future advance will be the provision of full front seat air bags in all passenger vehicles. As much as one-quarter of brain trauma can be prevented or reduced in severity by this measure alone. Further safety requirements should include head restraints in rear positions, a-pillar, b-pillar, and roof padding, antilock brakes, and a vehicle rollover standard.

  20. Modafinil treatment prevents REM sleep deprivation-induced brain function impairment by increasing MMP-9 expression.

    PubMed

    He, Bin; Peng, Hua; Zhao, Ying; Zhou, Hui; Zhao, Zhongxin

    2011-12-01

    Previous work showed that sleep deprivation (SD) impairs hippocampal-dependent cognitive function and synaptic plasticity, and a novel wake-promoting agent modafinil prevents SD-induced memory impairment in rat. However, the mechanisms by which modafinil prevented REM-SD-induced impairment of brain function remain poorly understood. In the present study, rats were sleep-deprived by using the modified multiple platform method and brain function was detected. The results showed that modafinil treatment prevented REM-SD-induced impairment of cognitive function. Modafinil significantly reduced the number of errors compared to placebo and upregulated synapsin I expression in the dorsal hippocampal CA3 region. A synaptic plasticity-related gene, MMP-9 expression was also upregulated in modafinil-treated rats. Importantly, downregulation of MMP-9 expression by special siRNA decreased synapsin I protein levels and synapse numbers. Therefore, we demonstrated that modafinil increased cognition function and synaptic plasticity, at least in part by increasing MMP-9 expression in REM-SD rats.

  1. Poverty, Stress, and Brain Development: New Directions for Prevention and Intervention.

    PubMed

    Blair, Clancy; Raver, C Cybele

    2016-04-01

    We review some of the growing evidence of the costs of poverty to children's neuroendocrine function, early brain development, and cognitive ability. We underscore the importance of addressing the negative consequences of poverty-related adversity early in children's lives, given evidence supporting the plasticity of executive functions and associated physiologic processes in response to early intervention and the importance of higher order cognitive functions for success in school and in life. Finally, we highlight some new directions for prevention and intervention that are rapidly emerging at the intersection of developmental science, pediatrics, child psychology and psychiatry, and public policy. PMID:27044699

  2. Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development

    SciTech Connect

    Wang Qiang; Luo Wenjing; Zheng Wei; Liu Yiping; Xu Hui; Zheng Gang; Dai Zhongming; Zhang Wenbin; Chen Yaoming; Chen Jingyuan . E-mail: jy_chen@fmmu.edu.cn

    2007-02-15

    Children are known to be venerable to lead (Pb) toxicity. The blood-brain barrier (BBB) in immature brain is particularly vulnerable to Pb insults. This study was designed to test the hypothesis that Pb exposure damaged the integrity of the BBB in young animals and iron (Fe) supplement may prevent against Pb-induced BBB disruption. Male weanling Sprague-Dawley rats were divided into four groups. Three groups of rats were exposed to Pb in drinking water containing 342 {mu}g Pb/mL as Pb acetate, among which two groups were concurrently administered by oral gavage once every other day with 7 mg Fe/kg and 14 mg Fe/kg as FeSO{sub 4} solution as the low and high Fe treatment group, respectively, for 6 weeks. The control group received sodium acetate in drinking water. Pb exposure significantly increased Pb concentrations in blood by 6.6-folds (p < 0.05) and brain tissues by 1.5-2.0-folds (p < 0.05) as compared to controls. Under the electron microscope, Pb exposure in young animals caused an extensive extravascular staining of lanthanum nitrate in brain parenchyma, suggesting a leakage of cerebral vasculature. Western blot showed that Pb treatment led to 29-68% reduction (p < 0.05) in the expression of occludin as compared to the controls. Fe supplement among Pb-exposed rats maintained the normal ultra-structure of the BBB and restored the expression of occludin to normal levels. Moreover, the low dose Fe supplement significantly reduced Pb levels in blood and brain tissues. These data suggest that Pb exposure disrupts the structure of the BBB in young animals. The increased BBB permeability may facilitate the accumulation of Pb. Fe supplement appears to protect the integrity of the BBB against Pb insults, a beneficial effect that may have significant clinical implications.

  3. Prevention and Treatment of Traumatic Brain Injury Due to Rapid-Onset Natural Disasters

    PubMed Central

    Regens, James L.; Mould, Nick

    2014-01-01

    The prevention and treatment of traumatic brain injury (TBI) attributable to rapid-onset natural disasters is a major challenge confronting disaster preparedness planners and emergency medical personnel responding to those incidents. The kinetic energy released by rapid-onset natural disasters such as earthquakes, hurricanes or typhoons, and tornadoes can cause mild, moderate, or severe TBIs. As a result, neurotrauma is a major risk factor for mortality and morbidity outcomes within the spatial domain impacted by a rapid-onset natural disaster. This review article elucidates major challenges associated with immediate emergency medical response, long-term care, and prevention of post-event increases in pediatric TBIs because of child abuse when rapid-onset natural disasters occur. PMID:24783188

  4. Prevention and treatment of traumatic brain injury due to rapid-onset natural disasters.

    PubMed

    Regens, James L; Mould, Nick

    2014-01-01

    The prevention and treatment of traumatic brain injury (TBI) attributable to rapid-onset natural disasters is a major challenge confronting disaster preparedness planners and emergency medical personnel responding to those incidents. The kinetic energy released by rapid-onset natural disasters such as earthquakes, hurricanes or typhoons, and tornadoes can cause mild, moderate, or severe TBIs. As a result, neurotrauma is a major risk factor for mortality and morbidity outcomes within the spatial domain impacted by a rapid-onset natural disaster. This review article elucidates major challenges associated with immediate emergency medical response, long-term care, and prevention of post-event increases in pediatric TBIs because of child abuse when rapid-onset natural disasters occur.

  5. Prevention and treatment of traumatic brain injury due to rapid-onset natural disasters.

    PubMed

    Regens, James L; Mould, Nick

    2014-01-01

    The prevention and treatment of traumatic brain injury (TBI) attributable to rapid-onset natural disasters is a major challenge confronting disaster preparedness planners and emergency medical personnel responding to those incidents. The kinetic energy released by rapid-onset natural disasters such as earthquakes, hurricanes or typhoons, and tornadoes can cause mild, moderate, or severe TBIs. As a result, neurotrauma is a major risk factor for mortality and morbidity outcomes within the spatial domain impacted by a rapid-onset natural disaster. This review article elucidates major challenges associated with immediate emergency medical response, long-term care, and prevention of post-event increases in pediatric TBIs because of child abuse when rapid-onset natural disasters occur. PMID:24783188

  6. Intranasal delivery of obidoxime to the brain prevents mortality and CNS damage from organophosphate poisoning.

    PubMed

    Krishnan, Jishnu K S; Arun, Peethambaran; Appu, Abhilash P; Vijayakumar, Nivetha; Figueiredo, Taíza H; Braga, Maria F M; Baskota, Sudikshya; Olsen, Cara H; Farkas, Natalia; Dagata, John; Frey, William H; Moffett, John R; Namboodiri, Aryan M A

    2016-03-01

    Intranasal delivery is an emerging method for bypassing the blood brain barrier (BBB) and targeting therapeutics to the CNS. Oximes are used to counteract the effects of organophosphate poisoning, but they do not readily cross the BBB. Therefore, they cannot effectively counteract the central neuropathologies caused by cholinergic over-activation when administered peripherally. For these reasons we examined intranasal administration of oximes in an animal model of severe organophosphate poisoning to determine their effectiveness in reducing mortality and seizure-induced neuronal degeneration. Using the paraoxon model of organophosphate poisoning, we administered the standard treatment (intramuscular pralidoxime plus atropine sulphate) to all animals and then compared the effectiveness of intranasal application of obidoxime (OBD) to saline in the control groups. Intranasally administered OBD was effective in partially reducing paraoxon-induced acetylcholinesterase inhibition in the brain and substantially reduced seizure severity and duration. Further, intranasal OBD completely prevented mortality, which was 41% in the animals given standard treatment plus intranasal saline. Fluoro-Jade-B staining revealed extensive neuronal degeneration in the surviving saline-treated animals 24h after paraoxon administration, whereas no detectable degenerating neurons were observed in any of the animals given intranasal OBD 30min before or 5min after paraoxon administration. These findings demonstrate that intranasally administered oximes bypass the BBB more effectively than those administered peripherally and provide an effective method for protecting the brain from organophosphates. The addition of intranasally administered oximes to the current treatment regimen for organophosphate poisoning would improve efficacy, reducing both brain damage and mortality. PMID:26751814

  7. Actual data on epidemiological evolution and prevention endeavours regarding traumatic brain injury

    PubMed Central

    Popescu, C; Anghelescu, A; Daia, C; Onose, G

    2015-01-01

    Background: Knowledge of the epidemiology of traumatic brain injury (TBI) is required both to prevent this disorder and to develop effective care and rehabilitation approaches for patients. Objective: The aim of this article is to find solutions to decrease the incidence of TBI and offer recommendations for their prevention. Material and methods: We analyzed epidemiological studies on TBI by performing a systematic review of literature, using information reported by different centers, collecting data on demographics, showing characteristics of TBI including incidence, identification of risk groups on differences in age, gender, geographical variation, severity and mortality. Results: Studies suggest that the incidence of TBI is between 18 and 250 per 100,000 persons per year. Men and people living in social and economical deprived areas, usually young adults and the elderly are high-risk groups for TBI. Discussion: Prevention remains the “key point” in medicine and especially for TBI, saving the patient from unnecessary often-harsh sufferance. Conclusions: Most public epidemiological data showed that TBI is a major cause of mortality and disability. The effort to understand TBI and the available strategies to treat this lesion, in order to improve clinical outcomes after TBI, may be based on an increase in research on the epidemiology of TBI. A coordinated strategy to evaluate this public health problem in Romania would first of all rely on a related advanced monitoring system, to provide precise information about the epidemiology, clinical and paraclinical data, but concerning the social and economic connected consequences, too. Abbreviations: CNS = central nervous system, ED = emergency department, EU = European Union, FTE = Full Time Employees, GCS = Glasgow Coma Scale, TBI = traumatic brain injury, US = United States, WHO = World Health Organization. PMID:26351526

  8. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  9. Evaluation of the ThinkFirst Canada, Smart Hockey, brain and spinal cord injury prevention video

    PubMed Central

    Cook, D; Cusimano, M; Tator, C; Chipman, M; Macarthur, C

    2003-01-01

    Objective: The ThinkFirst Canada Smart Hockey program is an educational injury prevention video that teaches the mechanisms, consequences, and prevention of brain and spinal cord injury in ice hockey. This study evaluates knowledge transfer and behavioural outcomes in 11–12 year old hockey players who viewed the video. Design: Randomized controlled design. Setting: Greater Toronto Minor Hockey League, Toronto Ontario. Subjects: Minor, competitive 11–12 year old male ice hockey players and hockey team coaches. Interventions: The Smart Hockey video was shown to experimental teams at mid-season. An interview was conducted with coaches to understand reasons to accept or refuse the injury prevention video. Main outcome measures: A test of concussion knowledge was administered before, immediately after, and three months after exposure to the video. The incidence of aggressive penalties was measured before and after viewing the video. Results: The number of causes and mechanisms of concussion named by players increased from 1.13 to 2.47 and from 0.67 to 1.22 respectively. This effect was maintained at three months. There was no significant change in control teams. There was no significant change in total penalties after video exposure; however, specific body checking related penalties were significantly reduced in the experimental group. Conclusion: This study showed some improvements in knowledge and behaviours after a single viewing of a video; however, these findings require confirmation with a larger sample to understand the sociobehavioural aspects of sport that determine the effectiveness and acceptance of injury prevention interventions. PMID:14693901

  10. Readability assessment of concussion and traumatic brain injury publications by Centers for Disease Control and Prevention

    PubMed Central

    Gill, Preetinder S; Gill, Tejkaran S; Kamath, Ashwini; Whisnant, Billy

    2012-01-01

    Health literacy is associated with a person’s capacity to find, access, contextualize, and understand information needed for health care-related decisions. The level of health literacy thus has an influence on an individual’s health status. It can be argued that low health literacy is associated with poor health status. Health care literature (eg, pamphlets, brochures, postcards, posters, forms) are published by public and private organizations worldwide to provide information to the general public. The ability to read, use, and understand is critical to the successful application of knowledge disseminated by this literature. This study assessed the readability, suitability, and usability of health care literature associated with concussion and traumatic brain injury published by the United States Centers for Disease Control and Prevention. The Flesch–Kincaid Grade Level, Flesch Reading Ease, Gunning Fog, Simple Measure of Gobbledygook, and Suitability Assessment of Materials indices were used to assess 40 documents obtained from the Centers for Disease Control and Prevention website. The documents analyzed were targeted towards the general public. It was found that in order to be read properly, on average, these documents needed more than an eleventh grade/high school level education. This was consistent with the findings of other similar studies. However, the qualitative Suitability Assessment of Materials index showed that, on average, usability and suitability of these documents was superior. Hence, it was concluded that formatting, illustrations, layout, and graphics play a pivotal role in improving health care-related literature and, in turn, promoting health literacy. Based on the comprehensive literature review and assessment of the 40 documents associated with concussion and traumatic brain injury, recommendations have been made for improving the readability, suitability, and usability of health care-related documents. The recommendations are

  11. Brain Gαi2-subunit proteins and the prevention of salt sensitive hypertension

    PubMed Central

    Carmichael, Casey Y.; Wainford, Richard D.

    2015-01-01

    To counter the development of salt-sensitive hypertension, multiple brain G-protein-coupled receptor (GPCR) systems are activated to facilitate sympathoinhibition, sodium homeostasis, and normotension. Currently there is a paucity of knowledge regarding the role of down-stream GPCR-activated Gα-subunit proteins in these critically important physiological regulatory responses required for long-term blood pressure regulation. We have determined that brain Gαi2-proteins mediate natriuretic and sympathoinhibitory responses produced by acute pharmacological (exogenous central nociceptin/orphanin FQ receptor (NOP) and α2-adrenoceptor activation) and physiological challenges to sodium homeostasis (intravenous volume expansion and 1 M sodium load) in conscious Sprague–Dawley rats. We have demonstrated that in salt-resistant rat phenotypes, high dietary salt intake evokes site-specific up-regulation of hypothalamic paraventricular nucleus (PVN) Gαi2-proteins. Further, we established that PVN Gαi2 protein up-regulation prevents the development of renal nerve-dependent sympathetically mediated salt-sensitive hypertension in Sprague–Dawley and Dahl salt-resistant rats. Additionally, failure to up-regulate PVN Gαi2 proteins during high salt-intake contributes to the pathophysiology of Dahl salt-sensitive (DSS) hypertension. Collectively, our data demonstrate that brain, and likely PVN specific, Gαi2 protein pathways represent a central molecular pathway mediating sympathoinhibitory renal-nerve dependent responses evoked to maintain sodium homeostasis and a salt-resistant phenotype. Further, impairment of this endogenous “anti-hypertensive” mechanism contributes to the pathophysiology of salt-sensitive hypertension. PMID:26347659

  12. Moderate Peep After Tracheal Lipopolysaccharide Instillation Prevents Inflammation and Modifies the Pattern of Brain Neuronal Activation

    PubMed Central

    Quilez, María Elisa; Rodríguez-González, Raquel; Turon, Marc; Fernandez-Gonzalo, Sol; Villar, Jesús; Kacmarek, Robert M.; Gómez, Ma Nieves; Oliva, Joan Carles; Blanch, Lluís; López-Aguilar, Josefina

    2015-01-01

    ABSTRACT Background: Ventilatory strategy and specifically positive end-expiratory pressure (PEEP) can modulate the inflammatory response and pulmonary-to-systemic translocation of lipopolysaccharide (LPS). Both inflammation and ventilatory pattern may modify brain activation, possibly worsening the patient's outcome and resulting in cognitive sequelae. Methods: We prospectively studied Sprague–Dawley rats randomly assigned to undergo 3 h mechanical ventilation with 7 mL/kg tidal ventilation and either 2 cmH2O or 7 cmH2O PEEP after intratracheal instillation of LPS or saline. Healthy nonventilated rats served as baseline. We analyzed lung mechanics, gas exchange, lung and plasma cytokine levels, lung apoptotic cells, and lung neutrophil infiltration. To evaluate brain neuronal activation, we counted c-Fos immunopositive cells in the retrosplenial cortex (RS), thalamus, supraoptic nucleus (SON), nucleus of the solitary tract (NTS), paraventricular nucleus (PVN), and central amygdala (CeA). Results: LPS increased lung neutrophilic infiltration, lung and systemic MCP-1 levels, and neuronal activation in the CeA and NTS. LPS-instilled rats receiving 7 cmH2O PEEP had less lung and systemic inflammation and more c-Fos-immunopositive cells in the RS, SON, and thalamus than those receiving 2 cmH2O PEEP. Applying 7 cmH2O PEEP increased neuronal activation in the CeA and NTS in saline-instilled rats, but not in LPS-instilled rats. Conclusions: Moderate PEEP prevented lung and systemic inflammation secondary to intratracheal LPS instillation. PEEP also modified the neuronal activation pattern in the RS, SON, and thalamus. The relevance of these differential brain c-Fos expression patterns in neurocognitive outcomes should be explored. PMID:26398809

  13. Pharmacological Preventions of Brain Injury Following Experimental Germinal Matrix Hemorrhage: an Up-to-Date Review.

    PubMed

    Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Qianwei; Hua, Feng; Zhang, John; Zhu, Gang; Chen, Zhi

    2016-02-01

    Germinal matrix hemorrhage (GMH) is defined as the rupture of immature blood vessels in the subependymal zone of premature infants with significant mortality and morbidity. Considering the notable social and ecological stress brought by GMH-induced brain injury and sequelae, safe and efficient pharmacological preventions are badly needed. Currently, several appropriate animal models are available to mimic the clinical outcomes of GMH in human patients. In the long run, hemorrhagic strokes are the research target. Previously, we found that minocycline was efficient to alleviate GMH-induced brain edema and posthemorrhagic hydrocephalus (PHH) in rats, which may be closely related to the activation of cannabinoid receptor 2 (CB2R). However, how the two molecules correlate and the underlined molecular pathway remain unknown. To extensively understand current experimental GMH treatment, this literature review critically evaluates existing therapeutic strategies, potential treatments, and potentially involved molecular mechanisms. Each strategy has its own advantages and disadvantages. Some of the mechanisms are still controversial, requiring an increasing number of animal experiments before the therapeutic strategy would be widely accepted.

  14. Starting Smart: How Early Experiences Affect Brain Development. An Ounce of Prevention Fund Paper.

    ERIC Educational Resources Information Center

    Ounce of Prevention Fund.

    Recent research has provided great insight into the impact of early experience on brain development. It is now believed that brain growth is highly dependent upon early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring…

  15. How the brain prevents a second error in a perceptual decision-making task.

    PubMed

    Perri, Rinaldo Livio; Berchicci, Marika; Lucci, Giuliana; Spinelli, Donatella; Di Russo, Francesco

    2016-01-01

    In cognitive tasks, error commission is usually followed by a performance characterized by post-error slowing (PES) and post-error improvement of accuracy (PIA). Three theoretical accounts were hypothesized to support these post-error adjustments: the cognitive, the inhibitory, and the orienting account. The aim of the present ERP study was to investigate the neural processes associated with the second error prevention. To this aim, we focused on the preparatory brain activities in a large sample of subjects performing a Go/No-go task. The main results were the enhancement of the prefrontal negativity (pN) component -especially on the right hemisphere- and the reduction of the Bereitschaftspotential (BP) -especially on the left hemisphere- in the post-error trials. The ERP data suggested an increased top-down and inhibitory control, such as the reduced excitability of the premotor areas in the preparation of the trials following error commission. The results were discussed in light of the three theoretical accounts of the post-error adjustments. Additional control analyses supported the view that the adjustments-oriented components (the post-error pN and BP) are separated by the error-related potentials (Ne and Pe), even if all these activities represent a cascade of processes triggered by error-commission. PMID:27534593

  16. Computationally Prediction of Candidate Agents for Preventing Organ Dysfunction After Brain Death.

    PubMed

    Liu, Qianwen; Ye, Qifa

    2016-01-01

    BACKGROUND Our aim was to explore the mechanism of post-transplant organ function decrease induced by brain death (BD) and discover a potential candidate drug for improving the survival and organ function after BD. MATERIAL AND METHODS The microarray data developed from the liver tissues after BD were further analyzed by bioinformatics methods. The differentially expressed genes (DEGs) were computationally predicted and the DEGs that involved biological functions were explored by gene ontology (GO) analysis. The candidate agents that could induce the reverse gene signature were predicted based on the Connectivity Map (CMap) database. RESULTS There were total 1374 DEGs, including 589 up-regulated genes and 785 down-regulated genes. Function analysis showed that DEGs were mainly enriched in biological process-related GO terms, such as regulation of transcription, DNA-dependent, inflammatory response, and regulation of phosphorus metabolic process. The down-regulated genes were significantly enriched in transcription factor activity and transcription regulator activity-related molecular function. The down-regulated GO terms exhibited close interaction with each other. CONCLUSIONS The organ function decrease may be attributed by transcription alteration, inflammation response, and metabolic alteration in liver after BD. Spaglumic acid and halcinonide may be potential drugs for preventing organ damage during the BD process. PMID:27170053

  17. How the brain prevents a second error in a perceptual decision-making task

    PubMed Central

    Perri, Rinaldo Livio; Berchicci, Marika; Lucci, Giuliana; Spinelli, Donatella; Di Russo, Francesco

    2016-01-01

    In cognitive tasks, error commission is usually followed by a performance characterized by post-error slowing (PES) and post-error improvement of accuracy (PIA). Three theoretical accounts were hypothesized to support these post-error adjustments: the cognitive, the inhibitory, and the orienting account. The aim of the present ERP study was to investigate the neural processes associated with the second error prevention. To this aim, we focused on the preparatory brain activities in a large sample of subjects performing a Go/No-go task. The main results were the enhancement of the prefrontal negativity (pN) component -especially on the right hemisphere- and the reduction of the Bereitschaftspotential (BP) -especially on the left hemisphere- in the post-error trials. The ERP data suggested an increased top-down and inhibitory control, such as the reduced excitability of the premotor areas in the preparation of the trials following error commission. The results were discussed in light of the three theoretical accounts of the post-error adjustments. Additional control analyses supported the view that the adjustments-oriented components (the post-error pN and BP) are separated by the error-related potentials (Ne and Pe), even if all these activities represent a cascade of processes triggered by error-commission. PMID:27534593

  18. Genetic deletion of neuronal pentraxin 1 expression prevents brain injury in a neonatal mouse model of cerebral hypoxia-ischemia.

    PubMed

    Thatipamula, Shabarish; Al Rahim, Md; Zhang, Jiangyang; Hossain, Mir Ahamed

    2015-03-01

    Neonatal hypoxic-ischemic (HI) brain injury is a leading cause of mortality and morbidity in infants and children for which there is no promising therapy at present. Previously, we reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of the long-pentraxin family, following HI injury in neonatal brain. Here, we report that genetic deletion of NP1 expression prevents HI injury in neonatal brain. Elevated expression of NP1 was observed in neurons, not in astrocytes, of the ipsilateral cortical layers (I-IV) and in the hippocampal CA1 and CA3 areas of WT brains following hypoxia-ischemia; brain areas that developed infarcts (at 24-48 h), showed significantly increased numbers of TUNEL-(+) cells and tissue loss (at 7 days). In contrast, NP1-KO mice showed no evidence of brain infarction and tissue loss after HI. The immunofluorescence staining of brain sections with mitochondrial protein COX IV and subcellular fractionation analysis showed increased accumulation of NP1 in mitochondria, pro-death protein Bax activation and NP1 co-localization with activated caspase-3 in WT, but not in the NP1-KO brains; corroborating NP1 interactions with the mitochondria-derived pro-death pathways. Disruption of NP1 translocation to mitochondria by NP1-siRNA in primary cortical cultures significantly reduced ischemic neuronal death. NP1 was immunoprecipitated with activated Bax [6A7] proteins; HI caused increased interactions of NP1 with Bax, thereby, facilitating Bax translocation to mitochondrial and neuronal death. To further delineate the specificity of NPs, we found that NP1 but not the NP2 induction is specifically involved in brain injury mechanisms and that knockdown of NP1 only results in neuroprotection. Furthermore, live in vivo T2-weighted magnetic resonance imaging (MRI) including fractional anisotropy (FA) mapping showed no sign of delayed brain injury or tissue loss in the NP1-KO mice as compared to the WT at different post-HI periods (4-24 weeks

  19. Subchronic effects of ochratoxin A on young adult rat brain and partial prevention by aspartame, a sweetener.

    PubMed

    Belmadani, A; Tramu, G; Betbeder, A M; Creppy, E E

    1998-07-01

    1. Ochratoxin A (OTA) is a mycotoxin produced by several fungi, especially Aspergillus and Penicillium species. Many food and foodstuffs can be contaminated by ochratoxin A, which is consequently found in blood of animals and humans. 2. The distribution into the brain of young adult rats fed OTA for 1 to 6 weeks and some consequences have been investigated in the present study. 3. Our results on rats given OTA (289 microg/kg/48 h) indicated that OTA accumulated in the whole brain as function of time according to a regression curve, Y=-8.723 a+16.72 with a correlation coefficient of r=0.989, where Y-axis is the OTA concentration in ng/g of brain and X-axis is the duration of the treatment in weeks. The brain OTA contents was 11.95 +/- 2.2, 23.89 +/- 4.4, 39.9 +/- 4.5, 50.3 +/- 7.3, 78.8 +/- 6.3, 94 +/- 16 ng/g of brain in the mycotoxin-treated animals for respectively 1, 2, 3, 4, 5 and 6-weeks treatment. OTA induced modifications of free amino-acid concentrations in the brain, mainly, Tyrosine (Tyr) and phenylalanine (Phe). Tyr decreased significantly as compared to control (p < 0.05). Phe increased significantly as compared to control (p < 0.05). 4. Aspartame, (25 mg/kg/48 h) a structural analogue of OTA largely modified the distribution and prevented the accumulation of OTA in the brain since the respective brain OTA contents decreased respectively to 9.6 +/- 7.9, 19.2 +/- 3.0, 26.8 +/- 4.2, 19.7 +/- 1.9, 13.7 /- 5.6 and 11.0 +/- 6.0 ng/g of tissue, for the same duration of treatment. It also prevented the modifications of Tyr and Phe levels. 5. The histological investigations showed several necrotic cells with pyknotic nucleus, detected in OTA treated animals with higher frequency as compared to the controls and Aspartame treated ones. Aspartame appeared to significantly prevent this nuclear effect as well, the meaning of which is discussed.

  20. Blockade of brain mineralocorticoid receptors or Na+ channels prevents sympathetic hyperactivity and improves cardiac function in rats post-MI.

    PubMed

    Huang, Bing S; Leenen, Frans H H

    2005-05-01

    In rats post-myocardial infarction (MI), sympathetic hyperactivity can be prevented by blockade of brain mineralocorticoid receptors (MR). Stimulatory responses to central infusion of aldosterone can be blocked by benzamil and therefore appear to be mediated via Na+ channels, presumably epithelial Na+ channels (ENaC), in the brain. To evaluate this concept of endogenous mineralocorticoids in Wistar rats post-MI, we examined effects of blockade of MR and Na+ channels in the brain. At 3 days after coronary artery ligation, intracerebroventricular infusions were started with spironolactone (400 ng.kg(-1).h(-1)) or its vehicle, or with benzamil (4 microg.kg(-1).h(-1)) or its vehicle, using osmotic minipumps. Rats with sham ligation served as control. After 4 wk, in conscious rats, mean arterial pressure, heart rate, and renal sympathetic nerve activity were recorded at rest and in response to air-jet stress, intracerebroventricular injection of the alpha2-adrenoceptor agonist guanabenz, and intravenous infusion of phenylephrine and nitroprusside for baroreflex function. MI size was similar among the four groups of rats (approximately 31%). In rats treated post-MI with vehicles, cardiac function was decreased, sympathetic reactivity was enhanced, and baroreflex function was impaired. Blockade of brain Na+ channels or brain MR similarly prevented sympathetic hyperactivity and impairment of baroreflex function and improved cardiac function. These findings suggest that in rats post-MI, increased binding of endogenous agonists to MR increases ENaC activity in the brain and thereby leads to sympathetic hyperactivity and progressive left ventricular dysfunction.

  1. Prevention

    MedlinePlus

    ... our e-newsletter! Aging & Health A to Z Prevention Basic Facts & Information Some factors that affect your ... control of the things that you can change. Preventive Recommendations for Adults Aged 65 and Older The ...

  2. Tungsten treatment prevents tumor necrosis factor-induced injury of brain endothelial cells.

    PubMed

    Terada, L S; Willingham, I R; Guidot, D M; Shibao, G N; Kindt, G W; Repine, J E

    1992-02-01

    Exposure to recombinant human tumor necrosis factor-alpha (TNF-alpha) or calcium ionophore (A23187) for 4 h increased (P less than 0.05) lactate dehydrogenase (LDH) release from cultured bovine brain endothelial cells (EC). In contrast, treatment with endotoxin or interleukin-1 did not increase (P greater than 0.05). LDH release from brain EC. Pretreatment with tungsten decreased (P less than 0.05) xanthine oxidase activity in brain EC and decreased (P less than 0.05) LDH release from brain EC following exposure to TNF. Our results suggest that TNF-alpha injures brain microvascular EC and that this effect may be mediated by xanthine oxidase.

  3. Pre-treatment with LCZ696, an orally active angiotensin receptor neprilysin inhibitor, prevents ischemic brain damage.

    PubMed

    Bai, Hui-Yu; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Kukida, Masayoshi; Shan, Bao-Shuai; Yamauchi, Toshifumi; Higaki, Akinori; Iwanami, Jun; Horiuchi, Masatsugu

    2015-09-01

    Angiotensin II receptor blockers (ARBs) are known to prevent ischemic brain damage after stroke. Natriuretic peptides, which are increased by a neprilysin inhibitor, are also reported to protect against brain damage. Therefore, we investigated the possible protective effect of valsartan (VAL) compared with LCZ696 (VAL+ neprilysin inhibitor; 1:1) after middle cerebral artery (MCA) occlusion. Eight-week-old male C57BL/6J mice were treated with VAL (3mg/kg per day) or LCZ696 (6mg/kg per day) for 2 weeks before MCA occlusion. Blood pressure and heart rate were measured by telemetry. Cerebral blood flow (CBF) was determined by laser-Doppler flowmetry. Ischemic area was evaluated by triphenytetrasodium chloride staining, and oxidative stress was determined by dihydroethidium staining. Blood pressure and heart rate were not significantly different before and after treatment. Pre-treatment with LCZ696 or VAL reduced the ischemic area, and this effect of LCZ696 was more marked than that of VAL pre-treatment. The decrease in CBF in the peripheral region of the ischemic area was significantly attenuated by pre-treatment with LCZ696 or VAL, without any significant effect on CBF in the core region. VAL or LCZ696 pre-treatment significantly decreased the increase of superoxide anion production in the cortex on the ischemic side. However, no significant difference in CBF and superoxide anion production was observed between VAL and LCZ696 pre-treatment. The preventive effect of LCZ696 on ischemic brain damage after stroke was more marked than that of VAL. LCZ696 could be used as a new approach to prevent brain damage after stroke. (246 words). PMID:26057694

  4. The Preventive Effects of Neural Stem Cells and Mesenchymal Stem Cells Intra-ventricular Injection on Brain Stroke in Rats

    PubMed Central

    Hosseini, Seyed Mojtaba; Samimi, Nastaran; Farahmandnia, Mohammad; Shakibajahromi, Benafshe; Sarvestani, Fatemeh Sabet; Sani, Mahsa; Mohamadpour, Masoomeh

    2015-01-01

    Introduction: Stroke is one of the most important causes of disability in developed countries and, unfortunately, there is no effective treatment for this major problem of central nervous system (CNS); cell therapy may be helpful to recover this disease. In some conditions such as cardiac surgeries and neurosurgeries, there are some possibilities of happening brain stroke. Inflammation of CNS plays an important role in stroke pathogenesis, in addition, apoptosis and neural death could be the other reasons of poor neurological out come after stroke. In this study, we examined the preventive effects of the neural stem cells (NSCs) and mesenchymal stem cells (MSCs) intra-ventricular injected on stroke in rats. Aim: The aim of this study was to investigate the preventive effects of neural and MSCs for stroke in rats. Materials and Methods: The MSCs were isolated by flashing the femurs and tibias of the male rats with appropriate media. The NSCs were isolated from rat embryo ganglion eminence and they cultured NSCs media till the neurospheres formed. Both NSCs and MSCs were labeled with PKH26-GL. One day before stroke, the cells were injected into lateral ventricle stereotactically. Results: During following for 28 days, the neurological scores indicated that there are better recoveries in the groups received stem cells and they had less lesion volume in their brain measured by hematoxylin and eosin staining. Furthermore, the activities of caspase-3 were lower in the stem cell received groups than control group and the florescent microscopy images showed that the stem cells migrated to various zones of the brains. Conclusion: Both NSCs and MSCs are capable of protecting the CNS against ischemia and they may be good ways to prevent brain stroke consequences situations. PMID:26605202

  5. Simple solution for preventing cerebrospinal fluid loss and brain shift during multitrack deep brain stimulation surgery in the semisupine position: polyethylene glycol hydrogel dural sealant capping: rapid communication.

    PubMed

    Takumi, Ichiro; Mishina, Masahiro; Hironaka, Kohei; Oyama, Kenichi; Yamada, Akira; Adachi, Koji; Hamamoto, Makoto; Kitamura, Shin; Yoshida, Daizo; Teramoto, Akira

    2013-01-01

    This study evaluated preliminary findings on the efficacy of polyethylene glycol (PEG) hydrogel dural sealant capping for the prevention of cerebrospinal fluid (CSF) leakage and pneumocephalus during deep brain stimulation (DBS) surgery in the semisupine position. Group A consisted of 5 patients who underwent bilateral subthalamic nucleus (STN)-DBS surgery without PEG hydrogel dural sealant capping. Group B consisted of 5 patients who underwent bilateral STN-DBS surgery with PEG hydrogel dural sealant capping. The immediate postoperative intracranial air volume was measured in all patients and compared between the 2 groups using the Welch test. Adverse effects were also examined in both groups. The intracranial air volume in Group A was 32.3 ± 12.3 ml (range 19.1-42.5 ml), whereas that in Group B was 1.3 ± 1.5 ml (range 0.0-3.5 ml), showing a significant difference (p < 0.005). No hemorrhage or venous air embolisms were observed in either group. The effect of brain shift was discriminated by STN recordings in Group B. These preliminary findings indicate that PEG hydrogel dural sealant capping may reduce adverse effects related to CSF leakage and brain shift during DBS surgery. PMID:23358161

  6. MicroRNAs Linked to Trastuzumab Resistance, Brain Metastases | Division of Cancer Prevention

    Cancer.gov

    Researchers have tied increased levels of a microRNA (miRNA) to resistance to the targeted therapy trastuzumab (Herceptin) in women with HER2-positive breast cancer. Another research team has discovered a “signature” of miRNAs in brain metastases in patients with melanoma—a signature that is also present in the primary tumor and could identify melanoma patients at increased risk of brain metastases. |

  7. Dizocilpine (MK-801) arrests status epilepticus and prevents brain damage induced by Soman. (Reannouncement with new availability information)

    SciTech Connect

    Sparenborg, S.; Brennecke, L.H.; Jaax, N.K.; Braitman, D.J.

    1992-12-31

    The involvement of the NMDA receptor in the neurotoxicity induced by soman, an organophosphorus compound which irreversibly inhibits cholinesterase, was studied in guinea pigs. The drug MK-801 (0.5, 1 or 5 mg/kg, i.p.) was given as a pretreatment before a convulsant dose of soman or as a post treatment (30, 100 or 300 micron g/kg, i.m.) 5 min after the development of soman-induced status epilepticus. Pyridostigmine, atropine and pralidoxime chloride were also given to each subject to counteract the lethality of soman. All subjects that were challenged with soman and given the vehicle for MK-801 (saline) exhibited severe convulsions and electrographic seizure activity. Neuronal necrosis was found in the hippocampus, amygdala, thalamus and the pyriform and cerebral cortices of those subjects surviving for 48 hr. Pretreatment with 0.5 or 1 mg/kg doses of MK-801 did not prevent nor delay the onset of seizure activity but did diminish its intensity and led to its early arrest. At the largest dose (5 mg/kg), MK-801 completely prevented the development of seizure activity and brain damage. Post treatment with MK-801 prevented, arrested or reduced seizure activity, convulsions and neuronal necrosis in a dose-dependent manner. The NMDA receptor may play a more critical role in the spread and maintenance, rather than the initiation of cholinergically-induced seizure activity....Seizure-related brain damage, Organophosphorus compound, Nerve agent, Cholinesterase inhibition, Excitotoxicity, Guinea pig.

  8. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation.

    PubMed

    Wong-Goodrich, Sarah J E; Pfau, Madeline L; Flores, Catherine T; Fraser, Jennifer A; Williams, Christina L; Jones, Lee W

    2010-11-15

    Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to 4 months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting 1 month after sham or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdUrd) immunolabeling and enzyme-linked immunosorbent assay indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdUrd+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor-1, and occurred despite irradiation-induced elevations in hippocampal proinflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention.

  9. Preventive sparing of spinal cord and brain stem in the initial irradiation of locally advanced head and neck cancers.

    PubMed

    Farace, Paolo; Piras, Sara; Porru, Sergio; Massazza, Federica; Fadda, Giuseppina; Solla, Ignazio; Piras, Denise; Deidda, Maria Assunta; Amichetti, Maurizio; Possanzini, Marco

    2014-01-01

    Since reirradiation in recurrent head and neck patients is limited by previous treatment, a marked reduction of maximum doses to spinal cord and brain stem was investigated in the initial irradiation of stage III/IV head and neck cancers. Eighteen patients were planned by simultaneous integrated boost, prescribing 69.3 Gy to PTV1 and 56.1 Gy to PTV2. Nine 6 MV coplanar photon beams at equispaced gantry angles were chosen for each patient. Step-and-shoot IMRT was calculated by direct machine parameter optimization, with the maximum number of segments limited to 80. In the standard plan, optimization considered organs at risk (OAR), dose conformity, maximum dose < 45 Gy to spinal cord and < 50 Gy to brain stem. In the sparing plans, a marked reduction to spinal cord and brain stem were investigated, with/without changes in dose conformity. In the sparing plans, the maximum doses to spinal cord and brain stem were reduced from the initial values (43.5 ± 2.2 Gy and 36.7 ± 14.0 Gy), without significant changes on the other OARs. A marked difference (-15.9 ± 1.9 Gy and -10.1 ± 5.7 Gy) was obtained at the expense of a small difference (-1.3% ± 0.9%) from initial PTV195% coverage (96.6% ± 0.9%). Similar difference (-15.7 ± 2.2 Gy and -10.2 ± 6.1 Gy) was obtained compromising dose conformity, but unaffecting PTV195% and with negligible decrease in PTV295% (-0.3% ± 0.3% from the initial 98.3% ± 0.8%). A marked spinal cord and brain stem preventive sparing was feasible at the expense of a decrease in dose conformity or slightly compromising target coverage. A sparing should be recommended in highly recurrent tumors, to make potential reirradiation safer. PMID:24423836

  10. Prevention

    MedlinePlus

    ... Prevention Treatment 2003 U.S. Outbreak African Rodent Importation Ban For Clinicians Clinical Recognition Specimen Collection Treatment Smallpox ... Examining Animals with Suspected Monkeypox African Rodent Importation Ban Resources Related Links Poxvirus Molluscum Contagiosum Orf Virus ( ...

  11. Preventive effect of safranal against oxidative damage in aged male rat brain

    PubMed Central

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Samini, Fariborz

    2014-01-01

    An imbalance between production of reactive oxygen species (ROS) and its elimination by antioxidant defense system in the body has been implicated for causes of aging and neurodegenerative diseases. This study was design to assess the changes in activities of antioxidant enzymes (superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase), lipid peroxidation and reduced glutathione (GSH) levels in the brain of 2, 10 and 20 month old rats, and to determine the effect of safranal on the status of selected oxidative stress indices in the 10 and 20 month old rats. The aged rats (10 and 20 months) were given intraperitoneal injections of safranal (0.5 mg/kg day) daily for one month. The results of this study demonstrated that aging caused significant increase in the level of lipid peroxidation as well decrease in the GSH level and activities of SOD and GST in the brain of aging rats. The results of this study showed that safranal ameliorated the increased lipid peroxidation level as well as decreased GSH content of the brain of 10 and 20 month old rats. In addition, safranal treatment to the 20 month old rats, which restored the SOD and GST activities. In conclusion, safranal can be effective to protect susceptible aged brain from oxidative damage by increasing antioxidant defenses. PMID:25312506

  12. Increased folate uptake prevents dietary development of folate deficiency in the rat brain

    SciTech Connect

    McMartin, K.E.; Collins, T.D.; Eisenga, B.H.; Bhandari, S.D. )

    1990-02-26

    Folic acid and folate deficiency have been implicated in disorders of the central nervous system. In a study of the mechanism for the effects of chronic ethanol on folate homeostasis, the uptake of {sup 3}H-folic acid by the rat brain has been studied. Male Sprague-Dawley rats were fed sulfonamide-supplemented folate-sufficient and folate-deficient liquid diets containing either ethanol or isoenergic carbohydrate as a control. After 16 weeks, severe folate depletion occurred in tissues (liver, kidney, spleen, lung intestine, testes), but not in the brain. Tissue retention of {sup 3}H-folic acid was increased four-fold in the brain of folate-deficient rats. A smaller increase in uptake was observed in the other tissues, except for the liver, in which the retention of {sup 3}H-folic acid was slightly decreased. Chronic ethanol feeding decreased hepatic folate uptake, but not that by the increase the uptake of folate from the plasma of folate-deficient rats, thereby inhibiting the development of brain folate deficiency.

  13. Monounsaturated Fatty Acids Prevent the Aversive Effects of Obesity on Locomotion, Brain Activity, and Sleep Behavior

    PubMed Central

    Sartorius, Tina; Ketterer, Caroline; Kullmann, Stephanie; Balzer, Michelle; Rotermund, Carola; Binder, Sonja; Hallschmid, Manfred; Machann, Jürgen; Schick, Fritz; Somoza, Veronika; Preissl, Hubert; Fritsche, Andreas; Häring, Hans-Ulrich; Hennige, Anita M.

    2012-01-01

    Fat and physical inactivity are the most evident factors in the pathogenesis of obesity, and fat quality seems to play a crucial role for measures of glucose homeostasis. However, the impact of dietary fat quality on brain function, behavior, and sleep is basically unknown. In this study, mice were fed a diet supplemented with either monounsaturated fatty acids (MUFAs) or saturated fatty acids (SFAs) and their impact on glucose homeostasis, locomotion, brain activity, and sleep behavior was evaluated. MUFAs and SFAs led to a significant increase in fat mass but only feeding of SFAs was accompanied by glucose intolerance in mice. Radiotelemetry revealed a significant decrease in cortical activity in SFA-mice whereas MUFAs even improved activity. SFAs decreased wakefulness and increased non–rapid eye movement sleep. An intracerebroventricular application of insulin promoted locomotor activity in MUFA-fed mice, whereas SFA-mice were resistant. In humans, SFA-enriched diet led to a decrease in hippocampal and cortical activity determined by functional magnetic resonance imaging techniques. Together, dietary intake of MUFAs promoted insulin action in the brain with its beneficial effects for cortical activity, locomotion, and sleep, whereas a comparable intake of SFAs acted as a negative modulator of brain activity in mice and humans. PMID:22492529

  14. The immunology of traumatic brain injury: a prime target for Alzheimer’s disease prevention

    PubMed Central

    2012-01-01

    A global health problem, traumatic brain injury (TBI) is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer’s disease (AD). The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD. PMID:22849382

  15. Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia.

    PubMed

    Schuch, Clarissa Pedrini; Diaz, Ramiro; Deckmann, Iohanna; Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Pereira, Lenir Orlandi

    2016-03-23

    Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans. PMID:26872850

  16. CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice.

    PubMed

    Lopez-Rodriguez, Ana Belen; Siopi, Eleni; Finn, David P; Marchand-Leroux, Catherine; Garcia-Segura, Luis M; Jafarian-Tehrani, Mehrnaz; Viveros, Maria-Paz

    2015-01-01

    Traumatic brain injury (TBI) and its consequences represent one of the leading causes of death in young adults. This lesion mediates glial activation and the release of harmful molecules and causes brain edema, axonal injury, and functional impairment. Since glial activation plays a key role in the development of this damage, it seems that controlling it could be beneficial and could lead to neuroprotective effects. Recent studies show that minocycline suppresses microglial activation, reduces the lesion volume, and decreases TBI-induced locomotor hyperactivity up to 3 months. The endocannabinoid system (ECS) plays an important role in reparative mechanisms and inflammation under pathological situations by controlling some mechanisms that are shared with minocycline pathways. We hypothesized that the ECS could be involved in the neuroprotective effects of minocycline. To address this hypothesis, we used a murine TBI model in combination with selective CB1 and CB2 receptor antagonists (AM251 and AM630, respectively). The results provided the first evidence for the involvement of ECS in the neuroprotective action of minocycline on brain edema, neurological impairment, diffuse axonal injury, and microglial activation, since all these effects were prevented by the CB1 and CB2 receptor antagonists.

  17. Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia.

    PubMed

    Schuch, Clarissa Pedrini; Diaz, Ramiro; Deckmann, Iohanna; Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Pereira, Lenir Orlandi

    2016-03-23

    Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans.

  18. Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats.

    PubMed

    Fares, Raafat P; Belmeguenai, Amor; Sanchez, Pascal E; Kouchi, Hayet Y; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S; Bezin, Laurent

    2013-01-01

    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories.

  19. Predicting and Preventing Skull Overheating in Non Invasive Brain HIFU Treatment Protocols

    SciTech Connect

    Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickael; Fink, Mathias

    2005-03-28

    Ultrasound brain therapy is currently limited by the strong phase and amplitude aberrations induced by the heterogeneities of the skull. However the development of aberration correction techniques has made it possible to correct the beam distortion induced by the skull and to produce a sharp focus in the brain. Moreover, using the density of the skull bone that can be obtained with high-resolution CT scans, the corrections needed to produce this sharp focus can be calculated using ultrasound propagation models. We propose here a model for computing the temperature elevation in the skull during High Intensity Focused Ultrasound (HIFU) transcranial therapy. Based on CT scans, the wave propagation through the skull is computed with 3D finite differences wave propagation software. The acoustic simulation is combined with a 3D thermal diffusion code and the temperature elevation inside the skull is computed. Finally, the simulation is validated experimentally by measuring the temperature elevation in several locations of the skull.

  20. Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer's disease in T2DM patients.

    PubMed

    Bertram, Sebastian; Brixius, Klara; Brinkmann, Christian

    2016-08-01

    Epidemiological studies indicate that patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing dementia/Alzheimer's disease (AD). This review, which is based on recent studies, presents a molecular framework that links the two diseases and explains how physical training could help counteract neurodegeneration in T2DM patients. Inflammatory, oxidative, and metabolic changes in T2DM patients cause cerebrovascular complications and can lead to blood-brain-barrier (BBB) breakdown. Peripherally increased pro-inflammatory molecules can then pass the BBB more easily and activate stress-activated pathways, thereby promoting key pathological features of dementia/AD such as brain insulin resistance, mitochondrial dysfunction, and accumulation of neurotoxic beta-amyloid (Aβ) oligomers, leading to synaptic loss, neuronal dysfunction, and cell death. Ceramides can also pass the BBB, induce pro-inflammatory reactions, and disturb brain insulin signaling. In a vicious circle, oxidative stress and the pro-inflammatory environment intensify, leading to further cognitive decline. Low testosterone levels might be a common risk factor in T2DM and AD. Regular physical exercise reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. It improves endothelial function and might increase brain capillarization. Physical training can further counteract dyslipidemia and reduce increased ceramide levels. It might also improve Aβ clearance by up-regulating Aβ transporters and, in some cases, increase basal testosterone levels. In addition, regular physical activity can induce neurogenesis. Physical training should therefore be emphasized as a part of prevention programs developed for diabetic patients to minimize the risk of the onset of neurodegenerative diseases among this specific patient group. PMID:27160819

  1. GM1 improves neurofascin155 association with lipid rafts and prevents rat brain myelin injury after hypoxia-ischemia.

    PubMed

    Zhang, Y P; Huang, Q L; Zhao, C M; Tang, J L; Wang, Y L

    2011-06-01

    White matter injury characterized by damage to myelin is an important process in hypoxic-ischemic brain damage (HIBD). Because the oligodendrocyte-specific isoform of neurofascin, neurofascin 155 (NF155), and its association with lipid rafts are essential for the establishment and stabilization of the paranodal junction, which is required for tight interaction between myelin and axons, we analyzed the effect of monosialotetrahexosyl ganglioside (GM1) on NF155 expression and its association with lipid rafts after HIBD in Sprague-Dawley rats, weighing 12-15 g, on day 7 post-partum (P7; N = 20 per group). HIBD was induced on P7 and the rats were divided into two groups: one group received an intraperitoneal injection of 50 mg/kg GM1 three times and the other group an injection of saline. There was also a group of 20 sham-operated rats. After sacrifice, the brains of the rats were removed on P30 and studied by immunochemistry, SDS-PAGE, Western blot analysis, and electron microscopy. Staining showed that the saline group had definite rarefaction and fragmentation of brain myelin sheaths, whereas the GM1 group had no obvious structural changes. The GM1 group had 1.9-2.9-fold more GM1 in lipid rafts than the saline group (fraction 3-6; all P < 0.05) and 0.5-2.4-fold higher expression of NF155 in lipid rafts (fraction 3-5; all P < 0.05). Injection of GM1 increased the content of GM1 in lipid rafts as well as NF155 expression and its lipid raft association in HIBD rat brains. GM1 may repair the structure of lipid rafts, promote the association of NF155 (or other important proteins) with lipid rafts, stabilize the structure of paranodes, and eventually prevent myelin sheath damage, suggesting a novel mechanism for its neuroprotective properties.

  2. Prevention of venous thrombotic events in brain injury: review of current practices.

    PubMed

    Glassner, Stuart; Srivastava, Karan; Cofnas, Paul; Deegan, Brian; Demaria, Peter; Denis, Rimsky; Ginzburg, Enrique

    2013-01-01

    Venous thromboembolic event after traumatic brain injury represents a unique clinical challenge. Physicians must balance appropriate timing of chemoprophylaxis with risk of increased cerebral hemorrhage. Despite an increase in the literature since the 1990s, there are clear disparities in treatment strategies. This review discusses the prominent studies and subsequent findings regarding the topic with an attempt to establish recommendations using the existing evidence-based literature. PMID:23908851

  3. Immunomodulation Strategies for Preventing Vascular Disease of the Brain and Heart Workshop Summary

    PubMed Central

    Hallenbeck, John; del Zoppo, Gregory; Jacobs, Tom; Hakim, Antoine; Goldman, Stephen; Utz, Ursula; Hasan, Ahmed

    2007-01-01

    This workshop examined the opportunities for translational research directed at immune and inflammatory mechanisms. This summary presents the background data in 3 general areas: (1) inflammation and hemostasis in cerebrovascular and cardiovascular disease, (2) immune interactions in the central nervous system and heart, and (3) translation of immune modulation in the brain and heart, all of which supported a consensus derivation of the opportunities for future research in these areas. The summary concludes with 11 recommendations. PMID:17082471

  4. Active sleep and its role in the prevention of apoptosis in the developing brain.

    PubMed

    Morrissey, Michael J; Duntley, S P; Anch, A M; Nonneman, R

    2004-01-01

    The aim of this study is to identify a possible function of Active Sleep (AS), also known as Rapid Eye Movement Sleep (REM) in humans, as a protective state during early Central Nervous System (CNS) development. Previous research suggest pharmacological agents that inhibit high levels of neuronal activity in the CNS (e.g., benzodiazepines, ethanol, and anesthetics) precipitate massive CNS programmed cell death (PCD), in developing mammals. AS is characterized by high levels of CNS activity at levels comparable to waking. AS occupies up to 75% of the circadian cycle in developing mammals (rodents from postnatal days 1-14 days (p1-p14), and humans from prenatal month seven to postnatal year one). Many studies have implicated AS as having an active role in the normal development of the visual system and have documented myriad behavioral anomalies as a result of AS deprivation. Reduced adult brain mass has also been observed after AS deprivation in developing rats during this period, however, no study to date has documented this process as it occurs (i.e., the cellular mechanisms that result in behavioral anomalies or reduced adult brain mass). The purpose of this study is to begin documentation of this process by utilizing histological techniques that identify the PCD process, if it occurs, after acute and prolonged AS deprivation in rats from ages p7 to p14 (a time of active synaptogenesis). Our methodology includes utilization of the alpha2-adrenergic receptor agonist clonidine, to deprive rat pups of AS at ages varying from p7 to p14. Pilot data from our laboratory has shown that an acute exposure to clonidine significantly reduces time spent in AS. The animals that were AS deprived also showed a statistically significant decrease in brain mass and have stained positively for PCD. If our hypotheses are correct, this research will have major implications with regard to determining the function(s) of REM sleep. PMID:15142640

  5. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging.

    PubMed

    Ahlskog, J Eric; Geda, Yonas E; Graff-Radford, Neill R; Petersen, Ronald C

    2011-09-01

    A rapidly growing literature strongly suggests that exercise, specifically aerobic exercise, may attenuate cognitive impairment and reduce dementia risk. We used PubMed (keywords exercise and cognition) and manuscript bibliographies to examine the published evidence of a cognitive neuroprotective effect of exercise. Meta-analyses of prospective studies documented a significantly reduced risk of dementia associated with midlife exercise; similarly, midlife exercise significantly reduced later risks of mild cognitive impairment in several studies. Among patients with dementia or mild cognitive impairment, randomized controlled trials (RCTs) documented better cognitive scores after 6 to 12 months of exercise compared with sedentary controls. Meta-analyses of RCTs of aerobic exercise in healthy adults were also associated with significantly improved cognitive scores. One year of aerobic exercise in a large RCT of seniors was associated with significantly larger hippocampal volumes and better spatial memory; other RCTs in seniors documented attenuation of age-related gray matter volume loss with aerobic exercise. Cross-sectional studies similarly reported significantly larger hippocampal or gray matter volumes among physically fit seniors compared with unfit seniors. Brain cognitive networks studied with functional magnetic resonance imaging display improved connectivity after 6 to 12 months of exercise. Animal studies indicate that exercise facilitates neuroplasticity via a variety of biomechanisms, with improved learning outcomes. Induction of brain neurotrophic factors by exercise has been confirmed in multiple animal studies, with indirect evidence for this process in humans. Besides a brain neuroprotective effect, physical exercise may also attenuate cognitive decline via mitigation of cerebrovascular risk, including the contribution of small vessel disease to dementia. Exercise should not be overlooked as an important therapeutic strategy.

  6. Preterm white matter brain injury is prevented by early administration of umbilical cord blood cells.

    PubMed

    Li, Jingang; Yawno, Tamara; Sutherland, Amy; Loose, Jan; Nitsos, Ilias; Bischof, Robert; Castillo-Melendez, Margie; McDonald, Courtney A; Wong, Flora Y; Jenkin, Graham; Miller, Suzanne L

    2016-09-01

    Infants born very preterm are at high risk for neurological deficits including cerebral palsy. In this study we assessed the neuroprotective effects of umbilical cord blood cells (UCBCs) and optimal administration timing in a fetal sheep model of preterm brain injury. 50 million allogeneic UCBCs were intravenously administered to fetal sheep (0.7 gestation) at 12h or 5d after acute hypoxia-ischemia (HI) induced by umbilical cord occlusion. The fetal brains were collected at 10d after HI. HI (n=7) was associated with reduced number of oligodendrocytes (Olig2+) and myelin density (CNPase+), and increased density of activated microglia (Iba-1+) in cerebral white matter compared to control fetuses (P<0.05). UCBCs administered at 12h, but not 5d after HI, significantly protected white matter structures and suppressed cerebral inflammation. Activated microglial density showed a correlation with decreasing oligodendrocyte number (P<0.001). HI caused cell death (TUNEL+) in the internal capsule and cell proliferation (Ki-67+) in the subventricular zone compared to control (P<0.05), while UCBCs at 12h or 5d ameliorated these effects. Additionally, UCBCs at 12h induced a significant systemic increase in interleukin-10 at 10d, and reduced oxidative stress (malondialdehyde) following HI (P<0.05). UCBC administration at 12h after HI reduces preterm white matter injury, via anti-inflammatory and antioxidant actions. PMID:27317990

  7. Brain Injury in the Preterm Infant: New Horizons for Pathogenesis and Prevention.

    PubMed

    Back, Stephen A

    2015-09-01

    Preterm neonates are surviving with a milder spectrum of motor and cognitive disabilities that appear to be related to widespread disturbances in cell maturation that target cerebral gray and white matter. Whereas the preterm brain was previously at high risk for destructive lesions, preterm survivors now commonly display less severe injury that is associated with aberrant regeneration and repair responses that result in reduced cerebral growth. Impaired cerebral white matter growth is related to myelination disturbances that are initiated by acute death of premyelinating oligodendrocytes, but are followed by rapid regeneration of premyelinating oligodendrocytes that fail to normally mature to myelinating cells. Although immature neurons are more resistant to cell death than mature neurons, they display widespread disturbances in maturation of their dendritic arbors and synapses, which further contributes to impaired cerebral growth. Thus, even more mild cerebral injury involves disrupted repair mechanisms in which neurons and premyelinating oligodendrocytes fail to fully mature during a critical window in development of neural circuitry. These recently recognized distinct forms of cerebral gray and white matter dysmaturation raise new diagnostic challenges and suggest new therapeutic strategies to promote brain growth and repair.

  8. Estradiol prevents ozone-induced increases in brain lipid peroxidation and impaired social recognition memory in female rats.

    PubMed

    Guevara-Guzmán, R; Arriaga, V; Kendrick, K M; Bernal, C; Vega, X; Mercado-Gómez, O F; Rivas-Arancibia, S

    2009-03-31

    There is increasing concern about the neurodegenerative and behavioral consequences of ozone pollution in industrialized urban centers throughout the world and that women may be more susceptible to brain neurodegenerative disorders. In the present study we have investigated the effects of chronic (30 or 60 days) exposure to ozone on olfactory perception and memory and on levels of lipid peroxidation, alpha and beta estrogen receptors and dopamine beta-hydroxylase in the olfactory bulb in ovariectomized female rats. The ability of 17beta-estradiol to prevent these effects was then assessed. Results showed that ozone exposure for 30 or 60 days impaired formation/retention of a selective olfactory recognition memory 120 min after exposure to a juvenile stimulus animal with the effect at 60 days being significantly greater than at 30 days. They also showed impaired speed in locating a buried chocolate reward after 60 days of ozone exposure indicating some loss of olfactory perception. These functional impairments could all be prevented by coincident estradiol treatment. In the olfactory bulb, levels of lipid peroxidation were increased at both 30- and 60-day time-points and numbers of cells with immunohistochemical staining for alpha and beta estrogen receptors, and dopamine beta-hydroxylase were reduced as were alpha and beta estrogen receptor protein levels. These effects were prevented by estradiol treatment. Oxidative stress damage caused by chronic exposure to ozone does therefore impair olfactory perception and social recognition memory and may do so by reducing noradrenergic and estrogen receptor activity in the olfactory bulb. That these effects can be prevented by estradiol treatment suggests increased susceptibility to neurodegenerative disorders in aging women may be contributed to by reduced estrogen levels post-menopause.

  9. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats.

    PubMed

    Singh, Rumani; Manchanda, Shaffi; Kaur, Taranjeet; Kumar, Sushil; Lakhanpal, Dinesh; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2015-12-01

    Intermittent fasting dietary restriction (IF-DR) is recently reported to be an effective intervention to retard age associated disease load and to promote healthy aging. Since sustaining long term caloric restriction regimen is not practically feasible in humans, so use of alternate approach such as late onset short term IF-DR regimen which is reported to trigger similar biological pathways is gaining scientific interest. The current study was designed to investigate the effect of IF-DR regimen implemented for 12 weeks in middle age rats on their motor coordination skills and protein and DNA damage in different brain regions. Further, the effect of IF-DR regimen was also studied on expression of energy regulators, cell survival pathways and synaptic plasticity marker proteins. Our data demonstrate that there was an improvement in motor coordination and learning response with decline in protein oxidative damage and recovery in expression of energy regulating neuropeptides. We further observed significant downregulation in nuclear factor kappa B (NF-κB) and cytochrome c (Cyt c) levels and moderate upregulation of mortalin and synaptophysin expression. The present data may provide an insight on how a modest level of short term IF-DR, imposed in middle age, can slow down or prevent the age-associated impairment of brain functions and promote healthy aging by involving multiple regulatory pathways aimed at maintaining energy homeostasis.

  10. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats.

    PubMed

    Singh, Rumani; Manchanda, Shaffi; Kaur, Taranjeet; Kumar, Sushil; Lakhanpal, Dinesh; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2015-12-01

    Intermittent fasting dietary restriction (IF-DR) is recently reported to be an effective intervention to retard age associated disease load and to promote healthy aging. Since sustaining long term caloric restriction regimen is not practically feasible in humans, so use of alternate approach such as late onset short term IF-DR regimen which is reported to trigger similar biological pathways is gaining scientific interest. The current study was designed to investigate the effect of IF-DR regimen implemented for 12 weeks in middle age rats on their motor coordination skills and protein and DNA damage in different brain regions. Further, the effect of IF-DR regimen was also studied on expression of energy regulators, cell survival pathways and synaptic plasticity marker proteins. Our data demonstrate that there was an improvement in motor coordination and learning response with decline in protein oxidative damage and recovery in expression of energy regulating neuropeptides. We further observed significant downregulation in nuclear factor kappa B (NF-κB) and cytochrome c (Cyt c) levels and moderate upregulation of mortalin and synaptophysin expression. The present data may provide an insight on how a modest level of short term IF-DR, imposed in middle age, can slow down or prevent the age-associated impairment of brain functions and promote healthy aging by involving multiple regulatory pathways aimed at maintaining energy homeostasis. PMID:26318578

  11. Brain-Derived Neurotrophic Factor-Dependent cdk1 Inhibition Prevents G2/M Progression in Differentiating Tetraploid Neurons

    PubMed Central

    Ovejero-Benito, María C.; Frade, José M.

    2013-01-01

    Neurodegeneration is often associated with DNA synthesis in neurons, the latter usually remaining for a long time as tetraploid cells before dying by apoptosis. The molecular mechanism preventing G2/M transition in these neurons remains unknown, but it may be reminiscent of the mechanism that maintains tetraploid retinal ganglion cells (RGCs) in a G2-like state during normal development, thus preventing their death. Here we show that this latter process, known to depend on brain-derived neurotrophic factor (BDNF), requires the inhibition of cdk1 by TrkB. We demonstrate that a subpopulation of chick RGCs previously shown to become tetraploid co-expresses TrkB and cdk1 in vivo. By using an in vitro system that recapitulates differentiation and cell cycle re-entry of chick retinal neurons we show that BDNF, employed at concentrations specific for the TrkB receptor, reduces the expression of cdk1 in TrkB-positive, differentiating neurons. In this system, BDNF also inhibits the activity of both endogenous cdk1 and exogenously-expressed cdk1/cyclin B1 complex. This inhibition correlates with the phosphorylation of cdk1 at Tyr15, an effect that can be prevented with K252a, a tyrosine kinase inhibitor commonly used to prevent the activity of neurotrophins through their Trk receptors. The effect of BDNF on cdk1 activity is Tyr15-specific since BDNF cannot prevent the activity of a constitutively active form of cdk1 (Tyr15Phe) when expressed in differentiating retinal neurons. We also show that BDNF-dependent phosphorylation of cdk1 at Tyr15 could not be blocked with MK-1775, a Wee1-selective inhibitor, indicating that Tyr15 phosphorylation in cdk1 does not seem to occur through the canonical mechanism observed in proliferating cells. We conclude that the inhibition of both expression and activity of cdk1 through a BDNF-dependent mechanism contributes to the maintenance of tetraploid RGCs in a G2-like state. PMID:23741412

  12. Ferrous Iron Induces Nrf2 Expression in Mouse Brain Astrocytes to Prevent Neurotoxicity.

    PubMed

    Cui, Zhenwen; Zhong, Zhihong; Yang, Yong; Wang, Baofeng; Sun, Yuhao; Sun, Qingfang; Yang, Guo-Yuan; Bian, Liuguan

    2016-08-01

    Free radical damage caused by ferrous iron is involved in the pathogenesis of secondary brain injury after intracerebral hemorrhage (ICH). NF-E2-related factor 2 (Nrf2), a major phase II gene regulator that binds to antioxidant response element, represents an important cellular cytoprotective mechanism against oxidative damage. We hypothesized that Nrf2 might protect astrocytes from damage by Fe(2+) . Therefore, we examined cytotoxicity in primary astrocytes induced by iron overload and evaluated the effects of Fe(2+) on Nrf2 expression. The results demonstrated that 24-h Fe(2+) exposure exerted time- and concentration-dependent cytotoxicity in astrocytes. Furthermore, Fe(2+) exposure in astrocytes resulted in time- and concentration-dependent increases in Nrf2 expression, which preceded Fe(2+) toxicity. Nrf2-specific siRNA further knocked down Nrf2 levels, resulting in greater Fe(2+) -induced astrocyte cytotoxicity. These data indicate that induction of Nrf2 expression could serve as an adaptive self-defense mechanism, although it is insufficient to completely protect primary astrocytes from Fe(2+) -induced neurotoxicity. PMID:27037625

  13. Lipopolysaccharide preconditioning prevents acceleration of kindling epileptogenesis induced by traumatic brain injury.

    PubMed

    Eslami, Mansoureh; Sayyah, Mohammad; Soleimani, Mansoureh; Alizadeh, Leila; Hadjighassem, Mahmoudreza

    2015-12-15

    10-20% of symptomatic epilepsies are post-traumatic. We examined effect of LPS preconditioning on epileptogenesis after controlled cortical impact (CCI). LPS (0.01, 0.1 and 0.5 mg/kg) was injected i.p. to rats 5 days before induction of CCI to parieto-temporal cortex. Kindling started 24h after CCI by i.p. injection of 30 mg/kg of pentylenetetrazole every other day until manifestation of 3 consecutive generalized seizures. CCI injury accelerated the rate of kindled seizures acquisition. LPS (0.1 and 0.5 mg/kg) prevented the acceleration of kindling. LPS preconditioning significantly decreased IL-1β and TNF-α over-expression and the number of damaged neurons in the hippocampus of traumatic rats.

  14. Caramiphen and scopolamine prevent soman-induced brain damage and cognitive dysfunction.

    PubMed

    Raveh, Lily; Weissman, Ben Avi; Cohen, Giora; Alkalay, David; Rabinovitz, Ishai; Sonego, Hagar; Brandeis, Rachel

    2002-05-01

    Exposure to soman, a toxic organophosphate nerve agent, causes severe adverse effects and long term changes in the peripheral and central nervous systems. The goal of this study was to evaluate the ability of prophylactic treatments to block the deleterious effects associated with soman poisoning. scopolamine, a classical anticholinergic agent, or caramiphen, an anticonvulsant anticholinergic drug with anti-glutamatergic properties, in conjunction with pyridostigmine, a reversible cholinesterase inhibitor, were administered prior to sbman (1 LD50). Both caramiphen and scopolamine dramatically attenuated the process of cell death as assessed by the binding of [3H]RoS-4864 to peripheral benzodiazepine receptors (omega3 sites) on microglia and astrocytes. In addition, caramiphen but not scopolamine, blocked the soman-evoked down-regulation of [3H]AMPA binding to forebrain membrane preparations. Moreover, cognitive tests utilizing the Morris water maze, examining learning and memory processes as well as reversal learning, demonstrated that caramiphen abolished the effects of soman intoxication on learning as early as the first trial day, while scopolamine exerted its effect commencing at the second day of training. Whereas the former drug completely prevented memory deficits, the latter exhibited partial protection. Both agents equally blocked the impairment of reversal learning. In addition, there is a significant correlation between behavioral parameters and [3H]RoS-4864 binding to forebrain membrane preparations of rats, which participated in these tests (r(21) = 0.66, P < 0.001; r(21) = 0.66, P < 0.001, -0.62, P < 0.002). These results demonstrate the beneficial use of drugs exhibiting both anti-cholinergic and anti-glutamatergic properties for the protection against changes in cognitive parameters caused by nerve agent poisoning. Moreover, agents such as caramiphen may eliminate the need for multiple drug therapy in organophosphate intoxications.

  15. [Multiplicity and prevention for patients with hydrocephalus secondary to severe traumatic brain injury after surgery].

    PubMed

    Cao, Ke; Meng, Guangran; Li, Zongzheng; Wang, Faxuan; Ma, Hui

    2015-09-01

    目的:探讨重型颅脑伤(severe traumatic brain injury,STBI)患者术后发生继发性脑积水的相关因素,为临床上如何早期防治继发性脑积水提供指导方案及理论依据。方法:对按同一标准纳入的107例于2010年6月至2013年6月入住宁夏医科大学附属总医院神经外科STBI患者进行前瞻性研究,对年龄、性别、手术前/后格拉斯哥昏迷评分(Glasgow coma scale,GCS)、术后是否继发脑室系统出血、手术前/后颅脑CT中脑导水管及环池结构情况、腰椎穿刺术与继发性脑积水形成之间的关系进行logistic多因素回归分析,探讨术后继发性脑积水的危险因素与保护因素,并着重对保护因素进行分析。结果:多因素回归分析显示:患者术前(OR=0.099,95% CI:0.028~0.350)/术后(OR=0.088,95% CI:0.012~0.649)GCS评分低、术后脑室系统出血(OR=0.168,95% CI:0.029~0.979)、术前(OR=0.134,95% CI:0.038~0.473)/术后(OR=0.221,95% CI:0.055~0.882)颅脑CT中脑导水管及环池结构不清均为STBI术后患者继发性脑积水的危险因素;腰椎穿刺术(OR=75.885,95% CI:9.612~599.122)为STBI术后患者继发性脑积水的保护性因素。且术后脑积水主要发生于术后2周内和2周~3个月,对照组脑积水发生率均明显高于腰椎穿刺组(P<0.05),术后3个月后2组之间继发性脑积水发生率差异无统计学意义(P>0.05)。 结论:对于STBI术后患者,在生命体征稳定的情况下,早期辅以行腰椎穿刺术可显著降低术后急性期、亚急性期继发性脑积水的发生率,改善患者预后。.

  16. Inhibition of complement C5a prevents breakdown of the blood-brain barrier and pituitary dysfunction in experimental sepsis

    PubMed Central

    Flierl, Michael A; Stahel, Philip F; Rittirsch, Daniel; Huber-Lang, Markus; Niederbichler, Andreas D; Hoesel, L Marco; Touban, Basel M; Morgan, Steven J; Smith, Wade R; Ward, Peter A; Ipaktchi, Kyros

    2009-01-01

    Introduction Septic encephalopathy secondary to a breakdown of the blood-brain barrier (BBB) is a known complication of sepsis. However, its pathophysiology remains unclear. The present study investigated the effect of complement C5a blockade in preventing BBB damage and pituitary dysfunction during experimental sepsis. Methods Using the standardised caecal ligation and puncture (CLP) model, Sprague-Dawley rats were treated with either neutralising anti-C5a antibody or pre-immune immunoglobulin (Ig) G as a placebo. Sham-operated animals served as internal controls. Results Placebo-treated septic rats showed severe BBB dysfunction within 24 hours, accompanied by a significant upregulation of pituitary C5a receptor and pro-inflammatory cytokine expression, although gene levels of growth hormone were significantly attenuated. The pathophysiological changes in placebo-treated septic rats were restored by administration of neutralising anti-C5a antibody to the normal levels of BBB and pituitary function seen in the sham-operated group. Conclusions Collectively, the neutralisation of C5a greatly ameliorated pathophysiological changes associated with septic encephalopathy, implying a further rationale for the concept of pharmacological C5a inhibition in sepsis. PMID:19196477

  17. Early pressure dressing for the prevention of subdural effusion secondary to decompressive craniectomy in patients with severe traumatic brain injury.

    PubMed

    Xu, Gang-Zhu; Li, Wen; Liu, Kai-Ge; Wu, Wei; Lu, Wen-Chao; Zhang, Jun-Feng; Wang, Mao-De

    2014-09-01

    This study was performed to investigate the effect of early pressure dressing on the prevention of postoperative subdural effusion secondary to decompressive craniectomy (DC) in patients with severe traumatic brain injury (STBI). Patients with STBI who had undergone DC for refractory increased intracranial pressure between January 2008 and December 2011 (n = 169) were randomly divided into early pressure dressing (n = 82) and control (n = 87) groups. Early pressure dressing with an elastic bandage or general wrapping (control treatment) was applied 7 to 10 days after DC. Patients' age, sex, preoperative Glasgow Coma Scale score, incidence rate of subdural effusion, hospitalization time, and postoperative Glasgow Outcome Scale score were compared between groups. Intracranial pressure was measured immediately before and on the day after pressure dressing. No significant difference in age, sex, preoperative Glasgow Coma Scale score, or postoperative Glasgow Outcome Scale score was observed between groups (P > 0.05). Subdural effusion incidence rates were significantly lower in the early pressure dressing group than those in the control group (χ² = 5.449, P = 0.021), and a larger proportion of patients in the early pressure dressing group was hospitalized for 30 days or less (χ² = 5.245, P = 0.027). Early pressure dressing 7 to 10 days after DC, which is a noninvasive, simple procedure, reduced the incidence rate of subdural effusion and shortened hospitalization time after DC for STBI.

  18. K-134, a Phosphodiesterase 3 Inhibitor, Prevents Brain Damage by Inhibiting Thrombus Formation in a Rat Cerebral Infarction Model

    PubMed Central

    Yoshida, Hideo; Ashikawa, Yuka; Itoh, Shinsuke; Nakagawa, Takashi; Asanuma, Akimune; Tanabe, Sohei; Inoue, Yoshihiro; Hidaka, Hiroyoshi

    2012-01-01

    Background K-134 is a more potent antiplatelet drug with a selective inhibitory effect on phosphodiesterase 3 (PDE3) compared with its analogue, cilostazol. Objectives This study was performed to compare the ameliorating effects of K-134 and cilostazol on brain damage in an experimental photothrombotic cerebral infarction model. Methods and Results We investigated the effects of oral preadministration of PDE3 inhibitors in a rat stroke model established by photothrombotic middle cerebral artery (MCA) occlusion. K-134 significantly prolonged MCA occlusion time at doses >10 mg/kg, and reduced cerebral infarct size at 30 mg/kg in the stroke model (n = 12, 87.5±5.6 vs. 126.8±7.5 mm3, P<0.01), indicating its potent antithrombotic effect. On the other hand, the effects of cilostazol on MCA occlusion time and cerebral infarct size are relatively weak even at the high dosage of 300 mg/kg. Furthermore, K-134 blocked rat platelet aggregation more potently than cilostazol in vitro. Also in an arteriovenous shunt thrombosis model, K-134 showed an antithrombotic effect greater than cilostazol. Conclusions These findings suggest that K-134, which has strong antithrombotic activity, is a promising drug for prevention of cerebral infarction associated with platelet hyperaggregability. PMID:23110051

  19. TGF-β1 prevents blood-brain barrier damage and hemorrhagic transformation after thrombolysis in rats.

    PubMed

    Cai, Yingyuan; Liu, Xinfeng; Chen, Weixian; Wang, Zhenzhen; Xu, Gelin; Zeng, Yanying; Ma, Yuping

    2015-04-01

    Transforming growth factor-beta1 (TGF-β1) is well known to promote extracellular matrix accumulation. Recent studies demonstrated that TGF-β1 protects against blood-brain barrier (BBB) disruption in the condition of inflammatory pain and stroke. In the present study, we investigated whether TGF-β1 can maintain BBB integrity and prevent hemorrhagic transformation (HT) after recombinant tissue plasminogen activator (rt-PA) treatment in a rat model of thromboembolic middle cerebral artery occlusion (MCAO). Three hours after MCAO, rats were given saline, rt-PA alone or rt-PA combined with TGF-β1 intravenously. Animals were sacrificed 24h after surgery. HT was calculated as hemorrhagic score. Evans blue dye extravasation was measured for BBB disruption. Basement membrane damage was observed by electron microscopy and quantified by collagen IV and laminin immunostaining. Gelatin zymography was used to measure the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Western blot was performed for the expressions of MMP-2, MMP-9 and plasminogen activator inhibitor type-1 (PAI-1). Rats treated with rt-PA showed elevations in basement membrane damage, BBB disruption and HT. These phenomena were reduced in rats treated by TGF-β1. We also showed that TGF-β1 inhibited rt-PA mediated induction of MMP-2 and MMP-9. Meanwhile, TGF-β1 upregulated PAI-1 expression which was reduced by rt-PA. Taken together, these results suggest that TGF-β1 can reduce rt-PA induced basement membrane degradation, BBB disruption and HT. One possible mechanism is associated with the elevation of PAI-1. Suppression of MMP-2 and MMP-9 elevated by rt-PA may be another mechanism contributing to the protective effects of TGF-β1.

  20. Brain Basics: Preventing Stroke

    MedlinePlus

    ... valve defects, irregular heart beat (atrial fibrillation), and enlargement of one of the heart's chambers can result ... of atrial fibrillation; LVH = diagnosis of left ventricular hypertrophy Points 0 +1 +2 +3 +4 +5 +6 + ...

  1. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by dietary methionine without lowering plasma homocysteine.

    PubMed

    Troen, Aron M; Chao, Wei-Hsun; Crivello, Natalia A; D'Anci, Kristen E; Shukitt-Hale, Barbara; Smith, Don E; Selhub, Jacob; Rosenberg, Irwin H

    2008-12-01

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely thought to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate deficiency in cognitive dysfunction, we fed rats folate-deficient diets (0 mg FA/kg diet) with or without supplemental L-methionine for 10 wk, followed by cognitive testing and tissue collection for hematological and biochemical analysis. Folate deficiency with normal methionine impaired spatial memory and learning; however, this impairment was prevented when the folate-deficient diet was supplemented with methionine. Under conditions of folate deficiency, brain membrane content of the methylated phospholipid phosphatidylcholine was significantly depleted, which was reversed with supplemental methionine. In contrast, neither elevated plasma homocysteine nor brain S-adenosylmethionine and S-adenosylhomocysteine concentrations predicted cognitive impairment and its prevention by methionine. The correspondence of cognitive outcomes to changes in brain membrane phosphatidylcholine content suggests that altered phosphatidylcholine and possibly choline metabolism might contribute to the manifestation of folate deficiency-related cognitive dysfunction.

  2. Acute homocysteine administration impairs memory consolidation on inhibitory avoidance task and decreases hippocampal brain-derived neurotrophic factor immunocontent: prevention by folic acid treatment.

    PubMed

    Matté, C; Pereira, L O; Dos Santos, T M; Mackedanz, V; Cunha, A A; Netto, C A; Wyse, A T S

    2009-11-10

    In the present study, we first investigated the effect of single homocysteine administration on consolidation of short- and long-term memories of inhibitory avoidance task in Wistar rats. We also measured brain-derived neurotrophic factor levels in the hippocampus and parietal cortex of rats. The influence of pretreatment with folic acid on behavioral and biochemical effects elicited by homocysteine was also studied. Wistar rats were subjected to a folic acid or saline pretreatment from their 22(nd) to 28(th) day of life; 12 h later they were submitted to a single administration of homocysteine or saline. For motor activity and memory evaluation we performed open-field and inhibitory avoidance tasks. Hippocampus and parietal cortex were obtained for brain-derived neurotrophic factor immunocontent determination. Results showed that homocysteine impaired short- and long-term memories and reduced brain-derived neurotrophic factor levels in the hippocampus. Pretreatment with folic acid prevented both the memory deficit and the reduction in the brain-derived neurotrophic factor immunocontent induced by homocysteine injection. Further studies are required to determine the entire mechanism by which folic acid acts and its potential therapeutic use for memory impairment prevention in homocystinuric patients.

  3. Blocking lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-ischemic brain injury in newborns.

    PubMed

    Yang, Dianer; Sun, Yu-Yo; Bhaumik, Siddhartha Kumar; Li, Yikun; Baumann, Jessica M; Lin, Xiaoyi; Zhang, Yujin; Lin, Shang-Hsuan; Dunn, R Scott; Liu, Chia-Yang; Shie, Feng-Shiun; Lee, Yi-Hsuan; Wills-Karp, Marsha; Chougnet, Claire A; Kallapur, Suhas G; Lewkowich, Ian P; Lindquist, Diana M; Murali-Krishna, Kaja; Kuan, Chia-Yi

    2014-12-01

    Intrauterine infection (chorioamnionitis) aggravates neonatal hypoxic-ischemic (HI) brain injury, but the mechanisms linking systemic inflammation to the CNS damage remain uncertain. Here we report evidence for brain influx of T-helper 17 (TH17)-like lymphocytes to coordinate neuroinflammatory responses in lipopolysaccharide (LPS)-sensitized HI injury in neonates. We found that both infants with histological chorioamnionitis and rat pups challenged by LPS/HI have elevated expression of the interleukin-23 (IL-23) receptor, a marker of early TH17 lymphocytes, in the peripheral blood mononuclear cells. Post-LPS/HI administration of FTY720 (fingolimod), a sphingosine-1-phosphate receptor agonist that blocks lymphocyte trafficking, mitigated the influx of leukocytes through the choroid plexus and acute induction of nuclear factor-κB signaling in the brain. Subsequently, the FTY720 treatment led to attenuated blood-brain barrier damage, fewer cluster of differentiation 4-positive, IL-17A-positive T-cells in the brain, less proinflammatory cytokine, and better preservation of growth and white matter functions. The FTY720 treatment also provided dose-dependent reduction of brain atrophy, rescuing >90% of LPS/HI-induced brain tissue loss. Interestingly, FTY720 neither opposed pure-HI brain injury nor directly inhibited microglia in both in vivo and in vitro models, highlighting its unique mechanism against inflammation-sensitized HI injury. Together, these results suggest that the dual hit of systemic inflammation and neonatal HI injury triggers early onset of the TH17/IL-17-mediated immunity, which causes severe brain destruction but responds remarkably to the therapeutic blockade of lymphocyte trafficking.

  4. Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression

    PubMed Central

    Haenisch, Britta; Bilkei-Gorzo, Andras; Caron, Marc G.; Bönisch, Heinz

    2009-01-01

    Diverse factors such as changes in neurotrophins and brain plasticity have been proposed to be involved in the actions of antidepressant drugs (ADs). However, in mouse models of depression based on chronic stress, it is still unclear whether simultaneous changes in behavior and neurotrophin expression occur and whether these changes can be corrected or prevented comparably by chronic administration of ADs or genetic manipulations that produce antidepressant-like effects such as the knockout (KO) of the norepinephrine transporter (NET) gene. Here we show that chronic restraint or social defeat stress induce comparable effects on behavior and changes in the expression of neurotrophins in depression-related brain regions. Chronic stress caused down-regulation of BDNF, NGF and NT-3 in hippocampus and cerebral cortex and up-regulation of these targets in striatal regions. In wild-type mice, these effects could be prevented by concomitant chronic administration of five pharmacologically diverse ADs. In contrast, NETKO mice were resistant to stress-induced depressive-like changes in behavior and brain neurotrophin expression. Thus, the resistance of the NETKO mice to the stress-induced depression-associated behaviors and biochemical changes highlight the importance of noradrenergic pathways in the maintenance of mood. In addition, these mice represent a useful model to study depression-resistant behaviors, and they might help to provide deeper insights into the identification of downstream targets involved in the mechanisms of antidepressants. PMID:19694905

  5. Age-Related Changes in D-Aspartate Oxidase Promoter Methylation Control Extracellular D-Aspartate Levels and Prevent Precocious Cell Death during Brain Aging.

    PubMed

    Punzo, Daniela; Errico, Francesco; Cristino, Luigia; Sacchi, Silvia; Keller, Simona; Belardo, Carmela; Luongo, Livio; Nuzzo, Tommaso; Imperatore, Roberta; Florio, Ermanno; De Novellis, Vito; Affinito, Ornella; Migliarini, Sara; Maddaloni, Giacomo; Sisalli, Maria Josè; Pasqualetti, Massimo; Pollegioni, Loredano; Maione, Sabatino; Chiariotti, Lorenzo; Usiello, Alessandro

    2016-03-01

    The endogenous NMDA receptor (NMDAR) agonist D-aspartate occurs transiently in the mammalian brain because it is abundant during embryonic and perinatal phases before drastically decreasing during adulthood. It is well established that postnatal reduction of cerebral D-aspartate levels is due to the concomitant onset of D-aspartate oxidase (DDO) activity, a flavoenzyme that selectively degrades bicarboxylic D-amino acids. In the present work, we show that d-aspartate content in the mouse brain drastically decreases after birth, whereas Ddo mRNA levels concomitantly increase. Interestingly, postnatal Ddo gene expression is paralleled by progressive demethylation within its putative promoter region. Consistent with an epigenetic control on Ddo expression, treatment with the DNA-demethylating agent, azacitidine, causes increased mRNA levels in embryonic cortical neurons. To indirectly evaluate the effect of a putative persistent Ddo gene hypermethylation in the brain, we used Ddo knock-out mice (Ddo(-/-)), which show constitutively suppressed Ddo expression. In these mice, we found for the first time substantially increased extracellular content of d-aspartate in the brain. In line with detrimental effects produced by NMDAR overstimulation, persistent elevation of D-aspartate levels in Ddo(-/-) brains is associated with appearance of dystrophic microglia, precocious caspase-3 activation, and cell death in cortical pyramidal neurons and dopaminergic neurons of the substantia nigra pars compacta. This evidence, along with the early accumulation of lipufuscin granules in Ddo(-/-) brains, highlights an unexpected importance of Ddo demethylation in preventing neurodegenerative processes produced by nonphysiological extracellular levels of free D-aspartate. PMID:26961959

  6. Preventive brain radio-chemotherapy alters plasticity associated metabolite profile in the hippocampus but seems to not affect spatial memory in young leukemia patients

    PubMed Central

    Brandt, Moritz D; Brandt, Kalina; Werner, Annett; Schönfeld, Robby; Loewenbrück, Kai; Donix, Markus; Schaich, Markus; Bornhäuser, Martin; von Kummer, Rüdiger; Leplow, Bernd; Storch, Alexander

    2015-01-01

    Background Neuronal plasticity leading to evolving reorganization of the neuronal network during entire lifespan plays an important role for brain function especially memory performance. Adult neurogenesis occurring in the dentate gyrus of the hippocampus represents the maximal way of network reorganization. Brain radio-chemotherapy strongly inhibits adult hippocampal neurogenesis in mice leading to impaired spatial memory. Methods To elucidate the effects of CNS radio-chemotherapy on hippocampal plasticity and function in humans, we performed a longitudinal pilot study using 3T proton magnetic resonance spectroscopy (1H-MRS) and virtual water-maze-tests in 10 de-novo patients with acute lymphoblastic leukemia undergoing preventive whole brain radio-chemotherapy. Patients were examined before, during and after treatment. Results CNS radio-chemotherapy did neither affect recall performance in probe trails nor flexible (reversal) relearning of a new target position over a time frame of 10 weeks measured by longitudinal virtual water-maze-testing, but provoked hippocampus-specific decrease in choline as a metabolite associated with cellular plasticity in 1H-MRS. Conclusion Albeit this pilot study needs to be followed up to definitely resolve the question about the functional role of adult human neurogenesis, the presented data suggest that 1H-MRS allows the detection of neurogenesis-associated plasticity in the human brain. PMID:26442754

  7. Vasodilation by in vivo activation of astrocyte endfeet via two-photon calcium uncaging as a strategy to prevent brain ischemia

    NASA Astrophysics Data System (ADS)

    Chen, Yuanxin; Mancuso, James; Zhao, Zhen; Li, Xuping; Cheng, Jie; Roman, Gustavo; Wong, Stephen T. C.

    2013-12-01

    Decreased cerebral blood flow causes brain ischemia and plays an important role in the pathophysiology of many neurodegenerative diseases, including Alzheimer's disease and vascular dementia. In this study, we photomodulated astrocytes in the live animal by a combination of two-photon calcium uncaging in the astrocyte endfoot and in vivo imaging of neurovasculature and astrocytes by intravital two-photon microscopy after labeling with cell type specific fluorescent dyes. Our study demonstrates that photomodulation at the endfoot of a single astrocyte led to a 25% increase in the diameter of a neighboring arteriole, which is a crucial factor regulating cerebral microcirculation in downstream capillaries. Two-photon uncaging in the astrocyte soma or endfoot near veins does not show the same effect on microcirculation. These experimental results suggest that infrared photomodulation on astrocyte endfeet may be a strategy to increase cerebral local microcirculation and thus prevent brain ischemia.

  8. Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway.

    PubMed

    Tulsulkar, Jatin; Glueck, Bryan; Hinds, Terry D; Shah, Zahoor A

    2016-04-01

    It is well known that gender differences exist in experimental or clinical stroke with respect to brain damage and loss of functional outcome. We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia using male mice, and the mechanism of action was attributed to the upregulation of the heme oxygenase 1 (HO1)/Wnt pathway. Here, we sought to investigate whether EGb 761's protective effect in ovariectomized female mice following stroke is also mediated by the HO1/Wnt pathway. Female mice were ovariectomized (OVX) to remove the protective effect of estrogen and were treated with EGb 761 for 7 days prior to inducing permanent middle cerebral artery occlusion (pMCAO) and allowed to survive for an additional 7 days. At day 8, animals were sacrificed, and the brains were harvested for infarct volume analysis, western blots, and immunohistochemistry. The OVX female mice treated with EGb 761 showed significantly lower infarct size as compared to Veh/OVX animals. EGb 761 treatment in female mice inhibited apoptosis by preventing caspase-3 cleavage and blocking the extrinsic apoptotic pathway. EGb 761 pretreatment significantly enhanced neurogenesis in OVX mice as compared to the Veh/OVX group and significantly upregulated androgen receptor expression with no changes in HO1/Wnt signaling. These results suggest that EGb 761 prevented brain damage in OVX female mice by improving grip strength and neurological deficits, and the mechanism of action is not through HO1/Wnt but via blocking the extrinsic apoptotic pathway. PMID:26573919

  9. The AT{sub 1} Receptor Antagonist, L-158,809, Prevents or Ameliorates Fractionated Whole-Brain Irradiation-Induced Cognitive Impairment

    SciTech Connect

    Robbins, Mike E. Payne, Valerie B.S.; Tommasi, Ellen B.S.; Diz, Debra I.; Hsu, Fang-Chi; Brown, William R.; Wheeler, Kenneth T.; Olson, John; Zhao Weiling

    2009-02-01

    Purpose: We hypothesized that administration of the angiotensin type 1 (AT1) receptor antagonist, L-158,809, to young adult male rats would prevent or ameliorate fractionated whole-brain irradiation (WBI)-induced cognitive impairment. Materials and Methods: Groups of 80 young adult male Fischer 344 x Brown Norway (F344xBN) rats, 12-14 weeks old, received either: (1) fractionated WBI; 40 Gy of {gamma} rays in 4 weeks, 2 fractions/week, (2) sham-irradiation; (3) WBI plus L-158,809 (20 mg/L drinking water) starting 3 days prior, during, and for 14, 28, or 54 weeks postirradiation; and (4) sham-irradiation plus L-158,809 for 14, 28, or 54 weeks postirradiation. An additional group of rats (n = 20) received L-158,809 before, during, and for 5 weeks postirradiation, after which they received normal drinking water up to 28 weeks postirradiation. Results: Administration of L-158,809 before, during, and for 28 or 54 weeks after fractionated WBI prevented or ameliorated the radiation-induced cognitive impairment observed 26 and 52 weeks postirradiation. Moreover, giving L-158,809 before, during, and for only 5 weeks postirradiation ameliorated the significant cognitive impairment observed 26 weeks postirradiation. These radiation-induced cognitive impairments occurred without any changes in brain metabolites or gross histologic changes assessed at 28 and 54 weeks postirradiation, respectively. Conclusions: Administering L-158,809 before, during, and after fractionated WBI can prevent or ameliorate the chronic, progressive, cognitive impairment observed in rats at 26 and 52 weeks postirradiation. These findings offer the promise of improving the quality of life for brain tumor patients.

  10. Prevention of haloperidol-induced alterations in brain acetylcholinesterase activity by vitamins B co-administration in a rodent model of tardive dyskinesia.

    PubMed

    de Oliveira, Gersilene Valente; Gomes, Patrícia Xavier Lima; de Araújo, Fernanda Yvelize Ramos; Vasconcelos, Silvânia Maria Mendes; Júnior, Hélio Vitoriano Nobre; de Sousa, Francisca Cléa Florenço; de Lucena, David F; Hyphantis, Thomas N; Carvalho, André Férrer; Macêdo, Danielle Silveira

    2013-03-01

    Tardive dyskinesia (TD) is an iatrogenic syndrome being a significant adverse outcome of typical and atypical antipsychotic therapy. Recently we demonstrated that vitamins B (B1, B6, B12 alone or in combination) were able to prevent haloperidol-induced orofacial dyskinesia (OD) possibly by their antioxidant activity in the striatum, using a well-established model of TD. Here, based on the fact that alterations in cholinergic neurotransmission are related to TD pathophysiology and that vitamins B seems to influence brain cholinergic neurotransmission, we decided to investigate the effects of vitamins B1, B6, B12 and their association, vitamin B cocktail in haloperidol-induced cholinergic alterations, evaluated by alterations in acetylcholinesterase (AChE) activity, in striatum, prefrontal cortex and hippocampus, as a way to determine the participation of cholinergic neurotransmission, in these vitamins antidyskinetic mechanism. Haloperidol 1 mg/kg i.p. daily administration during 21 days to Wistar rats caused OD while decreased AChE activity in all brain areas studied. Vitamins B administration (B1:B6:B12 at 60:60:0.6 mg/kg, s.c) alone and vitamin B cocktail co-administered with haloperidol prevented OD development and increased AChE activity in all brain areas studied, with the maximum activity increment observed in the hippocampus of the animals co-treated with vitamin B12 and vitamin B cocktail. The antidyskinetic drug, clozapine did not induce OD and increased AChE activity similarly to the groups coadministered with vitamin B and HAL. The present data suggest that vitamins B can prevent haloperidol-induced alterations in AChE activity what can be related to the mechanism underlying their antidyskinetic effect.

  11. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by methionine without lowering homocysteine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely believed to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate ...

  12. Role of aqueous extract of Cynodon dactylon in prevention of carbofuran- induced oxidative stress and acetylcholinesterase inhibition in rat brain.

    PubMed

    Rai, D K; Sharma, R K; Rai, P K; Watal, G; Sharma, B

    2011-02-12

    The present study was designed to investigate the ameliorating effect of aqueous extract of C. dactylon on carbofuran induced oxidative stress (OS) and alterations in the activity of acetylcholinesterase (AChE) in the brain of rats. Vitamin C was used as a positive control. Wistar rats were administered with single sub-acute oral dose (1.6 mgkg-1 b.wt.) of carbofuran for 24 h. The OS parameters such as lipid peroxidation (LPO) and the activities of antioxidant enzymes including super oxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), and that of AChE were studied in brain. Carbofuran treatment significantly increased the activities of SOD and CAT by 75 and 60%, respectively. It also induced the level of LPO by 113%. In contrast, the activities of GST and AChE were recorded to be diminished by 25 and 33%, respectively. Pretreatment of the rats with aqueous extract of C. dactylon (oral; 500mgkg-1) restored SOD activity completely but CAT activity only partially (7%). Carbofuran induced LPO was moderated by 95% in the brain of C. dactylon treated rats. The observed changes in OS parameters in C. dactylon treated group were comparable to that observed in vitamin C (200 mg-kg-1 b. wt.) treated group. Surprisingly, C. dactylon treatment significantly recovered the activity of AChE to a similar level as observed in the brain of control group. In contrast vitamin C treatment did not cause significant change in the activity of AChE in carbofuran treated group. There were no noticeable changes in the aforementioned study parameters in the brain of rats receiving C. dactylon and vitamin C, only. The results suggest that the study is extremely important in the context of development of new anticholinestesterase and antioxidant antidotes against carbofuran from C. dactylon.

  13. Preservation of Cellular Glutathione Status and Mitochondrial Membrane Potential by N-Acetylcysteine and Insulin Sensitizers Prevent Carbonyl Stress-Induced Human Brain Endothelial Cell Apoptosis

    PubMed Central

    Okouchi, Masahiro; Okayama, Naotsuka; Aw, Tak Yee

    2011-01-01

    Oxidative stress-induced cerebral endothelial cell dysfunction is associated with cerebral microvascular complication of primary diabetic encephaolopathy, a neurodegenerative disorder of long-standing diabetes, but the injury mechanisms are poorly understood. This study sought to determine the contribution of carbonyl (methylglyoxal, MG) stress to human brain endothelial cell (IHEC) apoptosis, the relationship to cellular redox status and mitochondrial membrane potential, and the protection by thiol antioxidant and insulin sensitizers. MG exposure induced IHEC apoptosis in association with perturbed cellular glutathione (GSH) redox status, decreased mitochondrial membrane potential (Δψm), activation of caspase-9 and -3, and cleavage of polyADP-ribose polymerase. Insulin sensitizers such as biguanides or AMP-activated protein kinase activator, but not glitazones, afforded cytoprotection through preventing Δψm collapse and activation of caspase-9 that was independent of cellular GSH. Similarly, cyclosporine A prevented Δψm collapse, while N-acetylcysteine (NAC) mediated the recovery of cellular GSH redox balance that secondarily preserved Δψm. Collectively, these results provide mechanistic insights into the role of GSH redox status and mitochondrial potential in carbonyl stress-induced apoptosis of brain endothelial cells, with implications for cerebral microvascular complications associated with primary diabetic encephalopathy. The findings that thiol antioxidant and insulin sensitizers afforded cytoprotection suggest potential therapeutic approaches. PMID:19807652

  14. Regular consumption of a silicic acid-rich water prevents aluminium-induced alterations of nitrergic neurons in mouse brain: histochemical and immunohistochemical studies.

    PubMed

    Foglio, E; Buffoli, B; Exley, C; Rezzani, R; Rodella, L F

    2012-08-01

    Silicon is not generally considered an essential nutrient for mammals and, to date, whether it has a biological role or beneficial effects in humans is not known. The results of a number of studies suggest that dietary silicon supplementation might have a protective effect both for limiting aluminium absorption across the gut and for the removal of systemic aluminium via the urine, hence, preventing potential accumulation of aluminium in the brain. Since our previous studies demonstrated that aluminium exposure reduces the number of nitrergic neurons, the aim of the present study was to compare the distribution and the morphology of NO-containing neurons in brain cortex of mice exposed to aluminium sulphate dissolved in silicic acid-rich or poor drinking water to assess the potential protective role of silicon against aluminium toxicity in the brain. NADPH-d histochemistry and nNOS immunohistochemistry showed that high concentrations of silicon in drinking water were able to minimize the impairment of the function of nitrergic neurons induced by aluminium administration. We found that silicon protected against aluminium-induced damage to the nitrergic system: in particular, we demonstrated that silicon maintains the number of nitrergic neurons and their expression of nitrergic enzymes at physiological levels, even after a 12 and 15 month exposure to aluminium.

  15. Alterations in sociability and functional brain connectivity caused by early-life seizures are prevented by bumetanide.

    PubMed

    Holmes, Gregory L; Tian, Chengju; Hernan, Amanda E; Flynn, Sean; Camp, Devon; Barry, Jeremy

    2015-05-01

    There is a well-described association between infantile epilepsy and pervasive cognitive and behavioral deficits, including a high incidence of autism spectrum disorders. Despite the robustness of the relationship between early-life seizures and the development of autism, the pathophysiological mechanism by which this occurs has not been explored. As a result of increasing evidence that autism is a disorder of brain connectivity we hypothesized that early-life seizures would interrupt normal brain connectivity during brain maturation and result in an autistic phenotype. Normal rat pups underwent recurrent flurothyl-induced seizures from postnatal (P)days 5-14 and then tested, along with controls, for developmental alterations of development brain oscillatory activity from P18-P25. Specifically we wished to understand how normal changes in rhythmicity in and between brain regions change as a function of age and if this rhythmicity is altered or interrupted by early life seizures. In rat pups with early-life seizures, field recordings from dorsal and ventral hippocampus and prefrontal cortex demonstrated marked increase in coherence as well as a decrease in voltage correlation at all bandwidths compared to controls while there were minimal differences in total power and relative power spectral densities. Rats with early-life seizures had resulting impairment in the sociability and social novelty tests but demonstrated no evidence of increased activity or generalized anxiety as measured in the open field. In addition, rats with early-life seizures had lower seizure thresholds than controls, indicating long-standing alterations in the excitatory/inhibition balance. Bumetanide, a pharmacological agent that blocks the activity of NKCC1 and induces a significant shift of ECl toward more hyperpolarized values, administration at the time of the seizures precluded the subsequent abnormalities in coherence and voltage correlation and resulted in normal sociability and seizure

  16. Alterations in sociability and functional brain connectivity caused by early-life seizures are prevented by bumetanide.

    PubMed

    Holmes, Gregory L; Tian, Chengju; Hernan, Amanda E; Flynn, Sean; Camp, Devon; Barry, Jeremy

    2015-05-01

    There is a well-described association between infantile epilepsy and pervasive cognitive and behavioral deficits, including a high incidence of autism spectrum disorders. Despite the robustness of the relationship between early-life seizures and the development of autism, the pathophysiological mechanism by which this occurs has not been explored. As a result of increasing evidence that autism is a disorder of brain connectivity we hypothesized that early-life seizures would interrupt normal brain connectivity during brain maturation and result in an autistic phenotype. Normal rat pups underwent recurrent flurothyl-induced seizures from postnatal (P)days 5-14 and then tested, along with controls, for developmental alterations of development brain oscillatory activity from P18-P25. Specifically we wished to understand how normal changes in rhythmicity in and between brain regions change as a function of age and if this rhythmicity is altered or interrupted by early life seizures. In rat pups with early-life seizures, field recordings from dorsal and ventral hippocampus and prefrontal cortex demonstrated marked increase in coherence as well as a decrease in voltage correlation at all bandwidths compared to controls while there were minimal differences in total power and relative power spectral densities. Rats with early-life seizures had resulting impairment in the sociability and social novelty tests but demonstrated no evidence of increased activity or generalized anxiety as measured in the open field. In addition, rats with early-life seizures had lower seizure thresholds than controls, indicating long-standing alterations in the excitatory/inhibition balance. Bumetanide, a pharmacological agent that blocks the activity of NKCC1 and induces a significant shift of ECl toward more hyperpolarized values, administration at the time of the seizures precluded the subsequent abnormalities in coherence and voltage correlation and resulted in normal sociability and seizure

  17. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    PubMed

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. PMID:25445491

  18. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    PubMed

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation.

  19. Caffeic acid phenethyl ester prevents apoptotic cell death in the developing rat brain after pentylenetetrazole-induced status epilepticus.

    PubMed

    Yiş, Uluç; Topçu, Yasemin; Özbal, Seda; Tuğyan, Kazım; Bayram, Erhan; Karakaya, Pakize; Yilmaz, Osman; Kurul, Semra Hız

    2013-11-01

    Population-based studies suggest that seizure incidence is highest during the first year of life, and early-life seizures frequently result in the development of epilepsy and behavioral alterations later in life. The early-life insults like status epilepticus often lead to epileptogenesis, a process in which initial brain injury triggers cascades of molecular, cellular, and network changes and eventually spontaneous seizures. Caffeic acid phenethyl ester is an active component of propolis obtained from honeybees and has neuroprotective properties. The aim of this study was to investigate whether caffeic acid phenethyl ester exerts neuroprotective effects on the developing rat brain after status epilepticus. Twenty-one dams reared Wistar male rats, and 21-day-old rats were divided into three groups: control group, pentylenetetrazole-induced status epilepticus group, and caffeic acid phenethyl ester-treated group. Status epilepticus was induced on the first day of experiment. Caffeic acid phenethyl ester injections (30 mg/kg intraperitoneally) started 40 min after the tonic phase of status epilepticus was reached, and the injections of caffeic acid phenethyl ester were repeated over 5 days. Rats were sacrificed, and brain tissues were collected on the 5th day of experiment after the last injection of caffeic acid phenethyl ester. Apoptotic cell death was evaluated. Histopathological examination showed that caffeic acid phenethyl ester significantly preserved the number of neurons in the CA1, CA3, and dentate gyrus regions of the hippocampus and the prefrontal cortex. It also diminished apoptosis in the hippocampus and the prefrontal cortex. In conclusion, this experimental study suggests that caffeic acid phenethyl ester administration may be neuroprotective in status epilepticus in the developing rat brain.

  20. Baclofen prevented the changes in c-Fos and brain-derived neutrophic factor expressions during mecamylamine-precipitated nicotine withdrawal in mice.

    PubMed

    Varani, Andrés P; Moutinho Machado, Lirane; Balerio, Graciela N

    2014-11-01

    Previous studies from our laboratory showed that baclofen (BAC, GABAB receptor agonist) prevented the behavioral and neurochemical alterations of nicotine (NIC) withdrawal syndrome. To further investigate the mechanisms underlying these effects, we analyzed the c-Fos and brain-derived neutrophic factor (BDNF) expression during NIC withdrawal and its prevention with BAC. Swiss-Webster mice received NIC (2.5 mg/kg, sc) four times daily, for 7 days. On the 8th day, NIC-treated mice received the nicotinic antagonist mecamylamine (MEC; 2 mg/kg, i.p.) 1 h after the last dose of NIC. A second group of NIC-treated mice received BAC (2 mg/kg, i.p.) prior to MEC administration. Thirty minutes after MEC, mice were sacrificed and the immunohistochemistry assays (c-Fos and BDNF) were performed at different anatomical levels. c-Fos expression decreased in the dentate gyrus of the hippocampus (DG) and the bed nucleus of the stria terminalis (BST), and increased in the habenular (Hb), accumbens shell (AcbSh) nuclei during NIC withdrawal. BAC re-established the modified c-Fos expression only in the DG, BST and AcbSh during NIC withdrawal. Conversely, BDNF expression decreased in the CA1 and CA3 area of the hippocampus, the Hb, and caudate putamen (CPu) during NIC withdrawal. Finally, BAC restored the decreased BDNF expression during NIC withdrawal in the CA1, CA3, Hb, and CPu. The results suggest a relationship between BAC's preventive effect of the expression of NIC withdrawal signs, and its ability to restore the changes in c-Fos and BDNF expression, observed in specific brain areas of NIC-withdrawn mice.

  1. Environmental enrichment counters cocaine abstinence-induced stress and brain reactivity to cocaine cues but fails to prevent the incubation effect

    PubMed Central

    Thiel, Kenneth J.; Painter, Michael R.; Pentkowski, Nathan S.; Mitroi, Danut; Crawford, Cynthia A.; Neisewander, Janet L.

    2011-01-01

    Environmental enrichment (EE) during a period of forced abstinence attenuates incentive motivational effects of cocaine-paired stimuli. Here we examined whether EE during forced abstinence from cocaine self-administration would prevent time-dependent increases in cue-elicited cocaine-seeking behavior (i.e., the incubation effect). Rats were trained to self-administer cocaine, which was paired with light/tone cues, for 15 days while living in isolated conditions (IC). Controls received yoked saline infusions. Subsequently, rats were assigned to live in either continued IC or EE for either 1 or 21 days of forced abstinence prior to a test for cocaine-seeking behavior. During testing, responding resulted only in presentation of the light/tone cues. Contrary to our prediction, cocaine-seeking behavior increased over time regardless of living condition during abstinence; however, EE attenuated cocaine-seeking behavior relative to IC regardless of length of abstinence. Brains were harvested and trunk blood was collected immediately after the 60-min test and later assayed. Results indicated that short-term EE elevated hippocampal brain-derived neurotrophic factor and reduced plasma corticosterone compared to IC. Furthermore, 21 days of EE during forced abstinence prevented increases in the cue-elicited amygdala phosphorylated extracellular signal-regulated kinase expression that was observed in IC rats. These findings suggest that EE attenuates incentive motivational effects of cocaine cues through a mechanism other than preventing the incubation effect, perhaps involving reduction of stress and neural activity in response to cocaine-paired cues during acute withdrawal. PMID:21812872

  2. Brain tumor - children

    MedlinePlus

    ... symptoms, and improve brain function or the child's comfort. Surgery is needed for most primary brain tumors. ... Anticonvulsants to reduce or prevent seizures Pain medicines Comfort measures, safety measures, physical therapy, occupational therapy, and ...

  3. Tat-PRAS40 prevent hippocampal HT-22 cell death and oxidative stress induced animal brain ischemic insults.

    PubMed

    Shin, Min Jea; Kim, Dae Won; Jo, Hyo Sang; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Kim, Ji An; Hwang, Jung Soon; Sohn, Eun Jeong; Jeong, Ji-Heon; Kim, Duk-Soo; Kwon, Hyeok Yil; Cho, Yong-Jun; Lee, Keunwook; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2016-08-01

    Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia. We showed that Tat-PRAS40 transduced into HT-22 cells, and significantly protected against cell death by reducing the levels of H2O2 and derived reactive species, and DNA fragmentation as well as via the regulation of Bcl-2, Bax, and caspase 3 expression levels in H2O2 treated cells. Also, we showed that transduced Tat-PARS40 protein markedly increased phosphorylated RRAS40 expression levels and 14-3-3σ complex via the Akt signaling pathway. In an animal ischemia model, Tat-PRAS40 effectively transduced into the hippocampus in animal brain and significantly protected against neuronal cell death in the CA1 region. We showed that Tat-PRAS40 protein effectively transduced into hippocampal neuronal cells and markedly protected against neuronal cell damage. Therefore, we suggest that Tat-PRAS40 protein may be used as a therapeutic protein for ischemia and oxidative stress-induced brain disorders.

  4. A novel conjugate of low-molecular-weight heparin and Cu,Zn-superoxide dismutase: study on its mechanism in preventing brain reperfusion injury after ischemia in gerbils.

    PubMed

    Qi, Jingzong; Li, Yizhao; Zhang, Hongwei; Cheng, Yanna; Sung, Yongfu; Cao, Jichao; Zhao, Ying; Wang, Fengshan

    2009-03-13

    Low-molecular-weight heparin (LMWH) and Cu,Zn-superoxide dismutase (SOD) were extensively investigated on preventing brain reperfusion injury after ischemia (BRII) in the past few years and both exhibited some advantages as well as limits in practice. To explore whether chemical modification for LMWH and SOD can lead to improved bioactivity,in our present study, we examined the efficacy of LMWH conjugated SOD (LMWH−SOD) in the model of BRII gerbils. Ischemia/reperfusion was performed for 5 min by clamping the bilateral common carotid arteries of gerbils. LMWH−SOD, SOD and the mixture of LMWH and SOD (LMWH+SOD) were administered intravenously to corresponding animals just before ischemia. 24 h after reperfusion, serum malondialdehyde (MDA) content and SOD activity were measured, the expression of intercellular adhesion molecule-1 (ICAM-1) was examined by immunohistochemistry, and the brain sections were processed for Nissl staining and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling.The results showed that LMWH−SOD significantly lowered MDA content (P<0.001, versus SOD and LMWH+SOD) and elevated SOD activity (P<0.05, versus SOD and LMWH+SOD) in the serum of BRII gerbils. Immunohistochemical results indicated ICAM-1 positive staining was lighter, pyramidal cells of hippocampal CA1 region were more regular and the changes in cell edema were minor, and apoptosis of hippocampal cells was milder in LMWH−SOD treated animals than in SOD or LMWH+SOD treated animals, untreated BRII animals and sham-operated animals. The results suggest that the novel LMWH−SOD conjugate can inhibit upregulation of ICAM-1 and prevent neuronal cell apoptosis in BRII gerbils, and the LMWH−SOD conjugate has better anti-inflammatory and neuroprotective effects in BRII than native SOD and the mixture of LMWH and SOD.

  5. Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood–brain barrier function in wild-type mice

    PubMed Central

    2013-01-01

    Background Emerging evidence suggests that disturbances in the blood–brain barrier (BBB) may be pivotal to the pathogenesis and pathology of vascular-based neurodegenerative disorders. Studies suggest that heightened systemic and central inflammations are associated with BBB dysfunction. This study investigated the effect of the anti-inflammatory nutraceuticals garlic extract-aged (GEA), alpha lipoic acid (ALA), niacin, and nicotinamide (NA) in a murine dietary-induced model of BBB dysfunction. Methods C57BL/6 mice were fed a diet enriched in saturated fatty acids (SFA, 40% fat of total energy) for nine months to induce systemic inflammation and BBB disturbances. Nutraceutical treatment groups included the provision of either GEA, ALA, niacin or NA in the positive control SFA-group and in low-fat fed controls. Brain parenchymal extravasation of plasma derived immunoglobulin G (IgG) and large macromolecules (apolipoprotein (apo) B lipoproteins) measured by quantitative immunofluorescent microscopy, were used as markers of disturbed BBB integrity. Parenchymal glial fibrillar acidic protein (GFAP) and cyclooxygenase-2 (COX-2) were considered in the context of surrogate markers of neurovascular inflammation and oxidative stress. Total anti-oxidant status and glutathione reductase activity were determined in plasma. Results Brain parenchymal abundance of IgG and apoB lipoproteins was markedly exaggerated in mice maintained on the SFA diet concomitant with significantly increased GFAP and COX-2, and reduced systemic anti-oxidative status. The nutraceutical GEA, ALA, niacin, and NA completely prevented the SFA-induced disturbances of BBB and normalized the measures of neurovascular inflammation and oxidative stress. Conclusions The anti-inflammatory nutraceutical agents GEA, ALA, niacin, or NA are potent inhibitors of dietary fat-induced disturbances of BBB induced by systemic inflammations. PMID:23782872

  6. Administration of the peroxisomal proliferator-activated receptor {gamma} agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment

    SciTech Connect

    Zhao Weiling; Payne, Valerie; Tommasi, Ellen; Diz, Debra I.; Hsu, F.-C.; Robbins, Mike E. . E-mail: mrobbins@wfubmc.edu

    2007-01-01

    Purpose: We hypothesized that administration of the anti-inflammatory peroxisomal proliferator-activated receptor {gamma} (PPAR{gamma}) agonist pioglitazone (Pio) to adult male rats would inhibit radiation-induced cognitive impairment. Methods and Materials: Young adult male F344 rats received one of the following: (1) fractionated whole brain irradiation (WBI); 40 or 45 Gy {gamma}-rays in 4 or 4.5 weeks, respectively, two fractions per week and normal diet; (2) sham-irradiation and normal diet; (3) WBI plus Pio (120 ppm) before, during, and for 4 or 54 weeks postirradiation; (4) sham-irradiation plus Pio; or (5) WBI plus Pio starting 24h after completion of WBI. Results: Administration of Pio before, during, and for 4 or 54 weeks after WBI prevented Radiation-induced cognitive impairment. Administration of Pio for 54 weeks starting after completion of fractionated WBI substantially but not significantly reduced Radiation-induced cognitive impairment. Conclusions: These findings offer the promise of improving the quality of life and increasing the therapeutic window for brain tumor patients.

  7. Novel role of red wine-derived polyphenols in the prevention of Alzheimer's disease dementia and brain pathology: experimental approaches and clinical implications.

    PubMed

    Pasinetti, Giulio Maria

    2012-10-01

    Recent studies suggest that by the middle of this century, as many as 14 million Americans will have Alzheimer's disease, creating an enormous strain on families, the health care system and the federal budget. There are still widespread misconceptions about issues related to the prevention and/or treatment of disease pathogenesis, leaving us unprepared to deal with the disease. To address these challenges, several therapeutic approaches are currently under investigation, mainly in an attempt to delay disease onset and eventually slow down its progression. Recent epidemiological evidence has implicated the protective role of dietary polyphenols from grape products against Alzheimer's disease. Furthermore, experimental evidence supports the hypothesis that certain bioactive grape-derived polyphenols may protect against Alzheimer's disease-type cognitive deterioration, in part by interfering with the generation and assembly of β-amyloid peptides into neurotoxic oligomeric aggregated species. Brain-targeting polyphenols have been shown to significantly reduce the generation of β-amyloid peptides in primary cortico-hippocampal neuron cultures, and preliminary results indicate that they may influence neuronal synaptic plasticity. Recent evidence has also implicated the role of certain grape-derived preparations in beneficially modulating tau neuropathology, including reducing tau aggregation. Studies suggest that dietary polyphenolics may benefit Alzheimer's disease by modulating multiple disease-modifying modalities, both β-amyloid-dependent and independent mechanisms, and provide impetus for the development of polyphenolic compounds for Alzheimer's disease prevention and/or therapy.

  8. Inhibition of Calpain Prevents Manganese-Induced Cell Injury and Alpha-Synuclein Oligomerization in Organotypic Brain Slice Cultures

    PubMed Central

    Xu, Bin; Liu, Wei; Deng, Yu; Yang, Tian-Yao; Feng, Shu; Xu, Zhao-Fa

    2015-01-01

    Overexposure to manganese has been known to promote alpha-synuclein oligomerization and enhance cellular toxicity. However, the exact mechanism of Mn-induced alpha-synuclein oligomerization is unclear. To explore whether alpha-synuclein oligomerization was associated with the cleavage of alpha-synuclein by calpain, we made a rat brain slice model of manganism and pretreated slices with calpain inhibitor II, a cell-permeable peptide that restricts the activity of calpain. After slices were treated with 400 μM Mn for 24 h, there were significant increases in the percentage of apoptotic cells, lactate dehydrogenase release, intracellular [Ca2+]i, calpain activity, and the mRNA and protein expression of calpain 1 and alpha-synuclein. Moreover, the number of C- and N-terminal fragments of alpha-synuclein and the amount of alpha-synuclein oligomerization also increased. These results also showed that calpain inhibitor II pretreatment could reduce Mn-induced nerve cell injury and alpha-synuclein oligomerization. Additionally, there was a significant decrease in the number of C- and N-terminal fragments of alpha-synuclein in calpain inhibitor II-pretreated slices. These findings revealed that Mn induced the cleavage of alpha-synuclein protein via overactivation of calpain and subsequent alpha-synuclein oligomerization in cultured slices. Moreover, the cleavage of alpha-synuclein by calpain 1 is an important signaling event in Mn-induced alpha-synuclein oligomerization. PMID:25756858

  9. NP031112, a thiadiazolidinone compound, prevents inflammation and neurodegeneration under excitotoxic conditions: potential therapeutic role in brain disorders.

    PubMed

    Luna-Medina, Rosario; Cortes-Canteli, Marta; Sanchez-Galiano, Susana; Morales-Garcia, Jose A; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2007-05-23

    Inflammation and neurodegeneration coexist in many acute damage and chronic CNS disorders (e.g., stroke, Alzheimer's disease, Parkinson's disease). A well characterized animal model of brain damage involves administration of kainic acid, which causes limbic seizure activity and subsequent neuronal death, especially in the CA1 and CA3 pyramidal cells and interneurons in the hilus of the hippocampus. Our previous work demonstrated a potent anti-inflammatory and neuroprotective effect of two thiadiazolidinones compounds, NP00111 (2,4-dibenzyl-[1,2,4]thiadiazolidine-3,5-dione) and NP01138 (2-ethyl-4-phenyl-[1,2,4]thiadiazolidine-3,5-dione), in primary cultures of cortical neurons, astrocytes, and microglia. Here, we show that injection of NP031112, a more potent thiadiazolidinone derivative, into the rat hippocampus dramatically reduces kainic acid-induced inflammation, as measured by edema formation using T2-weighted magnetic resonance imaging and glial activation and has a neuroprotective effect in the damaged areas of the hippocampus. Last, NP031112-induced neuroprotection, both in vitro and in vivo, was substantially attenuated by cotreatment with GW9662 (2-chloro-5-nitrobenzanilide), a known antagonist of the nuclear receptor peroxisome proliferator-activated receptor gamma, suggesting that the effects of NP031112 can be mediated through activation of this receptor. As such, these findings identify NP031112 as a potential therapeutic agent for the treatment of neurodegenerative disorders.

  10. [Semeiotics of incipient forms of vascular diseases of the brain and their diagnosis during preventive examinations of the population].

    PubMed

    Kuznetsova, L L

    1987-01-01

    Using formalized documentation and computerized techniques, the authors analyzed clinical, electrophysiological, and biochemical semiotics in 2180 individuals--healthy subjects, patients with subclinical and initial manifestations of cerebral circulation insufficiency, initial dyscirculatory encephalopathy developing in the presence of neurocirculatory dystonias, atherosclerosis, and arterial hypertension. The author has established characteristics of the semiotics which depend on the nature of the underlying vascular disease, the stage of the process and the patient's age. Tabulated methods and a computerized system of the diagnosis of cerebrovascular disease have been developed. They are based on the employment of a bank of clinical and physiological information used for prophylactic examinations and population screening. The social, medical and economic effectiveness of the proposed methods of the diagnosis and prevention of cerebrovascular diseases allows their recommendation for wide introduction into health care practice.

  11. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain.

    PubMed

    Ullah, Faheem; Ali, Tahir; Ullah, Najeeb; Kim, Myeong Ok

    2015-11-01

    d-galactose has been considered a senescent model for age-related neurodegenerative disease. It induces oxidative stress which triggers memory impairment, neuroinflammation and neurodegeneration. Caffeine act as anti-oxidant and has been used in various model of neurodegenerative disease. Nevertheless, the effect of caffeine against d-galactose aging murine model of age-related neurodegenerative disease elucidated. Here, we investigated the neuroprotective effect of caffeine against d-galactose. We observed that chronic treatment of caffeine (3 mg/kg/day intraperitoneally (i.p) for 60 days) improved memory impairment and synaptic markers (Synaptophysin and PSD95) in the d-galactose treated rats. Chronic caffeine treatment reduced the oxidative stress via the reduction of 8-oxoguanine through immunofluorescence in the d-galactose-treated rats. Consequently caffeine treatment suppressed stress kinases p-JNK. Additionally, caffeine treatment significantly reduced the d-galactose-induced neuroinflammation through alleviation of COX-2, NOS-2, TNFα and IL-1β. Furthermore we also analyzed that caffeine reduced cytochrome C, Bax/Bcl2 ratio, caspase-9, caspase-3 and PARP-1 level. Moreover by evaluating the immunohistochemical results of Nissl and Fluro-Jade B staining showed that caffeine prevented the neurodegeneration in the d-galactose-treated rats. Our results showed that caffeine prevents the d-galactose-induced oxidative stress and consequently alleviated neuroinflammation and neurodegeneration; and synaptic dysfunction and memory impairment. Therefore, we could suggest that caffeine might be a dietary anti-oxidant agent and a good candidate for the age-related neurodegenerative disorders.

  12. CXCL9 Is Important for Recruiting Immune T Cells into the Brain and Inducing an accumulation of the T Cells to the areas of tachyzoite proliferation to prevent reactivation of chronic cerebral infection with Toxoplasma gondii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T cells are required to maintain the latency of chronic infection with Toxoplasma gondii in the brain. In the present study, we examined the role of non-ELR (glutamic acid-leucine-arginine) CXC chemokine CXCL9 for T cell recruitment to prevent reactivation of infection with T. gondii. SCID mice were...

  13. EphrinB3 blocks EphB3 dependence receptor functions to prevent cell death following traumatic brain injury.

    PubMed

    Theus, M H; Ricard, J; Glass, S J; Travieso, L G; Liebl, D J

    2014-05-08

    Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have a variety of roles in the developing and adult central nervous system that require direct cell-cell interactions; including regulating axon path finding, cell proliferation, migration and synaptic plasticity. Recently, we identified a novel pro-survival role for ephrins in the adult subventricular zone, where ephrinB3 blocks Eph-mediated cell death during adult neurogenesis. Here, we examined whether EphB3 mediates cell death in the adult forebrain following traumatic brain injury and whether ephrinB3 infusion could limit this effect. We show that EphB3 co-labels with microtubule-associated protein 2-positive neurons in the adult cortex and is closely associated with ephrinB3 ligand, which is reduced following controlled cortical impact (CCI) injury. In the complete absence of EphB3 (EphB3(-/-)), we observed reduced terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL), and functional improvements in motor deficits after CCI injury as compared with wild-type and ephrinB3(-/-) mice. We also demonstrated that EphB3 exhibits dependence receptor characteristics as it is cleaved by caspases and induces cell death, which is not observed in the presence of ephrinB3. Following trauma, infusion of pre-clustered ephrinB3-Fc molecules (eB3-Fc) into the contralateral ventricle reduced cortical infarct volume and TUNEL staining in the cortex, dentate gyrus and CA3 hippocampus of wild-type and ephrinB3(-/-) mice, but not EphB3(-/-) mice. Similarly, application of eB3-Fc improved motor functions after CCI injury. We conclude that EphB3 mediates cell death in the adult cortex through a novel dependence receptor-mediated cell death mechanism in the injured adult cortex and is attenuated following ephrinB3 stimulation.

  14. Using an eHealth Intervention to Stimulate Health Behavior for the Prevention of Cognitive Decline in Dutch Adults: A Study Protocol for the Brain Aging Monitor

    PubMed Central

    2015-01-01

    Background Internet-delivered intervention programs are an effective way of changing health behavior in an aging population. The same population has an increasing number of people with cognitive decline or cognitive impairments. Modifiable lifestyle risk factors such as physical activity, nutrition, smoking, alcohol consumption, sleep, and stress all influence the probability of developing neurodegenerative diseases such as Alzheimer’s disease. Objective This study aims to answer two questions: (1) Is the use of a self-motivated, complex eHealth intervention effective in changing multiple health behaviors related to cognitive aging in Dutch adults in the work force, especially those aged 40 and over? and (2) Does this health behavior change result in healthier cognitive aging patterns and contribute to preventing or delaying future onset of neurodegenerative syndromes? Methods The Brain Aging Monitor study uses a quasi-experimental 2-year pre-posttest design. The Brain Aging Monitor is an online, self-motivated lifestyle intervention program. Recruitment is done both in medium to large organizations and in the Dutch general population over the age of 40. The main outcome measure is the relationship between lifestyle change and cognitive aging. The program uses different strategies and modalities such as Web content, email, online newsletters, and online games to aid its users in behavior change. To build self-regulatory skills, the Brain Aging Monitor offers its users goal-setting activities, skill-building activities, and self-monitoring. Results Study results are expected to be published in early 2016. Conclusions This study will add to the body of evidence on the effectiveness of eHealth intervention programs with the combined use of state-of-the-art applied games and established behavior change techniques. This will lead to new insights on how to use behavior change techniques and theory in multidimensional lifestyle eHealth research, and how these techniques

  15. Paliperidone Prevents Brain Toll-Like Receptor 4 Pathway Activation and Neuroinflammation in Rat Models of Acute and Chronic Restraint Stress

    PubMed Central

    MacDowell, KS; Caso, JR; Martín-Hernández, D; Madrigal, JL; Leza, JC

    2015-01-01

    Background: Alterations in the innate immune/inflammatory system have been proposed to underlie the pathophysiology of psychotic disease, but the mechanisms implicated remain elusive. The main agents of the innate immunity are the family of toll-like receptors (TLRs), which detect circulating pathogen-associated molecular patterns and endogenous damage-associated molecular patterns (DAMPS). Current antipsychotics are able to modulate pro- and anti-inflammatory pathways, but their actions on TLRs remain unexplored. Methods: This study was conducted to elucidate the effects of paliperidone (1mg/Kg i.p.) on acute (6 hours) and chronic (6 hours/day during 21 consecutive days) restraint stress–induced TLR-4 pathway activation and neuroinflammation, and the possible mechanism(s) related (bacterial translocation and/or DAMPs activation). The expression of the elements of a TLR-4-dependent proinflammatory pathway was analyzed at the mRNA and protein levels in prefrontal cortex samples. Results: Paliperidone pre-treatment prevented TLR-4 activation and neuroinflammation in the prefrontal cortices of stressed rats. Regarding the possible mechanisms implicated, paliperidone regulated stress-induced increased intestinal inflammation and plasma lipopolysaccharide levels. In addition, paliperidone also prevented the activation of the endogenous activators of TLR-4 HSP70 and HGMB-1. Conclusions: Our results showed a regulatory role of paliperidone on brain TLR-4, which could explain the therapeutic benefits of its use for the treatment of psychotic diseases beyond its effects on dopamine and serotonin neurotransmission. The study of the mechanisms implicated suggests that gut-increased permeability, inflammation, and bacterial translocation of Gram-negative microflora and HSP70 and HGMB1 expression could be potential adjuvant therapeutic targets for the treatment of psychotic and other stress-related psychiatric pathologies. PMID:25522409

  16. Brain-derived neurotrophic factor prevents changes in Bcl-2 family members and caspase-3 activation induced by excitotoxicity in the striatum.

    PubMed

    Pérez-Navarro, Esther; Gavaldà, Núria; Gratacòs, Elena; Alberch, Jordi

    2005-02-01

    Brain-derived neurotrophic factor (BDNF) prevents the loss of striatal neurons caused by excitotoxicity. We examined whether these neuroprotective effects are mediated by changes in the regulation of Bcl-2 family members. We first analyzed the involvement of the phosphatidylinositol 3-kinase/Akt pathway in this regulation, showing a reduction in phosphorylated Akt (p-Akt) levels after both quinolinate (QUIN, an NMDA receptor agonist) and kainate (KA, a non-NMDA receptor agonist) intrastriatal injection. Our results also show that Bcl-2, Bcl-x(L) and Bax protein levels and heterodimerization are selectively regulated by NMDA and non-NMDA receptor stimulation. Striatal cell death induced by QUIN is mediated by an increase in Bax and a decrease in Bcl-2 protein levels, leading to reduced levels of Bax:Bcl-2 heterodimers. In contrast, changes in Bax protein levels are not required for KA-induced apoptotic cell death, but decreased levels of both Bax:Bcl-2 and Bax:Bcl-x(L) heterodimer levels are necessary. Furthermore, QUIN and KA injection activated caspase-3. Intrastriatal grafting of a BDNF-secreting cell line counter-regulated p-AKT, Bcl-2, Bcl-x(L) and Bax protein levels, prevented changes in the heterodimerization between Bax and pro-survival proteins, and blocked caspase-3 activation induced by excitotoxicity. These results provide a possible mechanism to explain the anti-apoptotic effect of BDNF against to excitotoxicity in the striatum through the regulation of Bcl-2 family members, which is probably mediated by Akt activation.

  17. A multi-ingredient dietary supplement abolishes large-scale brain cell loss, improves sensory function, and prevents neuronal atrophy in aging mice.

    PubMed

    Lemon, J A; Aksenov, V; Samigullina, R; Aksenov, S; Rodgers, W H; Rollo, C D; Boreham, D R

    2016-06-01

    Transgenic growth hormone mice (TGM) are a recognized model of accelerated aging with characteristics including chronic oxidative stress, reduced longevity, mitochondrial dysfunction, insulin resistance, muscle wasting, and elevated inflammatory processes. Growth hormone/IGF-1 activate the Target of Rapamycin known to promote aging. TGM particularly express severe cognitive decline. We previously reported that a multi-ingredient dietary supplement (MDS) designed to offset five mechanisms associated with aging extended longevity, ameliorated cognitive deterioration and significantly reduced age-related physical deterioration in both normal mice and TGM. Here we report that TGM lose more than 50% of cells in midbrain regions, including the cerebellum and olfactory bulb. This is comparable to severe Alzheimer's disease and likely explains their striking age-related cognitive impairment. We also demonstrate that the MDS completely abrogates this severe brain cell loss, reverses cognitive decline and augments sensory and motor function in aged mice. Additionally, histological examination of retinal structure revealed markers consistent with higher numbers of photoreceptor cells in aging and supplemented mice. We know of no other treatment with such efficacy, highlighting the potential for prevention or amelioration of human neuropathologies that are similarly associated with oxidative stress, inflammation and cellular dysfunction. Environ. Mol. Mutagen. 57:382-404, 2016. © 2016 Wiley Periodicals, Inc. PMID:27199101

  18. In Alzheimer's Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial.

    PubMed

    Gejl, Michael; Gjedde, Albert; Egefjord, Lærke; Møller, Arne; Hansen, Søren B; Vang, Kim; Rodell, Anders; Brændgaard, Hans; Gottrup, Hanne; Schacht, Anna; Møller, Niels; Brock, Birgitte; Rungby, Jørgen

    2016-01-01

    In animal models, the incretin hormone GLP-1 affects Alzheimer's disease (AD). We hypothesized that treatment with GLP-1 or an analog of GLP-1 would prevent accumulation of Aβ and raise, or prevent decline of, glucose metabolism (CMRglc) in AD. In this 26-week trial, we randomized 38 patients with AD to treatment with the GLP-1 analog liraglutide (n = 18), or placebo (n = 20). We measured Aβ load in brain with tracer [(11)C]PIB (PIB), CMRglc with [(18)F]FDG (FDG), and cognition with the WMS-IV scale (ClinicalTrials.gov NCT01469351). The PIB binding increased significantly in temporal lobe in placebo and treatment patients (both P = 0.04), and in occipital lobe in treatment patients (P = 0.04). Regional and global increases of PIB retention did not differ between the groups (P ≥ 0.38). In placebo treated patients CMRglc declined in all regions, significantly so by the following means in precuneus (P = 0.009, 3.2 μmol/hg/min, 95% CI: 5.45; 0.92), and in parietal (P = 0.04, 2.1 μmol/hg/min, 95% CI: 4.21; 0.081), temporal (P = 0.046, 1.54 μmol/hg/min, 95% CI: 3.05; 0.030), and occipital (P = 0.009, 2.10 μmol/hg/min, 95% CI: 3.61; 0.59) lobes, and in cerebellum (P = 0.04, 1.54 μmol/hg/min, 95% CI: 3.01; 0.064). In contrast, the GLP-1 analog treatment caused a numerical but insignificant increase of CMRglc after 6 months. Cognitive scores did not change. We conclude that the GLP-1 analog treatment prevented the decline of CMRglc that signifies cognitive impairment, synaptic dysfunction, and disease evolution. We draw no firm conclusions from the Aβ load or cognition measures, for which the study was underpowered. PMID:27252647

  19. Early MEK1/2 Inhibition after Global Cerebral Ischemia in Rats Reduces Brain Damage and Improves Outcome by Preventing Delayed Vasoconstrictor Receptor Upregulation

    PubMed Central

    Johansson, Sara Ellinor; Larsen, Stine Schmidt; Povlsen, Gro Klitgaard; Edvinsson, Lars

    2014-01-01

    Background Global cerebral ischemia following cardiac arrest is associated with increased cerebral vasoconstriction and decreased cerebral blood flow, contributing to delayed neuronal cell death and neurological detriments in affected patients. We hypothesize that upregulation of contractile ETB and 5-HT1B receptors, previously demonstrated in cerebral arteries after experimental global ischemia, are a key mechanism behind insufficient perfusion of the post-ischemic brain, proposing blockade of this receptor upregulation as a novel target for prevention of cerebral hypoperfusion and delayed neuronal cell death after global cerebral ischemia. The aim was to characterize the time-course of receptor upregulation and associated neuronal damage after global ischemia and investigate whether treatment with the MEK1/2 inhibitor U0126 can prevent cerebrovascular receptor upregulation and thereby improve functional outcome after global cerebral ischemia. Incomplete global cerebral ischemia was induced in Wistar rats and the time-course of enhanced contractile responses and the effect of U0126 in cerebral arteries were studied by wire myography and the neuronal cell death by TUNEL. The expression of ETB and 5-HT1B receptors was determined by immunofluorescence. Results Enhanced vasoconstriction peaked in fore- and midbrain arteries 3 days after ischemia. Neuronal cell death appeared initially in the hippocampus 3 days after ischemia and gradually increased until 7 days post-ischemia. Treatment with U0126 normalised cerebrovascular ETB and 5-HT1B receptor expression and contractile function, reduced hippocampal cell death and improved survival rate compared to vehicle treated animals. Conclusions Excessive cerebrovascular expression of contractile ETB and 5-HT1B receptors is a delayed response to global cerebral ischemia peaking 3 days after the insult, which likely contributes to the development of delayed neuronal damage. The enhanced cerebrovascular contractility can be

  20. In Alzheimer’s Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial

    PubMed Central

    Gejl, Michael; Gjedde, Albert; Egefjord, Lærke; Møller, Arne; Hansen, Søren B.; Vang, Kim; Rodell, Anders; Brændgaard, Hans; Gottrup, Hanne; Schacht, Anna; Møller, Niels; Brock, Birgitte; Rungby, Jørgen

    2016-01-01

    In animal models, the incretin hormone GLP-1 affects Alzheimer’s disease (AD). We hypothesized that treatment with GLP-1 or an analog of GLP-1 would prevent accumulation of Aβ and raise, or prevent decline of, glucose metabolism (CMRglc) in AD. In this 26-week trial, we randomized 38 patients with AD to treatment with the GLP-1 analog liraglutide (n = 18), or placebo (n = 20). We measured Aβ load in brain with tracer [11C]PIB (PIB), CMRglc with [18F]FDG (FDG), and cognition with the WMS-IV scale (ClinicalTrials.gov NCT01469351). The PIB binding increased significantly in temporal lobe in placebo and treatment patients (both P = 0.04), and in occipital lobe in treatment patients (P = 0.04). Regional and global increases of PIB retention did not differ between the groups (P ≥ 0.38). In placebo treated patients CMRglc declined in all regions, significantly so by the following means in precuneus (P = 0.009, 3.2 μmol/hg/min, 95% CI: 5.45; 0.92), and in parietal (P = 0.04, 2.1 μmol/hg/min, 95% CI: 4.21; 0.081), temporal (P = 0.046, 1.54 μmol/hg/min, 95% CI: 3.05; 0.030), and occipital (P = 0.009, 2.10 μmol/hg/min, 95% CI: 3.61; 0.59) lobes, and in cerebellum (P = 0.04, 1.54 μmol/hg/min, 95% CI: 3.01; 0.064). In contrast, the GLP-1 analog treatment caused a numerical but insignificant increase of CMRglc after 6 months. Cognitive scores did not change. We conclude that the GLP-1 analog treatment prevented the decline of CMRglc that signifies cognitive impairment, synaptic dysfunction, and disease evolution. We draw no firm conclusions from the Aβ load or cognition measures, for which the study was underpowered. PMID:27252647

  1. Recommendations for Development of New Standardized Forms of Cocoa Breeds and Cocoa Extract Processing for the Prevention of Alzheimer's Disease: Role of Cocoa in Promotion of Cognitive Resilience and Healthy Brain Aging.

    PubMed

    Dubner, Lauren; Wang, Jun; Ho, Lap; Ward, Libby; Pasinetti, Giulio M

    2015-01-01

    It is currently thought that the lackluster performance of translational paradigms in the prevention of age-related cognitive deteriorative disorders, such as Alzheimer's disease (AD), may be due to the inadequacy of the prevailing approach of targeting only a single mechanism. Age-related cognitive deterioration and certain neurodegenerative disorders, including AD, are characterized by complex relationships between interrelated biological phenotypes. Thus, alternative strategies that simultaneously target multiple underlying mechanisms may represent a more effective approach to prevention, which is a strategic priority of the National Alzheimer's Project Act and the National Institute on Aging. In this review article, we discuss recent strategies designed to clarify the mechanisms by which certain brain-bioavailable, bioactive polyphenols, in particular, flavan-3-ols also known as flavanols, which are highly represented in cocoa extracts, may beneficially influence cognitive deterioration, such as in AD, while promoting healthy brain aging. However, we note that key issues to improve consistency and reproducibility in the development of cocoa extracts as a potential future therapeutic agent requires a better understanding of the cocoa extract sources, their processing, and more standardized testing including brain bioavailability of bioactive metabolites and brain target engagement studies. The ultimate goal of this review is to provide recommendations for future developments of cocoa extracts as a therapeutic agent in AD.

  2. Recommendations for Development of New Standardized Forms of Cocoa Breeds and Cocoa Extract Processing for the Prevention of Alzheimer's Disease: Role of Cocoa in Promotion of Cognitive Resilience and Healthy Brain Aging.

    PubMed

    Dubner, Lauren; Wang, Jun; Ho, Lap; Ward, Libby; Pasinetti, Giulio M

    2015-01-01

    It is currently thought that the lackluster performance of translational paradigms in the prevention of age-related cognitive deteriorative disorders, such as Alzheimer's disease (AD), may be due to the inadequacy of the prevailing approach of targeting only a single mechanism. Age-related cognitive deterioration and certain neurodegenerative disorders, including AD, are characterized by complex relationships between interrelated biological phenotypes. Thus, alternative strategies that simultaneously target multiple underlying mechanisms may represent a more effective approach to prevention, which is a strategic priority of the National Alzheimer's Project Act and the National Institute on Aging. In this review article, we discuss recent strategies designed to clarify the mechanisms by which certain brain-bioavailable, bioactive polyphenols, in particular, flavan-3-ols also known as flavanols, which are highly represented in cocoa extracts, may beneficially influence cognitive deterioration, such as in AD, while promoting healthy brain aging. However, we note that key issues to improve consistency and reproducibility in the development of cocoa extracts as a potential future therapeutic agent requires a better understanding of the cocoa extract sources, their processing, and more standardized testing including brain bioavailability of bioactive metabolites and brain target engagement studies. The ultimate goal of this review is to provide recommendations for future developments of cocoa extracts as a therapeutic agent in AD. PMID:26402120

  3. Binge ethanol exposure increases the Krüppel-like factor 11-monoamine oxidase (MAO) pathway in rats: Examining the use of MAO inhibitors to prevent ethanol-induced brain injury.

    PubMed

    Duncan, Jeremy W; Zhang, Xiao; Wang, Niping; Johnson, Shakevia; Harris, Sharonda; Udemgba, Chinelo; Ou, Xiao-Ming; Youdim, Moussa B; Stockmeier, Craig A; Wang, Jun Ming

    2016-06-01

    Binge drinking induces several neurotoxic consequences including oxidative stress and neurodegeneration. Because of these effects, drugs which prevent ethanol-induced damage to the brain may be clinically beneficial. In this study, we investigated the ethanol-mediated KLF11-MAO cell death cascade in the frontal cortex of Sprague-Dawley rats exposed to a modified Majchowicz 4-day binge ethanol model and control rats. Moreover, MAO inhibitors (MAOIs) were investigated for neuroprotective activity against binge ethanol. Binge ethanol-treated rats demonstrated a significant increase in KLF11, both MAO isoforms, protein oxidation and caspase-3, as well as a reduction in BDNF expression in the frontal cortex compared to control rats. MAOIs prevented these binge ethanol-induced changes, suggesting a neuroprotective benefit. Neither binge ethanol nor MAOI treatment significantly affected protein expression levels of the oxidative stress enzymes, SOD2 or catalase. Furthermore, ethanol-induced antinociception was enhanced following exposure to the 4-day ethanol binge. These results demonstrate that the KLF11-MAO pathway is activated by binge ethanol exposure and MAOIs are neuroprotective by preventing the binge ethanol-induced changes associated with this cell death cascade. This study supports KLF11-MAO as a mechanism of ethanol-induced neurotoxicity and cell death that could be targeted with MAOI drug therapy to alleviate alcohol-related brain injury. Further examination of MAOIs to reduce alcohol use disorder-related brain injury could provide pivotal insight to future pharmacotherapeutic opportunities.

  4. Multiple mechanisms of age-dependent accumulation of amyloid beta protein in rat brain: Prevention by dietary supplementation with N-acetylcysteine, α-lipoic acid and α-tocopherol.

    PubMed

    Sinha, Maitrayee; Bir, Aritri; Banerjee, Anindita; Bhowmick, Pritha; Chakrabarti, Sasanka

    2016-05-01

    The aged brain may be used as a tool to investigate altered metabolism of amyloid beta protein (Aβ42) that may have implications in the pathogenesis of Alzheimer's disease (AD). In the present study, we have observed a striking increase in the amyloid precursor protein (APP) level in the brain cortex of aged rats (22-24 months) along with a mild but statistically significant increase in the level of APP mRNA. Moreover, the activity of β secretase is elevated (nearly 55%) and that of neprilysin diminished (48%) in brain cortex of aged rats compared to that in young rats (4-6 months). All these changes lead to a markedly increased accumulation of Aβ42 in brain cortical tissue of aged rats. Long-term dietary supplementation of rats with a combination of N-acetylcysteine, α-lipoic and α-tocopherol from 18 months onwards daily till the sacrifice of the animals by 22-24 months, attenuates the age-related alterations in amyloid beta metabolism. In separate experiments, a significant impairment of spatial learning and memory has been observed in aged rats, and the phenomenon is remarkably prevented by the dietary supplementation of the aged animals by the same combination of N-acetylcysteine, α-lipoic acid and α-tocopherol. The results call for further explorations of this combination in suitable animal models in ameliorating AD related brain deficits.

  5. Lapatinib-loaded human serum albumin nanoparticles for the prevention and treatment of triple-negative breast cancer metastasis to the brain

    PubMed Central

    Wan, Xu; Zheng, Xiaoyao; Pang, Xiaoyin; Pang, Zhiqing; Zhao, Jingjing; Zhang, Zheming; Jiang, Tao; Xu, Wei; Zhang, Qizhi; Jiang, Xinguo

    2016-01-01

    Brain metastasis from triple-negative breast cancer (TNBC) has continued to lack effective clinical treatments until present. However, the feature of epidermal growth factor receptor (EGFR) frequently overexpressed in TNBC offers the opportunity to employ lapatinib, a dual-tyrosine kinase inhibitor of human epidermal growth factor receptor-2 (HER2) and EGFR, in the treatment of brain metastasis of TNBC. Unfortunately, the low oral bioavailability of lapatinib and drug efflux by blood-brain barrier have resulted in low drug delivery efficiency into the brain and limited therapeutic effects for patients with brain metastasis in clinical trials. To overcome such disadvantages, we developed lapatinib-loaded human serum albumin (HSA) nanoparticles, named LHNPs, by modified nanoparticle albumin-bound (Nab) technology. LHNPs had a core-shell structure and the new HSA/phosphatidylcholine sheath made LHNPs stable in bloodstream. Compared to free lapatinib, LHNPs could inhibit the adhesion, migration and invasion ability of high brain-metastatic 4T1 cells more effectively in vitro. Tissue distribution following intravenous administration revealed that LHNPs (i.v., 10 mg/kg) achieved increased delivery to the metastatic brain at 5.43 and 4.36 times the levels of Tykerb (p.o., 100 mg/kg) and lapatinib solution (LS, i.v., 10 mg/kg), respectively. Compared to the marketed Tykerb group, LHNPs had markedly better inhibition effects on brain micrometastasis and significantly extended the median survival time of 4T1 brain metastatic mice in consequence. The improved anti-tumor efficacy of LHNPs could be partly ascribed to down-regulating metastasis-related proteins. Therefore, these results clearly indicated that LHNPs could become a promising candidate for clinical applications against brain metastasis of TNBC. PMID:27086917

  6. Low-dose aspirin (acetylsalicylate) prevents increases in brain PGE2, 15-epi-lipoxin A4 and 8-isoprostane concentrations in 9 month-old HIV-1 transgenic rats, a model for HIV-1 associated neurocognitive disorders

    PubMed Central

    Blanchard, Helene C.; Taha, Ameer Y.; Rapoport, Stanley I; Yuan, Zhi-Xin

    2015-01-01

    Background Older human immunodeficiency virus (HIV)-1 transgenic rats are a model for HIV-1 associated neurocognitive disorders (HAND). They show behavioral changes, neuroinflammation, neuronal loss, and increased brain arachidonic acid (AA) enzymes. Aspirin (acetylsalicylate, ASA) inhibits AA oxidation by cyclooxygenase (COX)-1 and COX-2. Hypothesis Chronic low-dose ASA will downregulate brain AA metabolism in HIV-1 transgenic rats. Methods Nine month-old HIV-1 transgenic and wildtype rats were given 42 days of 10 mg/kg/day ASA or nothing in drinking water; eicosanoids were measured using ELISAs on microwaved brain extracts. Results Brain 15-epi-lipoxin A4 and 8-isoprostane concentrations were significantly higher in HIV-1 transgenic than wildtype rats; these differences were prevented by ASA. ASA reduced prostaglandin E2 and leukotriene B4 concentrations in HIV-1 Tg but not wildtype rats. Thromboxane B2, 15-HETE, lipoxin A4 and resolvin D1 concentrations were unaffected by genotype or treatment. Conclusion Chronic low-dose ASA reduces AA-metabolite markers of neuroinflammation and oxidative stress in a rat model for HAND. PMID:25638779

  7. A Cannabinoid Receptor 2 Agonist Prevents Thrombin-Induced Blood-Brain Barrier Damage via the Inhibition of Microglial Activation and Matrix Metalloproteinase Expression in Rats.

    PubMed

    Li, Lin; Tao, Yihao; Tang, Jun; Chen, Qianwei; Yang, Yang; Feng, Zhou; Chen, Yujie; Yang, Liming; Yang, Yunfeng; Zhu, Gang; Feng, Hua; Chen, Zhi

    2015-12-01

    Thrombin mediates the life-threatening cerebral edema and blood-brain barrier (BBB) damage that occurs after intracerebral hemorrhage (ICH). We previously found that the selective cannabinoid receptor 2 (CB2R) agonist JWH-133 reduced brain edema and neurological deficits following germinal matrix hemorrhage (GMH). We explored whether CB2R stimulation ameliorated thrombin-induced brain edema and BBB permeability as well as the possible molecular mechanism involved. A total of 144 Sprague-Dawley (S-D) rats received a thrombin (20 U) injection in the right basal ganglia. JWH-133 (1.5 mg/kg) or SR-144528 (3.0 mg/kg) and vehicle were intraperitoneally (i.p.) injected 1 h after surgery. Brain water content measurement, Evans blue (EB) extravasation, Western blot, and immunofluorescence were used to study the effects of a CB2R agonist 24 h after surgery. The results demonstrated that JWH-133 administration significantly decreased thrombin-induced brain edema and reduced the number of Iba-1-positive microglia. JWH-133 also decreased the number of P44/P42(+)/Iba-1(+) microglia, lowered Evans blue extravasation, and inhibited the elevated matrix metallopeptidase (MMP)-9 and matrix metallopeptidase (MMP)-12 activities. However, a selective CB2R antagonist (SR-144528) reversed these effects. We demonstrated that CB2R stimulation reduced thrombin-induced brain edema and alleviated BBB damage. We also found that matrix metalloproteinase suppression may be partially involved in these processes. PMID:26376816

  8. Cerebral Oedema, Blood-Brain Barrier Breakdown and the Decrease in Na(+),K(+)-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease.

    PubMed

    Rosa, Luciana; Galant, Leticia S; Dall'Igna, Dhébora M; Kolling, Janaina; Siebert, Cassiana; Schuck, Patrícia F; Ferreira, Gustavo C; Wyse, Angela T S; Dal-Pizzol, Felipe; Scaini, Giselli; Streck, Emilio L

    2016-08-01

    Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na(+),K(+)-ATPase activity, affects the permeability of the blood-brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na(+),K(+)-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na(+),K(+)-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na(+),K(+)-ATPase or through a generalized effect on the permeability of the BBB to all compounds. PMID:26133302

  9. Cerebral Oedema, Blood-Brain Barrier Breakdown and the Decrease in Na(+),K(+)-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease.

    PubMed

    Rosa, Luciana; Galant, Leticia S; Dall'Igna, Dhébora M; Kolling, Janaina; Siebert, Cassiana; Schuck, Patrícia F; Ferreira, Gustavo C; Wyse, Angela T S; Dal-Pizzol, Felipe; Scaini, Giselli; Streck, Emilio L

    2016-08-01

    Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na(+),K(+)-ATPase activity, affects the permeability of the blood-brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na(+),K(+)-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na(+),K(+)-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na(+),K(+)-ATPase or through a generalized effect on the permeability of the BBB to all compounds.

  10. Brain herniation

    MedlinePlus

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  11. Prevention of rt-PA induced blood-brain barrier component degradation by the poly(ADP-ribose)polymerase inhibitor PJ34 after ischemic stroke in mice.

    PubMed

    Teng, Fei; Beray-Berthat, Virginie; Coqueran, Bérard; Lesbats, Clémentine; Kuntz, Mélanie; Palmier, Bruno; Garraud, Marie; Bedfert, Cyrielle; Slane, Niamh; Bérézowski, Vincent; Szeremeta, Frédéric; Hachani, Johan; Scherman, Daniel; Plotkine, Michel; Doan, Bich-Thuy; Marchand-Leroux, Catherine; Margaill, Isabelle

    2013-10-01

    Recombinant tissue plasminogen activator (rt-PA) is the only pharmacological treatment approved for thrombolysis in patients suffering from ischemic stroke, but its administration aggravates the risk of hemorrhagic transformations. Experimental data demonstrated that rt-PA increases the activity of poly(ADP-ribose)polymerase (PARP). The aim of the present study was to investigate whether PJ34, a potent (PARP) inhibitor, protects the blood-brain barrier components from rt-PA toxicity. In our mouse model of cerebral ischemia, administration of rt-PA (10 mg/kg, i.v.) 6h after ischemia aggravated the post-ischemic degradation of ZO-1, claudin-5 and VE-cadherin, increased the hemorrhagic transformations (assessed by brain hemoglobin content and magnetic resonance imaging). Furthermore, rt-PA also aggravated ischemia-induced functional deficits. Combining PJ34 with rt-PA preserved the expression of ZO-1, claudin-5 and VE-cadherin, reduced the hemorrhagic transformations and improved the sensorimotor performances. In vitro studies also demonstrated that PJ34 crosses the blood-brain barrier and may thus exert its protective effect by acting on endothelial and/or parenchymal cells. Thus, co-treatment with a PARP inhibitor seems to be a promising strategy to reduce rt-PA-induced vascular toxicity after stroke.

  12. Prophylactic cranial irradiation for preventing brain metastases in patients undergoing radical treatment for non-small-cell lung cancer: A Cochrane Review

    SciTech Connect

    Lester, Jason Francis . E-mail: jason.lester@velindre-tr.wales.nhs.uk; MacBeth, Fergus R.; Coles, Bernadette

    2005-11-01

    Purpose: To investigate whether prophylactic cranial irradiation (PCI) has a role in the management of patients with non-small-cell lung cancer (NSCLC) treated with curative intent. Methods and Materials: A search strategy was designed to identify randomized controlled trials (RCTs) comparing PCI with no PCI in NSCLC patients treated with curative intent. The electronic databases MEDLINE, EMBASE, LILACS, and Cancerlit were searched, along with relevant journals, books, and review articles to identify potentially eligible trials. Four RCTs were identified and reviewed. A total of 951 patients were randomized in these RCTs, of whom 833 were evaluable and reported. Forty-two patients with small-cell lung cancer were excluded, leaving 791 patients in total. Because of the small patient numbers and trial heterogeneity, no meta-analysis was attempted. Results: Prophylactic cranial irradiation did significantly reduce the incidence of brain metastases in three trials. No trial reported a survival advantage with PCI over observation. Toxicity data were poorly collected and no quality of life assessments were carried out in any trial. Conclusion: Prophylactic cranial irradiation may reduce the incidence of brain metastases, but there is no evidence of a survival benefit. It was not possible to evaluate whether any radiotherapy regimen is superior, and the effect of PCI on quality of life is not known. There is insufficient evidence to support the use of PCI in clinical practice. Where possible, patients should be offered entry into a clinical trial.

  13. The N-Methyl-d-Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain.

    PubMed

    Osorio-Rico, Laura; Villeda-Hernández, Juana; Santamaría, Abel; Königsberg, Mina; Galván-Arzate, Sonia

    2015-01-01

    Thallium (Tl(+)) is a toxic heavy metal capable of increasing oxidative damage and disrupting antioxidant defense systems. Thallium invades the brain cells through potassium channels, increasing neuronal excitability, although until now the possible role of glutamatergic transmission in this event has not been investigated. Here, we explored the possible involvement of a glutamatergic component in the Tl(+)-induced toxicity through the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) in rats. The effects of MK-801 (1 mg/kg, intraperitoneally [ip]) on early (24 hours) motor alterations, lipid peroxidation, reduced glutathione (GSH) levels, and GSH peroxidase activity induced by Tl(+) acetate (32 mg/kg, ip) were evaluated in adult rats. MK-801 attenuated the Tl(+)-induced hyperactivity and lipid peroxidation in the rat striatum, hippocampus and midbrain, and produced mild effects on other end points. Our findings suggest that glutamatergic transmission via NMDA receptors might be involved in the Tl(+)-induced altered regional brain redox activity and motor performance in rats. PMID:26350230

  14. The N-Methyl-d-Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain.

    PubMed

    Osorio-Rico, Laura; Villeda-Hernández, Juana; Santamaría, Abel; Königsberg, Mina; Galván-Arzate, Sonia

    2015-01-01

    Thallium (Tl(+)) is a toxic heavy metal capable of increasing oxidative damage and disrupting antioxidant defense systems. Thallium invades the brain cells through potassium channels, increasing neuronal excitability, although until now the possible role of glutamatergic transmission in this event has not been investigated. Here, we explored the possible involvement of a glutamatergic component in the Tl(+)-induced toxicity through the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) in rats. The effects of MK-801 (1 mg/kg, intraperitoneally [ip]) on early (24 hours) motor alterations, lipid peroxidation, reduced glutathione (GSH) levels, and GSH peroxidase activity induced by Tl(+) acetate (32 mg/kg, ip) were evaluated in adult rats. MK-801 attenuated the Tl(+)-induced hyperactivity and lipid peroxidation in the rat striatum, hippocampus and midbrain, and produced mild effects on other end points. Our findings suggest that glutamatergic transmission via NMDA receptors might be involved in the Tl(+)-induced altered regional brain redox activity and motor performance in rats.

  15. Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation.

    PubMed

    Neves, Ben-Hur; Menezes, Jefferson; Souza, Mauren Assis; Mello-Carpes, Pâmela B

    2015-12-01

    It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.

  16. Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits.

    PubMed

    Yang, Dun-Sheng; Stavrides, Philip; Saito, Mitsuo; Kumar, Asok; Rodriguez-Navarro, Jose A; Pawlik, Monika; Huo, Chunfeng; Walkley, Steven U; Saito, Mariko; Cuervo, Ana M; Nixon, Ralph A

    2014-12-01

    Autophagy, the major lysosomal pathway for the turnover of intracellular organelles is markedly impaired in neurons in Alzheimer's disease and Alzheimer mouse models. We have previously reported that severe lysosomal and amyloid neuropathology and associated cognitive deficits in the TgCRND8 Alzheimer mouse model can be ameliorated by restoring lysosomal proteolytic capacity and autophagy flux via genetic deletion of the lysosomal protease inhibitor, cystatin B. Here we present evidence that macroautophagy is a significant pathway for lipid turnover, which is defective in TgCRND8 brain where lipids accumulate as membranous structures and lipid droplets within giant neuronal autolysosomes. Levels of multiple lipid species including several sphingolipids (ceramide, ganglioside GM3, GM2, GM1, GD3 and GD1a), cardiolipin, cholesterol and cholesteryl esters are elevated in autophagic vacuole fractions and lysosomes isolated from TgCRND8 brain. Lipids are localized in autophagosomes and autolysosomes by double immunofluorescence analyses in wild-type mice and colocalization is increased in TgCRND8 mice where abnormally abundant GM2 ganglioside-positive granules are detected in neuronal lysosomes. Cystatin B deletion in TgCRND8 significantly reduces the number of GM2-positive granules and lowers the levels of GM2 and GM3 in lysosomes, decreases lipofuscin-related autofluorescence, and eliminates giant lipid-containing autolysosomes while increasing numbers of normal-sized autolysosomes/lysosomes with reduced content of undigested components. These findings have identified macroautophagy as a previously unappreciated route for delivering membrane lipids to lysosomes for turnover, a function that has so far been considered to be mediated exclusively through the endocytic pathway, and revealed that autophagic-lysosomal dysfunction in TgCRND8 brain impedes lysosomal turnover of lipids as well as proteins. The amelioration of lipid accumulation in TgCRND8 by removing cystatin B

  17. Brain Tumors

    MedlinePlus

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  18. Brain surgery

    MedlinePlus

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  19. Brain Malformations

    MedlinePlus

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  20. Knockdown of ventral tegmental area mu-opioid receptors in rats prevents effects of social defeat stress: implications for amphetamine cross-sensitization, social avoidance, weight regulation and expression of brain-derived neurotrophic factor.

    PubMed

    Johnston, Caitlin E; Herschel, Daniel J; Lasek, Amy W; Hammer, Ronald P; Nikulina, Ella M

    2015-02-01

    Social defeat stress causes social avoidance and long-lasting cross-sensitization to psychostimulants, both of which are associated with increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area (VTA). Moreover, social stress upregulates VTA mu-opioid receptor (MOR) mRNA. In the VTA, MOR activation inhibits GABA neurons to disinhibit VTA dopamine neurons, thus providing a role for VTA MORs in the regulation of psychostimulant sensitization. The present study determined the effect of lentivirus-mediated MOR knockdown in the VTA on the consequences of intermittent social defeat stress, a salient and profound stressor in humans and rodents. Social stress exposure induced social avoidance and attenuated weight gain in animals with non-manipulated VTA MORs, but both these effects were prevented by VTA MOR knockdown. Rats with non-manipulated VTA MOR expression exhibited cross-sensitization to amphetamine challenge (1.0 mg/kg, i.p.), evidenced by a significant augmentation of locomotion. By contrast, knockdown of VTA MORs prevented stress-induced cross-sensitization without blunting the locomotor-activating effects of amphetamine. At the time point corresponding to amphetamine challenge, immunohistochemical analysis was performed to examine the effect of stress on VTA BDNF expression. Prior stress exposure increased VTA BDNF expression in rats with non-manipulated VTA MOR expression, while VTA MOR knockdown prevented stress-induced expression of VTA BDNF. Taken together, these results suggest that upregulation of VTA MOR is necessary for the behavioral and biochemical changes induced by social defeat stress. Elucidating VTA MOR regulation of stress effects on the mesolimbic system may provide new therapeutic targets for treating stress-induced vulnerability to substance abuse.

  1. Knockdown of ventral tegmental area mu-opioid receptors in rats prevents effects of social defeat stress: Implications for amphetamine cross-sensitization, social avoidance, weight regulation and expression of brain-derived neurotrophic factor

    PubMed Central

    Johnston, Caitlin E.; Herschel, Daniel; Lasek, Amy W.; Hammer, Ronald P.; Nikulina, Ella M.

    2014-01-01

    Social defeat stress causes social avoidance and long-lasting cross-sensitization to psychostimulants, both of which are associated with increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area (VTA). Moreover, social stress upregulates VTA mu-opioid receptor (MOR) mRNA. In the VTA, MOR activation inhibits GABA neurons to disinhibit VTA dopamine neurons, thus providing a role for VTA MORs in the regulation of psychostimulant sensitization. The present study determined the effect of lentivirus-mediated MOR knockdown in the VTA on the consequences of intermittent social defeat stress, a salient and profound stressor in humans and rodents. Social stress exposure induced social avoidance and attenuated weight gain in animals with non-manipulated VTA MORs, but both these effects were prevented by VTA MOR knockdown. Rats with non-manipulated VTA MOR expression exhibited cross-sensitization to amphetamine challenge (1.0 mg/kg, i.p.), evidenced by a significant augmentation of locomotion. By contrast, knockdown of VTA MORs prevented stress-induced cross-sensitization without blunting the locomotor-activating effects of amphetamine. At the time point corresponding to amphetamine challenge, immunohistochemical analysis was performed to examine the effect of stress on VTA BDNF expression. Prior stress exposure increased VTA BDNF expression in rats with non-manipulated VTA MOR expression, while VTA MOR knockdown prevented stress-induced expression of VTA BDNF. Taken together, these results suggest that upregulation of VTA MOR is necessary for the behavioral and biochemical changes induced by social defeat stress. Elucidating VTA MOR regulation of stress effects on the mesolimbic system may provide new therapeutic targets for treating stress-induced vulnerability to substance abuse. PMID:25446676

  2. How the statistical validation of functional connectivity patterns can prevent erroneous definition of small-world properties of a brain connectivity network.

    PubMed

    Toppi, J; De Vico Fallani, F; Vecchiato, G; Maglione, A G; Cincotti, F; Mattia, D; Salinari, S; Babiloni, F; Astolfi, L

    2012-01-01

    The application of Graph Theory to the brain connectivity patterns obtained from the analysis of neuroelectrical signals has provided an important step to the interpretation and statistical analysis of such functional networks. The properties of a network are derived from the adjacency matrix describing a connectivity pattern obtained by one of the available functional connectivity methods. However, no common procedure is currently applied for extracting the adjacency matrix from a connectivity pattern. To understand how the topographical properties of a network inferred by means of graph indices can be affected by this procedure, we compared one of the methods extensively used in Neuroscience applications (i.e. fixing the edge density) with an approach based on the statistical validation of achieved connectivity patterns. The comparison was performed on the basis of simulated data and of signals acquired on a polystyrene head used as a phantom. The results showed (i) the importance of the assessing process in discarding the occurrence of spurious links and in the definition of the real topographical properties of the network, and (ii) a dependence of the small world properties obtained for the phantom networks from the spatial correlation of the neighboring electrodes.

  3. Administration of low dose methamphetamine 12 h after a severe traumatic brain injury prevents neurological dysfunction and cognitive impairment in rats.

    PubMed

    Rau, Thomas F; Kothiwal, Aakriti S; Rova, Annela R; Brooks, Diane M; Rhoderick, Joseph F; Poulsen, Austin J; Hutchinson, Jim; Poulsen, David J

    2014-03-01

    We recently published data that showed low dose of methamphetamine is neuroprotective when delivered 3 h after a severe traumatic brain injury (TBI). In the current study, we further characterized the neuroprotective potential of methamphetamine by determining the lowest effective dose, maximum therapeutic window, pharmacokinetic profile and gene expression changes associated with treatment. Graded doses of methamphetamine were administered to rats beginning 8 h after severe TBI. We assessed neuroprotection based on neurological severity scores, foot fault assessments, cognitive performance in the Morris water maze, and histopathology. We defined 0.250 mg/kg/h as the lowest effective dose and treatment at 12 h as the therapeutic window following severe TBI. We examined gene expression changes following TBI and methamphetamine treatment to further define the potential molecular mechanisms of neuroprotection and determined that methamphetamine significantly reduced the expression of key pro-inflammatory signals. Pharmacokinetic analysis revealed that a 24-hour intravenous infusion of methamphetamine at a dose of 0.500 mg/kg/h produced a plasma Cmax value of 25.9 ng/ml and a total exposure of 544 ng/ml over a 32 hour time frame. This represents almost half the 24-hour total exposure predicted for a daily oral dose of 25mg in a 70 kg adult human. Thus, we have demonstrated that methamphetamine is neuroprotective when delivered up to 12 h after injury at doses that are compatible with current FDA approved levels.

  4. A Novel Ligustrazine Derivative T-VA Prevents Neurotoxicity in Differentiated PC12 Cells and Protects the Brain against Ischemia Injury in MCAO Rats

    PubMed Central

    Li, Guoling; Tian, Yufei; Zhang, Yuzhong; Hong, Ying; Hao, Yingzhi; Chen, Chunxiao; Wang, Penglong; Lei, Haimin

    2015-01-01

    Broad-spectrum drugs appear to be more promising for the treatment of acute ischemic stroke. In our previous work, a new ligustrazine derivative (3,5,6-trimethylpyrazin-2-yl) methyl 3-methoxy-4-[(3,5,6-trimethylpyrazin-2-yl)methoxy]benzoate (T-VA) showed neuroprotective effect on injured PC12 cells (EC50 = 4.249 µM). In the current study, we show that this beneficial effect was due to the modulation of nuclear transcription factor-κB/p65 (NF-κB/p65) and cyclooxygenase-2 (COX-2) expressions. We also show that T-VA exhibited neuroprotective effect in a rat model of ischemic stroke with concomitant improvement of motor functions. We propose that the protective effect observed in vivo is owing to increased vascular endothelial growth factor (VEGF) expression, decreased oxidative stress, and up-regulation of Ca2+–Mg2+ ATP enzyme activity. Altogether, our results warrant further studies on the utility of T-VA for the potential treatment of ischemic brain injuries, such as stroke. PMID:26370988

  5. Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism

    PubMed Central

    Asthana, Manish Kumar; Brunhuber, Bettina; Mühlberger, Andreas; Reif, Andreas; Schneider, Simone

    2016-01-01

    Background: Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. Methods: An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. Results: The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. Conclusions: Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans. PMID:26721948

  6. Brain Tumor Epidemiology Consortium (BTEC)

    Cancer.gov

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  7. Adolescent Brain Development and Drugs

    ERIC Educational Resources Information Center

    Winters, Ken C.; Arria, Amelia

    2011-01-01

    Research now suggests that the human brain is still maturing during adolescence. The developing brain may help explain why adolescents sometimes make decisions that are risky and can lead to safety or health concerns, including unique vulnerabilities to drug abuse. This article explores how this new science may be put to use in our prevention and…

  8. A novel GSK-3β inhibitor YQ138 prevents neuronal injury induced by glutamate and brain ischemia through activation of the Nrf2 signaling pathway

    PubMed Central

    Pang, Tao; Wang, Yun-jie; Gao, Yuan-xue; Xu, Yuan; Li, Qiu; Zhou, Yu-bo; Xu, Lei; Huang, Zhang-jian; Liao, Hong; Zhang, Lu-yong; Gao, Jian-rong; Ye, Qing; Li, Jia

    2016-01-01

    Aim: To discover neuroprotective compounds and to characterize the discovered active compound YQ138 as a novel GSK-3β inhibitor. Methods: Primary rat cerebellar granule cells (CGCs) were treated with glutamate, and cell viability was analyzed with MTT assay, which was used as in vitro model for screening neuroprotective compounds. Active compound was further tested in OGD- or serum deprivation-induced neuronal injury models. The expression levels of GSK-3β downstream proteins (Nrf2, HO-1, NQO1, Tau and β-catenin) were detected with Western blotting. For evaluating the neuroprotective effects in vivo, adult male rats were subjected to transient middle cerebral artery occlusion (tMCAO), then treated with YQ138 (10 mg/kg, iv) at 2, 4 and 6 h after ischemia onset. Results: From a compound library consisting of about 2000 potential kinase inhibitors, YQ138 was found to exert neuroprotective effects: pretreatment with YQ138 (0.1–40 μmol/L) dose-dependently inhibited glutamate-induced neuronal death. Furthermore, pretreatment with YQ138 (10 μmol/L) significantly inhibited OGD- or serum deprivation-induced neuronal death. Among a panel of seven kinases tested, YQ138 selectively inhibited the activity of GSK-3β (IC50=0.52 nmol/L). Furthermore, YQ138 dose-dependently increased the expression of β-catenin, and decreased the phosphorylation of Tau in CGCs. Moreover, YQ138 significantly increased the expression of GSK-3β downstream antioxidative proteins Nrf2, HO-1, NQO1, GSH and SOD in CGCs. In rats with tMCAO, administration of YQ138 significantly decreased infarct volume, improved the neurological deficit, and increased the expression of Nrf2 and HO-1 and the activities of SOD and GSH in the cerebral cortex. Conclusion: A novel GSK-3β inhibitor YQ138 effectively suppresses brain ischemic injury in vitro and in vivo. PMID:27108601

  9. Peroxisome proliferator-activated receptor-γ activation with angiotensin II type 1 receptor blockade is pivotal for the prevention of blood-brain barrier impairment and cognitive decline in type 2 diabetic mice.

    PubMed

    Min, Li-Juan; Mogi, Masaki; Shudou, Masachika; Jing, Fei; Tsukuda, Kana; Ohshima, Kousei; Iwanami, Jun; Horiuchi, Masatsugu

    2012-05-01

    We reported previously that an angiotensin II type 1 receptor blocker, telmisartan, improved cognitive decline with peroxisome proliferator-activated receptor-γ activation; however, the detailed mechanisms are unclear. Enhanced blood-brain barrier (BBB) permeability with alteration of tight junctions is suggested to be related to diabetes mellitus. Therefore, we examined the possibility that telmisartan could attenuate BBB impairment with peroxisome proliferator-activated receptor-γ activation to improve diabetes mellitus-induced cognitive decline. Type 2 diabetic mice KKA(y) exhibited impairment of cognitive function, and telmisartan treatment attenuated this. Cotreatment with GW9662, a peroxisome proliferator-activated receptor-γ antagonist, interfered with these protective effects of telmisartan against cognitive function. BBB permeability was increased in both the cortex and hippocampus in KKA(y) mice. Administration of telmisartan attenuated this increased BBB permeability. Coadministration of GW9662 reduced this effect of telmisartan. Significant decreases in expression of tight junction proteins and increases in matrix metalloproteinase expression, oxidative stress, and proinflammatory cytokine production were observed in the brain, and treatment with telmisartan restored these changes. Swollen astroglial end-feet in BBB were observed in KKA(y) mice, and this change in BBB ultrastructure was decreased in telmisartan. These effects of telmisartan were weakened by cotreatment with GW9662. In contrast, administration of another angiotensin II type 1 receptor blocker, losartan, was less effective compared with telmisartan in terms of preventing BBB permeability and astroglial end-foot swelling, and coadministration of GW9662 did not affect the effects of losartan. These findings are consistent with the possibility that, in type 2 diabetic mice, angiotensin II type 1 receptor blockade with peroxisome proliferator-activated receptor-γ activation by telmisartan

  10. Understanding brain dysfunction in sepsis

    PubMed Central

    2013-01-01

    Sepsis often is characterized by an acute brain dysfunction, which is associated with increased morbidity and mortality. Its pathophysiology is highly complex, resulting from both inflammatory and noninflammatory processes, which may induce significant alterations in vulnerable areas of the brain. Important mechanisms include excessive microglial activation, impaired cerebral perfusion, blood–brain-barrier dysfunction, and altered neurotransmission. Systemic insults, such as prolonged inflammation, severe hypoxemia, and persistent hyperglycemia also may contribute to aggravate sepsis-induced brain dysfunction or injury. The diagnosis of brain dysfunction in sepsis relies essentially on neurological examination and neurological tests, such as EEG and neuroimaging. A brain MRI should be considered in case of persistent brain dysfunction after control of sepsis and exclusion of major confounding factors. Recent MRI studies suggest that septic shock can be associated with acute cerebrovascular lesions and white matter abnormalities. Currently, the management of brain dysfunction mainly consists of control of sepsis and prevention of all aggravating factors, including metabolic disturbances, drug overdoses, anticholinergic medications, withdrawal syndromes, and Wernicke’s encephalopathy. Modulation of microglial activation, prevention of blood–brain-barrier alterations, and use of antioxidants represent relevant therapeutic targets that may impact significantly on neurologic outcomes. In the future, investigations in patients with sepsis should be undertaken to reduce the duration of brain dysfunction and to study the impact of this reduction on important health outcomes, including functional and cognitive status in survivors. PMID:23718252

  11. Selective activation of the trace amine-associated receptor 1 decreases cocaine's reinforcing efficacy and prevents cocaine-induced changes in brain reward thresholds.

    PubMed

    Pei, Yue; Mortas, Patrick; Hoener, Marius C; Canales, Juan J

    2015-12-01

    The newly discovered trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for medication development in stimulant addiction due to its ability to regulate dopamine (DA) function and modulate stimulants' effects. Recent findings indicate that TAAR1 activation blocks some of the abuse-related physiological and behavioral effects of cocaine. However, findings from existing self-administration studies are inconclusive due to the very limited range of cocaine unit doses tested. Here, in order to shed light on the influence of TAAR1 on cocaine's reward and reinforcement, we studied the effects of partial and full activation of TAAR1on (1) the dose-response curve for cocaine self-administration and (2) cocaine-induced changes in intracranial self-stimulation (ICSS). In the first experiment, we examined the effects of the selective full and partial TAAR1 agonists, RO5256390 and RO5203648, on self-administration of five unit-injection doses of cocaine (0.03, 0.1, 0.2, 0.45, and 1mg/kg/infusion). Both agonists induced dose-dependent downward shifts in the cocaine dose-response curve, indicating that both partial and full TAAR1 activation decrease cocaine, reinforcing efficacy. In the second experiment, RO5256390 and the partial agonist, RO5263397, dose-dependently prevented cocaine-induced lowering of ICSS thresholds. Taken together, these data demonstrated that TAAR1 stimulation effectively suppresses the rewarding and reinforcing effects of cocaine in self-administration and ICSS models, supporting the candidacy of TAAR1 as a drug discovery target for cocaine addiction.

  12. Selective activation of the trace amine-associated receptor 1 decreases cocaine's reinforcing efficacy and prevents cocaine-induced changes in brain reward thresholds.

    PubMed

    Pei, Yue; Mortas, Patrick; Hoener, Marius C; Canales, Juan J

    2015-12-01

    The newly discovered trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for medication development in stimulant addiction due to its ability to regulate dopamine (DA) function and modulate stimulants' effects. Recent findings indicate that TAAR1 activation blocks some of the abuse-related physiological and behavioral effects of cocaine. However, findings from existing self-administration studies are inconclusive due to the very limited range of cocaine unit doses tested. Here, in order to shed light on the influence of TAAR1 on cocaine's reward and reinforcement, we studied the effects of partial and full activation of TAAR1on (1) the dose-response curve for cocaine self-administration and (2) cocaine-induced changes in intracranial self-stimulation (ICSS). In the first experiment, we examined the effects of the selective full and partial TAAR1 agonists, RO5256390 and RO5203648, on self-administration of five unit-injection doses of cocaine (0.03, 0.1, 0.2, 0.45, and 1mg/kg/infusion). Both agonists induced dose-dependent downward shifts in the cocaine dose-response curve, indicating that both partial and full TAAR1 activation decrease cocaine, reinforcing efficacy. In the second experiment, RO5256390 and the partial agonist, RO5263397, dose-dependently prevented cocaine-induced lowering of ICSS thresholds. Taken together, these data demonstrated that TAAR1 stimulation effectively suppresses the rewarding and reinforcing effects of cocaine in self-administration and ICSS models, supporting the candidacy of TAAR1 as a drug discovery target for cocaine addiction. PMID:26048337

  13. Oral supplementation with melon superoxide dismutase extract promotes antioxidant defences in the brain and prevents stress-induced impairment of spatial memory.

    PubMed

    Nakajima, Sanae; Ohsawa, Ikuroh; Nagata, Kazufumi; Ohta, Shigeo; Ohno, Makoto; Ijichi, Tetsuo; Mikami, Toshio

    2009-06-01

    The purpose of this study was to investigate the effect of antioxidant ingestion on stress-induced impairment of cognitive memory. Male C57BL/6 mice were divided into four groups as follows: (1) control mice (C mice) fed in a normal cage without immobilization; (2) restraint-stressed (RS mice) fed in a small cage; (3) vitamin E mice (VE mice), mice were fed in a small cage with a diet supplemented with vitamin E; (4) GliSODin mice (GS mice) fed in a small cage with a diet supplemented with GliSODin. RS, VE and GS mice were exposed to 12 h of immobilization daily. Five weeks later, spatial learning was measured using the Morris Water Maze (MWM) test. After water maze testing, we performed immunohistochemical analysis using 4-hydroxy-2-noneral (4-HNE) and an anti-Ki67 antibody. 4-HNE is a marker of lipid peroxidation. RS mice showed impaired spatial learning performance and an increased number of 4-HNE-positive cells in the granule cell layer (GCL) of the hippocampal dentate gyrus when compared to C mice. Moreover, RS mice showed a decreased number of Ki67-positive cells in the subgranular zone (SGZ). GS mice showed better spatial learning memory than RS mice. The number of 4-HNE-positive cells in the GCL of GS mice was significantly less than that of RS mice. The number of Ki67-positive cells in the SGZ of GS mice was significantly greater than that of RS mice. These finding suggests that GliSODin prevents stress-induced impairment of cognitive function and maintains neurogenesis in the hippocampus through antioxidant activity.

  14. [Traumatic brain injury].

    PubMed

    Hackenberg, K; Unterberg, A

    2016-02-01

    Since traumatic brain injury is the most common cause of long-term disability and death among young adults, it represents an enormous socio-economic and healthcare burden. As a consequence of the primary lesion, a perifocal brain edema develops causing an elevation of the intracranial pressure due to the limited intracranial space. This entails a reduction of the cerebral perfusion pressure and the cerebral blood flow. A cerebral perfusion deficit below the threshold for ischemia leads to further ischemic lesions and to a progression of the contusion. As the irreversible primary lesion can only be inhibited by primary prevention, the therapy of traumatic brain injury focuses on the secondary injuries. The treatment consists of surgical therapy evacuating the space-occupying intracranial lesion and conservative intensive medical care. Due to the complex pathophysiology the therapy of traumatic brain injury should be rapidly performed in a neurosurgical unit. PMID:26810405

  15. Chronic Treatment with a Water-Soluble Extract from the Culture Medium of Ganoderma lucidum Mycelia Prevents Apoptosis and Necroptosis in Hypoxia/Ischemia-Induced Injury of Type 2 Diabetic Mouse Brain.

    PubMed

    Xuan, Meiyan; Okazaki, Mari; Iwata, Naohiro; Asano, Satoshi; Kamiuchi, Shinya; Matsuzaki, Hirokazu; Sakamoto, Takeshi; Miyano, Yoshiyuki; Iizuka, Hiroshi; Hibino, Yasuhide

    2015-01-01

    Type 2 diabetes mellitus has been known to increase systemic oxidative stress by chronic hyperglycemia and visceral obesity and aggravate cerebral ischemic injury. On the basis of our previous study regarding a water-soluble extract from the culture medium of Ganoderma lucidum mycelia (designed as MAK), which exerts antioxidative and neuroprotective effects, the present study was conducted to evaluate the preventive effects of MAK on apoptosis and necroptosis (a programmed necrosis) induced by hypoxia/ischemia (H/I) in type 2 diabetic KKAy mice. H/I was induced by a combination of unilateral common carotid artery ligation with hypoxia (8% O2 for 20 min) and subsequent reoxygenation. Pretreatment with MAK (1 g/kg, p.o.) for a week significantly reduced H/I-induced neurological deficits and brain infarction volume assessed at 24 h of reoxygenation. Histochemical analysis showed that MAK significantly suppressed superoxide production, neuronal cell death, and vacuolation in the ischemic penumbra, which was accompanied by a decrease in the numbers of TUNEL- or cleaved caspase-3-positive cells. Furthermore, MAK decreased the expression of receptor-interacting protein kinase 3 mRNA and protein, a key molecule for necroptosis. These results suggest that MAK confers resistance to apoptotic and necroptotic cell death and relieves H/I-induced cerebral ischemic injury in type 2 diabetic mice.

  16. Rape prevention

    MedlinePlus

    Date rape - prevention; Sexual assault - prevention ... Centers for Disease Control and Prevention. Sexual assault and abuse and STDs. In: 2015 sexually transmitted diseases treatment guidelines 2015. Updated June 4, 2015. www.cdc.gov/ ...

  17. Brain Power.

    ERIC Educational Resources Information Center

    Albrecht, Karl

    2002-01-01

    Reviews significant findings of recent brain research, including the concept of five minds: automatic, subconscious, practical, creative, and spiritual. Suggests approaches to training the brain that are related to this hierarchy of thinking. (JOW)

  18. Brain Basics

    MedlinePlus

    ... have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain ... studies show that brain growth in children with autism appears to peak early. And as they grow ...

  19. Brain components

    MedlinePlus

    ... 3 major components of the brain are the cerebrum, cerebellum, and brain stem. The cerebrum is divided into left and right hemispheres, each ... gray matter) is the outside portion of the cerebrum and provides us with functions associated with conscious ...

  20. Brain Diseases

    MedlinePlus

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  1. Brain abscess

    MedlinePlus

    Tunkel AR. Brain abscess. In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and Bennett's Principles and Practice ... Philadelphia, PA: Elsevier Saunders; 2015:chap 92. Tunkel AR, Scheld WM. Brain abscess. In: Winn HR, ed. ...

  2. Brain Aneurysm

    MedlinePlus

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  3. Brain Basics: Know Your Brain

    MedlinePlus

    ... fact sheet is a basic introduction to the human brain. It may help you understand how the healthy ... largest and most highly developed part of the human brain: it consists primarily of the cerebrum ( 2 ) and ...

  4. Pediatric Traumatic Brain Injury.

    PubMed

    Schaller, Alexandra L; Lakhani, Saquib A; Hsu, Benson S

    2015-10-01

    The purpose of this article is to provide a better understanding of pediatric traumatic brain injury and its management. Within the pediatric age group, ages 1 to 19, injuries are the number one cause of death with traumatic brain injury being involved in almost 50 percent of these cases. This, along with the fact that the medical system spends over $1 billion annually on pediatric traumatic brain injury, makes this issue both timely and relevant to health care providers. Over the course of this article the epidemiology, physiology, pathophysiology, and treatment of pediatric traumatic brain injury will be explored. Emphasis will be placed on the role of the early responder and the immediate interventions that should be considered and/or performed. The management discussed in this article follows the most recent recommendations from the 2012 edition of the Guidelines for the Acute Medical Management of Severe Traumatic Brain Injury in Infants, Children, and Adolescents. Despite the focus of this article, it is important not to lose sight of the fact that an ounce of prevention is worth a pound--or, to be more precise and use the average human's brain measurements, just above three pounds--of cure. PMID:26630835

  5. The Brains Behind the Brain.

    ERIC Educational Resources Information Center

    D'Arcangelo, Marcia

    1998-01-01

    Interviews with five neuroscientists--Martin Diamond, Pat Wolfe, Robert Sylwester, Geoffrey Caine, and Eric Jensen--disclose brain-research findings of practical interest to educators. Topics include brain physiology, environmental enrichment, memorization, windows of learning opportunity, brain learning capacity, attention span, student interest,…

  6. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    PubMed Central

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  7. Brain Injury Safety Tips and Prevention

    MedlinePlus

    ... because they don’t think a concussion is serious. They may also worry about: Losing their position on the team or during the game. Jeopardizing their future sports career. Looking weak. Letting ...

  8. Prevention Neuroscience: A new frontier for preventive medicine.

    PubMed

    Hall, Peter A

    2016-05-01

    Prevention neuroscience may be defined as follows: an interdisciplinary field concerned with the neurobiological factors that influence susceptibility to preventable disease, disability or mortality. It includes, but is not limited to: examination of brain health as an outcome, brain activity as a predictor of health outcomes, brain structures/systems as causal determinants of health outcomes (e.g., health behaviours), and the brain as a mediator of other causal influences (e.g., social conditions) on health outcomes. This commentary describes concepts, theory and research illustrating each of these scenarios using exercise, smoking cessation, dietary behaviour, and health disparities as examples. It is argued that neuroscience may provide both concepts and methods that may be possible (even fruitful) to incorporate into preventive medicine research and health promotion practise. Although public health practitioners and cognitive neuroscientists have not traditionally crossed paths outside of the context of neurodegenerative diseases such as Alzheimer's and other dementias, it is easy to envision a future where many common disease prevention activities involve collaboration between the two disciplines, and the cache of tools available to the preventive medicine expert includes neuroimaging and neuromodulation techniques. PMID:26876625

  9. Brain tumors.

    PubMed Central

    Black, K. L.; Mazziotta, J. C.; Becker, D. P.

    1991-01-01

    Recent advances in experimental tumor biology are being applied to critical clinical problems of primary brain tumors. The expression of peripheral benzodiazepine receptors, which are sparse in normal brain, is increased as much as 20-fold in brain tumors. Experimental studies show promise in using labeled ligands to these receptors to identify the outer margins of malignant brain tumors. Whereas positron emission tomography has improved the dynamic understanding of tumors, the labeled selective tumor receptors with positron emitters will enhance the ability to specifically diagnose and greatly aid in the pretreatment planning for tumors. Modulation of these receptors will also affect tumor growth and metabolism. Novel methods to deliver antitumor agents to the brain and new approaches using biologic response modifiers also hold promise to further improve the management of brain tumors. Images PMID:1848735

  10. Brain angiogenesis: Mechanism and Therapeutic Intervention in Brain Tumors

    PubMed Central

    Kim, Woo-Young; Lee, Ho-Young

    2010-01-01

    Summary Formation of new blood vessels is required for growth and metastasis of all solid tumors. New blood vessels are established in tumors mainly through angiogenesis. Brain tumors in particular are highly angiogenic. Therefore, interventions designed to prevent angiogenesis may be effective at controlling brain tumors. Indeed, many recent findings from preclinical and clinical studies of antiangiogenic therapy for brain tumors showed that it is a promising approach to managing this deadly disease, especially when combined with other cytotoxic treatments. In this review, we summarize the basic characteristics of brain tumor angiogenesis and role of known angiogenic factors in regulating this angiogenesis, which can be targets of antiangiogenic therapy. We also discuss the current status of antiangiogenic therapy for brain tumors, the suggested mechanisms of this therapy, and the limitations of this strategy. PMID:19664069

  11. Drowning Prevention

    MedlinePlus

    ... Listen Español Text Size Email Print Share Drowning Prevention: Information for Parents Page Content Article Body Drowning ... in very cold water for lengthy periods. Drowning Prevention: Know the Warning Signs These signs may signal ...

  12. Preventing Suicide

    MedlinePlus

    ... The top three methods used in suicides include firearms (49.9%), suffocation (26.7%), and poisoning (15. ... Content source: National Center for Injury Prevention and Control, Division of Violence Prevention Page maintained by: Office ...

  13. [Brain metastases].

    PubMed

    Brennum, Jannick; Kosteljanetz, Michael; Roed, Henrik Michael H

    2002-07-01

    The incidence of symptomatic brain metastases in Denmark is about 3500. In the present review, the aetiology, symptomatology, and diagnostic procedures are described. The main topic is a review of current treatments and the evidence for their efficacy. Treatment of brain metastases rarely cures the patient, the goal is rather to improve the quality of life and prolong survival. Without treatment, the median survival following diagnosis of brain metastases is about one month, with steroid treatment two months, with whole brain irradiation four to six months, and after surgery or stereotactic radiosurgery 10-12 months. A relatively simple treatment scheme based on the number of brain metastases and the overall condition of the patient is provided.

  14. Brain peroxisomes.

    PubMed

    Trompier, D; Vejux, A; Zarrouk, A; Gondcaille, C; Geillon, F; Nury, T; Savary, S; Lizard, G

    2014-03-01

    Peroxisomes are essential organelles in higher eukaryotes as they play a major role in numerous metabolic pathways and redox homeostasis. Some peroxisomal abnormalities, which are often not compatible with life or normal development, were identified in severe demyelinating and neurodegenerative brain diseases. The metabolic roles of peroxisomes, especially in the brain, are described and human brain peroxisomal disorders resulting from a peroxisome biogenesis or a single peroxisomal enzyme defect are listed. The brain abnormalities encountered in these disorders (demyelination, oxidative stress, inflammation, cell death, neuronal migration, differentiation) are described and their pathogenesis are discussed. Finally, the contribution of peroxisomal dysfunctions to the alterations of brain functions during aging and to the development of Alzheimer's disease is considered.

  15. Genetic deletion of the adenosine A(2A) receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain.

    PubMed

    Metaxas, Athanasios; Al-Hasani, Ream; Farshim, Pamela; Tubby, Kristina; Berwick, Amy; Ledent, Catherine; Hourani, Susanna; Kitchen, Ian; Bailey, Alexis

    2013-08-01

    Considerable evidence indicates that adenosine A(2A) receptors (A(2A)Rs) modulate cholinergic neurotransmission, nicotinic acetylcholine receptor (nAChR) function, and nicotine-induced behavioural effects. To explore the interaction between A(2A) and nAChRs, we examined if the complete genetic deletion of adenosine A(2A)Rs in mice induces compensatory alterations in the binding of different nAChR subtypes, and whether the long-term effects of nicotine on nAChR regulation are altered in the absence of the A(2A)R gene. Quantitative autoradiography was used to measure cytisine-sensitive [¹²⁵I]epibatidine and [¹²⁵I]α-bungarotoxin binding to α4β2* and α7 nAChRs, respectively, in brain sections of drug-naïve (n = 6) or nicotine treated (n = 5-7), wild-type and adenosine A(2A)R knockout mice. Saline or nicotine (7.8 mg/kg/day; free-base weight) were administered to male CD1 mice via subcutaneous osmotic minipumps for a period of 14 days. Blood plasma levels of nicotine and cotinine were measured at the end of treatment. There were no compensatory developmental alterations in nAChR subtype distribution or density in drug-naïve A(2A)R knockout mice. In nicotine treated wild-type mice, both α4β2* and α7 nAChR binding sites were increased compared with saline treated controls. The genetic ablation of adenosine A(2A)Rs prevented nicotine-induced upregulation of α7 nAChRs, without affecting α4β2* receptor upregulation. This selective effect was observed at plasma levels of nicotine that were within the range reported for smokers (10-50 ng ml⁻¹). Our data highlight the involvement of adenosine A(2A)Rs in the mechanisms of nicotine-induced α7 nAChR upregulation, and identify A(2A)Rs as novel pharmacological targets for modulating the long-term effects of nicotine on α7 receptors.

  16. Genetic deletion of the adenosine A(2A) receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain.

    PubMed

    Metaxas, Athanasios; Al-Hasani, Ream; Farshim, Pamela; Tubby, Kristina; Berwick, Amy; Ledent, Catherine; Hourani, Susanna; Kitchen, Ian; Bailey, Alexis

    2013-08-01

    Considerable evidence indicates that adenosine A(2A) receptors (A(2A)Rs) modulate cholinergic neurotransmission, nicotinic acetylcholine receptor (nAChR) function, and nicotine-induced behavioural effects. To explore the interaction between A(2A) and nAChRs, we examined if the complete genetic deletion of adenosine A(2A)Rs in mice induces compensatory alterations in the binding of different nAChR subtypes, and whether the long-term effects of nicotine on nAChR regulation are altered in the absence of the A(2A)R gene. Quantitative autoradiography was used to measure cytisine-sensitive [¹²⁵I]epibatidine and [¹²⁵I]α-bungarotoxin binding to α4β2* and α7 nAChRs, respectively, in brain sections of drug-naïve (n = 6) or nicotine treated (n = 5-7), wild-type and adenosine A(2A)R knockout mice. Saline or nicotine (7.8 mg/kg/day; free-base weight) were administered to male CD1 mice via subcutaneous osmotic minipumps for a period of 14 days. Blood plasma levels of nicotine and cotinine were measured at the end of treatment. There were no compensatory developmental alterations in nAChR subtype distribution or density in drug-naïve A(2A)R knockout mice. In nicotine treated wild-type mice, both α4β2* and α7 nAChR binding sites were increased compared with saline treated controls. The genetic ablation of adenosine A(2A)Rs prevented nicotine-induced upregulation of α7 nAChRs, without affecting α4β2* receptor upregulation. This selective effect was observed at plasma levels of nicotine that were within the range reported for smokers (10-50 ng ml⁻¹). Our data highlight the involvement of adenosine A(2A)Rs in the mechanisms of nicotine-induced α7 nAChR upregulation, and identify A(2A)Rs as novel pharmacological targets for modulating the long-term effects of nicotine on α7 receptors. PMID:23583933

  17. Blood-brain barrier transport of drugs for the treatment of brain diseases.

    PubMed

    Gabathuler, Reinhard

    2009-06-01

    The central nervous system is a sanctuary protected by barriers that regulate brain homeostasis and control the transport of endogenous compounds into the brain. The blood-brain barrier, formed by endothelial cells of the brain capillaries, restricts access to brain cells allowing entry only to amino acids, glucose and hormones needed for normal brain cell function and metabolism. This very tight regulation of brain cell access is essential for the survival of neurons which do not have a significant capacity to regenerate, but also prevents therapeutic compounds, small and large, from reaching the brain. As a result, various strategies are being developed to enhance access of drugs to the brain parenchyma at therapeutically meaningful concentrations to effectively manage disease.

  18. Brain investigation and brain conceptualization

    PubMed Central

    Redolfi, Alberto; Bosco, Paolo; Manset, David; Frisoni, Giovanni B.

    Summary The brain of a patient with Alzheimer’s disease (AD) undergoes changes starting many years before the development of the first clinical symptoms. The recent availability of large prospective datasets makes it possible to create sophisticated brain models of healthy subjects and patients with AD, showing pathophysiological changes occurring over time. However, these models are still inadequate; representations are mainly single-scale and they do not account for the complexity and interdependence of brain changes. Brain changes in AD patients occur at different levels and for different reasons: at the molecular level, changes are due to amyloid deposition; at cellular level, to loss of neuron synapses, and at tissue level, to connectivity disruption. All cause extensive atrophy of the whole brain organ. Initiatives aiming to model the whole human brain have been launched in Europe and the US with the goal of reducing the burden of brain diseases. In this work, we describe a new approach to earlier diagnosis based on a multimodal and multiscale brain concept, built upon existing and well-characterized single modalities. PMID:24139654

  19. [Brain concussion].

    PubMed

    Pälvimäki, Esa-Pekka; Siironen, Jari; Pohjola, Juha; Hernesniemi, Juha

    2011-01-01

    Brain concussion is a common disturbance caused by external forces or acceleration affecting the head. It may be accompanied by transient loss of consciousness and amnesia. Typical symptoms include headache, nausea and dizziness; these may remain for a week or two. Some patients may experience transient loss of inability to create new memories or other brief impairment of mental functioning. Treatment is symptomatic. Some patients may suffer from prolonged symptoms, the connection of which with brain concession is difficult to show. Almost invariably the prognosis of brain concussion is good.

  20. Progress and perspectives on targeting nanoparticles for brain drug delivery.

    PubMed

    Gao, Huile

    2016-07-01

    Due to the ability of the blood-brain barrier (BBB) to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood-brain tumor barrier (BBTB), and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed. PMID:27471668

  1. Preventing Rejection

    MedlinePlus

    ... Drug Assistance Lifestyle Changes Back to Work or School Physical Changes Relationship Changes Pregnancy Precautions Fertility Labor & Delivery Breastfeeding Risks Cancer Types Risk Factors Prevention & Early Detection ...

  2. Brain radiation - discharge

    MedlinePlus

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  3. Right Hemisphere Brain Damage

    MedlinePlus

    ... Language and Swallowing / Disorders and Diseases Right Hemisphere Brain Damage [ en Español ] What is right hemisphere brain ... right hemisphere brain damage ? What is right hemisphere brain damage? Right hemisphere brain damage (RHD) is damage ...

  4. Brain Development

    MedlinePlus

    ... new neural connections every second. This growing brain development is influenced by many factors, including a child’s relationships, experiences and environment. Learn more about the crucial role you play ...

  5. Brain imaging and brain function

    SciTech Connect

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.

  6. Preventing and diagnosing dementia.

    PubMed

    Keenan, Bernie; Jenkins, Catharine; Ginesi, Laura

    While dementia is an umbrella term for a range of degenerative brain disorders, many share similar presentations. Nurses are ideally placed to identify those at risk and empower them to access treatment and plan and prepare for their future needs--as such, they need up-to-date knowledge of the signs and symptoms of the different types of dementia to identify risk factors and make an informed diagnosis. This article, the third in a four-part series on dementia, examines the risk factors, signs, symptoms and diagnosis of dementia, as well as outlining lifestyle factors such as diet and exercise that may help to prevent the development of the condition.

  7. Preventative Maintenance.

    ERIC Educational Resources Information Center

    Migliorino, James

    Boards of education must be convinced that spending money up front for preventive maintenance will, in the long run, save districts' tax dollars. A good program of preventive maintenance can minimize disruption of service; reduce repair costs, energy consumption, and overtime; improve labor productivity and system equipment reliability; handle…

  8. Preventive Medicine.

    ERIC Educational Resources Information Center

    Jozwiak, Dick

    1998-01-01

    Argues the importance of regularly inspecting thermoplastic roofs to avoid costly repairs. Preventive measures such as access restriction and the use of protective mats and pads to prevent third-party accidents are discussed as is the importance of checking for drain blockages. (GR)

  9. Preventing falls

    MedlinePlus

    Dalbaere K, Sherrington C, Lord SR. Falls prevention interventions. In: Marchus R, Feldman D, Depmster DW, Luckey M, Cauley JA, eds. Osteoporosis . 4th ed. Philadelphia, PA: Elsevier; 2013:chap 70. Rubenstein ...

  10. Dengue Prevention

    MedlinePlus

    ... Compartir This photograph shows a mother applying mosquito repellent to her child's skin in order to prevent ... the lights are on. To protect yourself, use repellent on your skin while indoors or out. When ...

  11. Brain Tissue Oxygen Monitoring in Neurocritical Care.

    PubMed

    De Georgia, Michael A

    2015-12-01

    Brain injury results from ischemia, tissue hypoxia, and a cascade of secondary events. The cornerstone of neurocritical care management is optimization and maintenance of cerebral blood flow (CBF) and oxygen and substrate delivery to prevent or attenuate this secondary damage. New techniques for monitoring brain tissue oxygen tension (PtiO2) are now available. Brain PtiO2 reflects both oxygen delivery and consumption. Brain hypoxia (low brain PtiO2) has been associated with poor outcomes in patients with brain injury. Strategies to improve brain PtiO2 have focused mainly on increasing oxygen delivery either by increasing CBF or by increasing arterial oxygen content. The results of nonrandomized studies comparing brain PtiO2-guided therapy with intracranial pressure/cerebral perfusion pressure-guided therapy, while promising, have been mixed. More studies are needed including prospective, randomized controlled trials to assess the true value of this approach. The following is a review of the physiology of brain tissue oxygenation, the effect of brain hypoxia on outcome, strategies to increase oxygen delivery, and outcome studies of brain PtiO2-guided therapy in neurocritical care.

  12. Vision's Brain.

    ERIC Educational Resources Information Center

    Miller, Julie Ann

    1978-01-01

    The functional architecture of the primary visual cortex has been explored by monitoring the responses of individual brain cells to visual stimuli. A combination of anatomical and physiological techniques reveals groups of functionally related cells, juxtaposed and superimposed, in a sometimes complex, but presumably efficient, structure. (BB)

  13. Smart Brains.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1995-01-01

    New techniques have opened windows to the brain. Although the biochemistry of learning remains largely a mystery, the following findings seem to have clear implications for education: (1) the importance of early-learning opportunities for the very young; (2) the connection between music and abstract reasoning; and (3) the importance of good…

  14. Understanding Brain Tumors

    MedlinePlus

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  15. Brain Tumors (For Parents)

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  16. Brain Tumor Diagnosis

    MedlinePlus

    ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ...

  17. Stress- and Allostasis-Induced Brain Plasticity

    PubMed Central

    McEwen, Bruce S.; Gianaros, Peter J.

    2014-01-01

    The brain is the key organ of stress processes. It determines what individuals will experience as stressful, it orchestrates how individuals will cope with stressful experiences, and it changes both functionally and structurally as a result of stressful experiences. Within the brain, a distributed, dynamic, and plastic neural circuitry coordinates, monitors, and calibrates behavioral and physiological stress response systems to meet the demands imposed by particular stressors. These allodynamic processes can be adaptive in the short term (allostasis) and maladaptive in the long term (allostatic load). Critically, these processes involve bidirectional signaling between the brain and body. Consequently, allostasis and allostatic load can jointly affect vulnerability to brain-dependent and stress-related mental and physical health conditions. This review focuses on the role of brain plasticity in adaptation to, and pathophysiology resulting from, stressful experiences. It also considers interventions to prevent and treat chronic and prevalent health conditions via allodynamic brain mechanisms. PMID:20707675

  18. Deregulated proliferation and differentiation in brain tumors

    PubMed Central

    Swartling, Fredrik J; Čančer, Matko; Frantz, Aaron; Weishaupt, Holger; Persson, Anders I

    2014-01-01

    Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment-resistance, suppress tumor growth, and prevent recurrence in patients. PMID:25416506

  19. Flavonoids and the aging brain.

    PubMed

    Schmitt-Schillig, S; Schaffer, S; Weber, C C; Eckert, G P; Müller, W E

    2005-03-01

    Like in all other organs, the functional capacity of the human brain deteriorates over time. Pathological events such as oxidative stress, due to the elevated release of free radicals and reactive oxygen or nitrogen species, the subsequently enhanced oxidative modification of lipids, protein, and nucleic acids, and the modulation of apoptotic signaling pathways contribute to loss of brain function. The identification of neuroprotective food components is one strategy to facilitate healthy brain aging. Flavonoids were shown to activate key enzymes in mitochondrial respiration and to protect neuronal cells by acting as antioxidants, thus breaking the vicious cycle of oxidative stress and tissue damage. Furthermore, recent data indicate a favorable effect of flavonoids on neuro-inflammatory events. Whereas most of these effects have been shown in vitro, limited data in vivo are available, suggesting a rather low penetration of flavonoids into the brain. Nevertheless, several reports support the concept that flavonoid intake inhibits certain biochemical processes of brain aging, and might thus prevent to some extent the decline of cognitive functions with aging as well as the development or the course of neurodegenerative diseases. However, more data are needed to assess the true impact of flavonoids on brain aging.

  20. What Do We Know About Preventing Alzheimer's? | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Alzheimer's Disease What Do We Know About Preventing Alzheimer's? Past ... the Brain Currently, the most definite diagnosis of Alzheimer's disease is made after death, by examining brain tissue ...

  1. Preventing Tragedy.

    ERIC Educational Resources Information Center

    One Feather, Sandra

    2003-01-01

    The Navajo supervisor in the Office of Environmental Health in New Mexico identifies diseases and their risk factors, administers an injury prevention program, and ensures compliance with various health-related codes. She assists in the planning and direction of environmental health programs and public health education for local Navajo…

  2. Poison Prevention

    MedlinePlus

    ... Word Shop AAP Find a Pediatrician Safety & Prevention ... Content Article Body Post the Poison Help number 1-800-222-1222 on the emergency list next to every phone in your home and in your cell phone. A toddler or preschooler who vomits may ...

  3. Bullying Prevention

    ERIC Educational Resources Information Center

    Kemp, Patrice

    2016-01-01

    The focus of the milestone project is to focus on bridging the gap of bullying and classroom instruction methods. There has to be a defined expectations and level of accountability that has to be defined when supporting and implementing a plan linked to bullying prevention. All individuals involved in the student's learning have to be aware of…

  4. Martian 'Brain'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    5 May 2004 Most middle-latitude craters on Mars have strange landforms on their floors. Often, the floors have pitted and convoluted features that lack simple explanation. In this case, the central part of the crater floor shown in this 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image bears some resemblance to the folded nature of a brain. Or not. It depends upon the 'eye of the beholder,' perhaps. The light-toned 'ring' around the 'brain' feature is more easily explained--windblown ripples and dunes. The crater occurs near 33.1oS, 91.2oW, and is illuminated from the upper left. The picture covers an area about 3 km (1.9 mi) across.

  5. Silicon Brains

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Beyond the digital neural networks of Chap. 16, the more radical mapping of brain-like structures and processes into VLSI substrates has been pioneered by Carver Mead more than 30 years ago [1]. The basic idea was to exploit the massive parallelism of such circuits and to create low-power and fault-tolerant information-processing systems. Neuromorphic engineering has recently seen a revival with the availability of deep-submicron CMOS technology, which allows for the construction of very-large-scale mixed-signal systems combining local analog processing in neuronal cells with binary signalling via action potentials. Modern implementations are able to reach the complexity-scale of large functional units of the human brain, and they feature the ability to learn by plasticity mechanisms found in neuroscience. Combined with high-performance programmable logic and elaborate software tools, such systems are currently evolving into user-configurable non-von-Neumann computing systems, which can be used to implement and test novel computational paradigms. The chapter introduces basic properties of biological brains with up to 200 Billion neurons and their 1014 synapses, where action on a synapse takes ˜10 ms and involves an energy of ˜10 fJ. We outline 10x programs on neuromorphic electronic systems in Europe and the USA, which are intended to integrate 108 neurons and 1012 synapses, the level of a cat's brain, in a volume of 1 L and with a power dissipation <1 kW. For a balanced view on intelligence, we references Hawkins' view to first perceive the task and then design an intelligent technical response.

  6. Brain imaging

    SciTech Connect

    Bradshaw, J.R.

    1989-01-01

    This book presents a survey of the various imaging tools with examples of the different diseases shown best with each modality. It includes 100 case presentations covering the gamut of brain diseases. These examples are grouped according to the clinical presentation of the patient: headache, acute headache, sudden unilateral weakness, unilateral weakness of gradual onset, speech disorders, seizures, pituitary and parasellar lesions, sensory disorders, posterior fossa and cranial nerve disorders, dementia, and congenital lesions.

  7. Animating Brains

    PubMed Central

    Borck, Cornelius

    2016-01-01

    A recent paper famously accused the rising field of social neuroscience of using faulty statistics under the catchy title ‘Voodoo Correlations in Social Neuroscience’. This Special Issue invites us to take this claim as the starting point for a cross-cultural analysis: in which meaningful ways can recent research in the burgeoning field of functional imaging be described as, contrasted with, or simply compared to animistic practices? And what light does such a reading shed on the dynamics and effectiveness of a century of brain research into higher mental functions? Reviewing the heated debate from 2009 around recent trends in neuroimaging as a possible candidate for current instances of ‘soul catching’, the paper will then compare these forms of primarily image-based brain research with older regimes, revolving around the deciphering of the brain’s electrical activity. How has the move from a decoding paradigm to a representational regime affected the conceptualisation of self, psyche, mind and soul (if there still is such an entity)? And in what ways does modern technoscience provide new tools for animating brains? PMID:27292322

  8. Preeclampsia prevention

    PubMed Central

    Herrera-Medina, Rodolfo; Pineda, Lucia M

    2015-01-01

    Background: Preeclampsia is the main complication of pregnancy in developing countries. Calcium starting at 14 weeks of pregnancy is indicated to prevent the disease. Recent advances in prevention of preeclampsia endorse the addition of conjugated linoleic acid. Objective: To estimate the protective effect from calcium alone, compared to calcium plus conjugated linoleic acid in nulliparous women at risk of preeclampsia. Methods: A case-control design nested in the cohort of nulliparous women attending antenatal care from 2010 to 2014. The clinical histories of 387 cases of preeclampsia were compared with 1,054 normotensive controls. The exposure was prescriptions for calcium alone, the first period, or calcium plus conjugated linoleic acid, the second period, from 12 to 16 weeks of gestational age to labor. Confounding variables were controlled, allowing only nulliparous women into the study and stratifying by age, education and ethnic group. Results: The average age was 26.4 yrs old (range= 13-45), 85% from mixed ethnic backgrounds and with high school education. There were no differences between women who received calcium carbonate and those who did not (OR= 0.96; 95% CI= 0.73-1.27). The group of adolescents (13 to 18 years old) in the calcium plus conjugated linoleic acid was protected for preeclampsia (OR= 0.00; 95% CI= 0.00-0.44) independent of the confounder variables. Conclusions: 1. Calcium supplementation during pregnancy did not have preventive effects on preeclampsia. 2. Calcium plus Conjugated Linoleic acid provided to adolescents was observed to have preventive effect on Preeclampsia. PMID:26848195

  9. Preventing and diagnosing dementia.

    PubMed

    Keenan, Bernie; Jenkins, Catharine; Ginesi, Laura

    While dementia is an umbrella term for a range of degenerative brain disorders, many share similar presentations. Nurses are ideally placed to identify those at risk and empower them to access treatment and plan and prepare for their future needs--as such, they need up-to-date knowledge of the signs and symptoms of the different types of dementia to identify risk factors and make an informed diagnosis. This article, the third in a four-part series on dementia, examines the risk factors, signs, symptoms and diagnosis of dementia, as well as outlining lifestyle factors such as diet and exercise that may help to prevent the development of the condition. PMID:27544960

  10. Long-term treatment of aged Long Evans rats with a dietary supplement containing neuroprotective peptides (N-PEP-12) to prevent brain aging: effects of three months daily treatment by oral gavage.

    PubMed

    Hutter-Paier, B; Reininger-Gutmann, B; Wronski, R; Doppler, E; Moessler, H

    2015-01-01

    Aging is associated with morphological and functional changes in the brain, resulting in the deterioration of cognitive performance. Growth factors like BDNF are suggested to be involved in the regulation of age-related processes in the brain. A novel dietary supplement produced from purified nerve cell proteins, N-PEP-12, has shown to share properties with naturally occurring peptide growth factors by stimulating neurite outgrowth and beneficial effects on neuronal survival and protection against metabolic stress in cell cultures. The current study investigates the effects of long-term intake on age-dependent memory decline by assessing cognitive performance and synaptic density. All the experiments were performed in aged Long Evans rats randomly assigned to saline or N-PEP-12 once daily by gavage over a period of three months. Behavioral tests were performed in the Morris Water Maze after one, two and three months of treatment. Histological examinations were performed in the hippocampal formation and in the entorhinal cortex by measuring the synaptic density. This study shows that the oral intake of N-PEP-12 has beneficial effects on the cognitive performance of aged animals and that these effects go along with an increase in the synaptic density. Thus, N-PEP-12 may help maintain memory and learning performance during the aging process.

  11. Brain Imaging

    PubMed Central

    Racine, Eric; Bar-Ilan, Ofek; Illes, Judy

    2007-01-01

    Advances in neuroscience are increasingly intersecting with issues of ethical, legal, and social interest. This study is an analysis of press coverage of an advanced technology for brain imaging, functional magnetic resonance imaging, that has gained significant public visibility over the past ten years. Discussion of issues of scientific validity and interpretation dominated over ethical content in both the popular and specialized press. Coverage of research on higher order cognitive phenomena specifically attributed broad personal and societal meaning to neuroimages. The authors conclude that neuroscience provides an ideal model for exploring science communication and ethics in a multicultural context. PMID:17330151

  12. Hippocampal Sclerosis: Causes and Prevention.

    PubMed

    Walker, Matthew Charles

    2015-06-01

    Hippocampal sclerosis is the commonest cause of drug-resistant epilepsy in adults, and is associated with alterations to structures and networks beyond the hippocampus.In addition to being a cause of epilepsy, the hippocampus is vulnerable to damage from seizure activity. In particular, prolonged seizures (status epilepticus) can result in hippocampal sclerosis. The hippocampus is also vulnerable to other insults including traumatic brain injury, and inflammation. Hippocampal sclerosis can occur in association with other brain lesions; the prevailing view is that it is probably a secondary consequence. In such instances, successful surgical treatment usually involves the resection of both the lesion and the involved hippocampus. Experimental data have pointed to numerous neuroprotective strategies to prevent hippocampal sclerosis. Initial neuroprotective strategies aimed at glutamate receptors may be effective, but later, metabolic pathways, apoptosis, reactive oxygen species, and inflammation are involved, perhaps necessitating the use of interventions aimed at multiple targets. Some of the therapies that we use to treat status epilepticus may neuroprotect. However, prevention of neuronal death does not necessarily prevent the later development of epilepsy or cognitive deficits. Perhaps, the most important intervention is the early, aggressive treatment of seizure activity, and the prevention of prolonged seizures. PMID:26060898

  13. Mild traumatic brain injury.

    PubMed

    Katz, Douglas I; Cohen, Sara I; Alexander, Michael P

    2015-01-01

    Mild traumatic brain injury (TBI) is common but accurate diagnosis and defining criteria for mild TBI and its clinical consequences have been problematic. Mild TBI causes transient neurophysiologic brain dysfunction, sometimes with structural axonal and neuronal damage. Biomarkers, such as newer imaging technologies and protein markers, are promising indicators of brain injury but are not ready for clinical use. Diagnosis relies on clinical criteria regarding depth and duration of impaired consciousness and amnesia. These criteria are particularly difficult to confirm at the least severe end of the mild TBI continuum, especially when relying on subjective, retrospective accounts. The postconcussive syndrome is a controversial concept because of varying criteria, inconsistent symptom clusters and the evidence that similar symptom profiles occur with other disorders, and even in a proportion of healthy individuals. The clinical consequences of mild TBI can be conceptualized as two multidimensional disorders: (1) a constellation of acute symptoms that might be termed early phase post-traumatic disorder (e.g., headache, dizziness, imbalance, fatigue, sleep disruption, impaired cognition), that typically resolve in days to weeks and are largely related to brain trauma and concomitant injuries; (2) a later set of symptoms, a late phase post-traumatic disorder, evolving out of the early phase in a minority of patients, with a more prolonged (months to years), sometimes worsening set of somatic, emotional, and cognitive symptoms. The later phase disorder is highly influenced by a variety of psychosocial factors and has little specificity for brain injury, although a history of multiple concussions seems to increase the risk of more severe and longer duration symptoms. Effective early phase management may prevent or limit the later phase disorder and should include education about symptoms and expectations for recovery, as well as recommendations for activity modifications

  14. Fortress brain.

    PubMed

    Royall, Donald R

    2013-02-01

    Neurodegenerative diseases are associated with neuronal inclusions, comprised of protein aggregates. In Alzheimer's Disease (AD) and Lewy Body Disease (LBD) such lesions are distributed in a hierarchical retrograde transynaptic spatial pattern. This implies a retrograde transynaptic temporal propagation as well. There can be few explanations for this other than infectious agents (prions and viruses). This suggests that AD and LBD (at least) may have infectious origins. Transynaptic infiltration of the CNS along cranial nerve or other major projections, by one or more infectious agents has important implications. The clinical syndrome and natural history of each neurodegenerative disorder will reflect its portal of entry. There may be a different neurodegenerative syndrome for each cranial nerve or other portal of entry, and not all may manifest as "dementia". Each syndrome may be associated with more than one pathological lesion. Each pathology may be associated with several clinical syndromes. Host-parasite interactions are species specific. This may explain the rarity of AD-like pathology in most other older mammals. Over evolutionary timescales, the human brain should be adapted to predation by neurotropic agents. Viewed from this perspective, the prion-like pro-inflammatory and pro-apoptotic properties of β-amyloid and other proteins may be adaptive, and anti-microbial. Reductions in synaptic density may slow the progress of invading pathogens, while perineuronal nets and other structures may guard the gates. This suggests a defense in depth of a structure, the brain, that is inherently vulnerable to invasion along its neural networks.

  15. Sex hormones and brain aging.

    PubMed

    Veiga, Sergio; Melcangi, Roberto C; Doncarlos, Lydia L; Garcia-Segura, Luis M; Azcoitia, Iñigo

    2004-01-01

    Sex steroids exert pleiotropic effects in the nervous system, preserving neural function and promoting neuronal survival. Therefore, the age-related decrease in sex steroids may have a negative impact on neural function. Progesterone, testosterone and estradiol prevent neuronal loss in the central nervous system in different experimental animal models of neurodegeneration. Furthermore, progesterone and its reduced derivatives dihydroprogesterone and tetrahydroprogesterone reduce aging-associated morphological abnormalities of myelin and aging-associated myelin fiber loss in rat peripheral nerves. However, the results from hormone replacement studies in humans are thus far inconclusive. A possible alternative to hormonal replacement therapy is to increase local steroidogenesis by neural tissues, which express enzymes for steroid synthesis and metabolism. Proteins involved in the intramitochondrial trafficking of cholesterol, the first step in steroidogenesis, such as the peripheral-type benzodiazepine receptor and the steroidogenic acute regulatory protein, are up-regulated in the nervous system after injury. Furthermore, steroidogenic acute regulatory protein expression is increased in the brain of 24-month-old rats compared with young adult rats. This suggests that brain steroidogenesis may be modified in adaptation to neurodegenerative conditions and to the brain aging process. Furthermore, recent studies have shown that local formation of estradiol in the brain, by the enzyme aromatase, is neuroprotective. Therefore, steroidogenic acute regulatory protein, peripheral-type benzodiazepine receptor and aromatase are attractive pharmacological targets to promote neuroprotection in the aged brain. PMID:15582278

  16. Alkamides from Echinacea angustifolia Interact with P-glycoprotein of primary brain capillary endothelial cells isolated from porcine brain blood vessels.

    PubMed

    Mahringer, Anne; Ardjomand-Woelkart, Karin; Bauer, Rudolf; Fricker, Gert; Efferth, Thomas

    2013-03-01

    The blood-brain barrier prevents the passage of toxic compounds from blood circulation into brain tissue. Unfortunately, drugs for the treatment of neurodegenerative diseases, brain tumors, and other diseases also do not cross the blood-brain barrier. In the present investigation, we used isolated porcine brain capillary endothelial cells and a flow cytometric calcein-AM assay to analyze inhibition of P-glycoprotein, a major constituent of the blood-brain barrier. We tested 8 alkamides isolated from Echinacea angustifolia and found that four of them inhibited P-glycoprotein-mediated calcein transport in porcine brain capillary endothelial cells.

  17. Antibodies as Mediators of Brain Pathology.

    PubMed

    Brimberg, Lior; Mader, Simone; Fujieda, Yuichiro; Arinuma, Yoshiyuki; Kowal, Czeslawa; Volpe, Bruce T; Diamond, Betty

    2015-11-01

    The brain is normally sequestered from antibody exposure by the blood brain barrier. However, antibodies can access the brain during fetal development before the barrier achieves full integrity, and in disease states when barrier integrity is compromised. Recent studies suggest that antibodies contribute to brain pathology associated with autoimmune diseases such as systemic lupus erythematosus and neuromyelitis optica, and can lead to transient or permanent behavioral or cognitive abnormalities. We review these findings here and examine the circumstances associated with antibody entry into the brain, the routes of access and the mechanisms that then effect pathology. Understanding these processes and the nature and specificity of neuronal autoantibodies may reveal therapeutic strategies toward alleviating or preventing the neurological pathologies and behavioral abnormalities associated with autoimmune disease.

  18. Antibodies as Mediators of Brain Pathology.

    PubMed

    Brimberg, Lior; Mader, Simone; Fujieda, Yuichiro; Arinuma, Yoshiyuki; Kowal, Czeslawa; Volpe, Bruce T; Diamond, Betty

    2015-11-01

    The brain is normally sequestered from antibody exposure by the blood brain barrier. However, antibodies can access the brain during fetal development before the barrier achieves full integrity, and in disease states when barrier integrity is compromised. Recent studies suggest that antibodies contribute to brain pathology associated with autoimmune diseases such as systemic lupus erythematosus and neuromyelitis optica, and can lead to transient or permanent behavioral or cognitive abnormalities. We review these findings here and examine the circumstances associated with antibody entry into the brain, the routes of access and the mechanisms that then effect pathology. Understanding these processes and the nature and specificity of neuronal autoantibodies may reveal therapeutic strategies toward alleviating or preventing the neurological pathologies and behavioral abnormalities associated with autoimmune disease. PMID:26494046

  19. Antibodies as Mediators of Brain Pathology

    PubMed Central

    Brimberg, Lior; Mader, Simone; Fujieda, Yuichiro; Arinuma, Yoshiyuki; Kowal, Czeslawa; Volpe, Bruce T.; Diamond, Betty

    2016-01-01

    The brain is normally sequestered from antibody exposure by the blood brain barrier. However, antibodies can access the brain during fetal development before the barrier achieves full integrity, and in disease states when barrier integrity is compromised. Recent studies suggest that antibodies contribute to brain pathology associated with autoimmune diseases such as systemic lupus erythematosus and neuromyelitis optica, and can lead to transient or permanent behavioral or cognitive abnormalities. We review these findings here and examine the circumstances associated with antibody entry into the brain, the routes of access and the mechanisms that then effect pathology. Understanding these processes and the nature and specificity of neuronal autoantibodies may reveal therapeutic strategies toward alleviating or preventing the neurological pathologies and behavioral abnormalities associated with autoimmune disease. PMID:26494046

  20. Role of exercise on the brain

    PubMed Central

    Baek, Seung-Soo

    2016-01-01

    The functions of adult hippocampal neurogenesis have been extensively investigated during the past decade. Numerous studies have shown that adult neurogenesis may play an important role in the hippocampal-dependent learning and memory. This study evaluated the influence of exercise on hippocampal neurogenesis, neural plasticity, neurotrophic factors, and cognition. Areas of research focused on enhancing effect of exercise for adult hippocampal neurogenesis and protective role of exercise against brain diseases. The present study suggests that exercise improves brain functions and prevents decline of cognition across the lifespan. Understanding of neurobiological mechanisms of exercise on brain functions may lead to the development of novel therapeutic strategy for neurodegenerative disorders. PMID:27807514

  1. Molsidomine for the prevention of vasospasm-related delayed ischemic neurological deficits and delayed brain infarction and the improvement of clinical outcome after subarachnoid hemorrhage: a single-center clinical observational study.

    PubMed

    Ehlert, Angelika; Schmidt, Christoph; Wölfer, Johannes; Manthei, Gerd; Jacobs, Andreas H; Brüning, Roland; Heindel, Walter; Ringelstein, E Bernd; Stummer, Walter; Pluta, Ryszard M; Hesselmann, Volker

    2016-01-01

    OBJECT Delayed ischemic neurological deficits (DINDs) and cerebral vasospasm (CVS) are responsible fora poor outcome in patients with aneurysmal subarachnoid hemorrhage (SAH), most likely because of a decreased availability of nitric oxide (NO) in the cerebral microcirculation. In this study, the authors examined the effects of treatment with the NO donor molsidomine with regard to decreasing the incidence of spasm-related delayed brain infarctions and improving clinical outcome in patients with SAH. METHODS Seventy-four patients with spontaneous aneurysmal SAH were included in this post hoc analysis. Twenty-nine patients with SAH and proven CVS received molsidomine in addition to oral or intravenous nimodipine. Control groups consisted of 25 SAH patients with proven vasospasm and 20 SAH patients without. These patients received nimodipine therapy alone. Cranial computed tomography (CCT) before and after treatment was analyzed for CVS-related infarcts. A modified National Institutes of Health Stroke Scale (mNIHSS) and the modified Rankin Scale (mRS) were used to assess outcomes at a 3-month clinical follow-up. RESULTS Four of the 29 (13.8%) patients receiving molsidomine plus nimodipine and 22 of the 45 (48%) patients receiving nimodipine therapy alone developed vasospasm-associated brain infarcts (p < 0.01). Follow-up revealed a median mNIHSS score of 3.0 and a median mRS score of 2.5 in the molsidomine group compared with scores of 11.5 and 5.0, respectively, in the nimodipine group with CVS (p < 0.001). One patient in the molsidomine treatment group died, and 12 patients in the standard care group died (p < 0.01). CONCLUSIONS In this post hoc analysis, patients with CVS who were treated with intravenous molsidomine had a significant improvement in clinical outcome and less cerebral infarction. Molsidomine offers a promising therapeutic option in patients with severe SAH and CVS and should be assessed in a prospective study.

  2. Critical care management of severe traumatic brain injury in adults

    PubMed Central

    2012-01-01

    Traumatic brain injury (TBI) is a major medical and socio-economic problem, and is the leading cause of death in children and young adults. The critical care management of severe TBI is largely derived from the "Guidelines for the Management of Severe Traumatic Brain Injury" that have been published by the Brain Trauma Foundation. The main objectives are prevention and treatment of intracranial hypertension and secondary brain insults, preservation of cerebral perfusion pressure (CPP), and optimization of cerebral oxygenation. In this review, the critical care management of severe TBI will be discussed with focus on monitoring, avoidance and minimization of secondary brain insults, and optimization of cerebral oxygenation and CPP. PMID:22304785

  3. Brain health and shared risk factors for dementia and stroke.

    PubMed

    Gardener, Hannah; Wright, Clinton B; Rundek, Tatjana; Sacco, Ralph L

    2015-11-01

    Impaired brain health encompasses a range of clinical outcomes, including stroke, dementia, vascular cognitive impairment, cognitive ageing, and vascular functional impairment. Conditions associated with poor brain health represent leading causes of global morbidity and mortality, with projected increases in public health burden as the population ages. Many vascular risk factors are shared predictors for poor brain health. Moreover, subclinical brain MRI markers of vascular damage are risk factors shared between stroke and dementia, and can be used for risk stratification and early intervention. The broad concept of brain health has resulted in a conceptual shift from vascular risk factors to determinants of brain health. Global campaigns to reduce cardiovascular diseases by targeting modifiable risk factors are necessary and will have a broad impact on brain health. Research is needed on the distinct and overlapping aetiologies of brain health conditions, and to define MRI markers to help clinicians identify patients who will benefit from aggressive prevention measures.

  4. [Secondary stroke prevention].

    PubMed

    Ferro, J M; Correia, M; Freire, A; Perez y Sanchez, J; Abrunhosa, M A; Perez y Sanchez, M F

    1998-11-01

    The guidelines for secondary stroke prevention, graded following available scientific evidence, are presented. Stroke and TIA are defined and the indications for referral established. Basic assessment of stroke patients should include laboratory evaluation, ECG, brain CT, ultrasound examination of the extracranial vessels for events in the carotid distribution, and transthoracic or transesophageal echocardiogram if cardioembolism is suspected. The pharmacological and non-pharmacological reduction of blood pressure and serum cholesterol, stopping smoking and reducing alcohol intake are general measures recommended for secondary stroke prevention, together with healthier life-style changes (eating a Mediterranean type diet and performing regular moderate physical exercise). Concerning antithrombotic therapy, oral anticoagulants are recommended for patients with atrial fibrillation and other high to medium emboligenic cardiac risk conditions. Antiplatelet drugs are recommended for all other survivors of an ischemic cerebral event. Aspirin (75-325 mg/day) is the drug of choice. Alternative antiplatelet agents are clopidrogrel, ticlopidine, dipiridamol or triflusal. They can be used in patients with intolerance or contraindication to aspirin or in high-risk subjects. Endarterectomy of the symptomatic carotid is an additional procedure recommended for patients with ischemic stroke or TIA and carotid stenosis > 80% on the side of the symptomatic cerebral hemisphere. PMID:10021804

  5. TOWARD SUICIDE PREVENTION

    PubMed Central

    Rao, Venkoba A.

    1999-01-01

    Suicide is an important mode of death. There are many psychiatrically ill patients in therapy running different degree of suicide risk. The risk of death by suicide is with almost all psychiatric illnesses, but it is found more with depressive disease, schizophrenia and personality disorder. Many studies have reported higher incidences of suicide attempts and suicide among alcoholics, which is often precipitated by family crises. Drug problems, low threshold for tolerance of day to day frustration, unemployement and poor parenting are major causes for youth suicide. There is biological evidence of suicidal behaviour. Fall in the level of serotonin and 5-HIAA in the CSF and in hind brain is found in subjects dying from suicide. Researchers have found decreased melatonin level in depression and suicide attempters. Long term therapy with antidepressants (Tricyclics), mood stabilizers (lithium and valproate) and new SSRIs prevent relapses and lessen suicide. It was concluded that general hospital doctors are in position of reducing suicide rates. Education of physician in detection of depression and suicide prevention will result in decline in number of suicides. The important measures include limiting the ability of methods of self-harm, antidepressants, paracetamol and insecticides. PMID:21430799

  6. Special Report: Brain Chemistry.

    ERIC Educational Resources Information Center

    Krassner, Michael B.

    1983-01-01

    Chemical actions in the brain result in cognitive, emotional, neuroendocrine, neuromuscular, and/or neurocirculatory effects. Developments in understanding brain chemistry are discussed, considering among others, neurotransmitter chemistry, neuropeptides, drugs and the brain, antidepressants, and actions of minor tranquilizers. (JN)

  7. Brain-based Learning.

    ERIC Educational Resources Information Center

    Weiss, Ruth Palombo

    2000-01-01

    Discusses brain research and how new imaging technologies allow scientists to explore how human brains process memory, emotion, attention, patterning, motivation, and context. Explains how brain research is being used to revise learning theories. (JOW)

  8. Traumatic Brain Injury

    MedlinePlus

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  9. Brain tumor (image)

    MedlinePlus

    Brain tumors are classified depending on the exact site of the tumor, the type of tissue involved, benign ... tendencies of the tumor, and other factors. Primary brain tumors can arise from the brain cells, the meninges ( ...

  10. Traumatic Brain Injury

    MedlinePlus

    ... Center PTACs Workspaces Log-in Search for: Traumatic Brain Injury A legacy resource from NICHCY Disability Fact ... in her. Back to top What is Traumatic Brain Injury? A traumatic brain injury (TBI) is an ...

  11. That's Using Your Brain!

    ERIC Educational Resources Information Center

    Visser, Dana R.

    1996-01-01

    Discusses new adult learning theories, including those of Roger Sperry (left brain/right brain), Paul McLean (triune brain), and Howard Gardner (multiple intelligences). Relates adult learning theory to training. (JOW)

  12. Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain.

    PubMed

    Avraham, Hava Karsenty; Jiang, Shuxian; Fu, Yigong; Nakshatri, Harikrishna; Ovadia, Haim; Avraham, Shalom

    2014-02-01

    Although the incidence of breast cancer metastasis (BCM) in brain has increased significantly in triple-negative breast cancer (TNBC), the mechanisms remain elusive. Using in vivo mouse models for BCM in brain, we observed that TNBC cells crossed the blood-brain barrier (BBB), lodged in the brain microvasculature and remained adjacent to brain microvascular endothelial cells (BMECs). Breaching of the BBB in vivo by TNBCs resulted in increased BBB permeability and changes in ZO-1 and claudin-5 tight junction (TJ) protein structures. Angiopoietin-2 expression was elevated in BMECs and was correlated with BBB disruption. Secreted Ang-2 impaired TJ structures and increased BBB permeability. Treatment of mice with the neutralizing Ang-2 peptibody trebananib prevented changes in the BBB integrity and BMEC destabilization, resulting in inhibition of TNBC colonization in brain. Thus, Ang-2 is involved in initial steps of brain metastasis cascade, and inhibitors for Ang-2 may serve as potential therapeutics for brain metastasis.

  13. Translating Developmental Neuroscience to Substance Use Prevention

    PubMed Central

    Riggs, Nathaniel R.

    2015-01-01

    Several preventive interventions have demonstrated efficacy in reducing substance use. However, opportunities exist to further improve prevention approaches. The application of recent advances in developmental neuroscience can inform the design, implementation, and evaluation of substance use prevention programs. This paper first briefly describes the developmental integration of the prefrontal cortex with emotion and motivation centers of the brain, and the implications of this process for substance use vulnerability. Discussed next are specific examples of how developmental neuroscience can inform prevention timing, development, and evaluation. Contextual considerations are then suggested including a critical role for schools in substance misuse prevention. Finally, current theoretical and methodological challenges to the translation of developmental neuroscience to substance use prevention are discussed. PMID:26236576

  14. The Correlation between Brain Development, Language Acquisition, and Cognition

    ERIC Educational Resources Information Center

    Wasserman, Leslie Haley

    2007-01-01

    There continues to be a debate whether educators should use brain research to their advantage in the classroom. This debate should not prevent educators from using their new found knowledge toward enhancing their students' learning. By understanding how the brain learns, educators are able to determine what developmental level the child is…

  15. Rapid brain cooling in diving ducks.

    PubMed

    Caputa, M; Folkow, L; Blix, A S

    1998-08-01

    Hypothermia may limit asphyxic damages to the brain, and many small homeotherms have been shown to use anapyrexic strategies when exposed to asphyxic conditions. Larger homeotherms do not seem to use the same strategy, but could save oxygen and prevent hypoxic brain damage by employing selective brain cooling (SBC) in connection with asphyxia. To test the hypothesis that selective brain cooling may take place in connection with asphyxia, we have recorded brain [hypothalamic (THyp)] and body [colonic (TC)] temperatures and heart rates in four Pekin ducks during 5-min simulated (head submersion) diving in cold water (10 degrees C). Diving resulted in a drop in THyp (3.1 +/- 1.4 degrees C) that continued into the recovery period (P < 0.001). Restricting heat loss from the buccal cavity and eyes during diving compromised brain cooling in an additive manner. TC was not influenced by diving. Control cooling of the head with crushed ice during a 5-min period of undisturbed breathing had no effect on THyp. Warm water (35 degrees C) markedly reduced brain cooling, and dive capacity was reduced by approximately 14% (P < 0.05) compared with diving in water at 10 degrees C. The data suggest that SBC is used in ducks during diving, and we propose that this mechanism may enable the bird to save oxygen for prolonged aerobic submergence and to protect the brain from asphyxic damages. PMID:9688670

  16. The stomach-brain axis.

    PubMed

    Holtmann, Gerald; Talley, Nicholas J

    2014-12-01

    required instead of widely utilised opportunistic stool microbiome studies. In summary, it is now well established that there are important links between the brain and the stomach that have significant effects on gastric function. However, the stomach also influences the brain. Disturbances in the crosstalk between the stomach and the brain may manifest as functional GI disorders while disturbances in the stomach-brain communication may also result in an altered regulation of satiety and as a consequence may affect eating behaviour and mood. These observations may enable the identification of novel therapies targeted at the gastroduodenum that positively alter brain function and treat or prevent conditions such as obesity or functional gastrointestinal disorders.

  17. A randomized double-blind crossover trial of deep brain stimulation of the subcallosal cingulate gyrus in patients with treatment-resistant depression: a pilot study of relapse prevention

    PubMed Central

    Puigdemont, Dolors; Portella, Maria J.; Pérez-Egea, Rosario; Molet, Joan; Gironell, Alexandre; de Diego-Adeliño, Javier; Martín, Anna; Rodríguez, Rodrigo; Àlvarez, Enric; Artigas, Francesc; Pérez, Víctor

    2015-01-01

    Background To date, antidepressant drugs show limited efficacy, leaving a large number of patients experiencing severe and persistent symptoms of major depression. Previous open-label clinical trials have reported significant sustained improvements with deep brain stimulation (DBS) of the subcallosal cingulate gyrus (SCG) in patients with severe, chronic treatment-resistant depression (TRD). This study aimed to confirm the efficacy and measure the impact of discontinuation of the electrical stimulation. Methods We conducted a 6-month double-blind, randomized, sham-controlled crossover study in implanted patients with previous severe TRD who experienced full remission after chronic stimulation. After more than 3 months of stable remission, patients were randomly assigned to 2 treatment arms: the ON–OFF arm, which involved active electrode stimulation for 3 months followed by sham stimulation for 3 months, and the OFF–ON arm, which involved sham stimulation for 3 months followed by active stimulation for 3 months. The primary outcome measure was the difference in the 17-item Hamilton Rating Scale for Depression (HAMD-17) total score between sham and active stimulation. Results We enrolled 5 patients in our trial. A Friedman repeated-measures analysis of variance revealed a significant effect of treatment (χ21 = 5.0, p = 0.025) in patients with higher depression scores during sham stimulation. At the end of active stimulation, depression was remitted in 4 of 5 patients and none of them had experienced a relapse, whereas at the end of sham stimulation, 2 patients remained in remission, 2 relapsed and 1 showed a progressive worsening without reaching relapse criteria. Limitations The small sample size limited the statistical power and external validity. Conclusion These preliminary findings indicate that DBS of the SCG is an effective and safe treatment for severe forms of TRD and that continuous electrical stimulation is required to maintain therapeutic effects

  18. Seizures Following Traumatic Brain Injury in Childhood.

    ERIC Educational Resources Information Center

    Williams, Dennis

    This guide provides information on seizures in students with traumatic brain injury (TBI) and offers guidelines for classroom management. First, a classification system for seizures is presented with specific types of seizures explained. Post-traumatic seizures are specifically addressed as is the importance of seizure prevention when possible.…

  19. Nanoparticles for Brain Drug Delivery

    PubMed Central

    Masserini, Massimo

    2013-01-01

    The central nervous system, one of the most delicate microenvironments of the body, is protected by the blood-brain barrier (BBB) regulating its homeostasis. BBB is a highly complex structure that tightly regulates the movement of ions of a limited number of small molecules and of an even more restricted number of macromolecules from the blood to the brain, protecting it from injuries and diseases. However, the BBB also significantly precludes the delivery of drugs to the brain, thus, preventing the therapy of a number of neurological disorders. As a consequence, several strategies are currently being sought after to enhance the delivery of drugs across the BBB. Within this review, the recently born strategy of brain drug delivery based on the use of nanoparticles, multifunctional drug delivery systems with size in the order of one-billionth of meters, is described. The review also includes a brief description of the structural and physiological features of the barrier and of the most utilized nanoparticles for medical use. Finally, the potential neurotoxicity of nanoparticles is discussed, and future technological approaches are described. The strong efforts to allow the translation from preclinical to concrete clinical applications are worth the economic investments. PMID:25937958

  20. Brain Tumor Symptoms

    MedlinePlus

    ... Types of Tumors Risk Factors Brain Tumor Statistics Brain Tumor Dictionary Webinars Anytime Learning About Us Our Founders Board of Directors Staff ... Types of Tumors Risk Factors Brain Tumor Statistics Brain Tumor Dictionary Webinars Anytime Learning Donate to the ABTA Help advance the understanding ...

  1. Prevention of Epilepsy: Issues and Innovations.

    PubMed

    Schmidt, Dieter; Sillanpää, Matti

    2016-11-01

    Epilepsy is a common brain disease and preventing epilepsy is a very relevant public health concern and an urgent unmet need. Although 40 % of all epilepsy cases are thought to have acquired causes, there is a roadblock for successful prevention. Efforts to protect the brain from epileptogenic insults are severely hampered by our lack of biomarkers to identify the few percent at high risk meriting treatment among those exposed. Preventing brain injury has been moderately effective from around birth to middle age; however, the strategy has failed to stop a substantial increase over the last decades in symptomatic epilepsy in those aged 65 and above. The traditional concept of repurposing anti-seizure drugs used for symptomatic seizure relief to prevent the onset of epilepsy has completely failed up to now. More recently, however, hope is on the horizon with a search for biomarkers and discovery of a new class of agents, called anti-epileptogenic drugs, which were specifically developed for prevention of epilepsy. PMID:27628962

  2. A Role for Brain Stress Systems in Addiction

    PubMed Central

    Koob, George F.

    2009-01-01

    Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry. PMID:18614026

  3. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit

    PubMed Central

    Ridder, Dirk A.; Wenzel, Jan; Müller, Kristin; Töllner, Kathrin; Tong, Xin-Kang; Assmann, Julian C.; Stroobants, Stijn; Weber, Tobias; Niturad, Cristina; Fischer, Lisanne; Lembrich, Beate; Wolburg, Hartwig; Grand’Maison, Marilyn; Papadopoulos, Panayiota; Korpos, Eva; Truchetet, Francois; Rades, Dirk; Sorokin, Lydia M.; Schmidt-Supprian, Marc; Bedell, Barry J.; Pasparakis, Manolis; Balschun, Detlef; D’Hooge, Rudi; Löscher, Wolfgang; Hamel, Edith

    2015-01-01

    Inactivating mutations of the NF-κB essential modulator (NEMO), a key component of NF-κB signaling, cause the genetic disease incontinentia pigmenti (IP). This leads to severe neurological symptoms, but the mechanisms underlying brain involvement were unclear. Here, we show that selectively deleting Nemo or the upstream kinase Tak1 in brain endothelial cells resulted in death of endothelial cells, a rarefaction of brain microvessels, cerebral hypoperfusion, a disrupted blood–brain barrier (BBB), and epileptic seizures. TAK1 and NEMO protected the BBB by activating the transcription factor NF-κB and stabilizing the tight junction protein occludin. They also prevented brain endothelial cell death in a NF-κB–independent manner by reducing oxidative damage. Our data identify crucial functions of inflammatory TAK1–NEMO signaling in protecting the brain endothelium and maintaining normal brain function, thus explaining the neurological symptoms associated with IP. PMID:26347470

  4. Brain evolution by brain pathway duplication.

    PubMed

    Chakraborty, Mukta; Jarvis, Erich D

    2015-12-19

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits.

  5. Brain evolution by brain pathway duplication

    PubMed Central

    Chakraborty, Mukta; Jarvis, Erich D.

    2015-01-01

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045

  6. Brain evolution by brain pathway duplication.

    PubMed

    Chakraborty, Mukta; Jarvis, Erich D

    2015-12-19

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045

  7. The blood-brain barrier in hypoxia.

    PubMed

    Lataste, X

    1992-10-01

    The concept of blood-brain barrier has moved over the past years from a passive and relatively immutable structure to a more dynamic interface between blood and brain tissue. The transport mechanisms regulating this adaptative interface might be considered as the most sensitive elements to change such as hypoxia. Among various carrier mediated transports existing at the blood-brain barrier, glucose transport seems to play a predominant role. In severe hypoxia, progressive changes in glucose transport are occurring. These modifications associated with hypoxia can lead to deleterious events when reaching critical threshold. In addition the appearance of vasogenic edema due to changes in cerebral-blood flow, can possibly be prevented by some pharmacological interaction such as the use of selective brain calcium channel blockers.

  8. Improving brain drug targeting through exploitation of the nose-to-brain route: a physiological and pharmacokinetic perspective.

    PubMed

    Badhan, R K S; Kaur, M; Lungare, S; Obuobi, S

    2014-01-01

    With an ageing population and increasing prevalence of central-nervous system (CNS) disorders new approaches are required to sustain the development and successful delivery of therapeutics into the brain and CNS. CNS drug delivery is challenging due to the impermeable nature of the brain microvascular endothelial cells that form the blood-brain barrier (BBB) and which prevent the entry of a wide range of therapeutics into the brain. This review examines the role intranasal delivery may play in achieving direct brain delivery, for small molecular weight drugs, macromolecular therapeutics and cell-based therapeutics, by exploitation of the olfactory and trigeminal nerve pathways. This approach is thought to deliver drugs into the brain and CNS through bypassing the BBB. Details of the mechanism of transfer of administrated therapeutics, the pathways that lead to brain deposition, with a specific focus on therapeutic pharmacokinetics, and examples of successful CNS delivery will be explored.

  9. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    PubMed

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge.

  10. Acid extrusion via blood–brain barrier causes brain alkalosis and seizures after neonatal asphyxia

    PubMed Central

    Helmy, Mohamed M.; Ruusuvuori, Eva; Watkins, Paul V.; Voipio, Juha; Kanold, Patrick O.; Kaila, Kai

    2012-01-01

    Birth asphyxia is often associated with a high seizure burden that is predictive of poor neurodevelopmental outcome. The mechanisms underlying birth asphyxia seizures are unknown. Using an animal model of birth asphyxia based on 6-day-old rat pups, we have recently shown that the seizure burden is linked to an increase in brain extracellular pH that consists of the recovery from the asphyxia-induced acidosis, and of a subsequent plateau level well above normal extracellular pH. In the present study, two-photon imaging of intracellular pH in neocortical neurons in vivo showed that pH changes also underwent a biphasic acid–alkaline response, resulting in an alkaline plateau level. The mean alkaline overshoot was strongly suppressed by a graded restoration of normocapnia after asphyxia. The parallel post-asphyxia increase in extra- and intracellular pH levels indicated a net loss of acid equivalents from brain tissue that was not attributable to a disruption of the blood–brain barrier, as demonstrated by a lack of increased sodium fluorescein extravasation into the brain, and by the electrophysiological characteristics of the blood–brain barrier. Indeed, electrode recordings of pH in the brain and trunk demonstrated a net efflux of acid equivalents from the brain across the blood–brain barrier, which was abolished by the Na/H exchange inhibitor, N-methyl-isobutyl amiloride. Pharmacological inhibition of Na/H exchange also suppressed the seizure activity associated with the brain-specific alkalosis. Our findings show that the post-asphyxia seizures are attributable to an enhanced Na/H exchange-dependent net extrusion of acid equivalents across the blood–brain barrier and to consequent brain alkalosis. These results suggest targeting of blood–brain barrier-mediated pH regulation as a novel approach in the prevention and therapy of neonatal seizures. PMID:23125183

  11. Acid extrusion via blood-brain barrier causes brain alkalosis and seizures after neonatal asphyxia.

    PubMed

    Helmy, Mohamed M; Ruusuvuori, Eva; Watkins, Paul V; Voipio, Juha; Kanold, Patrick O; Kaila, Kai

    2012-11-01

    Birth asphyxia is often associated with a high seizure burden that is predictive of poor neurodevelopmental outcome. The mechanisms underlying birth asphyxia seizures are unknown. Using an animal model of birth asphyxia based on 6-day-old rat pups, we have recently shown that the seizure burden is linked to an increase in brain extracellular pH that consists of the recovery from the asphyxia-induced acidosis, and of a subsequent plateau level well above normal extracellular pH. In the present study, two-photon imaging of intracellular pH in neocortical neurons in vivo showed that pH changes also underwent a biphasic acid-alkaline response, resulting in an alkaline plateau level. The mean alkaline overshoot was strongly suppressed by a graded restoration of normocapnia after asphyxia. The parallel post-asphyxia increase in extra- and intracellular pH levels indicated a net loss of acid equivalents from brain tissue that was not attributable to a disruption of the blood-brain barrier, as demonstrated by a lack of increased sodium fluorescein extravasation into the brain, and by the electrophysiological characteristics of the blood-brain barrier. Indeed, electrode recordings of pH in the brain and trunk demonstrated a net efflux of acid equivalents from the brain across the blood-brain barrier, which was abolished by the Na/H exchange inhibitor, N-methyl-isobutyl amiloride. Pharmacological inhibition of Na/H exchange also suppressed the seizure activity associated with the brain-specific alkalosis. Our findings show that the post-asphyxia seizures are attributable to an enhanced Na/H exchange-dependent net extrusion of acid equivalents across the blood-brain barrier and to consequent brain alkalosis. These results suggest targeting of blood-brain barrier-mediated pH regulation as a novel approach in the prevention and therapy of neonatal seizures.

  12. Metabolism and functions of copper in brain.

    PubMed

    Scheiber, Ivo F; Mercer, Julian F B; Dringen, Ralf

    2014-05-01

    Copper is an important trace element that is required for essential enzymes. However, due to its redox activity, copper can also lead to the generation of toxic reactive oxygen species. Therefore, cellular uptake, storage as well as export of copper have to be tightly regulated in order to guarantee sufficient copper supply for the synthesis of copper-containing enzymes but also to prevent copper-induced oxidative stress. In brain, copper is of importance for normal development. In addition, both copper deficiency as well as excess of copper can seriously affect brain functions. Therefore, this organ possesses ample mechanisms to regulate its copper metabolism. In brain, astrocytes are considered as important regulators of copper homeostasis. Impairments of homeostatic mechanisms in brain copper metabolism have been associated with neurodegeneration in human disorders such as Menkes disease, Wilson's disease and Alzheimer's disease. This review article will summarize the biological functions of copper in the brain and will describe the current knowledge on the mechanisms involved in copper transport, storage and export of brain cells. The role of copper in diseases that have been connected with disturbances in brain copper homeostasis will also be discussed.

  13. Surgical Resection Followed by Whole Brain Radiotherapy Versus Whole Brain Radiotherapy Alone for Single Brain Metastasis

    SciTech Connect

    Rades, Dirk Kieckebusch, Susanne; Haatanen, Tiina; Lohynska, Radka; Dunst, Juergen; Schild, Steven E.

    2008-04-01

    control within the entire brain, but did not prevent the development of new brain metastases distant to the original site.

  14. Preventing head and neck injury.

    PubMed

    McIntosh, A S; McCrory, P

    2005-06-01

    A wide range of head and neck injury risks are present in sport, including catastrophic injury. The literature since 1980 on prevention of head and neck injury in sport was reviewed, focusing on catastrophic and brain injury and identifying the range of injury prevention methods in use. There have been few formal evaluations of injury prevention methods. Approaches that are considered, or have been proven, to be successful in preventing injury include: modification of the baseball; implementation of helmet standards in ice hockey and American football and increased wearing rates; use of full faceguards in ice hockey; changes in rules associated with body contact; implementation of rules to reduce the impact forces in rugby scrums. Helmets and other devices have been shown to reduce the risk of severe head and facial injury, but current designs appear to make little difference to rates of concussion. Research methods involving epidemiological, medical, and human factors are required in combination with biomechanical and technological approaches to reduce further injury risks in sport.

  15. Prevention of unintentional childhood injury.

    PubMed

    Theurer, Wesley M; Bhavsar, Amit K

    2013-04-01

    Unintentional injury accounts for 40 percent of childhood deaths annually, most commonly from motor vehicle crashes. The proper use of child restraints is the most effective strategy to prevent injury or death. Motor vehicle restraint guidelines have recently been revised to an age-based system that delays the progression in type of restraint for most children. Strategies to prevent suffocation in children include using appropriate bedding, positioning babies on their backs to sleep, and removing items from the sleep and play environment that could potentially entrap or entangle the child. Fencing that isolates a swimming pool from the yard and surrounding area and "touch" adult supervision (i.e., an adult is in the water and able to reach and grab a child) have been shown to be most effective in preventing drownings. Swimming lessons are recommended for children older than four years. Poison prevention programs have been shown to improve prevention behavior among caregivers, but may not decrease poisoning incidence. Syrup of ipecac is not recommended. Smoke detector maintenance, a home escape plan, and educating children about how to respond during a fire emergency are effective strategies for preventing fire injuries or death. Fall injuries may be reduced by not using walkers for infants and toddlers or bunk beds for children six years and younger. Consistent helmet use while bicycling reduces head and brain injuries. Although direct counseling by physicians appears to improve some parental safety behaviors, its effect on reducing childhood injuries is uncertain. Community-based interventions can be effective in high-risk populations.

  16. Vitamin D in dementia prevention.

    PubMed

    Annweiler, Cédric

    2016-03-01

    Beyond effects on bone health, vitamin D exerts effects on a variety of target organs, including the brain. The discussion herein presents the state of the art in research on the neurological role of vitamin D and clinical implications among older adults, including implications for dementia onset and progression. Some of the neurosteroid actions of vitamin D include regulation of calcium homeostasis, clearance of amyloid-β peptide, antioxidant and anti-inflammatory effects, and possible protection against the neurodegenerative mechanisms associated with Alzheimer's disease (AD). The correction of age-related hypovitaminosis D and cognitive decline has been reported by various cross-sectional and longitudinal studies reporting associations of lower vitamin D concentrations with brain changes and poorer cognition, specifically with respect to executive dysfunction. Epidemiological studies have consistently shown an association between inadequate dietary intake of vitamin D and cognitive disorders, including greater AD risk. Although there have not been any randomized placebo-controlled trials conducted to examine the effectiveness of vitamin D supplementation to prevent AD, several nonrandomized controlled studies have found that older adults experienced cognitive improvements after 1-15 months of vitamin D supplementation. Therefore, it appears crucial to maintain vitamin D concentrations at sufficiently high levels in order to slow, prevent, or improve neurocognitive decline. PMID:27116242

  17. Regulation of brain aquaporins.

    PubMed

    Zelenina, Marina

    2010-11-01

    Three aquaporins are expressed in the brain. AQP4, the predominant brain water channel, is expressed in astrocyte endfeet facing brain capillaries, perisynaptic spaces, and nodes of Ranvier. It is implicated in brain edema formation and resolution. It is also believed to assist clearance of K(+) released during neuronal activity. AQP1 is expressed in epithelial cells of choroid plexus and is implicated in cerebrospinal fluid formation. AQP9, which has been reported to be present in astrocytes and in subpopulations of neurons, is implicated in the brain energy metabolism. All three brain AQPs are strongly upregulated in brain tumors and in injured brain tissue. Water and solute transport via AQPs depends on concentration gradients across the membrane, but the magnitude of the transport is to a large extent determined by the single channel permeability of AQPs and by their abundance in the cell membrane. The future therapies will have to address not only the forces driving the water and solute transport (e.g. as mannitol infusion does in the treatment of brain edema), but also the regulation of AQPs, which provide the means for water entry to the brain, for water exit from the brain, and for redistribution of water and solutes within the brain compartments. This review summarizes the data concerning structure, permeability, role in the brain, short-term and long-term regulation of the three AQPs.

  18. Understanding brain networks and brain organization

    PubMed Central

    Pessoa, Luiz

    2014-01-01

    What is the relationship between brain and behavior? The answer to this question necessitates characterizing the mapping between structure and function. The aim of this paper is to discuss broad issues surrounding the link between structure and function in the brain that will motivate a network perspective to understanding this question. As others in the past, I argue that a network perspective should supplant the common strategy of understanding the brain in terms of individual regions. Whereas this perspective is needed for a fuller characterization of the mind-brain, it should not be viewed as panacea. For one, the challenges posed by the many-to-many mapping between regions and functions is not dissolved by the network perspective. Although the problem is ameliorated, one should not anticipate a one-to-one mapping when the network approach is adopted. Furthermore, decomposition of the brain network in terms of meaningful clusters of regions, such as the ones generated by community-finding algorithms, does not by itself reveal “true” subnetworks. Given the hierarchical and multi-relational relationship between regions, multiple decompositions will offer different “slices” of a broader landscape of networks within the brain. Finally, I described how the function of brain regions can be characterized in a multidimensional manner via the idea of diversity profiles. The concept can also be used to describe the way different brain regions participate in networks. PMID:24819881

  19. Left Brain, Right Brain: Facts and Fantasies

    PubMed Central

    Corballis, Michael C.

    2014-01-01

    Summary Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the “norm” of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal. PMID:24465175

  20. Left brain, right brain: facts and fantasies.

    PubMed

    Corballis, Michael C

    2014-01-01

    Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal. PMID:24465175

  1. Modulating Brain Oscillations to Drive Brain Function

    PubMed Central

    Thut, Gregor

    2014-01-01

    Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions. PMID:25549340

  2. Brain tumor - primary - adults

    MedlinePlus

    ... tumor, relieve symptoms, and improve brain function or comfort. Surgery is often needed for most primary brain ... and pressure Anticonvulsants to reduce seizures Pain medicines Comfort measures, safety measures, physical therapy, and occupational therapy ...

  3. Brain Tumor Statistics

    MedlinePlus

    ... facts and statistics here include brain and central nervous system tumors (including spinal cord, pituitary and pineal gland ... U.S. living with a primary brain and central nervous system tumor. This year, nearly 17,000 people will ...

  4. Children's Brain Tumor Foundation

    MedlinePlus

    ... CBTF Justin's Hope Fund Grant Recipients Grants Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  5. Genetic Brain Disorders

    MedlinePlus

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  6. Childhood Brain Tumors

    MedlinePlus

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  7. Pediatric Brain Tumor Foundation

    MedlinePlus

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... Cancer Foundation joins the PBTF Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  8. Brain aneurysm repair

    MedlinePlus

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  9. American Brain Tumor Association

    MedlinePlus

    ... in the Ear Canals Read More ABTA News October 5, 2016 Largest American Brain Tumor Association Team Running in Bank of America Chicago Marathon Sunday, October 9 September 21, 2016 American Brain Tumor Association Awards 16 Grants to Support ...

  10. Anatomy of the Brain

    MedlinePlus

    ... our existence. It controls our personality, thoughts, memory, intelligence, speech and understanding, emotions, senses, and basic body functions, as well as how we function in our environment. The diagrams below show brain anatomy, or the various parts of the brain, ...

  11. Biophysics: Unfolding the brain

    NASA Astrophysics Data System (ADS)

    Kuhl, Ellen

    2016-06-01

    The folded surface of the human brain, although striking, continues to evade understanding. Experiments with swelling gels now fuel the notion that brain folding is modulated by physical forces, and not by genetic, biological or chemical events alone.

  12. Brain natriutetic peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/007509.htm Brain natriuretic peptide test To use the sharing features on this page, please enable JavaScript. Brain natriuretic peptide (BNP) test is a blood test that measures ...

  13. NASA Robot Brain Surgeon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mechanical Engineer Michael Guerrero works on the Robot Brain Surgeon testbed in the NeuroEngineering Group at the Ames Research Center, Moffett Field, California. Principal investigator Dr. Robert W. Mah states that potentially the simple robot will be able to feel brain structures better than any human surgeon, making slow, very precise movements during an operation. The brain surgery robot that may give surgeons finer control of surgical instruments during delicate brain operations is still under development.

  14. Neuromythology of Einstein's brain.

    PubMed

    Hines, Terence

    2014-07-01

    The idea that the brain of the great physicist Albert Einstein is different from "average" brains in both cellular structure and external shape is widespread. This belief is based on several studies examining Einstein's brain both histologically and morphologically. This paper reviews these studies and finds them wanting. Their results do not, in fact, provide support for the claim that the structure of Einstein's brain reflects his intellectual abilities.

  15. Deep Brain Stimulation for Obesity

    PubMed Central

    Sussman, Eric S; Zhang, Michael; Pendharkar, Arjun V; Azagury, Dan E; Bohon, Cara; Halpern, Casey H

    2015-01-01

    Obesity is now the third leading cause of preventable death in the US, accounting for 216,000 deaths annually and nearly 100 billion dollars in health care costs. Despite advancements in bariatric surgery, substantial weight regain and recurrence of the associated metabolic syndrome still occurs in almost 20-35% of patients over the long-term, necessitating the development of novel therapies. Our continually expanding knowledge of the neuroanatomic and neuropsychiatric underpinnings of obesity has led to increased interest in neuromodulation as a new treatment for obesity refractory to current medical, behavioral, and surgical therapies. Recent clinical trials of deep brain stimulation (DBS) in chronic cluster headache, Alzheimer’s disease, and depression and obsessive-compulsive disorder have demonstrated the safety and efficacy of targeting the hypothalamus and reward circuitry of the brain with electrical stimulation, and thus provide the basis for a neuromodulatory approach to treatment-refractory obesity. In this study, we review the literature implicating these targets for DBS in the neural circuitry of obesity. We will also briefly review ethical considerations for such an intervention, and discuss genetic secondary-obesity syndromes that may also benefit from DBS. In short, we hope to provide the scientific foundation to justify trials of DBS for the treatment of obesity targeting these specific regions of the brain. PMID:26180683

  16. Stroke and the female brain.

    PubMed

    Bushnell, Cheryl D

    2008-01-01

    Stroke is a major public health problem. The female population carries a higher stroke burden than the male population, both because females have a longer life expectancy and because most stroke deaths occur in women. Differences between the sexes in relation to stroke are increasingly being recognized; for example, among stroke survivors, women tend to have worse outcomes than men, as indicated by more-severe disability and an increased likelihood of institutionalization in women. Women and men with stroke also differ in their risk factor profiles, and they respond differently to primary-prevention and acute stroke treatment. Women experience variations in endogenous estrogens throughout their life cycle and might also be exposed to exogenous estrogens, both of which markedly affect the brain. An understanding of the effects of endogenous and exogenous estrogens on cerebral hemodynamics could guide research into explaining how hormone therapy increases the risk of stroke in postmenopausal women. This Review summarizes the sex differences related to stroke, and the effect of endogenous and exogenous hormones on the cerebrovasculature of the female brain. It also proposes potential research approaches, the results of which could fill in gaps in our knowledge regarding the mechanism of action of estrogen in the brain.

  17. Secondary HIV prevention.

    PubMed

    Temoshok, L R; Frerichs, R R

    1998-06-01

    Primary HIV prevention, preventing HIV exposure among uninfected persons, has been the focus of much attention. However, secondary HIV prevention, preventing HIV transmission from infected people to their uninfected contacts, has not received as much interest or attention from HIV researchers, clinicians, and policymakers. The concept of secondary HIV prevention, as distinguished from primary prevention, is clarified, and the current and future strategies to further secondary HIV prevention efforts are explored. Secondary prevention strategies can be incorporated into comprehensive programs and result in shifts in attitudes and behaviors. This could reduce the size of the epidemic, while also benefiting the individual and his or her close relationships.

  18. Lead Poisoning Prevention Tips

    MedlinePlus

    ... CDC.gov . Lead Home Calendar of Events National Lead Poisoning Prevention Week Archived Materials CDC's Childhood Lead Poisoning Prevention Program Advisory Committee (ACCLPP) Current Activities Blood ...

  19. Aligning brains and minds

    PubMed Central

    Tong, Frank

    2012-01-01

    In this issue of Neuron, Haxby and colleagues describe a new method for aligning functional brain activity patterns across participants. Their study demonstrates that objects are similarly represented across different brains, allowing for reliable classification of one person’s brain activity based on another’s. PMID:22017984

  20. Our Amazing Brains

    ERIC Educational Resources Information Center

    Bath, Howard

    2005-01-01

    This article begins a regular series on how brain research can help us understand young people and ourselves as well. The intent is to alert the reader to important information from recent research on the brain. This initial installment explores the concept of the triune brain, a term coined by neuroscientist Paul MacLean. This refers to three…

  1. Brain and Addiction

    MedlinePlus

    ... brain. View Online Download PDF The Awesomely Evolved Human Brain Published: September 01, 2013 The brain is an ... mark of the U.S. Department of Health and Human Services (HHS). The National Drug & Alcohol Facts Week design mark, and associated trade dress are registered ... close

  2. Build-a-brain.

    PubMed

    Chambers, Stuart M; Tchieu, Jason; Studer, Lorenz

    2013-10-01

    A major barrier in understanding nervous system development is modeling the cellular interactions that form the human brain. Recently, in the journal Nature, Lancaster et al. (2013) established a protocol for culturing pluripotent stem cell (PSC)-derived "cerebral organoids" that mimics the developing human brain's cellular organization, segregates into distinct brain regions, and models microcephaly. PMID:24094317

  3. Brain and Spinal Tumors

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Brain and Spinal Tumors Information Page Synonym(s): Spinal Cord ... en Español Additional resources from MedlinePlus What are Brain and Spinal Tumors? Tumors of the brain and ...

  4. Brain Research and Learning.

    ERIC Educational Resources Information Center

    Claycomb, Mary

    Current research on brain activity has many implications for educators. The triune brain concept and the left and right hemisphere concepts are among the many complex theories evolving from experimentation and observation. The triune brain concept suggests that the human forebrain has expanded while retaining three structurally unique formations…

  5. Brain Structure and Development.

    ERIC Educational Resources Information Center

    Teyler, T.J.; Chiaia, N.

    1983-01-01

    Considers basic biology of brain, what is known of how it operates, and something of how it develops. Discusses properties of neurons and specialized regions of the brain in linguistic and higher order processing skills, as well as genetic and environmental influences on brain development. (CMG)

  6. Aneurysm in the brain

    MedlinePlus

    ... aneurysm may be found when an MRI or CT scan of the brain is done for another reason. A brain aneurysm ... and determine the cause of bleeding in the brain: Cerebral angiography or spiral CT scan angiography of the head to show the location ...

  7. Traumatic Brain Injury

    MedlinePlus

    ... a concussion may feel dazed and may lose vision or balance for a while after the injury A brain contusion is a bruise of the brain. This ... consciousness Headache Confusion Feeling dizzy or lightheaded Blurry vision ... or severe traumatic brain injury include all of the symptoms listed above ...

  8. Primary lymphoma of the brain

    MedlinePlus

    Brain lymphoma; Cerebral lymphoma; Primary lymphoma of the central nervous system; Lymphoma - brain ... The cause of primary brain lymphoma is not known. People with a weakened immune system are at high risk for primary lymphoma of the brain. ...

  9. Immune System to Brain Signaling: Neuropsychopharmacological Implications

    PubMed Central

    Capuron, Lucile; Miller, Andrew H.

    2011-01-01

    There has been an explosion in our knowledge of the pathways and mechanisms by which the immune system can influence the brain and behavior. In the context of inflammation, pro-inflammatory cytokines can access the central nervous system and interact with a cytokine network in the brain to influence virtually every aspect of brain function relevant to behavior including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits that regulate mood, motor activity, motivation, anxiety and alarm. Behavioral consequences of these effects of the immune system on the brain include depression, anxiety, fatigue, psychomotor slowing, anorexia, cognitive dysfunction and sleep impairment; symptoms that overlap with those which characterize neuropsychiatric disorders, especially depression. Pathways that appear to be especially important in immune system effects on the brain include the cytokine signaling molecules, p38 mitogen activated protein kinase and nuclear factor kappa B; indoleamine 2,3 dioxygenase and its down stream metabolites, kynurenine, quinolinic acid and kynurenic acid; the neurotransmitters, serotonin, dopamine and glutamate; and neurocircuits involving the basal ganglia and anterior cingulate cortex. A series of vulnerability factors including aging and obesity as well as chronic stress also appear to interact with immune to brain signaling to exacerbate immunologic contributions to neuropsychiatric disease. The elucidation of the mechanisms by which the immune system influences behavior yields a host of targets for potential therapeutic development as well as informing strategies for the prevention of neuropsychiatric disease in at risk populations. PMID:21334376

  10. Brain fag: New perspectives from case observations.

    PubMed

    Ebigbo, Peter O; Lekwas, Elekwachi Chimezie; Chukwunenyem, Nweze Felix

    2015-06-01

    Brain fag was originally described as a culture-bound syndrome among West African students. The term "brain fag" literally means "brain fatigue." Available literature indicates that brain fag symptoms usually present in formal academic settings when African students are required to transit to a reliance on written literature (as opposed to more traditional oral forms of information transmission) and to adapt to westernized, individualistic systems of education that, at times, oppose the values of relatively collectivistic African societies. Based on detailed observation of two typical and two nontypical cases of brain fag, the authors suggest that the syndrome may not be solely related to tensions in the academic sphere, but may function more generally as an expression of psychological distress that results from societal pressures that exceed the coping capacity of the individual. The brain fag symptoms, including lack of concentration, sensations of internal heat in the head and body, heaviness, and multiple somatic complaints, may constitute a defensive process which helps prevent a full-fledged decompensation. PMID:25468825

  11. Epilepsy: Extreme Events in the Human Brain

    NASA Astrophysics Data System (ADS)

    Lehnertz, Klaus

    The analysis of Xevents arising in dynamical systems with many degrees of freedom represents a challenge for many scientific fields. This is especially true for the open, dissipative, and adaptive system known as the human brain. Due to its complex structure, its immense functionality, and — as in the case of epilepsy — due to the coexistence of normal and abnormal functions, the brain can be regarded as one of the most complex and fascinating systems in nature. Data gathered so far show that the epileptic process exhibits a high spatial and temporal variability. Small, specific, regions of the brain are responsible for the generation of focal epileptic seizures, and the amount of time a patient spends actually having seizures is only a small fraction of his/her lifetime. In between these Xevents large parts of the brain exhibit normal functioning. Since the occurrence of seizures usually can not be explained by exogenous factors, and since the brain recovers its normal state after a seizure in the majority of cases, this might indicate that endogenous nonlinear (deterministic and/or stochastic) properties are involved in the control of these Xevents. In fact, converging evidence now indicates that (particularly) nonlinear approaches to the analysis of brain activity allow us to define precursors which, provided sufficient sensitivity and specificity can be obtained, might lead to the development of patient-specific seizure anticipation and seizure prevention strategies.

  12. Brain neuroprotection by scavenging blood glutamate.

    PubMed

    Zlotnik, Alexander; Gurevich, Boris; Tkachov, Sergei; Maoz, Ilana; Shapira, Yoram; Teichberg, Vivian I

    2007-01-01

    Excess glutamate in brain fluids characterizes acute brain insults such as traumatic brain injury and stroke. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As blood glutamate scavenging has been demonstrated to increase the efflux of excess glutamate from brain into blood, we tested the prediction that oxaloacetate-mediated blood glutamate scavenging causes neuroprotection in a pathological situation such as closed head injury (CHI), in which there is a well established deleterious increase of glutamate in brain fluids. We observed highly significant improvements of the neurological status of rats submitted to CHI following an intravenous treatment with 1 mmol oxaloacetate/100 g rat weight which decreases blood glutamate levels by 40%. No detectable therapeutic effect was obtained when rats were treated IV with 1 mmol oxaloacetate together with 1 mmol glutamate/100 g rat. The treatment with 0.005 mmol/100 g rat oxaloacetate was no more effective than saline but when it was combined with the intravenous administration of 0.14 nmol/100 g of recombinant glutamate-oxaloacetate transaminase, recovery was almost complete. Oxaloacetate provided neuroprotection when administered before CHI or at 60 min post CHI but not at 120 min post CHI. Since neurological recovery from CHI was highly correlated with the decrease of blood glutamate levels (r=0.89, P=0.001), we conclude that blood glutamate scavenging affords brain neuroprotection Blood glutamate scavenging may open now new therapeutic options.

  13. Neuropathophysiology of Brain Injury.

    PubMed

    Quillinan, Nidia; Herson, Paco S; Traystman, Richard J

    2016-09-01

    Every year in the United States, millions of individuals incur ischemic brain injury from stroke, cardiac arrest, or traumatic brain injury. These acquired brain injuries can lead to death or long-term neurologic and neuropsychological impairments. The mechanisms of ischemic and traumatic brain injury that lead to these deficiencies result from a complex interplay of interdependent molecular pathways, including excitotoxicity, acidotoxicity, ionic imbalance, oxidative stress, inflammation, and apoptosis. This article reviews several mechanisms of brain injury and discusses recent developments. Although much is known from animal models of injury, it has been difficult to translate these effects to humans. PMID:27521191

  14. Exercise, nutrition and the brain.

    PubMed

    Meeusen, Romain

    2014-05-01

    Accumulating evidence suggests that diet and lifestyle can play an important role in delaying the onset or halting the progression of age-related health disorders and can improve cognitive function. Exercise has been promoted as a possible prevention for neurodegenerative diseases. Exercise will have a positive influence on cognition and it increases the brain-derived neurotrophic factor, an essential neurotrophin. Several dietary components have been identified as having effects on cognitive abilities. In particular, polyphenols have been reported to exert their neuroprotective actions through the potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation, and the potential to promote memory, learning, and cognitive function. Dietary factors can affect multiple brain processes by regulating neurotransmitter pathways, synaptic transmission, membrane fluidity, and signal-transduction pathways. Flavonols are part of the flavonoid family that is found in various fruits, cocoa, wine, tea and beans. Although the antioxidant effects of flavonols are well established in vitro, there is general agreement that flavonols have more complex actions in vivo. Several cross-sectional and longitudinal studies have shown that a higher intake of flavonoids from food may be associated with a better cognitive evolution. Whether this reflects a causal association remains to be elucidated. Several studies have tried to 'manipulate' the brain in order to postpone central fatigue. Most studies have clearly shown that in normal environmental circumstances these interventions are not easy to perform. There is accumulating evidence that rinsing the mouth with a carbohydrate solution will improve endurance performance. There is a need for additional well controlled studies to explore the possible impact of diet and nutrition on brain functioning.

  15. The thermodynamic brain.

    PubMed

    Donnelly, Joseph; Czosnyka, Marek

    2014-01-01

    Apart from its complex functionality, the brain is a robust thermodynamic machine; the tissue metabolic rate is high and it is thermally shielded by a skull. Therefore, if there is no high-volume blood flow to cool and stabilize the brain temperature, the possibility of unstable behavior seems to be high. Inflowing arterial blood is normally cooler than the brain tissue temperature, and outflowing venous blood is normally warmer than arterial blood but cooler than the brain tissue. Brain blood flow can thus be understood as a cooler for the brain. Pros and cons of clinical measurement, with clear indication for a multimodal monitoring approach, are discussed along with a brief review of basic facts known about temperature, cerebral blood flow and volume, intracranial pressure, and compartmental compliances of the brain. PMID:25672816

  16. [Prevention of Alzheimer's Disease and Nutrients].

    PubMed

    Otsuka, Mieko

    2016-07-01

    The dietary recommendations for the prevention and management of Alzheimer's disease (AD), are the Mediterranean diet and the Japanese-style diet, both of which contain well-balanced nutrients from fish and vegetables. These diets are rich in vitamin E, carotenes, antioxidant flavonoids, vitamin B12, folate, and n-3PUFA. According to recent review supplementation of folate and vitamin E may protect against elderly people's cognitive decline when the serum folate is <12 nmol/L or the vitamin E intake is <6.1 mg/day. Another nutritional topic with regard to dementia and diet is the association of type-2 diabetes and hyperinsulinemia with AD. Expression array data of the brain tissue of AD patients in the Hisayama study strongly suggests a disturbance in insulin signaling in the AD brain. The dysfunction of insulin signaling could directly lead to disrupted glucose utilization in the AD brain. Instead of improperly utilized glucose, the medium chain triglyceride ketone bodies can be an alternative energy resource for the AD brain. In conclusion, the dietary recommendations for the prevention and management of AD are a high consumption of fish, vegetables, and low glycemic index fruits; a moderate amount of meat and dairy products; and a lower amount of carbohydrates and refined sugar. PMID:27395465

  17. Molecular aging of the brain, neuroplasticity, and vulnerability to depression and other brain-related disorders.

    PubMed

    Sibille, Etienne

    2013-03-01

    The increased risk for neurodegenerative and neuropsychiatric disorders associated with extended lifespan has long suggested mechanistic links between chronological age and brain-related disorders, including depression, Recent characterizations of age-dependent gene expression changes now show that aging of the human brain engages a specific set of biological pathways along a continuous lifelong trajectory, and that the same genes that are associated with normal brain aging are also frequently and similarly implicated in depression and other brain-related disorders. These correlative observations suggest a model of age-by-disease molecular interactions, in which brain aging promotes biological changes associated with diseases, and additional environmental factors and genetic variability contribute to defining disease risk or resiliency trajectories. Here we review the characteristic features of brain aging in terms of changes in gene function over time, and then focus on evidence supporting accelerated molecular aging in depression. This proposed age-by-disease biological interaction model addresses the current gap in research between "normal" brain aging and its connection to late-life diseases. The implications of this model are profound, as it provides an investigational framework for identifying critical moderating factors, outlines opportunities for early interventions or preventions, and may form the basis for a dimensional definition of diseases that goes beyond the current categorical system.

  18. Brain pathways to recovery from alcohol dependence.

    PubMed

    Cui, Changhai; Noronha, Antonio; Warren, Kenneth R; Koob, George F; Sinha, Rajita; Thakkar, Mahesh; Matochik, John; Crews, Fulton T; Chandler, L Judson; Pfefferbaum, Adolf; Becker, Howard C; Lovinger, David; Everitt, Barry J; Egli, Mark; Mandyam, Chitra D; Fein, George; Potenza, Marc N; Harris, R Adron; Grant, Kathleen A; Roberto, Marisa; Meyerhoff, Dieter J; Sullivan, Edith V

    2015-08-01

    This article highlights the research presentations at the satellite symposium on "Brain Pathways to Recovery from Alcohol Dependence" held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed.

  19. Surveillance of traumatic brain injuries in Utah.

    PubMed Central

    Thurman, D J; Jeppson, L; Burnett, C L; Beaudoin, D E; Rheinberger, M M; Sniezek, J E

    1996-01-01

    From 1990 through 1992 we conducted surveillance of cases requiring hospital admission and of fatal cases of traumatic brain injury among residents of Utah and found an annual incidence rate of 108.8 per 100,000 population. The greatest number of injuries occurred among men and persons aged 15 to 24 years. Motor vehicles were the leading cause of injury, followed by falls and assaults. The incidence rate we found is substantially lower than previously published rates of traumatic brain injury. This may be the result of a decrease in the incidence of these injuries in the decade since earlier studies were done, as well as changing hospital admission criteria that serve to exclude less severe cases of injury. Despite the apparent decline in rates, our findings indicate the continued importance of traumatic brain injury as a public health problem and the need to develop more effective prevention strategies that will address the major causes of these injuries. PMID:8987423

  20. Brain Pathways to Recovery from Alcohol Dependence

    PubMed Central

    Cui, Changhai; Noronha, Antonio; Warren, Kenneth; Koob, George F.; Sinha, Rajita; Thakkar, Mahesh; Matochik, John; Crews, Fulton T.; Chandler, L. Judson; Pfefferbaum, Adolf; Becker, Howard C.; Lovinger, David; Everitt, Barry; Egli, Mark; Mandyam, Chitra; Fein, George; Potenza, Marc N.; Harris, R. Adron; Grant, Kathleen A.; Roberto, Marisa; Meyerhoff, Dieter J.; Sullivan, Edith V.

    2015-01-01

    This article highlights the research presentations at the satellite symposium on “Brain Pathways to Recovery from Alcohol Dependence” held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed. PMID:26074423

  1. [Prevention of dementia].

    PubMed

    Urakami, Katsuya

    2016-03-01

    The dementia prevention consists of three steps, primary prevention of dementia is to prevent from normal and mild cognitive impairment to dementia, secondary prevention is early detection and early treatment of dementia, and tertiary prevention is three stages of progress prevention of dementia. Primary prevention of dementia had been considered impossible until recently, but potential scientific evidence has been shown recently. The fact that 4.62 million people are person with dementia and 400 million people are person with mild cognitive impairment are considered to be urgent problem and we must intend to perform dementia prevention from primary to tertiary prevention thoroughly. We perform dementia screening using touch panel type computer and we recommend person with mild cognitive impairment to join dementia prevention classroom. Therefore, we can prevent progression from mild cognitive impairment to dementia (primary prevention). Early diagnosis and introduction to the specialized medical institution are needed if you find early stage of dementia and treat early (secondary prevention). To prevent progression by the appropriate drug treatment and care for dementia is required (tertiary prevention).

  2. Effects of stress on the developing brain.

    PubMed

    McEwen, Bruce S

    2011-09-01

    In a complementary article, Judge Cindy Lederman explains the importance of using science to inform family court decisions. Here, Dr. Bruce S. McEwen looks at that science in depth, discussing how early-life stress can lead to long-lasting behavioral, mental, and physical consequences. Fortunately, preventive measures can improve health outcomes, and while interventions for those who have already experienced debilitating early-life stress require considerable effort, they remain possible, thanks to the brain's plasticity.

  3. The Role of Multimodal Invasive Monitoring in Acute Traumatic Brain Injury.

    PubMed

    Lazaridis, Christos; Robertson, Claudia S

    2016-10-01

    This article reviews the role of modalities that directly monitor brain parenchyma in patients with severe traumatic brain injury. The physiology monitored involves compartmental and perfusion pressures, tissue oxygenation and metabolism, quantitative blood flow, pressure autoregulation, and electrophysiology. There are several proposed roles for this multimodality monitoring, such as to track, prevent, and treat the cascade of secondary brain injury; monitor the neurologically injured patient; integrate various data into a composite, patient-specific, and dynamic picture; apply protocolized, pathophysiology-driven intensive care; use as a prognostic marker; and understand pathophysiologic mechanisms involved in secondary brain injury to develop preventive and abortive therapies, and to inform future clinical trials. PMID:27637400

  4. Recipes for Prevention. Substance Abuse Prevention

    ERIC Educational Resources Information Center

    Steele, Catherine

    This handbook, which is the first in a series of materials being developed by an educational group in Albany, New York, for parents and caregivers of preschoolers, focuses on substance abuse prevention concepts. Its goals are to promote awareness that substance abuse prevention starts with very young children and to provide a format of activities…

  5. Traumatic brain injury: neuroprotective anaesthetic techniques, an update.

    PubMed

    Tawfeeq, Nasser A; Halawani, Mohammed M; Al-Faridi, Khulood; Aal-Shaya, Wa'el A; Taha, Wa'el S

    2009-11-01

    Traumatic brain injuries remain an area of great challenge to both neurosurgeons and neuroanaesthesiologists. The management of these injuries starts at the scene of the accident. However, strategies for preventing secondary brain injury and its sequelae are continuing to evolve. These strategies include the use of pharmacological and nonpharmacological techniques. Preventing hypoxia and the use of hypertonic saline have been shown to have favourable results on the outcome of these injuries. The use of isoflurane has been shown to have a neuronprotective effect. Propofol is thought to be the future drug of choice because of its neuroprotective properties, although these still need to be further proven through research. In this review an understanding of the pathophysiology of traumatic brain injury will be outlined in order to understand the effects of pharmacological and nonpharmacological agents on secondary brain injury. PMID:19895957

  6. Biophysical mechanisms of traumatic brain injuries.

    PubMed

    Young, Lee Ann; Rule, Gregory T; Bocchieri, Robert T; Burns, Jennie M

    2015-02-01

    Despite years of effort to prevent traumatic brain injuries (TBIs), the occurrence of TBI in the United States alone has reached epidemic proportions. When an external force is applied to the head, it is converted into stresses that must be absorbed into the brain or redirected by a helmet or other protective equipment. Complex interactions of the head, neck, and jaw kinematics result in strains in the brain. Even relatively mild mechanical trauma to these tissues can initiate a neurochemical cascade that leads to TBI. Civilians and warfighters can experience head injuries in both combat and noncombat situations from a variety of threats, including ballistic and blunt impact, acceleration, and blast. It is critical to understand the physics created by these threats to develop meaningful improvements to clinical care, injury prevention, and mitigation. Here the authors review the current state of understanding of the complex loading conditions that lead to TBI and characterize how these loads are transmitted through soft tissue, the skull and into the brain, resulting in TBI. In addition, gaps in knowledge and injury thresholds are reviewed, as these must be addressed to better design strategies that reduce TBI incidence and severity. PMID:25714862

  7. Biophysical mechanisms of traumatic brain injuries.

    PubMed

    Young, Lee Ann; Rule, Gregory T; Bocchieri, Robert T; Burns, Jennie M

    2015-02-01

    Despite years of effort to prevent traumatic brain injuries (TBIs), the occurrence of TBI in the United States alone has reached epidemic proportions. When an external force is applied to the head, it is converted into stresses that must be absorbed into the brain or redirected by a helmet or other protective equipment. Complex interactions of the head, neck, and jaw kinematics result in strains in the brain. Even relatively mild mechanical trauma to these tissues can initiate a neurochemical cascade that leads to TBI. Civilians and warfighters can experience head injuries in both combat and noncombat situations from a variety of threats, including ballistic and blunt impact, acceleration, and blast. It is critical to understand the physics created by these threats to develop meaningful improvements to clinical care, injury prevention, and mitigation. Here the authors review the current state of understanding of the complex loading conditions that lead to TBI and characterize how these loads are transmitted through soft tissue, the skull and into the brain, resulting in TBI. In addition, gaps in knowledge and injury thresholds are reviewed, as these must be addressed to better design strategies that reduce TBI incidence and severity.

  8. Brain iron homeostasis.

    PubMed

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  9. Experimental traumatic brain injury

    PubMed Central

    2010-01-01

    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury. PMID:20707892

  10. Food, mood, and brain health: implications for the modern clinician.

    PubMed

    Lachance, Laura; Ramsey, Drew

    2015-01-01

    Improved, innovative strategies are needed for the prevention and promotion of recovery from mental illness as these disorders leading cause of disability worldwide. This article will review the evidence linking dietary pattern to brain-based illnesses and provide an overview of the mechanisms that underlie the association between brain health and the food we eat. Considerations for dietary intervention will be discussed including encouraging a shift towards a traditional or whole foods dietary pattern. PMID:25958655

  11. Food, mood, and brain health: implications for the modern clinician.

    PubMed

    Lachance, Laura; Ramsey, Drew

    2015-01-01

    Improved, innovative strategies are needed for the prevention and promotion of recovery from mental illness as these disorders leading cause of disability worldwide. This article will review the evidence linking dietary pattern to brain-based illnesses and provide an overview of the mechanisms that underlie the association between brain health and the food we eat. Considerations for dietary intervention will be discussed including encouraging a shift towards a traditional or whole foods dietary pattern.

  12. Left Brain, Right Brain, Super Brain: The Holistic Model.

    ERIC Educational Resources Information Center

    Yellin, David

    Recent discoveries about the whole brain seem to call for a holistic approach to learning, one in which educators would teach the whole person, including physical and emotional states as well as cognitive abilities. Three holistic techniques are particularly relevant to education: (1) biofeedback; (2) yoga; and (3) the Lozanov method. Biofeedback…

  13. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation

    PubMed Central

    Bola, R. Aaron; Kiyatkin, Eugene A.

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be

  14. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation.

    PubMed

    Bola, R Aaron; Kiyatkin, Eugene A

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be

  15. Consciousness, brain, neuroplasticity

    PubMed Central

    Askenasy, Jean; Lehmann, Joseph

    2013-01-01

    Subjectivity, intentionality, self-awareness and will are major components of consciousness in human beings. Changes in consciousness and its content following different brain processes and malfunction have long been studied. Cognitive sciences assume that brain activities have an infrastructure, but there is also evidence that consciousness itself may change this infrastructure. The two-way influence between brain and consciousness has been at the center of philosophy and less so, of science. This so-called bottom-up and top-down interrelationship is controversial and is the subject of our article. We would like to ask: how does it happen that consciousness may provoke structural changes in the brain? The living brain means continuous changes at the synaptic level with every new experience, with every new process of learning, memorizing or mastering new and existing skills. Synapses are generated and dissolved, while others are preserved, in an ever-changing process of so-called neuroplasticity. Ongoing processes of synaptic reinforcements and decay occur during wakefulness when consciousness is present, but also during sleep when it is mostly absent. We suggest that consciousness influences brain neuroplasticity both during wakefulness as well as sleep in a top-down way. This means that consciousness really activates synaptic flow and changes brain structures and functional organization. The dynamic impact of consciousness on brain never stops despite the relative stationary structure of the brain. Such a process can be a target for medical intervention, e.g., by cognitive training. PMID:23847580

  16. Nearly Complete Response of Brain Metastases from HER2 Overexpressing Breast Cancer with Lapatinib and Capecitabine after Whole Brain Irradiation

    PubMed Central

    Oktay, Esin; Yersal, Özlem; Meydan, Nezih; Sağıroğlu, Mehmet; Uyanık, Ömer; Barutca, Sabri

    2013-01-01

    Trastuzumab treatment does not prevent intracranial seeding and is largely ineffective for established central nervous system metastasis in HER2 overexpressing breast cancer patients. Combination therapy of lapatinib and capecitabine may be an effective treatment option for brain metastasis of HER2-positive breast cancer. We report a patient with breast cancer overexpressing HER-2 where brain metastases were successfully treated with radiation and a combination of lapatinib and capecitabine. PMID:24191208

  17. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery.

    PubMed

    Oller-Salvia, Benjamí; Sánchez-Navarro, Macarena; Giralt, Ernest; Teixidó, Meritxell

    2016-08-22

    Brain delivery is one of the major challenges in drug development because of the high number of patients suffering from neural diseases and the low efficiency of the treatments available. Although the blood-brain barrier (BBB) prevents most drugs from reaching their targets, molecular vectors - known as BBB shuttles - offer great promise to safely overcome this formidable obstacle. In recent years, peptide shuttles have received growing attention because of their lower cost, reduced immunogenicity, and higher chemical versatility than traditional Trojan horse antibodies and other proteins. PMID:27188322

  18. Phagocytosis executes delayed neuronal death after focal brain ischemia.

    PubMed

    Neher, Jonas J; Emmrich, Julius V; Fricker, Michael; Mander, Palwinder K; Théry, Clotilde; Brown, Guy C

    2013-10-22

    Delayed neuronal loss and brain atrophy after cerebral ischemia contribute to stroke and dementia pathology, but the mechanisms are poorly understood. Phagocytic removal of neurons is generally assumed to be beneficial and to occur only after neuronal death. However, we report herein that inhibition of phagocytosis can prevent delayed loss and death of functional neurons after transient brain ischemia. Two phagocytic proteins, Mer receptor tyrosine kinase (MerTK) and Milk fat globule EGF-like factor 8 (MFG-E8), were transiently up-regulated by macrophages/microglia after focal brain ischemia in vivo. Strikingly, deficiency in either protein completely prevented long-term functional motor deficits after cerebral ischemia and strongly reduced brain atrophy as a result of inhibiting phagocytosis of neurons. Correspondingly, in vitro glutamate-stressed neurons reversibly exposed the "eat-me" signal phosphatidylserine, leading to their phagocytosis by microglia; this neuronal loss was prevented in the absence of microglia and reduced if microglia were genetically deficient in MerTK or MFG-E8, both of which mediate phosphatidylserine-recognition. Thus, phagocytosis of viable neurons contributes to brain pathology and, surprisingly, blocking this process is strongly beneficial. Therefore, inhibition of specific phagocytic pathways may present therapeutic targets for preventing delayed neuronal loss after transient cerebral ischemia.

  19. Heart-brain interactions in cardiac arrhythmia.

    PubMed

    Taggart, P; Critchley, H; Lambiase, P D

    2011-05-01

    This review examines current knowledge of the effects of higher brain centres and autonomic control loops on the heart with particular relevance to arrhythmogenesis. There is now substantial evidence that higher brain function (cortex), the brain stem and autonomic nerves affect cardiac electrophysiology and arrhythmia, and that these may function as an interactive system. The roles of mental stress and emotion in arrhythmogenesis and sudden cardiac death are no longer confined to the realms of anecdote. Advances in molecular cardiology have identified cardiac cellular ion channel mutations conferring vulnerability to arrhythmic death at the myocardial level. Indeed, specific channelopathies such as long QT syndrome and Brugada syndrome are selectively sensitive to either sympathetic or vagal stimulation. There is increasing evidence that afferent feedback from the heart to the higher centres may affect efferent input to the heart and modulate the cardiac electrophysiology. The new era of functional neuroimaging has identified the central neural circuitry in this brain-heart axis. Since precipitants of sudden fatal arrhythmia are frequently environmental and behavioural, central pathways translating stress into autonomic effects on the heart might be considered as therapeutic targets. These brain-heart interactions help explain the apparent randomness of sudden cardiac events and provide new insights into future novel therapies to prevent sudden death.

  20. Accessing targeted nanoparticles to the brain: the vascular route.

    PubMed

    Burkhart, A; Azizi, M; Thomsen, M S; Thomsen, L B; Moos, T

    2014-01-01

    The blood-brain barrier (BBB), formed by brain capillary endothelial cells, prevents the entry of several drug molecules to the brain, especially molecules hydrophilic in nature. Advanced drug carriers like nanoparticles share the potential to allow entry of therapeutic proteins and genetic molecules into the central nervous system (CNS). Taking a targeting approach by conjugating molecules acting as ligands or monoclonal antibodies with affinity for proteins expressed on the luminal side of brain capillary endothelial cells, the nanoparticles can be designed to enable transport into the brain endothelium, or perhaps even through the endothelium leading to blood to brain transport. Currently, the iron-binding protein transferrin or antibodies raised against the transferrin receptor denote the most feasible molecule for targeting purposes at the BBB. This manuscript reviews the targetability of nanoparticles to the brain capillary endothelial cells, how nanocarriers may enter and transfer through the brain endothelium, and how likely restraints denoted by the threedimensional mesh of the extracellular proteins forming the brain capillary basement membrane challenge the possibilities for enabling transport of large molecules through the BBB encapsulated in nanoparticles.

  1. Preventing HIV with Medicine

    MedlinePlus

    ... information in Spanish ( en español ) Preventing HIV with medicine Get medicine right after you are exposed to ... to top More information on Preventing HIV with medicine Explore other publications and websites National HIV and ...

  2. Breast Cancer Prevention

    MedlinePlus

    ... of Breast & Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Prevention (PDQ®)–Patient Version What is prevention? Go ... to keep cancer from starting. General Information About Breast Cancer Key Points Breast cancer is a disease in ...

  3. Preventing Deep Vein Thrombosis

    MedlinePlus

    ... Patient Education FAQs Preventing Deep Vein Thrombosis Patient Education Pamphlets - Spanish Preventing Deep Vein Thrombosis FAQ174, August 2011 PDF ... Your Practice Patient Safety & Quality Payment Reform (MACRA) Education & Events Annual ... Pamphlets Teen Health About ACOG About Us Leadership & ...

  4. Preventing High Blood Pressure

    MedlinePlus

    ... this? Submit What's this? Submit Button Related CDC Web Sites Division for Heart Disease and Stroke Prevention ... this? Submit What's this? Submit Button Related CDC Web Sites Division for Heart Disease and Stroke Prevention ...

  5. High Blood Cholesterol Prevention

    MedlinePlus

    ... this? Submit What's this? Submit Button Related CDC Web Sites Division for Heart Disease and Stroke Prevention ... this? Submit What's this? Submit Button Related CDC Web Sites Division for Heart Disease and Stroke Prevention ...

  6. Antioxidants and Cancer Prevention

    MedlinePlus

    ... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...

  7. Measles -- Recommendations for Prevention

    MedlinePlus

    ... Prevent News and Media Resources News Newsletters Events Measles - Recommendations for Prevention Recommend on Facebook Tweet Share ... safest protection you can give your child against measles. Children should be given the first dose of ...

  8. Freezing effect on brain density in postmortem CT.

    PubMed

    Sugimoto, Miyu; Hyodoh, Hideki; Rokukawa, Masumi; Kanazawa, Ayumi; Murakami, Rina; Shimizu, Junya; Okazaki, Shunichiro; Mizuo, Keisuke; Watanabe, Satoshi

    2016-01-01

    Two 60-year-old males were found at their homes whose bodies had deteriorated due to putrefaction. To prevent worm invasion and minimize deterioration, dry ice was used prior to the autopsy investigation. Prior to autopsy, postmortem CT demonstrated a decreased density in brain parenchyma at the dry-iced side, and autopsy revealed deteriorated brain parenchyma with frozen effect (presented like sherbet). Moreover, the deteriorated cerebral parenchyma maintained their structure and they were evaluated by cutting. When lower CT density presents in postmortem CT, the freezing effect may need to be considered and the physician should evaluate the cadaver's postmortem condition to prevent misdiagnoses. PMID:26832379

  9. Exercise and the brain: something to chew on

    PubMed Central

    van Praag, Henriette

    2009-01-01

    Evidence is accumulating that exercise has profound benefits for brain function. Physical activity improves learning and memory in humans and animals. Moreover, an active lifestyle might prevent or delay loss of cognitive function with aging or neurodegenerative disease. Recent research indicates that the effects of exercise on the brain can be enhanced by concurrent consumption of natural products such as omega fatty acids or plant polyphenols. The potential synergy between diet and exercise could involve common cellular pathways important for neurogenesis, cell survival, synaptic plasticity and vascular function. Optimal maintenance of brain health might depend on exercise and intake of natural products. PMID:19349082

  10. Exercise, the Brain, and Hypertension.

    PubMed

    Peri-Okonny, Poghni; Fu, Qi; Zhang, Rong; Vongpatanasin, Wanpen

    2015-10-01

    Exercise training is the cornerstone in the prevention and management of hypertension and atherosclerotic cardiovascular disease. However, blood pressure (BP) response to exercise is exaggerated in hypertension often to the range that raises the safety concern, which may prohibit patients from regular exercise. This augmented pressor response is shown to be related to excessive sympathetic stimulation caused by overactive muscle reflex. Exaggerated sympathetic-mediated vasoconstriction further contributes to the rise in BP during exercise in hypertension. Exercise training has been shown to reduce both exercise pressor reflex and attenuate the abnormal vasoconstriction. Hypertension also contributes to cognitive impairment, and exercise training has been shown to improve cognitive function through both BP-dependent and BP-independent pathways. Additional studies are still needed to determine if newer modes of exercise training such as high-intensity interval training may offer advantages over traditional continuous moderate training in improving BP and brain health in hypertensive patients.

  11. From Brains to Neural Nets to Brains.

    PubMed

    Harth, Erich

    1997-10-01

    The paper traces theoretical work concerning the understanding and simulation of brain functions from early studies of artificial neural nets to present considerations of human consciousness. The emphasis is on work carried out since about 1963 at my laboratory in collaboration with my students. The discussion centers on sensory, especially visual, information processing, some of the cerebral mechanisms involved, and current approaches to an understanding of conscious perception. The sketchpad model, in which the ubiquitous feedback pathways in the brain play a dominant role, is described, together with a discussion of the meaning and applicability of scientific reductionism to the problem of consciousness.

  12. Prevention of Food Poisoning.

    ERIC Educational Resources Information Center

    Army Quartermaster School, Ft. Lee, VA.

    The programed text provides a single lesson, four-hour, correspondence subcourse on the prevention of food poisoning. It covers the following areas: a definition of food poisoning; chemical food poisoning; biological food poisoning; causes and prevention of trichinosis; six factors controlling bacteria growth; bacterial infection; prevention of…

  13. Preventive School Law.

    ERIC Educational Resources Information Center

    Bednar, William C., Jr.

    The purpose of this chapter is to suggest outlines of a preventive law practice, raise issues, and provoke further thought and discussion concerning the application of preventive law principles and techniques to the management and operation of educational systems. The theory of preventive law and some of its premises are examined in order to…

  14. Suicide Prevention Triangle.

    ERIC Educational Resources Information Center

    Cutter, Fred

    This manual provides resource tools and strategies to enhance the suicide prevention capabilities of health professionals and the health care setting in which care is provided. In the first section, terms are defined and the suicide prevention triangle model is described. Applications of the model and good practices for suicide prevention in any…

  15. Can I Prevent Acne?

    MedlinePlus

    ... I Help a Friend Who Cuts? Can I Prevent Acne? KidsHealth > For Teens > Can I Prevent Acne? Print A A A Text Size What's ... too. Although there is no surefire way to prevent acne, try these tips to help reduce the ...

  16. Wildfire Prevention Strategies.

    ERIC Educational Resources Information Center

    National Wildlife Coordinating Group, Boise, ID.

    This document provides information and guidance on wildfire prevention strategies. Chapters include: (1) "Introduction"; (2) "How to Use this Guide"; (3) "Fire Cause Classification"; (4) "Relative Effectiveness"; (5) "Degree of Difficulty"; (6) "Intervention Techniques"; (7) "Prevention Activities"; (8) "Sample Prevention Strategies"; and (9)…

  17. Progress in Neuroprotective Strategies for Preventing Epilepsy

    PubMed Central

    Acharya, Munjal M.; Hattiangady, Bharathi; Shetty, Ashok K.

    2008-01-01

    Neuroprotection is increasingly considered as a promising therapy for preventing and treating temporal lobe epilepsy (TLE). The development of chronic TLE, also termed as epileptogenesis, is a dynamic process. An initial precipitating injury (IPI) such as the status epilepticus (SE) leads to neurodegeneration, abnormal reorganization of the brain circuitry and a significant loss of functional inhibition. All of these changes likely contribute to the development of chronic epilepsy, characterized by spontaneous recurrent motor seizures (SRMS) and learning and memory deficits. The purpose of this review is to discuss the current state of knowledge pertaining to neuroprotection in epileptic conditions, and to highlight the efficacy of distinct neuroprotective strategies for preventing or treating chronic TLE. Although the administration of certain conventional and new generation antiepileptic drugs is effective for primary neuroprotection such as reduced neurodegeneration after acute seizures or the SE, their competence for preventing the development of chronic epilepsy after an IPI is either unknown or not promising. On the other hand, alternative strategies such as the ketogenic diet therapy, administration of distinct neurotrophic factors, hormones or antioxidants seem useful for preventing and treating chronic TLE. However, long term studies on the efficacy of these approaches introduced at different time-points after the SE or an IPI are lacking. Additionally, grafting of fetal hippocampal cells at early time-points after an IPI holds considerable promise for preventing TLE, though issues regarding availability of donor cells, ethical concerns, timing of grafting after SE, and durability of graft-mediated seizure suppression need to be resolved for further advances with this approach. Overall, from the studies performed so far, there is consensus that neuroprotective strategies need to be employed as quickly as possible after the onset of the SE or an IPI for

  18. Maturation of the adolescent brain

    PubMed Central

    Arain, Mariam; Haque, Maliha; Johal, Lina; Mathur, Puja; Nel, Wynand; Rais, Afsha; Sandhu, Ranbir; Sharma, Sushil

    2013-01-01

    Adolescence is the developmental epoch during which children become adults – intellectually, physically, hormonally, and socially. Adolescence is a tumultuous time, full of changes and transformations. The pubertal transition to adulthood involves both gonadal and behavioral maturation. Magnetic resonance imaging studies have discovered that myelinogenesis, required for proper insulation and efficient neurocybernetics, continues from childhood and the brain’s region-specific neurocircuitry remains structurally and functionally vulnerable to impulsive sex, food, and sleep habits. The maturation of the adolescent brain is also influenced by heredity, environment, and sex hormones (estrogen, progesterone, and testosterone), which play a crucial role in myelination. Furthermore, glutamatergic neurotransmission predominates, whereas gamma-aminobutyric acid neurotransmission remains under construction, and this might be responsible for immature and impulsive behavior and neurobehavioral excitement during adolescent life. The adolescent population is highly vulnerable to driving under the influence of alcohol and social maladjustments due to an immature limbic system and prefrontal cortex. Synaptic plasticity and the release of neurotransmitters may also be influenced by environmental neurotoxins and drugs of abuse including cigarettes, caffeine, and alcohol during adolescence. Adolescents may become involved with offensive crimes, irresponsible behavior, unprotected sex, juvenile courts, or even prison. According to a report by the Centers for Disease Control and Prevention, the major cause of death among the teenage population is due to injury and violence related to sex and substance abuse. Prenatal neglect, cigarette smoking, and alcohol consumption may also significantly impact maturation of the adolescent brain. Pharmacological interventions to regulate adolescent behavior have been attempted with limited success. Since several factors, including age, sex

  19. The Brain on Stress: Toward an Integrative Approach to Brain, Body and Behavior

    PubMed Central

    McEwen, Bruce S.

    2014-01-01

    The discovery of stress hormone receptors in the hippocampal formation has fostered research showing that the brain, including its higher cognitive centers, is the key organ of the response to stressors, both in terms of perception of what is stressful and for its ability to determine the consequences of stress for both brain and body via the neuroendocrine, autonomic, immune and metabolic systems. These systems are, in turn, responsible for either successful adaptation or pathophysiology due to the cumulative burden of adaptation to stress and maladaptive lifestyle, known as “allostatic load”. The brain, itself, is also a target of stress and stress-related hormones and it undergoes structural and functional remodeling and significant changes in gene expression that are adaptive under normal circumstances but which can lead to damage when stress is excessive. The growing recognition of the adaptive plasticity and stress vulnerability of the brain itself, beginning with the hippocampus, now includes other brain regions such as the amygdala and prefrontal cortex and fear related memories, working memory, and self-regulatory behaviors. The interactions between these brain regions during the biological embedding of experiences over the life course determines whether events in the social and physical environment will lead to successful adaptation or to maladaptation and impaired mental and physical health, with implications for understanding health disparities and the impact of early life adversity and for intervention and prevention strategies. PMID:25221612

  20. The conflicting role of brain cholesterol in Alzheimer's disease: lessons from the brain plasminogen system.

    PubMed

    Ledesma, Maria Dolores; Dotti, Carlos G

    2005-01-01

    Retrospective clinical studies indicate that individuals chronically treated with cholesterol synthesis inhibitors, statins, are at lower risk of developing AD (Alzheimer's disease). Moreover, treatment of guinea pigs with high doses of simvastatin or drastic reduction of cholesterol in cultured cells decrease Abeta (beta-amyloid peptide) production. These data sustain the concept that high brain cholesterol is responsible for Abeta accumulation in AD, providing the scientific support for the proposed use of statins to prevent this disease. However, a number of unresolved issues raise doubts that high brain cholesterol is to blame. First, it has not been shown that higher neuronal cholesterol increases Abeta production. Secondly, it has not been demonstrated that neurons in AD have more cholesterol than control neurons. On the contrary, the brains of AD patients show a specific down-regulation of seladin-1, a protein involved in cholesterol synthesis, and low membrane cholesterol was observed in hippocampal membranes of ApoE4 (apolipoprotein E4) AD cases. This effect was also evidenced by altered cholesterol-rich membrane domains (rafts) and raft-mediated functions, such as diminished generation of the Abeta-degrading enzyme plasmin. Thirdly, numerous genetic defects that cause neurodegeneration are due to defective cholesterol metabolism. Fourthly, in female mice, the most brain-permeant statin induces neurodegeneration and high amyloid production. Altogether, this evidence makes it difficult to accept that statins are beneficial through acting as brain cholesterol-synthesis inhibitors. It appears more likely that their advantageous role arises from improved brain oxygenation.

  1. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  2. Feed Your Brain!

    ERIC Educational Resources Information Center

    Failmezger, Tammie L.

    2006-01-01

    Language arts teachers and library media specialists bear the responsibility of teaching students how to properly feed their brains. In this article, the author describes how she teaches her students to make wise choices when selecting books. Furthermore, she presents the "Brain Food Pyramid" model that looks similar to the food pyramid but it…

  3. Drugs and the Brain.

    ERIC Educational Resources Information Center

    National Institutes of Health (DHHS), Bethesda, MD.

    This booklet explores various aspects of drug addiction, with a special focus on drugs' effects on the brain. A brief introduction presents information on the rampant use of drugs in society and elaborates the distinction between drug abuse and drug addiction. Next, a detailed analysis of the brain and its functions is given. Drugs target the more…

  4. Imaging the Working Brain.

    ERIC Educational Resources Information Center

    Swithenby, S. J.

    1996-01-01

    Very sensitive SQUID (superconducting quantum interference device) detectors are used in the technique known as magnetoencephalography to provide dynamic images of the brain. This can help our fundamental understanding of the way the brain works and may be of particular use in treating disorders such as epilepsy. (Author/MKR)

  5. The Emerging Scholarly Brain

    NASA Astrophysics Data System (ADS)

    Kurtz, Michael J.

    It is now a commonplace observation that human society is becoming a coherent super-organism, and that the information infrastructure forms its emerging brain. Perhaps, as the underlying technologies are likely to become billions of times more powerful than those we have today, we could say that we are now building the lizard brain for the future organism.

  6. Brain Friendly School Libraries

    ERIC Educational Resources Information Center

    Sykes, Judith Anne

    2006-01-01

    This title gives concrete practical examples of how to align school library programs and instructional practice with the six key concepts of brain-compatible learning: increasing input to the brain; increasing experiential data; multiple source feedback; reducing threat; involving students in learning decision making; and interdisciplinary unit…

  7. Inside the Adolescent Brain

    ERIC Educational Resources Information Center

    Drury, Stacy S.

    2009-01-01

    Dr. Jay Giedd says that the main alterations in the adolescent brain are the inverted U-shaped developmental trajectories with late childhood/early teen peaks for gray matter volume among others. Giedd adds that the adolescent brain is vulnerable to substances that artificially modulate dopamine levels since its reward system is in a state of flux.

  8. Demystifying the Adolescent Brain

    ERIC Educational Resources Information Center

    Steinberg, Laurence

    2011-01-01

    Understanding the nature of brain development in adolescence helps explain why adolescents can vacillate so often between mature and immature behavior. Early and middle adolescence, in particular, are times of heightened vulnerability to risky and reckless behavior because the brain's reward center is easily aroused, but the systems that control…

  9. Brain Pressure Monitoring

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A transducer originally used to measure air pressure in aircraft wind tunnel tests is the basis for a development important in diagnosis and treatment of certain types of brain damage. A totally implantable device, tbe intracranial pressure monitor measures and reports brain pressure by telemetry.

  10. Brain-Flow Writing.

    ERIC Educational Resources Information Center

    Peterson, Robert J.

    The brain-flow writing technique, which might also be called the "fast flow" technique, offers a particularly useful means of helping adults overcome writer's block. It also offers some bonuses in the form of enhanced creativity, improved thought-flow, and much faster writing output. There are six steps to brain-flow writing. In the first, or…

  11. Modern Brain Tumor Imaging

    PubMed Central

    Barajas, Ramon F.; Cha, Soonmee

    2015-01-01

    The imaging and clinical management of patients with brain tumor continue to evolve over time and now heavily rely on physiologic imaging in addition to high-resolution structural imaging. Imaging remains a powerful noninvasive tool to positively impact the management of patients with brain tumor. This article provides an overview of the current state-of-the art clinical brain tumor imaging. In this review, we discuss general magnetic resonance (MR) imaging methods and their application to the diagnosis of, treatment planning and navigation, and disease monitoring in patients with brain tumor. We review the strengths, limitations, and pitfalls of structural imaging, diffusion-weighted imaging techniques, MR spectroscopy, perfusion imaging, positron emission tomography/MR, and functional imaging. Overall this review provides a basis for understudying the role of modern imaging in the care of brain tumor patients. PMID:25977902

  12. Effect of mealing on plasma and brain amino acid, and brain monoamine in rats after oral aspartame.

    PubMed

    Torii, K; Mimura, T; Takasaki, Y; Ichimura, M

    1986-01-01

    Aspartame (APM; L-aspartyl-L-phenylalanine methyl ester) was investigated for its ability to alter brain amino acids and monoamines in overnight fasted rats allowed to consume commercial diets for 60 minutes. In addition, the effects of mealing on the changes in plasma and brain amino acids and brain monoamines induced by glucose and/or insulin, and known pharmacologically active compounds, were studied. The consumption of the commercial chow largely prevented changes in blood glucose and amino acids, and brain amino acids and the monoamines dopamine, norepinephrine and serotonin that might be expected to occur following glucose with or without insulin. Feeding failed to prevent changes in the above parameters when 5-hydroxy-tryptophan, p-chlorophenylalanine and reserpine were administered. The oral administration of up to 250 mg/kg BW APM with water or glucose followed by free feeding failed to alter brain monoamines. These studies demonstrate the potent ability of food to normalize biochemical parameters in blood and brain that otherwise might occur, and clearly show the lack of effect on brain monoamine levels of abuse doses of APM when administered with food.

  13. Neurodegeneration with Brain Iron Accumulation

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Neurodegeneration with Brain Iron Accumulation Information Page Synonym(s): Hallervorden-Spatz Disease, ... done? Clinical Trials Organizations What is Neurodegeneration with Brain Iron Accumulation? Neurodegeneration with brain iron accumulation (NBIA) ...

  14. MRI of the brain (image)

    MedlinePlus

    An MRI (magnetic resonance imaging) of the brain creates a detailed image of the complex structures in the brain. An MRI can give a three-dimensional depiction of the brain, making location of problems such ...

  15. The prevention of hypertension.

    PubMed

    Tibblin, G; Eriksson, C G

    1977-01-01

    Our way to prevention is to find a list of traits known to be predictors of elevated blood pressure. This list of predictors offers means for the early identification of susceptibile persons. Years of experience in preventive work indicate that such identification is always useful for developing preventive programmes, since it gives a focus for action (5). Most of the predictors show possible ways in which action could be directed towards prevention of hypertension and reduction of elevated blood pressure. We will focus on salt, control of obesity, physical exercise, and meditation. We would like to discuss preventive aspects of hypertension and the possibility of treating with other methods than drugs.

  16. What is Preventive Medicine?

    PubMed Central

    Clarke, E. A.

    1974-01-01

    The aim of preventive medicine is the absence of disease, either by preventing the occurrence of a disease or by halting a disease and averting resulting complications after its onset. Preventive medicine can be practised by governmental agencies, primary care physicians and the individual himself. In the past, many diseases have been conquered by doing things for the individual. The present challenge of preventive medicine is to motivate the individual to practise his own prevention. Possible means of achieving this motivation are described and many require the active participation of the primary care physician. PMID:20469128

  17. Angiotensin II: multitasking in the brain.

    PubMed

    Saavedra, Juan M; Benicky, Julius; Zhou, Jin

    2006-03-01

    In addition to controlling systemic blood pressure, angiotensin II (Ang II) has several roles in the brain, including the regulation of cerebrovascular flow and the reaction to stress. In order to clarify the central effects of Ang II and its type 1 (AT1) receptors, we reviewed the literature reporting recent research on the effects of pretreatment with the AT1-receptor blocker, candesartan, on experimental ischemia, cerebrovascular remodeling, and inflammation in spontaneously hypertensive rats (SHRs), and the responses to stress induced by isolation and by cold-restraint. Angiotensin II regulates the brain circulation through stimulation of AT1-receptors located in the cerebrovascular endothelium and central pathways. SHRs express greater numbers of endothelial AT1-receptors and a central sympathetic overdrive, resulting in pathological cerebrovascular growth, inflammation, decreased cerebrovascular compliance, and enhanced vulnerability to brain ischemia. Sustained central AT1-receptor antagonism reverses these effects. Sustained reduction of AT1-receptor stimulation before stress prevents the hormonal and sympathoadrenal stress responses during isolation and prevents the gastric ulceration stress response to cold-restraint, indicating that increased AT1-receptor stimulation is essential to enhance the central sympathetic response and the formation and release of corticotropin-releasing factor (CRF) and arginine vasopressin that occur during stress. AT1-receptor blocking agents reverse the cortical alterations in CRF1 and benzodiazepine receptors characteristic of isolation stress, effects probably related to their anti-anxiety effect in rodents. Sustained reduction of Ang II tone by AT1-receptor antagonism could be considered as a preventive and therapeutic approach for brain ischemia and stress-related and mood disorders. Additional preclinical studies and controlled clinical trials are necessary to confirm the efficacy of this novel therapeutic approach.

  18. Intraoperative virtual brain counseling

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaowei; Grosky, William I.; Zamorano, Lucia J.; Muzik, Otto; Diaz, Fernando

    1997-06-01

    Our objective is to offer online real-tim e intelligent guidance to the neurosurgeon. Different from traditional image-guidance technologies that offer intra-operative visualization of medical images or atlas images, virtual brain counseling goes one step further. It can distinguish related brain structures and provide information about them intra-operatively. Virtual brain counseling is the foundation for surgical planing optimization and on-line surgical reference. It can provide a warning system that alerts the neurosurgeon if the chosen trajectory will pass through eloquent brain areas. In order to fulfill this objective, tracking techniques are involved for intra- operativity. Most importantly, a 3D virtual brian environment, different from traditional 3D digitized atlases, is an object-oriented model of the brain that stores information about different brain structures together with their elated information. An object-oriented hierarchical hyper-voxel space (HHVS) is introduced to integrate anatomical and functional structures. Spatial queries based on position of interest, line segment of interest, and volume of interest are introduced in this paper. The virtual brain environment is integrated with existing surgical pre-planning and intra-operative tracking systems to provide information for planning optimization and on-line surgical guidance. The neurosurgeon is alerted automatically if the planned treatment affects any critical structures. Architectures such as HHVS and algorithms, such as spatial querying, normalizing, and warping are presented in the paper. A prototype has shown that the virtual brain is intuitive in its hierarchical 3D appearance. It also showed that HHVS, as the key structure for virtual brain counseling, efficiently integrates multi-scale brain structures based on their spatial relationships.This is a promising development for optimization of treatment plans and online surgical intelligent guidance.

  19. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    PubMed

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge. PMID:23904096

  20. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury.

    PubMed

    Zweckberger, K; Hackenberg, K; Jung, C S; Hertle, D N; Kiening, K L; Unterberg, A W; Sakowitz, O W

    2014-07-11

    Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary brain damage following TBI. Anesthetized adult Sprague-Dawley rats underwent parietal craniotomy and were subjected to controlled cortical impact injury (CCI). Glibenclamide was administered as a bolus injection 15min after CCI injury and continuously via osmotic pumps throughout 7days. In an acute trial (180min) mean arterial blood pressure, heart rate, intracranial pressure, encephalographic activity, and cerebral metabolism were monitored. Brain water content was assessed gravimetrically 24h after CCI injury and contusion volumes were measured by MRI scanning technique at 8h, 24h, 72h, and 7d post injury. Throughout the entire time of observation neurological function was quantified using the "beam-walking" test. Glibenclamide-treated animals showed a significant reduction in the development of brain tissue water content(80.47%±0.37% (glibenclamide) vs. 80.83%±0.44% (control); p<0.05; n=14). Contusion sizes increased continuously within 72h following CCI injury, but glibenclamide-treated animals had significantly smaller volumes at any time-points, like 172.53±38.74mm(3) (glibenclamide) vs. 299.20±64.02mm(3) (control) (p<0.01; n=10; 24h) or 211.10±41.03mm(3) (glibenclamide) vs. 309.76±19.45mm(3) (control) (p<0.05; n=10; 72h), respectively. An effect on acute parameters, however, could not be detected, most likely because of the up-regulation of the channel within 3-6h after injury. Furthermore, there was no significant effect on motor function assessed by the beam-walking test throughout 7days. In accordance to these results and the available literature, glibenclamide seems to have promising potency in

  1. Healthy brain aging: role of exercise and physical activity.

    PubMed

    Rolland, Yves; Abellan van Kan, Gabor; Vellas, Bruno

    2010-02-01

    There is increasing evidence to suggest that physical activity has a protective effect on brain functioning in older people. To date, no randomized controlled trial (RCT) has shown that regular physical activity prevents dementia, but recent RCTs suggests an improvement of cognitive functioning in persons involved in aerobic programs, and evidence is accumulating from basic research. Future prevention of Alzheimer disease may depend on lifestyle habits such as physical activity.

  2. 77 FR 37909 - Meeting: Board of Scientific Counselors, National Center for Injury Prevention and Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ..., FOA CE12-004: Characterizing the Short and Long Term Consequences of Traumatic Brain Injury (TBI) among Children in the United States (U01); CE12-005: Field Triage of Traumatic Brain Injury (TBI) in... Injury Research (U01); and CE12-007: Research to Prevent Prescription Drug Overdoses (U01). In...

  3. Lutein and Brain Function

    PubMed Central

    Erdman, John W.; Smith, Joshua W.; Kuchan, Matthew J.; Mohn, Emily S.; Johnson, Elizabeth J.; Rubakhin, Stanislav S.; Wang, Lin; Sweedler, Jonathan V.; Neuringer, Martha

    2015-01-01

    Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta) model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities. PMID:26566524

  4. Aquaporins and Brain Tumors

    PubMed Central

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  5. Skin cancer prevention.

    PubMed

    Kornek, Thomas; Augustin, Matthias

    2013-04-01

    Prevention signifies the avoidance of diseases. It also includes the early detection of diseases and taking measures to avoid worsening of an existing disease. Prevention is divided into primary, secondary and tertiary prevention. The prevention of skin cancer is particularly important due to the rising incidence of skin cancer in recent years. In Germany, 195.000 new cases of skin cancer, including non melanoma skin cancer and melanoma are occurring. Therefore, skin cancer is among the most common cancer diseases. Primary prevention comprises the reduction of skin cancer risk behavior, including education about the danger of UV exposure and the right way of dealing with natural and artificial UV radiation. The implementation of a systematic skin cancer screening in Germany contributes to secondary prevention. First data from the initial project in Schleswig-Holstein, Germany's most northern state, indicate for the first time that the incidence and mortality of melanoma can be reduced by secondary prevention. For tertiary prevention, the national associations recommend a risk-adapted, evidence-based follow-up for all types of skin cancer. From the perspectives of the payers and from the patients, prevention is assessed positively. Prevention can contribute to a reduction of disease burden.

  6. Language testing during awake "anesthesia" in a bilingual patient with brain lesion adjacent to Wernicke's area.

    PubMed

    Bilotta, Federico; Stazi, Elisabetta; Delfini, Roberto; Rosa, Giovanni

    2011-04-01

    Awake "anesthesia" is the preferable anesthetic approach for neurosurgical procedures that require intraoperative localization of eloquent brain areas. We describe intraoperative inducible selective English aphasia in a bilingual (English and Italian) patient undergoing awake anesthesia for excision of a brain lesion adjacent to Wernicke's area with no postoperative neurological sequelae. We discuss the importance of intraoperative brain mapping and intraoperative language testing in bilingual patients to prevent iatrogenic-related morbidity.

  7. The Brain from Within

    PubMed Central

    di Porzio, Umberto

    2016-01-01

    Functional magnetic resonance imaging (fMRI) provides a powerful way to visualize brain functions and observe brain activity in response to tasks or thoughts. It allows displaying brain damages that can be quantified and linked to neurobehavioral deficits. fMRI can potentially draw a new cartography of brain functional areas, allow us to understand aspects of brain function evolution or even breach the wall into cognition and consciousness. However, fMRI is not deprived of pitfalls, such as limitation in spatial resolution, poor reproducibility, different time scales of fMRI measurements and neuron action potentials, low statistical values. Thus, caution is needed in the assessment of fMRI results and conclusions. Additional diagnostic techniques based on MRI such as arterial spin labeling (ASL) and the measurement of diffusion tensor imaging (DTI) provide new tools to assess normal brain development or disruption of anatomical networks in diseases. A cutting edge of recent research uses fMRI techniques to establish a “map” of neural connections in the brain, or “connectome”. It will help to develop a map of neural connections and thus understand the operation of the network. New applications combining fMRI and real time visualization of one’s own brain activity (rtfMRI) could empower individuals to modify brain response and thus could enable researchers or institutions to intervene in the modification of an individual behavior. The latter in particular, as well as the concern about the confidentiality and storage of sensitive information or fMRI and lie detectors forensic use, raises new ethical questions. PMID:27375460

  8. Bone marrow-derived stem cell therapy for metastatic brain cancers.

    PubMed

    Kaneko, Yuji; Tajiri, Naoki; Staples, Meaghan; Reyes, Stephanny; Lozano, Diego; Sanberg, Paul R; Freeman, Thomas B; van Loveren, Harry; Kim, Seung U; Borlongan, Cesar V

    2015-01-01

    We propose that stem cell therapy may be a potent treatment for metastatic melanoma in the brain. Here we discuss the key role of a leaky blood-brain barrier (BBB) that accompanies the development of brain metastases. We review the need to characterize the immunological and inflammatory responses associated with tumor-derived BBB damage in order to reveal the contribution of this brain pathological alteration to the formation and growth of brain metastatic cancers. Next, we discuss the potential repair of the BBB and attenuation of brain metastasis through transplantation of bone marrow-derived mesenchymal stem cells with the endothelial progenitor cell phenotype. In particular, we review the need for evaluation of the efficacy of stem cell therapy in repairing a disrupted BBB in an effort to reduce neuroinflammation, eventually attenuating brain metastatic cancers. The demonstration of BBB repair through augmented angiogenesis and vasculogenesis will be critical to establishing the potential of stem cell therapy for the treatment/prevention of metastatic brain tumors. The overarching hypothesis we advanced here is that BBB breakdown is closely associated with brain metastatic cancers of melanoma, exacerbating the inflammatory response of the brain during metastasis, and ultimately worsening the outcome of metastatic brain cancers. Abrogating this leaky BBB-mediated inflammation via stem cell therapy represents a paradigm-shifting approach to treating brain cancer. This review article discusses the pros and cons of cell therapy for melanoma brain metastases.

  9. Research Review: Cholinergic Mechanisms, Early Brain Development, and Risk for Schizophrenia

    ERIC Educational Resources Information Center

    Ross, Randal G.; Stevens, Karen E.; Proctor, William R.; Leonard, Sherry; Kisley, Michael A.; Hunter, Sharon K.; Freedman, Robert; Adams, Catherine E.

    2010-01-01

    The onset of diagnostic symptomology for neuropsychiatric diseases is often the end result of a decades-long process of aberrant brain development. Identification of novel treatment strategies aimed at normalizing early brain development and preventing mental illness should be a major therapeutic goal. However, there are few models for how this…

  10. Noninvasive quantification of human brain antioxidant concentrations after an intravenous bolus of vitamin C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Until now, antioxidant based initiatives for preventing dementia have lacked a means to detect deficiency or measure pharmacologic effect in the human brain in situ. Objective: Our objective was to apply a novel method to measure key human brain antioxidant concentrations throughout the ...

  11. Preventing Injury: A Safety Curriculum. Grades 5 and 6.

    ERIC Educational Resources Information Center

    Richards, J. Scott; And Others

    The focus of this curriculum is on prevention of spinal cord injury (SCI) and traumatic brain injury (TBI). The program is aimed at children because it is early in life that behavioral patterns are formed which become increasingly more difficult to modify as the child enters adolescence. The curriculum is based on principles of child development,…

  12. Preventing Injury: A Safety Curriculum. Grades 3 and 4.

    ERIC Educational Resources Information Center

    Richards, J. Scott; And Others

    The focus of this curriculum is on prevention of spinal cord injury (SCI) and traumatic brain injury (TBI). The program is aimed at young children because it is during the early years that behavioral patterns are formed which become increasingly more difficult to modify as the child enters adolescence. The curriculum is based on principles of…

  13. Preventing Injury: A Safety Curriculum. Grades 1 and 2.

    ERIC Educational Resources Information Center

    Richards, J. Scott; And Others

    The focus of this curriculum is on prevention of spinal cord injury (SCI) and traumatic brain injury (TBI). The program is aimed at young children because it is during the early years that behavioral patterns are formed which become increasingly more difficult to modify as the child enters adolescence. The curriculum is based on principles of…

  14. Preventing Injury: A Safety Curriculum. Preschool-Kindergarten.

    ERIC Educational Resources Information Center

    Richards, J. Scott; And Others

    The focus of this curriculum is on prevention of spinal cord injury (SCI) and traumatic brain injury (TBI). The program is aimed at young children because it is during the early years that behavioral patterns are formed which become increasingly more difficult to modify as the child enters adolescence. The curriculum is based on principles of…

  15. [Soul and brain].

    PubMed

    Lain Entralgo, P

    1993-01-01

    After an overview of Medieval and Modern World thought on the questions of relations between the soul and the brain, the author presents the ideas--mostly representative of the majority of medical thinking--of two medical authors from the end of the XIX and beginning of the XX centuries: Paul Flechsig and Santiago Ramón y Cajal. Both support the idea that research into the brain may prove to be the principal resource for the construction of a scientific theory on the soul. Brain research would therefore result in the rational belief in the inmortality of the soul and the rational knowledge and government of Man's psychic life.

  16. Psychotherapy and brain plasticity

    PubMed Central

    Collerton, Daniel

    2013-01-01

    In this paper, I will review why psychotherapy is relevant to the question of how consciousness relates to brain plasticity. A great deal of the research and theorizing on consciousness and the brain, including my own on hallucinations for example (Collerton and Perry, 2011) has focused upon specific changes in conscious content which can be related to temporal changes in restricted brain systems. I will argue that psychotherapy, in contrast, allows only a focus on holistic aspects of consciousness; an emphasis which may usefully complement what can be learnt from more specific methodologies. PMID:24046752

  17. Radioresistance of Brain Tumors

    PubMed Central

    Kelley, Kevin; Knisely, Jonathan; Symons, Marc; Ruggieri, Rosamaria

    2016-01-01

    Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation. PMID:27043632

  18. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    PubMed Central

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  19. Brain Gym. Simple Activities for Whole Brain Learning.

    ERIC Educational Resources Information Center

    Dennison, Paul E.; Dennison, Gail E.

    This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and…

  20. Brain Drain: A Child's Brain on Poverty. Poverty Fact Sheet

    ERIC Educational Resources Information Center

    Damron, Neil

    2015-01-01

    "Brain Drain: A Child's Brain on Poverty," released in March 2015 and prepared by intern Neil Damron, explores the brain's basic anatomy and recent research findings suggesting that poverty affects the brain development of infants and young children and the potential lifelong effects of the changes. The sheet draws from a variety of…

  1. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  2. Ideology and Violence Prevention

    PubMed Central

    Whitman, Steven

    1988-01-01

    Interpersonal violence is a major problem in US society in terms of the death and destruction it causes, the fear it generates, and the attention it receives. A recent trend has been to regard the problem of violence as an epidemic and to shape ideas of violence prevention according to public-health formulations. This process does not take into account the ideological nature of the proposed violence-prevention measures. Problems arise because this ideology is relevant to the potential effectiveness of violence prevention. This paper delineates several ideological issues involved in violence prevention and discusses how they interact with frequently employed public-health prevention strategies. Based upon this discussion, a general perspective for violence prevention is proposed and guiding principles that emerge from this perspective are presented. PMID:3404554

  3. [Prevention of psychic disorders].

    PubMed

    Siepmann, M

    2012-06-01

    Prevention aims to avoid the occurrence of psychiatric illness and disability caused by psychic disorders. The relevant interventions refer to the individual, the family context and other environmental factors. Universal and primary prevention target the entire population or a part of this (i. e. students). Secondary and selective intervention should prevent the manifestation of psychiatric disorders in vulnerable individuals (i. e. children with behavioral problems). Tertiary measures aim at preventing the worsening or recurrence of symptoms in individuals who already suffer from mental illness. Within the past 25 years protective and risk factors that reduce or increase the probability of occurrence of mental disorders have increasingly been identified. This results in improved prevention. The present article gives an overview of preventive measures against the most common mental disorders in the light of the current evidence base.

  4. [Prevention of occupational dermatitis].

    PubMed

    Géraut, Christian; Tripodi, Dominique

    2002-09-01

    The prevention of the occupational skin disease is essential to avoid some clinical complications and to preserve job. The suppression of the responsible factor is rarely possible at work, but when it is possible, it is efficient. The practice of real orders of prevention is the best way to proceed, writing individual and collective prevention prescriptions, which have to be very precise and adapted to every case during one sufficient time to get a good adherence of the patients. The implementation of the prevention consists of a set of advices on the prevention measures carrying on the environment, the processes or the work tools, the bad habits, and advices about the professional gestures to avoid and about the convenient information on the manner to use the means of individual prevention (gloves, protective creams and moisturizers) recommended and adapted to each work sequence. PMID:12385155

  5. Radiation-induced brain injury: A review

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  6. Preventing and managing dehydration.

    PubMed

    Suhayda, Rosemarie; Walton, Jane C

    2002-12-01

    Sufficient body water and electrolyte homeostasis are essential for healthy physiologic functioning. Nurses are key to preventing, detecting early, and treating fluid and electrolyte imbalances. Dehydration significantly alters both physical and psychological functioning, and older adults are at increased risk. Identifying fluid disorders early can prevent complications and reduce hospital stays. Understanding the mechanisms of fluid homeostasis enables nurses to assess, prevent, and collaborate in managing isotonic, hypertonic, and hypotonic dehydration.

  7. Values in Preventive Medicine

    PubMed Central

    Hoffmaster, Barry

    1992-01-01

    We know how lifestyle affects health, yet concern for preventing illness by promoting healthy lifestyles remains marginal in medical practice. Effective preventive strategies can raise daunting moral and political problems about the extent to which individual freedoms may be infringed, particularly on paternalistic grounds. Evaluative questions also arise about more specific matters, such as identifying risk and causal factors, determining what level of risk is acceptable, and deciding how compelling the evidence must be to take preventive action. PMID:11651426

  8. Human Immunodeficiency Virus Prevention.

    PubMed

    Davis, Teaniese Latham; DiClemente, Ralph

    2016-04-01

    Human immunodeficiency virus (HIV) is the virus that causes AIDS. Surveillance data from 2012 indicate an estimated 1.2 million people aged 13 years and older were living with HIV infection in the United States, and 12.8% do not know their status. There are approximately 50,000 new HIV infections annually. With no available cure for HIV, primary prevention to reduce incident cases of HIV is essential. Strategies to prevent HIV transmission include reducing sexual risk behavior and needle sharing. The Centers for Disease Control and Prevention has multiple resources available for primary and secondary prevention to reduce disease transmission and severity. PMID:26980130

  9. Metastatic brain tumor

    MedlinePlus

    ... be to relieve symptoms, improve functioning, or provide comfort. Radiation to the whole brain is often used ... symptoms. This is called palliative or supportive care. Comfort measures, safety measures, physical therapy, occupational therapy, and ...

  10. Modular Brain Networks

    PubMed Central

    Sporns, Olaf; Betzel, Richard F.

    2016-01-01

    The development of new technologies for mapping structural and functional brain connectivity has led to the creation of comprehensive network maps of neuronal circuits and systems. The architecture of these brain networks can be examined and analyzed with a large variety of graph theory tools. Methods for detecting modules, or network communities, are of particular interest because they uncover major building blocks or subnetworks that are particularly densely connected, often corresponding to specialized functional components. A large number of methods for community detection have become available and are now widely applied in network neuroscience. This article first surveys a number of these methods, with an emphasis on their advantages and shortcomings; then it summarizes major findings on the existence of modules in both structural and functional brain networks and briefly considers their potential functional roles in brain evolution, wiring minimization, and the emergence of functional specialization and complex dynamics. PMID:26393868

  11. Deep brain stimulation

    MedlinePlus

    ... the brain The neurostimulator, which puts out the electric current. The stimulator is similar to a heart pacemaker . It is usually placed under the skin near the collarbone, but may be ... pulses travel from the neurostimulator, along the extension ...

  12. [Radiotherapy for brain metastases].

    PubMed

    Latorzeff, I; Antoni, D; Gaudaire-Josset, S; Feuvret, L; Tallet-Richard, A; Truc, G; Noël, G

    2016-09-01

    Radiotherapy for brain metastases has become more multifaceted. Indeed, with the improvement of the patient's life expectancy, side effects must be undeniably avoided and the retreatments or multiple treatments are common. The cognitive side effects should be warned and the most modern techniques of radiation therapy are used regularly to reach this goal. The new classifications of patients with brain metastases help guiding treatment more appropriately. Stereotactic radiotherapy has supplanted whole brain radiation therapy both for patients with metastases in place and for those who underwent surgery. Hippocampus protection is possible with intensity-modulated radiotherapy. Its relevance in terms of cognitive functioning should be more clearly demonstrated but the requirement, for using it, is increasingly strong. While addressing patients in palliative phase, the treatment of brain metastases is one of the localisations where technical thinking is the most challenging. PMID:27523410

  13. The Developing Brain.

    ERIC Educational Resources Information Center

    Schatz, Carla J.

    1992-01-01

    Discusses neural activity and stimulation crucial in fetal brain development and the formation of the mind. Focuses on activity-dependent remodeling related to development of the visual system and retinal activity. (MCO)

  14. Traumatic Brain Injury

    MedlinePlus

    ... disabilities include problems with cognition (thinking, memory, and reasoning), sensory processing (sight, hearing, touch, taste, and smell), ... barrier. NIH Patient Recruitment for Traumatic Brain Injury Clinical Trials At NIH Clinical Center Throughout the U.S. ...

  15. Brains on video games.

    PubMed

    Bavelier, Daphne; Green, C Shawn; Han, Doug Hyun; Renshaw, Perry F; Merzenich, Michael M; Gentile, Douglas A

    2011-11-18

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games 'damage the brain' or 'boost brain power' do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward.

  16. Prevention of High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Prevention of High Blood Pressure Healthy lifestyle habits, proper use of medicines, and ... prevent high blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high ...

  17. Consensus document on European brain research.

    PubMed

    Olesen, Jes; Baker, Mary G; Freund, Tamas; di Luca, Monica; Mendlewicz, Julien; Ragan, Ian; Westphal, Manfred

    2006-08-01

    Brain disease psychiatric and neurologic disease combined represents a considerable social and economic burden in Europe. Data collected by the World Health Organization (WHO) suggest that brain diseases are responsible for 35% of Europe's total disease burden. An analysis of all health economic studies of brain diseases in Europe, published by the European Brain Council (EBC) in June 2005, estimated the total cost of brain disease in Europe in 2004 to be Euro 386 billion. That burden is set to grow, mainly due to the fact that the European population is ageing. Investment in brain sciences does not match that burden now, let alone in the future. Brain research received only 8% of the life science budget in the European Commission's Fifth Framework Programme, which represents less than 0.01% of the annual cost of brain disorders for that period. Over the last decade, Europe has been losing ground to the USA and Japan in terms of both basic and clinical research. Many of Europe's young researchers are taking up posts in the USA and staying there. Big pharmaceutical companies are fleeing Europe for the USA, taking their drug development programmes with them. Research in the brain sciences now holds the promise of therapies that halt and even reverse neurodegeneration, of better diagnostic tools, neural prostheses for the paralysed and drugs for depression and anxiety that are tailored to the individual, thereby eliminating or reducing side effects. Our growing understanding of the normal brain could lead to better prevention of brain disease and to more effective teaching methods. The need for innovative treatments has never been greater, and Europe boasts clusters of excellent researchers in biotechnology who could collaborate with brain scientists and the pharmaceutical industry to realise this promise. But if Europe is to seize these opportunities and meet the challenge of brain disease, it needs to go forward on the basis of greater collaboration between

  18. Prevention at Community Colleges. Prevention Update

    ERIC Educational Resources Information Center

    Higher Education Center for Alcohol, Drug Abuse, and Violence Prevention, 2012

    2012-01-01

    According to "Community College Student Alcohol Use: Developing Context-Specific Evidence and Prevention Approaches," community colleges have traditionally had a threefold mission that includes preparing students for transfer to four-year colleges, developmental education, and workforce preparation. The researchers point out that the demographic…

  19. Brain catechol synthesis - Control by brain tyrosine concentration

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.; Larin, F.; Mostafapour, S.; Fernstrom, J. D.

    1974-01-01

    Brain catechol synthesis was estimated by measuring the rate at which brain dopa levels rose following decarboxylase inhibition. Dopa accumulation was accelerated by tyrosine administration, and decreased by treatments that lowered brain tyrosine concentrations (for example, intraperitoneal tryptophan, leucine, or parachlorophenylalanine). A low dose of phenylalanine elevated brain tyrosine without accelerating dopa synthesis. Our findings raise the possibility that nutritional and endocrine factors might influence brain catecholamine synthesis by controlling the availability of tyrosine.

  20. Reduction of brain kynurenic acid improves cognitive function.

    PubMed

    Kozak, Rouba; Campbell, Brian M; Strick, Christine A; Horner, Weldon; Hoffmann, William E; Kiss, Tamas; Chapin, Douglas S; McGinnis, Dina; Abbott, Amanda L; Roberts, Brooke M; Fonseca, Kari; Guanowsky, Victor; Young, Damon A; Seymour, Patricia A; Dounay, Amy; Hajos, Mihaly; Williams, Graham V; Castner, Stacy A

    2014-08-01

    The elevation of kynurenic acid (KYNA) observed in schizophrenic patients may contribute to core symptoms arising from glutamate hypofunction, including cognitive impairments. Although increased KYNA levels reduce excitatory neurotransmission, KYNA has been proposed to act as an endogenous antagonist at the glycine site of the glutamate NMDA receptor (NMDAR) and as a negative allosteric modulator at the α7 nicotinic acetylcholine receptor. Levels of KYNA are elevated in CSF and the postmortem brain of schizophrenia patients, and these elevated levels of KYNA could contribute to NMDAR hypofunction and the cognitive deficits and negative symptoms associated with this disease. However, the impact of endogenously produced KYNA on brain function and behavior is less well understood due to a paucity of pharmacological tools. To address this issue, we identified PF-04859989, a brain-penetrable inhibitor of kynurenine aminotransferase II (KAT II), the enzyme responsible for most brain KYNA synthesis. In rats, systemic administration of PF-04859989 dose-dependently reduced brain KYNA to as little as 28% of basal levels, and prevented amphetamine- and ketamine-induced disruption of auditory gating and improved performance in a sustained attention task. It also prevented ketamine-induced disruption of performance in a working memory task and a spatial memory task in rodents and nonhuman primates, respectively. Together, these findings support the hypotheses that endogenous KYNA impacts cognitive function and that inhibition of KAT II, and consequent lowering of endogenous brain KYNA levels, improves cognitive performance under conditions considered relevant for schizophrenia.

  1. Subacute to chronic mild traumatic brain injury.

    PubMed

    Mott, Timothy F; McConnon, Michael L; Rieger, Brian P

    2012-12-01

    Although a universally accepted definition is lacking, mild traumatic brain injury and concussion are classified by transient loss of consciousness, amnesia, altered mental status, a Glasgow Coma Score of 13 to 15, and focal neurologic deficits following an acute closed head injury. Most patients recover quickly, with a predictable clinical course of recovery within the first one to two weeks following traumatic brain injury. Persistent physical, cognitive, or behavioral postconcussive symptoms may be noted in 5 to 20 percent of persons who have mild traumatic brain injury. Physical symptoms include headaches, dizziness, and nausea, and changes in coordination, balance, appetite, sleep, vision, and hearing. Cognitive and behavioral symptoms include fatigue, anxiety, depression, and irritability, and problems with memory, concentration and decision making. Women, older adults, less educated persons, and those with a previous mental health diagnosis are more likely to have persistent symptoms. The diagnostic workup for subacute to chronic mild traumatic brain injury focuses on the history and physical examination, with continuing observation for the development of red flags such as the progression of physical, cognitive, and behavioral symptoms, seizure, progressive vomiting, and altered mental status. Early patient and family education should include information on diagnosis and prognosis, symptoms, and further injury prevention. Symptom-specific treatment, gradual return to activity, and multidisciplinary coordination of care lead to the best outcomes. Psychiatric and medical comorbidities, psychosocial issues, and legal or compensatory incentives should be explored in patients resistant to treatment.

  2. Weight Drop Models in Traumatic Brain Injury.

    PubMed

    Kalish, Brian T; Whalen, Michael J

    2016-01-01

    Weight drop models in rodents have been used for several decades to advance our understanding of the pathophysiology of traumatic brain injury. Weight drop models have been used to replicate focal cerebral contusion as well as diffuse brain injury characterized by axonal damage. More recently, closed head injury models with free head rotation have been developed to model sports concussions, which feature functional disturbances in the absence of overt brain damage assessed by conventional imaging techniques. Here, we describe the history of development of closed head injury models in the first part of the chapter. In the second part, we describe the development of our own weight drop closed head injury model that features impact plus rapid downward head rotation, no structural brain injury, and long-term cognitive deficits in the case of multiple injuries. This rodent model was developed to reproduce key aspects of sports concussion so that a mechanistic understanding of how long-term cognitive deficits might develop will eventually follow. Such knowledge is hoped to impact athletes and war fighters and others who suffer concussive head injuries by leading to targeted therapies aimed at preventing cognitive and other neurological sequelae in these high-risk groups. PMID:27604720

  3. Therapeutic hypothermia for acute brain injuries.

    PubMed

    Andresen, Max; Gazmuri, Jose Tomás; Marín, Arnaldo; Regueira, Tomas; Rovegno, Maximiliano

    2015-01-01

    Therapeutic hypothermia, recently termed target temperature management (TTM), is the cornerstone of neuroprotective strategy. Dating to the pioneer works of Fay, nearly 75 years of basic and clinical evidence support its therapeutic value. Although hypothermia decreases the metabolic rate to restore the supply and demand of O₂, it has other tissue-specific effects, such as decreasing excitotoxicity, limiting inflammation, preventing ATP depletion, reducing free radical production and also intracellular calcium overload to avoid apoptosis. Currently, mild hypothermia (33°C) has become a standard in post-resuscitative care and perinatal asphyxia. However, evidence indicates that hypothermia could be useful in neurologic injuries, such as stroke, subarachnoid hemorrhage and traumatic brain injury. In this review, we discuss the basic and clinical evidence supporting the use of TTM in critical care for acute brain injury that extends beyond care after cardiac arrest, such as for ischemic and hemorrhagic strokes, subarachnoid hemorrhage, and traumatic brain injury. We review the historical perspectives of TTM, provide an overview of the techniques and protocols and the pathophysiologic consequences of hypothermia. In addition, we include our experience of managing patients with acute brain injuries treated using endovascular hypothermia. PMID:26043908

  4. Subacute to chronic mild traumatic brain injury.

    PubMed

    Mott, Timothy F; McConnon, Michael L; Rieger, Brian P

    2012-12-01

    Although a universally accepted definition is lacking, mild traumatic brain injury and concussion are classified by transient loss of consciousness, amnesia, altered mental status, a Glasgow Coma Score of 13 to 15, and focal neurologic deficits following an acute closed head injury. Most patients recover quickly, with a predictable clinical course of recovery within the first one to two weeks following traumatic brain injury. Persistent physical, cognitive, or behavioral postconcussive symptoms may be noted in 5 to 20 percent of persons who have mild traumatic brain injury. Physical symptoms include headaches, dizziness, and nausea, and changes in coordination, balance, appetite, sleep, vision, and hearing. Cognitive and behavioral symptoms include fatigue, anxiety, depression, and irritability, and problems with memory, concentration and decision making. Women, older adults, less educated persons, and those with a previous mental health diagnosis are more likely to have persistent symptoms. The diagnostic workup for subacute to chronic mild traumatic brain injury focuses on the history and physical examination, with continuing observation for the development of red flags such as the progression of physical, cognitive, and behavioral symptoms, seizure, progressive vomiting, and altered mental status. Early patient and family education should include information on diagnosis and prognosis, symptoms, and further injury prevention. Symptom-specific treatment, gradual return to activity, and multidisciplinary coordination of care lead to the best outcomes. Psychiatric and medical comorbidities, psychosocial issues, and legal or compensatory incentives should be explored in patients resistant to treatment. PMID:23198672

  5. Therapeutic hypothermia for acute brain injuries.

    PubMed

    Andresen, Max; Gazmuri, Jose Tomás; Marín, Arnaldo; Regueira, Tomas; Rovegno, Maximiliano

    2015-06-05

    Therapeutic hypothermia, recently termed target temperature management (TTM), is the cornerstone of neuroprotective strategy. Dating to the pioneer works of Fay, nearly 75 years of basic and clinical evidence support its therapeutic value. Although hypothermia decreases the metabolic rate to restore the supply and demand of O₂, it has other tissue-specific effects, such as decreasing excitotoxicity, limiting inflammation, preventing ATP depletion, reducing free radical production and also intracellular calcium overload to avoid apoptosis. Currently, mild hypothermia (33°C) has become a standard in post-resuscitative care and perinatal asphyxia. However, evidence indicates that hypothermia could be useful in neurologic injuries, such as stroke, subarachnoid hemorrhage and traumatic brain injury. In this review, we discuss the basic and clinical evidence supporting the use of TTM in critical care for acute brain injury that extends beyond care after cardiac arrest, such as for ischemic and hemorrhagic strokes, subarachnoid hemorrhage, and traumatic brain injury. We review the historical perspectives of TTM, provide an overview of the techniques and protocols and the pathophysiologic consequences of hypothermia. In addition, we include our experience of managing patients with acute brain injuries treated using endovascular hypothermia.

  6. New Antioxidant Drugs for Neonatal Brain Injury

    PubMed Central

    Tataranno, Maria Luisa; Longini, Mariangela; Buonocore, Giuseppe

    2015-01-01

    The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs) generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment. PMID:25685254

  7. Is Brain Emulation Dangerous?

    NASA Astrophysics Data System (ADS)

    Eckersley, Peter; Sandberg, Anders

    2013-12-01

    Brain emulation is a hypothetical but extremely transformative technology which has a non-zero chance of appearing during the next century. This paper investigates whether such a technology would also have any predictable characteristics that give it a chance of being catastrophically dangerous, and whether there are any policy levers which might be used to make it safer. We conclude that the riskiness of brain emulation probably depends on the order of the preceding research trajectory. Broadly speaking, it appears safer for brain emulation to happen sooner, because slower CPUs would make the technology`s impact more gradual. It may also be safer if brains are scanned before they are fully understood from a neuroscience perspective, thereby increasing the initial population of emulations, although this prediction is weaker and more scenario-dependent. The risks posed by brain emulation also seem strongly connected to questions about the balance of power between attackers and defenders in computer security contests. If economic property rights in CPU cycles1 are essentially enforceable, emulation appears to be comparatively safe; if CPU cycles are ultimately easy to steal, the appearance of brain emulation is more likely to be a destabilizing development for human geopolitics. Furthermore, if the computers used to run emulations can be kept secure, then it appears that making brain emulation technologies ―open‖ would make them safer. If, however, computer insecurity is deep and unavoidable, openness may actually be more dangerous. We point to some arguments that suggest the former may be true, tentatively implying that it would be good policy to work towards brain emulation using open scientific methodology and free/open source software codebases

  8. Evolution of brain elaboration.

    PubMed

    Farris, Sarah M

    2015-12-19

    Large, complex brains have evolved independently in several lineages of protostomes and deuterostomes. Sensory centres in the brain increase in size and complexity in proportion to the importance of a particular sensory modality, yet often share circuit architecture because of constraints in processing sensory inputs. The selective pressures driving enlargement of higher, integrative brain centres has been more difficult to determine, and may differ across taxa. The capacity for flexible, innovative behaviours, including learning and memory and other cognitive abilities, is commonly observed in animals with large higher brain centres. Other factors, such as social grouping and interaction, appear to be important in a more limited range of taxa, while the importance of spatial learning may be a common feature in insects with large higher brain centres. Despite differences in the exact behaviours under selection, evolutionary increases in brain size tend to derive from common modifications in development and generate common architectural features, even when comparing widely divergent groups such as vertebrates and insects. These similarities may in part be influenced by the deep homology of the brains of all Bilateria, in which shared patterns of developmental gene expression give rise to positionally, and perhaps functionally, homologous domains. Other shared modifications of development appear to be the result of homoplasy, such as the repeated, independent expansion of neuroblast numbers through changes in genes regulating cell division. The common features of large brains in so many groups of animals suggest that given their common ancestry, a limited set of mechanisms exist for increasing structural and functional diversity, resulting in many instances of homoplasy in bilaterian nervous systems. PMID:26554044

  9. Brain Research: Implications for Education.

    ERIC Educational Resources Information Center

    Crouch-Shinn, Jenella; Shaughnessy, Michael F.

    This paper attempts to examine the research of split-brain, hemispheric specialization, and brain function, as it pertains to handwriting, brain wave patterns, and lateral differences. Studies are reviewed which point to asymmetric differentiated functions and capacities of the two cerebral hemispheres in split-brain patients and in normal…

  10. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    PubMed

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women.

  11. How the body controls brain temperature: the temperature shielding effect of cerebral blood flow.

    PubMed

    Zhu, Mingming; Ackerman, Joseph J H; Sukstanskii, Alexander L; Yablonskiy, Dmitriy A

    2006-11-01

    Normal brain functioning largely depends on maintaining brain temperature. However, the mechanisms protecting brain against a cooler environment are poorly understood. Reported herein is the first detailed measurement of the brain-temperature profile. It is found to be exponential, defined by a characteristic temperature shielding length, with cooler peripheral areas and a warmer brain core approaching body temperature. Direct cerebral blood flow (CBF) measurements with microspheres show that the characteristic temperature shielding length is inversely proportional to the square root of CBF in excellent agreement with a theoretical model. This "temperature shielding effect" quantifies the means by which CBF prevents "extracranial cold" from penetrating deep brain structures. The effect is crucial for research and clinical applications; the relationship between brain, body, and extracranial temperatures can now be quantitatively predicted.

  12. Serpins promote cancer cell survival and vascular co-option in brain metastasis.

    PubMed

    Valiente, Manuel; Obenauf, Anna C; Jin, Xin; Chen, Qing; Zhang, Xiang H-F; Lee, Derek J; Chaft, Jamie E; Kris, Mark G; Huse, Jason T; Brogi, Edi; Massagué, Joan

    2014-02-27

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers.

  13. Making Prevention Work.

    ERIC Educational Resources Information Center

    Substance Abuse and Mental Health Services Administration (DHHS/PHS), Rockville, MD. Center for Substance Abuse Prevention.

    This booklet provides data and information to show that substance abuse prevention is working and encourages all sectors of society to become involved. Twenty percent of the document features background information about what's working to prevent substance abuse, lists of risk and protective factors, data that show the relationship between…

  14. Stomach (Gastric) Cancer Prevention

    MedlinePlus

    ... of stomach cancer. Some studies show that eating fruits and vegetables that are high in vitamin C and beta carotene may lower the risk ... take can prevent cancer. These may include eating fruits and vegetables, exercising, ... vitamins, minerals, or food supplements. New ways to prevent ...

  15. Statins and Cancer Prevention

    MedlinePlus

    ... site at http://prevention.cancer.gov on the Internet. More information on cholesterol-lowering drugs can be obtained from the FDA Web site at http://www.fda.gov on the Internet. Related Resources Causes and Prevention Posted: June 2, ...

  16. Fire Prevention Inspection Procedures.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    Lesson plans are provided for a fire prevention inspection course of the Wisconsin Fire Service Training program. Objectives for the course are to enable students to describe and conduct fire prevention inspections, to identify and correct hazards common to most occupancies, to understand the types of building construction and occupancy, and to…

  17. Prevention Strategies That Work.

    ERIC Educational Resources Information Center

    Vermont Univ., Burlington.

    This guide describes six prevention practices that K-8 administrators have found to accelerate school performance, increase readiness for learning, and reduce problem behaviors. It shows that to create a safe school environment, preventive measures for children's behavior and emotional problems must be in place. It advocates positive behavior…

  18. Prevention of Graves' ophthalmopathy.

    PubMed

    Bartalena, Luigi

    2012-06-01

    Smoking is the most important risk factor for the occurrence/progression of Graves' ophthalmopathy (GO), as well as for its lower/slower response to immunosuppression. Accordingly, refrain from smoking should be urged, both as primary prevention (removal of risk factors in Graves' patients without GO), secondary prevention (early detection and treatment of asymptomatic/very mild GO) and tertiary prevention (reduction of complications/disability of overt GO). A 6-month course of 200 μg/day sodium selenite can prevent progression of mild GO to more severe GO and is, therefore, a form of secondary prevention and, probably, primary prevention. Correction of thyroid dysfunction and stable maintenance of euthyroidism are important preventive measures. The optimal treatment for hyperthyroidism in patients with GO is uncertain, because evidence demonstrating the superiority of antithyroid drugs over thyroid ablation (radioiodine, thyroidectomy, or both) is lacking. If radioiodine is used, low-dose steroid prophylaxis is recommended, particularly in smokers, to prevent radioiodine-associated GO progression. PMID:22632372

  19. Teaching Prevention in Pediatrics.

    ERIC Educational Resources Information Center

    Cheng, Tina L.; Greenberg, Larrie; Loeser, Helen; Keller, David

    2000-01-01

    Reviews methods of teaching preventive medicine in pediatrics and highlights innovative programs. Methods of teaching prevention in pediatrics include patient interactions, self-directed learning, case-based learning, small-group learning, standardized patients, computer-assisted instruction, the Internet, student-centered learning, and lectures.…

  20. Infection prevention in NOTES.

    PubMed

    Kantsevoy, Sergey V

    2008-04-01

    Prevention of infection during natural orifice translumenal endoscopic surgery (NOTES) was identified as one of the most important challenges for translumenal surgery. Does infection prevention during NOTES warrant such attention? This article summarizes the accumulated data about septic complications during translumenal surgery.

  1. Tumor Angiogenesis as a Target for Dietary Cancer Prevention

    PubMed Central

    Li, William W.; Li, Vincent W.; Hutnik, Michelle; Chiou, Albert S.

    2012-01-01

    Between 2000 and 2050, the number of new cancer patients diagnosed annually is expected to double, with an accompanying increase in treatment costs of more than $80 billion over just the next decade. Efficacious strategies for cancer prevention will therefore be vital for improving patients' quality of life and reducing healthcare costs. Judah Folkman first proposed antiangiogenesis as a strategy for preventing dormant microtumors from progressing to invasive cancer. Although antiangiogenic drugs are now available for many advanced malignancies (colorectal, lung, breast, kidney, liver, brain, thyroid, neuroendocrine, multiple myeloma, myelodysplastic syndrome), cost and toxicity considerations preclude their broad use for cancer prevention. Potent antiangiogenic molecules have now been identified in dietary sources, suggesting that a rationally designed antiangiogenic diet could provide a safe, widely available, and novel strategy for preventing cancer. This paper presents the scientific, epidemiologic, and clinical evidence supporting the role of an antiangiogenic diet for cancer prevention. PMID:21977033

  2. CNS drug design: balancing physicochemical properties for optimal brain exposure.

    PubMed

    Rankovic, Zoran

    2015-03-26

    The human brain is a uniquely complex organ, which has evolved a sophisticated protection system to prevent injury from external insults and toxins. Designing molecules that can overcome this protection system and achieve optimal concentration at the desired therapeutic target in the brain is a specific and major challenge for medicinal chemists working in CNS drug discovery. Analogous to the now widely accepted rule of 5 in the design of oral drugs, the physicochemical properties required for optimal brain exposure have been extensively studied in an attempt to similarly define the attributes of successful CNS drugs and drug candidates. This body of work is systematically reviewed here, with a particular emphasis on the interplay between the most critical physicochemical and pharmacokinetic parameters of CNS drugs as well as their impact on medicinal chemistry strategies toward molecules with optimal brain exposure. A summary of modern CNS pharmacokinetic concepts and methods is also provided.

  3. Sports-related brain injuries: connecting pathology to diagnosis.

    PubMed

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  4. [Animal models of injury and repair in developing brain].

    PubMed

    Cuestas, Eduardo; Caceres, Alfredo; Palacio, Santiago

    2007-01-01

    Animal models of injury and repair in developing brain. Brain injury is a major contributor to neonatal morbidity and mortality, a considerable group of these children will develop long term neurological sequels. Despite the great clinical and social significance and the advances in neonatal medicine, no therapy yet does exist that prevent or decrease detrimental effects in cases of neonatal brain injury. Our objective was to review recent research in relation to the hypothesis for repair mechanism in the developing brain, based in animal models that show developmental compensatory mechanisms that promote neural and functional plasticity. A better understanding of these adaptive mechanisms will help clinicians to apply knowledge derived from animals to human clinical situations.

  5. Third International Congress on Epilepsy, Brain, and Mind: Part 2.

    PubMed

    Rektor, Ivan; Schachter, Steven C; Arya, Ravindra; Arzy, Shahar; Braakman, Hilde; Brodie, Martin J; Brugger, Peter; Chang, Bernard S; Guekht, Alla; Hermann, Bruce; Hesdorffer, Dale C; Jones-Gotman, Marilyn; Kanner, Andres M; Garcia-Larrea, Luis; Mareš, Pavel; Mula, Marco; Neufeld, Miri; Risse, Gail L; Ryvlin, Philippe; Seeck, Margitta; Tomson, Torbjörn; Korczyn, Amos D

    2015-09-01

    Epilepsy is both a disease of the brain and the mind. Here, we present the second of two papers with extended summaries of selected presentations of the Third International Congress on Epilepsy, Brain and Mind (April 3-5, 2014; Brno, Czech Republic). Humanistic, biologic, and therapeutic aspects of epilepsy, particularly those related to the mind, were discussed. The extended summaries provide current overviews of epilepsy, cognitive impairment, and treatment, including brain functional connectivity and functional organization; juvenile myoclonic epilepsy; cognitive problems in newly diagnosed epilepsy; SUDEP including studies on prevention and involvement of the serotoninergic system; aggression and antiepileptic drugs; body, mind, and brain, including pain, orientation, the "self-location", Gourmand syndrome, and obesity; euphoria, obsessions, and compulsions; and circumstantiality and psychiatric comorbidities. PMID:26264466

  6. Sports-related brain injuries: connecting pathology to diagnosis.

    PubMed

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery. PMID:27032917

  7. Third International Congress on Epilepsy, Brain, and Mind: Part 2.

    PubMed

    Rektor, Ivan; Schachter, Steven C; Arya, Ravindra; Arzy, Shahar; Braakman, Hilde; Brodie, Martin J; Brugger, Peter; Chang, Bernard S; Guekht, Alla; Hermann, Bruce; Hesdorffer, Dale C; Jones-Gotman, Marilyn; Kanner, Andres M; Garcia-Larrea, Luis; Mareš, Pavel; Mula, Marco; Neufeld, Miri; Risse, Gail L; Ryvlin, Philippe; Seeck, Margitta; Tomson, Torbjörn; Korczyn, Amos D

    2015-09-01

    Epilepsy is both a disease of the brain and the mind. Here, we present the second of two papers with extended summaries of selected presentations of the Third International Congress on Epilepsy, Brain and Mind (April 3-5, 2014; Brno, Czech Republic). Humanistic, biologic, and therapeutic aspects of epilepsy, particularly those related to the mind, were discussed. The extended summaries provide current overviews of epilepsy, cognitive impairment, and treatment, including brain functional connectivity and functional organization; juvenile myoclonic epilepsy; cognitive problems in newly diagnosed epilepsy; SUDEP including studies on prevention and involvement of the serotoninergic system; aggression and antiepileptic drugs; body, mind, and brain, including pain, orientation, the "self-location", Gourmand syndrome, and obesity; euphoria, obsessions, and compulsions; and circumstantiality and psychiatric comorbidities.

  8. Sports-related traumatic brain injury.

    PubMed

    Phillips, Shawn; Woessner, Derek

    2015-06-01

    Concussions have garnered more attention in the medical literature, media, and social media. As such, in the nomenclature according to the Centers for Disease Control and Prevention, the term concussion has been supplanted by the term mild traumatic brain injury. Current numbers indicate that 1.7 million TBIs are documented annually, with estimates around 3 million annually (173,285 sports- and recreation-related TBIs among children and adolescents). The Sideline Concussion Assessment Tool 3 and the NFL Sideline Concussion Assessment Tool are commonly used sideline tools.

  9. [Guidelines for the management of severe traumatic brain injury. Part 3. Surgical management of severe traumatic brain injury (Options)].

    PubMed

    Potapov, A A; Krylov, V V; Gavrilov, A G; Kravchuk, A D; Likhterman, L B; Petrikov, S S; Talypov, A E; Zakharova, N E; Solodov, A A

    2016-01-01

    Traumatic brain injury (TBI) is one of the main causes of mortality and severe disability in young and middle age patients. Patients with severe TBI, who are in coma, are of particular concern. Adequate diagnosis of primary brain injuries and timely prevention and treatment of secondary injury mechanisms markedly affect the possibility of reducing mortality and severe disability. The present guidelines are based on the authors' experience in developing international and national recommendations for the diagnosis and treatment of mild TBI, penetrating gunshot wounds of the skull and brain, severe TBI, and severe consequences of brain injury, including a vegetative state. In addition, we used the materials of international and national guidelines for the diagnosis, intensive care, and surgical treatment of severe TBI, which were published in recent years. The proposed recommendations for surgical treatment of severe TBI in adults are addressed primarily to neurosurgeons, neurologists, neuroradiologists, anesthesiologists, and intensivists who are routinely involved in treating these patients.

  10. [Guidelines for the management of severe traumatic brain injury. Part 3. Surgical management of severe traumatic brain injury (Options)].

    PubMed

    Potapov, A A; Krylov, V V; Gavrilov, A G; Kravchuk, A D; Likhterman, L B; Petrikov, S S; Talypov, A E; Zakharova, N E; Solodov, A A

    2016-01-01

    Traumatic brain injury (TBI) is one of the main causes of mortality and severe disability in young and middle age patients. Patients with severe TBI, who are in coma, are of particular concern. Adequate diagnosis of primary brain injuries and timely prevention and treatment of secondary injury mechanisms markedly affect the possibility of reducing mortality and severe disability. The present guidelines are based on the authors' experience in developing international and national recommendations for the diagnosis and treatment of mild TBI, penetrating gunshot wounds of the skull and brain, severe TBI, and severe consequences of brain injury, including a vegetative state. In addition, we used the materials of international and national guidelines for the diagnosis, intensive care, and surgical treatment of severe TBI, which were published in recent years. The proposed recommendations for surgical treatment of severe TBI in adults are addressed primarily to neurosurgeons, neurologists, neuroradiologists, anesthesiologists, and intensivists who are routinely involved in treating these patients. PMID:27070263

  11. Brain controlled robots

    PubMed Central

    Kawato, Mitsuo

    2008-01-01

    In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey’s motor cortex in Miguel Nicolelis’s lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the “Computational Brain Project.” CB-i’s locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey’s voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot. PMID:19404467

  12. Memory and the brain.

    PubMed

    Robertson, Lee T

    2002-01-01

    This review summarizes some of the recent advances in the neurobiology of memory. Current research helps us to understand how memories are created and, conversely, how our memories can be influenced by stress, drugs, and aging. An understanding of how memories are encoded by the brain may also lead to new ideas about how to maximize the long-term retention of important information. There are multiple memory systems with different functions and, in this review, we focus on the conscious recollection of one's experience of events and facts and on memories tied to emotional responses. Memories are also classified according to time: from short-term memory, lasting only seconds or minutes, to long-term memory, lasting months or years. The advent of new functional neuroimaging methods provides an opportunity to gain insight into how the human brain supports memory formation. Each memory system has a distinct anatomical organization, where different parts of the brain are recruited during phases of memory storage. Within the brain, memory is a dynamic property of populations of neurons and their interconnections. Memories are laid down in our brains via chemical changes at the neuron level. An understanding of the neurobiology of memory may stimulate health educators to consider how various teaching methods conform to the process of memory formation. PMID:12358099

  13. Immunotherapy of Brain Cancer.

    PubMed

    Roth, Patrick; Preusser, Matthias; Weller, Michael

    2016-01-01

    The brain has long been considered an immune-privileged site precluding potent immune responses. Nevertheless, because of the failure of conventional anti-cancer treatments to achieve sustained control of intracranial neoplasms, immunotherapy has been considered as a promising strategy for decades. However, several efforts aimed at exploiting the immune system as a therapeutic weapon were largely unsuccessful. The situation only changed with the introduction of the checkpoint inhibitors, which target immune cell receptors that interfere with the activation of immune effector cells. Following the observation of striking effects of drugs that target CTLA-4 or PD-1 against melanoma and other tumor entities, it was recognized that these drugs may also be active against metastatic tumor lesions in the brain. Their therapeutic activity against primary brain tumors is currently being investigated within clinical trials. In parallel, other immunotherapeutics such as peptide vaccines are at an advanced stage of clinical development. Further immunotherapeutic strategies currently under investigation comprise adoptive immune cell transfer as well as inhibitors of metabolic pathways involved in the local immunosuppression frequently found in brain tumors. Thus, the ongoing implementation of immunotherapeutic concepts into clinical routine may represent a powerful addition to the therapeutic arsenal against various brain tumors. PMID:27260656

  14. Brain tumor stem cells.

    PubMed

    Palm, Thomas; Schwamborn, Jens C

    2010-06-01

    Since the end of the 'no-new-neuron' theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies.

  15. Lung Cancer Brain Metastases.

    PubMed

    Goldberg, Sarah B; Contessa, Joseph N; Omay, Sacit B; Chiang, Veronica

    2015-01-01

    Brain metastases are common among patients with lung cancer and have been associated with significant morbidity and limited survival. However, the treatment of brain metastases has evolved as the field has advanced in terms of central nervous system imaging, surgical technique, and radiotherapy technology. This has allowed patients to receive improved treatment with less toxicity and more durable benefit. In addition, there have been significant advances in systemic therapy for lung cancer in recent years, and several treatments including chemotherapy, targeted therapy, and immunotherapy exhibit activity in the central nervous system. Utilizing systemic therapy for treating brain metastases can avoid or delay local therapy and often allows patients to receive effective treatment for both intracranial and extracranial disease. Determining the appropriate treatment for patients with lung cancer brain metastases therefore requires a clear understanding of intracranial disease burden, tumor histology, molecular characteristics, and overall cancer prognosis. This review provides updates on the current state of surgery and radiotherapy for the treatment of brain metastases, as well as an overview of systemic therapy options that may be effective in select patients with intracranial metastases from lung cancer.

  16. [Prevention of alcohol dependence].

    PubMed

    Trova, A C; Paparrigopoulos, Th; Liappas, I; Ginieri-Coccossis, M

    2015-01-01

    With the exception of cardiovascular diseases, no other medical condition causes more serious dysfunction or premature deaths than alcohol-related problems. Research results indicate that alcohol dependent individuals present an exceptionally poor level of quality of life. This is an outcome that highlights the necessity of planning and implementing preventive interventions on biological, psychological or social level, to be provided to individuals who make alcohol abuse, as well as to their families. Preventive interventions can be considered on three levels of prevention: (a) primary prevention, which is focused on the protection of healthy individuals from alcohol abuse and dependence, and may be provided on a universal, selective or indicated level, (b) secondary prevention, which aims at the prevention of deterioration regarding alcoholic dependence and relapse, in the cases of individuals already diagnosed with the condition and (c) tertiary prevention, which is focused at minimizing deterioration of functioning in chronically sufferers from alcoholic dependence. The term "quaternary prevention" can be used for the prevention of relapse. As for primary prevention, interventions focus on assessing the risk of falling into problematic use, enhancing protective factors and providing information and health education in general. These interventions can be delivered in schools or in places of work and recreation for young people. In this context, various programs have been applied in different countries, including Greece with positive results (Preventure, Alcolocks, LST, SFP, Alcohol Ignition Interlock Device). Secondary prevention includes counseling and structured help with the delivery of programs in schools and in high risk groups for alcohol dependence (SAP, LST). These programs aim at the development of alcohol refusal skills and behaviors, the adoption of models of behaviors resisting alcohol use, as well as reinforcement of general social skills. In the

  17. Prevention of violence.

    PubMed

    Elliott, B A

    1993-06-01

    Primary care physicians can easily incorporate efforts toward the primary and secondary prevention of family violence into their practices. By designing a preventive effort using the phases of the family life cycle, a developmentally appropriate system of prevention is created. The anticipatory guidance at each (annual) visit acknowledges family transitions and assures the family that abuse is a health issue and that the physician is a resource for issues of violence prevention. Using the FLC, the first phase is Coupling, when there is a risk of partner violence that continues as long as there is a partnership. Pregnancy and childbirth bring concerns of child neglect and battery. Older children are at additional risk for child sexual abuse. As families age, risks develop for elder abuse, too. The regular discussion of these issues raises the awareness that the potential for family violence continues over the life span and allows the physician opportunities to assess the risk of violence in that family and make appropriate preventive referrals. Primary care physicians are optimally positioned to address violence and its prevention in the office: they know and care for family units over time. Physicians are respected and trusted advisors who can become effective in preventing violence.

  18. Quantitative analysis of drug delivery to the brain via nasal route.

    PubMed

    Kozlovskaya, Luba; Abou-Kaoud, Mohammed; Stepensky, David

    2014-09-10

    The blood-brain barrier (BBB) prevents drugs' permeability into the brain and limits the management of brain diseases. Intranasal delivery is a convenient route of drug administration that can bypass the BBB and lead to a direct delivery of the drug to the brain. Indeed, drug accumulation in the brain following intranasal application of a drug solution, or of a drug encapsulated in specialized delivery systems (DDSs), has been reported in numerous scientific publications. We aimed to analyze the available quantitative data on drug delivery to the brain via the nasal route and to reveal the efficiency of brain drug delivery and targeting by different types of nasally-administered DDSs. We searched for scientific publications published in 1970-2014 that reported delivery of drugs or model compounds to the brain via intranasal and parenteral routes, and contained quantitative data that were sufficient for calculation of brain targeting efficiency. We identified 73 publications (that reported data on 82 compounds) that matched the search criteria and analyzed their experimental settings, formulation types, analytical methods, and the claimed efficiencies of drug brain targeting: drug targeting efficiency (%DTE) and nose-to-brain direct transport (%DTP). Outcomes of this analysis indicate that efficiency of brain delivery by the nasal route differs widely between the studies, and does not correlate with the drug's physicochemical properties. Particle- and gel-based DDSs offer limited advantage for brain drug delivery in comparison to the intranasal administration of drug solution. Nevertheless, incorporation of specialized reagents (e.g., absorption enhancers, mucoadhesive compounds, targeting residues) can increase the efficiency of drug delivery to the brain via the nasal route. More elaborate and detailed methodological and analytical characterizations and standardized reporting of the experimental outcomes are required for reliable quantification of drug targeting

  19. Brain microvascular endothelium induced-annexin A1 secretion contributes to small cell lung cancer brain metastasis.

    PubMed

    Liu, Yi; Liu, Yong-Shuo; Wu, Peng-Fei; Li, Qiang; Dai, Wu-Min; Yuan, Shuai; Xu, Zhi-Hua; Liu, Ting-Ting; Miao, Zi-Wei; Fang, Wen-Gang; Chen, Yu-Hua; Li, Bo

    2015-09-01

    Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis. PMID:26135980

  20. Nanoparticles enhance brain delivery of blood–brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging

    PubMed Central

    Koffie, Robert M.; Farrar, Christian T.; Saidi, Laiq-Jan; William, Christopher M.; Hyman, Bradley T.; Spires-Jones, Tara L.

    2011-01-01

    Several imaging modalities are suitable for in vivo molecular neuroimaging, but the blood–brain barrier (BBB) limits their utility by preventing brain delivery of most targeted molecular probes. We prepared biodegradable nanocarrier systems made up of poly(n-butyl cyanoacrylate) dextran polymers coated with polysorbate 80 (PBCA nanoparticles) to deliver BBB-impermeable molecular imaging probes into the brain for targeted molecular neuroimaging. We demonstrate that PBCA nanoparticles allow in vivo targeting of BBB-impermeable contrast agents and staining reagents for electron microscopy, optical imaging (multiphoton), and whole brain magnetic resonance imaging (MRI), facilitating molecular studies ranging from individual synapses to the entire brain. PBCA nanoparticles can deliver BBB-impermeable targeted fluorophores of a wide range of sizes: from 500-Da targeted polar molecules to 150,000-Da tagged immunoglobulins into the brain of living mice. The utility of this approach is demonstrated by (i) development of a “Nissl stain” contrast agent for cellular imaging, (ii) visualization of amyloid plaques in vivo in a mouse model of Alzheimer's disease using (traditionally) non–BBB-permeable reagents that detect plaques, and (iii) delivery of gadolinium-based contrast agents into the brain of mice for in vivo whole brain MRI. Four-dimensional real-time two-photon and MR imaging reveal that brain penetration of PBCA nanoparticles occurs rapidly with a time constant of ∼18 min. PBCA nanoparticles do not induce nonspecific BBB disruption, but collaborate with plasma apolipoprotein E to facilitate BBB crossing. Collectively, these findings highlight the potential of using biodegradable nanocarrier systems to deliver BBB-impermeable targeted molecular probes into the brain for diagnostic neuroimaging. PMID:22065785

  1. Brain microvascular endothelium induced-annexin A1 secretion contributes to small cell lung cancer brain metastasis.

    PubMed

    Liu, Yi; Liu, Yong-Shuo; Wu, Peng-Fei; Li, Qiang; Dai, Wu-Min; Yuan, Shuai; Xu, Zhi-Hua; Liu, Ting-Ting; Miao, Zi-Wei; Fang, Wen-Gang; Chen, Yu-Hua; Li, Bo

    2015-09-01

    Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis.

  2. Prevention of lipohypertrophy.

    PubMed

    Kalra, Sanjay; Kumar, Arun; Gupta, Yashdeep

    2016-07-01

    Lipohypertrophy is an important insulin injection site reaction, which has clinically significant sequelae, including a greater risk of glycaemic variability and higher insulin dose requirement. This article describes the prevention of lipohypertrophy, using the concept of levels of prevention. It enumerates methods of primordial, primary, secondary, tertiary and quaternary prevention of lipohypertrophy. Focus on patient education, site rotation, avoidance of needle reuse, and dose titration when shifting from injection in lipohypertrophic lesions to normal subcutaneous tissue, helps minimize the development and impact of lipohypertrophy.

  3. Arginine-Vasopressin Receptor Blocker Conivaptan Reduces Brain Edema and Blood-Brain Barrier Disruption after Experimental Stroke in Mice

    PubMed Central

    Zeynalov, Emil; Jones, Susan M.; Seo, Jeong-Woo; Snell, Lawrence D.; Elliott, J. Paul

    2015-01-01

    Background Stroke is a major cause of morbidity and mortality. Stroke is complicated by brain edema and blood-brain barrier (BBB) disruption, and is often accompanied by increased release of arginine-vasopressin (AVP). AVP acts through V1a and V2 receptors to trigger hyponatremia, vasospasm, and platelet aggregation which can exacerbate brain edema. The AVP receptor blockers conivaptan (V1a and V2) and tolvaptan (V2) are used to correct hyponatremia, but their effect on post-ischemic brain edema and BBB disruption remains to be elucidated. Therefore, we conducted this study to investigate if these drugs can prevent brain edema and BBB disruption in mice after stroke. Methods Experimental mice underwent the filament model of middle cerebral artery occlusion (MCAO) with reperfusion. Mice were treated with conivaptan, tolvaptan, or vehicle. Treatments were initiated immediately at reperfusion and administered IV (conivaptan) or orally (tolvaptan) for 48 hours. Physiological variables, neurological deficit scores (NDS), plasma and urine sodium and osmolality were recorded. Brain water content (BWC) and Evans Blue (EB) extravasation index were evaluated at the end point. Results Both conivaptan and tolvaptan produced aquaresis as indicated by changes in plasma and urine sodium levels. However plasma and urine osmolality was changed only by conivaptan. Unlike tolvaptan, conivaptan improved NDS and reduced BWC in the ipsilateral hemisphere: from 81.66 ± 0.43% (vehicle) to 78.28 ± 0.48% (conivaptan, 0.2 mg, p < 0.05 vs vehicle). Conivaptan also attenuated the EB extravasation from 1.22 ± 0.08 (vehicle) to 1.01 ± 0.02 (conivaptan, 0.2 mg, p < 0.05). Conclusion Continuous IV infusion with conivaptan for 48 hours after experimental stroke reduces brain edema, and BBB disruption. Conivaptan but not tolvaptan may potentially be used in patients to prevent brain edema after stroke. PMID:26275173

  4. Medicinal Effect of Nutraceutical Fruits for the Cognition and Brain Health

    PubMed Central

    Keservani, Raj K.; Sharma, Anil K.; Kesharwani, Rajesh K.

    2016-01-01

    The recent era is witnessing evaluation of medicinal and nutritional value of fruits and fruit juices for the management and prevention of brain diseases like headache stress, anxiety, hypertension, and Alzheimer's and Parkinson's diseases by the scientists and researchers worldwide. Fruits possess various chemicals such as antioxidants and polyphenols, which reduce and balance the effect of hormone in brain responsible for brain disease. Natural remedy is cheap, easily available, nontoxic, and easy to prepare and provides good mental health as compared to other remedies. The main objective of this review is to acknowledge medicinal benefits of fruits for the cognition and management of brain disease. PMID:26966612

  5. The Geneva brain collection

    PubMed Central

    Kövari, Enikö; Hof, Patrick R.; Bouras, Constantin

    2011-01-01

    The University of Geneva brain collection was founded at the beginning of the 20th century. Today, it consists of 10,154 formaldehyde- or buffered formaldehyde–fixed brains obtained from the autopsies of the Department of Psychiatry and, since 1971, from the Department of Geriatrics as well. More than 100,000 paraffin-embedded blocks and 200,000 histological slides have also been collected since 1901. From the time of its creation, this collection has served as an important resource for pathological studies and clinicopathological correlations, primarily in the field of dementing illnesses and brain aging research. These materials have permitted a number of original neuropathological observations, such as the classification of Pick’s disease by Constantinidis, or the description of dyshoric angiopathy and laminar sclerosis by Morel. The large number of cases, including some very rare conditions, provides a unique resource and an opportunity for worldwide collaborations. PMID:21599692

  6. Brains on video games

    PubMed Central

    Bavelier, Daphne; Green, C. Shawn; Han, Doug Hyun; Renshaw, Perry F.; Merzenich, Michael M.; Gentile, Douglas A.

    2015-01-01

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games ‘damage the brain’ or ‘boost brain power’ do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward. PMID:22095065

  7. Brain abscess: Current management

    PubMed Central

    Alvis Miranda, Hernando; Castellar-Leones, Sandra Milena; Elzain, Mohammed Awad; Moscote-Salazar, Luis Rafael

    2013-01-01

    Brain abscess (BA) is defined as a focal infection within the brain parenchyma, which starts as a localized area of cerebritis, which is subsequently converted into a collection of pus within a well-vascularized capsule. BA must be differentiated from parameningeal infections, including epidural abscess and subdural empyema. The BA is a challenge for the neurosurgeon because it is needed good clinical, pharmacological, and surgical skills for providing good clinical outcomes and prognosis to BA patients. Considered an infrequent brain infection, BA could be a devastator entity that easily left the patient into dead. The aim of this work is to review the current concepts regarding epidemiology, pathophysiology, etiology, clinical presentation, diagnosis, and management of BA. PMID:24174804

  8. Brain Development in Childhood

    PubMed Central

    Taki, Yasuyuki; Kawashima, Ryuta

    2012-01-01

    Although human brain development continues throughout childhood and adolescence, it is a non-linear process both structurally and functionally. Here we review studies of brain development in healthy children from the viewpoint of structure and the perfusion of gray and white matter. Gray matter volume increases and then decreases with age, with the developmental time of the peak volume differing among brain regions in the first and second decades of life. On the other hand, white matter volume increase is mostly linear during those periods. As regards fractional anisotropy, most regions show an exponential trajectory with aging. In addition, cerebral blood flow and gray matter volume are proportional at similar developmental ages. Moreover, we show that several lifestyle choices, such as sleeping habits and breakfast staple, affect gray matter volume in healthy children. There are a number of uninvestigated important issues that require future study. PMID:23166579

  9. Brains, Genes and Primates

    PubMed Central

    Belmonte, Juan Carlos Izpisua; Callaway, Edward M.; Churchland, Patricia; Caddick, Sarah J.; Feng, Guoping; Homanics, Gregg E.; Lee, Kuo-Fen; Leopold, David A.; Miller, Cory T.; Mitchell, Jude F.; Mitalipov, Shoukhrat; Moutri, Alysson R.; Movshon, J. Anthony; Okano, Hideyuki; Reynolds, John H.; Ringach, Dario; Sejnowski, Terrence J.; Silva, Afonso C.; Strick, Peter L.; Wu, Jun; Zhang, Feng

    2015-01-01

    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward. PMID:25950631

  10. The metastable brain.

    PubMed

    Tognoli, Emmanuelle; Kelso, J A Scott

    2014-01-01

    Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions.

  11. Motifs in brain networks.

    PubMed

    Sporns, Olaf; Kötter, Rolf

    2004-11-01

    Complex brains have evolved a highly efficient network architecture whose structural connectivity is capable of generating a large repertoire of functional states. We detect characteristic network building blocks (structural and functional motifs) in neuroanatomical data sets and identify a small set of structural motifs that occur in significantly increased numbers. Our analysis suggests the hypothesis that brain networks maximize both the number and the diversity of functional motifs, while the repertoire of structural motifs remains small. Using functional motif number as a cost function in an optimization algorithm, we obtain network topologies that resemble real brain networks across a broad spectrum of structural measures, including small-world attributes. These results are consistent with the hypothesis that highly evolved neural architectures are organized to maximize functional repertoires and to support highly efficient integration of information.

  12. Motifs in Brain Networks

    PubMed Central

    2004-01-01

    Complex brains have evolved a highly efficient network architecture whose structural connectivity is capable of generating a large repertoire of functional states. We detect characteristic network building blocks (structural and functional motifs) in neuroanatomical data sets and identify a small set of structural motifs that occur in significantly increased numbers. Our analysis suggests the hypothesis that brain networks maximize both the number and the diversity of functional motifs, while the repertoire of structural motifs remains small. Using functional motif number as a cost function in an optimization algorithm, we obtain network topologies that resemble real brain networks across a broad spectrum of structural measures, including small-world attributes. These results are consistent with the hypothesis that highly evolved neural architectures are organized to maximize functional repertoires and to support highly efficient integration of information. PMID:15510229

  13. The metastable brain.

    PubMed

    Tognoli, Emmanuelle; Kelso, J A Scott

    2014-01-01

    Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions. PMID:24411730

  14. Multimodal brain visualization

    NASA Astrophysics Data System (ADS)

    Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Current connectivity diagrams of human brain image data are either overly complex or overly simplistic. In this work we introduce simple yet accurate interactive visual representations of multiple brain image structures and the connectivity among them. We map cortical surfaces extracted from human brain magnetic resonance imaging (MRI) data onto 2D surfaces that preserve shape (angle), extent (area), and spatial (neighborhood) information for 2D (circular disk) and 3D (spherical) mapping, split these surfaces into separate patches, and cluster functional and diffusion tractography MRI connections between pairs of these patches. The resulting visualizations are easier to compute on and more visually intuitive to interact with than the original data, and facilitate simultaneous exploration of multiple data sets, modalities, and statistical maps.

  15. Brain development in childhood.

    PubMed

    Taki, Yasuyuki; Kawashima, Ryuta

    2012-01-01

    Although human brain development continues throughout childhood and adolescence, it is a non-linear process both structurally and functionally. Here we review studies of brain development in healthy children from the viewpoint of structure and the perfusion of gray and white matter. Gray matter volume increases and then decreases with age, with the developmental time of the peak volume differing among brain regions in the first and second decades of life. On the other hand, white matter volume increase is mostly linear during those periods. As regards fractional anisotropy, most regions show an exponential trajectory with aging. In addition, cerebral blood flow and gray matter volume are proportional at similar developmental ages. Moreover, we show that several lifestyle choices, such as sleeping habits and breakfast staple, affect gray matter volume in healthy children. There are a number of uninvestigated important issues that require future study.

  16. One brain, two selves.

    PubMed

    Reinders, A A T S; Nijenhuis, E R S; Paans, A M J; Korf, J; Willemsen, A T M; den Boer, J A

    2003-12-01

    Having a sense of self is an explicit and high-level functional specialization of the human brain. The anatomical localization of self-awareness and the brain mechanisms involved in consciousness were investigated by functional neuroimaging different emotional mental states of core consciousness in patients with Multiple Personality Disorder (i.e., Dissociative Identity Disorder (DID)). We demonstrate specific changes in localized brain activity consistent with their ability to generate at least two distinct mental states of self-awareness, each with its own access to autobiographical trauma-related memory. Our findings reveal the existence of different regional cerebral blood flow patterns for different senses of self. We present evidence for the medial prefrontal cortex (MPFC) and the posterior associative cortices to have an integral role in conscious experience.

  17. TBI Symptoms, Diagnosis, Treatment, Prevention

    MedlinePlus

    ... alertness; if breathing or movement ceases, immediately begin CPR Sometimes when the brain is injured, swelling occurs and fluids accumulate within the brain space. It is normal for bodily injuries to cause swelling and disruptions in fluid balance. ...

  18. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood–Brain Barrier

    PubMed Central

    Georgieva, Julia V.; Hoekstra, Dick; Zuhorn, Inge S.

    2014-01-01

    The blood–brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood–brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier–drug system (“Trojan horse complex”) is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain. PMID:25407801

  19. More Complete Removal of Malignant Brain Tumors by Fluorescence-Guided Surgery

    ClinicalTrials.gov

    2016-05-13

    Benign Neoplasms, Brain; Brain Cancer; Brain Neoplasms, Benign; Brain Neoplasms, Malignant; Brain Tumor, Primary; Brain Tumor, Recurrent; Brain Tumors; Intracranial Neoplasms; Neoplasms, Brain; Neoplasms, Intracranial; Primary Brain Neoplasms; Primary Malignant Brain Neoplasms; Primary Malignant Brain Tumors; Gliomas; Glioblastoma

  20. Acute brain trauma.

    PubMed

    Martin, G T

    2016-01-01

    In the 20th century, the complications of head injuries were controlled but not eliminated. The wars of the 21st century turned attention to blast, the instant of impact and the primary injury of concussion. Computer calculations have established that in the first 5 milliseconds after the impact, four independent injuries on the brain are inflicted: 1) impact and its shockwave, 2) deceleration, 3) rotation and 4) skull deformity with vibration (or resonance). The recovery, pathology and symptoms after acute brain trauma have always been something of a puzzle. The variability of these four modes of injury, along with a variable reserve of neurones, explains some of this problem.

  1. Tuberculosis simulating brain tumour.

    PubMed

    Chaudhry, U R; Farooq, M; Rauf, F; Bhatti, S K

    2011-06-30

    The purpose of the study is to highlight the varied presentation of tuberculosis (TB) simulating a brain tumour. Headache and seizures are becoming frequent presenting complaints without any history of tuberculosis. The study comprises 1200 patients of both sexes with ages ranging from ten to sixty years. CT scan and MRI brain control with and without contrast medium were the investigations performed in these cases. In some patients Electroencephalography (EEG), cerebral angiography (DSA) and spectroscopy were also performed. The final diagnosis of tuberculosis was made on the basis of craniotomy, stereotactic and burr hole biopsies with histopathology in most of the cases. Forty per cent of the patients were followed up for eight months. They were put on anti-tuberculosis treatment with symptomatic and anti-epileptic drugs. The incidence was 544 and 757 per 100,000 in Africa and Indo Pakistan respectively. The male to female ratio was 1:1. Tuberculosis, especially with CNS involvement, is not only common in immunosuppressed patients in our setting, but TB has been and remains an important public health problem. TB may involve the CNS either as meningitis or as parenchymal granulomas or abscesses. Patients with brain TB usually present with fever, multiple cranial nerve involvement and occasional behavioural changes. CSF findings remain non specific in most cases. The most common sites are the cerebral hemisphere and basal ganglion in adults and the cerebellum in children. Tuberculosis has unique findings on brain CT and MRI. Cortical and subcortical locations are typical whereas the brain stem is a less common site. Tuberculosis lesions are usually solitary but multiple in 10% to 35% of cases. In spite of all these facts some cases of brain TB still need aggressive neurointervention to reach the final diagnosis of brain TB. Tuberculosis in the CNS may manifest in many different ways. So one should always include tuberculosis in the differential diagnosis in the

  2. The Brain Prize 2011

    PubMed Central

    Soltesz, Ivan

    2012-01-01

    The Grete Lundbeck European Brain Research Foundation awarded the inaugural Brain Prize 2011 to Péter Somogyi, Tamás Freund and György Buzsáki ‘for their wide-ranging, technically and conceptually brilliant research on the functional organization of neuronal circuits in the cerebral cortex, especially in the hippocampus, a region that is crucial for certain forms of memory’. The present article highlights key findings and major conceptual contributions by these three scientists that were recognized by the award. PMID:21917323

  3. Prevent Child Abuse America

    MedlinePlus

    ... children. Join us. Find out more Get involved Bullying Prevention and The National Conversation: It's Up to ... has released her initial plans to help stop bullying across the United States . We are glad that ...

  4. Profiting from pollution prevention

    SciTech Connect

    LoPilato, A.J.; Eng, D.B.

    1994-12-31

    In the case of pollution prevention, national environmental goals coincide with industry`s economic interests. Most, if not all businesses have strong incentives to reduce the toxicity and quantities of wastes generated. These incentives include not only the ever increasing cost of compliance within a growing framework of regulations, but may include a firms desire to reduce the risk of criminal and civil liability, reduce overall operating costs, improve employee morale and participation, enhance corporate image in the community and insure protection of both public health and the environment. Although some businesses may invest in a pollution prevention program because it is the green thin to do, most businesses will weight their initial and long-term pollution prevention program investments on sound economic analyses. An effective pollution prevention program can provide cost savings that will more than offset the initial development and implementation costs.

  5. Carrying the Word: "Prevention"

    ERIC Educational Resources Information Center

    Boyce, Virginia S.

    1974-01-01

    The author describes a recent trip undertaken to stimulate greater commitment among Australian professionals to preventing blindness through activities such as vision screening tests and public education programs about eye health and safety. (LH)

  6. Prevent Blindness America

    MedlinePlus

    ... to eNews Close Donate A Lifetime of Healthy Vision See well to learn, work, play, and live ... the sight-saving work of
 Prevent Blindness. Donate Vision Problems in the U.S. Prevalence of Adult Vision ...

  7. Youth Suicide Prevention Programs

    ERIC Educational Resources Information Center

    Kalafat, John

    2006-01-01

    Youth suicide prevention programs are described that promote the identification and referral of at-risk youth, address risk factors, and promote protective factors. Emphasis is on programs that are both effective and sustainable in applied settings.

  8. Preventing Pressure Sores

    MedlinePlus

    ... how is it treated? What's the most important thing to do to prevent pressure sores? A spinal cord injury affects the entire family FacingDisability is designed to provide Internet-based information and support for people with spinal ...

  9. Preventive Law on Campus.

    ERIC Educational Resources Information Center

    Ward, Paul; Tribbensee, Nancy

    2003-01-01

    Discusses how, by fostering a teamwork relationship between administrators and university attorneys, the preventive law approach can effectively identify risks and develop strategies and policies in advance of any individual legal dispute. (EV)

  10. Primary prevention of cancer

    SciTech Connect

    Eylenbosch, W.J. ); Depoorter, A.M. ); Van Larebeke, N. )

    1988-01-01

    This book is organized under the following headings: Cancer registration in Europe; Coordination and role in cancer control, Chemoprevention of cancer, Smokeless tobacco and cancer, Occupational risks from radiation, Stochholm cancer prevention program.

  11. Infection Prevention in Transplantation.

    PubMed

    Pergam, Steven A

    2016-01-01

    The number of patients undergoing hematopoietic cell and solid organ transplantation are increasing every year, as are the number of centers both transplanting and caring for these patients. Improvements in transplant procedures, immunosuppressive regimens, and prevention of transplant-associated complications have led to marked improvements in survival in both populations. Infections remain one of the most important sources of excess morbidity and mortality in transplant, and therefore, infection prevention strategies are a critical element for avoiding these complications in centers caring for high-risk patients. This manuscript aims to provide an update of recent data on prevention of major healthcare-associated infections unique to transplantation, reviews the emergence of antimicrobial resistant infections, and discusses updated strategies to both identify and prevent transmission of these pathogens in transplant recipients.

  12. Cancer treatment: preventing infection

    MedlinePlus

    ... blood cells drop too low, it is called neutropenia . Often this is a short-lived side effect ... 17, 2015. Centers for Disease Control and Prevention. Neutropenia and Risk for Infection. www.cdc.gov/cancer/ ...

  13. [Cardiovascular prevention - 2016].

    PubMed

    Vértes, András; Szabados, Eszter

    2016-09-01

    Cardiovascular diseases are the main causes of premature death worldwide despite the fact that cardiovascular mortality decreased significantly in the last few decades in financially developed countries. This reduction is partly due to the modern medical and revascularisation treatments, and partly because of the effectiveness of prevention strategies such as lowering blood pressure and cholesterol level, as well as successful strategies against smoking. However, this positive trend is undermined by the striking growth in obesity and in type 2 diabetes mellitus, which could also be successfully controlled by lifestyle changes. This summary is based on an overview of the recent (2016) European Guideline for the Prevention of Cardiovascular Diseases. Here the authors describe preventive strategies and goals to be achieved, the most important lifestyle suggestions, and the secondary prevention medical treatment for patients with already established cardiovascular disease. Orv. Hetil., 2016, 157(38), 1526-1531. PMID:27640620

  14. Preventing Weight Gain

    MedlinePlus

    ... If this is the case, preventing further weight gain is a worthy goal. As people age, their body composition gradually shifts — the proportion of muscle decreases and the proportion of fat increases. This ...

  15. Prevent Back Pain

    MedlinePlus

    ... Back Pain Print This Topic En español Prevent Back Pain Browse Sections The Basics Overview Am I at ... Health: Back Pain . There are different types of back pain. Back pain can be acute or chronic. It ...

  16. Automating Preventive Maintenance.

    ERIC Educational Resources Information Center

    Oshier, Michael J.

    1984-01-01

    Describes the following aspects of the State University of New York-Brockport's preventive maintenance computerization project: (1) software selection, (2) project implementation; and (3) problems and benefits of the system. (MCG)

  17. Household Safety: Preventing Choking

    MedlinePlus

    ... room a child shouldn't enter to prevent wandering into places that haven't been properly childproofed. ... the activities that develop your child's body and mind. Reviewed by: Mary L. Gavin, MD Date reviewed: ...

  18. Polyp Prevention Trial

    Cancer.gov

    The primary objective of the Polyp Prevention Trial (PPT) is to determine whether a low fat, high fiber, high vegetable and fruit eating plan will decrease the recurrence of adenomatous polyps of the large bowel.

  19. Oral Cancer Prevention

    MedlinePlus

    ... South Asia and Southeast Asia, including China and India. Personal history of head and neck cancer A ... such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [ ...

  20. Diabetes Prevention Program (DPP)

    MedlinePlus

    ... Recruiting Patients & Families Consortia, Networks & Centers Reports & Planning Diabetes Prevention Program (DPP) Page Content On this page: ... increased risk of developing diabetes. [ Top ] Type 2 Diabetes and Prediabetes Type 2 diabetes is a disorder ...

  1. Prevention Through Mental Health

    ERIC Educational Resources Information Center

    Vicary, Judith R.

    1978-01-01

    Three rationales for affective, school-based prevention activities are to: (1) deter or lessen self- and socially-destructive behavior; (2) enhance cognitive development; and (3) promote maximum total growth, health, and development of each individual. (Author/MJB)

  2. Accumulator with preclosing preventer

    SciTech Connect

    Murthy, R.R.; Rice, B.J.

    1981-11-24

    A guided-float accumulator suitable for use with a hydraulic system for an oil well blowout preventer is provided with a wing shut-off valve. Radially inwardly directed outlet parts are aimed at the bottom of the valve wing to generate unbalanced reaction forces which oppose the bernoulli effect forces caused by rapid movement of fluid through the chamber of the shut-off valve, thus preventing premature closing of the valve.

  3. Compliance through pollution prevention

    SciTech Connect

    McCarty, B.D.; Coyle, S.; Kachel, W.M.

    1999-07-01

    Decreased budgetary resources have caused the Air Force Materiel Command to look for a better way to target pollution prevention investments. The new paradigm, Compliance through Pollution Prevention (CTP2), is based upon the Code of Environmental Management Principles (CEMP) for federal facilities. It provides a procedure to assure that all future AFMC P2 investments result in the greatest reduction in environmental compliance burden possible. This paper describes the evolution of this new environmental management system, both past and future.

  4. Preventive Migraine Treatment

    PubMed Central

    Silberstein, Stephen D.

    2015-01-01

    Purpose of Review: This article reviews the evidence base for the preventive treatment of migraine. Recent Findings: Evidence-based guidelines for the preventive treatment of migraine have recently been published by the American Academy of Neurology (AAN) and the Canadian Headache Society (CHS), providing valuable guidance for clinicians. Strong evidence exists to support the use of metoprolol, timolol, propranolol, divalproex sodium, sodium valproate, and topiramate for migraine prevention, according to the AAN. Based on best available evidence, adverse event profile, and expert consensus, topiramate, propranolol, nadolol, metoprolol, amitriptyline, gabapentin, candesartan, Petasites (butterbur), riboflavin, coenzyme Q10, and magnesium citrate received a strong recommendation for use from the CHS. Summary: Migraine preventive drug treatments are underutilized in clinical practice. Principles of preventive treatment are important to improve compliance, minimize side effects, and improve patient outcomes. Choice of preventive treatment of migraine should be based on the presence of comorbid and coexistent illness, patient preference, reproductive potential and planning, and best available evidence. PMID:26252585

  5. Delivery of preventive care

    PubMed Central

    Katz, Alan; Lambert-Lanning, Anita; Miller, Anthony; Kaminsky, Barbara; Enns, Jennifer

    2012-01-01

    Abstract Objective To determine family physicians’ practice of, knowledge about, and attitudes toward delivering preventive care during periodic health examinations (PHEs). Design A stratified sample of 5013 members of the College of Family Physicians of Canada were randomly selected to receive a questionnaire by mail. Descriptive analysis was performed on a national data set of 1010 respondents. Setting Canada. Participants A sample of family physicians from each Canadian province. Main outcome measures Physicians were asked questions about whether they addressed aspects of preventive care, such as tobacco smoking, nutrition, physical activity, alcohol intake, and sun exposure with patients during PHEs. The questions were designed to gauge attitudes and identify barriers to the provision of preventive care. Results Most respondents (87% to 89%) indicated that they were comfortable counseling their patients about issues such as nutrition, physical activity, and alcohol consumption; however, many of these respondents did not refer their patients to specialists or provide them with additional resources to educate patients about the health risks of their conditions. While tobacco smoking risks and cessation were addressed by most family physicians (79%) during PHEs, other topics, such as sun exposure, were often overlooked. Conclusion The results of this survey indicate that while many family physicians follow the evidence-based guidelines for preventive care, current levels of preventive care in the primary care setting are below national standards. It is critical that Canadians receive optimal preventive care to improve the outlook of the chronic disease burden on the health care system. PMID:22267643

  6. Teaching Creativity for Right Brain and Left Brain Thinkers.

    ERIC Educational Resources Information Center

    Geske, Joel

    Right brain and left brain dominant people process information differently and need different techniques to learn how to become more creative. Various exercises can help students take advantage of both sides of their brains. Students must feel comfortable and unthreatened to reach maximal creativity, and a positive personal relationship with…

  7. Injury and repair in perinatal brain injury: Insights from non-invasive MR perfusion imaging.

    PubMed

    Wintermark, Pia

    2015-03-01

    Injury to the developing brain remains an important complication in critically ill newborns, placing them at risk for future neurodevelopment impairments. Abnormal brain perfusion is often a key mechanism underlying neonatal brain injury. A better understanding of how alternations in brain perfusion can affect normal brain development will permit the development of therapeutic strategies that prevent and/or minimize brain injury and improve the neurodevelopmental outcome of these high-risk newborns. Recently, non-invasive MR perfusion imaging of the brain has been successfully applied to the neonatal brain, which is known to be smaller and have lower brain perfusion compared to older children and adults. This article will present an overview of the potential role of non-invasive perfusion imaging by MRI to study maturation, injury, and repair in perinatal brain injury and demonstrate why this perfusion sequence is an important addition to current neonatal imaging protocols, which already include different sequences to assess the anatomy and metabolism of the neonatal brain.

  8. Peroxisomal Biogenesis in Ischemic Brain

    PubMed Central

    Young, Jennifer M.; Nelson, Jonathan W.; Cheng, Jian; Zhang, Wenri; Mader, Sarah; Davis, Catherine M.; Morrison, Richard S.

    2015-01-01

    Abstract Aims: Peroxisomes are highly adaptable and dynamic organelles, adjusting their size, number, and enzyme composition to changing environmental and metabolic demands. We determined whether peroxisomes respond to ischemia, and whether peroxisomal biogenesis is an adaptive response to cerebral ischemia. Results: Focal cerebral ischemia induced peroxisomal biogenesis in peri-infarct neurons, which was associated with a corresponding increase in peroxisomal antioxidant enzyme catalase. Peroxisomal biogenesis was also observed in primary cultured cortical neurons subjected to ischemic insult induced by oxygen-glucose deprivation (OGD). A catalase inhibitor increased OGD-induced neuronal death. Moreover, preventing peroxisomal proliferation by knocking down dynamin-related protein 1 (Drp1) exacerbated neuronal death induced by OGD, whereas enhancing peroxisomal biogenesis pharmacologically using a peroxisome proliferator-activated receptor-alpha agonist protected against neuronal death induced by OGD. Innovation: This is the first documentation of ischemia-induced peroxisomal biogenesis in mammalian brain using a combined in vivo and in vitro approach, electron microscopy, high-resolution laser-scanning confocal microscopy, and super-resolution structured illumination microscopy. Conclusion: Our findings suggest that neurons respond to ischemic injury by increasing peroxisome biogenesis, which serves a protective function, likely mediated by enhanced antioxidant capacity of neurons. Antioxid. Redox Signal. 22, 109–120. PMID:25226217

  9. Preventive interventions for ADHD: a neurodevelopmental perspective.

    PubMed

    Halperin, Jeffrey M; Bédard, Anne-Claude V; Curchack-Lichtin, Jocelyn T

    2012-07-01

    It is proposed that the time is ripe for the development of secondary preventive interventions for attention-deficit/hyperactivity disorder (ADHD). By targeting preschool children, a developmental stage during which ADHD symptoms first become evident in most children with the disorder, many of the adverse long-term consequences that typify the trajectory of ADHD may be avoided. A dynamic/interactive model of the biological and environmental factors that contribute to the emergence and persistence of ADHD throughout the lifespan is proposed. Based on this model, it is argued that environmental influences and physical exercise can be used to enhance neural growth and development, which in turn should have an enduring and long-term impact on the trajectory of ADHD. Central to this notion are 2 hypotheses: 1) environmental influences can facilitate structural and functional brain development, and 2) changes in brain structure and function are directly related to ADHD severity over the course of development and the degree to which the disorder persists or remits with time. We present experimental and correlational data supporting the first hypothesis and longitudinal data in individuals with ADHD supporting the second. The case is made for initiating such an intervention during the preschool years, when the brain is likely to be more "plastic" and perhaps susceptible to lasting modifications, and before complicating factors, such as comorbid psychiatric disorders, academic failure, and poor social and family relationships emerge, making successful treatment more difficult. Finally, we review recent studies in young children with ADHD that might fall under the umbrella of secondary prevention.

  10. Ben's Plastic Brain

    ERIC Educational Resources Information Center

    Kaplan, Susan L.

    2010-01-01

    This article shares a story of Ben who as a result of his premature birth, suffered a brain hemorrhage resulting in cerebral palsy, which affected his left side (left hemiparesis) and caused learning disabilities. Despite these challenges, he graduated from college and currently works doing information management for a local biotech start-up…

  11. Our Brains Extended

    ERIC Educational Resources Information Center

    Prensky, Marc

    2013-01-01

    Technology is an extension of the brain; it is a new way of thinking. It is the solution humans have created to deal with the difficult new context of variability, uncertainty, complexity, and ambiguity. Wise integration of evolving and powerful technology demands a rethinking of the curriculum. This article discusses technology as the new way of…

  12. Coping with brain damage

    NASA Technical Reports Server (NTRS)

    Waring, W.

    1974-01-01

    Two neurological disorders, cerebral palsy, and traumatic brain damage as from an accident, are considered. The discussion covers the incidence of disabilities, their characteristics, and what is now being done to deal with them, particularly in reference to areas in which the capabilities of the engineer can be effectively applied.

  13. Traumatic Brain Injury (TBI)

    MedlinePlus

    ... A. (2008). Mild traumatic brain injury in U.S. soldiers returning from Iraq. New England Journal of Medicine, 358, 453–463. ... and Spotlights U.S. hospitals miss followup for suspected child abuse Q&A with NICHD Acting Director Catherine ...

  14. The Brain Revolution.

    ERIC Educational Resources Information Center

    Sylwester, Robert

    1998-01-01

    A cognitive-science revolution, reminiscent of Dewey's Progressive Education Movement, will profoundly affect future educational policy and practice. A comprehensive brain theory will emerge out of Darwin's discoveries about natural selection as a scientific explanation for biodiversity, Einstein's theoretical reconceptualization of…

  15. Mapping the Brain.

    ERIC Educational Resources Information Center

    Begley, Sharon; And Others

    1992-01-01

    Describes powerful new devices that "peer" through skull and "see" brain at work allowing neuroscientists to pursue the well springs of thought and emotion in their search for the origins of intelligence and language. Discusses the following scanning technologies: Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET),…

  16. Acquired Brain Injury Program.

    ERIC Educational Resources Information Center

    Schwartz, Stacey Hunter

    This paper reviews the Acquired Brain Injury (ABI) Program at Coastline Community College (California). The ABI Program is a two-year, for-credit educational curriculum designed to provide structured cognitive retraining for adults who have sustained an ABI due to traumatic (such as motor vehicle accident or fall) or non-traumatic(such as…

  17. Your Brain Outdoors

    ERIC Educational Resources Information Center

    MacEachren, Zabe

    2012-01-01

    The way technology influences a person's cognition is seldom recognized, but is of increasing interest among brain researchers. Outdoor educators tend to pay attention to the way different activities offer different perceptions of an environment. When natural spaces can no longer be accessed, they adapt and simulate natural activities in available…

  18. Brain Chemistry and Behavior.

    ERIC Educational Resources Information Center

    Spaziano, Vincent T.; Gibbons, Judith L.

    1986-01-01

    Describes an interdisciplinary course providing basic background in behavior, pharmacology, neuroanatomy, neurotransmitters, drugs, and specific brain disorders. Provides rationale, goals, and operational details. Discusses a research project as a tool to improve critical evaluation of science reporting and writing skills. (JM)

  19. Minds, Brains and Education

    ERIC Educational Resources Information Center

    Bakhurst, David

    2008-01-01

    It is often argued that neuroscience can be expected to provide insights of significance for education. Advocates of this view are sometimes committed to "brainism", the view (a) that an individual's mental life is constituted by states, events and processes in her brain, and (b) that psychological attributes may legitimately be ascribed to the…

  20. Infections and Brain Development

    PubMed Central

    Cordeiro, Christina N.; Tsimis, Michael; Burd, Irina

    2016-01-01

    Several different bodies of evidence support a link between infection and altered brain development. Maternal infections, such as influenza and human immunodeficiency virus, have been linked to the development of autism spectrum disorders, differences in cognitive test scores, and bipolar disorder; an association that has been shown in both epidemiologic and retrospective studies. Several viral, bacterial, and parasitic illnesses are associated with alterations in fetal brain structural anomalies including brain calcifications and hydrocephalus. The process of infection can activate inflammatory pathways causing the release of various proinflammatory biomarkers and histological changes consistent with an infectious intrauterine environment (chorioamnionitis) or umbilical cord (funisitis). Elevations in inflammatory cytokines are correlated with cerebral palsy, schizophrenias, and autism. Animal studies indicate that the balance of proinflammatory and anti-inflammatory cytokines is critical to the effect prenatal inflammation plays in neurodevelopment. Finally, chorioamnionitis is associated with cerebral palsy and other abnormal neurodevelopmental outcomes. In conclusion, a plethora of evidence supports, albeit with various degrees of certainty, the theory that maternal infection and inflammation that occur during critical periods of fetal development could theoretically alter brain structure and function in a time-sensitive manner. PMID:26490164