Science.gov

Sample records for 4-cell stage embryos

  1. Survival of frozen-thawed sheep embryos cryopreserved at cleavage stages.

    PubMed

    Garcia-Garcia, R M; Gonzalez-Bulnes, A; Dominguez, V; Veiga-Lopez, A; Cocero, M J

    2006-02-01

    This study evaluated the effect of freezing-thawing procedures on the viability of sheep embryos cryopreserved at various developmental stages. The survival rates of frozen-thawed embryos were compared with non-frozen counterparts. Embryos were recovered from the oviduct and uterus, at different days of the early luteal phase, and were classified at six different developmental stages: 2- to 4-cell (n = 72), 5- to 8-cell (n = 73), 9- to 12-cell (n = 70), early morulae (n = 42), morulae (n = 41), and blastocyst (n = 70). For each early cleavage stage and blastocysts, approximately half of the embryos, were frozen immediately by slow freezing with an ethylene glycol-based solution. The remaining embryos were cultured to the hatched blastocyst stage. All morulae and compact morulae were frozen after recovery with the same protocol. Cryoprotectants were removed using 1M sucrose solution, and then warmed the embryos were cultured to the hatched stage in a standardized in vitro culture. Embryo developmental stage had a significant effect on the ability to hatch following freezing (P<0.0001). The cryotolerance of the embryos fitted a regression (r2 = 0.908), increasing linearly from 2- to 4-cell embryos (17.1%) to morula stage (46.3%) and in a quadratic regression from the morula to the blastocyst stage (83.7%). Frozen early cleavage stage embryos had a significantly lower viability than their fresh counterparts (23.1 vs 83.1%; P<0.0001), with a similar rate of viability between fresh or frozen blastocysts (92.5 vs 83.7%). In conclusion, early sheep embryos are very sensitive to freezing per se and the survival rates following conventional freezing improve as embryo developmental stage progresses.

  2. Forskolin improves the cryosurvival of in vivo-derived porcine embryos at very early stages using two vitrification methods.

    PubMed

    Gomis, J; Cuello, C; Sanchez-Osorio, J; Gil, M A; Parrilla, I; Angel, M A; Vazquez, J M; Roca, J; Martinez, E A

    2013-04-01

    This study was aimed to determine the effect of forskolin on the viability of in vivo-derived porcine embryos vitrified by the superfine open pulled straw (SOPS) or solid surface vitrification (SSV) methods at the 2-cell, 4-cell, and blastocyst stages. Zygotes, 2- to 4-cell embryos, and morulae were obtained from superovulated sows. After collection, embryos were cultured for 24h with 0 or 10 μM forskolin and then vitrified using the SOPS and SSV method, or not vitrified (fresh controls). Fresh and vitrified-warmed 2-cells, 4-cells, and blastocysts were cultured for additional 96 h, 72 h and 24 h, respectively. At the end of the culture, embryos were evaluated for progression to the blastocyst stage and total cell number. The vitrification method did not affect any of the parameters evaluated for any embryo stage. Forskolin increased (P<0.01) the blastocyst formation and the final developmental stage of vitrified 2- and 4-cell embryos. However, these embryos exhibited lower (P<0.003) blastocyst formation rates than their fresh counterparts. The total cell number and hatching rate were similar in both groups (vitrified and fresh) of 2- and 4-cell embryos. Vitrified blastocysts exhibited viabilities, final developmental stages, hatching rates, and total cell numbers that were similar to those of their fresh counterparts, regardless of the addition of forskolin. In conclusion, the SOPS and SSV methods are suitable for the cryopreservation of in vivo-derived 2- to 4-cell porcine embryos. Pre-treatment with forskolin for 24h before vitrification improves the cryotolerance of 2- and 4-cell porcine embryos.

  3. Morphological and cytogenetic assessment of cleavage and blastocyst stage embryos.

    PubMed

    Fragouli, E; Alfarawati, S; Spath, K; Wells, D

    2014-02-01

    Morphological assessments are the main way in which fertility clinics select in vitro generated embryo(s) for transfer to the uterus. However, it is widely acknowledged that the microscopic appearance of an embryo is only weakly correlated with its viability. Furthermore, the extent to which morphology is affected by aneuploidy, a genetic defect common in human preimplantation embryos, remains unclear. Aneuploidy is of great relevance to embryo selection as it represents one of the most important causes of implantation failure and miscarriage. The current study aimed to examine whether morphological appearance can assist in identifying embryos at risk of aneuploidy. Additionally, the data produced sheds light on how chromosomal anomalies impact development from the cleavage to the blastocyst stage. A total of 1213 embryos were examined. Comprehensive chromosome analysis was combined with well-established criteria for the assessment of embryo morphology. At the cleavage stage, chromosome abnormalities were common even amongst embryos assigned the best morphological scores, indicating that aneuploidy has little effect on microscopic appearance at fixed time points up until Day 3 of development. However, at the blastocyst stage aneuploidies were found to be significantly less common among embryos of optimal morphological quality, while such abnormalities were overrepresented amongst embryos considered to be of poor morphology. Despite the link between aneuploidy and blastocyst appearance, many chromosomally abnormal embryos were able to achieve the highest morphological scores. In particular, blastocysts affected by forms of aneuploidy with the greatest capacity to produce clinical pregnancies (e.g. trisomy 21) were indistinguishable from euploid embryos. The sex ratio was seen to be equal throughout preimplantation development. Interestingly, however, females were overrepresented amongst the fastest growing cleavage-stage embryos, whereas a sex-related skew in the

  4. Should we be promoting embryo transfer at blastocyst stage?

    PubMed

    Maheshwari, Abha; Hamilton, Mark; Bhattacharya, Siladitya

    2016-02-01

    Improved laboratory standards and better culture media have made extended culture to blastocyst stage a reality to identify embryos with maximum implantation potential. The strategy of extended culture has become more popular across the world at a time when regulatory bodies have emphasized the need to increase the uptake of elective single embryo transfer, minimize complications associated with multiple births and aim for a healthy singleton live-birth as the preferred outcome in IVF. New data on perinatal outcomes suggest that pregnancies after embryo transfer at blastocyst stage are associated with a higher risk of preterm delivery, large for gestational age babies, monozygotic twins and altered sex ratio compared with those following embryo transfers at cleavage stage. In addition, concerns have been raised of increased congenital anomalies and epigenetic modifications with embryo transfer at blastocyst stage. Twenty-four years on from the first embryo transfer at blastocyst stage, we examine the reasons for extended embryo culture, evaluate the risks and benefits of this strategy and suggest the need to reconsider this policy in the interests of fetal safety.

  5. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    PubMed Central

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  6. Establishment of rock bream Oplegnathus fasciatus embryo (RoBE-4) cells with cytolytic infection of red seabream iridovirus (RSIV).

    PubMed

    Oh, So-Young; Nishizawa, Toyohiko

    2016-12-01

    Red seabream iridovirus (RSIV) is a member of genus Megalocytivirus in the family Iridoviridae. RSIV infection causes significant economic losses of marine-fishes in East Asian countries. Grunt fin (GF) cell line has been commonly used for culturing RSIV. However, it is not suitable for definite evaluation of infectivity titer of RSIV because cells infected with RSIV are not completely cytolysed. Thus, we established a new cell line, RoBE-4, from rock bream (Oplegnathus fasciatus) eyed-egg embryos in this study. Morphologically, RoBE-4 cells were fibroblastic-like. They have been stably grown over two-years with 60 passages using Leibovitz's L-15 medium containing 10% (v/v) fetal bovine serum. RoBE-4 cells infected with RSIV exhibited cytopathic effects (CPE) with cell rounding. They were cytolysed completely after ≥2 weeks of culture. Numerous RSIV particles with icosahedral morphology of approximately 122nm in diameter were observed in cytoplasmic area of infected RoBE-4 cells. The RSIV-suceptibility and amount of extracellular RSIV released by RoBE-4 cells were 100-fold higher than those by GF cells. RSIV cultured with RoBE-4 cells was highly virulent to rock bream in infection experiments. Therefore, using RoBE-4 cells instead of GF cells will enable accurate and sensitive measurement of RSIV infectivity. In addition, RoBE-4 cells might be used to produce RSIV vaccine in the future with significant reduction in cost.

  7. Telomere lengths in human oocytes, cleavage stage embryos and blastocysts

    PubMed Central

    Turner, S.; Wong, H.P.; Rai, J.; Hartshorne, G.M.

    2010-01-01

    Telomeres are repeated sequences that protect the ends of chromosomes and harbour DNA repair proteins. Telomeres shorten during each cell division in the absence of telomerase. When telomere length becomes critically short, cell senescence occurs. Telomere length therefore reflects both cellular ageing and capacity for division. We have measured telomere length in human germinal vesicle (GV) oocytes and preimplantation embryos, by quantitative fluorescence in situ hybridization (Q-FISH), providing baseline data towards our hypothesis that telomere length is a marker of embryo quality. The numbers of fluorescent foci suggest that extensive clustering of telomeres occurs in mature GV stage oocytes, and in preimplantation embryos. When calculating average telomere length by assuming that each signal presents one telomere, the calculated telomere length decreased from the oocyte to the cleavage stages, and increased between the cleavage stages and the blastocyst (11.12 versus 8.43 versus 12.22 kb, respectively, P < 0.001). Other methods of calculation, based upon expected maximum and minimum numbers of telomeres, confirm that telomere length in blastocysts is significantly longer than cleavage stages. Individual blastomeres within an embryo showed substantial variation in calculated average telomere length. This study implies that telomere length changes according to the stage of preimplantation embryo development. PMID:20573647

  8. Stage dependent susceptibility to lead in Bufo arenarum embryos.

    PubMed

    Pérez-Coll, C S; Herkovits, J

    1990-01-01

    The stage dependent susceptibility to lead in amphibian development was studied by exposing Bufo arenarum embryos during neurulae, neuromuscular activity and gill circulation stages for twenty hours to 1 ppm Pb(2+). Survival, malformations and behavioral disorders were evaluated. The embryonic susceptibility to lead was markedly stage dependent. The survival at the neuromuscular activity stage was approximately half that of the other two periods; concerning malformations, the gill circulation stage was the least sensitive. The observed malformations consisted of failed closure of neural tube, hydropsy, small and cylindrical tails, reduced body size and incurvations in the body axis. Some alterations occurred in all experimental groups and therefore were considered non-dependent on the period of treatment. In all experimental embryos, neurological disorders such as trembles and loss of equilibrium were observed.

  9. Developmental stages in human embryos: revised and new measurements.

    PubMed

    O'Rahilly, Ronan; Müller, Fabiola

    2010-01-01

    The staging of human embryos, as distinct from seriation, depends on a morphological scheme devised by Streeter and completed by O'Rahilly, who proposed the term Carnegie stages. To avoid misconceptions and errors, and to place new findings in perspective, it is necessary to summarize the essentials of the Carnegie system: (1) Twenty-three stages cover the embryonic period, i. e. the first 8 postfertilizational weeks of development. (2) The system is based on internal as well as external features, and the use of only external criteria is subject to serious limitations. For example, precise delineation of stages 19-23 and of the embryonic-fetal transition depends on histological examination. (3) Prenatal measurements are not an integral component of the staging system, and hence a stage should never be assigned merely on the basis of embryonic length. A 20-mm embryo, for example, could belong to any of three stages. Measurements, however, are important for the assessment of age, and very few measurements are available for staged embryos. Presented here and based on accurate staging are the maximum diameter of the chorionic sac, the crown-heel length, the greatest length exclusive of the lower limbs, the biparietal diameter, the head circumference, the length of the hindbrain, the total length of the brain, and the lengths of the limbs as well as of their segments, including the foot length. (4) Prenatal ages are also not an integral part of the staging system and hence a stage should never be assigned merely on the basis of prenatal age. Ages, however, are of clinical importance and their estimate has been rendered more precise by accurate timing of fertilization followed by ultrasonography. Prenatal age is postfertilizational and hence some 2 weeks less than the postmenstrual interval. The term gestational age is ambiguous and should be discarded. Presented here is a new graph showing proposed estimates of age in relation to stages and based on current information.

  10. Stage-dependent uptake of cadmium by Bufo arenarum embryos

    SciTech Connect

    Preez-Coll, C.S.; Herkovits, J.

    1996-04-01

    Over the last several years, environmental contamination with cadmium has significantly increased because of its extensive use In anthropogenic activities. This heavy metal is a very toxic xenobiotic producing reproductive and developmental impairments in a wide spectrum of organisms. Within the life cycle of organisms, the embryo is the most sensitive period to adverse conditions. Moreover, stage-dependent susceptibilities to toxic agents in amphibian embryos treated with lead, cadmium and aluminium were described. In the case of cadmium, this differential sensitivity could be related to changes in the metal accumulation through development or in the induction of defense mechanisms against cadmium toxicity, such as metallothionein (Mt) synthesis, which seems to be developmentally regulated. In the case of the toad Bufo arenarum, susceptibility to cadmium seems to follow a biphasic pattern during embryonic development. From the two-cell stage to the neurula stage an increase in susceptibility occurs, whereas from the last stage onwards a gradual increase in the resistance against this heavy metal seems to be achieved. This stage reports the uptake profile of cadmium at different post-hatching stages. 20 refs., 3 figs.

  11. Preparation of Neuronal Cultures from Midgastrula Stage Drosophila Embryos

    PubMed Central

    Sicaeros, Beatriz; O'Dowd, Diane K.

    2007-01-01

    This video illustrates the procedure for making primary neuronal cultures from midgastrula stage Drosophila embryos. The methods for collecting embryos and their dechorionation using bleach are demonstrated. Using a glass pipet attached to a mouth suction tube, we illustrate the removal of all cells from single embryos. The method for dispersing cells from each embyro into a small (5 l) drop of medium on an uncoated glass coverslip is demonstrated. A view through the microscope at 1 hour after plating illustrates the preferred cell density. Most of the cells that survive when grown in defined medium are neuroblasts that divide one or more times in culture before extending neuritic processes by 12-24 hours. A view through the microscope illustrates the level of neurite outgrowth and branching expected in a healthy culture at 2 days in vitro. The cultures are grown in a simple bicarbonate based defined medium, in a 5% CO2 incubator at 22-24°C. Neuritic processes continue to elaborate over the first week in culture and when they make contact with neurites from neighboring cells they often form functional synaptic connections. Neurons in these cultures express voltage-gated sodium, calcium, and potassium channels and are electrically excitable. This culture system is useful for studying molecular genetic and environmental factors that regulate neuronal differentiation, excitability, and synapse formation/function. PMID:18979024

  12. Pregnancy rate following transfer of in vitro produced lamb derived embryos in two embryonic stages.

    PubMed

    Shirazi, A; Shams-Esfandabadi, N; Ahmadi, E; Jadidi, M; Heidari, B

    2008-03-15

    Ovine embryos were produced by maturation, fertilization and in vitro culture (IVM/IVF/IVC) of oocytes collected from slaughtered prepubertal ewes. At 24 h post IVM, oocytes were fertilized with fresh semen collected from Lori-Bakhtiari breed at a concentration of 1.0 x l0(6) sperm mL(-1). The presumptive ova/embryos were transferred into the embryo culture medium at 22-24 h post IVF. Following 4 to 7 day in culture, embryos (at morula and blastocyst stage, respectively) were transferred surgically to the uterine horn of synchronized recipients. Pregnancy was diagnosed at day 30 by hormonal assay and at days 55 and 140 of gestation by ultrasonography and pregnancies were allowed to go to term. A total of nine ewes received 27 embryos (3 embryos/ewe). Five ewes received 15 embryos at morula stage and four ewes received 12 embryos at blastocyst stage. From those received morula stage embryos one was pregnant on day 30 (20%), though no pregnancy was diagnosed on each of days 55 and 140. While from those received blastocyst stage embryos, three ewes were pregnant on day 30 (75%) and two ewes (50%) remained pregnant on each of days 55 and 140. In conclusion, day 4 IVM-IVF morula stage embryos had a lower survival rate than did day 7 IVM-IVF blastocysts embryos, following transfer to the synchronized recipient ewes.

  13. Axial differentiation and early gastrulation stages of the pig embryo.

    PubMed

    Hassoun, Romia; Schwartz, Peter; Feistel, Kerstin; Blum, Martin; Viebahn, Christoph

    2009-12-01

    Differentiation of the principal body axes in the early vertebrate embryo is based on a specific blueprint of gene expression and a series of transient axial structures such as Hensen's node and the notochord of the late gastrulation phase. Prior to gastrulation, the anterior visceral endoderm (AVE) of the mouse egg-cylinder or the anterior marginal crescent (AMC) of the rabbit embryonic disc marks the anterior pole of the embryo. For phylogenetic and functional reasons both these entities are addressed here as the mammalian anterior pregastrulation differentiation (APD). However, mouse and rabbit show distinct structural differences in APD and the molecular blueprint, making the search of general rules for axial differentiation in mammals difficult. Therefore, the pig was analysed here as a further species with a mammotypical flat embryonic disc. Using light and electron microscopy and in situ hybridisation for three key genes involved in early development (sox17, nodal and brachyury), two axial structures of early gastrulation in the pig were identified: (1) the anterior hypoblast (AHB) characterised by increased cellular height and density and by sox17 expression, and (2) the early primitive streak characterised by a high pseudostratified epithelium with an almost continuous but unusually thick basement membrane, by localised epithelial-mesenchymal transition, and by brachyury expression in the epiblast. The stepwise appearance of these two axial structures was used to define three stages typical for mammals at the start of gastrulation. Intriguingly, the round shape and gradual posterior displacement of the APD in the pig appear to be species-specific (differing from all other mammals studied in detail to date) but correlate with ensuing specific primitive streak and extraembryonic mesoderm development. APD and, hence, the earliest axial structure presently known in the mammalian embryo may thus be functionally involved in shaping extraembryonic membranes and

  14. PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis.

    PubMed Central

    Li, Z; Thomas, T L

    1998-01-01

    We used virtual subtraction, a new gene isolation strategy, to isolate several genes of interest that are expressed in Arabidopsis embryos. These genes have demonstrated biological properties or have the potential to be involved in important biological processes. One gene isolated by virtual subtraction is PEI. It encodes a protein containing a Cys3His zinc finger domain associated with a number of animal and fungal transcription factors. In situ hybridization results showed that PEI1 is expressed throughout the embryo from globular to late cotyledon stage. Transgenic Arabidopsis plants expressing a PEI1 antisense gene produced white seeds in which embryo development did not progress through heart stage. Aberrant embryos failed to form cotyledons, but the embryonic root appeared to be normal. Aberrant embryos did not turn green, and the expression of genes involved in photomorphogenesis was drastically attenuated. In culture, aberrant embryos did not form true leaves, but root formation was apparently normal. These results suggest that PEI1 is an embryo-specific transcription factor that plays an important role during Arabidopsis embryogenesis, functioning primarily in the apical domain of the embryo. PMID:9501112

  15. The effect of superovulation on the contributions of individual blastomeres from 2-cell stage CF1 mouse embryos to the blastocyst.

    PubMed

    Katayama, Mika; Roberts, R Michael

    2010-01-01

    It remains controversial whether blastomeres of 2-cell stage mouse embryos show bias in their contribution to the blastocyst and whether there is any effect of superovulation. Two-cell stage embryos from CF1 mice were derived by either natural breeding (N) or superovulation (S) and cultured in vitro. At blastocyst, inner cell mass and trophectoderm were distinguished by Cdx2 and Oct4 immunostaining. A fluorescent dye (CM-Dil) was also used to tag individual blastomeres at the 2-cell stage, and the descendant cells identified by their red fluorescence. S and N embryos developed to blastocyst at the same rate and contained a similar number of cells. However, with S embryos, the descendants of the blastomere labeled with CM-DiI contributed predominantly to either the embryonic or abembryonic pole about 70% of the time, whereas most N embryos displayed random patterning, with no restriction to one or other of the poles. In S-embryos, but not N-embryos, the leading blastomere at second cleavage contributed preferentially to the embryonic pole of the blastocyst and the lagging blastomere to the abembryonic pole and hence mural trophectoderm. In addition, a tetrahedral rather than a flat morphology at the 4-cell stage of S-embryos was strongly biased to displaying the embryonic/abembryonic pattern at blastocyst. In contrast, S-embryos lacking a zona pellucida resembled N embryos in their patterning. In CF1 mice, superovulation has little effect on development to blastocyst, but enforces a greater degree of lineage restriction than natural breeding, most likely through constraints imposed by the zona pellucida.

  16. Endoderm/mesoderm multiplication rates in stage 5-12 chick embryos

    SciTech Connect

    Rosenquist, G.C.

    1982-01-01

    Multiplication rates for the endoderm/mesoderm layer of the head-process to 17-somite-stage chick embryo were studied by implanting essentially identical transplants labeled with tritiated thymidine into paired recipient embryos. One recipient was fixed as soon as the transplant had healed (after 30 min) and the other was reincubated an additional 3.5 to 22.5 hr; the ratios of labeled cells in the paired embryos provided points on a graph that indicated that doubling of endoderm/mesoderm cells in head-process-stage chick embryos occurs at approximately 4.0 and 17.2 hr of reincubation.

  17. New observations regarding staging turkey embryos from oviposition through primitive streak formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The normal developmental sequence of the turkey embryo from the initial cleavage divisions through hypoblast formation has been described previously in eleven separate stages based on the progressive morphological differentiation of the embryo (Gupta and Bakst, 1993). However, in recent preliminar...

  18. Confocal laser scanning microscopy of apoptosis in organogenesis-stage mouse embryos

    EPA Science Inventory

    Confocal laser scanning microscopy combined with a vital stain has been used to study apoptosis in organogenesis-stage mouse embryos. In order to achieve optical sectioning through embryos, it was necessary to use low power objectives and to prepare the sample appropriately. Mous...

  19. Improvement of porcine cloning efficiency by trichostain A through early-stage induction of embryo apoptosis.

    PubMed

    Ji, Qianqian; Zhu, Kongju; Liu, Zhiguo; Song, Zhenwei; Huang, Yuankai; Zhao, Haijing; Chen, Yaosheng; He, Zuyong; Mo, Delin; Cong, Peiqing

    2013-03-15

    Trichostain A (TSA), an inhibitor of histone deacetylases, improved developmental competence of SCNT embryos in many species, apparently by improved epigenetic reprogramming. The objective of the present study was to determine the effects of TSA-induced apoptosis in cloned porcine embryos. At various developmental stages, a comet assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining were used to detect apoptosis, and real-time polymerase chain reaction was used to assess expression of genes related to apoptosis and pluripotency. In this study, TSA significantly induced apoptosis (in a dose-dependent manner) at the one-, two-, and four-cell stages. However, in blastocyst stage embryos, TSA decreased the apoptotic index (P < 0.05). Expression levels of Caspase 3 were higher in TSA-treated versus control embryos at the two-cell stage (not statistically significant). The expression ratio of antiapoptotic Bcl-xl gene to proapoptotic Bax gene, an indicator of antiapoptotic potential, was higher in TSA-treated groups at the one-, two-, and four-cell and blastocyst stages. Furthermore, expression levels of pluripotency-related genes, namely, Oct4 and Nanog, were elevated at the morula stage (P < 0.05) in TSA treatment groups. We concluded that inducing apoptosis might be a mechanism by which TSA promotes development of reconstructed embryos. At the initial stage of apoptosis induction, abnormal cells were removed, thereby enhancing proliferation of healthy cells and improving embryo quality.

  20. Mouse embryos stressed by physiological levels of osmolarity become arrested in the late 2-cell stage before entry into M phase.

    PubMed

    Wang, Fang; Kooistra, Megan; Lee, Martin; Liu, Lin; Baltz, Jay M

    2011-10-01

    Preimplantation mouse embryos of many strains become arrested at the 2-cell stage if the osmolarity of culture medium that normally supports development to blastocysts is raised to approximately that of their normal physiological environment in the oviduct. Arrest can be prevented if molecules that serve as "organic osmolytes" are present in the medium, because organic osmolytes, principally glycine, are accumulated by embryos to provide intracellular osmotic support and regulate cell volume. Medium with an osmolarity of 310 mOsM induced arrest of approximately 80% of CF1 mouse embryos at the 2-cell stage, in contrast to the approximately 100% that progressed beyond the 2-cell stage at 250 or 301 mOsM with glycine. The nature of this arrest induced by physiological levels of osmolarity is unknown. Arrest was reversible by transfer to lower-osmolarity medium at any point during the 2-cell stage, but not after embryos would normally have progressed to the 4-cell stage. Cessation of development likely was not due to apoptosis, as shown by lack of external annexin V binding, detectable cytochrome c release from mitochondria, or nuclear DNA fragmentation. Two-cell embryos cultured at 310 mOsM progressed through the S phase, and zygotic genome activation markers were expressed. However, most embryos failed to initiate the M phase, as evidenced by intact nuclei with decondensed chromosomes, low M-phase promoting factor activity, and an inactive form of CDK1, although a few blastomeres were arrested in metaphase. Thus, embryos become arrested late in the G(2) stage of the second embryonic cell cycle when stressed by physiological osmolarity in the absence of organic osmolytes.

  1. Mouse Embryos Stressed by Physiological Levels of Osmolarity Become Arrested in the Late 2-Cell Stage Before Entry into M Phase1

    PubMed Central

    Wang, Fang; Kooistra, Megan; Lee, Martin; Liu, Lin; Baltz, Jay M.

    2011-01-01

    Preimplantation mouse embryos of many strains become arrested at the 2-cell stage if the osmolarity of culture medium that normally supports development to blastocysts is raised to approximately that of their normal physiological environment in the oviduct. Arrest can be prevented if molecules that serve as “organic osmolytes” are present in the medium, because organic osmolytes, principally glycine, are accumulated by embryos to provide intracellular osmotic support and regulate cell volume. Medium with an osmolarity of 310 mOsM induced arrest of approximately 80% of CF1 mouse embryos at the 2-cell stage, in contrast to the approximately 100% that progressed beyond the 2-cell stage at 250 or 301 mOsM with glycine. The nature of this arrest induced by physiological levels of osmolarity is unknown. Arrest was reversible by transfer to lower-osmolarity medium at any point during the 2-cell stage, but not after embryos would normally have progressed to the 4-cell stage. Cessation of development likely was not due to apoptosis, as shown by lack of external annexin V binding, detectable cytochrome c release from mitochondria, or nuclear DNA fragmentation. Two-cell embryos cultured at 310 mOsM progressed through the S phase, and zygotic genome activation markers were expressed. However, most embryos failed to initiate the M phase, as evidenced by intact nuclei with decondensed chromosomes, low M-phase promoting factor activity, and an inactive form of CDK1, although a few blastomeres were arrested in metaphase. Thus, embryos become arrested late in the G2 stage of the second embryonic cell cycle when stressed by physiological osmolarity in the absence of organic osmolytes. PMID:21697513

  2. Unraveling the association between genetic integrity and metabolic activity in pre-implantation stage embryos

    PubMed Central

    D’Souza, Fiona; Pudakalakatti, Shivanand M.; Uppangala, Shubhashree; Honguntikar, Sachin; Salian, Sujith Raj; Kalthur, Guruprasad; Pasricha, Renu; Appajigowda, Divya; Atreya, Hanudatta S.; Adiga, Satish Kumar

    2016-01-01

    Early development of certain mammalian embryos is protected by complex checkpoint systems to maintain the genomic integrity. Several metabolic pathways are modulated in response to genetic insults in mammalian cells. The present study investigated the relationship between the genetic integrity, embryo metabolites and developmental competence in preimplantation stage mouse embryos with the aim to identify early biomarkers which can predict embryonic genetic integrity using spent medium profiling by NMR spectroscopy. Embryos carrying induced DNA lesions (IDL) developed normally for the first 2.5 days, but began to exhibit a developmental delay at embryonic day 3.5(E3.5) though they were morphologically indistinguishable from control embryos. Analysis of metabolites in the spent medium on E3.5 revealed a significant association between pyruvate, lactate, glucose, proline, lysine, alanine, valine, isoleucine and thymine and the extent of genetic instability observed in the embryos on E4.5. Further analysis revealed an association of apoptosis and micronuclei frequency with P53 and Bax transcripts in IDL embryos on the E4.5 owing to delayed induction of chromosome instability. We conclude that estimation of metabolites on E3.5 in spent medium may serve as a biomarker to predict the genetic integrity in pre-implantation stage embryos which opens up new avenues to improve outcomes in clinical IVF programs. PMID:27853269

  3. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage

    SciTech Connect

    Xu, Ting; Zhao, Jing; Hu, Ping; Dong, Zhangji; Li, Jingyun; Zhang, Hongchang; Yin, Daqiang; Zhao, Qingshun

    2014-06-01

    Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay. - Highlights: • We treat zebrafish embryos with PCP at gastrula stage. • PCP acts as an oxidative phosphorylation inhibitor, not an uncoupler, in gastrulation. • Exogenous ATP injection will rescue the development of effected embryos. • The transcriptome of PCP

  4. 4D atlas of the mouse embryo for precise morphological staging.

    PubMed

    Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark

    2015-10-15

    After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development.

  5. Effects of cigarette smoke exposure on early stage embryos in the rat

    SciTech Connect

    Tachi, Norihide; Aoyama, Mitsuko )

    1989-09-01

    It is well recognized that cigarette smoking in pregnant women exerts many deleterious effects on their progenies; intrauterine growth retardation, and increases in perinatal mortality and premature births. The fetal growth retardation also has been reported in animals exposed to cigarette smoke. The authors previously demonstrated that cigarette smoke exposure in pregnant rats retarded the growth of fetuses from mid to late stages of pregnancy. In addition, the weight of uteri containing embryos in animals inhaling the smoke was smaller, although not significant, than that in the control on day 7 of pregnancy. Based on these findings, it was suggested that the growth of embryos in early stage seemed to be harmfully affected as well as during mid and late stages of pregnancy. However, since the uterine weight in early pregnancy was measured in the previous study instead of the direct observation of early stage embryos, it remained unclear whether the early development of embryos was really influenced by cigarette smoke exposure or not. The present study was designed to observe the effects of cigarette smoke inhalation by pregnant rats on early development of embryos from fertilization to implantation.

  6. Transcriptome profiles of embryos before and after cleavage in Eriocheir sinensis: identification of developmental genes at the earliest stages

    NASA Astrophysics Data System (ADS)

    Hui, Min; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen

    2016-09-01

    In crab, embryogenesis is a complicated developmental program marked by a series of critical events. RNA-Sequencing technology offers developmental biologists a way to identify many more developmental genes than ever before. Here, we present a comprehensive analysis of the transcriptomes of Eriocheir sinensis oosperms (Os) and embryos at the 2-4 cell stage (Cs), which are separated by a cleavage event. A total of 18 923 unigenes were identified, and 403 genes matched with gene ontology (GO) terms related to developmental processes. In total, 432 differentially expressed genes (DEGs) were detected between the two stages. Nine DEGs were specifically expressed at only one stage. These DEGs may be relevant to stage-specific molecular events during development. A number of DEGs related to `hedgehog signaling pathway', `wnt signaling pathway' `germplasm', `nervous system', `sensory perception' and `segment polarity' were identified as being up-regulated at the Cs stage. The results suggest that these embryonic developmental events begin before the early cleavage event in crabs, and that many of the genes expressed in the two transcriptomes might be maternal genes. Our study provides ample information for further research on the molecular mechanisms underlying crab development.

  7. Chromosome fragility at FRAXA in human cleavage stage embryos at risk for fragile X syndrome.

    PubMed

    Verdyck, Pieter; Berckmoes, Veerle; De Vos, Anick; Verpoest, Willem; Liebaers, Inge; Bonduelle, Maryse; De Rycke, Martine

    2015-10-01

    Fragile X syndrome (FXS), the most common inherited intellectual disability syndrome, is caused by expansion and hypermethylation of the CGG repeat in the 5' UTR of the FMR1 gene. This expanded repeat, also known as the rare fragile site FRAXA, causes X chromosome fragility in cultured cells from patients but only when induced by perturbing pyrimidine synthesis. We performed preimplantation genetic diagnosis (PGD) on 595 blastomeres biopsied from 442 cleavage stage embryos at risk for FXS using short tandem repeat (STR) markers. In six blastomeres, from five embryos an incomplete haplotype was observed with loss of all alleles telomeric to the CGG repeat. In all five embryos, the incomplete haplotype corresponded to the haplotype carrying the CGG repeat expansion. Subsequent analysis of additional blastomeres from three embryos by array comparative genomic hybridization (aCGH) confirmed the presence of a terminal deletion with a breakpoint close to the CGG repeat in two blastomeres from one embryo. A blastomere from another embryo showed the complementary duplication. We conclude that a CGG repeat expansion at FRAXA causes X chromosome fragility in early human IVF embryos at risk for FXS.

  8. Live births after polar body biopsy and frozen-thawed cleavage stage embryo transfer: case report

    PubMed Central

    Guimarães, Fernando; Roque, Matheus; Valle, Marcello; Kostolias, Alessandra; de Azevedo, Rodrigo A; Martinhago, Ciro D; Sampaio, Marcos; Geber, Selmo

    2016-01-01

    Pre-implantation genetic diagnosis (PGD) or screening (PGS) technology, has emerged and developed in the past few years, benefiting couples as it allows the selection and transfer of healthy embryos during IVF treatments. These techniques can be performed in oocytes (polar-body biopsy) or embryos (blastomere or trophectoderm biopsy). In this case report, we describe the first two live births to be published in Brazil after a polar-body (PB) biopsy. In case 1, a 42-year-old was submitted to PB biopsy with PGS due to advanced maternal age and poor ovarian reserve. Five MII oocytes underwent first and second polar body biopsy and four cleavage embryos were cryopreserved. The PGS analysis resulted in two euploid embryos (next generation sequence). A frozen-thawed embryo transfer (FET) was performed after endometrial priming and a healthy baby was delivered after a cesarean section (37 weeks, female, 3390g, 47.5 cm). In case 2, a 40-year old patient with balanced translocation and poor ovarian response was submitted to PB biopsy. Two MII oocytes underwent first and second polar body biopsy and two embryos were cryopreserved in cleavage stage. The analysis resulted in one euploid embryo that was transferred after endometrial priming. A preterm healthy baby (34 weeks, female, 2100g, 40 cm) was delivered via cesarean section. In conclusion, although the blastocyst biopsy is the norm when performing PGS/PGD during IVF treatments, other alternatives (as PB biopsy) should be considered in some specific situations. PMID:28050963

  9. Live births after polar body biopsy and frozen-thawed cleavage stage embryo transfer: case report.

    PubMed

    Guimarães, Fernando; Roque, Matheus; Valle, Marcello; Kostolias, Alessandra; Azevedo, Rodrigo A de; Martinhago, Ciro D; Sampaio, Marcos; Geber, Selmo

    2016-12-01

    Pre-implantation genetic diagnosis (PGD) or screening (PGS) technology, has emerged and developed in the past few years, benefiting couples as it allows the selection and transfer of healthy embryos during IVF treatments. These techniques can be performed in oocytes (polar-body biopsy) or embryos (blastomere or trophectoderm biopsy). In this case report, we describe the first two live births to be published in Brazil after a polar-body (PB) biopsy. In case 1, a 42-year-old was submitted to PB biopsy with PGS due to advanced maternal age and poor ovarian reserve. Five MII oocytes underwent first and second polar body biopsy and four cleavage embryos were cryopreserved. The PGS analysis resulted in two euploid embryos (next generation sequence). A frozen-thawed embryo transfer (FET) was performed after endometrial priming and a healthy baby was delivered after a cesarean section (37 weeks, female, 3390g, 47.5 cm). In case 2, a 40-year old patient with balanced translocation and poor ovarian response was submitted to PB biopsy. Two MII oocytes underwent first and second polar body biopsy and two embryos were cryopreserved in cleavage stage. The analysis resulted in one euploid embryo that was transferred after endometrial priming. A preterm healthy baby (34 weeks, female, 2100g, 40 cm) was delivered via cesarean section. In conclusion, although the blastocyst biopsy is the norm when performing PGS/PGD during IVF treatments, other alternatives (as PB biopsy) should be considered in some specific situations.

  10. Stage-dependent toxicity of bisphenol a on Rhinella arenarum (anura, bufonidae) embryos and larvae.

    PubMed

    Wolkowicz, Ianina R Hutler; Herkovits, Jorge; Pérez Coll, Cristina S

    2014-02-01

    The acute and chronic toxicity of bisphenol A (BPA) was evaluated on the common South American toad Rhinella arenarum embryos and larvae by means of continuous and pulse exposure treatments. Embryos were treated continuously from early blastula (S.4) up to complete operculum (S.25), during early larval stages and by means of 24 h pulse exposures of BPA in concentrations ranging between 1.25 and 40 mg L(-1) , in order to evaluate the susceptibility to this compound in different developmental stages. For lethal effects, S.25 was the most sensitive and gastrula was the most resistant to BPA. The Teratogenic Index for neurula, the most sensitive embryonic stage for sublethal effects was 4.7. The main morphological alterations during early stages were: delayed or arrested development, reduced body size, persistent yolk plug, microcephaly, axial/tail flexures, edemas, blisters, waving fin, underdeveloped gills, mouth malformations, and cellular dissociation. BPA caused a remarkable narcotic effect from gill circulation stage (S.20) onwards in all the organisms exposed after 3 h of treatment with 10 mg L(-1) BPA. After recovering, the embryos exhibited scarce response to stimuli, erratic or circular swimming, and spasmodic contractions from 5 mg L(-1) onwards. Our results highlight the lethal and sublethal effectsof BPA on R. arenarum embryos and larvae, in the last case both at structural and functional levels.

  11. INCREASED APOPTOSIS IN ORGANOGENESIS-STAGED MOUSE EMBRYOS INDUCED BY DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Increased apoptosis in organogenesis-staged mouse embryos induced by disinfection by-products. Sid Hunter1,2, Ellen Rogers1 and Keith Ward2, 1 Developmental Biology Branch, Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC; 2 Curriculum in Toxicology, UNC Chapel Hill, Cha...

  12. (14)C METHANOL INCORPORATION INTO DNA AND SPECIFIC PROTEINS OF ORGANOGENESIS STAGE MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    Methanol (MeOH), a widely used industrial solvent and alternative motor fuel, has been shown to be mutagenic and teratogenic. We have demonstrated that methanol is teratogenic in mice in vivo and causes dysmorphogenesis in cultured organogenesis stage mouse embryos. Methanol is ...

  13. Blastomere Removal from Cleavage-Stage Mouse Embryos Alters Steroid Metabolism During Pregnancy1

    PubMed Central

    Sugawara, Atsushi; Sato, Brittany; Bal, Elise; Collier, Abby C.; Ward, Monika A.

    2012-01-01

    ABSTRACT Preimplantation genetic diagnosis (PGD) is a genetic screening of embryos conceived with assisted reproduction technologies (ART). A single blastomere from an early-stage embryo is removed and molecular analyses follow to identify embryos carrying genetic defects. PGD is considered highly successful for detecting genetic anomalies, but the effects of blastomere biopsy on fetal development are understudied. We aimed to determine whether single blastomere removal affects steroid homeostasis in the maternal-placental-fetal unit during mouse pregnancy. Embryos generated by in vitro fertilization (IVF) were biopsied at the four-cell stage, cultured to morula/early blastocyst, and transplanted into the oviducts of surrogate mothers. Nonbiopsied embryos from the same IVF cohorts served as controls. Cesarean section was performed at term, and maternal and fetal tissues were collected. Embryo biopsy affected the levels of steroids (estradiol, estrone, and progesterone) in fetal and placental compartments but not in maternal tissues. Steroidogenic enzyme activities (3beta-hydroxysteroid dehydrogenase, cytochrome P450 17alpha-hydroxylase, and cytochrome P450 19) were unaffected but decreased activities of steroid clearance enzymes (uridine diphosphate-glucuronosyltransferase and sulfotransferase) were observed in placentas and fetal livers. Although maternal body, ovarian, and placental weights did not differ, the weights of fetuses derived from biopsied embryos were lower than those of their nonbiopsied counterparts. The data demonstrate that blastomere biopsy deregulates steroid metabolism during pregnancy. This may have profound effects on several aspects of fetal development, of which low birth weight is only one. If a similar phenomenon occurs in humans, it may explain low birth weights associated with PGD/ART and provide a plausible target for improving PGD outcomes. PMID:22517623

  14. Nerve growth factor regulates axial rotation during early stages of chick embryo development.

    PubMed

    Manca, Annalisa; Capsoni, Simona; Di Luzio, Anna; Vignone, Domenico; Malerba, Francesca; Paoletti, Francesca; Brandi, Rossella; Arisi, Ivan; Cattaneo, Antonino; Levi-Montalcini, Rita

    2012-02-07

    Nerve growth factor (NGF) was discovered because of its neurotrophic actions on sympathetic and sensory neurons in the developing chicken embryo. NGF was subsequently found to influence and regulate the function of many neuronal and non neuronal cells in adult organisms. Little is known, however, about the possible actions of NGF during early embryonic stages. However, mRNAs encoding for NGF and its receptors TrkA and p75(NTR) are expressed at very early stages of avian embryo development, before the nervous system is formed. The question, therefore, arises as to what might be the functions of NGF in early chicken embryo development, before its well-established actions on the developing sympathetic and sensory neurons. To investigate possible roles of NGF in the earliest stages of development, stage HH 11-12 chicken embryos were injected with an anti-NGF antibody (mAb αD11) that binds mature NGF with high affinity. Treatment with anti-NGF, but not with a control antibody, led to a dose-dependent inversion of the direction of axial rotation. This effect of altered rotation after anti NGF injection was associated with an increased cell death in somites. Concurrently, a microarray mRNA expression analysis revealed that NGF neutralization affects the expression of genes linked to the regulation of development or cell proliferation. These results reveal a role for NGF in early chicken embryo development and, in particular, in the regulation of somite survival and axial rotation, a crucial developmental process linked to left-right asymmetry specification.

  15. Messenger RNAs in metaphase II oocytes correlate with successful embryo development to the blastocyst stage.

    PubMed

    Biase, Fernando Henrique; Everts, Robin Edward; Oliveira, Rosane; Santos-Biase, Weruska Karyna Freitas; Fonseca Merighe, Giovana Krempel; Smith, Lawrence Charles; Martelli, Lúcia; Lewin, Harris; Meirelles, Flávio Vieira

    2014-02-01

    The mRNAs accumulated in oocytes provide support for embryo development until embryo genomic activation. We hypothesized that the maternal mRNA stock present in bovine oocytes is associated with embryo development until the blastocyst stage. To test our hypothesis, we analyzed the transcriptome of the oocyte and correlated the results with the embryo development. Our goal was to identify genes expressed in the oocyte that correlate with its ability to develop to the blastocyst stage. A fraction of oocyte cytoplasm was biopsied using micro-aspiration and stored for further expression analysis. Oocytes were activated chemically, cultured individually and classified according to their capacity to develop in vitro to the blastocyst stage. Microarray analysis was performed on mRNA extracted from the oocyte cytoplasm fractions and correlated with its ability to develop to the blastocyst stage (good quality oocyte) or arrest at the 8-16-cell stage (bad quality oocyte). The expression of 4320 annotated genes was detected in the fractions of cytoplasm that had been collected from oocytes matured in vitro. Gene ontology classification revealed that enriched gene expression of genes was associated with certain biological processes: 'RNA processing', 'translation' and 'mRNA metabolic process'. Genes that are important to the molecular functions of 'RNA binding' and 'translation factor activity, RNA binding' were also enriched in oocytes. We identified 29 genes with differential expression between the two groups of oocytes compared (good versus bad quality). The content of mRNAs expressed in metaphase II oocytes influences the activation of the embryonic genome and enables further develop to the blastocyst stage.

  16. Quadrivalent asymmetry in reciprocal translocation carriers predicts meiotic segregation patterns in cleavage stage embryos.

    PubMed

    Zhang, Yueping; Zhu, Saijuan; Wu, Jialong; Liu, Suying; Sun, Xiaoxi

    2014-10-01

    The effect of quadrivalent geometry on meiotic behaviour was evaluated. Segregation patterns of 404 cleavage stage embryos from 40 reciprocal translocation carriers undergoing 75 PGD cycles were analysed according to the asymmetric degree of quadrivalent. The percentage of alternate products with severe asymmetric quadrivalents was significantly lower than patients with mild asymmetric quadrivalents (22.5% versus 38.7%, P = 0.001). The incidence of 3:1 products was significantly higher in patients with severe compared with mild asymmetric quadrivalents (23.1% versus 12.2%, P = 0.004). The incidence of adjacent 1 (25.8% versus 24.3%), 2 (11.5% versus 12.6%) and 4:0/other segregation products (17.0% versus 12.2%) were not statistically significantly different between embryos from patients with severe or mild asymmetric quadrivalents. After adjusting for the confounder of sex using a logistic regression model, the odds of alternate embryos is about one-half for carriers classified as severe (OR 0.456, 95% CI 0.291 to 0.705), and the odds of 3:1 embryos is 2.2 times higher for carriers with severe asymmetric quadrivalents (OR 2.235, 95% CI 1.318 to 3.846). Our results suggest that the meiotic segregation pattern is related to the degree of asymmetry of specific quadrivalents. Severe asymmetric quadrivalents increases the risk of abnormal embryos.

  17. Producing fully ES cell-derived mice from eight-cell stage embryo injections.

    PubMed

    DeChiara, Thomas M; Poueymirou, William T; Auerbach, Wojtek; Frendewey, David; Yancopoulos, George D; Valenzuela, David M

    2010-01-01

    In conventional methods for the generation of genetically modified mice, gene-targeted embryonic stem (ES) cells are injected into blastocyst-stage embryos or are aggregated with morula-stage embryos, which are then transferred to the uterus of a surrogate mother. F0 generation mice born from the embryos are chimeras composed of genetic contributions from both the modified ES cells and the recipient embryos. Obtaining a mouse strain that carries the gene-targeted mutation requires breeding the chimeras to transmit the ES cell genetic component through the germ line to the next (F1) generation (germ line transmission, GLT). To skip the chimera stage, we developed the VelociMouse method, in which injection of genetically modified ES cells into eight-cell embryos followed by maturation to the blastocyst stage and transfer to a surrogate mother produces F0 generation mice that are fully derived from the injected ES cells and exhibit a 100% GLT efficiency. The method is simple and flexible. Both male and female ES cells can be introduced into the eight-cell embryo by any method of injection or aggregation and using all ES cell and host embryo combinations from inbred, hybrid, and outbred genetic backgrounds. The VelociMouse method provides several unique opportunities for shortening project timelines and reducing mouse husbandry costs. First, as VelociMice exhibit 100% GLT, there is no need to test cross chimeras to establish GLT. Second, because the VelociMouse method permits efficient production of ES cell-derived mice from female ES cells, XO ES cell subclones, identified by screening for spontaneous loss of the Y chromosome, can be used to generate F0 females that can be bred with isogenic F0 males derived from the original targeted ES cell clone to obtain homozygous mutant mice in the F1 generation. Third, as VelociMice are genetically identical to the ES cells from which they were derived, the VelociMouse method opens up myriad possibilities for creating mice with

  18. Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality.

    PubMed

    Cruz, María; Garrido, Nicolás; Herrero, Javier; Pérez-Cano, Inmaculada; Muñoz, Manuel; Meseguer, Marcos

    2012-10-01

    Noninvasive markers of embryo quality are being sought to improve IVF success. The present study aimed to discover possible associations between embryo division kinetics in the cleavage stage, the subsequent ability of human embryos to reach the blastocyst stage and the resulting blastocyst morphology. A retrospective cohort study analysed 834 embryos from 165 oocyte donation couples using a time-lapse monitoring system that allowed the recording of the exact timings for key events related to embryo development. Timing parameters were categorized into four quartiles. The probability of an embryo developing to a blastocyst was linked to a strict chronology of development. To further evaluate the relationships between these morphokinetic parameters and subsequent blastocyst formation, the ensuing blastocyst morphology was compared with a viability score based on a hierarchical classification of the cleavage-stage morphokinetic parameters. It is concluded that the kinetics of early embryo development and the potential for human embryos to develop to the blastocyst stage on day 5 are closely related and that time-lapse-based evaluation of the exact timing of early events in embryo development is a promising tool for the prediction of blastocyst formation and quality according to the proposed model.

  19. Developmental arrest at early stages of Chinese hamster embryos homozygous for chromosomal rearrangements

    SciTech Connect

    Sonta, S.; Yamada, M.; Iida, T.; Ohashi, H. )

    1991-03-01

    Forty-three Chinese hamster stocks with autosomal rearrangements produced by X-irradiation were used. These rearrangements, 38 reciprocal translocations and 5 inversions, were chromosomally balanced. Heterozygotes for these rearrangements were all fertile and morphologically normal in both sexes except for one line with growth retardation. By crossing male and female heterozygotes for the same rearrangements, homozygotes were obtained in 37 lines. In the remaining 6 lines (5 with reciprocal translocations and 1 with an inversion), no homozygotes were viable. These 6 lines revealed arrested development of homozygous embryos at the two-cell stage, around the eight-cell stage, and after implantation, respectively. The bands of the breakpoints of rearrangements associated with lethality of homozygous embryos were different for each rearrangement. These results suggest that abnormal expression including embryonic lethality in homozygotes may be due to an influence of genes at the breakpoints.

  20. Active loss of DNA methylation in two-cell stage goat embryos.

    PubMed

    Park, Jung S; Lee, Doosoo; Cho, Sunwha; Shin, Sang-Tae; Kang, Yong-Kook

    2010-01-01

    Early mammalian embryos are thought to gain nuclear totipotency through DNA methylation reprogramming (DMR). By this process, DNA methylation patterns acquired during gametogenesis that are unnecessary for zygotic development are erased. The DMR patterns of various mammalian species have been studied; however, they do not seem to have a conserved pattern. We examined early goat embryos to find conforming rules underlying mammalian DMR patterns. Immunocytochemical results showed that the overall level of DNA methylation was not greatly changed during the pronucleus stage. At the two-cell stage, active demethylation occurred and simultaneously affected both parental DNAs, resulting in a global loss of 5-methylcytosine. The level of DNA methylation was lowest in the four-cell stage, with increased de novo methylation during the eight-cell stage. Histone H3-lysine 9 was gradually trimethylated in the sperm-derived chromatin, continuing from the pronucleus stage through the two-cell stage. This goat DMR pattern is novel and distinct from the DMRs of other mammalian species. The more mammalian species we included for DMR analysis, the more multifarious patterns we obtained, adding an extra diversity each time to the known mammalian DMR patterns. Nevertheless, the evolutionary significance and developmental consequence of such diverse DMR patterns are currently unknown.

  1. Mouse embryo motion and embryonic development from the 2-cell to blastocyst stage using mechanical vibration systems.

    PubMed

    Asano, Yuka; Matsuura, Koji

    2014-06-01

    We investigated the effect of mechanical stimuli on mouse embryonic development from the 2-cell to blastocyst stage to evaluate physical factors affecting embryonic development. Shear stress (SS) applied to embryos using two mechanical vibration systems (MVSs) was calculated by observing microscopic images of moving embryos during mechanical vibration (MV). The MVSs did not induce any motion of the medium and the diffusion rate using MVSs was the same as that under static conditions. Three days of culture using MVS did not improve embryonic development. MVS transmitted MV power more efficiently to embryos than other systems and resulted in a significant decrease in development to the morula or blastocyst stage after 2 days. Comparison of the results of embryo culture using dynamic culture systems demonstrated that macroscopic diffusion of secreted materials contributes to improved development of mouse embryos to the blastocyst stage. These results also suggest that the threshold of SS and MV to induce negative effects for mouse embryos at stages earlier than the blastocyst may be lower than that for the blastocyst, and that mouse embryos are more sensitive to physical and chemical stimuli than human or pig embryos because of their thinner zona pellucida.

  2. Karyomapping identifies second polar body DNA persisting to the blastocyst stage: implications for embryo biopsy.

    PubMed

    Ottolini, Christian S; Rogers, Shaun; Sage, Karen; Summers, Michael C; Capalbo, Antonio; Griffin, Darren K; Sarasa, Jonas; Wells, Dagan; Handyside, Alan H

    2015-12-01

    Blastocyst biopsy is now widely used for both preimplantation genetic screening (PGS) and preimplantation genetic diagnosis (PGD). Although this approach yields good results, variable embryo quality and rates of development remain a challenge. Here, a case is reported in which a blastocyst was biopsied for PGS by array comparative genomic hybridization on day 6 after insemination, having hatched completely. In addition to a small trophectoderm sample, excluded cell fragments from the subzonal space from this embryo were also sampled. Unexpectedly, the array comparative genomic hybridization results from the fragments and trophectoderm sample were non-concordant: 47,XX,+19 and 46,XY, respectively. DNA fingerprinting by short tandem repeat and amelogenin analysis confirmed the sex chromosome difference but seemed to show that the two samples were related but non-identical. Genome-wide single nucleotide polymorphism genotyping and karyomapping identified that the origin of the DNA amplified from the fragments was that of the second polar body corresponding to the oocyte from which the biopsied embryo developed. The fact that polar body DNA can persist to the blastocyst stage provides evidence that excluded cell fragments should not be used for diagnostic purposes and should be avoided when performing embryo biopsies as there is a risk of diagnostic errors.

  3. Development of the coronary arteries in staged human embryos (the Paris Embryological Collection revisited).

    PubMed

    Mandarim-de-Lacerda, C A

    1990-03-01

    Twenty seven human embryos from stages 15 to 23 (postsomitic period), belonging to the collection of the "UFR Biomédicale des Saints-Pères, Université René Descartes Paris V", were studied. Details of the aorticopulmonary cleavage were analysed specially aortic valve development and origin of the coronary artery. At stage 18 the aortic valve was clearly distinguished (cup-shaped) presenting semilunar valves and aortic sinus (Valsalvae); at this stage the left coronary artery was detected in 66.7 per cent of the cases as an endothelial epicardial invagination. At stage 19, the left and right coronary arteries were detected simultaneously in 100 per cent of the cases. At stage 20, the coronary arteries showed greater structural complexity with a coat of mesenchymal cells. These results agree with previous data from different embryological collections. These findings suggest that the left coronary artery has a tendency to develop earlier than the right. We found no evidence of the coronary origin from the aortic lumen. This work provides additional information about the embryological development of the heart, obtained from the analyses of a French collection of human embryos.

  4. The initial appearance of the cranial nerves and related neuronal migration in staged human embryos.

    PubMed

    Müller, Fabiola; O'Rahilly, Ronan

    2011-01-01

    The initial development of the cranial nerves was studied in 245 human embryos of stages 10-23 (4-8 postfertilizational weeks). Significant findings in the human embryo include the following. (1) Neuronal migration is a characteristic feature in the development of all the cranial nerves at stages 13-18, with the exception of the somatic efferent group. (2) The somatic efferent and the visceral efferent neurons are arranged respectively in ventrolateral and ventromedial columns (stages 13-17). (3) The ventrolateral column gives rise to somatic efferent nuclei; the neurons of the hypoglossal nerve develop rapidly and show a segmental organization as four roots that innervate three of the four occipital somites (stage 13); the abducent nucleus becomes displaced rostrally by a change in the rhombomeric pattern at stage 16. (4) The ventromedial column, originally continuous in rhombomeres 2-7, gives rise to visceral efferent and pharyngeal efferent nuclei. (5) All the 'true' cranial nerves (III-XII) are recognizable by stage 16. (6) In a primary migration the visceral efferent neurons proceed mediolaterally and accumulate dorsolaterally as nuclei (stages 13, 14); they differentiate into salivatory nuclei (stages 16, 17). (7) A secondary migration involves the pharyngeal efferent neurons (of nerves V and IX-XI), which also proceed mediolaterally and then form ventrolateral nuclei (stages 17, 18). (8) The facial complex shows a distinctive development in that its neural crest arises from the lateral wall of the neural folds/tube. Moreover, the migration of its pharyngeal efferent neurons is delayed, which may be related to the formation of the internal genu, and the motor nucleus begins to appear only at stage 23. (9) The sequence of appearance of afferent constituents is: cranial ganglia (stage 12), mesencephalic trigeminal nucleus (stage 15), vestibular nuclei (stages 18-22), and cochlear nuclei (stage 19). The unsatisfactory term special is avoided and the term

  5. Can repeated IVF-ICSI-cycles be avoided by using blastocysts developing from poor-quality cleavage stage embryos?

    PubMed

    Kaartinen, Noora; Das, Pia; Kananen, Kirsi; Huhtala, Heini; Tinkanen, Helena

    2015-03-01

    In many clinics, good-quality embryos are selected for embryo transfer and cryopreservation at the cleavage stage, and poor-quality embryos are discarded. The aim of this retrospective study was to examine how many repeated IVF cycles could be avoided by culturing the cleavage stage poor-quality embryos to blastocyst stage and transferring them after vitrification and warming (604 IVF and intracytoplasmic sperm injection [IVF-ICSI] cycles were included). Poor-quality cleavage stage embryos not eligible for transfer or cryopreservation were cultured until day 5 or 6, and those developing to the blastocyst stage were vitrified. The rate of vitrified blastocysts and clinical pregnancy and delivery rate of the warmed blastocysts was evaluated. The effect of the extended culture on the cumulative delivery rate, and the number of avoided new treatment cycles was calculated. The surplus blastocysts resulted in clinical pregnancy, spontaneous abortion and delivery rates of 24.6%, 27.3% and 17.2% respectively. The use of surplus blastocysts raised cumulative delivery rate from 43% to 47% and 53 repeated new cycles were avoided. This study shows that the cumulative delivery rate can be increased, and repeated IVF-ICSI treatments avoided by using blastocysts developing from poor-quality cleavage stage embryos, which otherwise would have been discarded.

  6. Efficient embryo transfer in the common marmoset monkey (Callithrix jacchus) with a reduced transfer volume: a non-surgical approach with cryopreserved late-stage embryos.

    PubMed

    Ishibashi, Hidetoshi; Motohashi, Hideyuki H; Kumon, Mami; Yamamoto, Kazuhiro; Okada, Hironori; Okada, Takashi; Seki, Kazuhiko

    2013-05-01

    Among primates, the common marmoset is suitable for primate embryology research. Its small body size, however, has delayed the technical development of efficient embryo transfer. Furthermore, three factors have been determined to adversely affect the performance of marmoset embryo transfer: nonsurgical approaches, the use of cryopreserved embryos, and the use of late-stage embryos. Here we performed embryo transfer under conditions that included the above three factors and using either a small (1 μl or less) or a large volume (2-3 μl) of medium. The pregnancy and birth rates were 50% (5/10) and 27% (3/11), respectively, when using the large volume, and 80% (8/10) and 75% (9/12), respectively, when using the small volume. The latter scores exceed those of previous reports using comparable conditions. Thus, it appears that these three previously considered factors could be overcome, and we propose that reducing the transfer volume to 1 μl or less is essential for successful marmoset embryo transfer.

  7. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress

    PubMed Central

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-01-01

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy. PMID:26427872

  8. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro

    PubMed Central

    Salilew-Wondim, Dessie; Fournier, Eric; Hoelker, Michael; Saeed-Zidane, Mohammed; Tholen, Ernst; Looft, Christian; Neuhoff, Christiane; Besenfelder, Urban; Havlicek, Vita; Rings, Franca; Gagné, Dominic; Sirard, Marc-André; Robert, Claude; A. Shojaei Saadi, Habib; Gad, Ahmed; Schellander, Karl; Tesfaye, Dawit

    2015-01-01

    Early embryonic loss and altered gene expression in in vitro produced blastocysts are believed to be partly caused by aberrant DNA methylation. However, specific embryonic stage which is sensitive to in vitro culture conditions to alter the DNA methylation profile of the resulting blastocysts remained unclear. Therefore, the aim of this study was to investigate the stage specific effect of in vitro culture environment on the DNA methylation response of the resulting blastocysts. For this, embryos cultured in vitro until zygote (ZY), 4-cell (4C) or 16-cell (16C) were transferred to recipients and the blastocysts were recovery at day 7 of the estrous cycle. Another embryo group was cultured in vitro until blastocyst stage (IVP). Genome-wide DNA methylation profiles of ZY, 4C, 16C and IVP blastocyst groups were then determined with reference to blastocysts developed completely under in vivo condition (VO) using EmbryoGENE DNA Methylation Array. To assess the contribution of methylation changes on gene expression patterns, the DNA methylation data was superimposed to the transcriptome profile data. The degree of DNA methylation dysregulation in the promoter and/or gene body regions of the resulting blastocysts was correlated with successive stages of development the embryos advanced under in vitro culture before transfer to the in vivo condition. Genomic enrichment analysis revealed that in 4C and 16C blastocyst groups, hypermethylated loci were outpacing the hypomethylated ones in intronic, exonic, promoter and proximal promoter regions, whereas the reverse was observed in ZY blastocyst group. However, in the IVP group, as much hypermethylated as hypomethylated probes were detected in gene body and promoter regions. In addition, gene ontology analysis indicated that differentially methylated regions were found to affected several biological functions including ATP binding in the ZY group, programmed cell death in the 4C, glycolysis in 16C and genetic imprinting and

  9. Evaluation of Stage-Dependent Genotoxic Effect of Roundup(®) (Glyphosate) on Caiman latirostris Embryos.

    PubMed

    Burella, Pamela Mariana; Simoniello, Maria Fernanda; Poletta, Gisela Laura

    2017-01-01

    The agricultural expansion over the past decades, along with the associated increase in the use of pesticides, represents a high risk for many wild species. Caiman latirostris is a South American caiman with many features that make it highly vulnerable to pesticide exposure. Considering previous finding on the genotoxicity of the glyphosate-based formulation Roundup(®) in this species, the aim of this study was to evaluate the possible stage-dependent effect of this compound on C. latirostris embryos through the Comet assay (CA), micronuclei (MN), and nuclear abnormalities (NA) tests. Caiman eggs were exposed to three effective concentrations of Roundup® (750, 1250, 1750 µg/egg) in three different stages of the incubation period (total duration 70 ± 3 days at 31 ± 2 °C) of approximately 23 days each. A statistically significant difference in DNA damage determined by the CA was found between groups exposed to different concentrations of RU (p < 0.05) and the negative control, but no difference was observed among the three stages of exposure within any treatment (p > 0.05). There was no differences in the MN or NA frequencies between the different groups and the negative control (p > 0.05), nor among the different stages within each treatment. The results obtained in this study indicate that RU produce DNA damage on C. latirostris embryos independently of the developmental stage where the exposure occurs, implying an important risk for the species during all its period of development, when pesticide application is at maximum rate.

  10. 50 SURVIVAL OF SEXED IVF-DERIVED BOVINE EMBRYOS FROZEN AT DIFFERENT PREIMPLANTATION STAGES OF DEVELOPMENT.

    PubMed

    Ferré, L; Fresno, C; Kjelland, M; Ross, P

    2016-01-01

    The ability to freeze in vitro-produced bovine embryos with a high post-thaw viability is still problematic and hampers logistics of on-farm embryo transfer. The objectives of this experiment were to compare different stages of development, freezing methods, and addition of cytoskeletal stabilisers (cytochalasin-B) before freezing. Ovaries were collected from an abattoir and oocytes aspirated from 2- to 6-mm follicles. Cumulus-oocyte complexes containing compact and complete cumulus cell layers were selected and matured in groups of 50 in 400µL of M199 medium supplemented with ALA-glutamine (0.1mM), Na pyruvate (0.2mM), gentamicin (5µgmL(-1)), EGF (50ngmL(-1)), ovine FSH (50ngmL(-1)), bLH (3µgmL(-1)), cysteamine (0.1mM), and 10% fetal bovine serum (FBS) for 22 to 24h. Fertilization (Day 0) was done using female sex-sorted semen selected with a discontinuous density gradient and diluted to a final concentration of 1×10(6) sperm/mL. Synthetic oviductal fluid (SOF)-FERT medium was supplemented with fructose (90µgmL(-1)), penicillamine (3µgmL(-1)), hypotaurine (11µgmL(-1)), and heparin (20µgmL(-1)). After 18h, presumptive zygotes were denuded and cultured in groups of 15 to 20 in 50-µL drops of SOF-BSA for 7 days. On Day 3.5 post-fertilization, 3% FBS was added. Low oxygen tension (5% O2) was used for culture. Morulae were selected at Day 5.5-6, blastocysts at Day 6-6.5, and expanded blastocysts at Day 6.5-7. Embryo harvesting for each stage was performed from a dedicated drop/dish and discarded in order to avoid further embryo stage collections. Grade 1 morulae, blastocysts, and expanded blastocysts were selected for freezing and placed randomly into 2 groups: slow-freezing and vitrification. Before freezing, half of the embryos from each stage were exposed to cytochalasin-B for 45min. The slow freezing protocol consisted of 1.5M ethylene glycol (EG)+20% FBS+0.4% BSA, and the cooling rate was 0.5°C/min. Slow-frozen embryo thawing was performed by exposing

  11. Experimental model for determining developmental stage of chicken embryo using infrared images and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Jung, Seung Kwon "Paul"; Hsieh, Sheng-Jen "Tony"; Chen, Che-Hao

    2013-05-01

    Development of a chicken embryo is conventionally assumed to follow a set growth pattern over the course of 21 days. However, despite identical incubation settings, many factors may contribute to an egg developing at a different rate from those around it. Being able to determine an embryo's actual development instead of relying on chronological assumptions of normal growth should prove to be a useful tool in the poultry industry for responding early to abnormal development and improving hatch rates. Previous studies have used infrared imaging to enhance candling observation, but relatively little has been done to implement infrared imaging in problem-solving. The purpose of this research is to construct a quantitative model for predicting the development stage and early viability of a chicken embryo during incubation. It may be noted that a similar project was conducted previously using different input parameters. This study seeks to improve upon the results from the earlier project. In this project, infrared images of eggs were processed to calculate air cell volumes and cooling rates, and daily measurements of egg weight and ambient temperature were compiled. Artificial neural networks (ANNs) were "trained" using multiple input parameters to recognize patterns in the data. Various training functions and topologies were evaluated in order to optimize prediction rates and consistency. The prediction rates obtained for the ANNs were around 81% for development stage and around 92% for viability. It is recommended for future research to expand the potential combinations of input parameters used in order to increase this model's versatility in the field.

  12. Correlative light and electron microscopy of intermediate stages of meiotic spindle assembly in the early Caenorhabditis elegans embryo.

    PubMed

    Woog, Ina; White, Silke; Büchner, Mandy; Srayko, Martin; Müller-Reichert, Thomas

    2012-01-01

    This chapter is an update of the previously published book chapter "Correlative Light and Electron Microscopy of Early C. elegans Embryos in Mitosis" (Müller-Reichert, Srayko, Hyman, O'Toole, & McDonald, 2007). Here, we have adapted and improved the protocol for the isolated meiotic embryos, which was necessary to meet the specific challenges a researcher faces while investigating the development of very early Caenorhabditis elegans embryos ex-utero. Due to the incompleteness of the eggshell assembly, the meiotic embryo is very fragile and much more susceptible to changes in the environmental conditions than the mitotic ones. To avoid phototoxicity associated with wide-field UV illumination, we stage the meiotic embryos primarily using transmitted visible light. Throughout the staging and high-pressure freezing, we incubate samples in an isotonic embryo buffer. The ex-utero approach allows precise tracking of the developmental events in isolated meiotic embryos, thus facilitating the comparison of structural features between wild-type and mutant or RNAi-treated samples.

  13. Improvement of the developmental ability of nuclear transfer embryos by using blastomeres from in vitro fertilized embryos selected according to the early developmental stage and cell division status as donor cells in cattle.

    PubMed

    Goto, Yuji; Matoba, Satoko; Imai, Kei; Geshi, Masaya

    2011-04-01

    This study was conducted to improve the developmental ability of nuclear transfer (NT) embryos by using blastomeres from in vitro fertilized (IVF) embryos with high quality as donor cells. The IVF embryos selected at the 2-cell stage at 24-h postinsemination (hpi) and again at the ≥8-cell stage at 48 hpi (Selected-IVF-embryos) showed the highest blastocyst formation rate among embryos. When blastomeres from the Selected-IVF-embryos (Selected-NT group) or Nonselected-IVF-embryos (Non-selected-NT group) were used as donor cells for NT, the blastocyst formation rate in the Selected-NT group (25.6%) was significantly higher than that in the Non-selected-NT group (13.5%). When blastomeres from the Selected-IVF-embryos at 108 (contained many cells before cell division) and 126 hpi (contained many cells immediately after cell division) were used as donor cells for NT (108- and 126-NT groups, respectively), the 126-NT group showed a significantly higher blastocyst formation rate (32.1%) than the 108-NT group (16.8%). Embryo transfer of blastocysts in the 126-NT group showed that 11 of 23 recipients became pregnant; nine calves were obtained. For the NT embryos reconstructed using in vivo derived embryos, 9 of 20 recipients became pregnant; seven calves were obtained. These results indicate that the blastocyst formation rate of NT embryos can be improved by using blastomeres from IVF embryos selected at the early developmental stage, especially immediately after cell division, and that the resultant NT embryos have a high developmental ability to progress to term that is comparable to NT embryos reconstructed using in vivo derived embryos.

  14. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress.

    PubMed

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-11-13

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy.

  15. The amygdaloid complex and the medial and lateral ventricular eminences in staged human embryos.

    PubMed

    Müller, Fabiola; O'Rahilly, Ronan

    2006-05-01

    The amygdaloid complex was investigated in 36 serially sectioned staged human embryos, including 20 impregnated with silver. This is the first such account based on graphic reconstructions, 28 of which were prepared. Significant findings in the human include the following. (1) The medial (first) and (then) lateral ventricular eminences arise independently at stages 14 and 15, and unite only at stage 18 to form the floor of the lateral ventricle. (2) The future amygdaloid region is discernible at stage 14 and the amygdaloid primordium at stage 15. (3) The anterior amygdaloid area and the corticomedial and basolateral complexes appear at stage 16. (4) These three major divisions arise initially from the medial ventricular eminence, which is diencephalic. (5) Individual nuclei begin to be detectable at stages 17-21, the central nucleus at stage 23 and the lateral nucleus shortly thereafter. (6) The ontogenetic findings in the human embryonic period accord best with the classification used by Humphrey. (7) The lateral eminence, which is telencephalic, contributes to the cortical nucleus at stage 18. (8) The primordial plexiform layer develops independently of the cortical nucleus. (9) Spatial changes of the nuclei within the amygdaloid complex and of the complex as a whole begin in the embryonic period and continue during the fetal period, during the early part of which the definitive amygdaloid topography in relation to the corpus striatum is attained. (10) The developing amygdaloid nuclei are closely related to the medial forebrain bundle, which has already appeared in stage 15. (11) Fibre connections develop successively between the amygdaloid nuclei and the septal, hippocampal and diencephalic formations, constituting the beginning of the limbic system before the end of the embryonic period. Although the nucleus accumbens also appears relatively early (stage 19), connections between it and the amygdaloid complex are not evident during the embryonic period. (12

  16. Notch and Delta mRNAs in early-stage and mid-stage Drosophila embryos exhibit complementary patterns of protein producing potentials

    PubMed Central

    Shepherd, Andrew; Wesley, Uma; Wesley, Cedric

    2010-01-01

    Notch and Delta proteins generate Notch signaling that specifies cell fates during animal development. There is an intriguing phenomenon in Drosophila embryogenesis that has not received much attention and whose significance to embryogenesis is unknown. Notch and Delta mRNAs expressed in early-stage embryos are shorter than their counterparts in mid-stage embryos. We show here that the difference in sizes is due to mRNA 3′ processing at alternate polyadenylation sites. While the early-stage Notch mRNA has a lower protein-producing potential than the mid-stage Notch mRNA, the early-stage Delta mRNA has a higher protein-producing potential than the mid-stage Delta mRNA. Our data can explain the complementary patterns of Notch and Delta protein levels in early-stage and mid-stage embryos. Our data also raise the possibility that the manner and regulation of Notch signaling change in the course of embryogenesis and that this change is effected by 3′ UTR and mRNA 3′ processing factors. PMID:20201103

  17. Developmental Neurotoxicity of Methamidophos in the Embryo-Larval Stages of Zebrafish

    PubMed Central

    He, Xiaowei; Gao, Jiawei; Dong, Tianyu; Chen, Minjian; Zhou, Kun; Chang, Chunxin; Luo, Jia; Wang, Chao; Wang, Shoulin; Chen, Daozhen; Zhou, Zuomin; Tian, Ying; Xia, Yankai; Wang, Xinru

    2016-01-01

    Methamidophos is a representative organophosphate insecticide. The knowledge of its developmental neurotoxicity is limited, especially for zebrafish in the early stages of their life. Four hour post-fertilization (hpf) zebrafish embryos were exposed to several environmentally relevant concentrations of methamidophos (0, 25, and 500 μg/L) for up to 72 hpf. Locomotor behavior was then studied in the zebrafish larvae at this timepoint. Acridine orange (AO) staining was carried out in the zebrafish larvae, and the mRNA levels of genes associated with neural development (mbp and syn2a) were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). The number of escape responders for mechanical stimulation was significantly decreased in exposed groups. AO staining showed noticeable signs of apoptosis mainly in the brain. In addition, the mRNA levels of mbp and syn2a were both significantly down-regulated in exposed groups. Our study provides the first evidence that methamidophos exposure can cause developmental neurotoxicity in the early stages of zebrafish life, which may be caused by the effect of methamidophos on neurodevelopmental genes and the activation of cell apoptosis in the brain. PMID:28036051

  18. Analysis of cerebro-spinal fluid protein composition in early developmental stages in chick embryos.

    PubMed

    Gato, A; Martín, P; Alonso, M I; Martín, C; Pulgar, M A; Moro, J A

    2004-04-01

    Foetal cerebro-spinal fluid (CSF) has a very high protein concentration when compared to adult CSF, and in many species five major protein fractions have been described. However, the protein concentration and composition in CSF during early developmental stages remains largely unknown. Our results show that in the earliest stages (18 to 30 H.H.) of chick development there is a progressive increase in CSF protein concentration until foetal values are attained. In addition, by performing electrophoretic separation and high-sensitivity silver staining, we were able to identify a total of 21 different protein fractions in the chick embryo CSF. In accordance with the developmental pattern of their concentration, these can be classified as follows: A: high-concentration fractions which corresponded with the ones described in foetal CSF by other authors; B: low-concentration fractions which remained stable throughout the period studied; C: low-concentration fractions which show changes during this period. The evolution and molecular weight of the latter group suggest the possibility of an important biological role. Our data demonstrate that all the CSF protein fractions are present in embryonic serum; this could mean that the specific transport mechanisms in neuroepithelial cells described in the foetal period evolve in very early stages of development. In conclusion, this paper offers an accurate study of the protein composition of chick embryonic CSF, which will help the understanding of the influences on neuroepithelial stem cells during development and, as a result, the appropriate conditions for the in vitro study of embryonic/foetal nervous tissue cells.

  19. Functional Genomics of 5- to 8-Cell Stage Human Embryos by Blastomere Single-Cell cDNA Analysis

    PubMed Central

    Galán, Amparo; Montaner, David; Póo, M. Eugenia; Valbuena, Diana; Ruiz, Verónica; Aguilar, Cristóbal; Dopazo, Joaquín; Simón, Carlos

    2010-01-01

    Blastomere fate and embryonic genome activation (EGA) during human embryonic development are unsolved areas of high scientific and clinical interest. Forty-nine blastomeres from 5- to 8-cell human embryos have been investigated following an efficient single-cell cDNA amplification protocol to provide a template for high-density microarray analysis. The previously described markers, characteristic of Inner Cell Mass (ICM) (n = 120), stemness (n = 190) and Trophectoderm (TE) (n = 45), were analyzed, and a housekeeping pattern of 46 genes was established. All the human blastomeres from the 5- to 8-cell stage embryo displayed a common gene expression pattern corresponding to ICM markers (e.g., DDX3, FOXD3, LEFTY1, MYC, NANOG, POU5F1), stemness (e.g., POU5F1, DNMT3B, GABRB3, SOX2, ZFP42, TERT), and TE markers (e.g., GATA6, EOMES, CDX2, LHCGR). The EGA profile was also investigated between the 5-6- and 8-cell stage embryos, and compared to the blastocyst stage. Known genes (n = 92) such as depleted maternal transcripts (e.g., CCNA1, CCNB1, DPPA2) and embryo-specific activation (e.g., POU5F1, CDH1, DPPA4), as well as novel genes, were confirmed. In summary, the global single-cell cDNA amplification microarray analysis of the 5- to 8-cell stage human embryos reveals that blastomere fate is not committed to ICM or TE. Finally, new EGA features in human embryogenesis are presented. PMID:21049019

  20. Proteomic analysis of early-stage embryos: implications for egg quality in hapuku (Polyprion oxygeneios).

    PubMed

    Kohn, Yair Y; Symonds, Jane E; Kleffmann, Torsten; Nakagawa, Shinichi; Lagisz, Malgorzata; Lokman, P Mark

    2015-12-01

    In order to develop biomarkers that may help predict the egg quality of captive hapuku (Polyprion oxygeneios) and provide potential avenues for its manipulation, the present study (1) sequenced the proteome of early-stage embryos using isobaric tag for relative and absolute quantification analysis, and (2) aimed to establish the predictive value of the abundance of identified proteins with regard to egg quality through regression analysis. Egg quality was determined for eight different egg batches by blastomere symmetry scores. In total, 121 proteins were identified and assigned to one of nine major groups according to their function/pathway. A mixed-effects model analysis revealed a decrease in relative protein abundance that correlated with (decreasing) egg quality in one major group (heat-shock proteins). No differences were found in the other protein groups. Linear regression analysis, performed for each identified protein separately, revealed seven proteins that showed a significant decrease in relative abundance with reduced blastomere symmetry: two correlates that have been named in other studies (vitellogenin, heat-shock protein-70) and a further five new candidate proteins (78 kDa glucose-regulated protein, elongation factor-2, GTP-binding nuclear protein Ran, iduronate 2-sulfatase and 6-phosphogluconate dehydrogenase). Notwithstanding issues associated with multiple statistical testing, we conclude that these proteins, and especially iduronate 2-sulfatase and the generic heat-shock protein group, could serve as biomarkers of egg quality in hapuku.

  1. Effects of cadmium-enriched sediment on fish and amphibian embryo-larval stages

    SciTech Connect

    Francis, P.C.; Birge, W.J.; Black, J.A.

    1984-08-01

    Aquatic toxicity tests were conducted to evaluate the effects of cadmium-enriched sediment on embryo-larval stages of the goldfish (Carassius auratus), leopard frog (Rana pipiens), and largemouth bass (Micropterus salmoides). Natural stream sediment was collected and enriched with cadmium to nominal concentrations of 1.0, 10.0, 100, and 1000 mg/kg. Enriched sediments were placed in Pyrex dishes and covered with 350 ml of reconstituted water. Fertilized eggs were placed in the dishes and maintained through 4 days posthatching, giving a total exposure time of 6 to 7 days. For all tests the cadmium concentrations ranged from 1.1 to 76.5 micrograms/liter in water above sediments containing 1 to 1000 mg Cd/kg, respectively. Although low frequencies of mortality were observed in all tests, goldfish, leopard frog, and bass exposed to sediments enriched to 1000 mg Cd/kg accumulated 4.61, 12.55, and 60.0 micrograms Cd/g, respectively. No significant correlations were found between mortality of the goldfish and leopard frog and the cadmium concentrations in either water or sediment. However, all three species showed strong correlations between cadmium concentrations in water and tissue, sediment and tissue, and water and sediment. Tissue cadmium concentrations were related to the length of time test organisms were in direct contact with cadmium-enriched sediment.

  2. Proteomic identification of abnormally expressed proteins in early-stage placenta derived from cloned cat embryos.

    PubMed

    Bang, Jae-Il; Lee, Hyo-Sang; Deb, Gautam Kumar; Ha, A-Na; Kwon, Young-Sang; Cho, Seong-Keun; Kim, Byeong-Woo; Cho, Kyu-Woan; Kong, Il-Keun

    2013-01-15

    It is unknown whether gene expression in cloned placenta during pre- and postimplantation is associated with early pregnancy failure in the cat. In this study, protein expression patterns were examined in early-stage (21-day-old) domestic cat placentas of fetuses derived from AI (CP; N = 4) and cloned embryo transfer (CEP; N = 2). Differentially expressed proteins were analyzed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrometry (MS). A total of 21 proteins were aberrantly expressed (P < 0.05) by >1.5-fold in CEP compared with CP. Compared with CP, 12 proteins were upregulated in CEP (peptidyl-prolyl cis-trans isomerase A, annexin A2, protein DJ-1, adenylate kinase isoenzyme 1, protein disulfide-isomerase A3, actin cytoplasmic 1, serum albumin, protein disulfide-isomerase A6, and triosephosphate isomerase), and nine proteins were downregulated (triosephosphate isomerase; heterogeneous nuclear ribonucleoprotein H; tropomyosin alpha-4; triosephosphate isomerase 1; 60 kDa heat shock protein, mitochondrial; serum albumin; calumenin; keratin type 1; and prohibitin). The identities of the differentially expressed proteins were validated by peptide mass fingerprinting using matrix-assisted laser desorption/ionization-TOF/TOF MS/MS. The abnormally expressed proteins identified in this study might be associated with impaired development and dysfunction of CEP during early pregnancy. Abnormal protein expression might also induce fetal loss and contribute to failure to maintain pregnancy to term.

  3. Porcine Cloned Embryos Reconstructed with the Cell Nuclei of Tetraploid M-phase Fibroblast Cells Can Restore Normal Diploidy at the Blastocyst Stage.

    PubMed

    Zhao, Q; Qiu, Y G; Tian, J T; Wang, C S; An, T Z

    2016-11-17

    The cell cycle of donor cells as a major factor that affects cloning efficiency remains debatable. G2/M phase cells as a donor can successfully produce cloned animals, but a minimal amount is known regarding nuclear remodeling events. In this study, porcine fetal fibroblasts (PFFs) were carefully synchronized at G1 or M phase as donor cells. Most of the cloned embryos reconstructed from PFFs at G1 (G1-embryos) or M (M-embryos) phase formed a pronucleus-like nucleus (PN) within 6-h post fusion (hpf), but the M-embryos formed PN earlier than the G1-embryos did. Moreover, 77.4% of the M-embryos formed two PNs, whereas the G1-embryos formed a single PN. The rate of extrusion of polar body-like structures by the M-embryos was significantly lower than that extruded by the G1-embryos (26.3% vs. 37.1%, P < 0.05), and DNA synthesis in most embryos in both groups was initiated at 9-12 hpf. Most of the M-embryos were octoploid before the first cleavage. Furthermore, 81.25% of the blastomeres of blastocysts developed from the M-embryos showed abnormal ploidy compared with those developed from the G1-embryos (22.55%). However, some of the blastomeres remained diploid in all the M-embryos tested. A portion of the blastomeres restored normal diploidy in some of the M-embryos at the blastocyst stage. This finding provides an explanation for M-embryos developing to term.

  4. Perinatal Risks Associated with Early Vanishing Twin Syndrome following Transfer of Cleavage- or Blastocyst-Stage Embryos

    PubMed Central

    Pryor, Katherine P.; Petrini, Allison C.; Lekovich, Jovana P.; Stahl, Jaclyn; Elias, Rony T.; Spandorfer, Steven D.

    2016-01-01

    Objective. To investigate whether the perinatal risks associated with early vanishing twin (VT) syndrome differ between cleavage- or blastocyst-stage embryo transfers (ET) in fresh in vitro fertilization (IVF) cycles. Methods. Retrospective, single-center, cohort study of IVF cycles with fresh cleavage- or blastocyst-stage ETs resulting in a live singleton birth. The incidence of preterm birth (PTB), low birth weight (LBW), and very low birth weight (VLBW) was compared between cleavage- and blastocyst-stage ET cycles complicated by early VT. Results. 7241 patients had live singleton births. Early VT was observed in 709/6134 (11.6%) and 70/1107 (6.32%) patients undergoing cleavage-stage and blastocyst-stage ETs, respectively. Patients in the blastocyst-stage group were younger compared to the cleavage-stage group. The cleavage-stage group had a similar birth weight compared to the blastocyst-stage group. There was no difference in the incidence of PTB (9.87% versus 8.57%), LBW (11.1% versus 11.4%), or VLBW (1.13 versus 1.43%) when comparing the cleavage-stage early VT and blastocyst-stage early VT groups, even after adjustment with logistic regression. Conclusions. Our study highlights that the adverse perinatal risks of PTB, LBW, and VLBW associated with early VT syndrome are similar in patients undergoing cleavage-stage or blastocyst-stage ETs during fresh IVF cycles. PMID:28101380

  5. Effects of ionizing radiation on embryos of the tardigrade Milnesium cf. tardigradum at different stages of development.

    PubMed

    Beltrán-Pardo, Eliana; Jönsson, K Ingemar; Wojcik, Andrzej; Haghdoost, Siamak; Harms-Ringdahl, Mats; Bermúdez-Cruz, Rosa M; Bernal Villegas, Jaime E

    2013-01-01

    Tardigrades represent one of the most desiccation and radiation tolerant animals on Earth, and several studies have documented their tolerance in the adult stage. Studies on tolerance during embryological stages are rare, but differential effects of desiccation and freezing on different developmental stages have been reported, as well as dose-dependent effect of gamma irradiation on tardigrade embryos. Here, we report a study evaluating the tolerance of eggs from the eutardigrade Milnesium cf. tardigradum to three doses of gamma radiation (50, 200 and 500 Gy) at the early, middle, and late stage of development. We found that embryos of the middle and late developmental stages were tolerant to all doses, while eggs in the early developmental stage were tolerant only to a dose of 50 Gy, and showed a declining survival with higher dose. We also observed a delay in development of irradiated eggs, suggesting that periods of DNA repair might have taken place after irradiation induced damage. The delay was independent of dose for eggs irradiated in the middle and late stage, possibly indicating a fixed developmental schedule for repair after induced damage. These results show that the tolerance to radiation in tardigrade eggs changes in the course of their development. The mechanisms behind this pattern are unknown, but may relate to changes in mitotic activities over the embryogenesis and/or to activation of response mechanisms to damaged DNA in the course of development.

  6. The early-stage diagnosis of albinic embryos by applying optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Shih-Yuan; Wang, Yu-Yen; Cai, Jyun-Jhang; Chang, Chung-Hao

    2013-09-01

    Albinism is a kind of congenital disease of abnormal metabolism. Poecilia reticulata (guppy fish) is chosen as the model to study the development of albinic embryos as it is albinic, ovoviviparous and with short life period. This study proposed an imaging method for penetrative embryo investigation using optical coherence tomography. By imaging through guppy mother’s reproduction purse, we found the embryo’s eyes were the early-developed albinism features. As human’s ocular albinism typically appear at about four weeks old, it is the time to determine if an embryo will grow into an albino.

  7. Embryonic hematopoietic stem cells and interstitial Cajal cells in the hindgut of late stage human embryos: evidence and hypotheses.

    PubMed

    Ilie, C A; Rusu, M C; Didilescu, A C; Motoc, A G M; Mogoantă, L

    2015-07-01

    There have been few studies on human embryos describing a specific pattern of hindgut colonization by hematopoietic stem cells (HSCs) and interstitial Cajal cells (ICCs). We aimed to study CD34, CD45 and CD117/c-kit expression in late stage human embryos, to attain observational data that could be related to studies on the aorta-gonad-mesonephros (AGM)-derived HSCs, and data on hindgut ICCs. Antibodies were also applied to identify alpha-smooth muscle actin and neurofilaments. Six human embryos of 48-56 days were used. In the 48 day embryo, the hindgut was sporadically populated by c-kit+ ICCs, but, in all other embryos, a layer of myenteric ICCs had been established. Intraneural c-kit+ cells were found in pelvic nerves and vagal trunks, suggesting that the theory of Ramon y Cajal assuming that ICCs may be primitive neurons may not be so invalid. Also in the 48 day embryo, c-kit+/CD45+ perivascular cells were found along the pelvic neurovascular axes, suggesting that not only liver, but also other organs could be seeded with HSCs from the AGM region. CD45+ cells with dendritic morphologies were found in all hindgut layers, including the epithelium. This last evidence is suggestive of an AGM contribution to the tissue resident macrophages and could be related to processes of sprouting angiogenesis which, in turn, have been found to be guided by filopodia of endothelial tip cells. Further studies on human embryonic and fetal material should be performed to attempt to clarify whether the hindgut colonization with HSCs is a transitory or definitive process.

  8. Developmental kinetics of in vitro-produced bovine embryos: An aid for making decisions.

    PubMed

    Carrocera, S; Caamaño, J N; Trigal, B; Martín, D; Díez, C

    2016-03-15

    Embryo developmental kinetics and embryo survival after cryopreservation have been correlated with embryo quality and viability. The main objectives of this work were to analyze developmental ability and quality of in vitro-produced bovine embryos in relation to their kinetics and to establish a criterion of quality to predict further viability. Embryos were classified and grouped by their specific stage of development (2, 3-4, or ≥ 5 cells) at 44 hours post insemination (hpi) and cultured separately up to Day 8. On Days 7 and 8, good quality expanded blastocysts were vitrified or frozen. Cryopreserved surviving hatched embryos were stained for cell counts. Embryos at a more advanced stage (3-4 cells, and ≥5 cells) developed to morulae (P < 0.001) and blastocysts (P < 0.01) at higher rates than those embryos that had cleaved once by 44 hpi. Vitrification improved the hatching rates of blastocysts at 48 hours (P < 0.001) when compared with slow-rate freezing within each group of embryos (3-4 cells and ≥5 cells). After vitrification/warming, blastocysts coming from 3- to 4-cell embryos had higher hatching rates at 48 hours than those that came from ≥5-cell embryos. With regard to differential cell counts, no effect of the initial developmental stage was observed after warming/thawing. However, trophectoderm and total cells were higher in vitrified/warmed than in the frozen/thawed embryos (P < 0.001). These data show that selecting IVF embryos at 44 hpi, after the evaluation of their in vitro embryo development, could be used as noninvasive markers of embryo developmental competence and may help to select IVF embryos that would be more suitable for cryopreservation.

  9. Differential Expression of Metallothionein Isoforms in Terrestrial Snail Embryos Reflects Early Life Stage Adaptation to Metal Stress

    PubMed Central

    Baurand, Pierre-Emmanuel; Pedrini-Martha, Veronika; de Vaufleury, Annette; Niederwanger, Michael; Capelli, Nicolas; Scheifler, Renaud; Dallinger, Reinhard

    2015-01-01

    The aim of this study was to analyze the expression of three metallothionein (MT) isoform genes (CdMT, CuMT and Cd/CuMT), already known from adults, in the Early Life Stage (ELS) of Cantareus aspersus. This was accomplished by detection of the MT isoform-specific transcription adopting Polymerase Chain Reaction (PCR) amplification and quantitative Real Time (qRT)-PCR of the three MT genes. Freshly laid eggs were kept for 24 hours under control conditions or exposed to three cadmium (Cd) solutions of increasing concentration (5, 10, and 15 mg Cd/L). The transcription of the three MT isoform genes was detected via PCR in 1, 6 and 12-day-old control or Cd-exposed embryos. Moreover, the transcription of this isoform genes during development was followed by qRT-PCR in 6 and 12-day-old embryos. Our results showed that the CdMT and Cd/CuMT genes, but not the CuMT gene, are expressed in embryos at the first day of development. The transcription of the 3 MT genes in control embryos increased with development time, suggesting that the capacities of metal regulation and detoxification may have gradually increased throughout embryogenesis. However in control embryos, the most highly expressed MT gene was that of the Cd/CuMT isoform, whose transcription levels greatly exceeded those of the other two MT genes. This contrasts with the minor significance of this gene in adult snails and suggests that in embryos, this isoform may play a comparatively more important role in metal physiology compared to adult individuals. This function in adult snails appears not to be related to Cd detoxification. Instead, snail embryos responded to Cd exposure by over-expression of the CdMT gene in a concentration-dependent manner, whereas the expression of the Cd/CuMT gene remained unaffected. Moreover, our study demonstrates the ability of snail embryos to respond very early to Cd exposure by up-regulation of the CdMT gene. PMID:25706953

  10. Development of the arterial pattern in the upper limb of staged human embryos: normal development and anatomic variations

    PubMed Central

    RODRÍGUEZ-NIEDENFÜHR, M.; BURTON, G. J.; DEU, J.; SAÑUDO, J. R.

    2001-01-01

    A total of 112 human embryos (224 upper limbs) between stages 12 and 23 of development were examined. It was observed that formation of the arterial system in the upper limb takes place as a dual process. An initial capillary plexus appears from the dorsal aorta during stage 12 and develops at the same rate as the limb. At stage 13, the capillary plexus begins a maturation process involving the enlargement and differentiation of selected parts. This remodelling process starts in the aorta and continues in a proximal to distal sequence. By stage 15 the differentiation has reached the subclavian and axillary arteries, by stage 17 it has reached the brachial artery as far as the elbow, by stage 18 it has reached the forearm arteries except for the distal part of the radial, and finally by stage 21 the whole arterial pattern is present in its definitive morphology. This differentiation process parallels the development of the skeletal system chronologically. A number of arterial variations were observed, and classified as follows: superficial brachial (7.7%), accessory brachial (0.6%), brachioradial (14%), superficial brachioulnar (4.7%), superficial brachioulnoradial (0.7%), palmar pattern of the median (18.7%) and superficial brachiomedian (0.7%) arteries. They were observed in embryos belonging to stages 17–23 and were not related to a specific stage of development. Statistical comparison with the rates of variations reported in adults did not show significant differences. It is suggested that the variations arise through the persistence, enlargement and differentiation of parts of the initial network which would normally remain as capillaries or even regress. PMID:11693301

  11. Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues.

    PubMed

    Pullman, Gerald S; Buchanan, Mike

    2008-07-01

    Stage-specific analyses of starch and 18 sugars, including pentoses, hexoses, disaccharides, trisaccharides, oligosaccharides and sugar alcohols, were made throughout seed development for zygotic embryo and female gametophyte (FG) tissues of loblolly pine (Pinus taeda L.). Tissue was most often analyzed in triplicate from two open-pollinated families grown in different locations and sampled in different years. Carbohydrates were analyzed by enzymatic assay, high performance liquid chromatography or gas chromatography/mass spectrometry. For all carbohydrates quantified, peak concentrations were higher in embryo tissue than in FG tissue. Significant changes in starch and sugar concentrations occurred over time, with both seed collections showing similar trends in temporal changes. Although concentrations were not always similar, embryo and FG tissues generally showed similar patterns of change in starch and sugar concentrations over time. Total starch concentration was highest during early seed development and decreased as development progressed. The major sugars contributing to osmotic potential during early seed development were D-pinitol, sucrose, fructose and glucose. During mid-seed development, D-pinitol, sucrose, fructose, glucose, melibiose and raffinose provided major contributions to the osmotic environment. During late seed development, sucrose, raffinose, melibiose, stachyose and fructose were the major contributors to osmotic potential. These data suggest stage-specific media composition for each step in the somatic embryogenesis protocol.

  12. Effects of downregulating GLIS1 transcript on preimplantation development and gene expression of bovine embryos.

    PubMed

    Takahashi, Kazuki; Sakurai, Nobuyuki; Emura, Natsuko; Hashizume, Tsutomu; Sawai, Ken

    2015-01-01

    Krüppel-like protein Gli-similar 1 (GLIS1) is known as a direct reprogramming factor for the generation of induced pluripotent stem cells. The objective of this study was to investigate the role of GLIS1 in the preimplantation development of bovine embryos. GLIS1 transcripts in in vitro-matured oocytes and 1-cell to 4-cell stage embryos were detected, but they were either absent or at trace levels at the 8-cell to blastocyst stages. We attempted GLIS1 downregulation of bovine early embryos by RNA interference and evaluated developmental competency and gene transcripts, which are involved in zygotic gene activation (ZGA) in GLIS1-downregulated embryos. Injection of specific siRNA resulted in a distinct decrease in GLIS1 transcript in bovine embryos at the 4-cell stage. Although the bovine embryos injected with GLIS1-siRNA could develop to the 16-cell stage, these embryos had difficulty in developing beyond the 32-cell stage. Gene transcripts of PDHA1 and HSPA8, which are transcribed after ZGA, showed lower level in GLIS1 downregulated embryos. It is possible that GLIS1-downregulated embryos fail to initiate ZGA. Our results indicated that GLIS1 is an important factor for the preimplantation development of bovine embryos.

  13. Effects of downregulating GLIS1 transcript on preimplantation development and gene expression of bovine embryos

    PubMed Central

    TAKAHASHI, Kazuki; SAKURAI, Nobuyuki; EMURA, Natsuko; HASHIZUME, Tsutomu; SAWAI, Ken

    2015-01-01

    Krüppel-like protein Gli-similar 1 (GLIS1) is known as a direct reprogramming factor for the generation of induced pluripotent stem cells. The objective of this study was to investigate the role of GLIS1 in the preimplantation development of bovine embryos. GLIS1 transcripts in in vitro-matured oocytes and 1-cell to 4-cell stage embryos were detected, but they were either absent or at trace levels at the 8-cell to blastocyst stages. We attempted GLIS1 downregulation of bovine early embryos by RNA interference and evaluated developmental competency and gene transcripts, which are involved in zygotic gene activation (ZGA) in GLIS1-downregulated embryos. Injection of specific siRNA resulted in a distinct decrease in GLIS1 transcript in bovine embryos at the 4-cell stage. Although the bovine embryos injected with GLIS1-siRNA could develop to the 16-cell stage, these embryos had difficulty in developing beyond the 32-cell stage. Gene transcripts of PDHA1 and HSPA8, which are transcribed after ZGA, showed lower level in GLIS1 downregulated embryos. It is possible that GLIS1-downregulated embryos fail to initiate ZGA. Our results indicated that GLIS1 is an important factor for the preimplantation development of bovine embryos. PMID:26074126

  14. A Novel Sperm-Delivered Toxin Causes Late-Stage Embryo Lethality and Transmission Ratio Distortion in C. elegans

    PubMed Central

    Seidel, Hannah S.; Ailion, Michael; Li, Jialing; van Oudenaarden, Alexander; Rockman, Matthew V.; Kruglyak, Leonid

    2011-01-01

    The evolutionary fate of an allele ordinarily depends on its contribution to host fitness. Occasionally, however, genetic elements arise that are able to gain a transmission advantage while simultaneously imposing a fitness cost on their hosts. We previously discovered one such element in C. elegans that gains a transmission advantage through a combination of paternal-effect killing and zygotic self-rescue. Here we demonstrate that this element is composed of a sperm-delivered toxin, peel-1, and an embryo-expressed antidote, zeel-1. peel-1 and zeel-1 are located adjacent to one another in the genome and co-occur in an insertion/deletion polymorphism. peel-1 encodes a novel four-pass transmembrane protein that is expressed in sperm and delivered to the embryo via specialized, sperm-specific vesicles. In the absence of zeel-1, sperm-delivered PEEL-1 causes lethal defects in muscle and epidermal tissue at the 2-fold stage of embryogenesis. zeel-1 is expressed transiently in the embryo and encodes a novel six-pass transmembrane domain fused to a domain with sequence similarity to zyg-11, a substrate-recognition subunit of an E3 ubiquitin ligase. zeel-1 appears to have arisen recently, during an expansion of the zyg-11 family, and the transmembrane domain of zeel-1 is required and partially sufficient for antidote activity. Although PEEL-1 and ZEEL-1 normally function in embryos, these proteins can act at other stages as well. When expressed ectopically in adults, PEEL-1 kills a variety of cell types, and ectopic expression of ZEEL-1 rescues these effects. Our results demonstrate that the tight physical linkage between two novel transmembrane proteins has facilitated their co-evolution into an element capable of promoting its own transmission to the detriment of organisms carrying it. PMID:21814493

  15. Optimization and comparison of bottom-up proteomic sample preparation for early-stage Xenopus laevis embryos.

    PubMed

    Peuchen, Elizabeth H; Sun, Liangliang; Dovichi, Norman J

    2016-07-01

    Xenopus laevis is an important model organism in developmental biology. While there is a large literature on changes in the organism's transcriptome during development, the study of its proteome is at an embryonic state. Several papers have been published recently that characterize the proteome of X. laevis eggs and early-stage embryos; however, proteomic sample preparation optimizations have not been reported. Sample preparation is challenging because a large fraction (~90 % by weight) of the egg or early-stage embryo is yolk. We compared three common protein extraction buffer systems, mammalian Cell-PE LB(TM) lysing buffer (NP40), sodium dodecyl sulfate (SDS), and 8 M urea, in terms of protein extraction efficiency and protein identifications. SDS extracts contained the highest concentration of proteins, but this extract was dominated by a high concentration of yolk proteins. In contrast, NP40 extracts contained ~30 % of the protein concentration as SDS extracts, but excelled in discriminating against yolk proteins, which resulted in more protein and peptide identifications. We then compared digestion methods using both SDS and NP40 extraction methods with one-dimensional reverse-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS). NP40 coupled to a filter-aided sample preparation (FASP) procedure produced nearly twice the number of protein and peptide identifications compared to alternatives. When NP40-FASP samples were subjected to two-dimensional RPLC-ESI-MS/MS, a total of 5171 proteins and 38,885 peptides were identified from a single stage of embryos (stage 2), increasing the number of protein identifications by 23 % in comparison to other traditional protein extraction methods.

  16. Stage selection and restricted oviposition period improves cryopreservation of Dipteran embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Embryos of two dipteran species (Musca domestica, and Lucilia sericata) were assessed for an effective sampling time that would result in the highest post cryopreservation hatch proportion. Additionally, the effects of cryopreservation pretreatment viz. permeabilization, on the embryonic age and the...

  17. Acceptance of embryonic stem cells by a wide developmental range of mouse tetraploid embryos.

    PubMed

    Lin, Chih-Jen; Amano, Tomokazu; Zhang, Jifeng; Chen, Yuqing Eugene; Tian, X Cindy

    2010-08-01

    Tetraploid (4N) complementation assay is regard as the most stringent characterization test for the pluripotency of embryonic stem (ES) cells. The technology can generate mice fully derived from the injected ES cell (ES-4N) with 4N placentas. However, it remains a very inefficient procedure owing to a lack of information on the optimal conditions for ES incorporation into the 4N embryos. In the present study, we injected ES cells from embryos of natural fertilization (fES) and somatic cell nuclear transfer (ntES) into 4N embryos at various stages of development to determine the optimal stage of ES cells integration by comparing the efficiency of full-term ES-4N mouse generation. Our results demonstrate that fES/ntES cells can be incorporated into 4N embryos at 2-cell, 4-cell and blastocyst stages and full-term mice can be generated. Interestingly, ntES cells injected into the 4-cell group resulted in the lowest efficiency (5.6%) compared to the 2-cell (13.8%, P > 0.05) and blastocyst (16.7%, P < 0.05) stages. Because 4N embryos start to form compacted morulae at the 4-cell stage, we investigated whether the lower efficiency at this stage was due to early compaction by injecting ntES cells into artificially de-compacted embryos treated with calcium free medium. Although the treatment changed the embryonic morphology, it did not increase the efficiency of ES-4N mice generation. Immunochemistry of the cytoskeleton displayed microtubule and microfilament polarization at the late 4-cell stage in 4N embryos, which suggests that de-compaction treatment cannot reverse the polarization process. Taken together, we show here that a wide developmental range of 4N embryos can be used for 4N complementation and embryo polarization and compaction may restrict incorporation of ES cells into 4N embryos.

  18. Proteomic analysis of the Gallus gallus embryo at stage-29 of development.

    PubMed

    Agudo, David; Agudo Garcillán, David; Gómez-Esquer, Francisco; Díaz-Gil, Gema; Martínez-Arribas, Fernando; Delcán, José; Schneider, José; Palomar, María Angustias; Linares, Rafael

    2005-12-01

    The chicken (Gallus gallus) is one of the primary models for embryological and developmental studies. In order to begin to understand the molecular mechanisms underlying the normal and abnormal development of the chicken, we used 2-DE to construct a whole-embryo proteome map. Proteins were separated by IEF on IPG strips, and by 11% SDS-PAGE) gels. Protein identification was performed by means of PMF with MALDI-TOF-MS. In all, 105 protein spots were identified, 35 of them implicated in embryo development, 10 related with some diseases, and 16, finally, being proteins that have never been identified, purified or characterized in the chicken before. This map will be updated continuously and will serve as a reference database for investigators, studying changes at the protein level under different physiological conditions.

  19. Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos.

    PubMed

    Behboodi, E; Bondareva, A; Begin, I; Rao, K; Neveu, N; Pierson, J T; Wylie, C; Piero, F D; Huang, Y J; Zeng, W; Tanco, V; Baldassarre, H; Karatzas, C N; Dobrinski, I

    2011-03-01

    Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells.

  20. Time-lapse monitoring reveals that vitrification increases the frequency of contraction during the pre-hatching stage in mouse embryos

    PubMed Central

    SHIMODA, Yuki; KUMAGAI, Jin; ANZAI, Mibuki; KABASHIMA, Katsuya; TOGASHI, Kazue; MIURA, Yasuko; SHIRASAWA, Hiromitsu; SATO, Wataru; KUMAZAWA, Yukiyo; TERADA, Yukihiro

    2016-01-01

    Contraction during the blastocyst stage is observed during embryonic development of various mammals, including humans, but the physiological role of this process is not well understood. Using time-lapse monitoring (TLM), we studied the influence of vitrification and contractions on embryonic development in mice. Mouse embryos were cultured at the 2-cell stage. At the 8-cell stage, embryos were randomly divided into a fresh group (FG) and vitrified group (VG) and observed for up to 144 h. Strong contractions (i.e., contractions causing a decrease in volume of more than 20% and expansion of the perivitelline space) occurred significantly more often in unhatched embryos than hatching embryos in both groups. Regarding hatching embryos, contractions in the pre-hatching stage were significantly more frequent in the VG than the FG. Furthermore, mRNA expression levels of genes related to contractions were determined at three time points, the 8-cell stage, early blastocyst stage, and 20 h after blastocoel formation, with quantitative reverse transcription-polymerase chain reaction. There was no significant difference in Hspa1a expression between the FG and VG, but Hspa1a overexpression was observed just after thawing and tended to decrease gradually thereafter in some blastocysts. Furthermore, in the VG, Atp1a1 tended to show higher expression in the strong contraction group than in the weak contraction group. Overall, vitrification is an excellent method for cryopreservation but could increase contractions in the pre-hatching stage and may increase energy demands of the embryo. Observation of contraction by TLM may improve the evaluation of embryo quality. PMID:26806421

  1. Expression pattern of Chlamys farreri sox2 in eggs, embryos and larvae of various stages

    NASA Astrophysics Data System (ADS)

    Liang, Shaoshuai; Ma, Xiaoshi; Han, Tiantian; Yang, Dandan; Zhang, Zhifeng

    2015-08-01

    The SOX2 protein is an important transcription factor functioning during the early development of animals. In this study, we isolated a full-length cDNA sequence of scallop Chlamys farreri sox2, Cf-sox2 which was 2194 bp in length with a 981 bp open reading frame encoding 327 amino acids. With real-time PCR analysis, it was detected that Cf-sox2 was expressed in unfertilized oocytes, fertilized eggs and all the tested embryos and larvae. The expression level increased significantly ( P < 0.01) in embryos from 2-cell to blastula, and then decreased significantly ( P < 0.01) and reached the minimum in umbo larva. Moreover, location of the Cf-sox2 expression was revealed using whole mount in situ hybridization technique. Positive hybridization signal could be detected in the central region of unfertilized oocytes and fertilized eggs, and then strong signals dispersed throughout the embryos from 2-cell to gastrula. During larval development, the signals were concentrated and strong signals were restricted to 4 regions of viscera mass in veliger larva. In umbo larva, weak signals could be detected in regions where presumptive visceral and pedal ganglia may be formed. The expression pattern of Cf-sox2 during embryogenesis was similar to that of mammal sox2, which implied that Cf-SOX2 may participate in the regulation of early development of C. farreri.

  2. Single Cell Proteomics Using Frog (Xenopus laevis) Blastomeres Isolated from Early Stage Embryos, Which Form a Geometric Progression in Protein Content.

    PubMed

    Sun, Liangliang; Dubiak, Kyle M; Peuchen, Elizabeth H; Zhang, Zhenbin; Zhu, Guijie; Huber, Paul W; Dovichi, Norman J

    2016-07-05

    Single cell analysis is required to understand cellular heterogeneity in biological systems. We propose that single cells (blastomeres) isolated from early stage invertebrate, amphibian, or fish embryos are ideal model systems for the development of technologies for single cell analysis. For these embryos, although cell cleavage is not exactly symmetric, the content per blastomere decreases roughly by half with each cell division, creating a geometric progression in cellular content. This progression forms a ladder of single-cell targets for the development of successively higher sensitivity instruments. In this manuscript, we performed bottom-up proteomics on single blastomeres isolated by microdissection from 2-, 4-, 8-, 16-, 32-, and 50-cell Xenopus laevis (African clawed frog) embryos. Over 1 400 protein groups were identified in single-run reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry from single balstomeres isolated from a 16-cell embryo. When the mass of yolk-free proteins in single blastomeres decreased from ∼0.8 μg (16-cell embryo) to ∼0.2 μg (50-cell embryo), the number of protein group identifications declined from 1 466 to 644. Around 800 protein groups were quantified across four blastomeres isolated from a 16-cell embryo. By comparing the protein expression among different blastomeres, we observed that the blastomere-to-blastomere heterogeneity in 8-, 16-, 32-, and 50-cell embryos increases with development stage, presumably due to cellular differentiation. These results suggest that comprehensive quantitative proteomics on single blastomeres isolated from these early stage embryos can provide valuable insights into cellular differentiation and organ development.

  3. Quantitation and characterization of a species-specific and embryo stage-dependent 55-kilodalton phosphoprotein also present in cells transformed by simian virus 40.

    PubMed Central

    Chandrasekaran, K; McFarland, V W; Simmons, D T; Dziadek, M; Gurney, E G; Mora, P T

    1981-01-01

    A 55-kilodalton (kDal) protein was detected recently in primary cultures of day 12 mouse embryos by immunoprecipitation with serum from simian virus 40 (SV40) tumor-bearing hamsters (T serum), Preliminary evidence suggested that this protein was similar to a cellular 55-kDal protein induced after SV40 transformation of mouse cells. We now show that specific approximately 55-kDal [35S]methionine-labeled proteins precipitate from primary cultures of midgestation mouse, rat, and hamster embryos on addition of T serum or monoclonal antiserum prepared against the SV40-induced mouse 55-kDal proteins. The two-dimensional maps of the [35S]methionine-labeled tryptic peptides of the mouse, hamster, and rat embryo proteins are similar to the maps of the corresponding proteins from SV40-transformed cells. Primary cells from midgestation mouse, hamster, or rat embryos contain one-third to one-half as much 55-kDal protein as a SV40-transformed mouse fibroblast cell and nearly the same amount as F9 mouse embryonal carcinoma cells. The amount of 55-kDal protein is greatly reduced on replating the mouse, rat, or hamster embryo primary cells. The amount of this protein in mouse embryos is dependent on the stage of the embryo. The embryo proteins are phosphoproteins. Images PMID:6273897

  4. Development of rat tetraploid and chimeric embryos aggregated with diploid cells.

    PubMed

    Shinozawa, T; Sugawara, A; Matsumoto, A; Han, Y-J; Tomioka, I; Inai, K; Sasada, H; Kobayashi, E; Matsumoto, H; Sato, E

    2006-11-01

    In the present study, we examined the preimplantation and postimplantation development of rat tetraploid embryos produced by electrofusion of 2-cell-stage embryos. Developmental rate of tetraploid embryos to morula or blastocyst stage was 93% (56/60) and similar to that found in diploid embryos (95%, 55/58). After embryo transfer, rat tetraploid embryos showed implantation and survived until day 8 of pregnancy, however the conceptuses were aberrant on day 9. In mouse, tetraploid embryos have the ability to support the development of blastomeres that cannot develop independently. As shown in the present study, a pair of diploid blastomeres from the rat 8-cell-stage embryo degenerated immediately after implantation. Therefore, we examined whether rat tetraploid embryos have the ability to support the development of 2/8 blastomeres. We produced chimeric rat embryos in which a pair of diploid blastomeres from an 8-cell-stage green fluorescent protein negative (GFP-) embryo was aggregated with three tetraploid blastomeres from 4-cell GFP-positive (GFP+) embryos. The developmental rate of rat 2n(GFP-) <--> 4n(GFP+) embryos to the morula or blastocyst stages was 93% (109/117) and was similar to that found for 2n(GFP-) <--> 2n(GFP+) embryos (100%, 51/51). After embryo transfer, 2n(GFP-) <--> 4n(GFP+) conceptuses were examined on day 14 of pregnancy, the developmental rate to fetus was quite low (4%, 4/109) and they were all aberrant and smaller than 2n(GFP-) <--> 2n(GFP+) conceptuses, whereas immunohistochemical analysis showed no staining for GFP in fetuses. Our results suggest that rat tetraploid embryos are able to prolong the development of diploid blastomeres that cannot develop independently, although postimplantation development was incomplete.

  5. Expression pattern of oxygen and stress-responsive gene transcripts at various developmental stages of in vitro and in vivo preimplantation bovine embryos.

    PubMed

    Balasubramanian, S; Son, W J; Kumar, B Mohana; Ock, S A; Yoo, J G; Im, G S; Choe, S Y; Rho, G J

    2007-07-15

    The present study examined the expression pattern of oxygen (O(2)) and stress-responsive gene transcripts at various preimplantation developmental stages of in vitro produced (IVP) and in vivo derived (IVD) bovine embryos. Embryos were produced in vitro from oocytes matured, fertilized and cultured in synthetic oviductal fluid (SOF) medium under low (5%) and high (20%) O(2) concentrations. In vivo embryos were derived from 18 superovulated and artificially inseminated cows. In IVP and IVD groups, embryos were collected at 2-, 4-, 8-, 16-cell morula and blastocyst stages at specific time points for gene expression analysis. The cleavage rates (69.8+/-4.8%) did not differ significantly, but blastocyst rates were significantly higher (28.5+/-3.7%) in low O(2) than those in high O(2) group (18.7+/-3.9%). Mean cell number in low O(2) (145+/-12) and high O(2) (121+/-73) IVP blastocyst were lower (P<0.05) than those of IVD blastocyst (223+/-25). The ICM ratio of IVD blastocyst (26+/-4) was lower (P<0.05) than that of IVP embryos under 5% O(2) (33+/-5) and 20% O(2) (34+/-4) concentrations, respectively. Using real time PCR, for the set of target transcripts (Glut1, Glut5, Sox, G6PD, MnSOD, PRDX5, NADH and Hsp 70.1) analyzed, there were differences in the mRNA expression pattern at 2-, 4-, 8-, 16-cell morula and Day 7 blastocyst stages between the two embryo sources. It can be concluded that, although in vitro bovine embryo culture in SOF medium under low (5%) O(2) concentration provided a more conducive environment in terms of blastocyst formation; differences in the total cell number and gene expression pattern between the IVP and IVD embryos reflected the effect of O(2) concentration.

  6. Necropsy findings in American alligator late-stage embryos and hatchlings from northcentral Florida lakes contaminated with organochlorine pesticides

    USGS Publications Warehouse

    Sepulveda, M.S.; Del, Piero F.; Wiebe, J.J.; Rauschenberger, H.R.; Gross, T.S.

    2006-01-01

    Increased American alligator (Alligator mississippiensis) embryo and neonatal mortality has been reported from several northcentral Florida lakes contaminated with old-use organochlorine pesticides (OCPs). However, a clear relationship among these contaminants and egg viability has not been established, suggesting the involvement of additional factors in these mortalities. Thus, the main objective of this study was to determine the ultimate cause of mortality of American alligator late-stage embryos and hatchlings through the conduction of detailed pathological examinations, and to evaluate better the role of OCPs in these mortalities. Between 2000 and 2001, 236 dead alligators were necropsied at or near hatching (after ???65 days of artificial incubation and up to 1 mo of age posthatch). Dead animals were collected from 18 clutches ranging in viability from 0% to 95%. Total OCP concentrations in yolk ranged from ???100 to 52,000 ??g/kg, wet weight. The most common gross findings were generalized edema (34%) and organ hyperemia (29%), followed by severe emaciation (14%) and gross deformities (3%). Histopathologic examination revealed lesions in 35% of the animals, with over half of the cases being pneumonia, pulmonary edema, and atelectasis. Within and across clutches, dead embryos and hatchlings compared with their live cohorts were significantly smaller and lighter. Although alterations in growth and development were not related to yolk OCPs, there was an increase in prevalence of histologic lesions in clutches with high OCPs. Overall, these results indicate that general growth retardation and respiratory abnormalities were a major contributing factor in observed mortalities and that contaminants may increase the susceptibility of animals to developing certain pathologic conditions. ?? Wildlife Disease Association 2006.

  7. Genome-Wide Dissection of the MicroRNA Expression Profile in Rice Embryo during Early Stages of Seed Germination

    PubMed Central

    He, Dongli; Wang, Qiong; Wang, Kun; Yang, Pingfang

    2015-01-01

    The first 24 hours after imbibition (HAI) is pivotal for rice seed germination, during which embryo cells switch from a quiescent state to a metabolically active state rapidly. MicroRNAs (miRNAs) have increasingly been shown to play important roles in rice development. Nevertheless, limited knowledge about miRNA regulation has been obtained in the early stages of rice seed germination. In this study, the small RNAs (sRNAs) from embryos of 0, 12, and 24 HAI rice seeds were sequenced to investigate the composition and expression patterns of miRNAs. The bioinformatics analysis identified 289 miRNA loci, including 59 known and 230 novel miRNAs, and 35 selected miRNAs were confirmed by stem-loop real-time RT-PCR. Expression analysis revealed that the dry and imbibed seeds have unique miRNA expression patterns compared with other tissues, particularly for the dry seeds. Using three methods, Mireap, psRNATarget and degradome analyses, 1197 potential target genes of identified miRNAs involved in various molecular functions were predicted. Among these target genes, 39 had significantly negative correlations with their corresponding miRNAs as inferred from published transcriptome data, and 6 inversely expressed miRNA-target pairs were confirmed by 5ʹ-RACE assay. Our work provides an inventory of miRNA expression profiles and miRNA-target interactions in rice embryos, and lays a foundation for further studies of miRNA-mediated regulation in initial seed germination. PMID:26681181

  8. Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos

    PubMed Central

    Hou, Dao-Rong; Jin, Yong; Nie, Xiao-Wei; Zhang, Man-Ling; Ta, Na; Zhao, Li-Hua; Yang, Ning; Chen, Yuan; Wu, Zhao-Qiang; Jiang, Hai-Bin; Li, Yan-Ru; Sun, Qing-Yuan; Dai, Yi-Fan; Li, Rong-Feng

    2016-01-01

    Efficient isolation of embryonic stem (ES) cells from pre-implantation porcine embryos has remained a challenge. Here, we describe the derivation of porcine embryonic stem-like cells (pESLCs) by seeding the isolated inner cell mass (ICM) from in vitro-produced porcine blastocyst into α-MEM with basic fibroblast growth factor (bFGF). The pESL cells kept the normal karyotype and displayed flatten clones, similar in phenotype to human embryonic stem cells (hES cells) and rodent epiblast stem cells. These cells exhibited alkaline phosphatase (AP) activity and expressed pluripotency markers such as OCT4, NANOG, SOX2, SSEA-4, TRA-1-60, and TRA-1-81 as determined by both immunofluorescence and RT-PCR. Additionally, these cells formed embryoid body (EB), teratomas and also differentiated into 3 germ layers in vitro and in vivo. Microarray analysis showed the expression of the pluripotency markers, PODXL, REX1, SOX2, KLF5 and NR6A1, was significantly higher compared with porcine embryonic fibroblasts (PEF), but expression of OCT4, TBX3, REX1, LIN28A and DPPA5, was lower compared to the whole blastocysts or ICM of blastocyst. Our results showed that porcine embryonic stem-like cells can be established from in vitro-produced blastocyst-stage embryos, which promote porcine naive ES cells to be established. PMID:27173828

  9. Morphological and morphometric study of early-cleavage mice embryos resulting from in vitro fertilization at different cleavage stages after vitrification

    PubMed Central

    Homayoun, H.; Zahiri, Sh.; Hemayatkhah Jahromi, V.; Hassanpour Dehnavi, A.

    2016-01-01

    The aim of this study was to examine the possible morphological and morphometric changes resulting from vitrification of embryos at the cleavage stage. In this study, 30 mice early-cleavage embryos at different stages of cleavage, resulting from in vitro fertilization (IVF) techniques, were examined before and after vitrification. Digital images were taken from embryos before and after vitrification. Zona pellucida thickness, differences in zona pellucida thickness, and diameter and volume of blastomeres and embryos as morphometric parameters and current rating of appearance of embryos as morphological parameters, have been studied. According to our findings, there were significant mean differences in all morphometric parameters of the two groups except in the zona pellucid thickness (P≤0.05). With regard to the morphological parameter, the decrease in embryo quality was observed but it was not significant. According to the results, although little quantitative change observed is not necessarily synonymous with harmful intracellular damage, it seems that it is better to examine vitrification method more accurately. Because by making subtle changes in concentration and type of consumed solutions or techniques used, the changes may be minimized. PMID:27656231

  10. Neurotoxicological effects of nicotine on the embryonic development of cerebellar cortex of chick embryo during various stages of incubation.

    PubMed

    El-Beltagy, Abd El-Fattah B M; Abou-El-Naga, Amoura M; Sabry, Dalia M

    2015-10-01

    Long-acting nicotine is known to exert pathological effects on almost all tissues including the cerebellar cortex. The present work was designed to elucidate the effect of nicotine on the development of cerebellar cortex of chick embryo during incubation period. The fertilized eggs of hen (Gallus gallus domesticus) were injected into the air space by a single dose of long acting nicotine (1.6 mg/kg/egg) at the 4th day of incubation. The embryos were taken out of the eggs on days 8, 12 and 16 of incubation. The cerebellum of the control and treated embryos at above ages were processed for histopathological examination. The TEM were examined at 16th day of incubation. The results of the present study revealed that, exposure to long-acting nicotine markedly influence the histogenesis of cerebellar cortex of chick embryo during the incubation period. At 8th day of incubation, nicotine delayed the differentiation of the cerebellar analge; especially the external granular layer (EGL) and inner cortical layer (ICL). Furthermore, at 12th day of incubation, the cerebellar foliation was irregular and the Purkinje cells not recognized. By 16th day of incubation, the cerebellar foliations were irregular with interrupted cerebellar cortex and irregular arrangement of Purkinje cells. Immunohistochemical analysis for antibody P53 protein revealed that the cerebellar cortex in all stages of nicotine treated groups possessed a moderate to weak reaction for P53 protein however; this reaction was markedly stronger in the cerebellar cortex of control groups. Moreover, the flow cytometric analysis confirmed that the percentage of apoptosis in control group was significantly higher compared with that of nicotine treated group. At the TEM level, the cerebellar Purkinje cells of 16th day of treated groups showed multiple subcellular alterations in compared with those of the corresponding control group. Such changes represented by appearing of vacuolated mitochondria, cisternal

  11. Absence of Sperm Factors as in the Parthenogenesis Does Not Interfere on Bovine Embryo Sensitiveness to Heat Shock at Pre-Implantation Stage.

    PubMed

    Camargo, L S A; Paludo, F; Pereira, M M; Wohlres-Viana, S; Gioso, M M; Carvalho, B C; Quintao, C C R; Viana, J H M

    2016-02-01

    Oocyte has been considered the major contributor for embryo thermo-tolerance. However, it was shown that sperm factors can be transferred to the oocyte during fertilization, raising the question of whether the absence of such factors could interfere on embryo thermo-tolerance. In this study, we used parthenogenesis to generate bovine embryos without spermatozoa in order to test whether the absence of sperm factors could influence their thermo-sensitiveness at early stages. In vitro fertilized (IVF) and parthenogenetic (PA) embryos at 44 h post-insemination/chemical activation were exposed to 38.5°C (control) or 41°C (heat shock) for 12 h and then developed for 48 h and up to blastocyst stage. Apoptosis index and expression of PRDX1, GLUT1, GLUT5 and IGF1r genes in blastocysts derived from heat-shocked embryos were also evaluated. The heat shock decreased the blastocyst rate at day seven (p < 0.05) for IVF embryos and at day eight (p < 0.01) for both IVF and PA embryos. Total cell number was not affected by heat shock in IVF and PA blastocysts, but there was an increased proportion (p < 0.05) of apoptotic cells in heat-shocked embryos when compared to controls. There was no interaction (p > 0.05) between method of activation (IVF and PA) and temperature (38.5°C or 41.5°C) for all developmental parameters evaluated. Expression of GLUT1 gene was downregulated (p < 0.05) by heat shock in both IVF and PA blastocyst whereas expression of GLUT5 and IGF1r genes was downregulated (p < 0.05) by heat shock in PA blastocysts. Those data show that the heat shock affects negatively the embryo development towards blastocysts stage, increases the apoptotic index and disturbed the expression of some genes in both IVF and PA embryos, indicating that the presence or absence of sperm factors does not influence the sensitivity of the bovine embryo to heat shock.

  12. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    SciTech Connect

    Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the current

  13. Characterization of the finch embryo supports evolutionary conservation of the naive stage of development in amniotes

    PubMed Central

    Mak, Siu-Shan; Alev, Cantas; Nagai, Hiroki; Wrabel, Anna; Matsuoka, Yoko; Honda, Akira; Sheng, Guojun; Ladher, Raj K

    2015-01-01

    Innate pluripotency of mouse embryos transits from naive to primed state as the inner cell mass differentiates into epiblast. In vitro, their counterparts are embryonic (ESCs) and epiblast stem cells (EpiSCs), respectively. Activation of the FGF signaling cascade results in mouse ESCs differentiating into mEpiSCs, indicative of its requirement in the shift between these states. However, only mouse ESCs correspond to the naive state; ESCs from other mammals and from chick show primed state characteristics. Thus, the significance of the naive state is unclear. In this study, we use zebra finch as a model for comparative ESC studies. The finch blastoderm has mESC-like properties, while chick blastoderm exhibits EpiSC features. In the absence of FGF signaling, finch cells retained expression of pluripotent markers, which were lost in cells from chick or aged finch epiblasts. Our data suggest that the naive state of pluripotency is evolutionarily conserved among amniotes. DOI: http://dx.doi.org/10.7554/eLife.07178.001 PMID:26359635

  14. Development of the Superaltricial Monk Parakeet (Aves, Psittaciformes): Embryo Staging, Growth, and Heterochronies.

    PubMed

    Carril, Julieta; Tambussi, Claudia P

    2015-11-01

    Knowledge about the embryonic stages of birds is important in answering many questions about development and evolution. We give the first description of 41 embryological stages of the monk parakeet (Myiopsitta monachus) on the basis of external morphology and comparison with the chicken. We also provide measurements of some external morphological characters (i.e. body mass, crown-rump, beak, forelimb, and third toe lengths) and perform comparisons with other precocial and altricial birds with the aim of identifying heterochronous developmental features. The following differences in the development of characters in the monk parakeet when compared with other birds were found: (1) delay of the feathers primordia, (2) wing buds initially greater than leg buds, (3) forelimbs and hindlimbs with similar relative size, (4) retroversion of the toe IV, (5) ventral curvature of the upper jaw, (6) positive regressions between stages and beak length with acceleration and higher values and III toe lengths with deceleration and lower values in the monk parakeet compared to the chicken. The growth pattern of the monk paraket Myiopsitta monachus could be influenced by some heterochronic processes like post-displacement, acceleration and/or deceleration. Results of this research allow the standard identification of stages in different species of parrots, recognize similarities and differences between precocial (the chicken) and altricial species (Myiopsitta), and provide planning data for future studies.

  15. Spontaneous locomotor activity in late-stage chicken embryos is modified by stretch of leg muscles

    PubMed Central

    Bradley, Nina S.; Ryu, Young U.; Yeseta, Marie C.

    2014-01-01

    Chicks initiate bilateral alternating steps several days before hatching and adaptively walk within hours of hatching, but emergence of precocious walking skills is not well understood. One of our aims was to determine whether interactions between environment and movement experience prior to hatching are instrumental in establishing precocious motor skills. However, physiological evidence of proprioceptor development in the chick has yet to be established; thus, one goal of this study was to determine when in embryogenesis proprioception circuits can code changes in muscle length. A second goal was to determine whether proprioception circuits can modulate leg muscle activity during repetitive limb movements for stepping (RLMs). We hypothesized that proprioception circuits code changes in muscle length and/or tension, and modulate locomotor circuits producing RLMs in anticipation of adaptive locomotion at hatching. To this end, leg muscle activity and kinematics were recorded in embryos during normal posture and after fitting one ankle with a restraint that supported the limb in an atypical posture. We tested the hypotheses by comparing leg muscle activity during spontaneous RLMs in control posture and ankle extension restraint. The results indicated that proprioceptors detect changes in muscle length and/or muscle tension 3 days before hatching. Ankle extension restraint produced autogenic excitation of the ankle flexor and reciprocal inhibition of the ankle extensor. Restraint also modified knee extensor activity during RLMs 1 day before hatching. We consider the strengths and limitations of these results and propose that proprioception contributes to precocious locomotor development during the final 3 days before hatching. PMID:24265423

  16. AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED CU,ZN-SOD AND MN-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED Cu,Zn-SOD AND Mn-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO. JB Smith1, PC Hartig3, MR Blanton3, KK Sulik1,2, and ES Hunter3. 1Department of Cell and Developmental Biology and 2Bowles Cente...

  17. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study.

    PubMed

    Kong, Xiangyi; Yang, Shuting; Gong, Fei; Lu, Changfu; Zhang, Shuoping; Lu, Guangxiu; Lin, Ge

    2016-01-01

    Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI) treatment cycles, n = 799) were classified as follows: less than 5 cells (< 5C; n = 111); 5-6 cells (5-6C; n = 97); 7-8 cells (7-8C; n = 442), 9-10 cells (9-10C; n = 107) and more than 10 cells (>10C; n = 42). Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In <5C and 5-6C embryos, fragmentation (FR; 62.2% and 30.9%, respectively) was the main cause for low cell number. The majority of 7-8C embryos exhibited obvious normal behaviors (NB; 85.7%) during development. However, the incidence of DC in 9-10C and >10C embryos increased compared to 7-8C embryos (45.8%, 33.3% vs. 11.1%, respectively). In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas <5C embryos showed little potential irrespective of division behaviors. In NB embryos, the blastocyst formation rate increased with cell number from 7.4% (<5C) to 89.3% (>10C). In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number.

  18. A simplified table for staging embryos of the pipid frog Pipa arrabali.

    PubMed

    Araújo, Olívia G S; Haddad, Célio F B; Silva, Hélio R DA; Pugener, Lourdes A

    2016-01-01

    Pipa is a Neotropical genus of frogs that dwell in freshwater environments. It includes four species that lack free-swimming larvae (P. aspera, P. arrabali, P. pipa, and P. snethlageae) and three with tadpoles (P. carvalhoi, P. myersi, and P. parva). Developmental tables such as the one proposed by Nieuwkoop and Faber might be useful for Pipa species with tadpoles. However, for the other Pipa species, to determine stages by this table or by any of the tables already prepared for frogs without tadpoles (e.g., Crinia nimbus, Eleutherodactylus coqui, and Oreobates barituensis) is impossible. By using embryonic, juvenile, and subadult specimens, we generated a staging table for P. arrabali, from the moment limb buds were first observed until birth, based on diagnostic features such as snout-vent length; growth, morphology, and reabsorption of the external tail; growth and differentiation of fore and hind limbs; development of intestine and vent tube; position of the angle of the mouth relative to nostrils and eyes; and color of preserved individuals. Based on these observations, we discuss some noteworthy traits (e.g., posture of hands and feet). We also compare the pattern of development of P. arrabali with that of other anuran species (with and without tadpoles).

  19. Two culture systems showing a biphasic effect on ovine embryo development from the 1-2 cell stage to hatched blastocysts.

    PubMed

    Ledda, S; Bogliolo, L; Leoni, G; Loi, P; Cappai, P; Naitana, S

    1995-01-01

    This study compared the effect of using either CZB or TCM 199 media on both the development of 1-2 cell ovine embryos from superovulated ewes to the blastocyst stage (Experiment 1), and the hatching process of ovine blastocysts developed in vitro (Experiment 2). For the first 5 d, the CZB medium showed higher rates of embryo development than the TCM 199 medium (p < 0.001). The embryos reaching the > 16 cell stage were 79 vs 52% and 74 vs 20% with or without an oviductal monolayer, respectively, and those reaching the blastocyst stage were 71 vs 46% and 46 vs 13% with or without cells. The CZB medium was less able to support the hatching process of the blastocysts obtained in the first experiment than was the TCM-199 medium + 10% FCS (fetal calf serum) with cells (31 vs 92%; p < 0.001) or without cells (13 vs 66%; p < 0.001). No blastocysts completely escaped from the zona pellucida (ZP) in the CZB medium compared with 80 and 61% in the TCM 199 medium with or without cells, respectively. In Experiment 3, 47% of the blastocysts migrated through the artificial opening of the ZP and hatched completely. After 24 h of culture in the CZB medium, however, they showed blastocoelic cavity breakdown. During the preliminary cleavages, the ovine embryos developed better in CZB medium than in TCM 199, but the latter was more efficient in promoting the hatching process of the blastocysts.

  20. The early embryo response to intracellular reactive oxygen species is developmentally regulated.

    PubMed

    Bain, Nathan T; Madan, Pavneesh; Betts, Dean H

    2011-01-01

    In vitro embryo production (IVP) suffers from excessive developmental failure. Its inefficiency is linked, in part, to reactive oxygen species (ROS) brought on by high ex vivo oxygen (O(2)) tensions. To further delineate the effects of ROS on IVP, the intracellular ROS levels of early bovine embryos were modulated by: (1) varying O(2) tension; (2) exogenous H(2)O(2) treatment; and (3) antioxidant supplementation. Although O(2) tension did not significantly affect blastocyst frequencies (P>0.05), 20% O(2) accelerated the rate of first cleavage division and significantly decreased and increased the proportion of permanently arrested 2- to 4-cell embryos and apoptotic 9- to 16-cell embryos, respectively, compared with embryos cultured in 5% O(2) tension. Treatment with H(2)O(2), when applied separately to oocytes, zygotes, 2- to 4-cell embryos or 9- to 16-cell embryos, resulted in a significant (P<0.05) dose-dependent decrease in blastocyst development in conjunction with a corresponding increase in the induction of either permanent embryo arrest or apoptosis in a stage-dependent manner. Polyethylene glycol-catalase supplementation reduced ROS-induced embryo arrest and/or death, resulting in a significant (P<0.05) increase in blastocyst frequencies under high O(2) culture conditions. Together, these results indicate that intracellular ROS may be signalling molecules that, outside an optimal range, result in various developmentally regulated modes of embryo demise.

  1. Outcomes of vitrified-warmed cleavage-stage embryo hatching after in vitro laser-assisted zona pellucida thinning in patients

    PubMed Central

    Wang, En-Hua; Wang, An-Cong; Wang, Bao-Song; Li, Bin

    2016-01-01

    The aim of the present study was to determine whether the size of the zona pellucida (ZP) thinning area by laser-assisted hatching affected the potential development of vitrified-warmed embryos. A total of 196 vitrified-warmed cleavage-stage embryos (from 49 patients, four sister embryos per patient) were used in the study, i.e., four sister embryos from each patient were randomly assigned to four groups: a control group of embryos that were not zona-manipulated (zona intact, group A); one experimental group of embryos in which a quarter of the zona pellucida was thinned using laser-assisted ZP thinning (group B); a second experimental group of embryos in which half of ZP was thinned (group C); and a third group in which two-thirds of the ZP was thinned (group D). Subsequent blastocyst development was assessed. Microscopy was performed to study the hatching process of the embryos after zona thinning. The blastocyst formation rates were 71.43% in group A, 67.35% in group B, 65.31% in group C, and 51.02% in group D (groups B-D vs. group A, P=0.661, P=0.515, P=0.038, respectively). The rates of complete hatching were 30.61% in group A, 38.78% in group B, 61.22% in group C, and 48.98% in group D (groups B-D vs. group A, P=0.396, P=0.002, P=0.063, respectively). For a subgroup of patients, there was a significant difference in the complete hatching in all the groups for women aged <35 years (P=0.011), and there was a significant difference in the complete hatching in all the groups for secondary infertility women (P=0.022). There was no significant difference in the blastocyst formation rates in the different groups of women aged ≥35 years (P=0.340). In addition, there was no significant difference in the complete hatching in the different groups among women aged ≥35 years (P=0.492). The results of the present study showed that in vitrified-warmed embryo transfers at the cleavage-stage, and the two-thirds zona pellucida thinning group demonstrated a significantly

  2. Vestigial is required during late-stage muscle differentiation in Drosophila melanogaster embryos.

    PubMed

    Deng, Hua; Bell, John B; Simmonds, Andrew J

    2010-10-01

    The somatic muscles of Drosophila develop in a complex pattern that is repeated in each embryonic hemi-segment. During early development, progenitor cells fuse to form a syncytial muscle, which further differentiates via expression of muscle-specific factors that induce specific responses to external signals to regulate late-stage processes such as migration and attachment. Initial communication between somatic muscles and the epidermal tendon cells is critical for both of these processes. However, later establishment of attachments between longitudinal muscles at the segmental borders is largely independent of the muscle-epidermal attachment signals, and relatively little is known about how this event is regulated. Using a combination of null mutations and a truncated version of Sd that binds Vg but not DNA, we show that Vestigial (Vg) is required in ventral longitudinal muscles to induce formation of stable intermuscular attachments. In several muscles, this activity may be independent of Sd. Furthermore, the cell-specific differentiation events induced by Vg in two cells fated to form attachments are coordinated by Drosophila epidermal growth factor signaling. Thus, Vg is a key factor to induce specific changes in ventral longitudinal muscles 1-4 identity and is required for these cells to be competent to form stable intermuscular attachments with each other.

  3. Effects of copper exposure on the hatching status and antioxidant defense at different developmental stages of embryos and larvae of goldfish Carassius auratus.

    PubMed

    Kong, Xianghui; Jiang, Hongxia; Wang, Shuping; Wu, Xiangmin; Fei, Wei; Li, Li; Nie, Guoxing; Li, Xuejun

    2013-09-01

    This study aims to assess the effects of copper exposure on hatching status and antioxidant defense at different stages of embryos and larvae of goldfish Carassius auratus. In this study, day-old embryos were randomly grouped after fertilization and then exposed to copper concentrations of 0, 0.1, 0.4, 0.7, and 1.0mgL(-1). Copper-exposed fish embryos were sampled every 24h to determine superoxide dismutase (SOD), and catalase (CAT) activities, as well as malondialdehyde (MDA) content. In addition, cumulative mortality and larval deformity were also investigated. The findings showed that cumulative mortality and larval deformity rate increased gradually with copper concentration increase. SOD and CAT activities were inhibited at higher copper concentrations. At a lower concentration (0.1mgL(-1)), SOD activity increased in larvae, whereas CAT activity showed no significant change (p>0.05). MDA, as the lipid peroxidation product, gradually accumulated in embryos and larvae with increasing copper concentration and the extension of exposure time. At 0.4mgL(-1) and more, copper toxicity was shown in embryos and larvae. In conclusion, copper-exposed effects on hatching status and antioxidant defense in C. auratus embryos and larvae showed concentration- and time-dependent patterns. The biochemical parameters in this study can be used as effective indicators for evaluating the responses of copper-exposed fish embryos. In addition, this study demonstrates that 0.4mgL(-1) copper (corresponding to 1mgL(-1) copper sulfate), used to kill parasites in aquaculture, is not safe concentration, because it can result in toxicity to larvae. Therefore, the copper concentration to kill pathogen should be less than 0.4mgL(-1) for C. auratus.

  4. Is caprine arthritis encephalitis virus (CAEV) transmitted vertically to early embryo development stages (morulae or blastocyst) via in vitro infected frozen semen?

    PubMed

    Al Ahmad, M Z Ali; Chebloune, Y; Chatagnon, G; Pellerin, J L; Fieni, F

    2012-05-01

    The aim of this study was to determine, in vivo, whether in vitro infected cryopreserved caprine sperm is capable of transmitting caprine arthritis-encephalitis virus (CAEV) vertically to early embryo development stages via artificial insemination with in vitro infected semen. Sperm was collected from CAEV-free bucks by electroejaculation. Half of each ejaculate was inoculated with CAEV-pBSCA at a viral concentration of 10(4) TCID(50)/mL. The second half of each ejaculate was used as a negative control. The semen was then frozen. On Day 13 of superovulation treatment, 14 CAEV-free does were inseminated directly into the uterus under endoscopic control with thawed infected semen. Six CAEV-free does, used as a negative control, were inseminated intrauterine with thawed CAEV-free sperm, and eight CAEV-free does were mated with naturally infected bucks. Polymerase chain reaction (PCR) was used to detect CAEV proviral-DNA in the embryos at the D7 stage, in the embryo washing media, and in the uterine secretions of recipient does. At Day 7, all the harvested embryos were PCR-negative for CAEV proviral-DNA; however, CAEV proviral-DNA was detected in 8/14 uterine smears, and 9/14 flushing media taken from does inseminated with infected sperm, and in 1/8 uterine swabs taken from the does mated with infected bucks. The results of this study confirm that (i) artificial insemination with infected semen or mating with infected bucks may result in the transmission of CAEV to the does genital tack seven days after insemination, and (ii) irrespective of the medical status of the semen or the recipient doe, it is possible to obtain CAEV-free early embryos usable for embryo transfer.

  5. Piglets born after intrauterine laparoscopic embryo transfer.

    PubMed

    Wieczorek, J; Koseniuk, J; Mandryk, I; Poniedziałek-Kempny, K

    2015-01-01

    The aim of the study was the preliminary development of laparoscopic transfer of embryos to the uterus in the pig, which can become the alternative for more invasive surgical methods. We proposed the original method of embryo transfer. Donors (n = 40) and recipients (n = 15) of embryos were sows of age of 6-8 months. The estrus cycle of both recipients and donors was routinely synchronized. The experimental animals were divided into two groups. In the first group (10 donors and 3 recipients) embryos were transplanted according to the method described earlier and in the second group (30 donors and 12 recipients) embryos were transplanted according to our own proposed method. As the control group, we used 16 sows after insemination (AI). In animals from both experimental groups pregnancy was diagnosed between 28-31 day after transplantation and in the control group between 28-31 day after insemination. All animals were observed during pregnancy and weaning period in pig farm. Embryos at the development stage of 2-4 cell were obtained surgically and cultured in vitro for 4 days. Obtained blastocysts were transferred to donors. The original set of catheters for blastocysts transfer to pig uterus was constructed. Three trocars were placed in abdominal cavity for inserting endoscope and 2 grasps for uterus stabilization. After uterus stabilization, the slide was inserted into abdomen which was used for putting the needle to puncture uterus. Through this needle catheter with embryos was inserted into the uterus cavity. Embryos were placed by injection into lumen of the one uterine horn. From 12 recipients pregnancy was diagnosed in 6 recipients. From 6 litters, 57 piglets were born. We weaned 41 piglets (71.9%). In our study we obtained 50% efficacy, with the mean number of 9.5 alive piglets in litter and 6.8 weaned piglets. The efficacy of developed method of laparoscopic transfer of porcine embryos allows it to be used in routine practice.

  6. Mitochondria-targeted DsRed2 protein expression during the early stage of bovine somatic cell nuclear transfer embryo development.

    PubMed

    Park, Hyo-Jin; Min, Sung-Hun; Choi, Hoonsung; Park, Junghyung; Kim, Sun-Uk; Lee, Seunghoon; Lee, Sang-Rae; Kong, Il-Keun; Chang, Kyu-Tae; Koo, Deog-Bon; Lee, Dong-Seok

    2016-09-01

    Somatic cell nuclear transfer (SCNT) has been widely used as an efficient tool in biomedical research for the generation of transgenic animals from somatic cells with genetic modifications. Although remarkable advances in SCNT techniques have been reported in a variety of mammals, the cloning efficiency in domestic animals is still low due to the developmental defects of SCNT embryos. In particular, recent evidence has revealed that mitochondrial dysfunction is detected during the early development of SCNT embryos. However, there have been relatively few or no studies regarding the development of a system for evaluating mitochondrial behavior or dynamics. For the first time, in mitochondria of bovine SCNT embryos, we developed a method for the visualization of mitochondria and expression of fluorescence proteins. To express red fluorescence in mitochondria of cloned embryos, bovine ear skin fibroblasts, nuclear donor, were stably transfected with a vector carrying mitochondria-targeting DsRed2 gene tagged with V5 epitope (mito-DsRed2-V5 tag) using lentivirus-mediated gene transfer because of its ability to integrate in the cell genome and the potential for long-term transgene expression in the transduced cells and their dividing cells. From western blotting analysis of V5 tag protein using mitochondrial fraction and confocal microscopy of red fluorescence using SCNT embryos, we found that the mitochondrial expression of the mito-DsRed2 protein was detected until the blastocyst stage. In addition, according to image analysis, it may be suggested possible use of the system for visualization of mitochondrial localization and evaluation of mitochondrial behaviors or dynamics in early development of bovine SCNT embryos.

  7. The p66(Shc) adaptor protein controls oxidative stress response in early bovine embryos.

    PubMed

    Betts, Dean H; Bain, Nathan T; Madan, Pavneesh

    2014-01-01

    The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.

  8. Early life stage and genetic toxicity of stannous chloride on zebrafish embryos and adults: toxic effects of tin on zebrafish.

    PubMed

    Şişman, Turgay

    2011-06-01

    Humans are exposed to stannous chloride (SnCl(2)), known as tin chloride, present in packaged food, soft drinks, biocides, dentifrices, etc. Health effects in children exposed to tin and tin compounds have not been investigated yet. Therefore, we evaluated the possible teratogenic effects and genotoxic of SnCl(2) in zebrafish (Danio rerio) adults and their embryos. In the embryo-larval study, SnCl(2) showed embryo toxicity and developmental delay after exposure to the various concentrations of 10-250 μM for 120 h. Teratogenic effects including morphological malformations of the embryos and larvae were observed. The embryos exposed to 100 μM displayed tail deformation at 28 hpf and the larvae exposed to 50 μM showed reduced body growth, smaller head and eyes, bent trunk, mild pericardial edema, and smaller caudal fin at 96 hpf. The results of the teratological study show that SnCl(2) induced a significant decrease in the number of living embryos and larvae. Regarding the chromosome analysis, SnCl(2) induced a dose-dependent increase in the micronucleus (MN) frequency in peripheral erythrocytes of adult zebrafish. In blood cells, the 25 μM dose of SnCl(2) caused a nonsignificant increase in the total chromosomal aberrations, but the high doses significantly increased the total number of chromosomal aberrations compared with the control groups. Overall, the results clearly indicate that SnCl(2) is teratogenic and genotoxic to zebrafish.

  9. Embryos, microscopes, and society.

    PubMed

    Maienschein, Jane

    2016-06-01

    Embryos have different meanings for different people and in different contexts. Seen under the microscope, the biological embryo starts out as one cell and then becomes a bunch of cells. Gradually these divide and differentiate to make up the embryo, which in humans becomes a fetus at eight weeks, and then eventually a baby. At least, that happens in those cases that carry through normally and successfully. Yet a popular public perception imagines the embryo as already a little person in the very earliest stages of development, as if it were predictably to become an adult. In actuality, cells can combine, pull apart, and recombine in a variety of ways and still produce embryos, whereas most embryos never develop into adults at all. Biological embryos and popular imaginations of embryos diverge. This paper looks at some of the historical reasons for and social implications of that divergence.

  10. Zebrafish embryos as an alternative to animal experiments--a commentary on the definition of the onset of protected life stages in animal welfare regulations.

    PubMed

    Strähle, Uwe; Scholz, Stefan; Geisler, Robert; Greiner, Petra; Hollert, Henner; Rastegar, Sepand; Schumacher, Axel; Selderslaghs, Ingrid; Weiss, Carsten; Witters, Hilda; Braunbeck, Thomas

    2012-04-01

    Worldwide, the zebrafish has become a popular model for biomedical research and (eco)toxicology. Particularly the use of embryos is receiving increasing attention, since they are considered as replacement method for animal experiments. Zebrafish embryos allow the analysis of multiple endpoints ranging from acute and developmental toxicity determination to complex functional genetic and physiological analysis. Particularly the more complex endpoints require the use of post-hatched eleutheroembryo stages. According to the new EU Directive 2010/63/EU on the protection of animals used for scientific purposes, the earliest life-stages of animals are not defined as protected and, therefore, do not fall into the regulatory frameworks dealing with animal experimentation. Independent feeding is considered as the stage from which free-living larvae are subject to regulations for animal experimentation. However, despite this seemingly clear definition, large variations exist in the interpretation of this criterion by national and regional authorities. Since some assays require the use of post-hatched stages up to 120 h post fertilization, the literature and available data are reviewed in order to evaluate if this stage could still be considered as non-protected according to the regulatory criterion of independent feeding. Based on our analysis and by including criteria such as yolk consumption, feeding and swimming behavior, we conclude that zebrafish larvae can indeed be regarded as independently feeding from 120 h after fertilization. Experiments with zebrafish should thus be subject to regulations for animal experiments from 120 h after fertilization onwards.

  11. Production of good-quality blastocyst embryos following IVF of ovine oocytes vitrified at the germinal vesicle stage using a cryoloop.

    PubMed

    Moawad, Adel R; Zhu, Jie; Choi, Inchul; Amarnath, Dasari; Chen, Wenchao; Campbell, Keith H S

    2013-01-01

    The cryopreservation of immature oocytes at the germinal vesicle (GV) stage would create an easily accessible, non-seasonal source of female gametes for research and reproduction. The present study investigated the ability of ovine oocytes vitrified at the GV stage using a cryoloop to be subsequently matured, fertilised and cultured in vitro to blastocyst-stage embryos. Selected cumulus-oocyte complexes obtained from mature ewes at the time of death were randomly divided into vitrified, toxicity and control groups. Following vitrification and warming, viable oocytes were matured in vitro for 24 h. Matured oocytes were either evaluated for nuclear maturation, spindle and chromosome configuration or fertilised and cultured in vitro for 7 days. No significant differences were observed in the frequencies of IVM (oocytes at the MII stage), oocytes with normal spindle and chromatin configuration and fertilised oocytes among the three groups. Cleavage at 24 and 48 h post insemination was significantly decreased (P<0.01) in vitrified oocytes. No significant differences were observed in the proportion of blastocyst development between vitrified and control groups (29.4% v. 45.1%, respectively). No significant differences were observed in total cell numbers, the number of apoptotic nuclei or the proportion of diploid embryos among the three groups. In conclusion, we report for the first time that ovine oocytes vitrified at the GV stage using a cryoloop have the ability to be matured, fertilised and subsequently developed in vitro to produce good-quality blastocyst embryos at frequencies comparable to those obtained using fresh oocytes.

  12. Immunolocalization and expression of Na(+)/K(+) -ATPase in embryos, early larval stages and adults of the freshwater shrimp Palaemonetes argentinus (Decapoda, Caridea, Palaemonidae).

    PubMed

    Ituarte, Romina Belén; Lignot, Jehan-Hervé; Charmantier, Guy; Spivak, Eduardo; Lorin-Nebel, Catherine

    2016-06-01

    The euryhaline shrimp Palaemonetes argentinus exemplifies an evolutionary transition from brackish to freshwater habitats that requires adequate osmoregulatory capacities. Hyperosmoregulation is functional at hatching and it likely begins during the embryonic phase allowing this species to develop entirely in fresh water. Here, we investigated the Na(+)/K(+)-ATPase α-subunit gene (nka-α) expression using quantitative real-time PCR and localized Na(+)/K(+)-ATPase (NKA) in ion-transporting epithelia through immunofluorescence microscopy. We reared shrimps from spawning to juvenile stages at two salinities (1, 15 ‰) and maintained adults for 3 weeks at three salinity treatments (1, 15, 25 ‰). nka-α gene expression was measured in: (1) embryos at an early (SI), intermediate (SII) and late (SIII) stage of embryonic development; (2) newly hatched larvae (Zoea I, ZI); and (3) isolated gill tissue of adults. The nka-α expression was low in SI and SII embryos and reached maximum levels prior to hatching (SIII), which were similar to expression levels detected in the ZI. The nka-α expression in SIII and ZI was highest at 15 ‰, whereas salinity did not affect expression in earlier embryos. In SIII, in ZI and in a later zoeal stage ZIV, NKA was localized in epithelial cells of pleurae, in the inner-side epithelium of branchiostegite and in the antennal glands. Gills appeared in the ZIV but NKA immunolabeling of the cells of the gill shaft occurred in a subsequent developmental larval stage, the decapodid. Extrabranchial organs constitute the main site of osmoregulation in early ontogenetic stages of this freshwater shrimp.

  13. The First Human Cloned Embryo.

    ERIC Educational Resources Information Center

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  14. EXPOSURE TO A P13KINASE INHIBITOR PRODUCED DYSMORPHOGENESIS IN NEURULATION-STAGED MOUSE EMBRYOS IN CULTURE

    EPA Science Inventory

    The haloacetic acids (HAA) are a family of chemicals that are drinking water disinfection byproducts. We previously reported that bromo- and chloro-acetic acids alter embryonic development when mouse conceptuses are directly exposed to these xenobiotics in whole embryo culture. C...

  15. Developmental dynamics of IMSI-derived embryos: a time-lapse prospective study.

    PubMed

    Knez, Katja; Tomazevic, Tomaz; Vrtacnik-Bokal, Eda; Virant-Klun, Irma

    2013-08-01

    Because sperm vacuoles were marked as zones without chromatin in the sperm nucleus, which may reflect underlying chromosomal or DNA defects, this study considered whether they influence the morphology and dynamics of early developmental events in preimplantation embryos. Oocytes were injected with spermatozoa of four classes, according to the number and size of vacuoles at ×6000 magnification, and derived embryos were observed under time-lapse microscopy. For each embryo, the times of pronuclei appearance and disappearance and the first, second and third divisions were determined and related to its respective class of injected spermatozoa and its developmental stage. Embryos arising from normal class-I spermatozoa (without vacuoles) reached the 4-cell stage significantly earlier than embryos developed from class-IV spermatozoa (with large vacuoles and other abnormalities) (P=0.012). Blastocysts from class-I spermatozoa required the shortest mean time for all developmental events in comparison with blastocysts from spermatozoa of other classes (with vacuoles). Blastocysts also showed significantly earlier first division than arrested embryos in embryos arising from class-I spermatozoa (P=0.033). An insight into the developmental dynamics of embryo development according to morphology and head vacuoles of injected spermatozoa in morphologically selected sperm-derived embryos was observed for the first time.

  16. Adaptive Transition of Aquaporin 5 Expression and Localization during Preimplantation Embryo Development by In Vitro Culture.

    PubMed

    Park, Jae-Won; Shin, Yun Kyung; Choen, Yong-Pil

    2014-09-01

    Adaptive development of early stage embryo is well established and recently it is explored that the mammalian embryos also have adaptive ability to the stressful environment. However, the mechanisms are largely unknown. In this study, to evaluate the possible role of aquaporin in early embryo developmental adaptation, the expression of aquaporin (AQP) 5 gene which is detected during early development were examined by the environmental condition. To compare expression patterns between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP5 by whole mount immunofluorescence. At in vivo condition, Aqp5 expressed in oocyte and in all the stages of preimplantation embryo. It showed peak at 2-cell stage and decreased continuously until morula stage. At in vitro condition, Aqp5 expression pattern was similar with in vivo embryos. It expressed both at embryonic genome activation phase and second midpreimplantation gene activation phase, but the fold changes were modified between in vivo embryos and in vitro embryos. During in vivo development, AQP5 was mainly localized in apical membrane of blastomeres of 4-cell and 8-cell stage embryos, and then it was localized in cytoplasm. However, the main localization area of AQP5 was dramatically shifted after 8-cell stage from cytoplasm to nucleus by in vitro development. Those results explore the modification of Aqp5 expression levels and location of its final products by in vitro culture. It suggests that expression of Aqp5 and the roles of AQP5 in homeostasis can be modulated by in vitro culture, and that early stage embryos can develop successfully by themselves adapting to their condition through modulation of the specific gene expression and localization.

  17. Adaptive Transition of Aquaporin 5 Expression and Localization during Preimplantation Embryo Development by In Vitro Culture

    PubMed Central

    Park, Jae-Won; Shin, Yun Kyung; Choen, Yong-Pil

    2014-01-01

    Adaptive development of early stage embryo is well established and recently it is explored that the mammalian embryos also have adaptive ability to the stressful environment. However, the mechanisms are largely unknown. In this study, to evaluate the possible role of aquaporin in early embryo developmental adaptation, the expression of aquaporin (AQP) 5 gene which is detected during early development were examined by the environmental condition. To compare expression patterns between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP5 by whole mount immunofluorescence. At in vivo condition, Aqp5 expressed in oocyte and in all the stages of preimplantation embryo. It showed peak at 2-cell stage and decreased continuously until morula stage. At in vitro condition, Aqp5 expression pattern was similar with in vivo embryos. It expressed both at embryonic genome activation phase and second midpreimplantation gene activation phase, but the fold changes were modified between in vivo embryos and in vitro embryos. During in vivo development, AQP5 was mainly localized in apical membrane of blastomeres of 4-cell and 8-cell stage embryos, and then it was localized in cytoplasm. However, the main localization area of AQP5 was dramatically shifted after 8-cell stage from cytoplasm to nucleus by in vitro development. Those results explore the modification of Aqp5 expression levels and location of its final products by in vitro culture. It suggests that expression of Aqp5 and the roles of AQP5 in homeostasis can be modulated by in vitro culture, and that early stage embryos can develop successfully by themselves adapting to their condition through modulation of the specific gene expression and localization. PMID:25949184

  18. Estrous cycle staging before mating led to increased efficiency in the production of pseudopregnant recipients without negatively affecting embryo transfer in mice.

    PubMed

    Heykants, Malte; Mahabir, Esther

    2016-03-15

    The goal was to increase pseudopregnant mice production by estrous cycle staging by visual examination before pairing and to determine the effect of such pseudopregnant recipients on embryo transfer. To compare methods of estrous cycle staging over 14 days, groups consisted of 10 females in proestrus-estrus and 10 vasectomized males; group 1: only daily visual observation; group 2: daily visual observation and cytological examination on day 1; group 3: daily visual observation and daily cytological examination. The average time to first vaginal plug was 1.8 days in group 1, 2.7 days in group 2, and 3.2 days in group 3, whereas the average time between consecutive vaginal plugs was 9.2 days (group 1), 10 days (group 2), and 9.25 days (group 3). The average time between consecutive estrous cycles was 9.7 days (group 1), 11.8 days (group 2), and 9.4 days (group 3). The congruence between visual and cytological examination in determining proestrus-estrus in group 2 was 100% and that for the four stages in group 3 was 79% with a range of 44% to 100%. From 162 plug-positive females originally selected in proestrus-estrus, 49%, 30%, 19%, and 2% were plug-positive on Day 1, Day 2, Day 3, and Day 4, respectively, showing that pseudopregnant mice production was significantly increased on the first 2 days. From 192 plug-positive females originally selected randomly, these values were 31%, 21%, 35%, 10%, and 3% on d1, d2, d3, d4, and d5, respectively. No significant differences were observed between groups with respect to embryo transfers with fresh or cryopreserved embryos although the number of pups born per litter was higher in group A with fresh (7.57 vs. 6.39) and cryopreserved-thawed embryos (5.0 vs. 4.38). Furthermore, the sex ratio and the genotype of the pups were not significantly affected.

  19. Urochordate ascidians possess a single isoform of Aurora kinase that localizes to the midbody via TPX2 in eggs and cleavage stage embryos.

    PubMed

    Hebras, Celine; McDougall, Alex

    2012-01-01

    Aurora kinases are key proteins found throughout the eukaryotes that control mitotic progression. Vertebrate Aurora-A and B kinases are thought to have evolved from a single Aurora-kinase isoform closest to that found in present day urochordates. In urochordate ascidians Aurora binds both TPX2 (a vertebrate AURKA partner) and INCENP (a vertebrate AURKB partner) and localizes to centrosomes and spindle microtubules as well as chromosomes and midbody during both meiosis and mitosis. Ascidian Aurora also displays this localization pattern during mitosis in echinoderms, strengthening the idea that non-vertebrate deuterostomes such as the urochordates and echinoderms possess a single form of Aurora kinase that has properties of vertebrate Aurora-kinase A and B. In the ascidian, TPX2 localizes to the centrosome and the spindle poles also as in vertebrates. However, we were surprised to find that TPX2 also localized strongly to the midbody in ascidian eggs and embryos. We thus examined more closely Aurora localization to the midbody by creating two separate point mutations of ascidian Aurora predicted to perturb binding to TPX2. Both forms of mutated Aurora behaved as predicted: neither localized to spindle poles where TPX2 is enriched. Interestingly, neither form of mutated Aurora localized to the midbody where TPX2 is also enriched, suggesting that ascidian Aurora midbody localization required TPX2 binding in ascidians. Functional analysis revealed that inhibition of Aurora kinase with a pharmacological inhibitor or with a dominant negative kinase dead form of Aurora caused cytokinesis failure and perturbed midbody formation during polar body extrusion. Our data support the view that vertebrate Aurora-A and B kinases evolved from a single non-vertebrate deuterostome ancestor. Moreover, since TPX2 localizes to the midbody in ascidian eggs and cleavage stage embryos it may be worthwhile re-assessing whether Aurora A kinase or TPX2 localize to the midbody in eggs and

  20. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation.

    PubMed

    Singh, Karn P; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K; Chauhan, Manmohan S

    2012-12-01

    In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.

  1. The X-linked imprinted gene family Fthl17 shows predominantly female expression following the two-cell stage in mouse embryos

    PubMed Central

    Kobayashi, Shin; Fujihara, Yoshitaka; Mise, Nathan; Kaseda, Kazuhiro; Abe, Kuniya; Ishino, Fumitoshi; Okabe, Masaru

    2010-01-01

    Differences between male and female mammals are initiated by embryonic differentiation of the gonad into either a testis or an ovary. However, this may not be the sole determinant. There are reports that embryonic sex differentiation might precede and be independent of gonadal differentiation, but there is little molecular biological evidence for this. To test for sex differences in early-stage embryos, we separated male and female blastocysts using newly developed non-invasive sexing methods for transgenic mice expressing green fluorescent protein and compared the gene-expression patterns. From this screening, we found that the Fthl17 (ferritin, heavy polypeptide-like 17) family of genes was predominantly expressed in female blastocysts. This comprises seven genes that cluster on the X chromosome. Expression analysis based on DNA polymorphisms revealed that these genes are imprinted and expressed from the paternal X chromosome as early as the two-cell stage. Thus, by the time zygotic genome activation starts there are already differences in gene expression between male and female mouse embryos. This discovery will be important for the study of early sex differentiation, as clearly these differences arise before gonadal differentiation. PMID:20185572

  2. Peptidylarginine deiminase 1-catalyzed histone citrullination is essential for early embryo development

    PubMed Central

    Zhang, Xiaoqian; Liu, Xiaoqiu; Zhang, Mei; Li, Tingting; Muth, Aaron; Thompson, Paul R.; Coonrod, Scott A.; Zhang, Xuesen

    2016-01-01

    Peptidylarginine deiminase (PADI) enzymes are increasingly being associated with the regulation of chromatin structure and gene activity via histone citrullination. As one of the PADI family members, PADI1 has been mainly reported to be expressed in the epidermis and uterus, where the protein in keratinocytes is thought to promote differentiation by citrullinating filament proteins. However, the roles of PADI1 in preimplantation development have not been addressed. Using a PADI1-specific inhibitor and Padi1-morpholino knockdown, we found that citrullination of histone tails at H4R3 and H3R2/8/17 were markedly reduced in the 2- and 4-cell embryos. Consistent with this observation, early embryo development was also arrested at the 4-cell stage upon depletion of PADI1 or inhibition of PADI1 enzyme activity. Additionally, by employing 5-ethynyl uridine (EU) incorporation analysis, ablation of PADI1 function led to a dramatic decrease in overall transcriptional activity, correlating well with the reduced levels of phosphorylation of RNA Pol II at Ser2 observed at 2- or 4-cell stage of embryos under Padi1 knockdown or inhibiting PADI1. Thus, our data reveal a novel function of PADI1 during early embryo development transitions by catalyzing histone tail citrullination, which facilitates early embryo genome transactivation. PMID:27929094

  3. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus.

    PubMed

    Della Torre, C; Bergami, E; Salvati, A; Faleri, C; Cirino, P; Dawson, K A; Corsi, I

    2014-10-21

    Nanoplastic debris, resulted from runoff and weathering breakdown of macro- and microplastics, represents an emerging concern for marine ecosystems. The aim of the present study was to investigate disposition and toxicity of polystyrene nanoparticles (NPs) in early development of sea urchin embryos (Paracentrotus lividus). NPs with two different surface charges where chosen, carboxylated (PS-COOH) and amine (PS-NH2) polystyrene, the latter being a less common variant, known to induce cell death in several in vitro cell systems. NPs stability in natural seawater (NSW) was measured while disposition and embryotoxicity were monitored within 48 h of postfertilization (hpf). Modulation of genes involved in cellular stress response (cas8, 14-3-3ε, p-38 MAPK, Abcb1, Abcc5) was investigated. PS-COOH forms microaggregates (PDI > 0.4) in NSW, whereas PS-NH2 results are better dispersed (89 ± 2 nm) initially, though they also aggregated partially with time. Their respectively anionic and cationic nature was confirmed by ζ-potential measurements. No embryotoxicity was observed for PS-COOH up to 50 μg mL(-1) whereas PS-NH2 caused severe developmental defects (EC50 3.85 μg mL(-1) 24 hpf and EC50 2.61 μg mL(-1) 48 hpf). PS-COOH accumulated inside embryo's digestive tract while PS-NH2 were more dispersed. Abcb1 gene resulted up-regulated at 48 hpf by PS-COOH whereas PS-NH2 induced cas8 gene at 24 hpf, suggesting an apoptotic pathway. In line with the results obtained with the same PS NPs in several human cell lines, also in sea urchin embryos, differences in surface charges and aggregation in seawater strongly affect their embryotoxicity.

  4. Generation and developmental characteristics of porcine tetraploid embryos and tetraploid/diploid chimeric embryos.

    PubMed

    He, Wenteng; Kong, Qingran; Shi, Yongqian; Xie, Bingteng; Jiao, Mingxia; Huang, Tianqing; Guo, Shimeng; Hu, Kui; Liu, Zhonghua

    2013-10-01

    The aim of this study was to optimize electrofusion conditions for generating porcine tetraploid (4n) embryos and produce tetraploid/diploid (4n/2n) chimeric embryos. Different electric field intensities were tested and 2 direct current (DC) pulses of 0.9 kV/cm for 30 μs was selected as the optimum condition for electrofusion of 2-cell embryos to produce 4n embryos. The fusion rate of 2-cell embryos and the development rate to blastocyst of presumably 4n embryos, reached 85.4% and 28.5%, respectively. 68.18% of the fused embryos were found to be 4n as demonstrated by fluorescent in situ hybridization (FISH). Although the number of blastomeres in 4n blastocysts was significantly lower than in 2n blastocysts (P<0.05), there was no significant difference in developmental rates of blastocysts between 2n and 4n embryos (P>0.05), suggesting that the blastocyst forming capacity in 4n embryos is similar to those in 2n embryos. Moreover, 4n/2n chimeric embryos were obtained by aggregation of 4n and 2n embryos. We found that the developmental rate and cell number of blastocysts of 4-cell (4n)/4-cell (2n) chimeric embryos were significantly higher than those of 2-cell (4n)/4-cell (2n), 4-cell (4n)/8-cell (2n), 4-cell (4n)/2-cell (2n) chimeric embryos (P<0.05). Consistent with mouse chimeras, the majority of 4n cells contribute to the trophectoderm (TE), while the 2n cells are mainly present in the inner cell mass (ICM) of porcine 4n/2n chimeric embryos. Our study established a feasible and efficient approach to produce porcine 4n embryos and 4n/2n chimeric embryos.

  5. Laser microbeam-induced DNA damage inhibits cell division in fertilized eggs and early embryos

    PubMed Central

    Wang, Zhong-Wei; Ma, Xue-Shan; Ma, Jun-Yu; Luo, Yi-Bo; Lin, Fei; Wang, Zhen-Bo; Fan, Heng-Yu; Schatten, Heide; Sun, Qing-Yuan

    2013-01-01

    DNA double-strand breaks are caused by both intracellular physiological processes and environmental stress. In this study, we used laser microbeam cut (abbreviated microcut or cut), which allows specific DNA damage in the pronucleus of a fertilized egg and in individual blastomere(s) of an early embryo, to investigate the response of early embryos to DNA double-strand breaks. Line type γH2AX foci were detected in the cut region, while Chk2 phosphorylation staining was observed in the whole nuclear region of the cut pronuclei or blastomeres. Zygotes with cut male or female pronucleus showed poor developmental capability: the percentage of cleavage embryos was significantly decreased, and the embryos failed to complete further development to blastocysts. The cut blastomeres in 2-cell, 4-cell, and 8-cell embryos ceased cleavage, and they failed to incorporate into compacted morulae, but instead underwent apoptosis and cell death at the blastocyst stage; the uncut part of embryos could develop to blastocysts, with a reduced percentage or decreased cell number. When both blastomeres of the 2-cell embryos were cut by laser microbeam, cell death occurred 24 h earlier, suggesting important functions of the uncut blastomere in delaying cell death of the cut blastomere. Taken together, we conclude that microbeam-induced DNA damage in early embryos causes compromised development, and that embryos may have their own mechanisms to exclude DNA-damaged blastomeres from participating in further development. PMID:24036543

  6. Epidermal growth factor improves developmental competence and embryonic quality of singly cultured domestic cat embryos

    PubMed Central

    THONGKITTIDILOK, Chommanart; THARASANIT, Theerawat; SONGSASEN, Nucharin; SANANMUANG, Thanida; BUARPUNG, Sirirak; TECHAKUMPHU, Mongkol

    2015-01-01

    This study examined the influence of EGF on the expression of EGF receptors (EGFR) and developmental competence of embryos cultured individually versus those cultured in groups. Cat oocytes were in vitro matured and fertilized (IVM/IVF), and cleaved embryos were randomly assigned to one of seven culture conditions: one group each in which embryos were subjected to group culture supplemented with or without 5 ng/ml EGF and five groups in which embryos were subjected to single-embryo culture supplemented with EGF (0, 5, 25, 50 or 100 ng/ml). Morulae, blastocysts and hatching blastocysts were assessed at days 5 and 7; post IVF, respectively, and total blastocyst cell numbers were assessed at day 7. Relative mRNA expressions of EGFR of 2–4-cell embryos, 8–16-cell embryos, morulae and blastocysts cultured in groups or singly with or without EGF supplementation were examined. OCT3/4 and Ki67 in blastocysts derived from the group or single-embryo culture systems with or without EGF supplementation were localized. A higher rate of embryos cultured in groups developed to blastocysts than individually incubated cohorts. Although EGF increased blastocyst formation in the single-embryo culture system, EGF did not affect embryo development in group culture. Expression levels of EGFR decreased in morulae and blastocysts cultured with EGF. An increased ratio of Ki67-positive cells to the total number of cells in the blastocyst was observed in singly cultured embryos in the presence of EGF. However, EGF did not affect the expression of OCT3/4. These findings indicate that EGF enhanced developmental competence of cat embryos cultured singly by stimulating cell proliferation and modulating the EGFR expression at various developmental stages. PMID:25985792

  7. Epidermal growth factor improves developmental competence and embryonic quality of singly cultured domestic cat embryos.

    PubMed

    Thongkittidilok, Chommanart; Tharasanit, Theerawat; Songsasen, Nucharin; Sananmuang, Thanida; Buarpung, Sirirak; Techakumphu, Mongkol

    2015-01-01

    This study examined the influence of EGF on the expression of EGF receptors (EGFR) and developmental competence of embryos cultured individually versus those cultured in groups. Cat oocytes were in vitro matured and fertilized (IVM/IVF), and cleaved embryos were randomly assigned to one of seven culture conditions: one group each in which embryos were subjected to group culture supplemented with or without 5 ng/ml EGF and five groups in which embryos were subjected to single-embryo culture supplemented with EGF (0, 5, 25, 50 or 100 ng/ml). Morulae, blastocysts and hatching blastocysts were assessed at days 5 and 7; post IVF, respectively, and total blastocyst cell numbers were assessed at day 7. Relative mRNA expressions of EGFR of 2-4-cell embryos, 8-16-cell embryos, morulae and blastocysts cultured in groups or singly with or without EGF supplementation were examined. OCT3/4 and Ki67 in blastocysts derived from the group or single-embryo culture systems with or without EGF supplementation were localized. A higher rate of embryos cultured in groups developed to blastocysts than individually incubated cohorts. Although EGF increased blastocyst formation in the single-embryo culture system, EGF did not affect embryo development in group culture. Expression levels of EGFR decreased in morulae and blastocysts cultured with EGF. An increased ratio of Ki67-positive cells to the total number of cells in the blastocyst was observed in singly cultured embryos in the presence of EGF. However, EGF did not affect the expression of OCT3/4. These findings indicate that EGF enhanced developmental competence of cat embryos cultured singly by stimulating cell proliferation and modulating the EGFR expression at various developmental stages.

  8. Stem Cell Differentiation Stage Factors from Zebrafish Embryo: A Novel Strategy to Modulate the Fate of Normal and Pathological Human (Stem) Cells

    PubMed Central

    Biava, Pier M.; Canaider, Silvia; Facchin, Federica; Bianconi, Eva; Ljungberg, Liza; Rotilio, Domenico; Burigana, Fabio; Ventura, Carlo

    2015-01-01

    In spite of the growing body of evidence on the biology of the Zebrafish embryo and stem cells, including the use of Stem Cell Differentiation Stage Factors (SCDSFs) taken from Zebrafish embryo to impact cancer cell dynamics, comparatively little is known about the possibility to use these factors to modulate the homeostasis of normal human stem cells or to modulate the behavior of cells involved in different pathological conditions. In the present review we recall in a synthetic way the most important researches about the use of SCDSFs in reprogramming cancer cells and in modulating the high speed of multiplication of keratinocytes which is characteristic of some pathological diseases like psoriasis. Moreover we add here the results about the capability of SCDSFs in modulating the homeostasis of human adipose-derived stem cells (hASCs) isolated from a fat tissue obtained with a novel-non enzymatic method and device. In addition we report the data not yet published about a first protein analysis of the SCDSFs and about their role in a pathological condition like neurodegeneration. PMID:26201607

  9. Stem Cell Differentiation Stage Factors from Zebrafish Embryo: A Novel Strategy to Modulate the Fate of Normal and Pathological Human (Stem) Cells.

    PubMed

    Biava, Pier M; Canaider, Silvia; Facchin, Federica; Bianconi, Eva; Ljungberg, Liza; Rotilio, Domenico; Burigana, Fabio; Ventura, Carlo

    2015-01-01

    In spite of the growing body of evidence on the biology of the Zebrafish embryo and stem cells, including the use of Stem Cell Differentiation Stage Factors (SCDSFs) taken from Zebrafish embryo to impact cancer cell dynamics, comparatively little is known about the possibility to use these factors to modulate the homeostasis of normal human stem cells or to modulate the behavior of cells involved in different pathological conditions. In the present review we recall in a synthetic way the most important researches about the use of SCDSFs in reprogramming cancer cells and in modulating the high speed of multiplication of keratinocytes which is characteristic of some pathological diseases like psoriasis. Moreover we add here the results about the capability of SCDSFs in modulating the homeostasis of human adiposederived stem cells (hASCs) isolated from a fat tissue obtained with a novel-non enzymatic method and device. In addition we report the data not yet published about a first protein analysis of the SCDSFs and about their role in a pathological condition like neurodegeneration.

  10. Comparative proteomic analysis of embryos between a maize hybrid and its parental lines during early stages of seed germination.

    PubMed

    Guo, Baojian; Chen, Yanhong; Zhang, Guiping; Xing, Jiewen; Hu, Zhaorong; Feng, Wanjun; Yao, Yingyin; Peng, Huiru; Du, Jinkun; Zhang, Yirong; Ni, Zhongfu; Sun, Qixin

    2013-01-01

    In spite of commercial use of heterosis in agriculture, the molecular basis of heterosis is poorly understood. It was observed that maize hybrid Zong3/87-1 exhibited an earlier onset or heterosis in radicle emergence. To get insights into the underlying mechanism of heterosis in radicle emergence, differential proteomic analysis between hybrid and its parental lines was performed. In total, the number of differentially expressed protein spots between hybrid and its parental lines in dry and 24 h imbibed seed embryos were 134 and 191, respectively, among which 47.01% (63/134) and 34.55% (66/191) protein spots displayed nonadditively expressed pattern. Remarkably, 54.55% of nonadditively accumulated proteins in 24 h imbibed seed embryos displayed above or equal to the level of the higher parent patterns. Moreover, 155 differentially expressed protein spots were identified, which were grouped into eight functional classes, including transcription & translation, energy & metabolism, signal transduction, disease & defense, storage protein, transposable element, cell growth & division and unclassified proteins. In addition, one of the upregulated proteins in F1 hybrids was ZmACT2, a homolog of Arabidopsis thaliana ACT7 (AtACT7). Expressing ZmACT2 driven by the AtACT7 promoter partially complemented the low germination phenotype in the Atact7 mutant. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of proteins, and it is concluded that the altered pattern of gene expression at translational level in the hybrid may be responsible for the observed heterosis.

  11. Transcriptome Analysis of Pig In Vivo, In Vitro–Fertilized, and Nuclear Transfer Blastocyst-Stage Embryos Treated with Histone Deacetylase Inhibitors Postfusion and Activation Reveals Changes in the Lysosomal Pathway

    PubMed Central

    Whitworth, Kristin M.; Mao, Jiude; Lee, Kiho; Spollen, William G.; Samuel, Melissa S.; Walters, Eric M.; Spate, Lee D.

    2015-01-01

    Abstract Genetically modified pigs are commonly created via somatic cell nuclear transfer (SCNT). Treatment of reconstructed embryos with histone deacetylase inhibitors (HDACi) immediately after activation improves cloning efficiency. The objective of this experiment was to evaluate the transcriptome of SCNT embryos treated with suberoylanilide hydroxamic acid (SAHA), 4-iodo-SAHA (ISAHA), or Scriptaid as compared to untreated SCNT, in vitro–fertilized (IVF), and in vivo (IVV) blastocyst-stage embryos. SAHA (10 μM) had the highest level of blastocyst development at 43.9%, and all treatments except 10 μM ISAHA had the same percentage of blastocyst development as Scriptaid (p<0.05). Two treatments, 1.0 μM ISAHA and 1.0 μM SAHA, had higher mean cell number than No HDACi treatment (p<0.021). Embryo transfers performed with 10 μM SAHA- and 1 μM ISAHA-treated embryos resulted in the birth of healthy piglets. GenBank accession numbers from up- and downregulated transcripts were loaded into the Database for Annotation, Visualization and Integrated Discovery to identify enriched biological themes. HDACi treatment yielded the highest enrichment for transcripts within the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway, lysosome. The mean intensity of LysoTracker was lower in IVV embryos compared to IVF and SCNT embryos (p<0.0001). SAHA and ISAHA can successfully be used to create healthy piglets from SCNT. PMID:26731590

  12. Transcriptome Analysis of Pig In Vivo, In Vitro-Fertilized, and Nuclear Transfer Blastocyst-Stage Embryos Treated with Histone Deacetylase Inhibitors Postfusion and Activation Reveals Changes in the Lysosomal Pathway.

    PubMed

    Whitworth, Kristin M; Mao, Jiude; Lee, Kiho; Spollen, William G; Samuel, Melissa S; Walters, Eric M; Spate, Lee D; Prather, Randall S

    2015-08-01

    Genetically modified pigs are commonly created via somatic cell nuclear transfer (SCNT). Treatment of reconstructed embryos with histone deacetylase inhibitors (HDACi) immediately after activation improves cloning efficiency. The objective of this experiment was to evaluate the transcriptome of SCNT embryos treated with suberoylanilide hydroxamic acid (SAHA), 4-iodo-SAHA (ISAHA), or Scriptaid as compared to untreated SCNT, in vitro-fertilized (IVF), and in vivo (IVV) blastocyst-stage embryos. SAHA (10 μM) had the highest level of blastocyst development at 43.9%, and all treatments except 10 μM ISAHA had the same percentage of blastocyst development as Scriptaid (p<0.05). Two treatments, 1.0 μM ISAHA and 1.0 μM SAHA, had higher mean cell number than No HDACi treatment (p<0.021). Embryo transfers performed with 10 μM SAHA- and 1 μM ISAHA-treated embryos resulted in the birth of healthy piglets. GenBank accession numbers from up- and downregulated transcripts were loaded into the Database for Annotation, Visualization and Integrated Discovery to identify enriched biological themes. HDACi treatment yielded the highest enrichment for transcripts within the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway, lysosome. The mean intensity of LysoTracker was lower in IVV embryos compared to IVF and SCNT embryos (p<0.0001). SAHA and ISAHA can successfully be used to create healthy piglets from SCNT.

  13. High sensitivity of embryo-larval stage of the Mediterranean mussel, Mytilus galloprovincialis to metal pollution in combination with temperature increase.

    PubMed

    Boukadida, Khouloud; Banni, Mohamed; Gourves, Pierre-Yves; Cachot, Jérôme

    2016-12-01

    The present work aimed to assess the effects of two widespread metallic pollutants, copper and silver, along with environmentally-realistic temperature increases, on embryo-larval development of the Mediterranean mussel Mytilus galloprovincialis. First, mussel embryos upon fertilization were exposed for 48 h to increasing concentrations of Cu (0.5-500 μg/L) and Ag (0.1-100 μg/L) at different temperatures (18, 20, 22 or 24 °C) in order to characterize toxicity of each toxicant at the different tested temperatures. Increasing concentrations of a Cu-Ag mixture were then tested in order to assess the mixture effect at different temperatures (18, 20 or 22 °C). Embryotoxicity was measured after 48 h of exposure (D-larvae stage) considering both the percentage of abnormalities and developmental arrest in D-larvae. The results suggest that the optimum temperature for mussel larvae development is 18 °C (12.65± 1.6% malformations) and beyond 20 °C a steep increase of abnormal larvae was observed up to 100% at 24 °C. Ag was more toxic than Cu with a 50% effective concentration (EC50) at 18 °C of 6.58 μg/L and 17.6 μg/L, respectively. Temperature increased the toxicity of both metals as proved with the EC50 at 20 °C at 3.86 μg/L and 16.28 μg/L for Ag and Cu respectively. Toxic unit calculation suggests additive effects of Cu and Ag in mixture at 18 and 20 °C. These results highlight a possible impairment of M. galloprovincialis reproduction in the Mediterranean Sea in relation to increase of both pollutants and water temperature due to global warming.

  14. Paternal exposure to testis cancer chemotherapeutics alters sperm fertilizing capacity and affects gene expression in the eight-cell stage rat embryo.

    PubMed

    Maselli, J; Hales, B F; Robaire, B

    2014-03-01

    Treatment of testicular cancer includes the coadministration of bleomycin, etoposide and cis-platinum (BEP); however, along with its therapeutic benefit, BEP exposure results in extensive reproductive chemotoxic effects, including alterations to sperm chromatin integrity. As an intact paternal genome is essential for successful fertilization and embryogenesis, we assessed the effect of paternal exposure to BEP on sperm fertilization capacity and the resulting consequences on early embryonic gene expression. Adult male Brown Norway rats received a 9-week treatment with BEP or saline and then were sacrificed immediately or subject to a 9-week recovery period. HSP90AA1, HSP90B1 and PDIA3, involved in spermatozoa-egg interactions, were overexpressed in BEP-exposed spermatozoa after the 9-week treatment period; overexpression was also observed in spermatozoa from BEP-treated rats after 9 weeks of recovery. These proteins were localized to the plasma membrane of the sperm head; this localization may facilitate their role in spermatozoa-egg interactions as the highest staining intensities were observed in capacitated spermatozoa. The fertilization potential of spermatozoa was determined by in vitro fertilization with oocytes from unexposed naturally cycling female rats. Interestingly, the fertilization potential of spermatozoa following a 9-week recovery period from BEP treatment was significantly enhanced compared with controls. Moreover, stem cell transcription factors, involved in the regulation of a plethora of early embryonic events, were upregulated by more than twofold in eight-cell stage embryos sired by BEP recovery males compared with controls; this suggests that there are potential deleterious effects on embryo development well after termination of BEP exposure.

  15. Embryonic-stage-dependent changes in the level of eIF4E-binding proteins during early development of sea urchin embryos.

    PubMed

    Salaün, Patrick; Boulben, Sandrine; Mulner-Lorillon, Odile; Bellé, Robert; Sonenberg, Nahum; Morales, Julia; Cormier, Patrick

    2005-04-01

    The eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) inhibit translation initiation by binding eIF4E and preventing recruitment of the translation machinery to mRNA. We have previously shown that fertilization of sea urchin eggs triggers eIF4E-4E-BP complex dissociation and 4E-BP degradation. Here, we show that microinjection of eIF4E-binding motif peptide into unfertilized eggs delays the onset of the first mitosis triggered by fertilization, demonstrating that dissociation of the eIF4E-4E-BP complex is functionally important for the first mitotic division in sea urchin embryos. We also show by gel filtration analyses that eIF4E is present in unfertilized eggs as an 80 kDa molecular mass complex containing 4E-BP and a new 4E-BP of 40 kDa. Fertilization triggers the dissociation of eIF4E from these two 4E-BPs and triggers the rapid recruitment of eIF4E into a high-molecular-mass complex. Release of eIF4E from the two 4E-BPs is correlated with a decrease in the total level of both 4E-BPs following fertilization. Abundance of the two 4E-BPs has been monitored during embryonic development. The level of the two proteins remains very low during the rapid cleavage stage of early development and increases 8 hours after fertilization. These results demonstrate that these two 4E-BPs are down- and upregulated during the embryonic development of sea urchins. Consequently, these data suggest that eIF4E availability to other partners represents an important determinant of the early development of sea urchin embryos.

  16. Label Free Cell-Tracking and Division Detection Based on 2D Time-Lapse Images For Lineage Analysis of Early Embryo Development

    PubMed Central

    Cicconet, Marcelo; Gutwein, Michelle; Gunsalus, Kristin C; Geiger, Davi

    2014-01-01

    In this paper we report a database and a series of techniques related to the problem of tracking cells, and detecting their divisions, in time-lapse movies of mammalian embryos. Our contributions are: (1) a method for counting embryos in a well, and cropping each individual embryo across frames, to create individual movies for cell tracking; (2) a semi-automated method for cell tracking that works up to the 8-cell stage, along with a software implementation available to the public (this software was used to build the reported database); (3) an algorithm for automatic tracking up to the 4-cell stage, based on histograms of mirror symmetry coefficients captured using wavelets; (4) a cell-tracking database containing 100 annotated examples of mammalian embryos up to the 8-cell stage; (5) statistical analysis of various timing distributions obtained from those examples. PMID:24873887

  17. Kid depletion in mouse oocytes associated with multinucleated blastomere formation and inferior embryo development.

    PubMed

    Egashira, Akiyoshi; Yamauchi, Nobuhiko; Islam, Md Rashedul; Yamagami, Kazuki; Tanaka, Asami; Suyama, Hikaru; El-Sayed, El-Sharawy Mohamed; Tabata, Shoji; Kuramoto, Takashi

    2016-08-01

    This study investigated the knockdown (KD) of Kid on maturation developmental competence and multinucleation of mouse germinal vesicle (GV) oocytes after parthenogenetic activation. Data revealed that Kid messenger RNA (mRNA) was expressed in GV and MII stage oocyte and 1- and 2-cell embryos. Additionally, Kid mRNA expression in the Kid KD group decreased by nearly 46% compared to the control small interfering RNA (siRNA) groups. The rate of multinucleated embryos in the Kid KD group (52.4%) was significantly higher (P < 0.05) than the control siRNA group (4.7%). Finally, the developmental rates were significantly lower in the Kid siRNA group at > 4-cell stage (28.6% vs. 53.5%) and the blastocyst stage (2.4% vs. 23.3%) compared to the control siRNA groups. Suppression of Kid using siRNA caused multinucleation in early embryos with high frequency and it may increase 2- to 4-cell arrested embryos and reduce the developmental competence to blastocyst.

  18. Absence of nucleolus formation in raccoon dog-porcine interspecies somatic cell nuclear transfer embryos results in embryonic developmental failure

    PubMed Central

    JEON, Yubyeol; NAM, Yeong-Hee; CHEONG, Seung-A; KWAK, Seong-Sung; LEE, Eunsong; HYUN, Sang-Hwan

    2016-01-01

    Interspecies somatic cell nuclear transfer (iSCNT) can be a solution for preservation of endangered species that have limited oocytes. It has been reported that blastocyst production by iSCNT is successful even if the genetic distances between donors and recipients are large. In particular, domestic pig oocytes can support the development of canine to porcine iSCNT embryos. Therefore, we examined whether porcine oocytes may be suitable recipient oocytes for Korean raccoon dog iSCNT. We investigated the effects of trichostatin A (TSA) treatment on iSCNT embryo developmental patterns and nucleolus formation. Enucleated porcine oocytes were fused with raccoon dog fibroblasts by electrofusion and cleavage, and blastocyst development and nucleolus formation were evaluated. To our knowledge, this study is the first in which raccoon dog iSCNT was performed using porcine oocytes; we found that 68.5% of 158 iSCNT embryos had the ability to cleave. However, these iSCNT embryos did not develop past the 4-cell stage. Treatment with TSA did not affect iSCNT embryonic development; moreover, the nuclei failed to form nucleoli at 48 and 72 h post-activation (hpa). In contrast, pig SCNT embryos of the control group showed 18.8% and 87.9% nucleolus formation at 48 and 72 hpa, respectively. Our results demonstrated that porcine cytoplasts efficiently supported the development of raccoon dog iSCNT embryos to the 4-cell stage, the stage of porcine embryonic genome activation (EGA); however, these embryos failed to reach the blastocyst stage and showed defects in nucleolus formation. PMID:27064112

  19. Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda).

    PubMed

    Oh, Thomas J; Wartell, Roger M; Cairney, John; Pullman, Gerald S

    2008-01-01

    MicroRNAs (miRNAs) are known to regulate plant development, but have not been studied in gymnosperm seed tissues. The presence and characteristics of several miRNAs were examined in zygotic embryos (ZEs) and female gametophytes (FGs) of Pinus taeda (loblolly pine). Evidence for miRNAs was obtained using northern analyses and quantitative reverse transcription polymerase chain reaction (qRT-PCR) mediated with poly(A) polymerase. Partial sequences of two miRNAs were verified. Three regions of putative mRNA targets were analyzed by qRT-PCR to monitor the occurrence of stage-dependent miRNA-mediated cleavage. Five miRNAs were identified in ZEs and FGs along with partial sequences of Pta-miR166 and Pta-miR167. Both miRNAs showed differing degrees of tissue-specific and stage-specific modulation. Analysis of HB15L mRNA (a potential Pta-miR166 target) suggested miRNA-guided cleavage in ZEs and FGs. Analysis of ARF8L mRNA (a potential Pta-miR167 target) implied cleavage in ZEs but not in FGs. Argonaute9-like mRNA (ptAGO9L) showed stage-specific modulation of expression in ZEs that appeared to be inverted in the corresponding FGs. MicroRNAs and argonaute genes varied spatiotemporally during seed development. The peak levels of Pta-miR166 in FGs and ptAGO9L in embryos occurred at stage 9.1, a critical transition point during embryo development and a point where somatic embryo maturation often stops. MicroRNAs identified in FG tissue may play a role in embryogenesis.

  20. Exposure time to caffeine affects heartbeat and cell damage-related gene expression of zebrafish Danio rerio embryos at early developmental stages.

    PubMed

    Abdelkader, Tamer Said; Chang, Seo-Na; Kim, Tae-Hyun; Song, Juha; Kim, Dong Su; Park, Jae-Hak

    2013-11-01

    Caffeine is white crystalline xanthine alkaloid that is naturally found in some plants and can be produced synthetically. It has various biological effects, especially during pregnancy and lactation. We studied the effect of caffeine on heartbeat, survival and the expression of cell damage related genes, including oxidative stress (HSP70), mitochondrial metabolism (Cyclin G1) and apoptosis (Bax and Bcl2), at early developmental stages of zebrafish embryos. We used 100 µm concentration based on the absence of locomotor effects. Neither significant mortality nor morphological changes were detected. We monitored hatching at 48 h post-fertilization (hpf) to 96 hpf. At 60 and 72 hpf, hatching decreased significantly (P < 0.05); however, the overall hatching rate at 96 hpf was 94% in control and 93% in caffeine treatment with no significant difference (P > 0.05). Heartbeats per minute were 110, 110 and 112 in control at 48, 72 and 96 hpf, respectively. Caffeine significantly increased heartbeat - 122 and 136 at 72 and 96 hpf, respectively. Quantitative RT-PCR showed significant up-regulation after caffeine exposure in HSP70 at 72 hpf; in Cyclin G1 at 24, 48 and 72 hpf; and in Bax at 48 and 72 hpf. Significant down-regulation was found in Bcl2 at 48 and 72 hpf. The Bax/Bcl2 ratio increased significantly at 48 and 72 hpf. We conclude that increasing exposure time to caffeine stimulates oxidative stress and may trigger apoptosis via a mitochondrial-dependent pathway. Also caffeine increases heartbeat from early phases of development without affecting the morphology and survival but delays hatching. Use of caffeine during pregnancy and lactation may harm the fetus by affecting the expression of cell-damage related genes.

  1. A role for histamine in cardiovascular regulation in late stage embryos of the red-footed tortoise, Chelonoidis carbonaria Spix, 1824.

    PubMed

    Crossley, Dane A; Sartori, Marina R; Abe, Augusto S; Taylor, Edwin W

    2013-08-01

    A chorioallantoic membrane artery in embryos of the red-footed tortoise, Chelonoidis carbonaria was occlusively cannulated for measurement of blood pressure and injection of drugs. Two age groups of embryos in the final 10 % of incubation were categorized by the ratio of embryonic body to yolk mass. All embryos first received cholinergic and β-adrenergic blockade. This revealed that β-adrenergic control was established in both groups whereas cholinergic control was only established in the older group immediately prior to hatching. The study then progressed as two series. Series one was conducted in a subset of embryos treated with histamine before or after injection of ranitidine, the antagonist of H2 receptors. Injection of histamine caused an initial phasic hypertension which recovered, followed by a longer lasting hypertensive response accompanied by a tachycardia. Injection of the H2 receptor antagonist ranitidine itself caused a hypotensive tachycardia with subsequent recovery of heart rate. Ranitidine also abolished the cardiac effects of histamine injection while leaving the initial hypertensive response intact. In series, two embryos were injected with histamine after injection of diphenhydramine, the antagonist to H1 receptors. This abolished the whole of the pressor response to histamine injection but left the tachycardic response intact. These data indicate that histamine acts as a non-adrenergic, non-cholinergic factor, regulating the cardiovascular system of developing reptilian embryos and that its overall effects are mediated via both H1 and H2 receptor types.

  2. Embryos aggregation improves development and imprinting gene expression in mouse parthenogenesis.

    PubMed

    Bai, Guang-Yu; Song, Si-Hang; Wang, Zhen-Dong; Shan, Zhi-Yan; Sun, Rui-Zhen; Liu, Chun-Jia; Wu, Yan-Shuang; Li, Tong; Lei, Lei

    2016-04-01

    Mouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8-cell stage (named as a2 PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs. To verify this hypothesis, we aggregated four embryos together at the 4-cell stage and cultured to the blastocyst stage (named as 4aPgB). qPCR detection showed that the expression of imprinting genes Igf2, Mest, Snrpn, Igf2r, H19, Gtl2 in 4aPgB were more similar to that of fertilized blastocyst (named as fB) compared to 2aPgB (derived from two 4-cell stage parthenogenetic embryos aggregation) or PgB (single parthenogenetic blastocyst). Post-implantation development of 4aPgB extended to 11 days of gestation. The establishment efficiency of GFP-a4 PgESCs which derived from GFP-4aPgB is 62.5%. Moreover, expression of imprinting genes Igf2, Mest, Snrpn, notably downregulated and approached the level of that in fertilized embryonic stem cells (fESCs). In addition, we acquired a 13.5-day fetus totally derived from GFP-a4 PgESCs with germline contribution by 8-cell under zona pellucida (ZP) injection. In conclusion, four embryos aggregation improves parthenogenetic development, and compensates imprinting genes expression in PgESCs. It implied that a4 PgESCs could serve as a better scientific model applied in translational medicine and imprinting gene study.

  3. Successful embryo transfer following artificial insemination of superovulated fallow deer (Dama dama).

    PubMed

    Jabbour, H N; Marshall, V S; Argo, C M; Hooton, J; Loudon, A S

    1994-01-01

    Thirty-four European fallow deer (Dama dama dama) were randomly allocated into embryo donor (n = 12) or embryo recipient (n = 22) groups. All does were treated with controlled internal drug release (CIDR) devices for 14 days. Animals in the embryo donor group were further treated with 200 I.U. pregnant mare serum gonadotrophin (PMSG) and 0.5 units ovine follicle-stimulating hormone (FSH). PMSG was administered 72 h before withdrawal of CIDR devices and FSH was given in eight 0.063 unit injections at 12-hourly intervals starting at the time of PMSG administration. All embryo donor animals were inseminated, by laparoscopy in both uterine horns, 36 h after withdrawal of CIDR devices with 25 x 10(6) fresh spermatozoa collected from Mesopotamian fallow deer (Dama dama mesopotamica). Embryos were recovered by laparotomy on Day 3 (n = 6) or Day 6 (n = 6) after withdrawal of CIDR devices and the ovarian response was determined. In total, 22 embryos were transferred into the oviduct (2-4-cell stage, n = 14) or uterine horn (morula stage, n = 8) on Day 3 or Day 6 after withdrawal of CIDR devices respectively. The overall means (+/- s.e.m.) of total follicular response and corpora lutea were 24.2 +/- 3.5 and 14.1 +/- 3.6 respectively. The mean number of large unruptured follicles was higher on Day 6 than on Day 3 (13.5 +/- 2.9 v. 6.7 +/- 1.3, P < 0.05). The overall embryo recovery rate was 45.8%. There was no difference in pregnancy rate following transfer of embryos on either Day 3 or Day 6 (7/14 v. 5/8 respectively).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Antisense inhibition of cyclin D1 expression is equivalent to flavopiridol for radiosensitization of zebrafish embryos

    SciTech Connect

    McAleer, Mary Frances; Duffy, Kevin T.; Davidson, William R.; Kari, Gabor; Dicker, Adam P.; Rodeck, Ulrich; Wickstrom, Eric . E-mail: eric@tesla.jci.tju.edu

    2006-10-01

    Purpose: Flavopiridol, a small molecule pan-cyclin inhibitor, has been shown to enhance Radiation response of tumor cells both in vitro and in vivo. The clinical utility of flavopiridol, however, is limited by toxicity, previously attributed to pleiotropic inhibitory effects on several targets affecting multiple signal transduction pathways. Here we used zebrafish embryos to investigate radiosensitizing effects of flavopiridol in normal tissues. Methods and Materials: Zebrafish embryos at the 1- to 4-cell stage were treated with 500 nM flavopiridol or injected with 0.5 pmol antisense hydroxylprolyl-phosphono nucleic acid oligomers to reduce cyclin D1 expression, then subjected to ionizing radiation (IR) or no radiation. Results: Flavopiridol-treated embryos demonstrated a twofold increase in mortality after exposure to 40 Gy by 96 hpf and developed distinct radiation-induced defects in midline development (designated as the 'curly up' phenotype) at higher rates when compared with embryos receiving IR only. Cyclin D1-deficient embryos had virtually identical IR sensitivity profiles when compared with embryos treated with flavopiridol. This was particularly evident for the IR-induced curly up phenotype, which was greatly exacerbated by both flavopriridol and cyclin D1 downregulation. Conclusions: Treatment of zebrafish embryos with flavopiridol enhanced radiation sensitivity of zebrafish embryos to a degree that was very similar to that associated with downregulation of cyclin D1 expression. These results are consistent with the hypothesis that inhibition of cyclin D1 is sufficient to account for the radiosensitizing action of flavopiridol in the zebrafish embryo vertebrate model.

  5. Direct Unequal Cleavages: Embryo Developmental Competence, Genetic Constitution and Clinical Outcome

    PubMed Central

    Zhan, Qiansheng; Ye, Zhen; Clarke, Robert; Rosenwaks, Zev; Zaninovic, Nikica

    2016-01-01

    Objective To investigate the prevalence, developmental potential, chromosomal constitution and clinical outcome of embryos with direct unequal cleavages (DUC). Design A retrospective observational study. Setting Academic Institution. Participant 21,261 embryos from 3,155 cycles cultured in EmbryoScope®. Results The total incidence of DUCs per embryo occupying the first three cleavages were 26.1%. Depending of the cell stage, DUC rate was 9.8% at first cleavage (DUC-1), 9.1% at second cleavage (DUC-2), and 3.7% at third cleavage (DUC-3) with 3.6% of embryos exhibiting multiple DUCs (DUC-Plus). The occurrence of DUCs was not correlated with female gamete age or source. The incidence of DUC-1 was significantly higher in embryos fertilized by epididymal and testicular sperm (13.6% and 11.4%, respectively) compared to ejaculated sperm (9.1%, all p<0.05). The total incidences of DUCs were strongly correlated with the onset of blastomere multinucleation (MNB) during the first three divisions. In MNB embryos, DUCs incidence are two to three times more likely to develop when compared to non-MNB embryos (OR = 3.11, 95% CI [2.64, 3.67] at 1-cell stage, OR = 2.64, 95% CI [2.39, 2.91] at 2-cell stage and OR = 2.51, 95% CI [1.84, 3.43] at 4-cell stage). The blastocyst formation rates gradually decreased from 61.0% in non-DUC to 40.2% in DUC-3, 18.8% in DUC-2, 8.2% in DUC-1 and 5.6% in multiple DUC embryos (DUC-Plus). The known implantation rates (FH) for day 3 (D3) transfers were 12.42% (n = 3172) in Non-DUC embryos, 6.3% (n = 127) in DUC-3, and 2.7% (n = 260) in DUC-2 embryos. No live births resulted from either DUC-1 (n = 225) or DUC-Plus (n = 100) embryo transfers. For blastocyst transfers, lower implantation rates (33.3%) but similar live birth (LB) rates (40%) were observed if DUC blastocysts were transferred. Comparatively rates in Non-DUC blastocyst were 45.2% and 34.8%, respectively. The euploid rate gradually increased from DUC-1, -2, -3 to Non-DUC (13.3%, 19.5%, 33

  6. Identical triplets and twins developed from isolated blastomeres of 8- and 16-cell mouse embryos supported with tetraploid blastomeres.

    PubMed

    Tarkowski, Andrzej K; Ozdzenski, Waclaw; Czolowska, Renata

    2005-01-01

    We studied the developmental potential of single blastomeres from early cleavage mouse embryos. Eight- and sixteen-cell diploid mouse embryos were disaggregated and single blastomeres from eight-cell embryos or pairs of sister blastomeres from sixteen-cell embryos were aggregated with 4, 5 or 6 tetraploid blastomeres from 4-cell embryos. Each diploid donor embryo gave eight sister aggregates, which later were manipulated together as one group (set). The aggregates were cultured in vitro until the blastocyst stage, when they were transferred (in sets) to the oviducts of pseudopregnant recipients. Eighteen live foetuses or pups were obtained from the transfer (11.0% of transferred blastocysts) and out of those, eleven developed into fertile adults (one triplet, one pair of twins and four singletons). In all surviving adults, pups and living foetuses, only diploid cells were detected in their organs and tissues as shown by analysis of coat pigmentation and distribution of glucose phosphate isomerase isoforms. In order to explain the observed high rate of mortality of transferred blastocysts, in an accompanying experiment, the diploid and tetraploid blastomeres were labelled with different fluorochromes and then aggregated. These experiments showed the diploid cells to be present not only in the inner cell mass (ICM) but also in the trophectoderm. The low number of diploid cells and the predominance of tetraploid cells in the ICM of chimaeric blastocysts might have been responsible for high postimplantation mortality of our experimental embryos.

  7. Dam line and sire line effects on turkey embryo survival and thyroid hormone concentrations at the plateau stage in oxygen consumption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inheritance of embryo thyroid function was measured in lines of turkeys. Two lines that had been selected for either increased egg production (E) or increased 16-wk BW (F) and their respective randombred controls (i.e., RBC1 and RBC2) were examined. Reciprocal crosses of dams and sires from each sel...

  8. Reduction of Mitochondrial Function by FCCP During Mouse Cleavage Stage Embryo Culture Reduces Birth Weight and Impairs the Metabolic Health of Offspring.

    PubMed

    Zander-Fox, Deirdre L; Fullston, Tod; McPherson, Nicole O; Sandeman, Lauren; Kang, Wan Xian; Good, Suzanne B; Spillane, Marni; Lane, Michelle

    2015-05-01

    The periconceptual environment represents a critical window for programming fetal growth trajectories and susceptibility to disease; however, the underlying mechanism responsible for programming remains elusive. This study demonstrates a causal link between reduction of precompaction embryonic mitochondrial function and perturbed offspring growth trajectories and subsequent metabolic dysfunction. Incubation of embryos with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), which uncouples mitochondrial oxidative phosphorylation, significantly reduced mitochondrial membrane potential and ATP production in 8-cell embryos and the number of inner cell mass cells within blastocysts; however, blastocyst development was unchanged. This perturbed embryonic mitochondrial function was concomitant with reduced birth weight in female offspring following embryo transfer, which persisted until weaning. FCCP-treated females also exhibited increased adiposity at 4 wk, increased adiposity gain between 4 and 14 wk, glucose intolerance at 8 wk, and insulin resistance at 14 wk. Although FCCP-treated males also exhibited reduced glucose tolerance, but their insulin sensitivity and adiposity gain between 4 and 14 wk was unchanged. To our knowledge, this is one of the first studies to demonstrate that reducing mitochondrial function and, thus, decreasing ATP output in the precompacting embryo can influence offspring phenotype. This is of great significance as a large proportion of patients requiring assisted reproductive technologies are of advanced maternal age or have a high body mass index, both of which have been independently linked with perturbed early embryonic mitochondrial function.

  9. Ion currents in embryo development.

    PubMed

    Tosti, Elisabetta; Boni, Raffaele; Gallo, Alessandra

    2016-03-01

    Ion channels are proteins expressed in the plasma membrane of electrogenic cells. In the zygote and blastomeres of the developing embryo, electrical modifications result from ion currents that flow through these channels. This phenomenon implies that ion current activity exerts a specific developmental function, and plays a crucial role in signal transduction and the control of embryogenesis, from the early cleavage stages and during growth and development of the embryo. This review describes the involvement of ion currents in early embryo development, from marine invertebrates to human, focusing on the occurrence, modulation, and dynamic role of ion fluxes taking place on the zygote and blastomere plasma membrane, and at the intercellular communication between embryo cell stages.

  10. Cryobiological preservation of Drosophila embryos

    SciTech Connect

    Mazur, P.; Schreuders, P.D.; Cole, K.W.; Hall, J.W. ); Mahowald, A.P. )

    1992-12-18

    The inability to cryobiologically preserve the fruit fly Drosophila melanogaster has required that fly stocks be maintained by frequent transfer of adults. This method is costly in terms of time and can lead to loss of stocks. Traditional slow freezing methods do not succeed because the embryos are highly sensitive to chilling. With the procedures described here, 68 percent of precisely staged 15-hour Oregon R (wild-type) embryos hatch after vitrification at -205[degree]C, and 40 percent of the resulting larvae develop into normal adult flies. These embryos are among the most complex organisms successfully preserved by cryobiology.

  11. Intrauterine embryo transfer with canine embryos cryopreserved by the slow freezing and the Cryotop method

    PubMed Central

    HORI, Tatsuya; USHIJIMA, Hitoshi; KIMURA, Taku; KOBAYASHI, Masanori; KAWAKAMI, Eiichi; TSUTSUI, Toshihiko

    2016-01-01

    Canine embryos (8-cell to blastocyst stages) frozen-thawed using the slow-freezing method with glycerol (four recipients) or dimethyl sulfoxide (three recipients) as a cryoprotectant and vitrified-warmed using the Cryotop method (five recipients) were surgically transferred into the unilateral uterine horn of recipient bitches. As a result, the morphology of embryos frozen-thawed using the slow-freezing method was judged to be normal, but no conception occurred in any of the recipient bitches. Two of the five bitches that received transferred embryos (morula to early blastocyst stages) vitrified-warmed using the Cryotop method became pregnant and produced normal pups (1/9 embryos, 11.1% and 1/6 embryos, 17.0%). It was concluded that the Cryotop method was more appropriate for canine embryo cryopreservation than the slow-freezing method, which is used for the cryopreservation of embryos of other mammalian species. PMID:27041356

  12. Intrauterine embryo transfer with canine embryos cryopreserved by the slow freezing and the Cryotop method.

    PubMed

    Hori, Tatsuya; Ushijima, Hitoshi; Kimura, Taku; Kobayashi, Masanori; Kawakami, Eiichi; Tsutsui, Toshihiko

    2016-08-01

    Canine embryos (8-cell to blastocyst stages) frozen-thawed using the slow-freezing method with glycerol (four recipients) or dimethyl sulfoxide (three recipients) as a cryoprotectant and vitrified-warmed using the Cryotop method (five recipients) were surgically transferred into the unilateral uterine horn of recipient bitches. As a result, the morphology of embryos frozen-thawed using the slow-freezing method was judged to be normal, but no conception occurred in any of the recipient bitches. Two of the five bitches that received transferred embryos (morula to early blastocyst stages) vitrified-warmed using the Cryotop method became pregnant and produced normal pups (1/9 embryos, 11.1% and 1/6 embryos, 17.0%). It was concluded that the Cryotop method was more appropriate for canine embryo cryopreservation than the slow-freezing method, which is used for the cryopreservation of embryos of other mammalian species.

  13. Heterochromatin reprogramming in rabbit embryos after fertilization, intra-, and inter-species SCNT correlates with preimplantation development.

    PubMed

    Yang, Cai-Xia; Liu, Zichuan; Fleurot, Renaud; Adenot, Pierre; Duranthon, Véronique; Vignon, Xavier; Zhou, Qi; Renard, Jean-Paul; Beaujean, Nathalie

    2013-02-01

    To investigate the embryonic genome organization upon fertilization and somatic cell nuclear transfer (SCNT), we tracked HP1β and CENP, two well-characterized protein markers of pericentric and centromeric compartments respectively, in four types of embryos produced by rabbit in vivo fertilization, rabbit parthenogenesis, rabbit-to-rabbit, and bovine-to-rabbit SCNT. In the interphase nuclei of rabbit cultured fibroblasts, centromeres and associated pericentric heterochromatin are usually isolated. Clustering into higher-order chromatin structures, such as the chromocenters seen in mouse and bovine somatic cells, could not be observed in rabbit fibroblasts. After fertilization, centromeres and associated pericentric heterochromatin are quite dispersed in rabbit embryos. The somatic-like organization is progressively established and completed only by the 8/16-cell stage, a stage that corresponds to major embryonic genome activation in this species. In SCNT embryos, pericentric heterochromatin distribution typical for rabbit and bovine somatic cells was incompletely reverted into the 1-cell embryonic form with remnants of heterochromatin clusters in 100% of bovine-to-rabbit embryos. Subsequently, the donor cell nuclear organization was rapidly re-established by the 4-cell stage. Remarkably, the incomplete remodeling of bovine-to-rabbit 1-cell embryos was associated with delayed transcriptional activation compared with rabbit-to-rabbit embryos. Together, the results confirm that pericentric heterochromatin spatio-temporal reorganization is an important step of embryonic genome reprogramming. It also appears that genome reorganization in SCNT embryos is mainly dependent on the nuclear characteristics of the donor cells, not on the recipient cytoplasm.

  14. Ensoulment and IVF embryos.

    PubMed Central

    Shea, M C

    1987-01-01

    This paper examines the metaphysical question of 'ensoulment' in relation to the theory, put forward in an earlier paper, that human life begins when the newly formed body organs and systems of the embryo begin to function as an organised whole, at which stage there is evidence of a change of nature. Although Roman Catholic theology teaches that a human being is a union of physical body and spiritual soul, it is incorrect to interpret this in a dualistic sense. The meaning of 'soul' is considered and the conclusion reached that although both in the religious context and apart from it abortion is difficult to justify at any stage after conception, it does not follow that the use of 'spare' In Vitro Fertilisation (IVF) embryos should be rejected. If 'ensoulment' does not occur until the new organism functions as a whole then a decision not to make use of IVF embryos for medical purposes would be a heavy responsibility and not a 'safe' way out. PMID:3612702

  15. Radioactive labeling of proteins in cultured postimplantation mouse embryos. I. Influence of the embryo preparation method

    SciTech Connect

    Nowak, J.; Klose, J. )

    1989-07-01

    Conditions for optimum incorporation of radioactive amino acids into proteins of cultured postimplantation mouse embryos were investigated under the aspect of using these proteins for two-dimensional electrophoretic separations followed by fluorography. The aim was to obtain highly radioactive proteins under conditions as physiological as possible. Embryos at Days 10, 11, and 12 of gestation were prepared in different ways and incubated for 4 h in Tyrode's solution containing ({sup 3}H)amino acids (mixture) at a concentration of 27 microCi/ml medium. The preparations were: (a) yolk sac opened, placenta and blood circulation intact; (b) yolk sac and amnion opened, placenta and blood circulation intact (Day 10 embryos only); (c) placenta, yolk sac, and amnion removed (embryo naked); (d) naked embryos cut randomly into pieces (Day 10 embryos only). After incubation whole embryos or certain parts (tail, liver, rest body) were investigated by determining the radioactivity taken up by the protein. The results are given in dpm per mg protein per embryo. Radioactivity of proteins was about 3 times higher in naked embryos than in embryos left in their yolk sacs. This was true for all three stages investigated. However, the degree of radioactivity in the various parts of naked embryos differed by a factor of 15, whereas radioactivity was evenly distributed in embryos incubated in their yolk sacs. Therefore, embryos prepared according to the first method (see above) fulfilled the conditions required at the best.

  16. Gap junctional connexin messenger RNA expression in the ovine uterus and placenta: effects of estradiol-17β-treatment, early pregnancy stages, and embryo origin.

    PubMed

    Johnson, M L; Redmer, D A; Reynolds, L P; Grazul-Bilska, A T

    2017-01-01

    Gap junctions play a major role in direct, contact-dependent cell-cell communication, and they have been implicated in the regulation of cellular metabolism and the coordination of cellular functions during growth and differentiation of organs and tissues. Gap junctional channels, composed of connexin (Cx) proteins, have been detected and shown to be influenced by hormones (eg, estrogen and progesterone) in uterine and placental tissues in several species. We hypothesized that (1) the messenger RNA (mRNA) for Cx26, Cx32, Cx37, and Cx43 is expressed in the uterus of ovariectomized sheep treated with estradiol-17β (E2) and in ovine placenta during early pregnancy, (2) E2-treatment of ovariectomized ewes would cause time-specific changes in Cx26, Cx32, Cx37, and Cx43 mRNA expression (experiment 1), and (3) expression of these 4 Cx would vary across the days of early pregnancy (experiment 2) and will be affected by embryo origin (ie, after application of assisted reproductive technologies [ARTs]; experiment 3). Thus, we collected uterine tissues at 0 to 24 h after E2 treatments (experiment 1), and placental tissues during days 14 to 30 of early pregnancy after natural (NAT) breeding (experiment 2) and on day 22 of early pregnancy established after transfer of embryos generated through natural breeding (NAT-ET), in vitro fertilization (IVF), or in vitro activation (IVA, parthenotes; experiment 3). In experiment 1, the expression of Cx26, Cx37, and Cx43 mRNA increased (P < 0.05) and Cx32 mRNA decreased (P < 0.06) in both caruncular and intercaruncular tissues after E2 treatment. In experiment 2, during early pregnancy, there were significant changes (P < 0.01) across days in the expression of Cx26, Cx37, and Cx43 mRNA in the maternal placenta, accompanied by changes (P < 0.001) in Cx37 and Cx43 mRNA in the fetal placenta. In experiment 3, in maternal placenta, Cx32 mRNA expression was decreased (P < 0.001) in NAT-ET, IVF, and IVA groups compared to the NAT group; but

  17. The human PRD-like homeobox gene LEUTX has a central role in embryo genome activation

    PubMed Central

    Jouhilahti, Eeva-Mari; Madissoon, Elo; Vesterlund, Liselotte; Töhönen, Virpi; Krjutškov, Kaarel; Plaza Reyes, Alvaro; Petropoulos, Sophie; Månsson, Robert; Linnarsson, Sten; Bürglin, Thomas; Lanner, Fredrik; Hovatta, Outi; Katayama, Shintaro

    2016-01-01

    Leucine twenty homeobox (LEUTX) is a paired (PRD)-like homeobox gene that is expressed almost exclusively in human embryos during preimplantation development. We previously identified a novel transcription start site for the predicted human LEUTX gene based on the transcriptional analysis of human preimplantation embryos. The novel variant encodes a protein with a complete homeodomain. Here, we provide a detailed description of the molecular cloning of the complete homeodomain-containing LEUTX. Using a human embryonic stem cell overexpression model we show that the complete homeodomain isoform is functional and sufficient to activate the transcription of a large proportion of the genes that are upregulated in human embryo genome activation (EGA), whereas the previously predicted partial homeodomain isoform is largely inactive. Another PRD-like transcription factor, DPRX, is then upregulated as a powerful repressor of transcription. We propose a two-stage model of human EGA in which LEUTX acts as a transcriptional activator at the 4-cell stage, and DPRX as a balancing repressor at the 8-cell stage. We conclude that LEUTX is a candidate regulator of human EGA. PMID:27578796

  18. Ultra rapid freezing and vitrification of human embryos derived from abnormally fertilised zygotes.

    PubMed

    Molina, I; Duque, C C; Alfonso, J; Cervera, R P; Romeu, A

    2006-01-01

    The present study was undertaken to compare the developmental capacity of human embryos derived from abnormally fertilised zygotes (1 PN, > 3 PN; 16-18 hours after ICSI) cryopreserved using two techniques: ultra rapid freezing and vitrification. At 2-4 cell stage, (48 hours after ICSI), these abnormally fertilised embryos were then distributed in three groups: a) embryos that were cryopreserved by ultra rapid freezing (URF Group), b) embryos cryopreserved by vitrification (V Group) and c) embryos that were not cryopreserved (Control group). Survival rates and embryo development after 24 hours of in vitro culture (72 hours after ICSI) were compared. 42 embryos were cryopreserved by ultra rapid freezing in 0.5 mL straws, using a mixture of dimethyl sulphoxide (3M) and sucrose (0.25M) in a base solution consisting of IVF medium plus 20 percent (v/v) of Human Serum Albumin (HSA), and 24 embryos were vitrified in 0.25 ml straws, using a two step protocol with an equilibration solution consisting of 10 percent ethylene glycol (1.79 M) and 10 percent dimethyl sulphoxide (1.41 M) in a base solution of modified phosphate buffered saline (PBS) with 20 percent of HSA and a vitrification solution consisting of 20 percent ethylene glycol (3.58 M), 20 percent dimethyl sulphoxide (2.82 M) and 0.5 M sucrose in base solution. The recovery rate after thawing/warming was lower for the vitrification group (75 percent V; 83 percent URF). The number of embryos with less than 50 percent of intact blastomeres after cryopreservation was significantly higher for the URF group (0 percent V; 34 percent URF). After in vitro culture, the rate of embryos not cryopreserved (Control group) that developed in vitro (72 hours after ICSI) was the highest (86 percent), followed by group V (50 percent), while group URF was the lowest (13 percent). These differences were statistically significant. This straw method of vitrification is successful and safe.

  19. Impairment of preimplantation porcine embryo development by histone demethylase KDM5B knockdown through disturbance of bivalent H3K4me3-H3K27me3 modifications.

    PubMed

    Huang, Jiaojiao; Zhang, Hongyong; Wang, Xianlong; Dobbs, Kyle B; Yao, Jing; Qin, Guosong; Whitworth, Kristin; Walters, Eric M; Prather, Randall S; Zhao, Jianguo

    2015-03-01

    KDM5B (JARID1B/PLU1) is a H3K4me2/3 histone demethylase that is implicated in cancer development and proliferation and is also indispensable for embryonic stem cell self-renewal, cell fate, and murine embryonic development. However, little is known about the role of KDM5B during preimplantation embryo development. Here we show that KDM5B is critical to porcine preimplantation development. KDM5B was found to be expressed in a stage-specific manner, consistent with demethylation of H3K4me3, with the highest expression being observed from the 4-cell to the blastocyst stages. Knockdown of KDM5B by morpholino antisense oligonucleotides injection impaired porcine embryo development to the blastocyst stage. The impairment of embryo development might be caused by increased expression of H3K4me3 at the 4-cell and blastocyst stages, which disturbs the balance of bivalent H3K4me3-H3K27me3 modifications at the blastocyst stage. Decreased abundance of H3K27me3 at blastocyst stage activates multiple members of homeobox genes (HOX), which need to be silenced for faithful embryo development. Additionally, the histone demethylase KDM6A was found to be upregulated by knockdown of KDM5B, which indicated it was responsible for the decreased abundance of H3K27me3 at the blastocyst stage. The transcriptional levels of Ten-Eleven Translocation gene family members (TET1, TET2, and TET3) are found to be increased by knockdown of KDM5B, which indicates cross talk between histone modifications and DNA methylation. The studies above indicate that KDM5B is required for porcine embryo development through regulating the balance of bivalent H3K4me3-H3K27me3 modifications.

  20. Enhance beef cattle improvement by embryo biotechnologies.

    PubMed

    Wu, B; Zan, L

    2012-10-01

    Embryo biotechnology has become one of the prominent high businesses worldwide. This technology has evolved through three major changes, that is, traditional embryo transfer (in vivo embryo production by donor superovulation), in vitro embryo production by ovum pick up with in vitro fertilization and notably current cloning technique by somatic cell nuclear transfer and transgenic animal production. Embryo biotechnology has widely been used in dairy and beef cattle industry and commercial bovine embryo transfer has become a large international business. Currently, many developed biotechnologies during the period from early oocyte stage to pre-implantation embryos can be used to create new animal breeds and accelerate genetic progression. Based on recent advances in embryo biotechnologies and authors current studies, this review will focus on a description of the application of this technology to beef cattle improvement and discuss how to use this technology to accelerate beef cattle breeding and production. The main topics of this presentation include the following: (i) how to increase calf production numbers from gametes including sperm and oocyte; (ii) multiple ovulation and embryo transfer breeding schemes; (iii) in vitro fertilization and intracytoplasm sperm injection in bovine; (iv) pronuclear development and transgenic animals; (v) sex selection from sperm and embryos; (vi) cloning and androgenesis; (vii) blastocyst development and embryonic stem cells; (viii) preservation of beef cattle genetic resources; and (ix) conclusions.

  1. The ART of studying early embryo development: progress and challenges in ruminant embryo culture.

    PubMed

    Lonergan, Pat; Fair, Trudee

    2014-01-01

    The study of preimplantation mammalian embryo development is challenging due to difficulties in accessing in vivo-derived embryos in large numbers at the early stages and the inability to culture embryos in vitro much beyond the blastocyst stage. Nonetheless, embryos exhibit an amazing plasticity and tolerance when it comes to adapting to the environment in which they are cultured. They are capable of developing in media ranging in composition from simple balanced salt solutions to complex systems involving serum and somatic cells. At least a proportion of the blastocysts that develop in culture are developmentally competent as evidenced by the fact that live offspring have resulted following transfer. However, several studies using animal models have shown that such embryos are sensitive to environmental conditions that can affect future pre- and post-natal growth and developmental potential. This review summarises some key aspects of early embryo development and the approaches taken to study this important window in early life.

  2. Gene transfer into older chicken embryos by ex ovo electroporation.

    PubMed

    Luo, Jiankai; Yan, Xin; Lin, Juntang; Rolfs, Arndt

    2012-07-27

    The chicken embryo provides an excellent model system for studying gene function and regulation during embryonic development. In ovo electroporation is a powerful method to over-express exogenous genes or down-regulate endogenous genes in vivo in chicken embryos(1). Different structures such as DNA plasmids encoding genes(2-4), small interfering RNA (siRNA) plasmids(5), small synthetic RNA oligos(6), and morpholino antisense oligonucleotides(7) can be easily transfected into chicken embryos by electroporation. However, the application of in ovo electroporation is limited to embryos at early incubation stages (younger than stage HH20--according to Hamburg and Hamilton)(8) and there are some disadvantages for its application in embryos at later stages (older than stage HH22--approximately 3.5 days of development). For example, the vitelline membrane at later stages is usually stuck to the shall membrane and opening a window in the shell causes rupture of the vessels, resulting in death of the embryos; older embryos are covered by vitelline and allantoic vessels, where it is difficult to access and manipulate the embryos; older embryos move vigorously and is difficult to control the orientation through a relatively small window in the shell. In this protocol we demonstrate an ex ovo electroporation method for gene transfer into chicken embryos at late stages (older than stage HH22). For ex ovo electroporation, embryos are cultured in Petri dishes(9) and the vitelline and allantoic vessels are widely spread. Under these conditions, the older chicken embryos are easily accessed and manipulated. Therefore, this method overcomes the disadvantages of in ovo electroporation applied to the older chicken embryos. Using this method, plasmids can be easily transfected into different parts of the older chicken embryos(10-12).

  3. Amino Acid Starvation Induced by Protease Inhibition Produces Differential Alterations in Redox Status and the Thiol Proteome in Organogenesis-Stage Rat Embryos and Visceral Yolk Sacs

    PubMed Central

    Harris, Craig; Jilek, Joseph L.; Sant, Karilyn E.; Pohl, Jan; Reed, Matthew; Hansen, Jason M.

    2015-01-01

    The process of embryonic nutrition in rodent conceptuses during organogenesis has been shown to involve a dominant histiotrophic mechanism where essential developmental substrates and micronutrients are supplied as whole maternal proteins or cargoes associated with proteins. The histiotrophic nutrition pathways (HNP) responsible for uptake and initial processing of proteins across maternal-conceptal interfaces involve uptake via receptor mediated endocytosis and protein degradation via lysosomal proteolysis. Chemical inhibition of either process can lead to growth deficits and malformation in the embryo (EMB), but selective inhibition of either HNP component will elicit a different subset of developmental perturbations. In vitro, whole embryo culture (WEC) exposure of GD10 or GD11 rat conceptuses to the natural protease inhibitor, leupeptin, leads to significant reductions in all measured embryonic growth parameters as well as a myriad of other effects. Leupeptin doses of 10 μM or 20 μM over a 26 hr period (GD10-GD11) and 50 μM over a 3 hr pulse period produced significant decreases in the clearance of FITC-albumin from culture media. The near complete loss of acid soluble fluorescence and increased total visceral yolk sac (VYS) protein content confirmed the selective inhibition of proteolysis. Inhibition of lysosomal proteolysis thus deprives the developing EMB of essential nutrient amino acids producing conditions akin to amino acid starvation, but may also cause direct effects on pathways critical for normal growth and differentiation. Following leupeptin exposure for 26 or 6 hr, total glutathione (GSH) concentrations dropped significantly in the VYS, but only slightly in yolk sac (YSF) and amniotic (AF) fluids. Cys concentrations increased in VYS and EMB, but dropped in YSF and AF fluids. Redox potentials (Eh) for the GSSG/GSH redox couple trended significantly toward the positive, confirming the net oxidation of conceptual tissues following leupeptin

  4. Effects of Fluoxetine on Human Embryo Development

    PubMed Central

    Kaihola, Helena; Yaldir, Fatma G.; Hreinsson, Julius; Hörnaeus, Katarina; Bergquist, Jonas; Olivier, Jocelien D. A.; Åkerud, Helena; Sundström-Poromaa, Inger

    2016-01-01

    The use of antidepressant treatment during pregnancy is increasing, and selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed antidepressants in pregnant women. Serotonin plays a role in embryogenesis, and serotonin transporters are expressed in two-cell mouse embryos. Thus, the aim of the present study was to evaluate whether fluoxetine, one of the most prescribed SSRI antidepressant world-wide, exposure influences the timing of different embryo developmental stages, and furthermore, to analyze what protein, and protein networks, are affected by fluoxetine in the early embryo development. Human embryos (n = 48) were randomly assigned to treatment with 0.25 or 0.5 μM fluoxetine in culture medium. Embryo development was evaluated by time-lapse monitoring. The fluoxetine-induced human embryo proteome was analyzed by shotgun mass spectrometry. Protein secretion from fluoxetine-exposed human embryos was analyzed by use of high-multiplex immunoassay. The lower dose of fluoxetine had no influence on embryo development. A trend toward reduced time between thawing and start of cavitation was noted in embryos treated with 0.5 μM fluoxetine (p = 0.065). Protein analysis by shotgun mass spectrometry detected 45 proteins that were uniquely expressed in fluoxetine-treated embryos. These proteins are involved in cell growth, survival, proliferation, and inflammatory response. Culturing with 0.5 μM, but not 0.25 μM fluoxetine, caused a significant increase in urokinase-type plasminogen activator (uPA) in the culture medium. In conclusion, fluoxetine has marginal effects on the timing of developmental stages in embryos, but induces expression and secretion of several proteins in a manner that depends on dose. For these reasons, and in line with current guidelines, the lowest possible dose of SSRI should be used in pregnant women who need to continue treatment. PMID:27378857

  5. Assessment of human embryos by time-lapse videography: A comparison of quantitative and qualitative measures between two independent laboratories.

    PubMed

    Liu, Yanhe; Copeland, Christopher; Stevens, Adam; Feenan, Katie; Chapple, Vincent; Myssonski, Kim; Roberts, Peter; Matson, Phillip

    2015-12-01

    A total of 488 Day 3 human embryos with known implantation data from two independent in vitro fertilization laboratories were included for analysis, with 270 from Fertility North (FN) and 218 from Canberra Fertility Centre (CFC). Implanting embryos grew at different rates between FN and CFC as indicated in hours of the time intervals between pronuclear fading and the 4- (13.9 ± 1.1 vs. 14.9 ± 1.8), 5- (25.7 ± 1.9 vs. 28.4 ± 3.7) and 8-cell stages (29.0 ± 3.2 vs. 32.2 ± 4.6), as well as the durations of 2- (10.8 ± 0.8 vs. 11.6 ± 1.1), 3- (0.4 ± 0.5 vs. 0.9 ± 1.2), and 4-cell stages (11.8 ± 1.4 vs. 13.6 ± 2.9), all p<0.05. The application of a previously published time-lapse algorithm on ICSI embryos from the two participating laboratories failed to reproduce a predictive pattern of implantation outcomes (FN: AUC=0.565, p=0.250; CFC: AUC=0.614, p=0.224). However, for the qualitative measures including poor conventional morphology, direct cleavage, reverse cleavage and <6 intercellular contact points at the end of the 4-cell stage, there were similar proportions of embryos showing at least one of these biological events in either implanting (3.1% vs. 3.3%, p>0.05) or non-implanting embryos (30.4% vs. 38.3%, p>0.05) between FN and CFC. Furthermore, implanting embryos favored lower proportions of the above biological events compared to the non-implanting ones in both laboratories (both p<0.01). To conclude, human embryo morphokinetics may vary between laboratories, therefore time-lapse algorithms emphasizing quantitative timing parameters may have reduced inter-laboratory transferability; qualitative measures are independent of cell division timings, with potentially improved inter-laboratory reproducibility.

  6. Polyethylene glycol-induced fusion of two-cell mouse embryo blastomeres

    SciTech Connect

    Spindle, A.

    1981-01-01

    Polyethylene glycol (PEG) was found to be an effective fusion-inducing agent for early mouse embryo blastomeres. A brief exposure of zona-intact 2-cell embryos to 40% PEG induced fusion of blastomeres in > 80% of embryos, and the treatment did not interfere with subsequent development of embryos to the blastocyst stage.

  7. Glassfrog embryos hatch early after parental desertion

    PubMed Central

    Delia, Jesse R. J.; Ramírez-Bautista, Aurelio; Summers, Kyle

    2014-01-01

    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations. PMID:24789892

  8. Glassfrog embryos hatch early after parental desertion.

    PubMed

    Delia, Jesse R J; Ramírez-Bautista, Aurelio; Summers, Kyle

    2014-06-22

    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations.

  9. Effect of zidovudine on preimplantation murine embryos.

    PubMed Central

    Toltzis, P; Mourton, T; Magnuson, T

    1993-01-01

    It previously has been demonstrated that zidovudine (AZT) is lethal to early murine embryos. The effect of the drug on pre- and postimplantation embryos was examined to delineate the timing of this toxicity and to investigate its possible mechanisms. Embryos exposed in the whole mouse during preblastocyst development were unable to proceed beyond the blastocyst stage. Similarly, when two-cell embryos harvested from unexposed females were exposed to low-concentration (1 microM) AZT in vitro over 24 h, development beyond the blastocyst stage was inhibited. In contrast, drug exposure during in vitro blastocyst and postblastocyst development resulted in little or no morphologic toxicity. Further investigation revealed that preblastocyst AZT exposure resulted in the development of blastocysts with significantly lower cell numbers than control embryos. While embryonic exposure to AZT at the blastocyst and postblastocyst stages also resulted in retarded cell division, the effects were milder than those recorded after preblastocyst exposure. These data demonstrate that the critical period of AZT toxicity toward murine embryos is between ovulation and implantation and indicate that AZT directly suppresses cell division in the preimplantation embryo. PMID:8215271

  10. Rho-kinase in sea urchin eggs and embryos.

    PubMed

    Aguirre-Armenta, Beatriz; López-Godínez, Juana; Martínez-Cadena, Guadalupe; García-Soto, Jesús

    2011-06-01

    The activation of sea urchin eggs at fertilization provides an ideal system for studying the molecular events involved in cellular activation. Rho GTPases, which are key signaling enzymes in eukaryotes, are involved in sustaining the activation of sea urchin eggs; however, their downstream effectors have not yet been characterized. In somatic cells, RhoA regulates a serine/threonine kinase known as Rho-kinase (ROCK). The activity of ROCK in early sea urchin development has been inferred, but not tested directly. A ROCK gene was identified in the sea urchin (Strongylocentrotus purpuratus) genome and the sequence of its cDNA determined. The sea urchin ROCK (SpROCK) sequence predicts a protein of 158 kDa with >72% and 45% identities with different protein orthologues of the kinase catalytic domain and the complete protein sequence, respectively. SpROCK mRNA levels are high in unfertilized eggs and decrease to 35% after 15 min postfertilization and remain low up to the 4 cell stage. Antibodies to the human ROCK-I kinase domain revealed SpROCK to be concentrated in the cortex of eggs and early embryos. Co-immunoprecipitation assays indicate that RhoA and SpROCK are physically associated. This association is destroyed by treatment with the C3 exoenzyme and with the ROCK antagonist H-1152. H-1152 also inhibited DNA synthesis in embryos. We conclude that the Rho-dependent signaling pathway, via SpROCK, is essential for early embryonic development.

  11. Production of transgenic canine embryos using interspecies somatic cell nuclear transfer.

    PubMed

    Hong, So Gun; Oh, Hyun Ju; Park, Jung Eun; Kim, Min Jung; Kim, Geon A; Koo, Ok Jae; Jang, Goo; Lee, Byeong Chun

    2012-02-01

    Somatic cell nuclear transfer (SCNT) has emerged as an important tool for producing transgenic animals and deriving transgenic embryonic stem cells. The process of SCNT involves fusion of in vitro matured oocytes with somatic cells to make embryos that are transgenic when the nuclear donor somatic cells carry 'foreign' DNA and are clones when all the donor cells are genetically identical. However, in canines, it is difficult to obtain enough mature oocytes for successful SCNT due to the very low efficiency of in vitro oocyte maturation in this species that hinders canine transgenic cloning. One solution is to use oocytes from a different species or even a different genus, such as bovine oocytes, that can be matured easily in vitro. Accordingly, the aim of this study was: (1) to establish a canine fetal fibroblast line transfected with the green fluorescent protein (GFP) gene; and (2) to investigate in vitro embryonic development of canine cloned embryos derived from transgenic and non-transgenic cell lines using bovine in vitro matured oocytes. Canine fetal fibroblasts were transfected with constructs containing the GFP and puromycin resistance genes using FuGENE 6®. Viability levels of these cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Interspecies SCNT (iSCNT) embryos from normal or transfected cells were produced and cultured in vitro. The MTT measurement of GFP-transfected fetal fibroblasts (mean OD = 0.25) was not significantly different from non-transfected fetal fibroblasts (mean OD = 0.35). There was no difference between transgenic iSCNT versus non-transgenic iSCNT embryos in terms of fusion rates (73.1% and 75.7%, respectively), cleavage rates (69.7% vs. 73.8%) and development to the 8-16-cell stage (40.1% vs. 42.7%). Embryos derived from the transfected cells completely expressed GFP at the 2-cell, 4-cell, and 8-16-cell stages without mosaicism. In summary, our results demonstrated that

  12. Refrigeration of rainbow trout gametes and embryos.

    PubMed

    Babiak, Igor; Dabrowski, Konrad

    2003-12-01

    Prolonged access to early embryos composed of undifferentiated, totipotent blastomeres is desirable in situations when multiple collections of gametes are not possible. The objective of the present study is to examine whether the refrigeration of rainbow trout Oncorhynchus mykiss gametes and early embryos would be a suitable, reliable, and efficient tool for prolonging the availability of early developmental stages up to the advanced blastula stage. The study was conducted continuously during fall, winter, and spring spawning seasons. In all, more than 500 experimental variants were performed involving individual samples from 26 females and 33 males derived from three strains. These strains represented three possible circumstances. In optimal one, gametes from good quality donors were obtained soon after ovulation. In the two non-optimal sources, either donors were of poor genetic quality or gametes were collected from a distant location and transported as unfertilized gametes. A highly significant effect of variability of individual sample quality on efficiency of gamete and embryo refrigeration was revealed. The source of gametes significantly affected viability of refrigerated oocytes and embryos, but not spermatozoa. On average, oocytes from optimal source retained full fertilization viability for seven days of chilled storage, significantly longer than from non-optimal sources. Spermatozoa, regardless of storage method, retained full fertilization ability for the first week of storage. Refrigeration of embryos at 1.4+/-0.4 degrees C significantly slowed the development. Two- week-old embryos were still in blastula stage. Average survival rate of embryos refrigerated for 10 days and then transferred to regular incubation temperatures of 9-14 degrees C was 92% in optimal and 51 and 71% in non-optimal source variants. No effect of gamete and embryo refrigeration on the occurrence of developmental abnormalities was observed. Cumulative refrigeration of oocytes and

  13. Development of interspecies cloned embryos in yak and dog.

    PubMed

    Murakami, Masao; Otoi, Takeshige; Wongsrikeao, Pimprapar; Agung, Budiyanto; Sambuu, Rentsenkhand; Suzuki, Tatsuyuki

    2005-01-01

    Interspecies nuclear transfer (NT) could be an alternative to replicate animals when supply of recipient oocytes is limited or in vitro embryo production systems are incomplete. In the present study, embryonic development was assessed following interspecies NT of donor cumulus cells derived from yak and dog into the recipient ooplasm of domestic cow. The percentages of fusion and subsequent embryo development to the eight-cell stage of interspecies NT embryos were comparable to those of intraspecies NT embryos (cow-cow NT embryos). The percentage of development to blastocysts was significantly lower (p < 0.05) in yak-cow NT embryos than that in cow-cow NT embryos (10.9% vs. 39.8%). In dog-cow NT embryos, only one embryo (0.4%) developed to the blastocyst stage. These results indicate that interspecies NT embryos possess equally developmental competence to the eight-cell stage as intraspecies NT embryos, but the development to blastocysts is very low when dog somatic cells are used as the donor nuclei.

  14. Determination of the expression pattern of the dual promoter of zebrafish fushi tarazu factor-1a following microinjections into zebrafish one cell stage embryos.

    PubMed

    von Hofsten, J; Modig, C; Larsson, A; Karlsson, J; Olsson, P-E

    2005-05-15

    The zebrafish fushi tarazu factor-1a (ff1a) is a transcription factor belonging to the NR5A subgroup of nuclear receptors. The NR5A receptors bind DNA as monomers and are considered to be orphans due to their ability to promote transcription of downstream genes without ligands. In zebrafish, four ff1 homologues (Ff1a, Ff1b, Ff1c, and Ff1d) have been identified so far. The gene coding for Ff1a is driven by two separate promoters, and give rise to four splice variants. Ff1a is expressed in the somites and pronephric ducts during somitogenesis and in the brain, liver, and mandibular arch during later embryonic stages. In adults the gene is highly expressed in gonads, liver, and intestine, but can be detected in most tissues. The broad variety of embryonic expression domains indicates several important developmental features. One of the mammalian fushi tarazu factor-1 genes, steroidogenic factor-1 (SF-1), is essential for the development of gonads and adrenals. SF-1 is together with Sox9, WT1, and GATA4 a positive transcriptional regulator of human anti-mullerian hormone (AMH) and thereby linked to the male sex-determining pathway. The zebrafish ff1a dual promoter contains several GATA binding sites and E-boxes, a site for DR4, XFD2, MyoD, Snail, HNF3, S8, and an HMG-box recognition site for Sox9. In a first attempt to dissect the ff1a promoter in vivo we have produced first generation transgenes in order to determine the correlation between the expression of the endogenous ff1a gene and the microinjected ff1a dual promoter coupled to the pEGFP reporter vector. Our results show that the microinjected constructs are expressed in the correct tissues.

  15. RNA Profiles of Porcine Embryos during Genome Activation Reveal Complex Metabolic Switch Sensitive to In Vitro Conditions

    PubMed Central

    Østrup, Olga; Olbricht, Gayla; Østrup, Esben; Hyttel, Poul; Collas, Philippe; Cabot, Ryan

    2013-01-01

    Fertilization is followed by complex changes in cytoplasmic composition and extensive chromatin reprogramming which results in the abundant activation of totipotent embryonic genome at embryonic genome activation (EGA). While chromatin reprogramming has been widely studied in several species, only a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv) and in vitro produced (ivt) porcine embryos before (2-cell stage) and after (late 4-cell stage) EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery), protein catabolism, and chromatin remodelling. Following EGA an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place before and after EGA (RNA splicing, protein catabolism), different metabolic pathways are involved. This strongly suggests that a complex metabolic switch accompanies EGA. In vitro conditions significantly altered RNA profiles before EGA, and the character of these changes indicates that they originate from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and human embryos

  16. Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos.

    PubMed

    Sugimura, S; Narita, K; Yamashiro, H; Sugawara, A; Shoji, T; Terashita, Y; Nishimori, K; Konno, T; Yoshida, M; Sato, E

    2009-09-01

    Interspecies somatic cell nucleus transfer (iSCNT) could be a useful bioassay system for assessing the ability of mammalian somatic cells to develop into embryos. To examine this possibility, we performed canine iSCNT using porcine oocytes, allowed to mature in vitro, as recipients. Canine fibroblasts from the tail tips and dewclaws of a female poodle (Fp) and a male poodle (Mp) were used as donors. We demonstrated that the use of porcine oocytes induced blastocyst formation in the iSCNT embryos cultured in porcine zygote medium-3. In Fp and Mp, the rate of blastocyst formation from cleaved embryos (Fp: 6.3% vs. 22.4%; and Mp: 26.1% vs. 52.4%) and the number of cells at the blastocyst stage (Fp: 30.7 vs. 60.0; and Mp: 27.2 vs. 40.1) were higher in the embryos derived from dewclaw cells than in those derived from tail-tip cells (P<0.05). The use of donor cells of any type in later passages decreased the rate of blastocyst formation. Treatment with trichostatin-A did not improve the rate of blastocyst formation from cleaved dewclaw cell-derived embryos but did so in the embryos derived from the tail-tip cells of Fp. Only blastocysts derived from dewclaw cells of Mp developed outgrowths. However, outgrowth formation was retrieved in the embryos derived from dewclaw cells of Fp by aggregation at the 4-cell stage. We inferred that iSCNT performed using porcine oocytes as recipients could represent a novel bioassay system for evaluating the developmental competence of canine somatic cells.

  17. Response of Mouse Zygotes Treated with Mild Hydrogen Peroxide as a Model to Reveal Novel Mechanisms of Oxidative Stress-Induced Injury in Early Embryos

    PubMed Central

    2016-01-01

    Our study aimed to develop embryo models to evaluate the impact of oxidative stress on embryo development. Mouse zygotes, which stayed at G1 phase, were treated with prepared culture medium (containing 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, or 0.1 mM hydrogen peroxide (H2O2)) for 30 min in experiment 1. The dose-effects of H2O2 on embryo development were investigated via comparisons of the formation rate at each stage (2- and 4-cell embryos and blastocysts). Experiment 2 was carried out to compare behaviors of embryos in a mild oxidative-stressed status (0.03 mM H2O2) with those in a control (0 mM H2O2). Reactive oxygen species (ROS) levels, variation of mitochondrial membrane potential (MMP), expression of γH2AX, and cell apoptosis rate of blastocyst were detected. We observed a dose-dependent decrease on cleavage and blastocyst rates. Besides, higher level of ROS, rapid reduction of MMP, and the appearance of γH2AX revealed that embryos are injured early in mild oxidative stress. Additionally, γH2AX may involve during DNA damage response in early embryos. And the apoptotic rate of blastocyst may significantly increase when DNA damage repair is inadequate. Most importantly, our research provides embryo models to study cell cycle regulation and DNA damage response under condition of different levels of oxidative stress. PMID:27738489

  18. Toxicity of chlorine to zebrafish embryos.

    PubMed

    Kent, Michael L; Buchner, Cari; Barton, Carrie; Tanguay, Robert L

    2014-01-16

    Surface disinfection of fertilized fish eggs is widely used in aquaculture to reduce extraovum pathogens that may be released from brood fish during spawning, and this is routinely used in zebrafish Danio rerio research laboratories. Most laboratories use approximately 25 to 50 ppm unbuffered chlorine solution for 5 to 10 min. Treatment of embryos with chlorine has significant germicidal effects for many Gram-negative bacteria, viruses, and trophozoite stages of protozoa, but is less effective against cyst or spore stages of protozoa and certain Mycobacterium spp. Therefore, we evaluated the toxicity of unbuffered and buffered chlorine solutions to embryos exposed at 6 or 24 h post-fertilization (hpf) to determine whether higher concentrations can be used for treating zebrafish embryos. Most of our experiments entailed using an outbred line (5D), with both mortality and malformations as endpoints. We found that 6 hpf embryos consistently were more resistant than 24 hpf embryos to the toxic effects of chlorine. Chlorine is more toxic and germicidal at lower pH, and chlorine causes elevated pH. Consistent with this, we found that unbuffered chlorine solutions (pH ca. 8-9) were less toxic at corresponding concentrations than solutions buffered to pH 7. Based on our findings here, we recommend treating 6 hpf embryos for 10 min and 24 hpf embryos for 5 min with unbuffered chlorine solution at 100 ppm.

  19. Following the course of pre-implantation embryo patterning by non-linear microscopy.

    PubMed

    Kyvelidou, Christiana; Tserevelakis, George J; Filippidis, George; Ranella, Anthi; Kleovoulou, Anastasia; Fotakis, Costas; Athanassakis, Irene

    2011-12-01

    Embryo patterning is subject to intense investigation. So far only large, microscopically obvious structures like polar body, cleavage furrow, pro-nucleus shape can be evaluated in the intact embryo. Using non-linear microscopic techniques, the present work describes new methodologies to evaluate pre-implantation mouse embryo patterning. Third Harmonic Generation (THG) imaging, by detecting mitochondrial/lipid body structures, could provide valuable and complementary information as to the energetic status of pre-implantation embryos, time evolution of different developmental stages, embryo polarization prior to mitotic division and blastomere equivalence. Quantification of THG imaging detected highest signalling in the 2-cell stage embryos, while evaluating a 12-18% difference between blastomeres at the 8-cell stage embryos. Such a methodology provides novel, non-intrusive imaging assays to follow up intracellular structural patterning associated with the energetic status of a developing embryo, which could be successfully used for embryo selection during the in vitro fertilization process.

  20. Effect of epigenetic modification with trichostatin A and S-adenosylhomocysteine on developmental competence and POU5F1-EGFP expression of interspecies cloned embryos in dog.

    PubMed

    Mousai, M; Hosseini, S M; Hajian, M; Jafarpour, F; Asgari, V; Forouzanfar, M; Nasr-Esfahani, M H

    2015-10-01

    Adult canine fibroblasts stably transfected with either cytomegalovirus (CMV) or POU5F1 promoter-driven enhanced green fluorescent protein (EGFP) were used to investigate if pre-treatment of these donor cells with two epigenetic drugs [trichostatin A (TSA), or S-adenosylhomocysteine (SAH)] can improve the efficiency of interspecies somatic cell nuclear transfer (iSCNT). Fluorescence-activated cell sorting (FACS), analyses revealed that TSA, but not SAH, treatment of both transgenic and non-transgenic fibroblasts significantly increased acetylation levels compared with untreated relatives. The expression levels of Bcl2 and P53 were significantly affected in TSA-treated cells compared with untreated cells, whereas SAH treatment had no significant effect on cell apoptosis. Irrespective of epigenetic modification, dog/bovine iSCNT embryos had overall similar rates of cleavage and development to 8-16-cell and morula stages in non-transgenic groups. For transgenic reconstructed embryos, however, TSA and SAH could significantly improve development to 8-16-cell and morula stages compared with control. Even though, irrespective of cell transgenesis and epigenetic modification, none of the iSCNT embryos developed to the blastocyst stage. The iSCNT embryos carrying CMV-EGFP expressed EGFP at all developmental stages (2-cell, 4-cell, 8-16-cell, and morula) without mosaicism, while no POU5F1-EGFP signal was observed in any stage of developing iSCNT embryos irrespective of TSA/SAH epigenetic modifications. These results indicated that bovine oocytes partially remodel canine fibroblasts and that TSA and SAH have marginal beneficial effects on this process.

  1. Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse.

    PubMed

    Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe

    2016-09-01

    The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes

  2. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos.

    PubMed

    Akagi, Jin; Khoshmanesh, Khashayar; Evans, Barbara; Hall, Chris J; Crosier, Kathryn E; Cooper, Jonathan M; Crosier, Philip S; Wlodkowic, Donald

    2012-01-01

    Zebrafish (Danio rerio) has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP). The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale.

  3. Miniaturized Embryo Array for Automated Trapping, Immobilization and Microperfusion of Zebrafish Embryos

    PubMed Central

    Akagi, Jin; Khoshmanesh, Khashayar; Evans, Barbara; Hall, Chris J.; Crosier, Kathryn E.; Cooper, Jonathan M.; Crosier, Philip S.; Wlodkowic, Donald

    2012-01-01

    Zebrafish (Danio rerio) has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP). The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale. PMID:22606275

  4. Multiple-embryo transfer for studying very early maternal-embryo interactions in cattle.

    PubMed

    Gómez, E; Muñoz, M

    2015-08-01

    In the present paper, we highlight the need to study very early maternal-embryo interactions and discuss how these interactions can be addressed. Bovine species normally carry one or, less frequently, two embryos to term; there are very rare cases of triplets or higher-order multiple pregnancies in which all the offspring are born alive. Multiple-embryo transfer (MET) in cattle allows for the detection of endometrial responses in scenarios where single-embryo transfer would not. Although MET is non-physiological, the present study shows that at the very early embryonic stages, a uterus carrying zona-enclosed embryos does not exhibit non-physiological reactions. On the contrary, MET should be considered the sum of multiple individual effects triggered by developing embryos. We provide arguments to support our hypothesis that describe a rationale for current work with MET, and we discuss alternative hypotheses. Using cattle as a model, we describe how technical approaches to analyzing zona-enclosed early embryo-maternal interactions (i.e., transcriptomics, proteomics, and endometrial cell culture) can help identify molecular changes that may be difficult to observe when only a single embryo is present. We conclude that MET can be used for studying very early maternal-embryo interactions in vivo in monotocous species. Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/150/2/R35/suppl/DC1.

  5. Association between Number of Formed Embryos, Embryo Morphology and Clinical Pregnancy Rate after Intracytoplasmic Sperm Injection.

    PubMed

    Luz, Caroline Mantovani da; Giorgi, Vanessa Silvestre Innocenti; Coelho Neto, Marcela Alencar; Martins, Wellington de Paula; Ferriani, Rui Alberto; Navarro, Paula Andrea

    2016-09-01

    Introduction Infertility has a high prevalence in the general population, affecting ∼ 5 to 15% of couples in reproductive age. The assisted reproduction techniques (ART) include in vitro manipulation of gametes and embryos and are an important treatment indicated to these couples. It is well accepted that the implantation rate is positively influenced by the morphology of transferred embryos. However, we question if, apart from the assessment of embryo morphology, the number of produced embryos per cycle is also related to pregnancy rates in the first fresh transfer cycle. Purpose To evaluate the clinical pregnancy rate according to the number of formed embryos and the transfer of top quality embryos (TQEs). Methods In a retrospective cohort study, between January 2011 and December 2012, we evaluated women who underwent intracytoplasmic sperm injection (ICSI), aged < 40 years, and with at least 1 formed embryo fresh transferred in cleavage stage. These women were stratified into 3 groups according to the number of formed embryos (1 embryo, 2-3 and ≥ 4 embryos). Each group was divided into 2 subgroups according to the presence or not of at least 1 transferred TQE (1 with TQE; 1 without TQE; 2-3 with TQE, 2-3 without TQE; ≥ 4 with TQE; ≥ 4 without TQE). The clinical pregnancy rates were compared in each subgroup based on the presence or absence of at least one transferred TQE. Results During the study period, 636 women had at least one embryo to be transferred in the first fresh cycle (17.8% had 1 formed embryo [32.7% with TQE versus 67.3% without TQE], 42.1% of women had 2-3 formed embryos [55.6% with TQE versus 44.4% without TQE], and 40.1% of patients had ≥ 4 formed embryos [73.7% with TQE versus 26.3% without TQE]). The clinical pregnancy rate was significantly higher in the subgroup with ≥ 4 formed embryos with at least 1 transfered TQE (45.2%) compared with the subgroup without TQE (28.4%). Conclusions Having at

  6. In vitro culture of embryos of the guppy, Poecilia reticulata.

    PubMed

    Martyn, Ulrike; Weigel, Detlef; Dreyer, Christine

    2006-03-01

    The rich variation in adult color patterns of male guppies (Poecilia reticulata) has attracted the attention of geneticists and ecologists for almost a century. Studies on their embryogenesis, however, have been limited by the fact that guppies are live bearers. We have observed normal development after explantation of guppy embryos from the ovary of pregnant females at various times after last parturition, and found that development of each batch of eggs is slightly asynchronous, most likely due to asynchronous fertilization. We have cultured explanted embryos in vitro and continuously observed their development. Although embryos explanted a few days after fertilization survived up to 4 weeks in culture, they did not complete their development. In contrast, embryos explanted at late stages of gestation could hatch and develop to fertile adults. Our embryo culture techniques overcome some of the limitations of using livebearers as study objects, and they allow continuous observation of and accessibility to live embryos at all stages.

  7. Live embryo imaging to follow cell cycle and chromosomes stability after nuclear transfer.

    PubMed

    Balbach, Sebastian T; Boiani, Michele

    2015-01-01

    Nuclear transfer (NT) into mouse oocytes yields a transcriptionally and functionally heterogeneous population of cloned embryos. Most studies of NT embryos consider only embryos at predefined key stages (e.g., morula or blastocyst), that is, after the bulk of reprogramming has taken place. These retrospective approaches are of limited use to elucidate mechanisms of reprogramming and to predict developmental success. Observing cloned embryo development using live embryo cinematography has the potential to reveal otherwise undetectable embryo features. However, light exposure necessary for live cell cinematography is highly toxic to cloned embryos. Here we describe a protocol for combined bright-field and fluorescence live-cell imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This protocol, which can be adapted to observe other reporters such as Oct4-GFP or Nanog-GFP, allowed us to quantitatively analyze cleavage kinetics of cloned embryos.

  8. Fatty acid breakdown in developing embryos of Brassica napus L.

    PubMed

    Chia, T; Rawsthorne, S

    2000-12-01

    Developing Brassica napus embryos are primarily concerned with the accumulation of storage products, namely oil, starch and protein. The presence of fatty acid catabolic pathways in the background of this biosynthetic activity was investigated. Enzymes involved in the process of lipid mobilization, such as malate synthase and isocitrate lyase, are detectable towards the late stages of embryo development. [(14)C]Acetate feeding experiments also reveal that fatty acid catabolism becomes increasingly functional as the embryo matures.

  9. Embryo technologies in the horse.

    PubMed

    Squires, E L; Carnevale, E M; McCue, P M; Bruemmer, J E

    2003-01-01

    Recent studies demonstrated that zwitterionic buffers could be used for satisfactory storage of equine embryos at 5 degrees C. The success of freezing embryos is dependent upon size and stage of development. Morulae and blastocysts <300 microm can be slowly cooled or vitrified with acceptable pregnancy rates after transfer. The majority of equine embryos are collected from single ovulating mares, as there is no commercially available product for superovulation in equine. However, pituitary extract, rich in FSH, can be used to increase embryo recovery three- to four-fold. Similar to human medicine, assisted reproductive techniques have been developed for the older, subfertile mare. Transfer of in vivo-matured oocytes from young, healthy mares into a recipient's oviduct results in a 70-80% pregnancy rate compared with a 30-40% pregnancy rate when the oocytes are from older, subfertile mares. This procedure can also be used to evaluate in vitro maturation systems. In vitro production of embryos is still quite difficult in the horse. However, intracytoplasmic sperm injection (ICSI) has been used to produce several foals. Cleavage rates of 60% and blastocyst rates of 30% have been reported after ICSI of in vitro-matured oocytes. Gamete intrafallopian tube transfer (GIFT) is a possible treatment for subfertile stallions. Transfer of in vivo-matured oocytes with 200,000 sperm into the oviduct of normal mares resulted in a pregnancy rate of 55-82%. Oocyte freezing is a technique that has proven difficult in most species. However, equine oocytes vitrified in a solution of ethylene glycol, DMSO, and Ficoll and loaded onto a cryoloop resulted in three pregnancies of 26 transfers and two live foals produced. Production of a cloned horse appears to be likely, as several cloned pregnancies have recently been produced.

  10. Inoculation of somatic embryos of sweet potato with an arbuscular mycorrhizal fungus improves embryo survival and plantlet formation.

    PubMed

    Bressan, W; de Carvalho, C H; Sylvia, D M

    2000-08-01

    Responses of somatic embryos of sweet potato (Ipomoea batata (L.) Poir., cv. White Star) at different developmental stages to in vitro inoculation with Glomus etunicatum (Becker and Gerdemann) (isolate INVAM FL329) were evaluated. Somatic embryos were grown in glass tubes containing sterilized vermiculite and sand. A layer of natrosol plus White's medium was used as a carrier for arbuscular mycorrhizal (AM) fungal spores. Survival of embryos inoculated with AM fungi was significantly (P < 0.05) greater than that of noninoculated embryos at the rooted-cotyledonary-torpedo and rooted-elongated-torpedo developmental stages. Mycorrhizae significantly (P < 0.05) increased plantlet formation only when inoculation occurred at the rooted-elongated-torpedo developmental stage. The growth stage at which the embryos were inserted into the glass tubes exerted a significant influence upon plantlet formation, and plantlet formation was further enhanced by inoculation with G. etunicatum. Plantlet formation was greatest at the rooted-elongated-torpedo stage. These results demonstrate that inoculation of somatic embryos with AM fungi improves embryo survival and plantlet formation, and could enhance use of somatic embryos as synthetic seeds.

  11. Preimplantation embryo metabolism and culture systems: experience from domestic animals and clinical implications.

    PubMed

    Absalón-Medina, V A; Butler, W R; Gilbert, R O

    2014-04-01

    Despite advantages of in vitro embryo production in many species, widespread use of this technology is limited by generally lower developmental competence of in vitro derived embryos compared to in vivo counterparts. Regardless, in vivo or in vitro gametes and embryos face and must adjust to multiple microenvironments especially at preimplantation stages. Moreover, the embryo has to be able to further adapt to environmental cues in utero to result in the birth of live and healthy offspring. Enormous strides have been made in understanding and meeting stage-specific requirements of preimplantation embryos, but interpretation of the data is made difficult due to the complexity of the wide array of culture systems and the remarkable plasticity of developing embryos that seem able to develop under a variety of conditions. Nevertheless, a primary objective remains meeting, as closely as possible, the preimplantation embryo requirements as provided in vivo. In general, oocytes and embryos develop more satisfactorily when cultured in groups. However, optimization of individual culture of oocytes and embryos is an important goal and area of intensive current research for both animal and human clinical application. Successful culture of individual embryos is of primary importance in order to avoid ovarian superstimulation and the associated physiological and psychological disadvantages for patients. This review emphasizes stage specific shifts in embryo metabolism and requirements and research to optimize in vitro embryo culture conditions and supplementation, with a view to optimizing embryo culture in general, and culture of single embryos in particular.

  12. Steroidal alkaloid toxicity to fish embryos.

    PubMed

    Crawford, L; Kocan, R M

    1993-02-01

    Embryos of two species of fish were evaluated for their suitability as model systems for steroidal alkaloid toxicity, the Japanese rice fish, medaka (Oryzius latipes) and the rainbow trout (Oncorhynchus mykiss). Additionally, the equine neurotoxic sesquiterpene lactone repin, was also tested. A PROBIT program was used to evaluate the EC1, EC50 and EC99 as well as the associated confidence limits. The steroidal alkaloids tested were the Solanum potato glycoalkaloids alpha-chaconine, alpha-solanine, the aglyclones solanidine and solasodine and the Veratrum alkaloid, jervine. Embryo mortality, likely due to structural or functional abnormalities in the early development stages of the embryo, were the only response observed in both species. The rainbow trout exhibited a toxic response to chaconine, solasidine, repin and solanine but the medaka embryos were only affected by the compounds, chaconine and solanine. Rainbow trout may indeed serve as a good lower vertebrate model for studying the toxicity of steroidal alkaloids.

  13. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  14. Deep cytoplasmic rearrangements in ventralized Xenopus embryos

    NASA Technical Reports Server (NTRS)

    Brown, E. E.; Denegre, J. M.; Danilchik, M. V.

    1993-01-01

    Following fertilization in Xenopus, dramatic rearrangements of the egg cytoplasm relocalize maternally synthesized egg components. During the first cell cycle the vegetal yolk mass rotates relative to the egg surface, toward the sperm entry point (SEP) (J. P. Vincent, G. F. Oster, and J. C. Gerhart, 1986, Dev. Biol. 113, 484-500), while concomitant deep cytoplasmic rearrangements occur in the animal hemisphere (M. V. Danilchik and J. M. Denegre, 1991, Development 111, 845-856). In this paper we examine the role of vegetal yolk mass rotation in producing the animal cytoplasmic rearrangements. We inhibited rotation by uv-irradiating embryos during the first cell cycle, a treatment that yields an extremely ventralized phenotype. Both uv-irradiated embryos and unirradiated control embryos show cytoplasmic rearrangements in the animal hemisphere during the first cell cycle. Cytoplasmic rearrangements on the SEP side of the embryo associated with the path of the sperm pronucleus, plus a swirl on the anti-SEP (dorsal) side, are seen, whether or not yolk mass rotation has occurred. This result suggests a role for the expanding sperm aster in directing animal hemisphere cytoplasmic movements. In unirradiated control embryos the anti-SEP (dorsal) swirl is larger than that in uv-irradiated embryos and often extends into the vegetal hemisphere, consistent with the animal cytoplasm having been pulled dorsally and vegetally by the sliding vegetal yolk mass. Thus the yolk mass rotation may normally enhance the dorsalward cytoplasmic movement, begun by the sperm aster, enough to induce normal axis formation. We extended our observations of unirradiated control and uv-irradiated embryos through early cleavages. The vegetal extent of the anti-SEP (dorsal) swirl pattern seen in control embryos persists through the early cleavage period, such that labeled animal cytoplasm extends deep into dorsal third-tier blastomeres at the 32-cell stage. Significantly, in uv-irradiated embryos

  15. ROCK inhibition prevents early mouse embryo development.

    PubMed

    Duan, Xing; Chen, Kun-Lin; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2014-08-01

    ROCK is a Rho-GTPase effector that is important for actin assembly and is involved in various cellular functions, including cell contraction, migration, motility, and tumor cell invasion. In this study, we investigated ROCK expression and function during early mouse embryo development. Inhibiting ROCK by Y-27632 treatment at the zygote stage resulted in first cleavage failure, and most embryos failed to develop to the 8-cell stage. When adding Y-27632 at the 8-cell stage, embryos failed to undergo compaction and could not develop into blastocysts. In addition, fluorescence staining intensity analysis indicated that actin expression at blastomere membranes was significantly reduced. After ROCK inhibition, two or more nuclei were observed in a cell, which indicated possible cytokinesis failure. Moreover, after ROCK inhibition with Y-27632, the phosphorylation levels of LIMK1/2, a downstream molecule of ROCK, were decreased at blastomere membranes. Thus, our results showed conserved roles for ROCK in this mammalian embryo model and indicated that a ROCK-LIMK1/2-actin pathway might regulate cleavage and blastocyst formation during early mouse embryo development.

  16. Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long-term anther culture.

    PubMed

    Bueno, Maria A; Gomez, Arancha; Sepulveda, Federico; Seguí, José M; Testillano, Pilar S; Manzanera, José A; Risueño, Maria-Carmen

    2003-08-01

    Microspore-derived embryos produced from cork oak anther cultures after long-term incubations (up to 10-12 months) were analysed in order to determine the genetic variability and ploidy level stability, as well as morphology, developmental pattern and cellular organisation. Most of the embryos from long-term anther cultures were haploid (90.7%), corresponding to their microspore origin. The presence of a low percentage of diploid embryos (7.4%) was observed. Microsatellite analysis of haploid embryos, indicated different microspores origins of the same anther. In the diploid embryos, homozygosity for different alleles was detected from anther wall tissues, excluding the possibility of clonal origin. The maintenance of a high proportion of haploid embryos, in long-term anther cultures, is similar in percentage to that reported in embryos originating after 20 days of plating (Bueno et al. 1997). This suggests that no significant alterations in the ploidy level occurred during long incubations (up to 12 months). These results suggest that ploidy changes are rare in this in vitro system, and do not significantly increase during long-term cultures. Microscopical studies of the microspore embryos in various stages revealed a healthy and well developed anatomy with no aberrant or chimeric structures. The general morphology of embryos appearing at different times after plating, looked similar to that of earlier embryos, as well as the zygotic embryos, indicating that they represent high quality material for cork oak breeding.

  17. An Arabidopsis thaliana embryo arrest mutant exhibiting germination potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to initiate radicle elongation, or germination potential, occurs in developing embryos before the completion of seed maturation. Green embryos after walking-stick stage in developing Arabidopsis thaliana seeds germinate when excised from seeds and incubated in MS media containing 1 % suc...

  18. Cryopreservation of embryos of Lucilia sericata (Diptera: Calliphoridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Embryos of Lucilia (Phaenicia) sericata (Meigen) (Diptera: Calliphoridae), the green blowfly, were successfully cryopreserved by vitrification in liquid nitrogen and stored for 8 yr. Embryos incubated at 19 deg. C for 17 h after oviposition were found to be the most appropriate stage to cryopreserve...

  19. Effect of Embryo Density on In Vitro Development and Gene Expression in Bovine In Vitro-fertilized Embryos Cultured in a Microwell System

    PubMed Central

    SUGIMURA, Satoshi; AKAI, Tomonori; HASHIYADA, Yutaka; AIKAWA, Yoshio; OHTAKE, Masaki; MATSUDA, Hideo; KOBAYASHI, Shuji; KOBAYASHI, Eiji; KONISHI, Kazuyuki; IMAI, Kei

    2012-01-01

    Abstract To identify embryos individually during in vitro development, we previously developed the well-of-the-well (WOW) dish, which contains 25 microwells. Here we investigated the effect of embryo density (the number of embryos per volume of medium) on in vitro development and gene expression of bovine in vitro-fertilized embryos cultured in WOW dishes. Using both conventional droplet and WOW culture formats, 5, 15, and 25 bovine embryos were cultured in 125 µl medium for 168 h. The blastocysts at Day 7 were analyzed for number of cells and expression of ten genes (CDX2, IFN-tau, PLAC8, NANOG, OCT4, SOX2, AKR1B1, ATP5A1, GLUT1 and IGF2R). In droplet culture, the rates of formation of >4-cell cleavage embryos and blastocysts were significantly lower in embryos cultured at 5 embryos per droplet than in those cultured at 15 or 25 embryos per droplet, but not in WOW culture. In both droplet and WOW culture, developmental kinetics and blastocyst cell numbers did not differ among any groups. IFN-tau expression in embryos cultured at 25 embryos per droplet was significantly higher than in those cultured at 15 embryos per droplet and in artificial insemination (AI)-derived blastocysts. Moreover, IGF2R expression was significantly lower in the 25-embryo group than in the 5-embryo group and in AI-derived blastocysts. In WOW culture, these expressions were not affected by embryo density and were similar to those in AI-derived blastocysts. These results suggest that, as compared with conventional droplet culture, in vitro development and expression of IFN-tau and IGF2R in the microwell system may be insensitive to embryo density. PMID:23154384

  20. Effect of embryo density on in vitro development and gene expression in bovine in vitro-fertilized embryos cultured in a microwell system.

    PubMed

    Sugimura, Satoshi; Akai, Tomonori; Hashiyada, Yutaka; Aikawa, Yoshio; Ohtake, Masaki; Matsuda, Hideo; Kobayashi, Shuji; Kobayashi, Eiji; Konishi, Kazuyuki; Imai, Kei

    2013-01-01

    To identify embryos individually during in vitro development, we previously developed the well-of-the-well (WOW) dish, which contains 25 microwells. Here we investigated the effect of embryo density (the number of embryos per volume of medium) on in vitro development and gene expression of bovine in vitro-fertilized embryos cultured in WOW dishes. Using both conventional droplet and WOW culture formats, 5, 15, and 25 bovine embryos were cultured in 125 μl medium for 168 h. The blastocysts at Day 7 were analyzed for number of cells and expression of ten genes (CDX2, IFN-tau, PLAC8, NANOG, OCT4, SOX2, AKR1B1, ATP5A1, GLUT1 and IGF2R). In droplet culture, the rates of formation of >4-cell cleavage embryos and blastocysts were significantly lower in embryos cultured at 5 embryos per droplet than in those cultured at 15 or 25 embryos per droplet, but not in WOW culture. In both droplet and WOW culture, developmental kinetics and blastocyst cell numbers did not differ among any groups. IFN-tau expression in embryos cultured at 25 embryos per droplet was significantly higher than in those cultured at 15 embryos per droplet and in artificial insemination (AI)-derived blastocysts. Moreover, IGF2R expression was significantly lower in the 25-embryo group than in the 5-embryo group and in AI-derived blastocysts. In WOW culture, these expressions were not affected by embryo density and were similar to those in AI-derived blastocysts. These results suggest that, as compared with conventional droplet culture, in vitro development and expression of IFN-tau and IGF2R in the microwell system may be insensitive to embryo density.

  1. Vitrification of zebrafish embryo blastomeres in microvolumes.

    PubMed

    Cardona-Costa, J; García-Ximénez, F

    2007-01-01

    Cryopreservation of fish embryos may play an important role in biodiversity preservation and in aquaculture, but it is very difficult. In addition, the cryopreservation of fish embryo blastomeres makes conservation strategies feasible when they are used in germ-line chimaerism, including interspecific chimaerism. Fish embryo blastomere cryopreservation has been achieved by equilibrium procedures, but to our knowledge, no data on vitrification procedures are available. In the present work, zebrafish embryo blastomeres were successfully vitrified in microvolumes: a number of 0.25 microl drops, sufficient to contain all the blastomeres of an embryo at blastula stage (from 1000-cell stage to oblong stage), were placed over a 2.5 cm loop of nylon filament. In this procedure, where intracellular cryoprotectant permeation is not required, blastomeres were exposed to cryoprotectants for a maximum of 25 sec prior vitrification. The assayed cryoprotectants (ethylene glycol, propylene glycol, dimethyl sulphoxide, glycerol and methanol) are all frequently used in fish embryo and blastomere cryopreservation. Methanol was finally rejected because of the excessive concentration required for the vitrification (15M). All other cryoprotectants were prepared (individually) at 5 M in Hanks' buffered salt solution (sigma) plus 20% FBS (vitrification solutions: vs). After direct thawing in Hanks' buffered salt solution plus 20% FBS, acceptable survival rates were obtained with ethylene glycol: 82.8%, propylene glycol: 87.7%, dimethyl sulphoxide: 93.4%, and glycerol: 73.9% (p < 0.05). Dimethyl sulphoxide showed the highest blastomere survival rate and allowed the rescue of as much as 20% of the total blastomeres from each zebrafish blastula embryo.

  2. Methylation of DNA in mouse early embryos, teratocarcinoma cells and adult tissues of mouse and rabbit.

    PubMed Central

    Singer, J; Roberts-Ems, J; Luthardt, F W; Riggs, A D

    1979-01-01

    The distribution and amount of 5-methylcytosine (5-MeCyt) in DNA was measured for early embryos of mouse strain CF1 (2 to 4 cell stage to blastocyst) and mouse teratocarcinoma cells. In each case, the pattern of methylation was examined by use of the restriction enzymes Hha I and HPA II HPA II, which cut DNA at the sites 5'GCGC and 5'CCGG respectively, when the cytosines at these sites are not methylated. Mouse embryo DNA was found to have the same level of methylation as adult mouse tissues, and no changes in methylation were seen during differentiation of the teratocarcinoma cells. The ratio of 5-MeCyt/Cyt in DNA was measured by high performance liquid chromatography for the differentiating teratocarcinoma cells and for several adult mouse and rabbit tissues. The variation between tissues or between teratocarcinoma cells at different stages of differentiation was less than 10 percent. These results are discussed in view of proposals that 5-MeCyt plays a role in differentiation. Images PMID:523320

  3. Induction of autophagy improves embryo viability in cloned mouse embryos

    PubMed Central

    Shen, XingHui; Zhang, Na; Wang, ZhenDong; Bai, GuangYu; Zheng, Zhong; Gu, YanLi; Wu, YanShuang; Liu, Hui; Zhou, DongJie; Lei, Lei

    2015-01-01

    Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P < 0.05). Furthermore, the treatment of rapamycin and pp242 accelerates active DNA demethylation indicated by the conversion of 5 mC to 5 hmC, and treatment of rapamycin improves degradation of maternal mRNA as well. Thus, our findings reveal that autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT. PMID:26643778

  4. Potentiality and human embryos.

    PubMed

    Lizza, John P

    2007-09-01

    Consideration of the potentiality of human embryos to develop characteristics of personhood, such as intellect and will, has figured prominently in arguments against abortion and the use of human embryos for research. In particular, such consideration was the basis for the call of the US President's Council on Bioethics for a moratorium on stem cell research on human embryos. In this paper, I critique the concept of potentiality invoked by the Council and offer an alternative account. In contrast to the Council's view that an embryo's potentiality is determined by definition and is not affected by external conditions that may prevent certain possibilities from ever being realized, I propose an empirically grounded account of potentiality that involves an assessment of the physical and decisional conditions that may restrict an embryo's possibilities. In my view, some human embryos lack the potentiality to become a person that other human embryos have. Assuming for the sake of argument that the potential to become a person gives a being special moral status, it follows that some human embryos lack this status. This argument is then used to support Gene Outka's suggestion that it is morally permissible to experiment on 'spare' frozen embryos that are destined to be destroyed.

  5. Variable imprinting of the MEST gene in human preimplantation embryos

    PubMed Central

    Huntriss, John D; Hemmings, Karen E; Hinkins, Matthew; Rutherford, Anthony J; Sturmey, Roger G; Elder, Kay; Picton, Helen M

    2013-01-01

    There is evidence that expression and methylation of the imprinted paternally expressed gene 1/mesoderm-specific transcript homologue (PEG1/MEST) gene may be affected by assisted reproductive technologies (ARTs) and infertility. In this study, we sought to assess the imprinting status of the MEST gene in a large cohort of in vitro-derived human preimplantation embryos, in order to characterise potentially adverse effects of ART and infertility on this locus in early human development. Embryonic genomic DNA from morula or blastocyst stage embryos was screened for a transcribed AflIII polymorphism in MEST and imprinting analysis was then performed in cDNA libraries derived from these embryos. In 10 heterozygous embryos, MEST expression was monoallelic in seven embryos, predominantly monoallelic in two embryos, and biallelic in one embryo. Screening of cDNA derived from 61 additional human preimplantation embryos, for which DNA for genotyping was unavailable, identified eight embryos with expression originating from both alleles (biallelic or predominantly monoallelic). In some embryos, therefore, the onset of imprinted MEST expression occurs during late preimplantation development. Variability in MEST imprinting was observed in both in vitro fertilization and intracytoplasmic sperm injection-derived embryos. Biallelic or predominantly monoallelic MEST expression was not associated with any one cause of infertility. Characterisation of the main MEST isoforms revealed that isoform 2 was detected in early development and was itself variably imprinted between embryos. To our knowledge, this report constitutes the largest expression study to date of genomic imprinting in human preimplantation embryos and reveals that for some imprinted genes, contrasting imprinting states exist between embryos. PMID:22763377

  6. Measuring embryo metabolism to predict embryo quality.

    PubMed

    Thompson, Jeremy G; Brown, Hannah M; Sutton-McDowall, Melanie L

    2016-01-01

    Measuring the metabolism of early embryos has the potential to be used as a prospective marker for post-transfer development, either alone or in conjunction with other embryo quality assessment tools. This is necessary to maximise the opportunity of couples to have a healthy child from assisted reproduction technology (ART) and for livestock breeders to efficiently improve the genetics of their animals. Nevertheless, although many promising candidate substrates (e.g. glucose uptake) and methods (e.g. metabolomics using different spectroscopic techniques) have been promoted as viability markers, none has yet been widely used clinically or in livestock production. Herein we review the major techniques that have been reported; these are divided into indirect techniques, where measurements are made from the embryo's immediate microenvironment, or direct techniques that measure intracellular metabolic activity. Both have strengths and weaknesses, the latter ruling out some from contention for use in human ART, but not necessarily for use in livestock embryo assessment. We also introduce a new method, namely multi- (or hyper-) spectral analysis, which measures naturally occurring autofluorescence. Several metabolically important molecules have fluorescent properties, which we are pursuing in conjunction with improved image analysis as a viable embryo quality assessment methodology.

  7. Fusion of blastomeres in mouse embryos under the action of femtosecond laser radiation. Efficiency of blastocyst formation and embryo development

    NASA Astrophysics Data System (ADS)

    Osychenko, A. A.; Zalesskii, A. D.; Krivokharchenko, A. S.; Zhakhbazyan, A. K.; Ryabova, A. V.; Nadtochenko, V. A.

    2015-05-01

    Using the method of femtosecond laser surgery we study the fusion of two-cell mouse embryos under the action of tightly focused femtosecond laser radiation with the fusion efficiency reaching 60%. The detailed statistical analysis of the efficiency of blastomere fusion and development of the embryo up to the blastocyst stage after exposure of the embryos from different mice to a femtosecond pulse is presented. It is shown that the efficiency of blastocyst formation essentially depends on the biological characteristics of the embryo, namely, the strain and age of the donor mouse. The possibility of obtaining hexaploid embryonal cells using the methods of femtosecond laser surgery is demonstrated.

  8. In vitro fertilization and embryo development in pigs.

    PubMed

    Abeydeera, L R

    2001-01-01

    Considerable progress has been made in the in vitro production of pig embryos using improved methods for in vitro maturation (IVM) and fertilization (IVF). Despite the progress, polyspermic penetration remains a problem for in vitro-matured oocytes. Variation among boars, ejaculates and IVF protocols used in different laboratories appears to influence the incidence of polyspermy. Recent studies indicate that oviduct cells and their secretions play a role in reducing polyspermy. Very early attempts to culture in vivo-derived pig embryos met with little success and most were arrested at the four-cell stage. At present, many culture media are available that can overcome the four-cell block and support development to the blastocyst stage. In contrast, blastocyst development of in vitro-produced (IVP) embryos in these culture media varies significantly. Significant differences in morphology and numbers of cells have been observed in in vitro-produced blastocysts compared with in vivo-derived blastocysts. Surgical transfer of in vitro-produced embryos to recipient animals has resulted in acceptable pregnancy rates with moderate litter sizes. Although several systems are available for the generation of in vitro-produced embryos, the problems of polyspermy and poor embryo survival prevent large-scale production of embryos. Further research should be directed to improve oocyte and embryo quality, and to develop methods to minimize polyspermy through development of better IVM, IVF and embryo culture techniques.

  9. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa

    PubMed Central

    Winkelmann, Traud; Ratjens, Svenja; Bartsch, Melanie; Rode, Christina; Niehaus, Karsten; Bednarz, Hanna

    2015-01-01

    Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos. PMID:26300898

  10. Nucleolar development and allocation of key nucleolar proteins require de novo transcription in bovine embryos.

    PubMed

    Svarcova, Olga; Laurincik, Jozef; Avery, Birthe; Mlyncek, Milos; Niemann, Heiner; Maddox-Hyttel, Poul

    2007-11-01

    The goal of the present study was to investigate whether key nucleolar proteins involved in ribosomal RNA (rRNA) transcription and processing are transcribed de novo or from maternally inherited messenger RNAs (mRNA) in bovine embryos, and to which extent de novo transcription of these proteins mRNA is required for the development of functional nucleoli during the major activation of the embryonic genome. Immunofluorescence for localization of key nucleolar proteins, autoradiography for detection of transcriptional activity, and transmission electron microscopy were applied to in vitro produced bovine embryos cultured from the 2-cell stage with or without (control groups) alpha-amanitin, which blocks the RNA polymerases II and III transcription and, thus the synthesis of mRNA. In the control groups, weak autoradiographic labeling was initially observed in the periphery of few nuclei at the 4-cell and the early 8-cell stage, and the entire nucleoplasm as well as nucleolus precursor bodies (NBBs) were prominently labelled in all late 8-cell stages. The NPBs displayed initial transformation into fibrillo-granular nucleoli. In the alpha-amanitin group, lack of autoradiographic labeling was seen at all developmental stages and disintegrated NPBs stage were found at the late 8-cell. Our immunofluorescence data indicate that RNA polymerase I, UBF, topoisomerase I and fibrillarin are transcribed de novo whereas nucleolin and nucleophosmin are maternally inherited as demonstrated by alpha -amanitin inhibition. However, localization of these two proteins to the nucleolar compartments was negatively affected by the alpha-amanitin treatment. Consequently, functional nucleoli were not established.

  11. Stimulus-triggered enhancement of chilling tolerance in zebrafish embryos

    PubMed Central

    Szabó, Katalin; Budai, Csilla; Losonczi, Eszter; Bernáth, Gergely; Csenki-Bakos, Zsolt; Urbányi, Béla; Pribenszky, Csaba; Horváth, Ákos; Cserepes, Judit

    2017-01-01

    Background Cryopreservation of zebrafish embryos is still an unsolved problem despite market demand and massive efforts to preserve genetic variation among numerous existing lines. Chilled storage of embryos might be a step towards developing successful cryopreservation, but no methods to date have worked. Methods In the present study, we applied a novel strategy to improve the chilling tolerance of zebrafish embryos by introducing a preconditioning hydrostatic pressure treatment to the embryos. In our experiments, 26-somites and Prim-5 stage zebrafish embryos were chilled at 0°C for 24 hours after preconditioning. Embryo survival rate, ability to reach maturation and fertilizing capacity were tested. Results Our results indicate that applied preconditioning technology made it possible for the chilled embryos to develop normally until maturity, and to produce healthy offspring as normal, thus passing on their genetic material successfully. Treated embryos had a significantly higher survival and better developmental rate, moreover the treated group had a higher ratio of normal morphology during continued development. While all controls from chilled embryos died by 30 day-post-fertilization, the treated group reached maturity (~90–120 days) and were able to reproduce, resulting in offspring in expected quantity and quality. Conclusions Based on our results, we conclude that the preconditioning technology represents a significant improvement in zebrafish embryo chilling tolerance, thus enabling a long-time survival. Furthermore, as embryonic development is arrested during chilled storage this technology also provides a solution to synchronize or delay the development. PMID:28166301

  12. Studies of In Vitro Embryo Culture of Guppy (Poecilia reticulata).

    PubMed

    Liu, LiLi; Lee, Ki-Young

    2014-09-01

    Different with other fishes, the guppies (Poecilia reticulata) is ovoviviparity, which retain their fertilized eggs within the follicle throughout gestation. The synchronously growing diplotene oocytes store nutrients in droplets and yolk, before their maturation and fertilization. The lecithotrophic strategy of development entails the provisioning of embryos with resources from the maternal yolk deposit rather than from a placenta, it allows the extracorporeal culture of guppy embryo. Studies on their early development of live bearers like the guppy including lineage tracing and genetic manipulations, have been limited. Therefore, to optimize conditions of embryo in vitro culture, explanted embryos from pregnant females were incubated in embryo medium (L-15 medium, supplemented with 5, 10, 15, 20% fetal bovine serum, respectively). We investigated whether the contents of FBS in vitro culture medium impact the development of embryos, and whether they would hatch in vitro. Our study found that in 5% of FBS of the medium, although embryos developed significantly slower in vitro than in the ovary, it was impossible to exactly quantify the developmental delay in culture, due to the obvious spread in developmental stage within each batch of eggs, and embryos can only be maintained until the early-eyed. And although in culture with 20% FBS the embryos can sustain rapid development of early stage, but cannot be cultured for the entire period of their embryonic development and ultimately died. In the medium with 10% and 15% FBS, the embryos seems well developed, even some can continue to grow after follicle ruptures until it can be fed. We also observed that embryonic in these two culture conditions were significantly different in development speed, in 15% it is faster than 10%. But 10% FBS appears to be more optimizing condition than 15% one on development process of embryos and survival rate to larvae stage.

  13. The development and expression of pluripotency genes in embryos derived from nuclear transfer and in vitro fertilization.

    PubMed

    Ma, Li-Bing; He, Xiao-Ying; Wang, Feng-Mei; Cao, Jun-Wei; Cheng, Teng

    2014-11-01

    Somatic cell nuclear transfer can be used to produce embryonic stem (ES) cells, cloned animals, and can even increase the population size of endangered animals. However, the application of this technique is limited by the low developmental rate of cloned embryos, a situation that may result from abnormal expression of some zygotic genes. In this study, sheep-sheep intra-species cloned embryos, goat-sheep inter-species cloned embryos, or sheep in vitro fertilized embryos were constructed and cultured in vitro and the developmental ability and expression of three pluripotency genes, SSEA-1, Nanog and Oct4, were examined. The results showed firstly that the developmental ability of in vitro fertilized embryos was significantly higher than that of cloned embryos. In addition, the percentage of intra-species cloned embryos that developed to morula or blastocyst stages was also significantly higher than that of the inter-species cloned embryos. Secondly, all three types of embryos expressed SSEA-1 at the 8-cell and morula stages. At the 8-cell stage, a higher percentage of in vitro fertilized embryos expressed SSEA-1 than occurred for cloned embryos. However, at the morula stage, all detected embryos could express SSEA-1. Thirdly, the three types of embryos expressed Oct4 mRNA at the morula and blastocyst stages, and embryos at the blastocyst stage expressed Nanog mRNA. The rate of expression of Oct4 and Nanog mRNA at these developmental stages was higher in in vitro fertilized embryos than in cloned embryos. These results indicated that, during early development, the failure to reactivate some pluripotency genes maybe is a reason for the low cloning efficiency found with cloned embryos.

  14. Retarded Embryo Development 1 (RED1) regulates embryo development, seed maturation and plant growth in Arabidopsis.

    PubMed

    Du, Qian; Wang, Huanzhong

    2016-07-20

    Plant seeds accumulate large amounts of protein and carbohydrate as storage reserves during maturation. Thus, understanding the genetic control of embryo and seed development may provide bioengineering tools for yield improvement. In this study, we report the identification of Retarded Embryo Development 1 (RED1) gene in Arabidopsis, whose two independent T-DNA insertion mutant lines, SALK_085642 (red1-1) and SALK_022583 (red1-2), show a retarded embryo development phenotype. The embryogenesis process ceases at the late heart stage in red1-1 and at the bent-cotyledon stage in red1-2, respectively, resulting in seed abortion in both lines. The retarded embryo development and seed abortion phenotypes reverted to normal when RED1 complementation constructs were introduced into mutant plants. Small red1-2 homozygous plants can be successfully rescued by culturing immature seeds, indicating that seed abortion likely results from compromised tolerance to the desiccation process associated with seed maturation. Consistent with this observation, red1-2 seeds accumulate less protein, and the expression of two late embryo development reporter transgenes, LEA::GUS and β-conglycinin::GUS, was significantly weak and started relatively late in the red1-2 mutant lines compared to the wild type. The RED1 gene encodes a plant specific novel protein that is localized in the nucleus. These results indicate that RED1 plays important roles in embryo development, seed maturation and plant growth.

  15. Algal-CAMs: isoforms of a cell adhesion molecule in embryos of the alga Volvox with homology to Drosophila fasciclin I.

    PubMed

    Huber, O; Sumper, M

    1994-09-15

    Proof that plants possess homologs of animal adhesion proteins is lacking. In this paper we describe the generation of monoclonal antibodies that interfere with cell-cell contacts in the 4-cell embryo of the multicellular alga Volvox carteri, resulting in a hole between the cells. The number of following cell divisions is reduced and the cell division pattern is altered drastically. Antibodies given at a later stage of embryogenesis specifically inhibit inversion of the embryo, a morphogenetic movement that turns the embryo inside out. Immunofluorescence microscopy localizes the antigen (Algal-CAM) at cell contact sites of the developing embryo. Algal-CAM is a protein with a three-domain structure: an N-terminal extensin-like domain characteristic for plant cell walls and two repeats with homology to fasciclin I, a cell adhesion molecule involved in the neuronal development of Drosophila. Alternatively spliced variants of Algal-CAM mRNA were detected that are produced under developmental control. Thus, Algal-CAM is the first plant homolog of animal adhesion proteins.

  16. Embryo dignity: the status and juridical protection of the in vitro embryo.

    PubMed

    Raposo, Vera Lúcia; Osuna, Eduardo

    2007-12-01

    In the context of research and reproduction, the status of the human in vitro embryo ranges from being regarded as a person to being regarded as mere property. As regards the first view, one extreme of the spectrum for offering possible legal protection considers that the embryo constitutes a legal person from the moment of conception. For opponents of this view life is a continuum that runs from conception until death. In this process one of the most important stages is birth, the reason being that birth represents the transition between a potential person and a person. The term "embryo" is used to express the being that exists after fusion of the egg and a spermatozoon during the process of embryogenesis until it reaches eight weeks, after which time it is termed a foetus. The embryo's life is recognized as a constitutional value which deserves juridical protection, but not as a person. It only becomes a person with birth.

  17. Comparison of gene expression in fresh and frozen-thawed human preimplantation embryos.

    PubMed

    Shaw, Lisa; Sneddon, Sharon F; Brison, Daniel R; Kimber, Susan J

    2012-11-01

    Identification and characterisation of differentially regulated genes in preimplantation human embryonic development are required to improve embryo quality and pregnancy rates in IVF. In this study, we examined expression of a number of genes known to be critical for early development and compared expression profiles in individual preimplantation human embryos to establish any differences in gene expression in fresh compared to frozen-thawed embryos used routinely in IVF. We analysed expression of 19 genes by cDNA amplification followed by quantitative real-time PCR in a panel of 44 fresh and frozen-thawed human preimplantation embryos. Fresh embryos were obtained from surplus early cleavage stage embryos and frozen-thawed embryos from cryopreserved 2PN embryos. Our aim was to determine differences in gene expression between fresh and frozen-thawed human embryos, but we also identified differences in developmental expression patterns for particular genes. We show that overall gene expression among embryos of the same stage is highly variable and our results indicate that expression levels between groups did differ and differences in expression of individual genes was detected. Our results show that gene expression from frozen-thawed embryos is more consistent when compared with fresh, suggesting that cryopreserved embryos may represent a reliable source for studying the molecular events underpinning early human embryo development.

  18. Use of DNA strand damage (Comet assay) and embryo hatching effects to assess contaminant exposure in blue crab (Callinectes sapidus) embryos

    SciTech Connect

    Lee, R.F.; Steinert, S.A.; Nakayama, K.; Oshima, Y.

    1999-07-01

    After fertilization, blue crab eggs are embedded in a sponge which is attached to the female abdomen during embryo development. Embryos after 9 stages in the egg sac hatch into a swimming zoea stage (stage 10). The authors have developed a bioassay where embryo development is monitored in culture plates with and without toxicants in the water. Toxicant effects are based on determining the percentage of embryos which hatch to zoea. Hatching EC{sub 50} (toxicant concentration at which 50% of the embryos fail to hatch) for a number of pesticides, organometallics and metals were determined. The test takes from 2 to 6 days depending on the embryo stage selected for the study. In addition to embryo development effects the prevalence of DNA single-strand breaks in individual embryo cells were determined using the single cell gel electrophoresis method (Comet assay). A good correlation between DNA strand breakage and embryo defects was found after exposure to genotoxic contaminants. Thus, the bioassay linking DNA damage to embryo hatching effects is rapid, sensitive and mechanistically relevant.

  19. Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).

    PubMed

    Correia, Sandra M; Canhoto, Jorge M

    2010-06-01

    The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.

  20. Freezing injuries in the embryos of Piaractus mesopotamicus.

    PubMed

    Fornari, Darci Carlos; Ribeiro, Ricardo Pereira; Streit, Danilo Pedro; Vargas, Lauro; Barrero, Nelson M Lopera; de Moraes, Gentil Vanini

    2011-11-01

    Cryopreservation of mammal embryos has been technically feasible for many years, but morphological injuries still persist in fish embryos during cryopreservation. Thus, the objective of the present study was to describe these freezing injuries in Piaractus mesopotamicus embryos. Two hundred and twenty-five embryos were collected at the post-gastrula stage and assigned into four treatments of sucrose at 8.5, 17.0, 25.0 or 34.0% plus 9.0% methanol. The control was prepared with distilled water only. The gradual decrease in the temperature was 0.5°C/min. After the seeding stage, the fish embryos were stored in liquid nitrogen at -33°C. Thereafter, they were thawed for evaluating per cent hatching, and the samples collected from every treatment were submitted to scanning electron microscopy for morphological analysis. The micrographic images showed that there was substantial alterations in embryo morphology under the highest concentrations of sucrose. These solutions did not prevent the formation of ice crystals, which lead to deformities and killed the embryos, but the observed reduced level of morphological structure in these embryos when treated with 17.0% sucrose plus 9.0% methanol is a compelling argument for additional studies.

  1. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells

    PubMed Central

    Falco, Geppino; Lee, Sung-Lim; Stanghellini, Ilaria; Bassey, Uwem C.; Hamatani, Toshio; Ko, Minoru S. H.

    2007-01-01

    The first wave of transcription, called zygotic genome activation (ZGA), begins during the 2-cell stage in mouse preimplantation development and marks a vital transition from the maternal genetic to the embryonic genetic program. Utilizing DNA microarray data, we looked for genes that are expressed only during ZGA and found Zscan4, whose expression is restricted to late 2-cell stage embryos. Sequence analysis of genomic DNA and cDNA clones revealed nine paralogous genes tightly clustered in 0.85 Mb on mouse Chromosome 7. Three genes are not transcribed and are thus considered pseudogenes. Among the six expressed genes named Zscan4a-Zscan4f, three -- Zscan4c, Zscan4d, and Zscan4f -- encode full-length ORFs with 506 amino acids. Zscan4d is a predominant transcript at the late 2-cell stage, whereas Zscan4c is a predominant transcript in embryonic stem (ES) cells. No transcripts of any Zscan4 genes are detected in any other cell types. Reduction of Zscan4 transcript levels by siRNAs delays the progression from the 2-cell to the 4-cell stage and produces blastocysts that fail to implant or proliferate in blastocyst outgrowth culture. Zscan4 thus seems to be essential for preimplantation development. PMID:17553482

  2. Embryo fossilization is a biological process mediated by microbial biofilms

    PubMed Central

    Raff, Elizabeth C.; Schollaert, Kaila L.; Nelson, David E.; Donoghue, Philip C. J.; Thomas, Ceri-Wyn; Turner, F. Rudolf; Stein, Barry D.; Dong, Xiping; Bengtson, Stefan; Huldtgren, Therese; Stampanoni, Marco; Chongyu, Yin; Raff, Rudolf A.

    2008-01-01

    Fossilized embryos with extraordinary cellular preservation appear in the Late Neoproterozoic and Cambrian, coincident with the appearance of animal body fossils. It has been hypothesized that microbial processes are responsible for preservation and mineralization of organic tissues. However, the actions of microbes in preservation of embryos have not been demonstrated experimentally. Here, we show that bacterial biofilms assemble rapidly in dead marine embryos and form remarkable pseudomorphs in which the bacterial biofilm replaces and exquisitely models details of cellular organization and structure. The experimental model was the decay of cleavage stage embryos similar in size and morphology to fossil embryos. The data show that embryo preservation takes place in 3 distinct steps: (i) blockage of autolysis by reducing or anaerobic conditions, (ii) rapid formation of microbial biofilms that consume the embryo but form a replica that retains cell organization and morphology, and (iii) bacterially catalyzed mineralization. Major bacterial taxa in embryo decay biofilms were identified by using 16S rDNA sequencing. Decay processes were similar in different taphonomic conditions, but the composition of bacterial populations depended on specific conditions. Experimental taphonomy generates preservation states similar to those in fossil embryos. The data show how fossilization of soft tissues in sediments can be mediated by bacterial replacement and mineralization, providing a foundation for experimentally creating biofilms from defined microbial species to model fossilization as a biological process. PMID:19047625

  3. Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria.

    PubMed

    Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi

    2015-09-29

    Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals.

  4. Embryotoxic effects of chlorobutanol in cultured mouse embryos.

    PubMed

    Smoak, I W

    1993-03-01

    Chlorobutanol (CB) is a commonly used preservative which is added to numerous pharmaceutical preparations, and it is the active ingredient in certain oral sedatives and topical anesthetics. Chlorobutanol has demonstrated adverse effects in adult tissues, but CB has not been previously investigated for its effect on the developing whole embryo. The method of whole-embryo culture was used in this study to expose mouse embryos during two stages of organogenesis to CB at final concentrations of 0 (control), 10, 25, 50, 100, and 200 micrograms/ml. Embryos were evaluated for heart rate (HR), malformations, and somite number, and embryos and visceral yolk sacs (VYSs) were assayed for total protein content as a measure of overall growth. Neurulating (3-6 somite) embryos were malformed and growth retarded by exposure to CB concentrations > or = 25 micrograms/ml, with decreased VYS growth at > or = 50 micrograms/ml and decreased HR at > or = 100 micrograms/ml CB. Early limb-bud stage (20-25 somite) embryos were malformed at CB concentrations > or = 50 micrograms/ml and growth retarded at > or = 100 micrograms/ml, with decreased VYS growth at 200 micrograms/ml and decreased HR at > or = 100 micrograms/ml CB. Thus, CB produces dysmorphogenesis in mouse embryos in vitro, and neurulating embryos are somewhat less sensitive than early limb-bud stage embryos. The concentrations of CB that interfere with normal embryonic development are within the range of human blood levels measured following multiple doses of CB. Preparations containing CB should be used with caution during pregnancy, particularly when repeated dosing may allow accumulation of CB to potentially embryotoxic levels.

  5. Human embryos cultured in vitro to 14 days

    PubMed Central

    2017-01-01

    We know a great deal about the development of the mammalian embryo until the time that the blastocyst implants into the uterus. With model organisms such as the mouse, we have also developed a considerable understanding of development immediately around gastrulation as embryos can be recovered at this stage for short-term in vitro culture. However, the intervening period of development remained a ‘black box’ because it takes place as the blastocyst is implanting into the uterus. Over the past 6 years, techniques pioneered and developed in Magdalena Zernicka-Goetz's laboratory for the in vitro culture of embryos through these implantation stages have opened up this box, affording the first glimpse of embryonic development through these previously hidden stages. Remarkably, the techniques developed with mouse embryos are equally applicable to human embryos, ushering the very first opportunities for studying our own development throughout this time. Here, I outline how the culture methods were developed, paving the way to culture of the human embryo to the point of gastrulation, an accomplishment recognized as the People's Choice for the Scientific Breakthrough of 2016 in Science magazine. I also discuss the new ethical challenges raised by the possibility of extending the time limits for human embryo culture. PMID:28123056

  6. Embryo cryopreservation and in vitro culture of preimplantation embryos in Campbell's hamster (Phodopus campbelli).

    PubMed

    Amstislavsky, Sergei; Brusentsev, Eugeny; Kizilova, Elena; Igonina, Tatyana; Abramova, Tatyana; Rozhkova, Irina

    2015-04-01

    The aims of this study were to compare different protocols of Campbell's hamster (Phodopus campbelli) embryos freezing-thawing and to explore the possibilities of their in vitro culture. First, the embryos were flushed from the reproductive ducts 2 days post coitum at the two-cell stage and cultured in rat one-cell embryo culture medium (R1ECM) for 48 hours. Most (86.7%) of the two-cell embryos developed to blastocysts in R1ECM. Second, the embryos at the two- to eight-cell stages were flushed on the third day post coitum. The eight-cell embryos were frozen in 0.25 mL straws according to standard procedures of slow cooling. Ethylene glycol (EG) was used either as a single cryoprotectant or in a mixture with sucrose. The survival of frozen-thawed embryos was assessed by double staining with fluorescein diacetate and propidium iodide. The use of EG as a single cryoprotectant resulted in fewer alive embryos when compared with control (fresh embryos), but combined use of EG and sucrose improved the survival rate after thawing. Furthermore, granulocyte-macrophage colony-stimulating factor rat (2 ng/mL) improved the rate of the hamster frozen-thawed embryo development in vitro by increasing the final cell number and alleviating nuclear fragmentation. Our data show the first attempt in freezing and thawing Campbell's hamster embryos and report the possibility of successful in vitro culture for this species in R1ECM supplemented with granulocyte-macrophage colony-stimulating factor.

  7. Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China

    NASA Technical Reports Server (NTRS)

    Chen, J. Y.; Oliveri, P.; Li, C. W.; Zhou, G. Q.; Gao, F.; Hagadorn, J. W.; Peterson, K. J.; Davidson, E. H.

    2000-01-01

    Putative fossil embryos and larvae from the Precambrian phosphorite rocks of the Doushantuo Formation in Southwest China have been examined in thin section by bright field and polarized light microscopy. Although we cannot completely exclude a nonbiological or nonmetazoan origin, we identified what appear to be modern cnidarian developmental stages, including both anthozoan planula larvae and hydrozoan embryos. Most importantly, the sections contain a variety of small (stage embryos of modern bilaterian forms.

  8. Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China.

    PubMed

    Chen, J Y; Oliveri, P; Li, C W; Zhou, G Q; Gao, F; Hagadorn, J W; Peterson, K J; Davidson, E H

    2000-04-25

    Putative fossil embryos and larvae from the Precambrian phosphorite rocks of the Doushantuo Formation in Southwest China have been examined in thin section by bright field and polarized light microscopy. Although we cannot completely exclude a nonbiological or nonmetazoan origin, we identified what appear to be modern cnidarian developmental stages, including both anthozoan planula larvae and hydrozoan embryos. Most importantly, the sections contain a variety of small (stage embryos of modern bilaterian forms.

  9. Biopsy of embryos produced by in vitro fertilization affects development in C57BL/6 mouse strain

    PubMed Central

    Sugawara, Atsushi; Ward, Monika A.

    2012-01-01

    Preimplantation genetic diagnosis (PGD) is considered highly successful in respect to its accuracy in detecting genetic anomalies but the effects of embryo biopsy on embryonic/fetal growth and development are less known, particularly in conjunction with in vitro fertilization (IVF). Here, we compared biopsied (B) and non-biopsied (NB) mouse embryos for their developmental competence. Embryos C57BL/6 (B6) and B6D2F2 (F2) generated by IVF were subjected to single blastomere biopsy at the 4-cell stage, and were either cultured for 120 h and subjected to differential inner cell mass (ICM) and trophoblast (T) staining, or were transferred into the uterine tubes of surrogate mothers after 72 h of culture, to examine their pre- and post-implantation development, respectively. Non-biopsied embryos from the same IVF cohorts served as controls. Embryo biopsy negatively affected preimplantation development to blastocyst in C57BL/6 (69 vs 79%, P<0.01) but not in B6D2F1 mice (89 vs 91%, P=NS). Although B6 embryos had lower total cell number than F2 (B6: 47 and 61 vs. F1: 53 and 70; B and NB, respectively, P<0.05) there were no differences between B and NB blastocysts in %ICM (B6: 19.8 vs 19.8; F2: 20.9 vs 20.4, P=NS) and ICM:T ratio (B6: 4.7 vs 4.7; F2: 4.4 vs. 4.7) in both mouse strains. Post-implantation development to live fetuses of B embryos as compared to NB counterparts was impaired in C57BL/6 (6 vs 18%, P<0.001) but not in B6D2F1 mice (26 vs 35%, P=NS). We conclude that blastomere biopsy impairs embryonic/fetal development in mice known to be sensitive to in vitro culture and manipulations. Such mice model infertile couples with poor quality gametes seeking help in assisted reproduction technologies (ART) clinics. PMID:23174776

  10. Avian egg odour encodes information on embryo sex, fertility and development.

    PubMed

    Webster, Ben; Hayes, William; Pike, Thomas W

    2015-01-01

    Avian chemical communication is a rapidly emerging field, but has been hampered by a critical lack of information on volatile chemicals that communicate ecologically relevant information (semiochemicals). A possible, but as yet unexplored, function of olfaction and chemical communication in birds is in parent-embryo and embryo-embryo communication. Communication between parents and developing embryos may act to mediate parental behaviour, while communication between embryos can control the synchronicity of hatching. Embryonic vocalisations and vibrations have been implicated as a means of communication during the later stages of development but in the early stages, before embryos are capable of independent movement and vocalisation, this is not possible. Here we show that volatiles emitted from developing eggs of Japanese quail (Coturnix japonica) convey information on egg fertility, along with the sex and developmental status of the embryo. Specifically, egg volatiles changed over the course of incubation, differed between fertile and infertile eggs, and were predictive of embryo sex as early as day 1 of incubation. Egg odours therefore have the potential to facilitate parent-embryo and embryo-embryo interactions by allowing the assessment of key measures of embryonic development long before this is possible through other modalities. It also opens up the intriguing possibility that parents may be able to glean further relevant information from egg volatiles, such as the health, viability and heritage of embryos. By determining information conveyed by egg-derived volatiles, we hope to stimulate further investigation into the ecological role of egg odours.

  11. Lipidome signatures in early bovine embryo development.

    PubMed

    Sudano, Mateus J; Rascado, Tatiana D S; Tata, Alessandra; Belaz, Katia R A; Santos, Vanessa G; Valente, Roniele S; Mesquita, Fernando S; Ferreira, Christina R; Araújo, João P; Eberlin, Marcos N; Landim-Alvarenga, Fernanda D C

    2016-07-15

    Mammalian preimplantation embryonic development is a complex, conserved, and well-orchestrated process involving dynamic molecular and structural changes. Understanding membrane lipid profile fluctuation during this crucial period is fundamental to address mechanisms governing embryogenesis. Therefore, the aim of the present work was to perform a comprehensive assessment of stage-specific lipid profiles during early bovine embryonic development and associate with the mRNA abundance of lipid metabolism-related genes (ACSL3, ELOVL5, and ELOVL6) and with the amount of cytoplasmic lipid droplets. Immature oocytes were recovered from slaughterhouse-derived ovaries, two-cell embryos, and eight- to 16-cell embryos, morula, and blastocysts that were in vitro produced under different environmental conditions. Lipid droplets content and mRNA transcript levels for ACSL3, ELOVL5, and ELOVL6, monitored by lipid staining and quantitative polymerase chain reaction, respectively, increased at morula followed by a decrease at blastocyst stage. Relative mRNA abundance changes of ACSL3 were closely related to cytoplasmic lipid droplet accumulation. Characteristic dynamic changes of phospholipid profiles were observed during early embryo development and related to unsaturation level, acyl chain length, and class composition. ELOVL5 and ELOVL6 mRNA levels were suggestive of overexpression of membrane phospholipids containing elongated fatty acids with 16, 18, and 20 carbons. In addition, putative biomarkers of key events of embryogenesis, embryo lipid accumulation, and elongation were identified. This study provides a comprehensive description of stage-specific lipidome signatures and proposes a mechanism to explain its potential relationship with the fluctuation of both cytoplasmic lipid droplets content and mRNA levels of lipid metabolism-related genes during early bovine embryo development.

  12. Mitochondrial and DNA damage in bovine somatic cell nuclear transfer embryos.

    PubMed

    Hwang, In-Sun; Bae, Hyo-Kyung; Cheong, Hee-Tae

    2013-01-01

    The generation of reactive oxygen species (ROS) and subsequent mitochondrial and DNA damage in bovine somatic cell nuclear transfer (SCNT) embryos were examined. Bovine enucleated oocytes were electrofused with donor cells and then activated by a combination of Ca-ionophore and 6-dimethylaminopurine culture. The H2O2 and ˙OH radical levels, mitochondrial morphology and membrane potential (ΔΨ), and DNA fragmentation of SCNT and in vitro fertilized (IVF) embryos at the zygote stage were analyzed. The H2O2 (35.6 ± 1.1 pixels/embryo) and ˙OH radical levels (44.6 ± 1.2 pixels/embryo) of SCNT embryos were significantly higher than those of IVF embryos (19.2 ± 1.5 and 23.8 ± 1.8 pixels/embryo, respectively, p < 0.05). The mitochondria morphology of SCNT embryos was diffused within the cytoplasm. The ΔΨ of SCNT embryos was significantly lower (p < 0.05) than that of IVF embryos (0.95 ± 0.04 vs. 1.21 ± 0.06, red/green). Moreover, the comet tail length of SCNT embryos was longer than that of IVF embryos (515.5 ± 26.4 μm vs. 425.6 ± 25.0 μm, p < 0.05). These results indicate that mitochondrial and DNA damage increased in bovine SCNT embryos, which may have been induced by increased ROS levels.

  13. Global gene transcription patterns in in vitro-cultured fertilized embryos and diploid and haploid murine parthenotes

    SciTech Connect

    Cui Xiangshun; Li Xingyu; Kim, Nam-Hyung . E-mail: nhkim@chungbuk.ac.kr

    2007-01-19

    To gain insights into the roles the paternal genome and chromosome number play in pre-implantation development, we cultured fertilized embryos and diploid and haploid parthenotes (DPs and HPs, respectively), and compared their development and gene expression patterns. The DPs and fertilized embryos did not differ in developmental ability but HPs development was slower and characterized by impaired compaction and blastocoel formation. Microarray analysis revealed that fertilized blastocysts expressed several genes at higher levels than DP blastocysts; these included the Y-chromosome-specific gene eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked (Eif2s3y) and the imprinting gene U2 small nuclear ribonucleoprotein auxiliary factor 1, related sequence 1 (U2af1-rs1). We also found that when DPs and HPs were both harvested at 44 and 58 h of culture, they differed in the expression of 38 and 665 genes, respectively. However, when DPs and HPs were harvested at the midpoints of 4-cell stage (44 and 49 h, respectively), no differences in expression was observed. Similarly, when the DPs and HPs were harvested when they became blastocysts (102 and 138 h, respectively), only 15 genes showed disparate expression. These results suggest that while transcripts needed for early development are delayed in HPs, it does progress sufficiently for the generation of the various developmental stages despite the lack of genetic components.

  14. Dual Positive Regulation of Embryo Implantation by Endocrine and Immune Systems--Step-by-Step Maternal Recognition of the Developing Embryo.

    PubMed

    Fujiwara, Hiroshi; Araki, Yoshihiko; Imakawa, Kazuhiko; Saito, Shigeru; Daikoku, Takiko; Shigeta, Minoru; Kanzaki, Hideharu; Mori, Takahide

    2016-03-01

    In humans, HCG secreted from the implanting embryo stimulates progesterone production of the corpus luteum to maintain embryo implantation. Along with this endocrine system, current evidence suggests that the maternal immune system positively contributes to the embryo implantation. In mice, immune cells that have been sensitized with seminal fluid and then the developing embryo induce endometrial differentiation and promote embryo implantation. After hatching, HCG activates regulatory T and B cells through LH/HCG receptors and then stimulates uterine NK cells and monocytes through sugar chain receptors, to promote and maintain pregnancy. In accordance with the above, the intrauterine administration of HCG-treated PBMC was demonstrated to improve implantation rates in women with repeated implantation failures. These findings suggest that the maternal immune system undergoes functional changes by recognizing the developing embryos in a stepwise manner even from a pre-fertilization stage and facilitates embryo implantation in cooperation with the endocrine system.

  15. Phosphatized polar lobe-forming embryos from the Precambrian of southwest China.

    PubMed

    Chen, Jun-Yuan; Bottjer, David J; Davidson, Eric H; Dornbos, Stephen Q; Gao, Xiang; Yang, Yong-Hua; Li, Chia-Wei; Li, Gang; Wang, Xiu-Qiang; Xian, Ding-Chang; Wu, Hung-Jen; Hwu, Yeu-Kuang; Tafforeau, Paul

    2006-06-16

    In developing embryos of some extant spiralian animals, polar lobe formation is one of the symmetry-breaking mechanisms for segregation of maternal cytoplasmic substances to certain blastomeres and not others. Polar lobe formation leads to unique early cleavage morphologies that include trilobed, J-shaped, and five-lobed structures. Fossil embryos similar to modern lobeforming embryos are recognized from the Precambrian Doushantuo Formation phosphates, Weng'an, Guizhou Province, China. These embryos are abundant and form a developmental sequence comparable to different developing stages observed in lobe-forming embryos of extant spiralians. These data imply that lobe formation is an evolutionarily ancient process of embryonic specification.

  16. Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate.

    PubMed

    Akagi, Satoshi; Hosoe, Misa; Matsukawa, Kazutsugu; Ichikawa, Akihiko; Tanikawa, Tamio; Takahashi, Seiya

    2010-08-01

    We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group). After 7 days of culture, the embryos in the PDMS group developed to the blastocyst stage at the same rate of those in the control group cultured in a group of 20 embryos without PDMS-MP. There were no differences in total number of cells and the ratio of inner cell mass to total cells between the PDMS and control groups. In Experiment 2, we examined the in vitro developmental ability of parthenogenetically activated zona-free bovine embryos cultured individually on PDMS-MP. The zona-free embryos were cultured individually in each well of a PDMS-MP or in each well produced by pressing a darning needle onto the bottom of a culture dish (WOW group). After 7 days of culture, the blastocyst formation rate and cell number of blastocysts in the PDMS group did not differ from those of the zona-intact embryos in the control group. Also, there were no differences in the blastocyst formation rate and cell number of blastocysts between the WOW and PDMS groups. These results suggest that the culture system using PDMS-MP is useful for individual embryos or zona-free embryos in cattle.

  17. Human oocyte cryopreservation: a valid alternative to embryo cryopreservation?

    PubMed

    Tucker, Michael; Morton, Paula; Liebermann, Juergen

    2004-04-05

    Embryo cryopreservation has become an ethical necessity due to the way human in vitro fertilization (IVF) infertility therapy has developed. Limited embryonic implantation has by necessity driven IVF therapy to adopt ways to maximize the harvest of oocytes following ovarian hyperstimulation with its attendant risks. Collection of more oocytes has allowed more embryos to be generated to compensate for poor embryonic viability, often leading to transfer of multiple embryos to increase per transfer pregnancy rates. In an era of improving embryonic viability and prevailing trend toward single embryo transfers, production of excessive numbers of surplus embryos appears increasingly inappropriate. At which stage embryo cryopreservation can be undertaken most effectively remains controversial. Embryo cryopreservation nevertheless represents the current solution to the problem of excessive embryo production, but inherently raises ethical concerns for certain couples uncomfortable with what they might perceive to be "experimental" cryostorage, who in extreme circumstances may even choose to limit the number of oocytes inseminated to obviate the production of spare embryos. On a more practical level, cryostored embryos are co-owned by two people who may separate, and as such the embryos then face an uncertain fate, commonly decided in courts of law. Oocyte cryopreservation, if consistent and successful, offers a way to avoid the above complications of routine IVF therapy. Oocytes may need to be cryostored in the event of unforeseen non-production of sperm during IVF therapy, allowing a more measured consideration of donor sperm use or other means of sperm retrieval. Beyond IVF for infertility therapy using a couple's own gametes, oocyte cryopreservation provides a wonderful opportunity to optimize donor oocyte cryo-banking, reducing costs and improving convenience. Meanwhile, frozen embryo donation is an approach that many couples are uncomfortable with, and allows only for

  18. Embryo development of porcine oocytes after injection with miniature pig sperm and their extracts.

    PubMed

    Matsuura, Daizou; Maeda, Teruo

    2009-12-01

    This study examined embryo development of porcine oocytes after microinjection of sperm extracts (SE) in porcine intracytoplasmic sperm injection (ICSI). SE was prepared from miniature pig sperm by a nonionic surfactant, and various concentrations (0.02, 0.04 and 0.08 mg/mL) of SE were injected into the matured oocytes with a first polar body. In the pronuclear stage, the rate of oocytes with two pronuclei and a second polar body (21.4%) in the sperm and SE (0.04 mg/mL) injection group was significantly higher (P < 0.05) compared to other groups. The rate of 2-4-cell stage in sperm and SE (0.04 mg/mL) injection group was 38.1%, and it was significantly higher than that in the sperm injection group (22.9%). The rate of blastocyst stage in sperm and SE (0.04 mg/mL) injection group was 21.4%, the value was significantly higher than those in SE (0.08 mg/mL) injection group (0%), sperm injection group (5.7%), and sperm and SE (0.08 mg/mL) injection group (2.6%). These results suggest that SE induces activation of porcine oocytes and their further embryonic development, and that SE is effective for porcine ICSI.

  19. Early embryo development in Fucus distichus is auxin sensitive

    NASA Technical Reports Server (NTRS)

    Basu, Swati; Sun, Haiguo; Brian, Leigh; Quatrano, Ralph L.; Muday, Gloria K.

    2002-01-01

    Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [(3)H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development.

  20. Storage oil breakdown during embryo development of Brassica napus (L.).

    PubMed

    Chia, Tansy Y P; Pike, Marilyn J; Rawsthorne, Stephen

    2005-05-01

    In this study it is shown that at least 10% of the major storage product of developing embryos of Brassica napus (L.), triacylglycerol, is lost during the desiccation phase of seed development. The metabolism of this lipid was studied by measurements of the fate of label from [1-(14)C]decanoate supplied to isolated embryos, and by measurements of the activities of enzymes of fatty acid catabolism. Measurements on desiccating embryos have been compared with those made on embryos during lipid accumulation and on germinating seedlings. Enzymes of beta-oxidation and the glyoxylate cycle, and phosphoenolpyruvate carboxykinase were present in embryos during oil accumulation, and increased in activity and abundance as the seeds matured and became desiccated. Although the activities were less than those measured during germination, they were at least comparable to the in vivo rate of fatty acid synthesis in the embryo during development. The pattern of labelling, following metabolism of decanoate by isolated embryos, indicated a much greater involvement of the glyoxylate cycle during desiccation than earlier in oil accumulation, and showed that much of the (14)C-label from decanoate was released as CO(2) at both stages. Sucrose was not a product of decanoate metabolism during embryo development, and therefore lipid degradation was not associated with net gluconeogenic activity. These observations are discussed in the context of seed development, oil yield, and the synthesis of novel fatty acids in plants.

  1. The Metabolomic Profile of Spent Culture Media from Day-3 Human Embryos Cultured under Low Oxygen Tension.

    PubMed

    de Los Santos, Maria José; Gámiz, Pilar; de Los Santos, José María; Romero, Josep Lluís; Prados, Nicolás; Alonso, Cristina; Remohí, José; Dominguez, Francisco

    2015-01-01

    Despite efforts made to improve the in vitro embryo culture conditions used during assisted reproduction procedures, human embryos must adapt to different in vitro oxygen concentrations and the new metabolic milieu provided by the diverse culture media used for such protocols. It has been shown that the embryo culture environment can affect not only cellular metabolism, but also gene expression in different species of mammalian embryos. Therefore we wanted to compare the metabolic footprint left by human cleavage-stage embryos under two types of oxygen atmospheric culture conditions (6% and 20% O2). The spent culture media from 39 transferred and implanted embryos from a total of 22 patients undergoing egg donation treatment was analyzed; 23 embryos came from 13 patients in the 6% oxygen concentration group, and 16 embryos from 9 patients were used in the 20% oxygen concentration group. The multivariate statistics we used in our analysis showed that human cleavage-stage embryos grown under both types of oxygen concentration left a similar metabolic fingerprint. We failed to observe any change in the net depletion or release of relevant analytes, such as glucose and especially fatty acids, by human cleavage-stage embryos under either type of culture condition. Therefore it seems that low oxygen tension during embryo culture does not alter the global metabolism of human cleavage-stage embryos.

  2. Equine cloning: in vitro and in vivo development of aggregated embryos.

    PubMed

    Gambini, Andrés; Jarazo, Javier; Olivera, Ramiro; Salamone, Daniel F

    2012-07-01

    The production of cloned equine embryos remains highly inefficient. Embryo aggregation has not yet been tested in the equine, and it might represent an interesting strategy to improve embryo development. This study evaluated the effect of cloned embryo aggregation on in vitro and in vivo equine embryo development. Zona-free reconstructed embryos were individually cultured in microwells (nonaggregated group) or as 2- or 3-embryo aggregates (aggregated groups). For in vitro development, they were cultured until blastocyst stage and then either fixed for Oct-4 immunocytochemical staining or maintained in in vitro culture where blastocyst expansion was measured daily until Day 17 or the day on which they collapsed. For in vivo assays, Day 7-8 blastocysts were transferred to synchronized mares and resultant vesicles, and cloned embryos were measured by ultrasonography. Embryo aggregation improved blastocyst rates on a per well basis, and aggregation did not imply additional oocytes to obtain blastocysts. Embryo aggregation improved embryo quality, nevertheless it did not affect Day 8 and Day 16 blastocyst Oct-4 expression patterns. Equine cloned blastocysts expanded and increased their cell numbers when they were maintained in in vitro culture, describing a particular pattern of embryo growth that was unexpectedly independent of embryo aggregation, as all embryos reached similar size after Day 7. Early pregnancy rates were higher using blastocysts derived from aggregated embryos, and advanced pregnancies as live healthy foals also resulted from aggregated embryos. These results indicate that the strategy of aggregating embryos can improve their development, supporting the establishment of equine cloned pregnancies.

  3. The avian embryo responding to microgravity of space flight

    NASA Technical Reports Server (NTRS)

    Hullinger, Ronald L.

    1993-01-01

    Of all the many potential and real microenvironmental influences, only gravity would appear to have remained relatively constant and ubiquitous for developing organisms. Histo- and organogenesis as well as differential growth of the embryo and fetus may have evolved with a constant environmental factor of gravity. Chick embryos of 2-day and 9-day stages of incubation were flown in an incubator on the Space Shuttle during a 9-day mission. Significant differences in embryo response to this microgravity environment were observed. This paper offers an analysis and suggests mechanisms which may contribute to these results.

  4. Cryopreservation and In Vitro culture of Preimplantation Embryos in Djungarian Hamster (Phodopus sungorus).

    PubMed

    Brusentsev, E Yu; Abramova, T O; Rozhkova, I N; Igonina, T N; Naprimerov, V A; Feoktistova, N Yu; Amstislavsky, S Ya

    2015-08-01

    Although embryo cryobanking was applied to Syrian golden and to Campbell's hamsters, no attempt has been made at freezing embryos in Djungarian hamsters. Four-cell stage embryos were flushed from the reproductive ducts of pregnant females before noon of the third-day post coitum and frozen in 0.25-ml straws according to standard procedures of slow cooling. A mixture of permeating (ethylene glycol) and non-permeating (sucrose) cryoprotectants was used. The thawing was performed by incubating at RT for 40 s followed by 40 s in a water bath at 30.0°C. Most (66.7%) of the non-frozen four-cell embryos developed up to the morula stage in rat one-cell embryo culture medium (R1ECM). The use of hamster embryo culture medium (HECM) yielded fewer morulas (18.2%) during the same 24-h period of culture. The rate of embryo's surviving the freezing-thawing procedures, as estimated by light microscopy, was 60.7-68.8%. After 24-h culturing in R1ECM, 64.7% of frozen-thawed four-cell embryos developed and all of them reached the morula stage. Supplementation of R1ECM with GM-CSF (2 ng/ml) improved the rate of Djungarian hamster frozen-thawed embryo development: 100% of the four-cell stage embryos developed, 50% of them achieved the morula stage, and 50% developed even further and reached the blastocyst stage within 24 h of culturing. This study reports the world's first successful transfer of frozen-thawed Djungarian hamster embryos yielding term pups. Taken together, the results of this study demonstrate the possibility of applying some key reproductive technologies, that is, embryo freezing/cryopreservation and in vitro culture, to Djungarian hamsters.

  5. Ethics for embryos

    PubMed Central

    Parker, C

    2007-01-01

    This paper responds to DW Brock's technically strong case for the use of human embryonic stem cells in medical research. His main issue in this context is the question of whether it is moral to destroy viable human embryos. He offers a number of reasons to support his view that it is moral to destroy them, but his use of conceptual arguments is not adequate to secure his position. The purpose and scope of this paper is wholly concerned with his arguments rather than with the conclusion that it is justifiable to destroy human embryos. The author proceeds through his variety of arguments and offers reasons for rejecting them. The author concludes that Brock has not shown that it is moral to destroy viable human embryos. PMID:17906062

  6. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing

    PubMed Central

    Liu, Wenqiang; Liu, Xiaoyu; Wang, Chenfei; Gao, Yawei; Gao, Rui; Kou, Xiaochen; Zhao, Yanhong; Li, Jingyi; Wu, You; Xiu, Wenchao; Wang, Su; Yin, Jiqing; Liu, Wei; Cai, Tao; Wang, Hong; Zhang, Yong; Gao, Shaorong

    2016-01-01

    Differentiated somatic cells can be reprogrammed into totipotent embryos through somatic cell nuclear transfer. However, most cloned embryos arrest at early stages and the underlying molecular mechanism remains largely unexplored. Here, we first developed a somatic cell nuclear transfer embryo biopsy system at two- or four-cell stage, which allows us to trace the developmental fate of the biopsied embryos precisely. Then, through single-cell transcriptome sequencing of somatic cell nuclear transfer embryos with different developmental fates, we identified that inactivation of Kdm4b, a histone H3 lysine 9 trimethylation demethylase, functions as a barrier for two-cell arrest of cloned embryos. Moreover, we discovered that inactivation of another histone demethylase Kdm5b accounts for the arrest of cloned embryos at the four-cell stage through single-cell analysis. Co-injection of Kdm4b and Kdm5b can restore transcriptional profiles of somatic cell nuclear transfer embryos and greatly improve the blastocyst development (over 95%) as well as the production of cloned mice. Our study therefore provides an effective approach to identify key factors responsible for the developmental arrest of somatic cell cloned embryos. PMID:27462457

  7. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing.

    PubMed

    Liu, Wenqiang; Liu, Xiaoyu; Wang, Chenfei; Gao, Yawei; Gao, Rui; Kou, Xiaochen; Zhao, Yanhong; Li, Jingyi; Wu, You; Xiu, Wenchao; Wang, Su; Yin, Jiqing; Liu, Wei; Cai, Tao; Wang, Hong; Zhang, Yong; Gao, Shaorong

    2016-01-01

    Differentiated somatic cells can be reprogrammed into totipotent embryos through somatic cell nuclear transfer. However, most cloned embryos arrest at early stages and the underlying molecular mechanism remains largely unexplored. Here, we first developed a somatic cell nuclear transfer embryo biopsy system at two- or four-cell stage, which allows us to trace the developmental fate of the biopsied embryos precisely. Then, through single-cell transcriptome sequencing of somatic cell nuclear transfer embryos with different developmental fates, we identified that inactivation of Kdm4b, a histone H3 lysine 9 trimethylation demethylase, functions as a barrier for two-cell arrest of cloned embryos. Moreover, we discovered that inactivation of another histone demethylase Kdm5b accounts for the arrest of cloned embryos at the four-cell stage through single-cell analysis. Co-injection of Kdm4b and Kdm5b can restore transcriptional profiles of somatic cell nuclear transfer embryos and greatly improve the blastocyst development (over 95%) as well as the production of cloned mice. Our study therefore provides an effective approach to identify key factors responsible for the developmental arrest of somatic cell cloned embryos.

  8. In vitro viability of cryopreserved equine embryos following different freezing protocols.

    PubMed Central

    Poitras, P; Guay, P; Vaillancourt, D; Zidane, N; Bigras-Poulin, M

    1994-01-01

    The main objective of this study was to evaluate two freezing protocols and the effect of agar embedding on survival of day 6.5 equine embryos. A total of 133 embryos were used, in one group (n = 51), embryos were first embedded in agar before the freezing protocol was started. A freezing protocol to -30 degrees C or -33 degrees C was used before plunging embryos into liquid nitrogen (LN2). The embryos were thawed in water at 37 degrees C, evaluated and placed in culture. After 24 h culture, the embryos were evaluated for their morphology and development. No differences were observed between embryos plunged at -30 degrees or at -33 degrees C in LN2. The analysis of the morphology and development after thawing showed that the diameter and developmental stage at freezing correlated with embryo survival. Morula and early blastocyst stages of development were associated with better quality after freezing and thawing and had a better potential to survive after in vitro culture (p < 0.05) compared to more advanced stages. The agar failed to protect embryos from zona pellucida damage, but a tendency to prevent rupture was observed in larger embedded embryos. PMID:7889453

  9. Researchers Create Artificial Mouse 'Embryo'

    MedlinePlus

    ... news/fullstory_163881.html Researchers Create Artificial Mouse 'Embryo' Experiment used two types of gene-modified stem ... they've created a kind of artificial mouse embryo using stem cells, which can be coaxed to ...

  10. Influence of Delipation on the Energy Metabolism in Pig Parthenogenetically Activated Embryos.

    PubMed

    Wang, C; Niu, Y; Chi, D; Zeng, Y; Liu, H; Dai, Y; Li, J

    2015-10-01

    This study was designed not only to measure the effect of delipation on the developmental viability of pig parthenogenetically activated (PA) embryos, but also to evaluate the changes of mitochondria DNA (mtDNA), reactive oxygen species (ROS) level, adenosine triphosphate (ATP) content and gene (Acsl3, Acadsb, Acaa2, Glut1) expression level at different stages after delipation. Results showed that no effect was observed on the cleavage ability, but significant lower blastocyst rate was obtained in delipated embryos. Copy number of mtDNA decreased gradually from MII to four-cell stages and subsequently kept consistent with blastocyst stage both in delipated and control embryos, but the copy number of mtDNA in delipated embryos was similar to that in the control groups no matter at which developmental stage was observed. Both in delipated and control embryos, ATP content progressive decreased from one-cell to blastocyst stages, while just at one-cell stage, a significant decrease of ATP level was observed in delipated embryos compared with that of control. The level of ROS increased obviously after delipation at cleavage stage, but no difference was seen at blastocyst stage. Finally, the expression level of genes related to fatty acids beta-oxidation (Acadsb and Acaa2) was decreased, while the expression level of genes related to glucose metabolism (Glut 1) was upregulated after delipation. In conclusion, the reduction of lipids in pig oocytes will affect the developmental competence of pig PA embryos by disturbed energy metabolism and ROS stress.

  11. The impact of the hailstone embryos on simulated surface precipitation

    NASA Astrophysics Data System (ADS)

    Kovačević, Nemanja; Ćurić, Mladjen

    2013-10-01

    Hailstorms cause significant damage to agriculture and property in many areas of the world. Therefore, it is useful to describe the size spectrum of hail and the mechanisms of formation in more detail. One important point in the formation of hail is the role of hailstone embryos, and an understanding of their mechanism would significantly improve our understanding of the evolution of hail, as well as the predicted amount of accumulated hail on the ground. We used a cloud-resolving mesoscale model to investigate the influence of the hailstone embryos on the measured ground precipitation. In this model, both types of the hailstone embryos (graupel and frozen raindrops) are incorporated. Therefore, the model predicts the mass and number concentration of the six microphysical elements - raindrops, ice crystals, snow, graupel, frozen raindrops and hail. The cloud droplet number concentration was prescribed. Thus, the primary goal of this sensitivity study was to examine the influence of hailstone embryos on the measured ground precipitation and the duration of precipitation. Thus, we performed a numerical comparison of the two microphysical schemes, one with hailstone embryos and the other without them. The sensitivity study indicated that the microphysical scenario with hailstone embryos leads to a greater increase in accumulated hail compared with the scheme without hailstone embryos. The time of hail occurrence on the ground occurs during the early stages of cloud life in the experiment without hailstone embryos. In the second case, the hail occurrence on the ground was delayed for the later stages of cloud life, which is much more realistic and in agreement with the measurements. The use of a model with hailstone embryos leads to a better description of the evolution of hail and a more accurate prediction of the accumulated hail on the ground.

  12. Shell-Less Chick Embryo Culture as an Alternative in vitro Model to Investigate Glucose-Induced Malformations in Mammalian Embryos

    PubMed Central

    Datar, Savita; Bhonde, Ramesh R.

    2005-01-01

    We have developed a simple shell-less chick embryo culture system to study glucose-induced malformations. This system involves the culturing of chick embryos from the second day to the fifth day of incubation, with associated yolk and thick and thin albumen outside the egg shell. The system allows the observation of embryonic development of chicks in a glass bowl. Developing embryos at 24 h, 48 h and 72 h incubation, corresponding to the Hamberger Hamilton (HH) stages from 7 to 21, were treated with two concentrations of glucose (50 mM and 100 mM) for 24 h. Glucose treatment resulted in a mortality rate of over 70% in younger embryos. Furthermore, a variety of malformations such as retarded growth, abnormal heart development, macrosomia, exencephaly, etc. were observed in older embryos, which were similar to those reported in mammalian embryos as a consequence of diabetic pregnancy. The glucose-induced malformations were found to be concentration- and stage-dependent, thus emphasizing the roles of the degree of hyperglycemia and the stage of embryonic development in diabetic growth anomalies. Here we demonstrate for the first time that the present system can be used (i) for experiments at early stages of chick embryo development and (ii) for assessing the effects of acute glucose toxicity similar to those reported for mammalian embryos in a hyperglycemic environment. PMID:17491698

  13. Real-Time Micrography of Mouse Preimplantation Embryos in an Orbit Module on SJ-8 Satellite

    NASA Astrophysics Data System (ADS)

    Ma, Bao-Hua; Cao, Yu-Jing; Zheng, Wei-Bo; Lu, Jin-Ren; Kuang, Hai-bin; Lei, Xiao-Hua; Lv, Yin-Huan; Zhang, Tao; Duan, En-Kui

    2008-08-01

    The developmental capacity of mouse embryos in the Chinese SJ-8 Satellite was observed by real time micrography and telecontrol image transmission. Frozen/thawed 4-cell embryos and blastocysts injected with mouse epidemical stem cells were placed in a specially sealed embryonic incubator, and then the incubator was loaded in a space embryonic culture box devised for space-flight. After the satellite launched and arrived at the anticipated orbit, the real time micrography device was opened based on the telecontrol operational technology. Real time micrographs of the mouse embryos were obtained and stored every 3 hours, then the data of images were transmitted at the suitable time. The experiment persisted for 72 hours. The results showed that during space-flight, most mouse embryos cultured in the sealed culture unit kept integrity and natural structure, their location had minor change, but the embryos did not develop. However, the experiment performed on the ground in the same device showed that 4-cell mouse embryos could develop to blastocysts and hatched blastocysts. It may be concluded that the space environment, especially the change of gravity was likely to harm development of the mouse embryo.

  14. The Virtual Embryo Project

    EPA Science Inventory

    The v-Embryo™ is a far reaching new research program at the US EPA to develop a working computer model of a mammalian embryo that can be used to better understand the prenatal risks posed by environmental chemicals and to eventually predict a chemical’s potential developmental to...

  15. [Contribution of embryo vitrification procedure to ART efficiency].

    PubMed

    Sifer, C

    2014-10-01

    This work aims to show, from data available in the literature and our own experience, how embryos' vitrification change and/or improve the management of infertile couples. In all, 652 cycles of frozen-thawed embryo transfers (FET) following vitrification were prospectively included and compared with 1126 FETs from slow freezing (SF) method. Primary end points were the (i) survival rate (SR) (% of embryos with>50% post-thaw intact blastomeres) and (ii) intact survival rate (ISR) (% of embryos with 100% post-thaw intact blastomeres). Secondary end point was the clinical pregnancy rate (CPR) defined as the presence of an intra uterine gestational sac with positive foetal heart beat. In all, 1097 and 2408 embryos have been thawed following vitrification and SF, respectively. We observed a highly significant increase of SR and ISR respectively when thawing concerned vitrified embryos rather than those from SF method (97.0% vs. 72.7%, P<10(-4); 91.5% vs. 49.8%, P<10(-4)). Furthermore, CPR were of 26.5% (73/652) and of 18.1% (204/1126) following FETs performed after vitrification or SF and thawing (P=0.0002), respectively. At the blastocyst stage, ISR was significantly improved following vitrification compared to SF (94.5% vs. 21.4%, P<10(-4)). In the study period, vitrification (i) reduced the mean number of fresh transferred embryos (1.5 vs. 1.6; P=0.08) and (ii) increased the rate of FETs at the blastocyst stage when compared with the control period (18.1% vs 2.5%., P<10(-4)). Embryo vitrification preserves all embryos from an ART cycle because of its excellent results regarding ISR at all stages of embryo development. This procedure allows a significant increase of pregnancy rates after thawing. In addition, there is a trend for increasing ART cycles performed using extended culture embryo and vitrification. The expected improvement of the cumulative birth rate at the blastocyst stage following vitrification remains to be demonstrated in a prospective randomized study.

  16. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality

    PubMed Central

    Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe

    2016-01-01

    In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming. PMID:26894831

  17. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality.

    PubMed

    Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe

    2016-01-01

    In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.

  18. TSA and BIX-01294 Induced Normal DNA and Histone Methylation and Increased Protein Expression in Porcine Somatic Cell Nuclear Transfer Embryos

    PubMed Central

    Ding, Biao; Zuo, Xiaoyuan; Li, Hui; Ding, Jianping; Li, Yunsheng; Huang, Weiping; Zhang, Yunhai

    2017-01-01

    The poor efficiency of animal cloning is mainly attributed to the defects in epigenetic reprogramming of donor cells’ chromatins during early embryonic development. Previous studies indicated that inhibition of histone deacetylases or methyltransferase, such as G9A, using Trichostatin A (TSA) or BIX-01294 significantly enhanced the developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos. However, potential mechanisms underlying the improved early developmental competence of SCNT embryos exposed to TSA and BIX-01294 are largely unclear. Here we found that 50 nM TSA or 1.0 μM BIX-01294 treatment alone for 24 h significantly elevated the blastocyst rate (P < 0.05), while further improvement was not observed under combined treatment condition. Furthermore, co-treatment or TSA treatment alone significantly reduced H3K9me2 level at the 4-cell stage, which is comparable with that in in vivo and in vitro fertilized counterparts. However, only co-treatment significantly decreased the levels of 5mC and H3K9me2 in trophectoderm lineage and subsequently increased the expression of OCT4 and CDX2 associated with ICM and TE lineage differentiation. Altogether, these results demonstrate that co-treatment of TSA and BIX-01294 enhances the early developmental competence of porcine SCNT embryos via improvements in epigenetic status and protein expression. PMID:28114389

  19. Ex vivo recovery of preimplantatory embryos in bitches.

    PubMed

    Commin, L; Buff, S; Rosset, E; Joly, T; Guerin, P; Neto, V

    2012-12-01

    The present study was conducted to investigate the timing of preimplantatory development in the dog and to evaluate the efficiency of flushing oviducts and uterine horns to collect embryos. Among the embryonic structures collected between day 8 and day 12 after ovulation, 43 % were at the 1-16 cells stage, 23% were at the morula stage and 34% at the blastocyst stage. Our collection method yielded to a recovery rate of 61.3 %, and 7.1 ± 0.7 embryos were harvested per bitch. In addition, the ovulation rate reached 11.6 ± 0.8 per bitch. The first morulae were observed from day 9 post-ovulation, while the first blastocyst appeared from day 10. Two-thirds of the collected morulae-blastocysts were obtained between the 11th and the 12th day after ovulation. To the moment, we suggest this is the best period to harvest canine embryo for cryopreservation.

  20. Beneficial effect of two culture systems with small groups of embryos on the development and quality of in vitro-produced bovine embryos.

    PubMed

    Cebrian-Serrano, A; Salvador, I; Silvestre, M A

    2014-02-01

    Currently, in vitro-produced embryos derived by ovum pick up (OPU) and in vitro fertilization (IVF) technologies represent approximately one-third of the embryos worldwide in cattle. Nevertheless, the culture of small groups of embryos from an individual egg donor is an issue that OPU-IVF laboratories have to face. In this work, we tested whether the development and quality of the preimplantation embryos in vitro cultured in low numbers (five embryos) could be improved by the addition of epidermal growth factor, insulin, transferrin and selenium (EGF-ITS) or by the WOW system. With this aim, immature oocytes recovered from slaughtered heifers were in vitro matured and in vitro fertilized. Presumptive zygotes were then randomly cultured in four culture conditions: one large group (LG) (50 embryos/500 μl medium) and three smaller groups [five embryos/50 μl medium without (control) or with EGF-ITS (EGF-ITS) and five embryos per microwell in the WOW system (WOW)]. Embryos cultured in LG showed a greater ability to develop to blastocyst stage than embryos cultured in smaller groups, while the blastocyst rate of WOW group was significantly higher than in control. The number of cells/blastocyst in LG was higher than control or WOW, whereas the apoptosis rate per blastocyst was lower. On the other hand, the addition of EGF-ITS significantly improved both parameters compared to the control and resulted in similar embryo quality to LG. In conclusion, the WOW system improved embryo development, while the addition of EGF-ITS improved the embryo quality when smaller groups of embryos were cultured.

  1. Differential scanning calorimetry studies of intraembryonic freezing and cryoprotectant penetration in zebrafish (Danio rerio) embryos.

    PubMed

    Liu, X H; Zhang, T; Rawson, D M

    2001-08-01

    Nucleation temperatures of intraembryonic water and cryoprotectant penetration in zebrafish embryos were studied using differential scanning calorimetry. The effects of embryo developmental stage, dechorionation, partial removal of yolk, cooling rate, and cryoprotectant treatment on the temperatures of intraembryonic freezing were investigated. Embryo stages were found to have a significant effect on the nucleation temperatures of intact embryos. Freeze onset temperatures of -11.9 +/- 1.5, -15.6 +/- 0.3, and -20.5 +/- 0.1 degrees C were obtained for intact embryos at 6-somite, prim-6, and high-pec stages, respectively. After dechorionation, the freeze onset temperatures of intraembryonic water shifted to significantly lower temperatures, being -23.5 +/- 0.8, -18.7 +/- 0.7, -24.9 +/- 0.8 degrees C for 6-somite, prim-6, and high-pec stages, respectively. Yolk-reduced high-pec stage embryos showed significantly lower nucleation temperatures with an average onset at -27.9 +/- 0.4 degrees C. The effect of cryoprotectant treatment on the nucleation temperatures of intraembryonic water varies among different embryo stages and different cryoprotectants. Thirty-minute treatment with 2 M methanol significantly decreased the nucleation temperatures of dechorionated 6-somite embryos whilst no temperature decrease was observed for prim-6 or yolk-reduced high-pec embryos. Thirty-minute exposure to 1 M propylene glycol did not significantly affect the nucleation temperatures of dechorionated 6-somite, prim-6, or yolk-reduced high-pec embryos. In order to increase the permeability of embryos to cryoprotectants, the yolk sacs of dechorionated embryos at 6-somite or prim-6 embryos were punctured with a sharp micro-needle before exposure to cryoprotectants. The punctured prim-6 embryos showed significantly lower temperatures of intraembryonic freezing after 30 min of exposure to 2 M methanol following the multi-punctures. The nucleation temperatures of punctured 6-somite or prim-6

  2. HSPC117 deficiency in cloned embryos causes placental abnormality and fetal death

    SciTech Connect

    Wang, Yingying; Hai, Tang; Liu, Zichuan; Zhou, Shuya; Lv, Zhuo; Ding, Chenhui; Liu, Lei; Niu, Yuyu; Zhao, Xiaoyang; Tong, Man; Wang, Liu; Jouneau, Alice; Zhang, Xun; Ji, Weizhi; Zhou, Qi

    2010-07-02

    Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilized embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo.

  3. Study of Automated Embryo Manipulation Using Dynamic Microarray:Trapping, Culture and Collection

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroshi; Nakamura, Hiroko; Iwai, Kosuke; Yamamoto, Takatoki; Takeuchi, Shoji; Fujii, Teruo; Sakai, Yasuyuki

    Embryo handling is an extremely important fundamental technique in reproductive technology and other related life science discipline. The handling usually requires an artisanal operation that uses a glass-made capillary tube to suck in / out the embryo by applying external pressure with mouth or pipetting, to move it one to another environment and to redeliver into the womb. Because of the delicate operations, it is difficult to obtain quantitative result through the experiments. It is therefore an automatic embryo handling system has been highly desired to obtain stable quantitative results, and to reduce the stress for the operators. In this paper, we proposed and developed an automated embryo culture device, which can make an array of the embryos, culture them to be the blastocyst stage, and collect the blastocyst using the dynamic microarray format that we had studied previously. We preliminary examined the three functions of trapping, culture, and release using a mouse embryo as a sample. As a result, the mouse embryos are successfully trapped and released, whereas the efficiency of the in-device embryo culture was less comparable than the conventional dish culture. The culture stage still needs optimization for embryos, however the concept of embryo manipulation was proofed successfully.

  4. Algorithms for automatic segmentation of bovine embryos produced in vitro

    NASA Astrophysics Data System (ADS)

    Melo, D. H.; Nascimento, M. Z.; Oliveira, D. L.; Neves, L. A.; Annes, K.

    2014-03-01

    In vitro production has been employed in bovine embryos and quantification of lipids is fundamental to understand the metabolism of these embryos. This paper presents a unsupervised segmentation method for histological images of bovine embryos. In this method, the anisotropic filter was used in the differents RGB components. After pre-processing step, the thresholding technique based on maximum entropy was applied to separate lipid droplets in the histological slides in different stages: early cleavage, morula and blastocyst. In the postprocessing step, false positives are removed using the connected components technique that identify regions with excess of dye near pellucid zone. The proposed segmentation method was applied in 30 histological images of bovine embryos. Experiments were performed with the images and statistical measures of sensitivity, specificity and accuracy were calculated based on reference images (gold standard). The value of accuracy of the proposed method was 96% with standard deviation of 3%.

  5. Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study.

    PubMed

    Tereso, Susana; Zoglauer, Kurt; Milhinhos, Ana; Miguel, Célia; Oliveira, M Margarida

    2007-05-01

    We compared morphogenesis and accumulation of storage proteins and starch in Pinus pinaster Ait. zygotic embryos with those in somatic embryos grown with different carbohydrate sources. The maturation medium for somatic embryos included 80 microM abscisic acid (ABA), 9 g l(-1) gellam gum and either glucose, sucrose or maltose at 44, 88, 175 or 263 mM in the presence or absence of 6% (w/v) polyethylene glycol (PEG) 4000 MW. Maturation medium containing 44 or 88 mM of a carbohydrate source produced only one or no cotyledonary somatic embryos per 0.6 g fresh mass of culture. The addition of PEG to the basal maturation medium resulted in a low yield of cotyledonary somatic embryos that generally showed incomplete development and anatomical abnormalities such as large intercellular spaces and large vacuoles. High concentrations of maltose also induced large intercellular spaces in the somatic embryonic cells, and 263 mM sucrose produced fewer and less developed cotyledonary somatic embryos compared with 175 mM sucrose, indicating that the effect of carbohydrate source is partially osmotic. Zygotic embryos had a lower dry mass than somatic embryos at the same stage of development. Starch granules followed a similar accumulation pattern in zygotic and somatic embryos. A low starch content was found in cotyledonary zygotic embryos and in somatic embryos developed in the presence of 175 mM maltose or 263 mM glucose. In zygotic embryos and in PEG-treated somatic embryos, protein bodies appeared later and were smaller and fewer than in well-developed somatic embryos grown without PEG. We propose that storage protein concentration might be a marker of embryo quality.

  6. Blastocyst development from supernumerary embryos after intracytoplasmic sperm injection: a paternal influence?

    PubMed

    Shoukir, Y; Chardonnens, D; Campana, A; Sakkas, D

    1998-06-01

    The success of intracytoplasmic sperm injection (ICSI) warrants further study on the role of paternal factors in early human embryogenesis. To investigate whether poor sperm parameters can influence embryo development, we examined the development of ICSI-fertilized embryos to the blastocyst stage. We present results of blastocyst development from supernumerary ICSI embryos after co-culture on monkey kidney epithelial cells. In addition, we compare the development of supernumerary embryos to the blastocyst stage after ICSI and in-vitro fertilization (IVF). Of 168 supernumerary ICSI embryos, 45 (26.8%) developed to blastocysts. Sperm concentration and morphology did not influence blastocyst development. In contrast, blastocysts arose from spermatozoa that had a significantly higher (P = 0.015) forward progressive motility compared with spermatozoa from those patients who failed to produce blastocysts (42.7% versus 28.2%, respectively). Overall the rate of embryo development to the blastocyst stage after ICSI was lower (26.8%) than that after IVF (47.3%). When the rate of blastocyst development was calculated for patients with three or more supernumerary embryos, it remained significantly higher for the IVF patients than for the ICSI patients (45.6% versus 30.0%). There was no significant difference in the mean cell number and quality of the supernumerary embryos between the IVF and ICSI patients. This study confirms previous reports that have postulated that abnormal spermatozoa may manifest a negative paternal effect on preimplantation embryo development.

  7. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis

    PubMed Central

    Cimadomo, Danilo; Capalbo, Antonio; Ubaldi, Filippo Maria; Scarica, Catello; Palagiano, Antonio; Canipari, Rita; Rienzi, Laura

    2016-01-01

    Preimplantation Genetic Diagnosis and Screening (PGD/PGS) for monogenic diseases and/or numerical/structural chromosomal abnormalities is a tool for embryo testing aimed at identifying nonaffected and/or euploid embryos in a cohort produced during an IVF cycle. A critical aspect of this technology is the potential detrimental effect that the biopsy itself can have upon the embryo. Different embryo biopsy strategies have been proposed. Cleavage stage blastomere biopsy still represents the most commonly used method in Europe nowadays, although this approach has been shown to have a negative impact on embryo viability and implantation potential. Polar body biopsy has been proposed as an alternative to embryo biopsy especially for aneuploidy testing. However, to date no sufficiently powered study has clarified the impact of this procedure on embryo reproductive competence. Blastocyst stage biopsy represents nowadays the safest approach not to impact embryo implantation potential. For this reason, as well as for the evidences of a higher consistency of the molecular analysis when performed on trophectoderm cells, blastocyst biopsy implementation is gradually increasing worldwide. The aim of this review is to present the evidences published to date on the impact of the biopsy at different stages of preimplantation development upon human embryos reproductive potential. PMID:26942198

  8. Cells, embryos and development in space

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1984-01-01

    Work continues to focus on the demonstrable totipotency of cultured somatic cells of various higher plants and has examined the conditions which regulate this propensity to be controllably released. This was done with special reference to cells obtained from cultured explants of daylily and carrot. For purposes of identifying the variables in question, work was carried out almost exclusively in liquid media. The events that intervene between the aseptic isolation of tissue explants, the culture of small derived units and free cells and the propagation in large numbers of adventive or somatic embryos to plantlets were traced and certain definitive stages at which control is exercised were identified. In daylily, morphologically competent units are now propagated with a high degree of precision in rotated liquid cultures in bulk, and under the conditions of continuous neutralized gravity, the development progresses so that embryo-plantlets are obtained.

  9. Photobiomodulation of early mouse embryo development

    NASA Astrophysics Data System (ADS)

    Sviridova-Chailakhyan, T. A.; Fakhranurova, L. I.; Simonova, N. B.; Khramov, R. N.; Manokhin, A. A.; Paskevich, S. I.; Chailakhyan, L. M.

    2008-04-01

    The effect of artificial sunlight (AS) from a xenon source and of converted AS with an additional orange-red luminescent (λ MAX=626 nm) component (AS+L) on the development of mouse zygotes was investigated. A plastic screen with a photoluminophore layer was used for production of this orange-red luminescent (L) component. A single short-term (15 min) exposure produced a long-term stable positive effect on early embryo development of mice, which persisted during several days. After exposure to AS+L, a stimulating influence on preimplantation development was observed, in comparison with the control group without AS exposure. The positive effects were as follows: increase in percent of embryos (P <= 0.05) developed to the blastocyst stage (96.2 %) with hatching from the zona pellucida (80.8 %) within 82-96 hours in vitro compared to the control (67.1 % and 28.8 %, respectively).

  10. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.

  11. Single-Cell XIST Expression in Human Preimplantation Embryos and Newly Reprogrammed Female Induced Pluripotent Stem Cells.

    PubMed

    Briggs, Sharon F; Dominguez, Antonia A; Chavez, Shawn L; Reijo Pera, Renee A

    2015-06-01

    The process of X chromosome inactivation (XCI) during reprogramming to produce human induced pluripotent stem cells (iPSCs), as well as during the extensive programming that occurs in human preimplantation development, is not well-understood. Indeed, studies of XCI during reprogramming to iPSCs report cells with two active X chromosomes and/or cells with one inactive X chromosome. Here, we examine expression of the long noncoding RNA, XIST, in single cells of human embryos through the oocyte-to-embryo transition and in new mRNA reprogrammed iPSCs. We show that XIST is first expressed beginning at the 4-cell stage, coincident with the onset of embryonic genome activation in an asynchronous manner. Additionally, we report that mRNA reprogramming produces iPSCs that initially express XIST transcript; however, expression is rapidly lost with culture. Loss of XIST and H3K27me3 enrichment at the inactive X chromosome at late passage results in X chromosome expression changes. Our data may contribute to applications in disease modeling and potential translational applications of female stem cells.

  12. Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip

    PubMed Central

    Huang, Hong-Yuan; Shen, Hsien-Hua; Tien, Chang-Hung; Li, Chin-Jung; Fan, Shih-Kang; Liu, Cheng-Hsien; Hsu, Wen-Syang; Yao, Da-Jeng

    2015-01-01

    Current human fertilization in vitro (IVF) bypasses the female oviduct and manually inseminates, fertilizes and cultivates embryos in a static microdrop containing appropriate chemical compounds. A microfluidic microchannel system for IVF is considered to provide an improved in-vivo-mimicking environment to enhance the development in a culture system for an embryo before implantation. We demonstrate a novel digitalized microfluidic device powered with electrowetting on a dielectric (EWOD) to culture an embryo in vitro in a single droplet in a microfluidic environment to mimic the environment in vivo for development of the embryo and to culture the embryos with good development and live births. Our results show that the dynamic culture powered with EWOD can manipulate a single droplet containing one mouse embryo and culture to the blastocyst stage. The rate of embryo cleavage to a hatching blastocyst with a dynamic culture is significantly greater than that with a traditional static culture (p<0.05). The EWOD chip enhances the culture of mouse embryos in a dynamic environment. To test the reproductive outcome of the embryos collected from an EWOD chip as a culture system, we transferred embryos to pseudo-pregnant female mice and produced live births. These results demonstrate that an EWOD-based microfluidic device is capable of culturing mammalian embryos in a microfluidic biological manner, presaging future clinical application. PMID:25933003

  13. Utero-tubal embryo transfer and vasectomy in the mouse model.

    PubMed

    Bermejo-Alvarez, Pablo; Park, Ki-Eun; Telugu, Bhanu P

    2014-02-28

    The transfer of preimplantation embryos to a surrogate female is a required step for the production of genetically modified mice or to study the effects of epigenetic alterations originated during preimplantation development on subsequent fetal development and adult health. The use of an effective and consistent embryo transfer technique is crucial to enhance the generation of genetically modified animals and to determine the effect of different treatments on implantation rates and survival to term. Embryos at the blastocyst stage are usually transferred by uterine transfer, performing a puncture in the uterine wall to introduce the embryo manipulation pipette. The orifice performed in the uterus does not close after the pipette has been withdrawn, and the embryos can outflow to the abdominal cavity due to the positive pressure of the uterus. The puncture can also produce a hemorrhage that impairs implantation, blocks the transfer pipette and may affect embryo development, especially when embryos without zona are transferred. Consequently, this technique often results in very variable and overall low embryo survival rates. Avoiding these negative effects, utero-tubal embryo transfer take advantage of the utero-tubal junction as a natural barrier that impedes embryo outflow and avoid the puncture of the uterine wall. Vasectomized males are required for obtaining pseudopregnant recipients. A technique to perform vasectomy is described as a complement to the utero-tubal embryo transfer.

  14. A system to evaluate the quality of frozen embryos through short-term culture.

    PubMed

    Contreras, D A; Galina, C S; Avila, J G; Aspron, M P; Moreno-Mendoza, N

    2008-07-01

    The aim of the present study was to evaluate a culture system as a non-invasive approach intended for assessing the viability of recently thawed embryos prior to transfer. Embryos (n=51) were collected seven days after insemination out of 20 cows that had been treated to synchronize estrus and induce superovulation. Embryos were classified as good, fair, and poor and frozen. All embryos were cultured in McCoy medium. Morphology was monitored for a period of 24h to register the development stage every 30 min for the first 2h, and every hour thereafter. A sample of four embryos of each classification was separated at 4h, another four at 12h, and the remaining seven at 24h and the degree of apoptosis was determined for all the embryos using the TUNEL technique. Embryos of good and fair quality did not undergo major detrimental changes in development even after 7h of incubation, whereas poor quality embryos experienced changes as early as 2h after incubation. Good quality embryos invariably had fewer numbers of apoptotic cells than those of fair and poor quality suggesting that embryo culture can be a useful method to assess viability and to confirm the quality of thawed embryos previously stored in liquid nitrogen prior to transfer.

  15. Studies on weak electromagnetic fields effects in chick embryos. Annual report, June 1985-June 1986

    SciTech Connect

    Not Available

    1986-05-31

    This research was directed to test some experimental conditions of the Henhouse project and to enforce a previous study on VLF electromagnetic fields effects on chick embryos. Henhouse Project: the response of White Leghorn Hisex embryos to field exposures effective on the Shaver breed, was studied. 1) A 48-hour exposure, in vivo, to a pulsed horizontal field of 100-Hz frequency, 1.0 micro T intensity, 500-microsecond pulse duration and 2-microsecond rise time induced a significant increase of developmental abnormalities in Hisex embryos. 2) A five-hour exposure of stage 7 Hisex embryos changed the Mitotic Index of their neural tissue. So, the early development of Hisex embryos, like Shaver embryos, can be modified by VLF pulsed electromagnetic fields. In the protocol of the Henhouse project, it was suggested a temperature of 38 C for eggs incubation. Studying the development of chick embryos in relation to the temperature, in the range of 37.4-40 C, it was confirmed that a 48-hour incubation at 38 C (with 55% humidity) does not induce abnormalities and allows a convenient developmental growth rate of the chick embryos. Electromagnetic fields effects in relation to the embryos orientation: preliminary results on the induction of abnormalities in field exposed embryos in relation to their orientation were confirmed. In a East-West oriented horizontal pulsed field, the organisms oriented to Southwest and Southeast showed a significant increase of developmental abnormalities. No effect was appreciable among the embryos Southward oriented.

  16. Developmental toxicity of cartap on zebrafish embryos.

    PubMed

    Zhou, Shengli; Dong, Qiaoxiang; Li, Shaonan; Guo, Jiangfeng; Wang, Xingxing; Zhu, Guonian

    2009-12-13

    Cartap is a widely used insecticide which belongs to a member of nereistoxin derivatives and acts on nicotinic acetylcholine receptor site. Its effects on aquatic species are of grave concern. To explore the potential developmental toxicity of cartap, zebrafish embryos were continually exposed, from 0.5 to 144h post-fertilization, to a range of concentrations of 25-1000microg/l. Results of the experiment indicated that cartap concentrations of 100microg/l and above negatively affected embryo survival and hatching success. Morphological analysis uncovered a large suite of abnormalities such as less melanin pigmentation, wavy notochord, crooked trunk, fuzzy somites, neurogenesis defects and vasculature defects. The most sensitive organ was proved to be the notochord which displayed defects at concentrations as low as 25microg/l. Both sensitivity towards exposure and localization of the defect were stage specific. To elucidate mechanisms concerning notochord, pigmentation, and hatching defects, enzyme assay, RT Q-PCR, and different exposure strategies were performed. For embryos with hatching failure, chorion was verified not to be digested, while removing cartap from exposure at early pre-hatching stage could significantly increase the hatching success. However, cartap was proved, via vitro assay, to have no effect on proteolytic activity of hatching enzyme. These findings implied that the secretion of hatching enzyme might be blocked. We also revealed that cartap inhibited the activity of melanogenic enzyme tyrosinase and matrix enzyme lysyl oxidase and induced expression of their genes. These suggested that cartap could impaired melanin pigmentation of zebrafish embryos through inhibiting tyrosinase activity, while inhibition of lysyl oxidase activity was responsible for notochord undulation, which subsequently caused somite defect, and at least partially responsible for defects in vasculature and neurogenesis.

  17. Fusion of blastomeres in mouse embryos under the action of femtosecond laser radiation. Efficiency of blastocyst formation and embryo development

    SciTech Connect

    Osychenko, A A; Zalesskii, A D; Krivokharchenko, A S; Zhakhbazyan, A K; Nadtochenko, V A; Ryabova, A V

    2015-05-31

    Using the method of femtosecond laser surgery we study the fusion of two-cell mouse embryos under the action of tightly focused femtosecond laser radiation with the fusion efficiency reaching 60%. The detailed statistical analysis of the efficiency of blastomere fusion and development of the embryo up to the blastocyst stage after exposure of the embryos from different mice to a femtosecond pulse is presented. It is shown that the efficiency of blastocyst formation essentially depends on the biological characteristics of the embryo, namely, the strain and age of the donor mouse. The possibility of obtaining hexaploid embryonal cells using the methods of femtosecond laser surgery is demonstrated. (extreme light fields and their applications)

  18. In vitro development of OPU-derived bovine embryos cultured either individually or in groups with the silk protein sericin and the viability of frozen-thawed embryos after transfer.

    PubMed

    Isobe, Tomohiro; Ikebata, Yoshihisa; Do, Lanh Thi Kim; Tanihara, Fuminori; Taniguchi, Masayasu; Otoi, Takeshige

    2015-07-01

    The optimization of single-embryo culture conditions is very important, particularly in the in vitro production of bovine embryos using the ovum pick-up (OPU) procedure. The purpose of this study was to examine the development of embryos derived from oocytes obtained by OPU that were cultured either individually or in groups in medium supplemented with or without sericin and to investigate the viability of the frozen-thawed embryos after a direct transfer. When two-cell-stage embryos were cultured either individually or in groups for 7 days in CR1aa medium supplemented with or without 0.5% sericin, the rates of development to blastocysts and freezable blastocysts were significantly lower for the embryos cultured individually without sericin than for the embryos cultured in groups with or without sericin. Moreover, the rate of development to freezable blastocysts of the embryos cultured individually with sericin was significantly higher than that of the embryos cultured without sericin. When the frozen-thawed embryos were transferred directly to recipients, the rates of pregnancy, abortion, stillbirth and normal calving in the recipients were similar among the groups, irrespective of the culture conditions and sericin supplementation. Our findings indicate that supplementation with sericin during embryo culture improves the quality of the embryos cultured individually but not the viability of the frozen-thawed embryos after transfer to recipients.

  19. Hollow fiber vitrification: a novel method for vitrifying multiple embryos in a single device.

    PubMed

    Matsunari, Hitomi; Maehara, Miki; Nakano, Kazuaki; Ikezawa, Yuka; Hagiwara, Yui; Sasayama, Norihisa; Shirasu, Akio; Ohta, Hisayoshi; Takahashi, Masashi; Nagashima, Hiroshi

    2012-01-01

    Current embryo vitrification methods with proven efficacy are based on the minimum volume cooling (MVC) concept by which embryos are vitrified and rewarmed ultrarapidly in a very small amount of cryopreserving solution to ensure the high viability of the embryos. However, these methods are not suitable for simultaneously vitrifying a large number of embryos. Here, we describe a novel vitrification method based on use of a hollow fiber device, which can easily hold as many as 40 mouse or 20 porcine embryos in less than 0.1 μl of solution. Survival rates of up to 100% were obtained for mouse embryos vitrified in the presence of 15% DMSO, 15% ethylene glycol and 0.5 M sucrose using the hollow fiber vitrification (HFV) method, regardless of the developmental stage of the embryos (1-cell, 2-cell, morula or blastocyst; n = 50/group). The HFV method was also proven to be effective for vitrifying porcine in vitro- and in vivo-derived embryos that are known to be highly cryosensitive. For porcine embryos, the blastocyst formation rate of in vitro maturation (IVM)-derived parthenogenetic morulae after vitrification (48/65, 73.8%) did not decrease significantly compared with non-vitrified embryos (59/65, 90.8%). Transfer of 72 in vivo-derived embryos vitrified at the morula/early blastocyst stages to 3 recipients gave rise to 29 (40.3%) piglets. These data demonstrate that the HFV method enables simultaneous vitrification of multiple embryos while still adhering to the MVC concept, and this new method is very effective for cryopreserving embryos of mice and pigs.

  20. Post-thaw culture in presence of insulin-like growth factor I improves the quality of cattle cryopreserved embryos.

    PubMed

    Makarevich, Alexander V; Kubovičová, Elena; Hegedušová, Zdena; Pivko, Juraj; Louda, František

    2012-05-01

    The goal of this study was to examine the effect of insulin-like growth factor I (IGF-I; added during post-thaw culture (48 h)) on the preimplantation viability and quality of cryopreserved bovine in vivo recovered embryos. The morula stage embryos, non-surgically recovered from superovulated dairy cows of Czech Fleckvieh cattle breed, had previously been cryopreserved by a slow freezing technique and stored in liquid nitrogen since 1989-1990. Following thawing, the embryos were cultured for 48 h either alone (no IGF-I) or in the presence of IGF-I (10 or 100 ng/ml); non-cultured embryos served as a control. Thereafter, the embryos were analyzed for cleavage to the blastocyst stage, apoptosis (TUNEL), embryo cell number and quality of actin cytoskeleton. Following post-thaw culture 41% of embryos developed to advanced blastocysts. IGF-I increased this per cent and, at a higher dose, essentially reduced the per cent of degenerated embryos. In cultured embryos, IGF-I at both doses elevated the cell number compared with non-cultured embryos. However, in comparison with embryos cultured without IGF-I, only the higher IGF-I dose resulted in elevating the embryo cell number. The TUNEL index was significantly lowered by IGF-I treatment. Thawed embryos were mostly of the grade III actin type and fewer (12%) had grade II actin, whilst no grade I actin embryos were noted. The addition of IGF-I resulted in the appearance of grade I actin embryos (8.33 and 6.9% for 10 and 100 ng/ml, respectively). These observations indicate that the addition of IGF-I during post-thaw culture can improve the quality of bovine cryopreserved embryos.

  1. Gender determination of avian embryo

    DOEpatents

    Daum, Keith A.; Atkinson, David A.

    2002-01-01

    Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

  2. Electrothermal branding for embryo labeling.

    PubMed

    Wang, L; Beebe, D J; Williams, A R; Easley, K D

    1997-11-01

    A novel embryo labeling technique based on electrothermal branding is developed. Two types of micro branding irons are fabricated and tested. One utilizes 25 microns tungsten wire as the heating element. The other utilizes surface micromachining techniques to fabricate polysilicon branding irons. The thermal behavior of the branding irons and the heat distributions in the embryos are analytically modeled. Micron-scale labels on unfertilized bovine embryos are achieved.

  3. Developmental effects of exposing Drosophila embryos to ether vapour.

    PubMed

    Bownes, M; Seiler, M

    1977-01-01

    Drosophila embryos at precise developmental stages were exposed to ether vapour. The defects in the resulting embryos and adults were observed. Ether disrupted embroygenesis in specific ways, causing defects primarily at the anterior of the embryo and disorganizing the arrangement of the segments. Adults showed deficiencies and duplications of many imaginal disc and histoblast derivatives. Phenocopies of the bithorax mutation which transforms metathorax to mesothorax were observed. They were first induced at the syncytial blastoderm stage, had their peak of production at the cellular blastoderm, and were no longer observed after the anterior and posterior midgut were partially invaginated. It was observed that not only are the halter/wing transformations confined to the anterior compartment, but also leg 3 to leg 2 transformations only occurred in the anterior leg compartment.

  4. Determination of gene expression patterns using high-throughput RNA in situ hybridizaion to whole-mount Drosophila embryos

    SciTech Connect

    Weiszmann, R.; Hammonds, A.S.; Celniker, S.E.

    2009-04-09

    We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4oC for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

  5. Cloning of bovine embryos by multiple nuclear transfer.

    PubMed

    Takano, H; Kozai, C; Shimizu, S; Kato, Y; Tsunoda, Y

    1997-05-01

    The in vitro development of multiple generation bovine nuclear transferred embryos to blastocysts and their survival ability after freezing and thawing were examined. Parent donor embryos which had 20 to 50 cells were recovered from superovulated cows. Follicular oocytes matured in vitro were used as recipient oocytes. The recipient oocytes enucleated at 22 to 24 h after the onset of maturation were preactivated at 33 h. Enucleated oocytes with a donor blastomere were fused 9 h after activation by an electric stimulus and the fused oocytes were cultured in vitro (first generation). Reconstituted oocytes that had developed to the 8- to 16-cell stage 3 to 4 d after fusion were used as donor embryos for the next generation. Recloning procedures were performed twice (second and third generations). The proportion of recipient oocytes successfully fused with a blastomere increased with the cycle of nuclear transfer. Eighty to 86% of fused oocytes developed to the 2-cell stage and there was no significant difference with the generation. The proportion of reconstituted embryos receiving blastomeres derived from first generation embryos had higher developmental ability in vitro, than those derived from other generations (43 vs 31% for 8 to 16-cell stage, 37 vs 20 and 21% for blastocyst stage). The number of cloned blastocysts increased with repeated nuclear transfer (once: 6.2 +/- 4.3, twice: 19.8 +/- 9.2 and three times: 30.0 +/- 14.7) but varied greatly with each parent donor embryo. The in vitro viability of cloned blastocysts after freezing and thawing (59%) was low but not significantly different from that obtained for in vitro fertilized blastocysts (72%). After transfer of either fresh or frozen-thawed cloned blastocysts to 21 recipients, 10 of them were pregnant on Day 60. Four and 3 offspring were produced from 20 fresh and 14 frozen-thawed blastocysts,respectively.

  6. Analysis of chromatin structure in mouse preimplantation embryos by fluorescent recovery after photobleaching

    PubMed Central

    Ooga, Masatoshi; Fulka, Helena; Hashimoto, Satoshi; Suzuki, Masataka G.; Aoki, Fugaku

    2016-01-01

    Abstract Zygotes are totipotent cells that have the ability to differentiate into all cell types. It is believed that this ability is lost gradually and differentiation occurs along with the progression of preimplantation development. Here, we hypothesized that the loose chromatin structure is involved in the totipotency of one-cell stage embryos and that the change from loose to tight chromatin structure is associated with the loss of totipotency. To address this hypothesis, we investigated the mobility of eGFP-tagged histone H2B (eGFP-H2B), which is an index for the looseness of chromatin, during preimplantation development based on fluorescent recovery after photobleaching (FRAP) analysis. The highest mobility of eGFP-H2B was observed in pronuclei in 1-cell stage embryos and mobility gradually decreased during preimplantation development. The decrease in mobility between the 1- and 2-cell stages depended on DNA synthesis in 2-cell stage embryos. In nuclear transferred embryos, chromatin in the pseudopronuclei loosened to a level comparable to the pronuclei in 1-cell stage embryos. These results indicated that the mobility of eGFP-H2B is negatively correlated with the degree of differentiation of preimplantation embryos. Therefore, we suggest that highly loosened chromatin is involved in totipotency of 1-cell embryos and the loss of looseness is associated with differentiation during preimplantation development. PMID:26901819

  7. Abnormalities in the transcription of reprogramming genes related to global epigenetic events of cloned endangered felid embryos.

    PubMed

    Imsoonthornruksa, S; Lorthongpanich, C; Sangmalee, A; Srirattana, K; Laowtammathron, C; Tunwattana, W; Somsa, W; Ketudat-Cairns, M; Parnpai, R

    2010-01-01

    The present study examined transcription levels of the Oct4, DNMT1, DNMT3a, DNMT3b, HAT1 and HDAC1 genes in cloned felid embryos developing from single one-cell to blastocyst stages. IVF, cloned domestic and leopard cat embryos had low Oct4 and HAT1 levels during the early stages, but transcript expression increased at the eight-cell and blastocyst stages. In contrast, expression in the cloned marble cat embryos was low at all stages. Transcription patterns of HDAC1 were altered in cloned embryos compared with IVF embryos. Transcription levels of DNMT1 decreased markedly throughout development of both IVF and cloned embryos. In IVF embryos, DNMT3a transcripts rarely appeared in the four- to eight-cell stages, but levels increased in the morula to blastocyst stages. In contrast, in cloned embryos, DNMT3a transcript levels were high at the one- to two-cell stages, decreased during subsequent cell division and then increased again at the blastocyst stage. The IVF and cloned embryos showed similar DNMT3b transcription patterns, starting with low levels at the two-cell to morula stages and reaching a maximum at the blastocyst stage. These results suggest that the low level of Oct4 transcripts may be responsible, in part, for the failure of blastocyst production in the cloned marbled cat. However, higher transcription of the DNA methylation genes and lower transcription of the histone acetylation genes were observed in cloned compared with IVF embryos, suggesting that the felids' donor nucleus could not completely reprogramme the nuclear genome and so the re-establishment of embryonic totipotency was not achieved.

  8. Bovine embryo-oviduct interaction in vitro reveals an early cross talk mediated by BMP signaling.

    PubMed

    García, Elina V; Hamdi, Meriem; Barrera, Antonio D; Sánchez-Calabuig, María J; Gutiérrez-Adán, Alfonso; Rizos, Dimitrios

    2017-05-01

    Signaling components of bone morphogenetic proteins (BMPs) are expressed in an anatomically and temporally regulated fashion in bovine oviduct. However, a local response of this signaling to the presence of the embryo has yet to be elucidated. The aim of the present study was to evaluate if early embryo-oviduct interaction induces changes in the gene expression of BMP signaling components. For this purpose, we used an in vitro co-culture system to investigate the local interaction between bovine oviductal epithelial cells (BOEC) from the isthmus region with early embryos during two developmental periods: before (from the 2-cell to 8-cell stage) or during (from the 8-cell to 16-cell stage) the main phase of embryonic genome activation (EGA). Exposure to embryos, irrespective of the period, significantly reduced the relative abundance of BMPR1B, BMPR2, SMAD1, SMAD6 and ID2 mRNAs in BOEC. In contrast, embryos that interacted with BOEC before EGA showed a significant increase in the relative abundance of SMAD1 mRNA at the 8-cell stage compared to embryos cultured without BOEC. Moreover, embryos at the 16-cell stage that interacted with BOEC during EGA showed a significant increase in BMPR1B, BMPR2 and ID2 mRNA. These results demonstrate that embryo-oviduct interaction in vitro induces specific changes in the transcriptional levels of BMP signaling, causing a bidirectional response that reduces the expression levels of this signaling in the oviductal cells while increases them in the early embryo. This suggests that BMP signaling pathway could be involved in an early cross talk between the bovine embryo and the oviduct during the first stages of development.

  9. Ethics and embryos.

    PubMed

    Poplawski, N; Gillett, G

    1991-06-01

    In this paper we argue that the human form should be seen to exist, in a longitudinal way, throughout the continuum of human growth and development. This entails that the moral value of that form, which we link analytically to the adult, interacting, social and rational being, attaches to all phases of human life to some extent. Having established this we discuss the consequences it has for the moral status of the human embryo. We then apply this argument, and the resulting moral status, to the area of reproductive technology. In doing this we show that there are certain regulations and controls which ought to apply to the use of these infertility treatments.

  10. Effect of supplementation of different growth factors in embryo culture medium with a small number of bovine embryos on in vitro embryo development and quality.

    PubMed

    Ahumada, C J; Salvador, I; Cebrian-Serrano, A; Lopera, R; Silvestre, M A

    2013-03-01

    When embryos are cultured individually or in small groups, blastocyst yield efficiency and quality are usually reduced. The aim of this work was to investigate the effect of supplementation of the embryo culture medium (CM) with several growth factors (GFs) on embryo development and apoptosis rate when a reduced number of embryos were in vitro cultured. Two experimental studies (ES) were carried out. In ES 1, five treatments were tested to study the effect of GF on embryo development: Control (∼30 to 50 embryos cultured in 500 μl of CM); Control 5 (Five embryos cultured in 50 μl microdrops of CM), without addition of GF in either of the two control groups; epidermal GF (EGF); IGF-I; and transforming GF-α (TGF-α) (Five embryos were cultured in 50 μl microdrops of CM with 10 ng/ml EGF, 10 ng/ml IGF-I or 10 ng/ml TGF-α, respectively). In ES 2, following the results obtained in ES 1, four different treatments were tested to study their effect on embryo development and quality (number of cells per blastocyst and apoptotic rate): Control; Control 5; EGF, all three similar to ES 1; EGF + IGF-I group (five embryos cultured in 50 μl microdrops of CM with 10 ng/ml EGF and 10 ng/ml IGF-I). In both ESs, it was observed that a higher proportion of embryos cultured in larger groups achieved blastocyst stage than embryos cultured in reduced groups (22.6% v. 14.0%, 12.6% and 5.3% for Control v. Control 5, IGF-I, TGF-α groups in ES 1, and 24.9% v. 17.1% and 19.0% for Control v. Control 5 and EGF in ES 2, respectively; P < 0.05), with the exception of embryos cultured in medium supplemented with EGF (18.5%) or with EGF + IGF-I (23.5%), in ES 1 and ES 2, respectively. With regard to blastocyst quality, embryos cultured in reduced groups and supplemented with EGF, alone or combined with IGF-I, presented lower apoptosis rates than embryos cultured in reduced groups without GF supplementation (11.6% and 10.5% v. 21.9% for EGF, EGF + IGF-I and Control 5 groups, respectively; P

  11. Human research cloning, embryos, and embryo-like artifacts.

    PubMed

    Hyun, Insoo; Jung, Kyu Won

    2006-01-01

    Research suggests that cloning is incapable of producing a viable embryo when it is used on primate eggs. In fact, the entity created may not qualify as an embryo at all. If the results stand, cloning avoids the moral objections typically lodged against it, and cloning is itself an "alternative source" of stem cells.

  12. Pathological Changes Following the Inoculation of Chick Embryos with Adult Cells

    PubMed Central

    Biggs, P. M.; Payne, L. N.

    1961-01-01

    The pathological changes in the livers and spleens which occur after the inoculation of adult fowl blood into fifteen-day-old embryos have been followed for about 7 weeks. Three consecutive histological stages were noticed. The first two stages, termed the splenomegaly syndrome and the stage of lymphoid hyperplasia, closely resembled those described following the injection of adult spleen cells into fifteen-day-old embryos (Biggs and Payne, 1960). The third stage was found in chicks in the terminal stages of runt disease, and was characterized by involution of the lymphoid tissues. The significance of these changes is discussed. ImagesFIG. 3FIG. 4FIG. 5FIG. 6

  13. Role of melatonin in embryo fetal development.

    PubMed

    Voiculescu, S E; Zygouropoulos, N; Zahiu, C D; Zagrean, A M

    2014-01-01

    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal melatonin provided transplacentally. Melatonin appears to be involved in the normal outcome of pregnancy beginning with the oocyte quality and finishing with the parturition. Its pregnancy night-time concentrations increase after 24 weeks of gestation, with significantly high levels after 32 weeks. Melatonin receptors are widespread in the embryo and fetus since early stages. There is solid evidence that melatonin is neuroprotective and has a positive effect on the outcome of the compromised pregnancies. In addition, chronodisruption leads to a reproductive dysfunction. Thus, the influence of melatonin on the developing human fetus may not be limited to the entertaining of circadian rhythmicity, but further studies are needed.

  14. Exposure to mono-n-butyl phthalate disrupts the development of preimplantation embryos.

    PubMed

    Chu, Da-Peng; Tian, Shi; Sun, Da-Guang; Hao, Chan-Juan; Xia, Hong-Fei; Ma, Xu

    2013-01-01

    Dibutyl phthalate (DBP), a widely used phthalate, is known to cause many serious diseases, especially in the reproductive system. However, little is known about the effects of its metabolite, mono-n-butyl phthalate (MBP), on preimplantation embryo development. In the present study, we found that treatment of embryos with 10⁻³ M MBP impaired developmental competency, whereas exposure to 10⁻⁴ M MBP delayed the progression of preimplantation embryos to the blastocyst stage. Furthermore, reactive oxygen species (ROS) levels in embryos were significantly increased following treatment with 10⁻³ M MBP. In addition, 10⁻³ M MBP increased apoptosis via the release of cytochrome c, whereas immunofluorescent analysis revealed that exposure of preimplantation embryos to MBP concentration-dependently (10⁻⁵, 10⁻⁴ and 10⁻³ M) decreased DNA methylation. Together, the results indicate a possible relationship between MBP exposure and developmental failure in preimplantation embryos.

  15. Research on embryos in Turkey with ethical and legal aspects

    PubMed Central

    Vatanoğlu-Lutz, Emine Elif

    2012-01-01

    Technically, the term embryo refers to the products of conception after implantation into the wall of the womb, usually nearly two weeks after fertilization, up until the eighth week. Embryos contain stem cells which, according to scientists, could be used to cure a wide range of conditions. Stem cells can be coaxed into growing cells of any other type, which makes them potentially very useful indeed. However, removing stem cells from an embryo will kill the embryo, which some people object to. From the mid 1970s, IVF was being developed and research was carried out on the spare embryos produced. This research helped to improve IVF techniques, as well as to better understand the earliest stages of human development. Research also shed light on a variety of inheritable disorders. In Turkish Law, assisted reproduction treatment (ART) services are regulated with the Regulation of Assisted Reproductive Treatment Centers Act (RAPTCA) The Regulation was issued in 1987, but it has been amended several times since. Also, article 90 of the Turkish Penal Code covers some aspects of research on embryos. At the same time, the Biomedicine Convention (Oviedo Convention), signed by Turkey and which entered into force in 2003, has binding regulations about this issue. Different legal regulations and some ethical guidelines are in conflict with each other, creating much confusion for the researchers. In this paper these conflicts are discussed, giving some practical proposals. PMID:24592037

  16. The impact of male age on embryo quality: a retrospective study using time-lapse imaging

    PubMed Central

    Rosário, Guilherme R. F.; Vidal, Diana S.; Silva, Adriana V.; Franco, Antônio C. C.

    2016-01-01

    Objective This study aimed to correlate male age with embryo morphokinetic parameters on D3 considering the timing and the exact moment of embryo cleavage. Methods Time-lapse imaging was used to produce an ideal cleavage curve for the embryos analyzed. The percentage of embryos under the curve was analyzed and correlated with male age. Results 32.6% of the embryos from patients aged 28-33 years were under the curve; 36.2% of the embryos from patients aged 34-39 years were under the curve; 41.3% of the embryos from patients aged 40-45 years were under the curve; and 26.3% of the embryos fro patients aged 46-57 years were under the curve. Conclusions a statistically non-significant decrease was observed in the percentage of embryos under the optimal cleavage curve on D3 in the group of men aged between 40 and 45 years. Further studies looking into embryos in the blastocyst stage (D5 or D6) are required. PMID:28050955

  17. The influence of growth factors on the development of preimplantation mammalian embryos.

    PubMed

    Díaz-Cueto, L; Gerton, G L

    2001-01-01

    The development of the preimplantation mammalian embryo from a fertilized egg to a blastocyst capable of implanting in the uterus is a complex process. Cell division must be carefully programmed. The embryonic genome must be activated at the appropriate stage of development, and the pattern of gene expression must be carefully coordinated for the initiation of the correct program of differentiation. Cell fates must be chosen to establish specific cell types such as the inner cell mass and the trophectoderm, which give rise to the embryo proper and the placenta, respectively. This review summarizes recent findings concerning the influence of growth factors on the development of preimplantation mammalian embryos. Maternal factors secreted into the lumen of the female reproductive tract as well as substances synthesized by the developing embryo itself help to regulate this process. Studies of embryos in culture and investigations using homologous recombination to create embryos and animals null for specific genes have enabled the identification of several growth factors that appear essential for preimplantation mammalian embryo development. Some of the factors are required maternal factors; others are embryo-derived autocrine and paracrine factors. Studies using molecular biology are beginning to identify differences in the patterns of genes expressed by naturally derived embryos and those developing in culture. The knowledge gained from studies on growth factors, media, embryonic development, and gene expression should help improve culture conditions for embryos and will provide for safer outcomes from assisted reproductive procedures in human and animal clinics.

  18. Radioactive labeling of proteins in cultured postimplantation mouse embryos. II. Dose and time dependency

    SciTech Connect

    Nowak, J.; Klose, J. )

    1989-07-01

    The conditions for optimum incorporation of radioactive amino acids into proteins of cultured postimplantation mouse embryos were investigated under the aspect of using these proteins for two-dimensional electrophoretic separations and fluorography. The aim was to obtain highly radioactively labeled proteins under conditions as physiological as possible. Mouse embryos of Days 8, 10, and 11 of gestation were cultured in Tyrode's solution. Incubation time and concentration of ({sup 3}H (or {sup 14}C))amino acids in the culture medium were varied over a broad range. Embryos were prepared with placenta and yolk sac or without any embryonic envelopes. After culturing, the physiologic-morphologic state of the embryos was registered on the basis of several criteria. The radioactivity taken up by the total protein of each embryo was determined and calculated in disintegrations per minute per milligram protein per embryo. To approach our aim, embryos of different developmental stages had to be cultured under different conditions. A good compromise for Day-8, Day-10, and Day-11 embryos was: embryos prepared with yolk sac (opened) and placenta, 150 microCi radioactive amino acids added per milliliter medium, incubation for 4 to 5 h. For maximum labeling of proteins it is advisable to culture Day-10 embryos without embryonic envelopes under particular conditions.

  19. Cellular characterization of blastocysts derived from rabbit 4-, 8- and 16-cell embryos and isolated blastomeres cultured in vitro.

    PubMed

    Tao, T; Niemann, H

    2000-04-01

    The purpose of this study was to investigate the developmental potential of isolated rabbit blastomeres under various culture conditions to gain insight into their ability to form the two cell lineages of a viable blastocyst. Intact embryos at the 4-cell, 8-cell, 16-cell stages and blastomeres isolated from 4-, 8- and 16-cell rabbit embryos (1/4, 1/8 or 1/16 blastomeres respectively) were cultured in drops of one of three different media, each supplemented with either fetal calf serum (FCS), bovine serum albumin (BSA) or polyvinyl alcohol (PVA). The effects of the extracellular matrix fibronectin (FN) on the development of isolated rabbit blastomeres were also investigated. Supplementation of the medium with FCS yielded a higher (P < 0.05) proportion of blastocysts than BSA or PVA, predominantly from 1/4 blastomeres. No major differences were found between the three basic culture media. In 1/4, 1/8 or 1/16 blastomeres, blastocyst formation rates were greater (P < 0.05) in groups cultured in matrix-free (54.5, 59.6 and 54.6% respectively) than in FN-coated groups (35.4, 46.0 and 26.1% respectively). Only in blastocysts derived from 1/4 blastomeres, were the numbers of inner cell mass (ICM) and total cells of blastocysts higher (P < 0.05) in FN-coated groups than in matrix-free groups (12.7 +/- 1.1 versus 8.5 +/- 0.7 ICM, 73.8 +/- 3. 7 versus 57.8 +/- 3.3 total cells). The percentage of blastocysts derived from single blastomeres with ICM cells decreased with increasing cell stage of the parent embryos in FN-coated (93.6, 78.3 and 44.0%, respectively) as well as matrix-free groups (96.2, 69.3 and 55.2%). In FN-coated groups, after 96 h (1/4) or 72 h (1/8 and 1/16) of culture, approximately 20-30% of blastomeres did not develop into normal blastocysts but formed sheets with 30-50 cells attached to the bottom of the dishes. These results indicate that the development of rabbit blastomeres shares important characteristics with those from mouse and domestic species and

  20. Effect of the microenvironment and embryo density on developmental characteristics and gene expression profile of bovine preimplantative embryos cultured in vitro.

    PubMed

    Hoelker, Michael; Rings, Franka; Lund, Qamaruddin; Ghanem, Nasser; Phatsara, Chirawath; Griese, Josef; Schellander, Karl; Tesfaye, Dawit

    2009-03-01

    The Well of the Well (WOW) system has been developed to culture embryos in small groups or to track the development of single embryos. In the present study, we aimed to examine the effects of the microenvironment provided by the WOW system and embryo density on developmental rates, embryo quality and preimplantative gene expression profile of the resulting embryos. Embryos cultured in a group of 16 reached the blastocyst stage at a significantly lower level than zygotes cultured in a group of 50 (22.2 vs 30.3%), whereas zygotes cultured in WOW were able to compensate against low embryo densities, reaching a blastocyst rate as high as embryos cultured in a group of 50 (31.3 vs 30.3%). Moreover, embryos derived from WOW culture did not differ in terms of differential cell counts and apoptotic cell index compared with controls. The gene expression analysis revealed 62 transcripts to be upregulated and 33 transcripts to be downregulated by WOW culture. Comparing the in vivo derived blastocysts with the blastocysts derived from WOW culture, and group culture, expression of ATP5A1, PLAC8 and KRT8 was more similar to the embryos derived from WOW culture, whereas expression of S100A10 and ZP3 genes was more similar to blastocysts cultured in a group. In conclusion, microenvironment as well as embryo density significantly affected developmental rates. While subsequent blastocysts did not differ in terms of differential cell counts and apoptotic cell index, significant differences were observed in terms of the relative abundance of transcripts in the resulting embryos.

  1. Abnormalities occurring during female gametophyte development result in the diversity of abnormal embryo sacs and leads to abnormal fertilization in indica/japonica hybrids in rice.

    PubMed

    Zeng, Yu-Xiang; Hu, Chao-Yue; Lu, Yong-Gen; Li, Jin-Quan; Liu, Xiang-Dong

    2009-01-01

    Embryo sac abortion is one of the major reasons for sterility in indica/japonica hybrids in rice. To clarify the causal mechanism of embryo sac abortion, we studied the female gametophyte development in two indica/japonica hybrids via an eosin B staining procedure for embryo sac scanning using confocal laser scanning microscope. Different types of abnormalities occurred during megasporogenesis and megagametogenesis were demonstrated. The earliest abnormality was observed in the megasporocyte. A lot of the chalazal-most megaspores were degenerated before the mono-nucleate embryo sac stage. Disordered positioning of nucleus and abnormal nucellus tissue were characteristics of the abnormal female gametes from the mono-nucleate to four-nucleate embryo sac stages. The abnormalities that occurred from the early stage of the eight-nucleate embryo sac development to the mature embryo sac stage were characterized by smaller sizes and wrinkled antipodals. Asynchronous nuclear migration, abnormal positioning of nucleus, and degeneration of egg apparatus were also found at the eight-nucleate embryo sac stage. The abnormalities that occurred during female gametophyte development resulted in five major types of abnormal embryo sacs. These abnormal embryo sacs led to abnormal fertilization. Hand pollination using normal pollens on the spikelets during anthesis showed that normal pollens could not exclude the effect of abnormal embryo sac on seed setting.

  2. Cryopreservation of ilex immature zygotic embryos.

    PubMed

    Mroginski, Luis; Dolce, Natalia; Sansberro, Pedro; Luna, Claudia; Gonzalez, Ana; Rey, Hebe

    2011-01-01

    Tropical Ilex species have recalcitrant seeds. This chapter describes protocols for long-term conservation of Ilex brasiliensis, I. brevicuspis, I. dumosa, I. microdonta, I. integerrima, I. paraguariensis, I. pseudoboxus, I. taubertiana, and I. theezans through cryopreservation of zygotic rudimentary embryos at the heart developmental stage. The embryos are aseptically removed from the seeds and precultured (7 days) in the dark at 27±2°C on solidified quarter-strength Murashige and Skoog medium with 3% sucrose and 0.1 mg/L zeatin. The embryos are then encapsulated in 3% calcium alginate beads and pretreated at 24-h intervals in liquid medium supplemented with progressively increasing sucrose concentrations (0.5, 0.75, and 1 M). The beads are dehydrated for 5 h with silica gel to 25% water content (fresh weight basis) and then placed in sterile 5-mL cryovials. Then the beads are either plunged rapidly in liquid nitrogen where they are kept for 1 h (rapid cooling), or cooled at 1°C/min to -30°C and then immersed in liquid nitrogen for 1 h (slow cooling). After cryopreservation, the beads are rewarmed by immersion of the cryovials for 1 min in a water bath at 30°C. Finally, the beads are transferred onto culture medium (1/4MS, 3% sucrose, and 0.1 mg/L zeatin, solidified with 0.8% agar) and incubated in a growth room at 27±2°C under a 14-h light (116 μmol/m2/s) and 10-h dark photoperiod. Maximum recovery percentages between 15 and 83% (depending on the species and the treatment) were obtained with the cryopreserved embryos.

  3. Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata

    NASA Technical Reports Server (NTRS)

    Vasilenko, A.; McDaniel, J. K.; Conger, B. V.

    2000-01-01

    Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.

  4. Osmotic measurements in whole megagametophytes and embryos of loblolly pine (Pinus taeda) during seed development.

    PubMed

    Pullman, Gerald S; Johnson, Shannon

    2009-06-01

    Water potential (Psi) and osmotic potential (Psis) were measured weekly through the sequence of seed development in megagametophytes of loblolly pine (Pinus taeda L.). A Wescor 5500XRS vapor pressure osmometer, modified with a cycle hold switch, was used to measure Psi for whole megagametophytes containing embryos. The Psi measurements for megagametophytes with embryos removed were also attempted but readings were distorted due to cell lysates from the cut surfaces. Six seasonal sets of megagametophyte Psi profiles were generated. Megagametophytes from most of the trees examined showed a consistent Psi pattern: low measurements of -1.0 to -0.75 MPa during early embryo development in late June to early July when embryo Stages 1-2 occur; an increase for one to several weeks to levels of -0.5 to -0.75 MPa, beginning at Stages 3-5 when apical dome formation occurs; followed by a steady drop from -0.85 to -1.7 to -2.0 MPa from Stage 6 onward from late August until just before cone seed release. The Psis was measured for supernatant from centrifuged frozen-thawed megagametophyte tissue (embryos removed). Megagametophyte Psis profiles were similar for seeds analyzed from two trees and resembled Psi observations starting low, rising around Stages 4-7 and then undergoing a major reduction indicating a strong solute accumulation beginning at Stages 7-9.1. Somatic embryos stop growth prematurely in vitro at Stages 8-9.1. The major change in the accumulation of megagametophyte solutes at Stages 8-9.1 correlates with the halt in somatic embryo maturation and suggests that identifying, quantifying and using the major natural soluble compounds that accumulate during mid- to late-stage seed development may be important to improve conifer somatic embryo maturation.

  5. Inhibition of histone deacetylases enhances DNA damage repair in SCNT embryos.

    PubMed

    Bohrer, Rodrigo Camponogara; Duggavathi, Raj; Bordignon, Vilceu

    2014-01-01

    Recent studies have shown that DNA damage affects embryo development and also somatic cell reprogramming into induced pluripotent stem (iPS) cells. It has been also shown that treatment with histone deacetylase inhibitors (HDACi) improves development of embryos produced by somatic cell nuclear transfer (SCNT) and enhances somatic cell reprogramming. There is evidence that increasing histone acetylation at the sites of DNA double-strand breaks (DSBs) is critical for DNA damage repair. Therefore, we hypothesized that HDACi treatment enhances cell programming and embryo development by facilitating DNA damage repair. To test this hypothesis, we first established a DNA damage model wherein exposure of nuclear donor cells to ultraviolet (UV) light prior to nuclear transfer reduced the development of SCNT embryos proportional to the length of UV exposure. Detection of phosphorylated histone H2A.x (H2AX139ph) foci confirmed that exposure of nuclear donor cells to UV light for 10 s was sufficient to increase DSBs in SCNT embryos. Treatment with HDACi during embryo culture increased development and reduced DSBs in SCNT embryos produced from UV-treated cells. Transcript abundance of genes involved in either the homologous recombination (HR) or nonhomologous end-joining (NHEJ) pathways for DSBs repair was reduced by HDACi treatment in developing embryos at day 5 after SCNT. Interestingly, expression of HR and NHEJ genes was similar between HDACi-treated and control SCNT embryos that developed to the blastocyst stage. This suggested that the increased number of embryos that could achieve the blastocyst stage in response to HDACi treatment have repaired DNA damage. These results demonstrate that DNA damage in nuclear donor cells is an important component affecting development of SCNT embryos, and that HDACi treatment after nuclear transfer enhances DSBs repair and development of SCNT embryos.

  6. Supplementation of bovine embryo culture medium with L-arginine improves embryo quality via nitric oxide production.

    PubMed

    Santana, Priscila Di Paula Bessa; Silva, Thiago Velasco Guimarães; da Costa, Nathália Nogueira; da Silva, Bruno Barauna; Carter, Timothy Frederick; Cordeiro, Marcela da Silva; da Silva, Bruno José Martins; Santos, Simone do Socorro Damasceno; Herculano, Anderson Manoel; Adona, Paulo Roberto; Ohashi, Otávio Mitio; Miranda, Moysés dos Santos

    2014-10-01

    Nitric oxide (NO) is a cell-signaling molecule that regulates a variety of molecular pathways. We investigated the role of NO during preimplantation embryonic development by blocking its production with an inhibitor or supplementing in vitro bovine embryo cultures with its natural precursor, L-arginine, over different periods. Endpoints evaluated included blastocyst rates, development kinetics, and embryo quality. Supplementation with the NO synthase inhibitor N-Nitro-L-arginine-methyl ester (L-NAME) from Days 1 to 8 of culture decreased blastocyst (P < 0.05) and hatching (P < 0.05) rates. When added from Days 1 to 8, 50 mM L-arginine decreased blastocyst rates (P < 0.001); in contrast, when added from Days 5 to 8, 1 mM L-arginine improved embryo hatching rates (P < 0.05) and quality (P < 0.05) as well as increased POU5F1 gene expression (P < 0.05) as compared to the untreated control. Moreover, NO levels in the medium during this culture period positively correlated with the increased embryo hatching rates and quality (P < 0.05). These data suggest exerts its positive effects during the transition from morula to blastocyst stage, and that supplementing the embryo culture medium with L-arginine favors preimplantation development of bovine embryos.

  7. Resolving disputes over frozen embryos.

    PubMed

    Robertson, J A

    1989-01-01

    The relation between respect for family and reproductive choice and use of IVF technology is in dispute in recent legal cases on the disposition of frozen embryos. Couples in IVF programs should be encouraged to stipulate in advance binding instructions regarding the disposition of such embryos.

  8. Evaluation of embryo quality after concurrent use of ovarian stimulating hormones and gamma irradiation

    PubMed Central

    Dehghan, Tahere; Mozdarani, Hossein; Khoradmehr, Arezoo; Kalantar, Seyed Mehdi; Bakhshandeh, Mohsen; Bouzarjomehri, Fathollah; Kalantar, Seyed Milad; Sepehr Javan, Morteza

    2014-01-01

    Background: Radiotherapy has many side effects on fertilization in young women. Radiation can lead to ovarian failure in women who underwent abdomen or pelvic radiotherapy. Objective: This study helps us to investigate ovarian response of NMRI female mice to ovarian stimulating hormones (PMSG, HCG) after whole-body gamma irradiation. Materials and Methods: 45 pregnant mice were divided into two groups of control and experimental. The experimental group was classified into three sub-groups: Irradiation group (2 or 4Gy),Superovulation group (10 or 15IU),and superovulation and gamma-radiation group (2Gy & 10IU, 2Gy & 15IU, 4Gy & 10IU,4Gy & 15IU). Female mice were killed and embryos were removed from oviduct .The number of embryos cells counted and the quality of them was evaluated in each group. Kruskal-Wallis test and Mann-Whitney test were used to analyze the data. Results: There was a significant difference in the number of 2-4 cells grade D embryos in 2Gy & 15IU group compared with control and 2Gy groups (p=0.01), and the number of embryos in 4Gy group was more than in 10IU and 15IU (p=0.03) and 2Gy & 15IU groups (p=0.01). It was more significantly embryos in 4Gy & 15IU group compared to 2Gy & 15IU group (p=0.01).In addition There were no significant differences in the number of 2-4 cells grades A, B and C embryos and also number of 4-8 cells grades A, B and C, D embryos in groups. Conclusion: The concurrent use of ovulation stimulating hormones and gamma rays ameliorates this problem of drastic decrease in number of living embryos due to whole-body irradiation. PMID:25408708

  9. Genes, embryos, and future people.

    PubMed

    Glannon, Walter

    1998-07-01

    Testing embryonic cells for genetic abnormalities gives us the capacity to predict whether and to what extent people will exist with disease and disability. Moreover, the freezing of embryos for long periods of time enables us to alter the length of a normal human lifespan. After highlighting the shortcomings of somatic-cell gene therapy and germ-line genetic alteration, I argue that the testing and selective termination of genetically defective embryos is the only medically and morally defensible way to prevent the existence of people with severe disability, pain and suffering that make their lives not worth living for them on the whole. In addition, I consider the possible harmful effects on children born from frozen embryos after the deaths of their biological parents, or when their parents are at an advanced age. I also explore whether embryos have moral status and whether the prospects for disease-preventing genetic alteration can justify long-term cryopreservation of embryos.

  10. From embryo sac to oil and protein bodies: embryo development in the model legume Medicago truncatula.

    PubMed

    Wang, Xin-Ding; Song, Youhong; Sheahan, Michael B; Garg, Manohar L; Rose, Ray J

    2012-01-01

    • The cell and developmental biology of zygotic embryogenesis in the model legume Medicago truncatula has received little attention. We studied M. truncatula embryogenesis from embryo sac until cotyledon maturation, including oil and protein body biogenesis. • We characterized embryo development using light and electron microscopy, measurement of protein and lipid fatty acid accumulation and by profiling the expression of key seed storage genes. • Embryo sac development in M. truncatula is of the Polygonum type. A distinctive multicellular hypophysis and suspensor develops before the globular stage and by the early cotyledon stage, the procambium connects the developing apical meristems. In the storage parenchyma of cotyledons, ovoid oil bodies surround protein bodies and the plasma membrane. Four major lipid fatty acids accumulate as cotyledons develop, paralleling the expression of OLEOSIN and the storage protein genes, VICILIN and LEGUMIN. • Zygotic embryogenesis in M. truncatula features the development of a distinctive multicellular hypophysis and an endopolyploid suspensor with basal transfer cell. A clear procambial connection between the apical meristems is evident and there is a characteristic arrangement of oil bodies in the cotyledons and radicle. Our data help link embryogenesis to the genetic regulation of oil and protein body biogenesis in legume seed.

  11. Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses.

    PubMed

    Morel, Alexandre; Trontin, Jean-François; Corbineau, Françoise; Lomenech, Anne-Marie; Beaufour, Martine; Reymond, Isabelle; Le Metté, Claire; Ader, Kevin; Harvengt, Luc; Cadene, Martine; Label, Philippe; Teyssier, Caroline; Lelu-Walter, Marie-Anne

    2014-11-01

    Cotyledonary somatic embryos (SEs) of maritime pine are routinely matured for 12 weeks before being germinated and converted to plantlets. Although regeneration success is highly dependent on SEs quality, the date of harvesting is currently determined mainly on the basis of morphological features. This empirical method does not provide any accurate information about embryo quality with respect to storage compounds (proteins, carbohydrates). We first analyzed SEs matured for 10, 12 and 14 weeks by carrying out biological (dry weight, water content) and biochemical measurements (total protein and carbohydrate contents). No difference could be found between collection dates, suggesting that harvesting SEs after 12 weeks is appropriate. Cotyledonary SEs were then compared to various stages, from fresh to fully desiccated, in the development of cotyledonary zygotic embryos (ZEs). We identified profiles that were similar using hierarchical ascendant cluster analysis (HCA). Fresh and dehydrated ZEs could be distinguished, and SEs clustered with fresh ZEs. Both types of embryo exhibited similar carbohydrate and protein contents and signatures. This high level of similarity (94.5 %) was further supported by proteome profiling. Highly expressed proteins included storage, stress-related, late embryogenesis abundant and energy metabolism proteins. By comparing overexpressed proteins in developing and cotyledonary SEs or ZEs, some (23 proteins) could be identified as candidate biomarkers for the late, cotyledonary stage. This is the first report of useful generic protein markers for monitoring embryo development in maritime pine. Our results also suggest that improvements of SEs quality may be achieved if the current maturation conditions are refined.

  12. Short-term effects and teratogenicity of heptanol on embryos of Xenopus laevis.

    PubMed

    Olmedo, Eva; Bardia, Lidia; Domingo, Jordi

    2004-01-01

    This study examined teratogenic and short-term effects of heptanol on Xenopus embryos. Embryos were exposed for 5h to 2.5mM heptanol at different developmental stages. Teratogenic effects were found in embryos treated from cleavage to early neurula stages. Other heptanol concentrations, shorter exposure time, and the effect of temperature were also assayed. Short-term effects of hepatanol exposure were studied during cleavage and all treated blastulae showed cell separation with delaminated blastomeres inside the blastocel. Disruption of cell adhesion in addition to the uncoupling effect could account for heptanol teratogenicity.

  13. Chronic toxicity of copper on embryo development in Chinese toad, Bufo gargarizans.

    PubMed

    Xia, Kun; Zhao, Hongfeng; Wu, Minyao; Wang, Hongyuan

    2012-06-01

    This study examined the effects of copper exposure on embryonic development of Chinese toad, Bufo gargarizans. Firstly, the LC(50) values from 24 to 96 h of exposure were 3.61×10(-6) M, by means of a 4 d toxicity test with B. gargarizans embryos. Secondly, Chinese toad embryos were exposed to 10(-9)-10(-6) M copper from mid gastrula stage to operculum completion stage. Measurements included mortality, tadpole weight, tadpole total length, growth retardation, duration of different embryo stages and malformation. Embryonic survival was not affected by copper. Relative to control tadpoles, significantly decreased weight and total length were found at 10(-9)-10(-6) M reduced percentage of the embryos in right operculum stage after 10 d exposure to copper and reduced percentage of embryos in operculum completion stage after 12 d exposure to copper were also observed. Moreover, the duration of embryonic development increased at neural, circulation and operculum development stage in copper-treated groups. For the scanning microscope and histological observation, the abnormalities were malformation of wavy dorsal fin, flexural tail, curvature body axis, yolk sac oedema and reduced pigmentation in the yolk sac. Histopathological changes in olfactory, retinal epithelium and skin were also observed. DNA strand breaks exposed to the copper were analyzed by DNA ladder. In conclusion, copper induced toxic effects on B. gargarizans embryos. The present study indicated chronic toxicity tests may provide more accurate way in formulating the "safe levels" of heavy metals to amphibian.

  14. Is there a link between blastomere contact surfaces of day 3 embryos and live birth rate?

    PubMed Central

    2012-01-01

    Background Cell-cell communication and adhesion are essential for the compaction process of early stage embryos. The aim of this study was to develop a non-invasive objective calculation system of embryo compaction in order to test the hypothesis that embryos with a larger mean contact surface result in a higher live birth rate compared to embryos with a lower mean contact surface. Methods Multilevel images of 474 embryos transferred on day 3 were evaluated by the Cellify software. This software calculates the contact surfaces between the blastomeres. The primary outcome of this study was live birth. An ideal range of contact surface was determined and the positive and negative predictive value, the sensitivity, the specificity and the area under the curve for this new characteristic were calculated. Results In total, 115 (24%) transferred embryos resulted in a live birth. Selection of an embryo for transfer on its mean contact surface could predict live birth with a high sensitivity (80%) and high negative predicting value (83%) but with a low positive predictive value (27%), a low specificity (31%) and low area under the ROC curve (0.56). The mean contact surface of embryos cultured in a single medium was significantly higher compared to the mean contact surface of embryos cultured in a sequential medium (p = 0.0003). Conclusions Neither the mean contact surface nor the number of contact surfaces of a day 3 embryo had an additional value in the prediction of live birth. The type of culture medium, however, had an impact on the contact surface of an embryo. Embryos cultured in a single medium had a significant larger contact surface compared to embryos cultured in the sequential medium. PMID:22963278

  15. Metabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies).

    PubMed

    Businge, Edward; Brackmann, Klaus; Moritz, Thomas; Egertsdotter, Ulrika

    2012-02-01

    Progress on industrial-scale propagation of conifers by somatic embryogenesis has been hampered by the differences in developmental capabilities between cell lines, which are limiting the capture of genetic gains from breeding programs. In this study, we investigated the metabolic events occurring during somatic embryo development in Norway spruce to establish a better understanding of the fundamental metabolic events required for somatic embryo development. Three embryogenic cell lines of Norway spruce (Picea abies (L.) Karst) with different developmental capabilities were studied during somatic embryo development from proliferation of proembryogenic masses to mature somatic embryos. The three different cell lines displayed normal, aberrant and blocked somatic embryo development. Metabolite profiles from four development stages in each of the cell lines were obtained using combined gas chromatography-mass spectrometry. Multivariate discriminant analyses of the metabolic data revealed significant metabolites (P  ≤  0.05) for each development stage and transition. The results suggest that endogenous auxin and sugar signaling affects initial stages of somatic embryo development. Furthermore, the results highlight the importance of a timed stress response and the presence of stimulatory metabolites during late stages of embryo development.

  16. Effect of Short-Term Hypergravity Treatment on Mouse 2-Cell Embryo Development

    NASA Astrophysics Data System (ADS)

    Ning, Li-Na; Lei, Xiao-Hua; Cao, Yu-Jing; Zhang, Yun-Fang; Cao, Zhong-Hong; Chen, Qi; Duan, En-Kui

    2015-11-01

    Though there are numerous biological experiments, which have been performed in a space environment, to study the physiological effect of space travel on living organisms, while the potential effect of weightlessness or short-term hypergravity on the reproductive system in most species, particularly in mammalian is still controversial and unclear. In our previous study, we investigated the effect of space microgravity on the development of mouse 4-cell embryos by using Chinese SJ-8. .Unexpectedly, we did not get any developed embryo during the space-flight. Considering that the process of space experiment is quite different from most experiments done on earth in several aspects such as, the vibration and short-term hypergravity during the rock launching and landing. Thus we want to know whether the short-term hypergravity produced by the launch process affect the early embryo development in mice, and howthe early embryos respond to the hypergravity. In present study, we are mimicking the short-term hypergravity during launch by using a centrifuge to investigate its influence on the development of early embryo (2-cell) in mice. We also examined the actin filament distribution in 2-cell embryos by immunostaining to test their potential capacity of development under short-term hypergravity exposure. Our results showed that most 2-cell embryos in the hypergravity exposure groups developed into blastocysts with normal morphology after 72h cultured in vitro, and there is no obvious difference in the development rate of blastocyst formation compared to the control. Moreover, there were no statistically significant differences in birth rates after oviduct transfer of 2-cell mouse embryos exposed on short-term hypergravity compared with 1 g condition. In addition, the well-organized actin distribution appeared in 2-cell embryos after exposed on hypergravity and also in the subsequent developmental blastocysts. Taken together, our data shows that short-term exposure in

  17. Cryotolerance of Day 2 or Day 6 in vitro produced ovine embryos after vitrification by Cryotop or Spatula methods.

    PubMed

    Dos Santos Neto, P C; Vilariño, M; Barrera, N; Cuadro, F; Crispo, M; Menchaca, A

    2015-02-01

    This study was conducted to evaluate the cryotolerance of in vitro produced ovine embryos submitted to vitrification at different developmental stages using two methods of minimum volume and rapid cooling rate. Embryos were vitrified at early stage (2 to 8-cells) on Day 2 or at advanced stage (morulae and blastocysts) on Day 6 after in vitro fertilization. Vitrification procedure consisted of the Cryotop (Day 2, n=165; Day 6, n=174) or the Spatula method (Day 2, n=165; Day 6, n=175). Non vitrified embryos were maintained in in vitro culture as a control group (n=408). Embryo survival was determined at 3h and 24h after warming, development and hatching rates were evaluated on Day 6 and Day 8 after fertilization, and total cell number was determined on expanded blastocysts. Embryo survival at 24h after warming increased as the developmental stage progressed (P<0.05) and was not affected by the vitrification method. The ability for hatching of survived embryos was not affected by the stage of the embryos at vitrification or by the vitrification method. Thus, the proportion of hatching from vitrified embryos was determined by the survival rate and was lower for Day 2 than Day 6 vitrified embryos. The percentage of blastocysts on Day 8 was lower for the embryos vitrified on Day 2 than Day 6 (P<0.05), and was lower for both days of vitrification than for non-vitrified embryos (P<0.05). No interaction of embryo stage by vitrification method was found (P=NS) and no significant difference was found in the blastocyst cell number among vitrified and non-vitrified embryos. In conclusion, both methods using minimum volume and ultra-rapid cooling rate allow acceptable survival and development rates in Day 2 and Day 6 in vitro produced embryos in sheep. Even though early stage embryos showed lower cryotolerance, those embryos that survive the vitrification-warming process show high development and hatching rates, similar to vitrification of morulae or blastocysts.

  18. Assessment of ‘one-step’ versus ‘sequential’ embryo culture conditions through embryonic genome methylation and hydroxymethylation changes

    PubMed Central

    Salvaing, J.; Peynot, N.; Bedhane, M. N.; Veniel, S.; Pellier, E.; Boulesteix, C.; Beaujean, N.; Daniel, N.; Duranthon, V.

    2016-01-01

    STUDY QUESTION In comparison to in vivo development, how do different conditions of in vitro culture (‘one step’ versus ‘sequential medium’) impact DNA methylation and hydroxymethylation in preimplantation embryos? SUMMARY ANSWER Using rabbit as a model, we show that DNA methylation and hydroxymethylation are both affected by in vitro culture of preimplantation embryos and the effect observed depends on the culture medium used. WHAT IS KNOWN ALREADY Correct regulation of DNA methylation is essential for embryonic development and DNA hydroxymethylation appears more and more to be a key player. Modifications of the environment of early embryos are known to have long term effects on adult phenotypes and health; these probably rely on epigenetic alterations. STUDY DESIGN SIZE, DURATION The study design we used is both cross sectional (control versus treatment) and longitudinal (time-course). Each individual in vivo experiment used embryos flushed from the donor at the 2-, 4-, 8-, 16- or morula stage. Each stage was analyzed in at least two independent experiments. Each individual in vitro experiment used embryos flushed from donors at the 1-cell stage (19 h post-coïtum) which were then cultured in parallel in the two tested media until the 2-, 4-, 8- 16-cell or morula stages. Each stage was analyzed in at least three independent experiments. In both the in vivo and in vitro experiments, 4-cell stage embryos were always included as an internal reference. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunofluorescence with antibodies specific for 5-methylcytosine (5meC) and 5-hydroxymethylcytosine (5hmeC) was used to quantify DNA methylation and hydroxymethylation levels in preimplantation embryos. We assessed the expression of DNA methyltransferases (DNMT), of ten eleven translocation (TET) dioxigenases and of two endogenous retroviral sequences (ERV) using RT-qPCR, since the expression of endogenous retroviral sequences is known to be regulated by DNA methylation

  19. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos.

    PubMed

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong

    2016-11-01

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner.

  20. Transcriptome dynamics in early embryos of the ascidian, Ciona intestinalis.

    PubMed

    Matsuoka, Terumi; Ikeda, Tatsuro; Fujimaki, Kotaro; Satou, Yutaka

    2013-12-15

    Maternally provided mRNAs and proteins direct early development and activate the zygotic genome. Using microarrays, we examined the dynamics of transcriptomes during the early development of a basal chordate, Ciona intestinalis. Microarray analysis of unfertilized eggs, as well as 8-, and 16- and 32-cell embryos revealed that nearly half of the genes encoded in the genome were expressed maternally, and that approximately only one-fourth of these genes were expressed at similar levels among eggs obtained from different individuals. Genes encoding proteins involved in protein phosphorylation were enriched in this latter group. More than 90% of maternal RNAs were not reduced before the 16-cell stage when the zygotic developmental program begins. Additionally we obtained gene expression profiles of individual blastomeres from the 8- and 16-cell embryos. On the basis of these profiles, we concluded that the posterior-most localization, which has been reported for over 20 different transcripts, is the only major localization pattern of maternal transcripts. Our data also showed that maternal factors establish only nine distinct patterns of zygotic gene expression at the 16-cell stage. Therefore, one of the main developmental functions of maternally supplied information is to establish these nine distinct expression patterns in the 16-cell embryo. The dynamics of transcriptomes in early-stage embryos provides a foundation for studying how maternal information starts the zygotic program.

  1. Proteomic responses of sea urchin embryos to stressful ultraviolet radiation.

    PubMed

    Adams, N L; Campanale, J P; Foltz, K R

    2012-11-01

    Solar ultraviolet radiation (UVR, 290-400 nm) penetrates into seawater and can harm shallow-dwelling and planktonic marine organisms. Studies dating back to the 1930s revealed that echinoids, especially sea urchin embryos, are powerful models for deciphering the effects of UVR on embryonic development and how embryos defend themselves against UV-induced damage. In addition to providing a large number of synchronously developing embryos amenable to cellular, biochemical, molecular, and single-cell analyses, the purple sea urchin, Strongylocentrotus purpuratus, also offers an annotated genome. Together, these aspects allow for the in-depth study of molecular and biochemical signatures of UVR stress. Here, we review the effects of UVR on embryonic development, focusing on the early-cleavage stages, and begin to integrate data regarding single-protein responses with comprehensive proteomic assessments. Proteomic studies reveal changes in levels of post-translational modifications to proteins that respond to UVR, and identify proteins that can then be interrogated as putative targets or components of stress-response pathways. These responsive proteins are distributed among systems upon which targeted studies can now begin to be mapped. Post-transcriptional and translational controls may provide early embryos with a rapid, fine-tuned response to stress during early stages, especially during pre-blastula stages that rely primarily on maternally derived defenses rather than on responses through zygotic gene transcription.

  2. Assessment of developmental potential of caprine cloned embryos with ooplasm replenishment under two culture media.

    PubMed

    Gopalakrishna, R; Kumar, Dharmendra; Singh, Ajay Pratap; Pandey, Saurabh Kumar; Ranjan, Rakesh; Sarkhel, B C

    2014-03-12

    The present study was designed to assess the developmental potential of somatic cell nuclear transfer (SCNT) embryos, with and without replenishment of ooplasm into enucleated oocytes, by culturing separately in two culture media. The enucleated oocytes were replenished with exogenous matured ooplasm under replenished nuclear transfer (RNT) method and compared with conventional nuclear transfer (CNT) method without replenishment. The fusion efficiency in RNT group was found to be significantly higher (P < 0.05) than CNT group (59.39 ± 7.36 vs 45.57 ± 3.68%). The completely fused reconstructed oocytes from both groups were cultured separately in research vitro cleave medium (RVCL) and RVCL-Blast medium. The embryonic development of 2 cell, 4 cell, 8-16 cell and 16-32 cell stages in the RNT group was superior to the CNT group regardless of the culture media used (P < 0.05). The embryonic development of the 8-16 cell, 16-32 cell, morula, and blastocyst stages in the RVCL-Blast medium was significantly higher (P < 0.05) than the RVCL alone for both RNT as well as CNT groups. RNT method with RVCL-Blast produced highly significant (P < 0.01) embryonic development for 8-16 cell and 16-32 cell stage when compared to CNT with RVCL. Conclusively, the combination of RNT with RVCL-Blast culture media enabled an overall increase in the embryonic developmental potential.

  3. Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation.

    PubMed

    Dal Canto, Mariabeatrice; Coticchio, Giovanni; Mignini Renzini, Mario; De Ponti, Elena; Novara, Paola Vittoria; Brambillasca, Fausta; Comi, Ruggero; Fadini, Rubens

    2012-11-01

    Cleavage kinetics of human embryos is indicative of ability to develop to blastocyst and implant. Recent advances in time-lapse microscopy have opened new and important research opportunities. In this study involving infertile couples requiring standard IVF/intracytoplasmic sperm injection treatment, zygotes were cultured by integrated embryo-culture time-lapse microscopy to analyse cleavage times from the 2- to the 8-cell stages in relation to the ability to develop to blastocyst, expand and implant. In comparison to embryos arresting after 8-cell stage, times of cleavage to 7- and 8-cell stages of embryos developing to blastocyst were shorter (56.5 ± 8.1 versus 58.8 ± 10.4h, P=0.03 and 61.0 ± 9.4 versus 65.2 ± 13.0 h, P=0.0008, respectively). In embryos developing to blastocyst, absence of blastocoele expansion on day 5 was associated with progressive cleavage delay. Implanting embryos developed to 8-cell stage in a shorter period compared with those unable to implant (54.9 ± 5.2 and 58.0 ± 7.2h, respectively, P=0.035). In conclusion, cleavage from 2- to 8-cell stage occurs progressively earlier in embryos with the ability to develop to blastocyst, expand and implant. Conventional observation times on days 2 and 3 are inappropriate for accurate embryo evaluation. The speed at which human embryos cleave is known to be suggestive of their ability to develop in vitro to the blastocyst stage and implant after transfer into the uterus. Recent advances in time-lapse microscopy, which allows acquisition of images every 15-20 min, have opened new and important research opportunities. In a retrospective study involving infertile couples requiring standard IVF or intracytoplasmic sperm injection treatment, fertilized oocytes were cultured by an integrated embryo-culture time-lapse microscopy system in order to perform an analysis of cleavage times from the 2- to the 8-cell stage in relation to the ability to develop to blastocyst, expand and implant. In comparison to

  4. Production of somatic cell nuclear transfer embryos using in vitro-grown and in vitro-matured oocytes in rabbits.

    PubMed

    Sugimoto, Hironobu; Kida, Yuta; Oh, Noriyoshi; Kitada, Kensaku; Matsumoto, Kazuya; Saeki, Kazuhiro; Taniguchi, Takeshi; Hosoi, Yoshihiko

    2015-08-01

    We examined growing oocytes collected from follicles remaining in superovulated rabbit ovaries, that were grown (in vitro growth, IVG) and matured (in vitro maturation, IVM) in vitro. We produced somatic cell nuclear transfer (SCNT) embryos using the mature oocytes and examined whether these embryos have the ability to develop to the blastocyst stage. In addition, we examined the effects of trichostatin A (TSA), a histone deacetylase inhibitor (HDACi), on the developmental competence of SCNT embryos derived from IVG-IVM oocytes. After growth for 7 days and maturation for 14-16 h in vitro, the growing oocytes reached the metaphase II stage (51.4%). After SCNT, these reconstructed embryos reached the blastocyst stage (20%). Furthermore, the rate of development to the blastocyst stage and the number of cells in the blastocysts in SCNT embryos derived from IVG-IVM oocytes were significantly higher for TSA-treated embryos compared with TSA-untreated embryos (40.6 versus 21.4% and 353.1 ± 59.1 versus 202.5 ± 54.6, P < 0.05). These results indicate that rabbit SCNT embryos using IVG-IVM oocytes have the developmental competence to reach the blastocyst stage.

  5. Physical influences on embryo development.

    PubMed

    Deeming, D C; Rowlett, K; Simkiss, K

    1987-01-01

    There is a critical period between 3 and 7 days of incubation when the absence of turning in eggs of the domestic fowl leads to increased mortality and decreased embryo growth. This critical period coincides with the time of subembryonic fluid formation, and it is suggested that the absence of turning leads to the presence of unstirred layer effects in fluid secretion. This fluid deficiency persists throughout the subsequent development of the embryo. Experiments on shell-less culture systems support this interpretation in preference to other explanations of embryo death in unturned eggs, which usually refer to chorion adhesion to shell membranes.

  6. The Well-of-the-Well system: an efficient approach to improve embryo development.

    PubMed

    Vajta, Gábor; Korösi, Tamás; Du, Yutao; Nakata, Kumiko; Ieda, Shoko; Kuwayama, Masashige; Nagy, Zsolt Peter

    2008-07-01

    Transfer of human embryos at the blastocyst stage may offer considerable benefits including an increased implantation rate and a decreased risk of multiple pregnancies; however, blastocyst culture requires an efficient and reliable in-vitro embryo culture system. In this study, the effect of the Well-of-the-Well (WOW) system consisting of microwells formed on the bottom of the culture dish was tested in three mammalian species, including humans. The WOW system resulted in significant improvement when comparing the drops for culture of in-vitro-matured and parthenogenetically activated porcine oocytes, and in-vivo-derived mouse zygotes. In human embryos, using a sibling oocyte design, embryos cultured in WOW developed to the blastocyst stage in a significantly higher proportion than did embryos cultured traditionally (55% in WOW and 37% in conventional culture; P < 0.05). In a separate study, also in human, a total of 48 patients with a cumulative 214 unsuccessful previous IVF cycles were selected for the trials. In subsequent intracytoplasmic sperm injection cycles, oocytes/embryos were cultured individually in the WOW system or in microdrops. Transferable quality blastocyst development (48.9% of cultured zygotes) was observed in the WOW system. Ninety-four blastocysts transferred to 45 patients resulted in clinical pregnancy rates of 48.9%, including nine twin pregnancies, seven single pregnancies, five miscarriages and one ectopic pregnancy. The results indicate that the WOW system provides a promising alternative for microdrop culture of mammalian embryos, including human embryos.

  7. Clinical outcomes of frozen-thawed single blastocyst transfer in patients requiring whole embryo freezing.

    PubMed

    He, Qiao-hua; Wang, Lu; Liang, Lin-lin; Zhang, He-long; Zhang, Cui-lian; Li, Hang-sheng; Cui, Shi-hong

    2016-01-01

    We compared clinical outcomes amongst frozen-thawed cleavage-stage embryo, double and single blastocyst transfers in patients requiring whole embryo freezing. Data of infertile patients undergoing in-vitro fertilization and embryo transfer (IVF-ET) in our Reproductive Medicine Center from January 2010 to December 2012 were retrospectively analyzed. According to patients' wishes, patients were divided into cleavage-stage embryo transfer groups (group A, n = 456), double blastocyst transfer group (group B, n = 106), and single blastocyst transfer group (group C, n = 402). We found that the number of frozen embryos was significantly less in groups B and C than in group A (all p < 0.05), but the implantation rate was significantly higher in groups B and C as compared to group A (all p < 0.05). The clinical pregnancy rate and pregnancy rate per included cycle were significantly higher in group B than in groups A and C (all p < 0.05). The multiple pregnancy rate was significantly lower in group C than in groups A and B (all p < 0.05). The rate of early abortion was significantly lower in group C as compared to group A (p < 0.05). The data support the view that it may be the best clinical strategy for patients who require whole embryo freezing and have four or more Day 3 embryos available, to incubate Day 3 embryos into blastocysts, which are then vitrified for elective single blastocyst transfer.

  8. PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos

    SciTech Connect

    Jin, Jun-Xue; Kang, Jin-Dan; Li, Suo; Jin, Long; Zhu, Hai-Ying; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2015-01-02

    Highlights: • First explored that the effects of PXD101 on the development of SCNT embryos in vitro. • 0.5 μM PXD101 treated for 24 h improved the development of porcine SCNT embryos. • Level of AcH3K9 was significantly higher than control group at early stages. - Abstract: In this study, we investigated the effects of the histone deacetylase inhibitor PXD101 (belinostat) on the preimplantation development of porcine somatic cell nuclear transfer (SCNT) embryos and their expression of the epigenetic markers histone H3 acetylated at lysine 9 (AcH3K9). We compared the in vitro developmental competence of SCNT embryos treated with various concentrations of PXD101 for 24 h. Treatment with 0.5 μM PXD101 significantly increased the proportion of SCNT embryos that reached the blastocyst stage, in comparison to the control group (23.3% vs. 11.5%, P < 0.05). We tested the in vitro developmental competence of SCNT embryos treated with 0.5 μM PXD101 for various amounts of times following activation. Treatment for 24 h significantly improved the development of porcine SCNT embryos, with a significantly higher proportion of embryos reaching the blastocyst stage in comparison to the control group (25.7% vs. 10.6%, P < 0.05). PXD101-treated SCNT embryos were transferred into two surrogate sows, one of whom became pregnant and four fetuses developed. PXD101 treatment significantly increased the fluorescence intensity of immunostaining for AcH3K9 in embryos at the pseudo-pronuclear and 2-cell stages. At these stages, the fluorescence intensities of immunostaining for AcH3K9 were significantly higher in PXD101-treated embryos than in control untreated embryos. In conclusion, this study demonstrates that PXD101 can significantly improve the in vitro and in vivo developmental competence of porcine SCNT embryos and can enhance their nuclear reprogramming.

  9. Embryo yield in dairy cattle after superovulation with Folltropin or Pluset.

    PubMed

    Mikkola, M; Taponen, J

    2017-01-15

    Two commercial FSH products were compared in a retrospective study on 3990 commercial superovulations and embryo recoveries in dairy heifers and cows. In addition, the 56-day nonreturn rate of 19,400 embryos produced with these two preparations was analyzed. Embryo collections were performed during a 16-year period from donors of Holstein and Ayrshire breeds. Folltropin (Vetoquinol S.A., Lure cedex, France) group (Group F) consisted of 2592 superovulations, of which 80% were performed on heifers and 20% on cows, and Pluset (Laboratorios Calier, S.A., Barcelona, Spain) group (Group P) of 1398 treatments, of which 66% and 34% were on heifers and cows, respectively. Total number of recovered structures, number of transferable embryos, and the proportion of unfertilized ova (UFO) and degenerated embryos were analyzed. Distribution of embryos into quality grades (1-3) and developmental stages (4-9) according to the IETS classification guidelines and means for each collection were evaluated. The proportion of low-responders having fewer than five corpora lutea and yielding fewer than five embryos or ova was investigated for each treatment. Group P yielded 1.1 recovered structures more than Group F (P < 0.001). Consequently, however, the number of transferable embryos did not differ among the groups, being 7.0 and 7.1 in Groups F and P, respectively. Instead, there was an increase in the number of UFO from 2.0 in Group F to 3.0 in Group P (P < 0.001). The quality of embryos and the developmental stages were similar between the groups and there was no difference in the proportion of low-responding donors in Group F and Group P. Also, there was no difference in the nonreturn rate after transfer of embryos originating from donors superovulated with Folltropin or Pluset. It was concluded that equal numbers of transferable embryos and pregnancies can be achieved with Folltropin and Pluset.

  10. Expression of SRY transcripts in preimplantation human embryos

    SciTech Connect

    Fiddler, M.; Abdel-Rahman, B.; Rappolee, D.A.

    1995-01-02

    We have examined the expression of SRY mRNA in individual in vitro fertilized preimplantation human embryos; because of ethical constraints, these studies were confined to embryos with one and three pronuclei. Using a sensitive reverse transcriptase-polymerase chain reaction (RT-PCR) assay, we observed SRY mRNA at the one-cell through the blastula stages but not in spermatoza. These results indicate that the de novo transcription of this sex-specific gene occurs at a developmental time considerably earlier than that of gonadal differentiation. Our results also indicate that in vitro fertilized embryos with one pronucleus are likely to be diploid. 39 refs., 1 fig., 2 tabs.

  11. Abnormalities in centrosome number in human embryos and embryonic stem cells.

    PubMed

    Gu, Yi-Fan; OuYang, Qi; Dai, Can; Lu, Chang-Fu; Lin, Ge; Gong, Fei; Lu, Guang-Xiu

    2016-05-01

    Chromosomal abnormalities are common in human embryos. Previous studies have suggested links between centrosome number and chromosome abnormalities, but information regarding abnormalities in centrosome number in human embryos is limited. We analyzed abnormalities in centrosome number in human embryos and embryonic stem cells (hESCs). Following normal fertilization, supernumerary centrosomes were present at rates of 7.3% in two-pronucleus (2PN)-stage zygotes and 6.5% in first-cleavage zygotes. Supernumerary centrosomes were also detected in 24.4% of blastomeres from 60% of embryos derived from 2PN zygotes. Conversely, in mono- (1PN) and tri-pronucleus (3PN) zygotes, the frequency of abnormal centrosome number increased substantially at first cleavage. Rates in blastomeres of Day-3 embryos, however, were about the same between embryos derived from 1PN and 2PN zygotes, whereas abnormalities in centrosome number were higher in those from 3PN zygotes. By comparison, the rate of abnormal centrosome numbers in hESCs was 1.5-11.2%. Thus, abnormalities in centrosome number existed in human zygotes and cleaved embryos-especially those resulting from aberrant fertilization-but the frequency of such abnormalities was lower in hESCs derived from these embryos. These findings identify a source of the chromosomal instability in human embryos and hESCs, and highlight new safety issues for human assisted reproductive technology. Mol. Reprod. Dev. 83: 392-404, 2016. © 2016 Wiley Periodicals, Inc.

  12. Deficiency in the response to DNA double-strand breaks in mouse early preimplantation embryos

    SciTech Connect

    Yukawa, Masashi; Oda, Shoji; Mitani, Hiroshi; Nagata, Masao; Aoki, Fugaku . E-mail: aokif@k.u-tokyo.ac.jp

    2007-06-29

    DNA double-strand breaks (DSBs) are caused by various environmental stresses, such as ionizing radiation and DNA-damaging agents. When DSBs occur, cell cycle checkpoint mechanisms function to stop the cell cycle until all DSBs are repaired; the phosphorylation of H2AX plays an important role in this process. Mouse preimplantation-stage embryos are hypersensitive to ionizing radiation, and X-irradiated mouse zygotes are arrested at the G2 phase of the first cell cycle. To investigate the mechanisms responding to DNA damage at G2 in mouse preimplantation embryos, we examined G2/M checkpoint and DNA repair mechanisms in these embryos. Most of the one- and two-cell embryos in which DSBs had been induced by {gamma}-irradiation underwent a delay in cleavage and ceased development before the blastocyst stage. In these embryos, phosphorylated H2AX ({gamma}-H2AX) was not detected in the one- or two-cell stages by immunocytochemistry, although it was detected after the two-cell stage during preimplantation development. These results suggest that the G2/M checkpoint and DNA repair mechanisms have insufficient function in one- and two-cell embryos, causing hypersensitivity to {gamma}-irradiation. In addition, phosphorylated ataxia telangiectasia mutated protein and DNA protein kinase catalytic subunits, which phosphorylate H2AX, were detected in the embryos at one- and two-cell stages, as well as at other preimplantation stages, suggesting that the absence of {gamma}-H2AX in one- and two-cell embryos depends on some factor(s) other than these kinases.

  13. Live birth in a woman with recurrent implantation failure and adenomyosis following transfer of refrozen-warmed embryos

    PubMed Central

    Safari, Somayyeh; Faramarzi, Azita; Khalili, Mohammad Ali

    2016-01-01

    The aim was to report a healthy live birth using re-vitrified-warmed cleavage-stage embryos derived from supernumerary warmed embryos after frozen embryo transfer (ET) in a patient with recurrent implantation failure (RIF). The case was a 39-year-old female with a history of polycystic ovarian syndrome and adenomyosis, along with RIF. After ovarian hyperstimulation, 33 cumulus-oocyte complexes were retrieved and fertilized with conventional in vitro fertilization and intracytoplasmic sperm injection. Because of the risk of ovarian hyperstimulation syndrome, 16 grade B and C embryos were vitrified. After 3 and 6 months, 3 and 4 B–C warmed embryos were transferred to the uterus, respectively. However, implantation did not take place. Ten months later, four embryos were warmed, two grade B 8-cell embryos were transferred, and two embryos were re-vitrified. One year later, the two re-vitrified cleavage-stage embryos were warmed, which resulted in a successful live birth. This finding showed that following first warming, it is feasible to refreeze supernumerary warmed embryos for subsequent ET in patients with a history of RIF. PMID:27689042

  14. Three-dimensional anatomy of the Ciona intestinalis tailbud embryo at single-cell resolution.

    PubMed

    Nakamura, Mitsuru J; Terai, Jun; Okubo, Reiko; Hotta, Kohji; Oka, Kotaro

    2012-12-15

    During embryogenesis, chordates pass through a tailbud stage in which the larval tail is formed. Since acquisition of a tadpole-like tail during tailbud stage is one of the key events in the evolution of chordates, understanding the anatomy of the tailbud stage chordate embryo is of special interest. In this study, to understand comprehensively the anatomy of the tailbud embryo at single-cell-level, real microscopic image stacks of the tailbud embryo in Ciona intestinalis were reconstructed into a 3D computer model. This comprehensive 3D model of the ascidian tailbud embryo was based on real images of confocal laser scanning microscope (CLSM) and therefore, cell shape, location and cell arrangement reflect real geometries of the tailbud embryo. We found that the tailbud embryo consists of 1579 cells, including 836 epidermal cells, 228 cells in the central nervous system, 218 mesenchymal cells, four trunk ventral cells, two B/B(⁎)8.11 cells, 36 muscle cells, 40 notochord cells, four primordial germ cells, and 199 endodermal cells. Moreover, we identified for the first time two populations of previously undefined cells (a total of 12 cells) in Ciona: one located in the lateral trunk and the other located under the tail dorsal epidermis. This information provides a first step for understanding how the body plan of the chordate tailbud embryo formed and evolved.

  15. Determination of escin content in androgenic embryos and hairy root culture of Aesculus hippocastanum.

    PubMed

    Calić-Dragosavac, Dusica; Zdravković-Korać, Snezana; Savikin-Fodulović, Katarina; Radojević, Ljiljana; Vinterhalter, Branka

    2010-05-01

    Escin, a group of chemically related triterpenic glycosides, is widely used in commercial preparations for the treatment of venous insufficiency. Since the zygotic embryo cotyledons accumulate the highest amount of escin, it is currently extracted from the seeds of horse chestnut, Aesculus hippocastanum L. (Hippocastanaceae), on a large scale. As this material is available during only short period of the year, we studied the possibility of using plant tissue culture to obtain escin. For this purpose, the content of escin in androgenic embryos and hairy root cultures of horse chestnut was studied. Escin content was found to be dependent on the stage of androgenic embryo development and the type of phytoregulator supplemented to the nutritive medium. In the absence of phytoregulators, androgenic embryos at the globular stage of development contained approximately four times less escin than those at the cotyledonary stage. Inclusion of various phytoregulators in the nutritive media stimulated escin production. Among them, 2,4-dichlorophenoxyacetic acid (2,4-D) showed the most pronounced effect, with escin content almost reaching that found in zygotic embryos (6.77% versus 6.96%). Two hairy root clones produced substantial amounts of escin (3.57% and 4.09%), less than zygotic embryos, but higher than cotyledonary embryos on phytoregulator-free medium.

  16. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted reproductive technologies.

    PubMed

    Petrussa, Laetitia; Van de Velde, Hilde; De Rycke, Martine

    2014-09-01

    DNA methylation is a key epigenetic modification which is essential for normal embryonic development. Major epigenetic reprogramming takes place during gametogenesis and in the early embryo; the complex DNA methylation patterns are established and maintained by DNA methyltransferases (DNMTs). However, the influence of assisted reproductive technologies (ART) on DNA methylation reprogramming enzymes has predominantly been studied in mice and less so in human oocytes and embryos. The expression and localization patterns of the four known DNMTs were analysed in human oocytes and IVF/ICSI embryos by immunocytochemistry and compared between a reference group of good quality fresh embryos and groups of abnormally developing embryos or embryo groups after cryopreservation. In humans, DNMT1o rather than DNMT1s seems to be the key player for maintaining methylation in early embryos. DNMT3b, rather than DNMT3a and DNMT3L, appears to ensure global DNA remethylation in the blastocysts before implantation. DNMT3L, an important regulator of maternal imprint methylation in mouse, was not detected in human oocytes (GV, MI and MII stage). Our study confirms the existence of species differences for mammalian DNA methylation enzymes. In poor quality fresh embryos, the switch towards nuclear DNMT3b expression was delayed and nuclear DNMT1, DNMT1s and DNMT3b expression was less common. Compared with the reference embryos, a smaller number of cryopreserved embryos showed nuclear DNMT1, while a delayed switch to nuclear DNMT3b and an extended DNMT1s temporal expression pattern were also observed. The spatial and temporal expression patterns of DNMTs seem to be disturbed in abnormally developing embryos and in embryos that have been cryopreserved. Further research must be performed in order to understand whether the potentially disturbed embryonic DNMT expression after cryopreservation has any long-term developmental consequences.

  17. The Climatology of Hailstone Embryos.

    NASA Astrophysics Data System (ADS)

    Knight, Nancy C.

    1981-07-01

    Data on hailstone embryo types, using a broad classification as graupel or frozen drops, are presented from several geographical areas representing distinctly different storm `climatologies.' The relative frequency of the two embryo types varies greatly from area to area, in a Way that correlates rather well with average cloud-base temperature. The warmer based clouds produce hail with more frozen drop embryos. The correlation may be explainable either in terms of the dominant precipitation growth process-liquid coalescence or the ice process-or in terms of recycling of embryos, or both. In light of these results, the transferability of any hail suppression technology from one area to another should not be considered to be automatic.

  18. In vitro production of cattlexbuffalo hybrid embryos using cattle oocytes and African buffalo (Syncerus caffer caffer) epididymal sperm.

    PubMed

    Owiny, O D; Barry, D M; Agaba, M; Godke, R A

    2009-04-01

    Interspecies hybridization of bovids occurs between domestic cattle and at least three other species; American bison (Bison bison), yak (Bos grunniens) and banteng (Bos banteng). Birth of a cattlexbuffalo (Bubalus bubalis) hybrid has reportedly occurred in Russia and in China, but these reports were not authenticated. Such hybrids could be important in improving livestock production and management of diseases that impede production in tropical Africa. This study investigated hybridization between cattle and its closest African wild bovid relative, the African buffalo (Syncerus caffer caffer). In an attempt to produce cattlexbuffalo hybrid embryos in vitro, matured cattle oocytes were subjected to a standard in vitro fertilization (IVF) procedure with either homologous cattle (n=1166 oocytes) or heterologous African buffalo (n=1202 oocytes) frozen-thawed epididymal sperm. After IVF, 67.2% of the oocytes inseminated with the homologous cattle sperm cleaved. In contrast, fertilization with buffalo sperm resulted in only a 4.6% cleavage rate. The cleavage intervals were also slower in hybrid embryos than in the IVF-derived cattle embryos. Of the cleaved homologous cattle embryos 52.2% progressed to the morula stage compared with 12.7% for the buffalo hybrid embryos. No hybrid embryos developed beyond the early morula stage, while 40.1% of the cleaved cattlexcattle embryos developed to the blastocyst stage. Transfer of buffalo hybrid IVF embryos to domestic cattle surrogates resulted in no pregnancies at 60 days post-transfer. This study indicates that interspecies fertilization of cattle oocytes with African buffalo epididymal sperm can occur in vitro, and that a barrier to hybridization occurs in the early stages of embryonic development. Chromosomal disparity is likely the cause of the fertilization abnormalities, abnormal development and subsequent arrest impairing the formation of hybrid embryos beyond the early morula stage. Transfer of the buffalo hybrid embryos

  19. Sensitivity of early mouse embryos to (/sup 3/H)thymidine

    SciTech Connect

    Spindle, A.; Wu, K.; Pedersen, R.A.

    1982-12-01

    Effects of intranuclear radiation on the developmental capacity of early mouse embryos were studied by exposing embryos to (/sup 3/H)thymidine and counting the number of embryos forming blastocysts, trophoblast outgrowths, inner cell masses (ICMs), and two-layer ICMs (differentiated into primary endoderm and ectoderm). When embryos were cultured from the 2-cell stage for 8 days in the continuous presence of (/sup 3/H)thymidine, concentrations as low as 0.2 nCi/ml reduced the number of embryos forming two-layer ICMs. At 1 nCi/ml, the number of both ICMs and two-layer ICMs were reduced, and at 10 nCi/ml the number of embryos developing to all three post-blastocyst endpoints was reduced. Blastocyst formation was not affected even at the highst concentration (/sup 3/H)thymidine and then cultured further in unlabelled medium, the effects were similar to those of 8-day exposure. When embryos were exposed to (/sup 3/H)thymidine for 24 h at various developmental stages, effects were less severe than when they were exposed continuously for 3 or 8 days, and the sensitivity of embryos differed between stages. The 24-h exposure of immunosurgically isolated ICMS to (/sup 3/H)thymidine revealed that the high sensitivity of the ICM to (/sup 3/H)thymidine persists through the late blastocyst stage and declines progressively thereafter. Autoradiography indicated that the change in radiosensitivity of embryos or ICMs is generally related to their ability to incorporate (/sup 3/H)thymidine into the DNA.

  20. Heat shock protein expression enhances heat tolerance of reptile embryos.

    PubMed

    Gao, Jing; Zhang, Wen; Dang, Wei; Mou, Yi; Gao, Yuan; Sun, Bao-Jun; Du, Wei-Guo

    2014-09-22

    The role of heat shock proteins (HSPs) in heat tolerance has been demonstrated in cultured cells and animal tissues, but rarely in whole organisms because of methodological difficulties associated with gene manipulation. By comparing HSP70 expression patterns among representative species of reptiles and birds, and by determining the effect of HSP70 overexpression on embryonic development and hatchling traits, we have identified the role of HSP70 in the heat tolerance of amniote embryos. Consistent with their thermal environment, and high incubation temperatures and heat tolerance, the embryos of birds have higher onset and maximum temperatures for induced HSP70 than do reptiles, and turtles have higher onset and maximum temperatures than do lizards. Interestingly, the trade-off between benefits and costs of HSP70 overexpression occurred between life-history stages: when turtle embryos developed at extreme high temperatures, HSP70 overexpression generated benefits by enhancing embryo heat tolerance and hatching success, but subsequently imposed costs by decreasing heat tolerance of surviving hatchlings. Taken together, the correlative and causal links between HSP70 and heat tolerance provide, to our knowledge, the first unequivocal evidence that HSP70 promotes thermal tolerance of embryos in oviparous amniotes.

  1. Contrast Imaging in Mouse Embryos Using High-frequency Ultrasound

    PubMed Central

    Denbeigh, Janet M.; Nixon, Brian A.; Puri, Mira C.; Foster, F. Stuart

    2015-01-01

    Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior. PMID:25867243

  2. Direct gene disruption by TALENs in medaka embryos.

    PubMed

    Wang, Tiansu; Hong, Yunhan

    2014-06-10

    Targeted gene disruption (GD) is powerful for generating genetic alterations in animal genomes. Engineered endonucleases such as zinc finger nucleases and transcription activator-like effector nucleases (TALENs) allow for GD directly in animal embryos to achieve germline transmission. Here we report procedures and parameters of TALEN-mediated GD in the fish medaka by using a germ cell-specific gene dnd as a model. Embryos at the 1-cell stage were microinjected with synthetic TALEN mRNAs and examined for the survival rate and GD efficiency. Medaka embryos can tolerate a high dosage of TALEN-mRNA injection and exhibit a steadily increasing GD efficiency with increasing mRNA dosages before peaking at 100 ng/μl. This dosage produced ~24% efficiency for somatic GD. Some of the animals from manipulated embryos developed into fertile female and male. Most importantly, four fish (3 males and 1 female) examined by progeny-test were able to produce GD-bearing male and female gametes for germline transmission to F1 generation at ~10% efficiency. Therefore, TALEN is proficient for somatic and germline GD in medaka embryos, and disruption of one dnd copy does not compromise somatic development and gamete production.

  3. Can artificial techniques supply morally neutral human embryos for research?

    PubMed

    Cheshire, William P; Jones, Nancy L

    2005-01-01

    Amidst controversy surrounding research on human embryos, biotechnology has conceived a substitute in the artificial human embryo. We examine the claim that novel embryos constructed artificially should be exempt from ethical restraints appropriate for research on embryos that come into being through natural processes. Morally relevant differences in intrinsic value depend on the sense in which the entity may be artificial, whether in regard to constituent matter, genetic or cellular form, generative means, or intended purpose. Considering each of these Aristotelian categories from a physicalist viewpoint, technology can achieve only limited degrees of artificiality because redesigned embryos still retain most of their natural features and relationships. From an essentialist viewpoint, the very limits of technology preclude the capability of manipulating the fundamental nature or essence of the individual who, even at the embryonic stage of life, cannot be made to be artificial through and through. A human may possess artificially contributed attributes but cannot be an artificial being. Classification of novel human organisms as artificial, therefore, is insufficient grounds by which to relinquish the principle that human moral status should be recognized for all living beings of human origin. In uncertain cases, at least the possibility of special human moral status should be considered present in organisms that are derived asexually, are developmentally defective, or are otherwise technologically altered.

  4. Contrast imaging in mouse embryos using high-frequency ultrasound.

    PubMed

    Denbeigh, Janet M; Nixon, Brian A; Puri, Mira C; Foster, F Stuart

    2015-03-04

    Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.

  5. DAPI Staining of Drosophila Embryos.

    PubMed

    Rothwell, Wendy F; Sullivan, William

    2007-10-01

    INTRODUCTIONDrosophila embryos can be stained with specific fluorescent probes or antibodies through either direct or indirect immunofluorescence. In particular, several effective probes exist for visualizing DNA. 4',6-diamidino-2-phenylindole (DAPI) is a commonly used DNA-binding dye. Because it is specific for double-stranded DNA, no prior RNase treatment is required. While the embryo staining method described here uses DAPI, other fluorescent DNA probes can be processed similarly.

  6. Phaseolus immature embryo rescue technology.

    PubMed

    Geerts, Pascal; Toussaint, André; Mergeai, Guy; Baudoin, Jean-Pierre

    2011-01-01

    Predominant among the production constraints of the common bean Phaseolus vulgaris are infestation of Ascochyta blight, Bean Golden Mosaic virus (BGMV), and Bean Fly. Interbreeding with Phaseolus -coccineus L. and/or Phaseolus polyanthus Greenm has been shown to provide P. vulgaris with greater resistance to these diseases. For interspecific crosses to be successful, it is important to use P. coccineus and P. polyanthus as female parents; this prevents rapid reversal to the recurrent parent P. vulgaris. Although incompatibility barriers are post-zygotic, early hybrid embryo abortion limits the success of F1 crosses. While rescue techniques for globular and early heart-shaped embryos have improved in recent years, -success in hybridization remains very low. In this study, we describe six steps that allowed us to rescue 2-day-old P. vulgaris embryos using a pod culture technique. Our methods consisted of (i) pod culture, (ii) extraction and culture of immature embryos, (iii) dehydration of embryos, (iv) germination of embryos, (v) rooting of developed shoots, and (vi) hardening of plantlets.

  7. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    SciTech Connect

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  8. Embryo transfer day does not affect the initial maternal serum β-hCG levels: A retrospective cohort study.

    PubMed

    Dahiya, Mona; Rupani, Karishma; Yu, Su Ling; Fook-Chong, Stephanie M C; Siew Fui, Diana Chia; Rajesh, Hemashree

    2017-03-18

    The aim of this study is to compare the serum β-hCG values post transfer of a cleavage stage embryo versus a blastocyst stage embryo at equal time intervals post oocyte retrieval (OR) in clinically pregnant patients, and to ascertain a β-hCG value to predict pregnancy outcomes. This is a retrospective cohort study of 560 women with clinical pregnancy who underwent an embryo transfer performed at either the cleavage stage or the blastocyst stage of embryo development between January 2003 and June 2014 at the Center for Assisted Reproduction (CARE), Singapore General Hospital. The serum β-hCG level was measured on day 17 post OR. The β-hCG values were not significantly different in the cleavage stage versus the blastocyst stage embryos (mean±SD: 387±486IU/L D3 vs. 352±268IU/L D5, p=0.96, median value 297 in both groups). Our study suggests that the initial maternal serum β-hCG values were not affected by the day of transfer of the embryos since assessing the β-hCG at equivalent points after transfer should not lead to a significant difference assuming the progress and development of the embryos occurred as expected.

  9. Morphokinetic behavior of euploid and aneuploid embryos analyzed by time-lapse in embryoscope

    PubMed Central

    Patel, Deven V.; Shah, Preeti B.; Kotdawala, Aditi P.; Herrero, Javier; Rubio, Irene; Banker, Manish R.

    2016-01-01

    BACKGROUND: Embryonic aneuploidy may result in miscarriage, implantation failure, or birth defects. Thus, it is clinically necessary to avoid the selection of aneuploid embryos during in vitro fertilization treatment. AIM: The aim of this study was to identify the morphokinetic differences by analyzing the development of euploid and aneuploid embryos using a time-lapse technology. We also checked the accuracy of a previously described model for selection of euploid embryos based on morphokinetics in our study population. MATERIALS AND METHODS: It is a retrospective study of 29 cycles undergoing preimplantation genetic screening from October 2013 to April 2015 at our center. Of 253 embryos, 167 suitable for biopsy embryos were analyzed for their chromosomal status using array-comparative genome hybridization (CGH). The morphokinetic behavior of these embryos was further analyzed in embryoscope using time-lapse technology. RESULTS: Among the analyzed embryos, 41 had normal and 126 had abnormal chromosome content. No significant difference in morphokinetics was found between euploid and aneuploid embryos. The percentage of embryos with blastulation was similar in the euploid (65.85%, 27/41) and aneuploid (60.31%, 76/126) embryos (P = 0.76). Although hard to define, majority of the chromosomal defects might be due to meiotic errors. On applying embryo selection model from Basile et al., embryos falling within optimal ranges for time to division to 5 cells (t5), time period of the third cell cycle (CC3), and time from 2 cell division to 5 cell division (t5-t2) exhibited greater proportion of normal embryos than those falling outside the optimal ranges (28.6%, 25.9%, and 26.7% vs. 17.5%, 20.8%, and 14.3%). CONCLUSION: Keeping a track of time interval between two stages can help us recognize aneuploid embryos at an earlier stage and prevent their selection of transfer. However, it cannot be used as a substitute for array CGH to select euploid embryos for transfer. PMID

  10. Controlled hydrostatic pressure stress downregulates the expression of ribosomal genes in preimplantation embryos: a possible protection mechanism?

    PubMed

    Bock, I; Raveh-Amit, H; Losonczi, E; Carstea, A C; Feher, A; Mashayekhi, K; Matyas, S; Dinnyes, A; Pribenszky, C

    2016-04-01

    The efficiency of various assisted reproductive techniques can be improved by preconditioning the gametes and embryos with sublethal hydrostatic pressure treatment. However, the underlying molecular mechanism responsible for this protective effect remains unknown and requires further investigation. Here, we studied the effect of optimised hydrostatic pressure treatment on the global gene expression of mouse oocytes after embryonic genome activation. Based on a gene expression microarray analysis, a significant effect of treatment was observed in 4-cell embryos derived from treated oocytes, revealing a transcriptional footprint of hydrostatic pressure-affected genes. Functional analysis identified numerous genes involved in protein synthesis that were downregulated in 4-cell embryos in response to hydrostatic pressure treatment, suggesting that regulation of translation has a major role in optimised hydrostatic pressure-induced stress tolerance. We present a comprehensive microarray analysis and further delineate a potential mechanism responsible for the protective effect of hydrostatic pressure treatment.

  11. Investigation into developmental potential and nuclear/mitochondrial function in early wood and plains bison hybrid embryos.

    PubMed

    Seaby, R P; Mackie, P; King, W A; Mastromonaco, G F

    2012-08-01

    Studies to date have shown that bison embryo development in vitro is compromised with few embryos developing to the blastocyst stage. The aim of this study was to use bison-cattle hybrid embryos, an interspecific cross that is known to result in live offspring in vivo, as a model for assessing species-specific differences in embryo development in vitro. Cattle oocytes fertilized with cattle, plains bison and wood bison sperm were assessed for various developmental parameters associated with embryo quality, including cell number, apoptosis and ATP content. Decreased development to the blastocyst stage was observed in hybrid wood bison embryos compared with the other treatment groups. Although both wood bison and plains bison hybrid blastocysts had significantly lower cell numbers than cattle blastocysts, only wood bison hybrid blastocysts had a greater incidence of apoptosis than cattle blastocysts. Among the treatment groups, ATP levels and expression profiles of NRF1, TFAM, MT-CYB, BAX and BCL2 were not significantly different in both 8- to 16-cell stage and blastocyst stage embryos. These data provide evidence of decreased developmental competence in the wood bison hybrid embryos, owing to inadequate culture conditions that have increased apoptotic events.

  12. Lessons from Embryos: Haeckel's Embryo Drawings, Evolution, and Secondary Biology Textbooks

    ERIC Educational Resources Information Center

    Wellner, Karen L.

    2014-01-01

    In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work "noncredible". "Science" soon published "Haeckel's Embryos: Fraud Rediscovered," and Richardson's comments further reinvigorated criticism of Haeckel by…

  13. Transcriptomic Analysis of the Porcine Endometrium during Embryo Implantation

    PubMed Central

    Lin, Haichao; Wang, Huaizhong; Wang, Yanping; Liu, Chang; Wang, Cheng; Guo, Jianfeng

    2015-01-01

    In pigs, successful embryo implantation is an important guarantee for producing litter size, and early embryonic loss occurring on day 12–30 of gestation critically affects the potential litter size. The implantation process is regulated by the expression of numerous genes, so comprehensive analysis of the endometrium is necessary. In this study, RNA sequencing (RNA-Seq) technology is used to analyze endometrial tissues during early pregnancy. We investigated the changes of gene expression between three stages (day 12, 18, and 25) by multiple comparisons. There were 1557, 8951, and 2345 differentially expressed genes (DEGs) revealed between the different periods of implantation. We selected several genes for validation by the use of quantitative real-time RT-PCR. Bioinformatic analysis of differentially expressed genes in the endometrium revealed a number of biological processes and pathways potentially involved in embryo implantation in the pig, most noticeably cell proliferation, regulation of immune response, interaction of cytokine-cytokine receptors, and cell adhesion. These results showed that specific gene expression patterns reflect the different functions of the endometrium in three stages (maternal recognition, conceptus attachment, and embryo implantation). This study identified comprehensive transcriptomic profile in the porcine endometrium and thus could be a foundation for targeted studies of genes and pathways potentially involved in abnormal endometrial receptivity and embryo loss in early pregnancy. PMID:26703736

  14. Altered development of Xenopus embryos in a hypogeomagnetic field.

    PubMed

    Mo, Wei-Chuan; Liu, Ying; Cooper, Helen M; He, Rong-Qiao

    2012-04-01

    The hypogeomagnetic field (HGMF; magnetic fields <200 nT) is one of the fundamental environmental factors of space. However, the effect of HGMF exposure on living systems remains unclear. In this article, we examine the biological effects of HGMF on the embryonic development of Xenopus laevis (African clawed frog). A decrease in horizontal third cleavage furrows and abnormal morphogenesis were observed in Xenopus embryos growing in the HGMF. HGMF exposure at the two-cell stage, but no later than the four-cell stage, is enough to alter the third cleavage geometry pattern. Immunofluorescent staining for α-tubulin showed reorientation of the spindle of four-cell stage blastomeres. These results indicate that a brief (2-h) exposure to HGMF is sufficient to interfere with the development of Xenopus embryos at cleavage stages. Also, the mitotic spindle could be an early sensor to the deprivation of the geomagnetic field, which provides a clue to the molecular mechanism underlying the morphological and other changes observed in the developing and/or developed embryos.

  15. Toxicity screening of diclofenac, propranolol, sertraline and simvastatin using Danio rerio and Paracentrotus lividus embryo bioassays.

    PubMed

    Ribeiro, Sílvia; Torres, Tiago; Martins, Rosário; Santos, Miguel M

    2015-04-01

    Early life-stage bioassays have been used as an alternative to short-term adult toxicity tests since they are cost-effective. A single couple can produce hundreds or thousands of embryos and hence can be used as a simple high-throughput approach in toxicity studies. In the present study, zebrafish and sea urchin embryo bioassays were used to test the toxicity of four pharmaceuticals belonging to different therapeutic classes: diclofenac, propranolol, simvastatin and sertraline. Simvastatin was the most toxic tested compound for zebrafish embryo, followed by diclofenac. Sertraline was the most toxic drug to sea urchin embryos, inducing development abnormalities at the ng/L range. Overall, our results highlight the potential of sea urchin embryo bioassay as a promising and sensitive approach for the high-throughput methods to test the toxicity of new chemicals, including pharmaceuticals, and identify several drugs that should go through more detailed toxicity assays.

  16. Somatic Embryogenesis and Plant Regeneration from Cultured Immature Embryos of Rye (Secale cereale L.).

    PubMed

    Lu, C Y; Chandler, S F; Vasil, I K

    1984-07-01

    Somatic embryogenesis was initiated in immature embryos of rye (Secale cereale L.) cultured on Murashige and Skoog's (1962) medium supplemented with various concentrations of 2,4-D and sucrose. The developmental stage of the embryo (optimal embryo length 0.5-2.0 mm) and concentration of 2,4-D (optimal concentration 2.5 mg · l(-1)) were found to be critical in determining embryo response. The phenoxyacetic acids, 2,4-D, 2,4,5-T, and MCPA were more effective in initiating embryogenic callus and embryoid formation than other auxins (NAA, IBA, IAA, IPA). Embryogenic callus and embryoid production was greater in embryos cultured scutellum up, and more embryoids were formed in the dark than in the light. Embryoids germinated after transfer to basal medium with/without cytokinin or GA3. The regenerated plants were grown to maturity in soil and were shown to have the normal diploid chromosome number of 14.

  17. A genetic component of resistance to fungal infection in frog embryos

    PubMed Central

    Sagvik, Jörgen; Uller, Tobias; Olsson, Mats

    2008-01-01

    The embryo has traditionally been considered to completely rely upon parental strategies to prevent threats to survival posed by predators and pathogens, such as fungi. However, recent evidence suggests that embryos may have hitherto neglected abilities to counter pathogens. Using artificial fertilization, we show that among-family variation in the number of Saprolegnia-infected eggs and embryos in the moor frog, Rana arvalis, cannot be explained by maternal effects. However, analysed as a within-females effect, sire identity had an effect on the degree of infection. Furthermore, relatively more eggs and embryos were infected when eggs were fertilized by sperm from the same, compared with a different, population. These effects were independent of variation in fertilization success. Thus, there is likely to be a significant genetic component in embryonic resistance to fungal infection in frog embryos. Early developmental stages may show more diverse defences against pathogens than has previously been acknowledged. PMID:18319211

  18. A genetic component of resistance to fungal infection in frog embryos.

    PubMed

    Sagvik, Jörgen; Uller, Tobias; Olsson, Mats

    2008-06-22

    The embryo has traditionally been considered to completely rely upon parental strategies to prevent threats to survival posed by predators and pathogens, such as fungi. However, recent evidence suggests that embryos may have hitherto neglected abilities to counter pathogens. Using artificial fertilization, we show that among-family variation in the number of Saprolegnia-infected eggs and embryos in the moor frog, Rana arvalis, cannot be explained by maternal effects. However, analysed as a within-females effect, sire identity had an effect on the degree of infection. Furthermore, relatively more eggs and embryos were infected when eggs were fertilized by sperm from the same, compared with a different, population. These effects were independent of variation in fertilization success. Thus, there is likely to be a significant genetic component in embryonic resistance to fungal infection in frog embryos. Early developmental stages may show more diverse defences against pathogens than has previously been acknowledged.

  19. Effective cryopreservation of golden Syrian hamster embryos by open pulled straw vitrification.

    PubMed

    Fan, Z; Meng, Q; Bunch, T D; White, K L; Wang, Z

    2016-02-01

    Golden Syrian hamster embryos are difficult to cryopreserve due to their high sensitivity to cryoprotectants and in vitro handling. The objective of this study is to develop a robust open pulled straw (OPS) vitrification technique for cryopreserving hamster embryos at various developmental stages. We first systematically tested the concentrations of cryoprotectants and the exposure times of two-cell embryos to various vitrification solutions. We identified pretreatment of two-cell embryos with 10% (v/v) ethylene glycol (EG) + 10% (v/v) dimethylsulfoxide (DMSO) for 30 s followed by exposure in the vitrification solution, EDFS30 (containing 15% EG + 15% DMSO), for 30 s before plunging into liquid nitrogen (two-step exposure method) as the optimal OPS vitrification protocol. We then investigated the resourcefulness of this protocol for vitrifying hamster embryos at different developmental stages. The results showed that high blastocyst rates from embryos vitrified at two-cell, four-cell, eight-cell, or morula stage (62%, 78%, 80%, or 72%, respectively), but not those verified at pronuclear (0%) or blastocyst stage (24%; P < 0.05), were achieved by this protocol. When embryos vitrified at the two-cell stage were recovered and then directly transferred to recipient females, 29% of them developed to term, a development rate not significantly different (P > 0.05) from the 40% birth rate of the unvitrified controls. In conclusion, we have developed an effective two-step OPS vitrification protocol for hamster embryos.

  20. FOXO1, FOXO3, AND FOXO4 are differently expressed during mouse oocyte maturation and preimplantation embryo development.

    PubMed

    Kuscu, Nilay; Celik-Ozenci, Ciler

    2015-01-01

    Preimplantation embryo development is affected by its environment. FoxO transcription factors are regulated by PI3K/Akt signaling pathway that essentially supports growth and development. FoxO transcription factors are at the interface of crucial cellular processes, orchestrating programs of gene expression that regulate apoptosis, cell-cycle arrest, oxidative stress resistance, DNA repair, glucose metabolism, and differentiation. In the presence of growth factors, FoxO transcription factors are localized in the cytoplasm, whereas under stress conditions they move to the nucleus and trigger transcriptional activities of their target genes. The aim of the present study is to investigate whether FoxO transcription factors are present during in vivo oocyte maturation and preimplantation embryo development. Presence and localizations of FoxO1, FoxO3 and FoxO4 proteins have been determined with immunofluorescence staining. Our results have confirmed that FoxO1, FoxO3 and FoxO4 proteins are differentially expressed in prophase I, metaphase I, metaphase II oocytes, as well as in fertilized oocyte, 2-cell embryo, 4-cell embryo, 8-cell embryo, morula, and blastocyst. FoxOs translocate to nucleus in embryos with developmental delay. Our findings indicate that FoxO transcription factors are present during both oocyte and embryo in vivo maturation and provide fundamental knowledge that FoxOs may regulate in vitro embryo development under stress conditions.

  1. Effects of cryopreservation at various temperatures on the survival of kelp grouper (Epinephelus moara) embryos from fertilization with cryopreserved sperm.

    PubMed

    Tian, Yongsheng; Chen, Zhangfan; Tang, Jiang; Duan, Huimin; Zhai, Jieming; Li, Bo; Ma, Wenhui; Liu, Jiangchun; Hou, Yunxia; Sun, Zhengxiang

    2017-02-22

    Fish embryo cryopreservation is highly important for the long-term preservation of genomic and genetic information; however, few successful cases of fish embryo cryopreservation have been reported over the past 60 years. This is the first study to use Epinephelus moara embryos from fertilization with cryopreserved sperm as experimental material. Embryos that developed to the 16-22 somite stage and tail-bud stage were treated with the vitrification solution PMG3T according to a five-step equilibration method and cryopreserved at various temperatures and storage duration. Only 19.9 ± 9.2% of 16-22 somite stage embryos and 1.3 ± 1.1% of tail-bud stage embryos survived when cooled at 4 °C for 60 min. In total, 8.0 ± 3.0% of 16-22 somite stage embryos survived when cooled at -25.7 °C for 30 min, 22.4 ± 4.7% of tail-bud stage embryos survived after 45 min of cooling at -25.7 °C, and none survived after 60 min. Only 2.0 ± 2.7% of embryos survived when cryopreserved at -140 °C for 20 min. However, 9.7% of tail-bud stage embryos survived after cryopreservation in liquid nitrogen (-196 °C) for 2 h. Most surviving embryos developed normally. Embryonic volume decreased and spherical segments appeared when embryos were treated with higher concentrations of vitrification solution. Additionally, the volume recovered gradually after rinsing with sucrose and seawater. This is the first estimate of the survival of E. moara embryos and larvae after cryopreservation. These findings provide a foundation for further explorations of fish embryo cryopreservation techniques.

  2. Histone deacetylase inhibitor improves the development and acetylation levels of cat-cow interspecies cloned embryos.

    PubMed

    Wittayarat, Manita; Sato, Yoko; Do, Lanh Thi Kim; Morita, Yasuhiro; Chatdarong, Kaywalee; Techakumphu, Mongkol; Taniguchi, Masayasu; Otoi, Takeshige

    2013-08-01

    Abnormal epigenetic reprogramming, such as histone acetylation, might cause low efficiency of interspecies somatic cell nuclear transfer (iSCNT). This study was conducted to evaluate the effects of trichostatin A (TSA) on the developmental competence and histone acetylation of iSCNT embryos reconstructed from cat somatic cells and bovine cytoplasm. The iSCNT cat and parthenogenetic bovine embryos were treated with various concentrations of TSA (0, 25, 50, or 100 nM) for 24 h, respectively, following fusion and activation. Treatment with 50 nM TSA produced significantly higher rates of cleavage and blastocyst formation (84.3% and 4.6%, respectively) of iSCNT embryos than the rates of non-TSA-treated iSCNT embryos (63.8% and 0%, respectively). Similarly, the treatment of 50 nM TSA increased the blastocyst formation rate of parthenogenetic bovine embryos. The acetylation levels of histone H3 lysine 9 (H3K9) in the iSCNT embryos with the treatment of 50 nM TSA were similar to those of in vitro-fertilized embryos and significantly higher (p<0.05) than those of non-TSA-treated iSCNT embryos (control), irrespective of the embryonic development stage (two-cell, four-cell, and eight-cell stages). These results indicated that the treatment of 50 nM TSA postfusion was beneficial for development to the blastocyst stage of iSCNT cat embryos and correlated with the increasing levels of acetylation at H3K9.

  3. DNA damage in dihydroartemisinin-resistant Molt-4 cells.

    PubMed

    Park, Jungsoo; Lai, Henry C; Sasaki, Tomikazu; Singh, Narendra P

    2015-03-01

    Artemisinin generates carbon-based free radicals when it reacts with iron, and induces molecular damage and apoptosis. Its toxicity is more selective toward cancer cells because cancer cells contain a higher level of intracellular free iron. Dihydroartemisinin (DHA), an analog of artemisinin, has selective cytotoxicity toward Molt-4 human lymphoblastoid cells. A major concern is whether cancer cells could develop resistance to DHA, thus limiting its therapeutic efficacy. We have developed a DHA-resistant Molt-4 cell line (RTN) and found out that these cells exhibited resistance to DHA but no significant cross- resistance to artemisinin-tagged holotransferrin (ART-TF), a synthetic artemisinin compound. In the present study, we investigated DNA damage induced by DHA and ART-TF in both Molt-4 and RTN cells using the comet assay. RTN cells exhibited a significantly lower level of basal and X-ray-induced DNA damage compared to Molt-4 cells. Both DHA and ART-TF induced DNA damage in Molt-4 cells, whereas DNA damage was induced in RTN cells by ART-TF, and not DHA. The result of this study shows that by the cell selection method, it is possible to generate a Molt-4 cell line which is not sensitive to DHA, but sensitive to ART-TF, as measured by DNA damage.

  4. Genetic reprogramming of transcription factor ap-2gamma in bovine somatic cell nuclear transfer preimplantation embryos and placentomes.

    PubMed

    Aston, Kenneth I; Li, Gugan-Peng; Hicks, Brady A; Winger, Quinton A; White, Kenneth L

    2009-03-01

    Bovine somatic cell nuclear transfer (SCNT) efficiency remains very low despite a tremendous amount of research devoted to its improvement over the past decade. Frequent early and mid-gestational losses are commonly accompanied by placental abnormalities. A transcription factor, activating protein AP-2gamma, has been shown to be necessary for proper placental development in the mouse. We first evaluated the expression of the gene coding for AP-2gamma (Tfap2c) in several bovine fibroblast donor cell lines and found it was not expressed. Subsequently we determined the expression profile of Tfap2c in oocytes and various stages of preimplantation in vitro fertilized (IVF) embryos. Tfap2c was undetectable in oocytes and early embryos, and was detectable at relatively high levels in morula and blastocyst IVF embryos. The lack of expression in oocytes and donor cells means Tfap2c must be induced in the zygote at the morula stage in properly reprogrammed embryos. SCNT embryos expressed Tfap2c at the eight-cell stage, 2 days earlier than control embryos. Control embryos first expressed Tfap2c at the morula stage, and at this stage Tfap2c was significantly lower in the SCNT embryos. No differences in expression were detected at the blastocyst stage. To determine whether Tfap2c was properly reprogrammed in the placenta of SCNT pregnancies, we evaluated its expression in cotyledons and caruncles of SCNT and control pregnancies between days 55 and 90 gestation. Expression of Tfap2c in caruncles significantly increased between days 55 and 90, while expression in cotyledons was relatively consistent over that same period. Expression levels in SCNT tissues were not different from controls. This data indicates Tfap2c expression is altered in early preimplantation SCNT embryos, which may have developmental consequences resulting from genes influenced by Tfap2c, but expression was not different at the blastocyst stage and in placentomes.

  5. A chimera embryo assay reveals a decrease in embryonic cellular proliferation induced by sperm from X-irradiated male mice

    SciTech Connect

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Raabe, O.; Overstreet, J.W.

    1989-05-01

    Male mice were divided into three experimental groups and a control group. Mice in the experimental groups received one of three doses of acute X irradiation (1.73, 0.29, and 0.05 Gy) and together with the control unirradiated mice were then mated weekly to unirradiated female mice for a 9-week experimental period. Embryos were recovered from the weekly matings at the four-cell stage and examined by the chimera assay for proliferative disadvantage. Aggregation chimeras were constructed of embryos from female mice mated to irradiated males (experimental embryos) and embryos from females mated to unexposed males (control embryos) and contained either one experimental embryo and one control embryo (heterologous chimera) or two control embryos (control chimera). The control embryo in heterologous chimeras and either embryo in control chimeras were prelabeled with the vital dye fluorescein isothiocyanate (FITC), and the chimeras were cultured for 40 h and viewed under phase-contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution from the FITC-labeled embryo. Experimental and control embryos that were cultured singly were also examined for embryo cell number at the end of the 40-h culture period. In control chimeras, the mean ratio of the unlabeled cells:total chimera cell number (henceforth referred to as ''mean ratio'') was 0.50 with little or no weekly variation over the 9-week experimental period. During Weeks 4-7, the mean ratios of heterologous chimeras differed significantly from the mean ratio of control chimeras with the greatest differences occurring during Week 7 (0.41 for chimeras of 0.05 Gy dose group, 0.40 for chimeras of the 0.29 Gy dose group, and 0.17 for chimeras of the 1.73 Gy dose group).

  6. Analysis of the evolution of chromosome abnormalities in human embryos from Day 3 to 5 using CGH and FISH.

    PubMed

    Daphnis, D D; Fragouli, E; Economou, K; Jerkovic, S; Craft, I L; Delhanty, J D A; Harper, J C

    2008-02-01

    The use of interphase fluorescent in situ hybridization (FISH) has shown that a large number of human embryos exhibit chromosomal abnormalities in vitro. The most common abnormality is mosaicism which is seen in up to 50% of preimplantation embryos at all stages of development. In this study, comparative genomic hybridization (CGH) was used to analyse 1-2 cells biopsied on Day 3 of development while the rest of the embryo was cultured until Day 5. Embryos were spread on Day 5 and analysed by FISH using probe combinations that varied depending on the CGH result, to investigate the progress of any abnormalities detected on Day 3. A total of 37 frozen-thawed embryos were analysed in this study. One gave no CGH or FISH results and was excluded from analysis. Six embryos failed to give any FISH result as they were degenerating on Day 5. Thirty embryos provided results from both techniques. According to the CGH results, the embryos were divided into two groups; Group 1 had a normal CGH result (13 embryos) and Group 2 an abnormal CGH result (17 embryos). For Group 1, three embryos showed normal CGH and FISH results, while 10 embryos were mosaic after FISH analysis, with various levels of abnormalities. For Group 2, FISH showed that all embryos were mosaic or completely chaotic. The combination of CGH and FISH enabled the thorough investigation of the evolution of mosaicism and of the mechanisms by which it is generated. The main two mechanisms identified were whole or partial chromosome loss and gain. These were observed in embryos examined on both Day 3 and 5.

  7. High frequency ultrasound imaging of the growth and development of the normal chick embryo.

    PubMed

    Schellpfeffer, Michael A; Bolender, David L; Kolesari, Gary L

    2007-05-01

    The purpose of this study is to delineate with high frequency ultrasound imaging the normal growth and development of the chick embryo throughout its incubation period. White Leghorn chick embryos were imaged through an opening in the egg air cell from incubation day 0-19 (Hamburger & Hamilton stage 1-45) using a 13 MHz clinical high frequency linear small parts transducer. Multiple anatomic growth parameters were measured. Normal growth was confirmed with Hamburger and Hamilton staging. A timeline was constructed showing when each anatomic growth parameter could be visualized. Means and standard deviations of each parameter were plotted against incubation days studied to create nomograms and numerical tables of normal growth and development of the chick embryo. With this set of data, abnormal growth and development of the chick embryo can now be assessed.

  8. Effect of sericin on preimplantation development of bovine embryos cultured individually.

    PubMed

    Isobe, T; Ikebata, Y; Onitsuka, T; Wittayarat, M; Sato, Y; Taniguchi, M; Otoi, T

    2012-09-01

    The silk protein sericin has been identified as a potent antioxidant in mammalian cells. This study was conducted to examine the effects of sericin on preimplantation development and quality of bovine embryos cultured individually. When two-cell-stage embryos were cultured individually for 7 days in CR1aa medium supplemented with 0, 0.1, 0.5, or 1% sericin, rates of total blastocyst formation and development to expanded blastocysts from embryos cultured with 0.5% sericin were higher (P < 0.05) than those from embryos cultured with 0 or 1% sericin. When embryos were cultured individually for 7 days in the CR1aa medium supplemented with 0 or 0.5% sericin under two oxidative stress conditions (50 or 100 μm H(2)O(2)), the addition of sericin significantly improved the blastocyst formation rate of embryos exposed to 100 μm H(2)O(2). However, the protective effect of sericin was not observed in development of embryos exposed to 50 μm H(2)O(2). When embryos were exposed to 100 μm H(2)O(2) during culture, the DNA fragmentation index of total blastocysts from embryos cultured with 0.5% sericin was lower than blastocysts derived from embryos cultured without sericin (4.4 vs. 6.8%; P < 0.01). In conclusion, the addition of 0.5% sericin to in vitro culture medium improved preimplantation development and quality of bovine embryos cultured individually by preventing oxidative stress.

  9. A Simple Method for Transportation of Mouse Embryos Using Microtubes and a Warm Box.

    PubMed

    Tokoro, Mikiko; Fukunaga, Noritaka; Yamanaka, Kaori; Itoi, Fumiaki; Terashita, Yukari; Kamada, Yuko; Wakayama, Sayaka; Asada, Yoshimasa; Wakayama, Teruhiko

    2015-01-01

    Generally, transportation of preimplantation embryos without freezing requires incubators that can maintain an optimal culture environment with a suitable gas phase, temperature, and humidity. Such incubators are expensive to transport. We reported previously that normal offspring were obtained when the gas phase and temperature could be maintained during transportation. However, that system used plastic dishes for embryo culture and is unsuitable for long-distance transport of live embryos. Here, we developed a simple low-cost embryo transportation system. Instead of plastic dishes, several types of microtubes-usually used for molecular analysis-were tested for embryo culture. When they were washed and attached to a gas-permeable film, the rate of embryo development from the 1-cell to blastocyst stage was more than 90%. The quality of these blastocysts and the rate of full-term development after embryo transfer to recipient female mice were similar to those of a dish-cultured control group. Next, we developed a small warm box powered by a battery instead of mains power, which could maintain an optimal temperature for embryo development during transport. When 1-cell embryos derived from BDF1, C57BL/6, C3H/He and ICR mouse strains were transported by a parcel-delivery service over 3 days using microtubes and the box, they developed to blastocysts with rates similar to controls. After the embryos had been transferred into recipient female mice, healthy offspring were obtained without any losses except for the C3H/He strain. Thus, transport of mouse embryos is possible using this very simple method, which might prove useful in the field of reproductive medicine.

  10. Transgenic chicken, mice, cattle, and pig embryos by somatic cell nuclear transfer into pig oocytes.

    PubMed

    Gupta, Mukesh Kumar; Das, Ziban Chandra; Heo, Young Tae; Joo, Jin Young; Chung, Hak-Jae; Song, Hyuk; Kim, Jae-Hwan; Kim, Nam-Hyung; Lee, Hoon Taek; Ko, Dae Hwan; Uhm, Sang Jun

    2013-08-01

    This study explored the possibility of producing transgenic cloned embryos by interspecies somatic cell nuclear transfer (iSCNT) of cattle, mice, and chicken donor cells into enucleated pig oocytes. Enhanced green florescent protein (EGFP)-expressing donor cells were used for the nuclear transfer. Results showed that the occurrence of first cleavage did not differ significantly when pig, cattle, mice, or chicken cells were used as donor nuclei (p>0.05). However, the rate of blastocyst formation was significantly higher in pig (14.9±2.1%; p<0.05) SCNT embryos than in cattle (6.3±2.5%), mice (4.2±1.4%), or chicken (5.1±2.4%) iSCNT embryos. The iSCNT embryos also contained a significantly less number of cells per blastocyst than those of SCNT pig embryos (p<0.05). All (100%) iSCNT embryos expressed the EGFP gene, as evidenced by the green florescence under ultraviolet (UV) illumination. Microinjection of purified mitochondria from cattle somatic cells into pig oocytes did not have any adverse effect on their postfertilization in vitro development and embryo quality (p>0.05). Moreover, NCSU23 medium, which was designed for in vitro culture of pig embryos, was able to support the in vitro development of cattle, mice, and chicken iSCNT embryos up to the blastocyst stage. Taken together, these data suggest that enucleated pig oocytes may be used as a universal cytoplast for production of transgenic cattle, mice, and chicken embryos by iSCNT. Furthermore, xenogenic transfer of mitochondria to the recipient cytoplast may not be the cause for poor embryonic development of cattle-pig iSCNT embryos.

  11. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    SciTech Connect

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-02-06

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent ({approx}10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT)

  12. Analysis of the sex-chromosome constitution of digynic triploid mouse embryos.

    PubMed

    Speirs, S; Kaufman, M H

    1989-01-01

    LT/Sv strain mice regularly ovulate up to 50% of their eggs as primary oocytes, which are fertilisable and give rise to digynic triploid embryos. A similar number of eggs are ovulated as secondary oocytes and, following fertilisation, give rise to normal diploid embryos. Pregnant LT/Sv females were autopsied at about midday on day 10 of gestation, when normal diploid embryos would be expected to possess between 25 and 30 pairs of somites. While a few of the triploid embryos either consisted of disorganised embryonic masses or were resorbing, most were at readily recognisable embryonic stages. Just over half of the embryos recovered were "unturned," while the remainder had "turned" and possessed between 15 and 25 pairs of somites. The triploids were usually readily recognised, owing to their small size and because they often displayed neural tube and cardiac defects. All of the embryos recovered were analysed cytogenetically by G-banding to establish their ploidy and sex-chromosome constitution. The XY:XX sex ratio of the 105 diploid embryos recovered, all of which had "turned," was 1.06:1, while the overall XXY:XXX sex ratio of the 120 triploids was 1:1. Analysis of only the developmentally most advanced triploid embryos (i.e., the 49 that had "turned") revealed that the XXY:XXX sex ratio in this group was 1.13:1, which was not significantly different from the expected ratio of 1:1. The crown-rump lengths of the XY and XX "turned" embryos were almost identical, as were those of the XXY and XXX "turned" embryos, although the triploids were significantly smaller than the diploids. No obvious effect of sex-chromosome constitution on developmental potential was therefore observed in this study in relation to either the digynic triploid or the control diploid embryos.

  13. Adaptive plasticity of killifish (Fundulus heteroclitus) embryos: dehydration-stimulated development and differential aquaporin-3 expression.

    PubMed

    Tingaud-Sequeira, Angèle; Zapater, Cinta; Chauvigné, François; Otero, David; Cerdà, Joan

    2009-04-01

    Embryos of the marine killifish Fundulus heteroclitus are adapted to survive aerially. However, it is unknown if they are able to control development under dehydration conditions. Here, we show that air-exposed blastula embryos under saturated relative humidity were able to stimulate development, and hence the time of hatching was advanced with respect to embryos continuously immersed in seawater. Embryos exposed to air at later developmental stages did not hatch until water was added, while development was not arrested. Air-exposed embryos avoided dehydration probably because of their thickened egg envelope, although it suffered significant evaporative water loss. The potential role of aquaporins as part of the embryo response to dehydration was investigated by cloning the aquaporin-0 (FhAqp0), -1a (FhAqp1a), and -3 (FhAqp3) cDNAs. Functional expression in Xenopus laevis oocytes showed that FhaAqp1a was a water-selective channel, whereas FhAqp3 was permeable to water, glycerol, and urea. Expression of fhaqp0 and fhaqp1a was prominent during organogenesis, and their mRNA levels were similar between water- and air-incubated embryos. However, fhaqp3 transcripts were highly and transiently accumulated during gastrulation, and the protein product was localized in the basolateral membrane of the enveloping epithelial cell layer and in the membrane of ingressing and migrating blastomers. Interestingly, both fhaqp3 transcripts and FhAqp3 polypeptides were downregulated in air-exposed embryos. These data demonstrate that killifish embryos respond adaptively to environmental desiccation by accelerating development and that embryos are able to transduce dehydration conditions into molecular responses. The reduced synthesis of FhAqp3 may be one of these mechanisms to regulate water and/or solute transport in the embryo.

  14. Avian embryos in hypoxic environments.

    PubMed

    León-Velarde, F; Monge-C, C

    2004-08-12

    Avian embryos at high altitude do not benefit of the maternal protection against hypoxia as in mammals. Nevertheless, avian embryos are known to hatch successfully at altitudes between 4,000 and 6,500 m. This review considers some of the processes that bring about the outstanding modifications in the pressure differences between the environment and mitochondria of avian embryos in hypoxic environments. Among species, some maintain normal levels of oxygen consumption ( VO2) have a high oxygen carrying capacity, lower the air cell-arterial pressure difference ( PAO2 - PaO2 ) with a constant pH. Other species decrease VO2, increase only slightly the oxygen carrying capacity, have a higher PAO2 - PaO2 difference than sea-level embryos and lower the PCO2 and pH. High altitude embryos, and those exposed to hypoxia have an accelerated decline of erythrocyte ATP levels during development and an earlier stimulation of 2,3-BPG synthesis. A higher Bohr effect may ensure high tissue PO2 in the presence of the high-affinity hemoglobin. Independently of the strategy used, they serve together to promote suitable rates of development and successful hatching of high altitude birds in hypoxic environments.

  15. Myomaker mediates fusion of fast myocytes in zebrafish embryos.

    PubMed

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles

    2014-09-05

    Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  16. Cadence of procreation: orchestrating embryo-uterine interactions

    PubMed Central

    Cha, Jeeyeon; Dey, Sudhansu K.

    2014-01-01

    Embryo implantation in eutherian mammals is a highly complex process and requires reciprocal communication between different cell types of the embryo at the blastocyst stage and receptive uterus. The events of implantation are dynamic and highly orchestrated over a species-specific period of time with distinctive and overlapping expression of many genes. Delayed implantation in different species has helped elucidate some of the intricacies of implantation timing and different modes of the implantation process. How these events are coordinated in time and space are not clearly understood. We discuss potential regulators of the precise timing of these events with respect to central and local clock mechanisms. This review focuses on the timing and synchronization of early pregnancy events in mouse and consequences of their aberrations at later stages of pregnancy. PMID:24862857

  17. Observations of the Embryos of Graupel.

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsuneya; Fukuta, Norihiko

    1988-11-01

    Embryos in natural graupel particles were studied with a setereomicroscope by carefully disassembling samples gathered at two locations globally apart.For the majority of graupel particle clearly identifiable embryos did not exist, suggesting that embryos of graupel occurred as a result of rime breakup. In some cases, ice particles, frozen drops, plates, dendritic crystals, and broken crystals were found as embryos; the minimum sizes of embryos of graupel were 0.3 mm (dendritic crystal) and 0.1 mm (others). Isometric crystals, which show a high probability of growing into graupel due to their fast fall velocities, were also confirmed as being embryos of graupel.

  18. Feminists on the inalienability of human embryos.

    PubMed

    McLeod, Carolyn; Baylis, Francoise

    2006-01-01

    The feminist literature against the commodification of embryos in human embryo research includes an argument to the effect that embryos are "intimately connected" to persons, or morally inalienable from them. We explore why embryos might be inalienable to persons and why feminists might find this view appealing. But, ultimately, as feminists, we reject this view because it is inconsistent with full respect for women's reproductive autonomy and with a feminist conception of persons as relational, embodied beings. Overall, feminists should avoid claims about embryos' being inalienable to persons in arguments for or against the commodification of human embryos.

  19. Micro-magnetic resonance imaging study of live quail embryos during embryonic development.

    PubMed

    Duce, Suzanne; Morrison, Fiona; Welten, Monique; Baggott, Glenn; Tickle, Cheryll

    2011-01-01

    Eggs containing live Japanese quail embryos were imaged using micro-magnetic resonance imaging (μMRI) at 24-h intervals from Day 0 to 8, the period during which the main body axis is being laid down and organogenesis is taking place. Considerable detail of non-embryonic structures such as the latebra was revealed at early stages but the embryo could only be visualized around Day 3. Three-dimensional (3D) changes in embryo length and volume were quantified and also changes in volume in the extra- and non-embryonic components. The embryo increased in length by 43% and nearly trebled in volume between Day 4 and Day 5. Although the amount of yolk remained fairly constant over the first 5 days, the amount of albumen decreases significantly and was replaced by extra-embryonic fluid (EEF). ¹H longitudinal (T₁) and transverse (T₂) relaxation times of different regions within the eggs were determined over the first 6 days of development. The T₂ measurements mirrored the changes in image intensity observed, which can be related to the aqueous protein concentrations. In addition, a comparison of the development of Day 0 to 3 quail embryos exposed to radiofrequency (rf) pulses, 7 T static magnetic fields and magnetic field gradients for an average of 7 h with the development of control embryos did not reveal any gross changes, thus confirming that μMRI is a suitable tool for following the development of live avian embryos over time from the earliest stages.

  20. Mathematical models of the embryo and fetus for use in radiological protection.

    PubMed

    Chen, Jing

    2004-03-01

    This development of new mathematical models arose from our current work in external neutron dosimetry for the embryo and fetus when pregnant women travel at commercial aircraft altitudes. A problem of concern in radiation protection is exposure of pregnant women to ionizing radiation because of the high radiosensitivity of the embryo and fetus. Special regulations and dosimetric considerations are necessary for pregnant women at the work place and in the public. To perform dosimetry, mathematical models for the embryo and the fetus, together with the modified adult female model for pregnant woman, are required. There are no models available for embryo. Models developed for the fetus need to be updated with the new reference values such as those in ICRP Publication 89. This article presents mathematical models for the embryo and fetus at different stages: the embryo at 8 wk and the fetus at the end of each trimester. In addition to fetal skeleton, the fetal brain is explicitly modeled because of its high radiosensitivity. All model parameters are determined from the most recent reference values available. The models are designed so that an interpolation can be easily performed to generate a model of embryo/fetus at any given stage of development. This feature also allows convenient adaptation of the models to different reference values representing various ethnic populations. The new mathematical models presented here were developed for external dosimetry. They can also be used for internal dosimetry purposes, if other organs inside the female phantom are adjusted accordingly.

  1. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration.

    PubMed

    Papis, Krzysztof; Poleszczuk, Olga; Wenta-Muchalska, Elzbieta; Modlinski, Jacek A

    2007-11-01

    Melatonin promotes mouse embryo development in vitro. An effect of melatonin on bovine embryo development is described here. Slaughterhouse derived oocytes were subjected to standard in vitro maturation and fertilization procedures. Presumptive zygotes were cultured for 2 days in CR1aaLA medium supplemented with melatonin (10(-4) m) or without melatonin (control). Culture was performed under two different gas atmospheres containing physiological (7%) or atmospheric (20%) oxygen concentrations (2x2 factorial analysis). After day 2, embryos from each treatment group developed to at least four-cell stage, were cultured without melatonin until day 10 at optimum 7% O2 atmosphere. Blastocyst formation rates of presumptive zygotes and of four-cell embryos were calculated for each group. Significant interactions between oxygen tension and the melatonin treatment were found. Out of four-cell embryos put into in vitro culture after initial incubation in medium containing melatonin, decreased blastocyst rate was observed in melatonin group (47.7%) compared with control (67.7%; P=0.0327) when lower oxygen concentration was applied. A beneficial effect of melatonin was observed in 20% O2: out of 61 embryos, 42 (68.9%) developed to the blastocyst stage after treatment in melatonin versus 32 of 63 (50.8%; P=0.0458) blastocysts that developed in control group. In conclusion, beneficial or harmful effects of melatonin on bovine embryo development in vitro were observed, depending on the oxygen tension during the treatment.

  2. Comparative study of Msx-1 expression in early normal and vitamin A-deficient avian embryos.

    PubMed

    Chen, Y; Kostetskii, I; Zile, M H; Solursh, M

    1995-07-01

    Homeobox-containing genes may play an important role in establishing embryonic patterns during development of vertebrates. Retinoic acid is able to induce expression of Hox genes in cells in culture and to alter expression patterns in the developing vertebrate embryos. Using wholemount in situ hybridization, we have examined and compared the expression patterns of a homeobox-containing gene, Msx-1, in early normal and vitamin A-deficient quail embryos. At gastrulation stage, Msx-1 is primarily expressed in the posterior half of both normal and vitamin A-deficient embryos. However, the gene is expressed wider and stronger in the vitamin A-deficient embryos. At neurulation stages, Msx-1 is continuously expressed in the posterior region up to Hensen's node and in the edge of the neural fold in both normal and vitamin A-deficient embryos. Notably, in the vitamin A-deficient embryos, Msx-1 is expressed more strongly and is also expressed ectopically in the anterior and precardiac regions. These results provide evidence that endogenous retinoids are involved in the normal expression of Msx-1 in avian embryo and that the expression of Msx-1 is downregulated by endogenous and physiological retinoids in vivo during early avian embryogenesis.

  3. Ribonuclease J is required for chloroplast and embryo development in Arabidopsis.

    PubMed

    Chen, Hongyu; Zou, Wenxuan; Zhao, Jie

    2015-04-01

    Chloroplasts perform many essential metabolic functions and their proper development is critically important in embryogenesis. However, little is known about how chloroplasts function in embryogenesis and more relevant components need to be characterized. In this study, we show that Arabidopsis Ribonuclease J (RNase J) is required for chloroplast and embryo development. Mutation of AtRNJ led to albino ovules containing aborted embryos; the morphological development of rnj embryos was disturbed after the globular stage. Observation of ultrastructures indicated that these aborted embryos may result from impaired chloroplast development. Furthermore, by analyzing the molecular markers of cell fate decisions (STM, FIL, ML1, SCR, and WOX5) in rnj embryos, we found that this impairment of chloroplast development may lead to aberrant embryo patterning along the apical-basal axis, indicating that AtRNJ is important in initiating and maintaining the organization of shoot apical meristems (SAMs), cotyledons, and hypocotyls. Moreover, the transport and response of auxin in rnj embryos was found to be disrupted, suggesting that AtRNJ may be involved in auxin-mediated pathways during embryogenesis. Therefore, we speculate that RNJ plays a vital role in embryo morphogenesis and apical-basal pattern formation by regulating chloroplast development.

  4. Efficient derivation of extraembryonic endoderm stem cell lines from mouse postimplantation embryos

    PubMed Central

    Lin, Jiangwei; Khan, Mona; Zapiec, Bolek; Mombaerts, Peter

    2016-01-01

    Various types of stem cell lines have been derived from preimplantation or postimplantation mouse embryos: embryonic stem cell lines, epiblast stem cell lines, and trophoblast stem cell lines. It is not known if extraembryonic endoderm stem (XEN) cell lines can be derived from postimplantation mouse embryos. Here, we report the derivation of 77 XEN cell lines from 85 postimplantation embryos at embryonic day E5.5 or E6.5, in parallel to the derivation of 41 XEN lines from 69 preimplantation embryos at the blastocyst stage. We attain a success rate of 100% of XEN cell line derivation with our E5.5 whole-embryo and E6.5 disaggregated-embryo methods. Immunofluorescence and NanoString gene expression analyses indicate that the XEN cell lines that we derived from postimplantation embryos (post-XEN) are very similar to the XEN cell lines that we derived from preimplantation embryos (pre-XEN) using a conventional method. After injection into blastocysts, post-XEN cells contribute to extraembryonic endoderm in chimeras at E6.5 and E7.5. PMID:27991575

  5. Automated Microinjection of Recombinant BCL-X into Mouse Zygotes Enhances Embryo Development

    PubMed Central

    Gertsenstein, Marina; Perumalsamy, Alagammal; Lai, Ingrid; Chi, Maggie; Moley, Kelle H.; Greenblatt, Ellen; Jurisica, Igor; Casper, Robert F.; Sun, Yu; Jurisicova, Andrea

    2011-01-01

    Progression of fertilized mammalian oocytes through cleavage, blastocyst formation and implantation depends on successful implementation of the developmental program, which becomes established during oogenesis. The identification of ooplasmic factors, which are responsible for successful embryo development, is thus crucial in designing possible molecular therapies for infertility intervention. However, systematic evaluation of molecular targets has been hampered by the lack of techniques for efficient delivery of molecules into embryos. We have developed an automated robotic microinjection system for delivering cell impermeable compounds into preimplantation embryos with a high post-injection survival rate. In this paper, we report the performance of the system on microinjection of mouse embryos. Furthermore, using this system we provide the first evidence that recombinant BCL-XL (recBCL-XL) protein is effective in preventing early embryo arrest imposed by suboptimal culture environment. We demonstrate that microinjection of recBCL-XL protein into early-stage embryos repairs mitochondrial bioenergetics, prevents reactive oxygen species (ROS) accumulation, and enhances preimplantation embryo development. This approach may lead to a possible treatment option for patients with repeated in vitro fertilization (IVF) failure due to poor embryo quality. PMID:21799744

  6. Microinjection wound assay and in vivo localization of epidermal wound response reporters in Drosophila embryos.

    PubMed

    Juarez, Michelle T; Patterson, Rachel A; Li, Wilson; McGinnis, William

    2013-11-01

    The Drosophila embryo develops a robust epidermal layer that serves both to protect the internal cells from a harsh external environment as well as to maintain cellular homeostasis. Puncture injury with glass needles provides a direct method to trigger a rapid epidermal wound response that activates wound transcriptional reporters, which can be visualized by a localized reporter signal in living embryos or larvae. Puncture or laser injury also provides signals that promote the recruitment of hemocytes to the wound site. Surprisingly, severe (through and through) puncture injury in late stage embryos only rarely disrupts normal embryonic development, as greater than 90% of such wounded embryos survive to adulthood when embryos are injected in an oil medium that minimizes immediate leakage of hemolymph from puncture sites. The wound procedure does require micromanipulation of the Drosophila embryos, including manual alignment of the embryos on agar plates and transfer of the aligned embryos to microscope slides. The Drosophila epidermal wound response assay provides a quick system to test the genetic requirements of a variety of biological functions that promote wound healing, as well as a way to screen for potential chemical compounds that promote wound healing. The short life cycle and easy culturing routine make Drosophila a powerful model organism. Drosophila clean wound healing appears to coordinate the epidermal regenerative response, with the innate immune response, in ways that are still under investigation, which provides an excellent system to find conserved regulatory mechanisms common to Drosophila and mammalian epidermal wounding.

  7. Quick freezing of one-cell mouse embryos using ethylene glycol with sucrose.

    PubMed

    Rayos, A A; Takahashi, Y; Hishinuma, M; Kanagawa, H

    1992-03-01

    One-cell mouse embryos were frozen by direct plunging into liquid nitrogen (LN(2)) vapor after equilibration in 3 M ethylene glycol with 0.25 M sucrose (freezing medium) for 5 to 40 minutes. After thawing, the embryos were cultured in vitro and the effects of the equilibration period and dilution method were examined. No significant difference was observed in the in vitro survival of embryos when 0.5 or 1.0 M sucrose was used for the dilution of the cryoprotectant for each equilibration period. The highest survival rate (67.2%) was obtained when the embryos were equilibrated for 10 minutes, and the cryoprotectant diluted with either 0.5 or 1.0 M sucrose after thawing. Shorter (5 minutes) or prolonged (40 minutes) equilibration of embryos in the freezing medium yielded significantly lower survival rates. Dilution by direct transfer of the frozen-thawed embryos into PB1 resulted in lower survival rates than when 0.5 or 1.0 M sucrose was used. The in vitro development to the blastocyst stage of one-cell mouse embryos frozen after 10 minutes equilibration in the freezing medium and diluted after thawing in 0.5 M sucrose was significantly lower than the control (68.0 vs 92.7%). However, transfer of the blastocysts developing from frozen-thawed one-cell mouse embryos into the uterine horns of the recipients resulted in fetal development and implantation rates similar to the control.

  8. Automated microinjection of recombinant BCL-X into mouse zygotes enhances embryo development.

    PubMed

    Liu, Xinyu; Fernandes, Roxanne; Gertsenstein, Marina; Perumalsamy, Alagammal; Lai, Ingrid; Chi, Maggie; Moley, Kelle H; Greenblatt, Ellen; Jurisica, Igor; Casper, Robert F; Sun, Yu; Jurisicova, Andrea

    2011-01-01

    Progression of fertilized mammalian oocytes through cleavage, blastocyst formation and implantation depends on successful implementation of the developmental program, which becomes established during oogenesis. The identification of ooplasmic factors, which are responsible for successful embryo development, is thus crucial in designing possible molecular therapies for infertility intervention. However, systematic evaluation of molecular targets has been hampered by the lack of techniques for efficient delivery of molecules into embryos. We have developed an automated robotic microinjection system for delivering cell impermeable compounds into preimplantation embryos with a high post-injection survival rate. In this paper, we report the performance of the system on microinjection of mouse embryos. Furthermore, using this system we provide the first evidence that recombinant BCL-XL (recBCL-XL) protein is effective in preventing early embryo arrest imposed by suboptimal culture environment. We demonstrate that microinjection of recBCL-XL protein into early-stage embryos repairs mitochondrial bioenergetics, prevents reactive oxygen species (ROS) accumulation, and enhances preimplantation embryo development. This approach may lead to a possible treatment option for patients with repeated in vitro fertilization (IVF) failure due to poor embryo quality.

  9. Epigenetic and hormonal profile during maturation of Quercus Suber L. somatic embryos.

    PubMed

    Pérez, Marta; Viejo, Marcos; LaCuesta, Maite; Toorop, Peter; Cañal, María Jesús

    2015-01-15

    Somatic embryogenesis is a powerful alternative to conventional mass propagation of Quercus suber L. However, poor quality and incomplete maturation of somatic embryos restrict any application. Given that epigenetic and hormonal control govern many developmental stages, including maturation of zygotic embryos, global DNA methylation and abscisic acid (ABA) were analyzed during development and maturation of cork oak somatic embryos. Our results indicated that development of somatic embryos concurred with a decrease in 5-mdC. In contrast, endogenous ABA content showed a transient increase with a peak in immature E2 embryos denoting the onset of the maturation phase. A cold stratification phase was necessary for embryos to acquire germination ability, which coincided with a significant decrease in 5-mdC and ABA content. Immunohistochemical analyses showed that there was a specific spatial-temporal regulation during embryogenesis, particularly after the cold treatment. The acquisition of germination capacity concurred with a general low 5-mdC signal in the root meristem, while retention of the 5-mdC signal was mainly located in the shoot meristem and provascular tissues. Conversely, ABA immunolocalization was mainly located in the root and shoot apical meristems. Furthermore, a strong decrease in the ABA signal was observed in the root cap after the stratification treatment suggesting a role for the root cap during development of somatic embryos. These results suggest that, in addition to ABA, epigenetic control appears to play an important role for the correct maturation and subsequent germination of cork oak somatic embryos.

  10. Effect of Calcium Chloride on the Permeation of the Cryoprotectant Dimethyl Sulfoxide to Japanese Whiting Sillago japonica Embryos

    NASA Astrophysics Data System (ADS)

    Rahman, Sk. Mustafizur; Majhi, Sullip Kumar; Suzuki, Toru; Strussmann, Carlos Augusto; Watanabe, Manabu

    Cryopreservation of fish eggs and embryos is a highly desired tool to promote aquaculture production and fisheries resource management, but it is still not technically feasible. The failure to develop successful cryopreservation protocols for fish embryos is largely attributed to poor cryoprotectant permeability. The purpose of this study was to test the effectiveness of CaCl2 to enhance cryoprotectant uptake by fish embryos. In this study, embryos (somites and tail elongation stages) of Japanese whiting Sillago japonica were exposed to 10 and 15% dimethyl sulfoxide (DMSO) in artificial sea water (ASW) or a solution of 0.125M CaCl2 in distilled water for 20 min at 24°C. The toxicity of all solutions was estimated from the hatching rates of the embryos and High Performance Liquid Chromatography was used to determine the amount of DMSO taken up during impregnation. The results showed that DMSO incorporation into the embryos was greatly (›50%) enhanced in the presence of CaCl2 compared to ASW. CaCl2 itself was not toxic to the embryos but, probably as a result of the enhanced DMSO uptake, caused decreases in survival of about 14-44% relative to ASW. Somites stage embryos were more tolerant than tail elongation ones to DMSO both as ASW and CaCl2 solutions. The use of CaCl2 as a vehicle for DMSO impregnation could be a promising aid for the successful cryopreservation of fish embryos.

  11. Growth and development of cultured carrot cells and embryos under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Dutcher, F. R.; Quinn, C. E.; Steward, F. C.

    1981-01-01

    Morphogenetically competent proembryonic cells and well-developed somatic embryos of carrot at two levels of organization were exposed for 18.5 days to a hypogravity environment aboard the Soviet Biosatellite Cosmos 1129. It was confirmed that cultured totipotent cells of carrot can give rise to embryos with well-developed roots and minimally developed shoots. It was also shown that the space hypogravity environment could support the further growth of already-organized, later somatic embryonic stages and give rise to fully developed embryo-plantlets with roots and shoots.

  12. Long-term imaging of mouse embryos using adaptive harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Thayil, Anisha; Watanabe, Tomoko; Jesacher, Alexander; Wilson, Tony; Srinivas, Shankar; Booth, Martin

    2011-04-01

    We present a detailed description of an adaptive harmonic generation (HG) microscope and culture techniques that permit long-term, three-dimensional imaging of mouse embryos. HG signal from both pre- and postimplantation stage (0.5-5.5 day-old) mouse embryos are fully characterized. The second HG images reveal central spindles during cytokinesis whereas third HG images show several features, such as lipid droplets, nucleoli, and plasma membranes. The embryos are found to develop normally during one-day-long discontinuous HG imaging, permitting the observation of several dynamic events, such as morula compaction and blastocyst formation.

  13. Long-term imaging of mouse embryos using adaptive harmonic generation microscopy

    PubMed Central

    Thayil, Anisha; Watanabe, Tomoko; Jesacher, Alexander; Wilson, Tony; Srinivas, Shankar; Booth, Martin

    2012-01-01

    We present a detailed description of an adaptive harmonic generation (HG) microscope and culture techniques that permit long-term, three-dimensional imaging of mouse embryos. HG signal from both pre- and postimplantation stage (0.5–5.5 day-old) mouse embryos are fully characterized. The second HG images reveal central spindles during cytokinesis whereas third HG images show several features, such as lipid droplets, nucleoli, and plasma membranes. The embryos are found to develop normally during one-day-long discontinuous HG imaging, permitting the observation of several dynamic events, such as morula compaction and blastocyst formation. PMID:21529087

  14. Locomotor behavior of fish hatched from embryos exposed to flight conditions

    NASA Technical Reports Server (NTRS)

    Kleerekoper, H.

    1978-01-01

    Embryos of Fundulus heteroclitus in various stages of development were exposed to space flight conditions aboard Apollo spacecraft and Cosmos satellites. The objective of the study was to ascertain whether fish hatched from these embryos displayed locomotor behavior different from that of control fish of the same age. An electronic monitoring technique was used to record behavior. Results indicate no change in locomotor behavior in fish on Apollo Spacecraft, but inexplicable significant changes were noted in fish aboard Cosmos Satellites.

  15. An air-liquid interphase approach for modeling the early embryo-maternal contact zone

    PubMed Central

    Chen, S.; Palma-Vera, S. E.; Langhammer, M.; Galuska, S. P.; Braun, B. C.; Krause, E.; Lucas-Hahn, A.; Schoen, J.

    2017-01-01

    We developed an air-liquid interphase culture procedure for mammalian oviduct epithelial cells leading to the formation of functional epithelial tissues, which generate oviduct fluid surrogates. These in vitro oviduct epithelia can be co-cultured with living zygotes and enable embryonic development up to the blastocyst stage without addition of embryo culture medium. The described strategy is broadly applicable to analyze early embryo-maternal interactions under standardized in vitro conditions. PMID:28181558

  16. [Influence of L.5-hydroxytryptophan (L.5-HTP) on the development of chick embryo].

    PubMed

    Schowing, J; Sprumont, P; Van Toledo, B

    1977-01-01

    L.5-hydroxytryptophan (L.5-HTP) injections provoke, in the chick embryo, some malformations of the nervous system, when treated at 24 hours of incubation. The same treatement after 48 hours of incubation does not lead to malformations, but to a reduction in size which is as much obvious as the embryos are treated at a later stage. It seems that there could be some relation between the serotonin metabolism and the growth hormon secretion.

  17. Osmoregulatory response to low salinities in the European sea bass embryos: a multi-site approach.

    PubMed

    Sucré, Elliott; Bossus, Maryline; Bodinier, Charlotte; Boulo, Viviane; Charmantier, Guy; Charmantier-Daures, Mireille; Cucchi, Patricia

    2013-01-01

    Embryonic osmoregulation effected by embryonic ionocytes in the European sea bass Dicentrarchus labrax has been studied at several sites, including the yolk sac membrane, the first gill slits and the gut ionocytes. D. labrax embryos, spawned in seawater (SW) (39 ‰), were exposed to dilute seawater (DSW) (5 ‰) during 48 h, from stage 10 pairs of somites (10S) to hatching time (HT). Control embryos originating from the same spawn were maintained in SW. Both SW and DSW embryos were examined after 24- and 48-h exposure. Nanoosmometric measurements of the embryonic fluids osmolality suggest that late embryos are confronted with the variations in external salinity and that they were able to slightly regulate their osmolality. Immunolocalization of Na⁺/K⁺ ATPase, NKCC and CFTR has shown that DSW-exposed embryos can limit ion losses due to compensatory physiological mechanisms. CFTR and NKCC were not observed in DSW embryos in the yolk sac ionocytes and in the tegumentary ionocytes of the gill slits. The quantification of mRNA indicated that NKA, NKCC1 and CFTR transcript levels increased from stage 10S to stage HT. At stage HT, following 48 h of DSW- or SW-exposure, different responses were observed according to salinity. These results, when compared to those obtained in D. labrax juveniles and adults long-term exposed to fresh water (FW), show that in embryos the physiological response following a short-term DSW exposure is different. The mechanisms of hyper-osmoregulation observed in D. labrax embryos, although not fully efficient, allow their survival for several days in DSW.

  18. Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo.

    PubMed

    Watson, A J; Hogan, A; Hahnel, A; Wiemer, K E; Schultz, G A

    1992-02-01

    The sensitive technique of mRNA phenotyping with the reverse transcription-polymerase chain reaction was employed to determine the patterns of gene expression for several growth factor ligand and receptor genes during bovine preimplantation development. Several thousand bovine embryos encompassing a developmental series from one-cell zygotes to hatched blastocysts were produced by the application of in vitro maturation, fertilization, and oviductal epithelial cell embryo coculture methods. Transcripts for transforming growth factor (TGF-alpha) and platelet-derived growth factor (PDGF-A) are detectable in all preimplantation bovine stages as observed in the mouse. Transcripts for TGF-beta 2 and insulin-like growth factor (IGF-II) and the receptors for PDGF-alpha, insulin, IGF-I, and IGF-II are also detectable throughout bovine preimplantation development, suggesting that these mRNAs are products of both the maternal and the embryonic genomes in the cow, whereas in the mouse they are present only following the activation of the embryonic genome at the two-cell stage. In contrast to the mouse embryo, IGF-I mRNA was detected within preimplantation bovine embryos. Basic fibroblast growth factor (bFGF) is a maternal message in the bovine embryo, since it is only detectable up until the eight-cell embryo stage. Bovine trophoblast protein (bTP) mRNA was detectable within day 8 bovine blastocysts. As was observed in the mouse, the transcripts for insulin, epidermal growth factor (EGF), or nerve growth factor (NGF) were not detectable in any bovine embryo stage. Analyses of this type should aid the development of a completely defined culture medium for the more efficient production of preimplantation bovine embryos.

  19. The moral status of the human embryo: a tradition recalled.

    PubMed

    Dunstan, G R

    1984-03-01

    An Anglican theologian contends that the claim to absolute protection for the human embryo from the moment of conception is a recent one in the Roman Catholic moral tradition. Citing pre-classical, classical, biblical, and post-biblical Roman Catholic sources, Dunstan argues that these traditions attempted to grade the protection provided to the nascent human being according to the stages of its development.

  20. The DNA methylation landscape of human early embryos.

    PubMed

    Guo, Hongshan; Zhu, Ping; Yan, Liying; Li, Rong; Hu, Boqiang; Lian, Ying; Yan, Jie; Ren, Xiulian; Lin, Shengli; Li, Junsheng; Jin, Xiaohu; Shi, Xiaodan; Liu, Ping; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Li, Xianlong; Guo, Fan; Wu, Xinglong; Fan, Xiaoying; Yong, Jun; Wen, Lu; Xie, Sunney X; Tang, Fuchou; Qiao, Jie

    2014-07-31

    DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.

  1. The transcriptome of the sea urchin embryo.

    PubMed

    Samanta, Manoj P; Tongprasit, Waraporn; Istrail, Sorin; Cameron, R Andrew; Tu, Qiang; Davidson, Eric H; Stolc, Viktor

    2006-11-10

    The sea urchin Strongylocentrotus purpuratus is a model organism for study of the genomic control circuitry underlying embryonic development. We examined the complete repertoire of genes expressed in the S. purpuratus embryo, up to late gastrula stage, by means of high-resolution custom tiling arrays covering the whole genome. We detected complete spliced structures even for genes known to be expressed at low levels in only a few cells. At least 11,000 to 12,000 genes are used in embryogenesis. These include most of the genes encoding transcription factors and signaling proteins, as well as some classes of general cytoskeletal and metabolic proteins, but only a minor fraction of genes encoding immune functions and sensory receptors. Thousands of small asymmetric transcripts of unknown function were also detected in intergenic regions throughout the genome. The tiling array data were used to correct and authenticate several thousand gene models during the genome annotation process.

  2. In amnio MRI of mouse embryos.

    PubMed

    Roberts, Thomas A; Norris, Francesca C; Carnaghan, Helen; Savery, Dawn; Wells, Jack A; Siow, Bernard; Scambler, Peter J; Pierro, Agostino; De Coppi, Paolo; Eaton, Simon; Lythgoe, Mark F

    2014-01-01

    Mouse embryo imaging is conventionally carried out on ex vivo embryos excised from the amniotic sac, omitting vital structures and abnormalities external to the body. Here, we present an in amnio MR imaging methodology in which the mouse embryo is retained in the amniotic sac and demonstrate how important embryonic structures can be visualised in 3D with high spatial resolution (100 µm/px). To illustrate the utility of in amnio imaging, we subsequently apply the technique to examine abnormal mouse embryos with abdominal wall defects. Mouse embryos at E17.5 were imaged and compared, including three normal phenotype embryos, an abnormal embryo with a clear exomphalos defect, and one with a suspected gastroschisis phenotype. Embryos were excised from the mother ensuring the amnion remained intact and stereo microscopy was performed. Embryos were next embedded in agarose for 3D, high resolution MRI on a 9.4T scanner. Identification of the abnormal embryo phenotypes was not possible using stereo microscopy or conventional ex vivo MRI. Using in amnio MRI, we determined that the abnormal embryos had an exomphalos phenotype with varying severities. In amnio MRI is ideally suited to investigate the complex relationship between embryo and amnion, together with screening for other abnormalities located outside of the mouse embryo, providing a valuable complement to histology and existing imaging methods available to the phenotyping community.

  3. Supplementation of culture medium with L-carnitine improves development and cryotolerance of bovine embryos produced in vitro.

    PubMed

    Takahashi, Toshikiyo; Inaba, Yasushi; Somfai, Tamas; Kaneda, Masahiro; Geshi, Masaya; Nagai, Takashi; Manabe, Noboru

    2013-01-01

    High lipid content in embryos is associated with low freezing tolerance. This study assessed the effects of exogenous L-carnitine, an enhancer of lipid metabolism, on the in vitro development and freezing survival of bovine embryos. Also, effects on metabolic activity, reactive oxygen species (ROS) and apoptosis were investigated. Supplementation of embryo culture medium with 1.518 mM or 3.030 mM L-carnitine significantly increased the rates of zygote development to the blastocyst stage and blastocyst cell numbers whereas 6.072 mM of this compound did not improve embryo development. Survival rates after slow freezing of blastocysts were significantly higher when embryos were cultured in the presence of 1.518 mM or 3.030 mM L-carnitine compared with the control. A lower density of lipid droplets was detected in L-carnitine-treated blastocysts compared with the control. L-carnitine significantly reduced ROS levels in 2-cell embryos but did not reduce ROS levels at later stages. The apoptotic cell rate was not different between control and L-carnitine-treated blastocysts. L-carnitine significantly increased ATP levels in 2-cell embryos but not at the 8-cell or blastocyst stages. L-carnitine increased the expression of metabolism-related ATP6 and COX1 genes in blastocysts. In conclusion, L-carnitine supplementation enhanced lipid metabolism in embryos resulting in improved development and cryotolerance of bovine blastocysts produced in vitro.

  4. Soluble CD146, an innovative and non-invasive biomarker of embryo selection for in vitro fertilization

    PubMed Central

    Bouvier, Sylvie; Paulmyer-Lacroix, Odile; Molinari, Nicolas; Bertaud, Alexandrine; Paci, Marine; Leroyer, Aurélie; Robert, Stéphane; Dignat George, Françoise; Blot-Chabaud, Marcel

    2017-01-01

    Although progress was made in in vitro fertilization (IVF) techniques, the majority of embryos transferred fail to implant. Morphology embryo scoring is the standard procedure for most of IVF centres for choosing the best embryo, but remains limited since even the embryos classified as “top quality” may not implant. As it has been shown that i) CD146 is involved in embryo implantation and ii) membrane form is shed to generate soluble CD146 (sCD146), we propose that sCD146 in embryo supernatants may constitute a new biomarker of embryo selection. Immunocytochemical staining showed expression of CD146 in early embryo stages and sCD146 was detected by ELISA and Western-blot in embryo supernatants from D2. We retrospectively studied 126 couples who underwent IVF attempt. The embryo culture medium from each transferred embryo (n = 222) was collected for measurement of sCD146 by ELISA. Significantly higher sCD146 concentrations were present in embryo supernatants that did not implant (n = 185) as compared to those that successfully implanted (n = 37) (1310 +/- 1152 pg.mL-1 vs. 845+/- 1173 pg.mL-1, p = 0.024). Sensitivity analysis performed on single embryo transfers (n = 71) confirmed this association (p = 0.0054). The computed ROC curve established that the optimal sCD146 concentration for embryo implantation is under 1164 pg.mL-1 (sensitivity: 76%, specificity: 48%, PPV: 25% and NPV: 92%). Over this sCD146 threshold, the implantation rate was significantly lower (9% with sCD146 levels >1164 pg.ml-1 vs. 22% with sCD146 levels ≤ 1164 pg.mL-1, p = 0.01). Among the embryos preselected by morphologic scoring, sCD146 determination could allow a better selection of the embryo(s), thus improving the success of elective single embryo transfer. This study establishes the proof of concept for the use of sCD146 as a biomarker for IVF by excluding the embryo with the highest sCD146 level. A multicentre prospective study will now be necessary to further establish its use in

  5. Phenotypically plastic responses of green frog embryos to conflicting predation risk.

    PubMed

    Ireland, D H; Wirsing, A J; Murray, D L

    2007-05-01

    Predators have been shown to alter the timing of switch points between life history stages, but few studies have addressed switch point plasticity in prey exposed simultaneously to conflicting predation pressure. We tested hatching responses of green frog (Rana clamitans) embryos subject to perceived predation risk from chemical cues released by two stage-specific predators, predicting that these predators would elicit: (1) directional hatching responses when presented independently, and (2) intermediate phenotypic responses when presented simultaneously. R. clamitans embryos in outdoor exclosures were exposed to cues from an egg predator (freshwater leeches; Nephelopsis obscura), a larval predator (dragonfly nymphs, Aeschna canadensis), and both predators in a 2 x 2 factorial experiment, and changes in hatchling size, hatchling developmental stage, and hatching time were compared to those for control embryos. Leeches alone induced embryos to hatch at a smaller size and an earlier developmental stage than controls, while dragonfly nymphs elicited a delay in egg hatching time that was associated with larger size and later developmental stage at hatching. Embryos failed to respond to simultaneous exposure to both predators, implying that responses to each occurred concurrently and were therefore dampened. Our results indicate that prey under threat from conflicting predators may manifest intermediate defensive phenotypes. Such intermediate responses may result in elevated rates of prey mortality with possible consequences at the population level.

  6. [The mechanisms of p21WAF1/Cip-1 expression in MOLT-4 cell line induced by TSA].

    PubMed

    Song, Yi; Liu, Mei-Ju; Zhao, Guo-Wei; Qian, Jun-Jie; Dong, Yan; Liu, Hua; Sun, Guo-Jing; Mei, Zhu-Zhong; Liu, Bin; Tian, Bao-Lei; Sun, Zhi-Xian

    2005-04-01

    To investigate the function and molecular mechanism of p21(WAF1/Cip-1) expression in MOLT-4 cells induced by HDAC inhibitor TSA, the expression pattern of p21(WAF1/Cip-1) and the distribution of cell cycle in TSA treated cells were analyzed. The results showed that TSA could effectively induce G(2)/M arrest and apoptosis of MOLT-4 cells. Kinetic experiments demonstrated that p21(WAF1/Cip-1) were upregulated quickly before cell arrested in G(2)/M and began decreasing at the early stage of apoptosis. Meanwhile, the proteasome inhibitor MG-132 could inhibit the decrease of p21(WAF1/Cip-1) at the early stage of apoptosis, which showed that proteasome pathway involved in p21(WAF1/Cip-1) degradation during the TSA induced G(2)/M arrest and apoptosis responses. This study also identified that the protein level of p21(WAF1/Cip-1) was highly associated with the cell cycle change induced by TSA. Compared to cells treated by TSA only, exposure MOLT-4 cells to TSA meanwhile treatment with MG-132 increased the protein level of p21(WAF1/Cip-1) and increased the numbers of cell in G(2)/M-phase, whereas the cell apoptosis were delayed. It is concluded that p21(WAF1/Cip-1) plays a significant role in G(2)/M arrest and apoptosis signaling induced by TSA in MOLT-4 cells.

  7. Pollination and embryo development in Brassica rapa L. in microgravity

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Popova, A.; Xiao, Y.; Musgrave, M. E.

    2000-01-01

    Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.

  8. Pollination and embryo development in Brassica rapa L. in microgravity.

    PubMed

    Kuang, A; Popova, A; Xiao, Y; Musgrave, M E

    2000-03-01

    Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.

  9. Experimental manipulation of compaction of the mouse embryo alters patterns of protein phosphorylation

    SciTech Connect

    Bloom, T. )

    1991-03-01

    Compaction, occurring at the eight-cell stage of mouse development, is the process of cell flattening and polarisation by which cellular asymmetry is first established. Changes in the pattern of protein phosphorylation have been correlated with this early event of development. In the study reported here, groups of embryos were treated in ways known to affect particular features of compaction and were then labeled with ({sup 32}P)orthophosphate; the phosphoproteins obtained were examined following electrophoresis in one and two dimensions. Four-cell embryos were treated with protein synthesis inhibitors, which advance cell flattening. This treatment resulted in only minor differences from the phosphoprotein profile of untreated four-cell embryos. Inhibition of protein synthesis at the eight-cell stage has little effect on cell flattening or polarisation. However, some phosphoproteins that are observed normally in eight-cell but not in four-cell embryos were no longer detectable if labeling took place in the presence of protein synthesis inhibitors. Eight-cell embryos incubated in phorbol 12-myristate 13-acetate, which disrupts various features of compaction, showed a relative increase in the phosphorylation of a group of phosphoprotein spots associated with the eight-cell but not with the four-cell stage. Embryos incubated in Ca2(+)-free medium, which prevents intercellular flattening and delays polarisation, showed a relative decrease in the phosphorylation of the same group of phosphoprotein spots. The behaviour of these phosphoproteins may therefore be correlated with some of the features of compaction.

  10. Self-correction of chromosomal abnormalities in human preimplantation embryos and embryonic stem cells.

    PubMed

    Bazrgar, Masood; Gourabi, Hamid; Valojerdi, Mojtaba Rezazadeh; Yazdi, Poopak Eftekhari; Baharvand, Hossein

    2013-09-01

    Aneuploidy is commonly seen in human preimplantation embryos, most particularly at the cleavage stage because of genome activation by third cell division. Aneuploid embryos have been used for the derivation of normal embryonic stem cell (ESC) lines and developmental modeling. This review addresses aneuploidies in human preimplantation embryos and human ESCs and the potential of self-correction of these aberrations. Diploid-aneuploid mosaicism is the most frequent abnormality observed; hence, embryos selected by preimplantation genetic diagnosis at the cleavage or blastocyst stage could be partly abnormal. Differentiation is known as the barrier for eliminating mosaic embryos by death and/or decreased division of abnormal cells. However, some mosaicisms, such as copy number variations could be compatible with live birth. Several reasons have been proposed for self-correction of aneuploidies during later stages of development, including primary misdiagnosis, allocation of the aneuploidy in the trophectoderm, cell growth advantage of diploid cells in mosaic embryos, lagging of aneuploid cell division, extrusion or duplication of an aneuploid chromosome, and the abundance of DNA repair gene products. Although more studies are needed to understand the mechanisms of self-correction as a rare phenomenon, most likely, it is related to overcoming mosaicism.

  11. De novo DNA methylation of the paternal genome in 2-cell mouse embryos.

    PubMed

    Ma, X S; Wang, X G; Qin, L; Song, C L; Lin, F; Song, J M; Zhu, C C; Liu, H L

    2014-10-27

    The developmental dynamics of DNA methylation events have been well studied. Active demethylation of the paternal genome occurs in the zygote, passive demethylation occurs during cleavage stages, and de novo methylation occurs by the blastocyst stage. It is believed that the paternal genome has lower levels of methylation during early development than the maternal genome. However, in this study, we provide direct and indirect evidence of genome-wide de novo DNA methylation of the paternal genome after the first cell cycle in mouse embryos. Although very little methylation was detected within the male pronucleus in zygotes, an intense methylation signal was clearly visible within the androgenetic 2-cell embryos. Moreover, the DNA methylation level of the paternal genome in the post-zygotic metaphase embryos was similar to that of the maternal genome. Using indirect immunofluorescence with an antibody to methylated lysine 9 in histone H3, we provided new evidence to support the concept of spatial compartmentalization of parental genomes in 2-cell mouse embryos. Nevertheless, the transient segregation of parental genomes was not observed by determining the DNA methylation distribution in the 2-cell embryos even though DNA methylation asymmetry between the maternal and paternal pronucleus existed in the 1-cell stage. The disappearance of separate immunofluorescence signals of 5-methyl cytosine in the 2-cell embryos might be attributed to the de novo methylation of the paternal genome during the first mitotic cycle.

  12. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a "fail-safe" mechanism of early embryogenesis.

    PubMed

    Kai, Masatake; Kaito, Chikara; Fukamachi, Hiroshi; Higo, Takayasu; Takayama, Eiji; Hara, Hiroshi; Ohya, Yoshikazu; Igarashi, Kazuei; Shiokawa, Koichiro

    2003-06-01

    In Xenopus, injection of S-adenosylmethionine decarboxylase (SAMDC) mRNA into fertilized eggs or 2-cell stage embryos induces massive cell dissociation and embryo-lysis at the early gastrula stage due to activation of the maternal program of apoptosis. We injected SAMDC mRNA into only one of the animal side blastomeres of embryos at different stages of cleavage, and examined the timing of the onset of the apoptotic reaction. In the injection at 4- and 8-cell stages, a considerable number of embryos developed into tadpoles and in the injection at 16- and 32-cell stages, all the embryos became tadpoles, although tadpoles obtained were sometimes abnormal. However, using GFP as a lineage tracer, we found that descendant cells of the blastomere injected with SAMDC mRNA at 8- to 32-cell stages are confined within the blastocoel at the early gastrula stage and undergo apoptotic cell death within the blastocoel, in spite of the continued development of the injected embryos. These results indicate that cells overexpressed with SAMDC undergo apoptotic cell death consistently at the early gastrula stage, irrespective of the timing of the mRNA injection. We assume that apoptosis is executed in Xenopus early gastrulae as a "fail-safe" mechanism to eliminate physiologically-severely damaged cells to save the rest of the embryo.

  13. The effects of manipulation medium, culture system and recipient cytoplast on in vitro development of intraspecies and intergeneric felid embryos.

    PubMed

    Imsoonthornruksa, Sumeth; Lorthongpanich, Chanchao; Sangmalee, Anawat; Srirattana, Kanokwan; Laowtammathron, Chuti; Tunwattana, Wanchai; Somsa, Wachiravit; Ketudat-Cairns, Mariena; Nagai, Takashi; Parnpai, Rangsun

    2011-06-01

    The aim of this study was to investigate if reconstructed felid embryos obtained by intraspecies or intergeneric cloning can develop in vitro. Fibroblast cells (f) from a domestic cat (DCf), marbled cat (MCf) and bovine (Bf) were used as donor cells, and oocytes (o) from domestic cats (DCo) and bovine (Bo) were used as recipient cytoplasts. There were two intraspecies (donor cell + recipient cytoplast: DCf + DCo and Bf + Bo) and three intergeneric (MCf + DCo, DCf + Bo and MCf + Bo) cloning groups in the study. In Experiment 1, the effects of manipulation media, modified TCM-199 (199H) or Emcare holding medium (EHM), on in vitro development of DCf + DCo embryos were investigated. The blastocyst formation rate (BFR) of the embryos manipulated in EHM (33.3%) was higher (P<0.05) compared with those manipulated in 199H (18.1%). In Experiment 2, DCf + DCo and MCf + DCo embryos were cocultured with or without domestic cat oviductal epithelium cells. Irrespective of coculture, the same BFR was obtained for DCf + DCo embryos (44.4 vs. 38.0%), while MCf + DCo embryos could not develop beyond the morula stage. In experiment 3, although the development of MCf + DCo and DCf + Bo embryos was arrested at the morula stage, 8.6% of MCf + Bo embryos were able to develop to the blastocyst stage. These results demonstrated that EHM was superior to 199H as an embryo manipulation medium and that the DCo and Bo could support the early embryonic development of intergeneric cloned marbled cat embryos up to the morula stage. However, postimplantation development still needs to be investigated.

  14. The vomeronasal organ in the human embryo, studied by means of three-dimensional computer reconstruction

    PubMed Central

    SHERWOOD, REBECCA J.; MCLACHLAN, JOHN C.; AITON, JAMES F.; SCARBOROUGH, JULIE

    1999-01-01

    The human vomeronasal organ is of interest because of its potential role in sex pheromone detection. Due to the scarcity of early human material, studies of its development have concentrated on fetal rather than embryonic stages. The availability of embryonic specimens in the Walmsley Collection has enabled us to study the development of the vomeronasal organ (VNO) in human embryos between Carnegie Stages 17 and 23. Embryos at Carnegie Stage 17 or below showed no evidence of a VNO. One embryo with characteristics intermediate between Carnegie stages 17 and 18 was the earliest to show evidence of a VNO, in the form of a shallow indentation. All embryos at Carnegie Stages 18 or later had VNOs. Three-dimensional computer reconstructions were made of the VNO in each specimen where this was possible. This in part depended on the plane of section. The total volume and lumen volume were measured from these reconstructions and the volume of the vomeronasal epithelium was calculated by subtraction. A generally consistent increase in total volume and epithelial volume was observed with increasing developmental stage. The lumen contributed rather little to the total volume at these stages. PMID:10580856

  15. Gray level Co-occurrence Matrices (GLCM) to assess microstructural and textural changes in pre-implantation embryos.

    PubMed

    Tan, Tiffany C Y; Ritter, Lesley J; Whitty, Annie; Fernandez, Renae C; Moran, Lisa J; Robertson, Sarah A; Thompson, Jeremy G; Brown, Hannah M

    2016-08-01

    The preimplantation embryo is extraordinarily sensitive to environmental signals and events such that perturbations can alter embryo metabolism and program an altered developmental trajectory, ultimately affecting the phenotype of the adult individual; indeed, the physical environment associated with in vitro embryo culture can attenuate development. Defining the underlying metabolic changes and mechanisms, however, has been limited by the imaging technology used to evaluate metabolites and structural features in the embryo. Here, we assessed the impact of in vitro fertilization and culture on mouse embryos using three metabolic markers: peroxyfluor 1 (a reporter of hydrogen peroxide), monochlorobimane (a reporter of glutathione), and Mitotracker Deep Red (a marker of mitochondria). We also evaluated the distribution pattern of histone 2AX gamma (γH2AX) in the nuclei of 2- and 8-cell embryos and blastocysts to investigate the degree of DNA damage caused by in vitro embryo culture. In vitro-fertilized embryos, in vivo-developed embryos, and in vivo-fertilized embryos recovered and cultured in vitro were compared at the 2-, 8-cell, and blastocyst stages. In addition to assessments based on fluorescence intensity, textural analysis using Gray Level Co-occurrence Matrix (GLCM), a statistical approach that assesses texture within an image, was used to evaluate peroxyfluor 1, monochlorobimane, and Mitotracker Deep Red staining in an effort to develop a robust metric of embryo quality. Our data provide strong evidence of modified metabolic parameters identifiable as altered fluorescence texture in embryos developed in vitro. Thus, texture-analysis approach may provide a means of gaining additional insight into embryo programming beyond conventional measurements of staining intensity for metabolic markers. Mol. Reprod. Dev. 83: 701-713, 2016 © 2016 Wiley Periodicals, Inc.

  16. Dormancy in somatic embryos and seeds ofVitis: changes in endogenous abscisic acid during embryogeny and germination.

    PubMed

    Rajasekaran, K; Vine, J; Mullins, M G

    1982-03-01

    Abscisic acid (ABA) in extracts of somatic embryos and seeds of Gloryvine (Vitis vinifera L.xV. rupestris Scheele) was measured by gas chromatography-mass spectrometry-selected ion monitoring using deuterated ABA, (±)-[C-3Me-(2)H3]ABA, ([(2)H3]ABA) as internal standard. The ABA content increased rapidly during embryogeny (0.035 ng/embryo at the globular stage to 0.22 ng/embryo at the mature stage). The level of ABA in the tissues of somatic embryos, expressed in ng/mg dry weight, decreased from the globular stage (0.76 ng/mg) to the mature stage (0.25 ng/mg). Chilling (4° C) induced normal germination of seeds and mature somatic embryos and precocious germination of globular, heart-shaped and torpedoshaped somatic embryos. In all cases chilling led to a marked reduction in endogenous ABA. Exogenous (±)-ABA inhibited the germination of chilled somatic embryos.

  17. Neurocognitive and Motor Deficits in HIV-Infected Ugandan Children With High CD4 Cell Counts

    PubMed Central

    Boivin, Michael J.; Boal, Hannah E.; Bangirana, Paul; Charlebois, Edwin; Havlir, Diane V.; Rosenthal, Philip J.; Dorsey, Grant; Achan, Jane; Akello, Carolyne; Kamya, Moses R.; Wong, Joseph K.

    2012-01-01

    (See the Editorial Commentary by Wagner and Frenkel, on pages 1010–2.) Background. Human immunodeficiency virus (HIV) infection causes neurocognitive or motor function deficits in children with advanced disease, but it is unclear whether children with CD4 cell measures above the World Health Organization (WHO) thresholds for antiretroviral therapy (ART) initiation suffer significant impairment. Methods. The neurocognitive and motor functions of HIV-infected ART-naive Ugandan children aged 6–12 years with CD4 cell counts of >350 cells/μL and CD4 cell percentage of >15% were compared with those of HIV-uninfected children, using the Test of Variables of Attention (TOVA), the Kaufman Assessment Battery for Children, second edition (KABC-2), and the Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2). Results. Ninety-three HIV-infected children (median CD4 cell count, 655 cells/μL; plasma HIV RNA level, 4.7 log10 copies/mL) were compared to 106 HIV-uninfected children. HIV-infected children performed worse on TOVA visual reaction times (multivariate analysis of covariance; P = .006); KABC-2 sequential processing (P = .005), simultaneous processing (P = .039), planning/reasoning (P = .023), and global performance (P = .024); and BOT-2 total motor proficiency (P = .003). High plasma HIV RNA level was associated with worse performance in 10 cognitive measures and 3 motor measures. In analysis of only WHO clinical stage 1 or 2 HIV-infected children (n = 68), significant differences between the HIV-infected and HIV-uninfected groups (P < .05) remained for KABC-2 sequential processing, KABC-2 planning/reasoning, and BOT-2 motor proficiency. Conclusions. Significant motor and cognitive deficits were found in HIV-infected ART-naive Ugandan children with CD4 cell counts of ∼350 cells/μL and percentages of >15%. Study of whether early initiation of ART could prevent or reverse such deficits is needed. PMID

  18. Protein degradation in preimplantation mouse embryos and the lethality of tritiated amino acids

    SciTech Connect

    Wielbold, J.L.

    1982-01-01

    The role of protein degradation in preimplantation development in the mouse was studied. Proteins of morulae and blastocysts (M and B) cultured in vitro after labeling for 1 hour (h) in /sup 3/H-leucine exhibit a mean half-life (t/sub 1///sub 2/) of 8.1 h. The t/sub 1///sub 2/ tends to increase (9.5 h) when 10% fetal calf serum is added to the chase medium. This decrease in protein degradation in the presence of serum is associated with an increase in the percentage of B that are hatching (P<0.02). This rate of protein degradation in vivo was affected by the stage of pseudopregnancy (PSP) of the recipient. Day 4 embryos in a Day 4 uterus (Day 1=vaginal plug) retained more of the /sup 3/H-leucine in their proteins than did Day 4 embryos remaining in culture (P<0.02), while Day 4 embryos in a Day 3 uterus retained the same amount of radioactivity as did Day 4 embryos in culture. This differential effect of uterine environment was also seen when Day 4 embryos were transferred to recipients. More fetuses developed to term when the recipient was in Day 3 of PSP (50.8%) than when the recipient was in Day 4 PSP (25.9%, P<0.001), regardless of the age of the recipient. Age of the recipient does affect the percentage of transferred embryos developing to term. Thus, protein degradation may vary with the stage of embryo development and the conditions to which the embryos are exposed. However, even low levels of incorporated tritiated leucine can have lethal effects on the embryos and compromise the validity of the protein half-lives determined.

  19. An attempt of cryopreservation of mouse embryos at the ACTREC laboratory animal facility in India.

    PubMed

    Thorat, Rahul; Ingle, Arvind

    2012-01-01

    Cryopreservation is the long-term storage of viable cells/tissue in liquid nitrogen. The present study was conducted to freeze 8-cell- to morula-stage mouse embryos from the ACTREC Laboratory Animal Facility using a "slow freezing and fast revival" method. In all, 4,088 embryos were collected from 495 donor female mice of ten different strains. An average recovery of 8 embryos per donor mouse were recorded. Of the 4,088 embryos, 3,946 embryos of normal morphology were frozen in 173 straws. They were cooled down using a controlled-rate freezing assembly, and the straws were directly plunged into liquid nitrogen for long-term storage. Out of these 3,946 frozen embryos, 2,650 were found to be viable after fast revival. The highest survival rate, 81%, was recorded in B6D2F1 hybrid mice, whereas the lowest rate, 51%, was recorded in the S/RV/Cri-ba mutant strain. Out of 2,650 viable embryos, 2,359 embryos (89%) developed to the blastocyst stage after 24 h of incubation in a CO(2) incubator. The developed blastocysts were transferred surgically into 101 pseudopregnant female mice, of which 49 (48.5%) females were found to be pregnant. The highest percentage of pregnancy, 75%, was recorded in C57BL/6NCrl and NIH-III mice, whereas no pregnant recipients were recorded in Ptch, C3H/HeNCrl and NOD SCID mice. Based on the deliveries of these 49 females, an average of 4 young were delivered per female. Improvement in efficiency of freezing, thawing, and surgical transfer of embryos into pseudopregnant females is one of the challenges in such studies.

  20. A unique mechanism regulating gene expression in 1-cell embryos

    PubMed Central

    YAMAMOTO, Ryoma; AOKI, Fugaku

    2016-01-01

    After fertilization, the genome of zygotes is transcriptionally silent. The timing of the initiation of transcription is species-specific and occurs at the mid-1-cell stage in mice. Recent analyses using high-throughput sequencing (HTS) have identified thousands of genes transcribed at the 1-cell stage, and the pattern of expression among these genes appears to be unique. In this article, we show the result of an additional analysis using HTS data from a previous study, and present the hypothesis that an extremely loose chromatin structure causes promiscuous gene expression in 1-cell embryos. PMID:27867162

  1. Human chorionic gonadotropin (hCG) in the secretome of cultured embryos: hyperglycosylated hCG and hCG-free beta subunit are potential markers for infertility management and treatment.

    PubMed

    Butler, Stephen A; Luttoo, Jameel; Freire, Maísa O T; Abban, Thomas K; Borrelli, Paola T A; Iles, Ray K

    2013-09-01

    Human chorionic gonadotropin (hCG) is produced by trophoblast cells throughout pregnancy, and gene expression studies have indicated that hCG-beta subunit (hCGβ) expression is active at the 2 blastomere stage. Here, we investigated the qualitative hCG output of developing embryos in culture and hCG isoforms expressed in the secretome as a novel sensitive method for detecting hCG. Culture media was collected from the culture plates of 118 embryos in culture (including controls and embryos at different stages of culture) from 16 patients undergoing routine fertility treatment. The hCGβ was detectable in media from 2 pronuclear (2PN) stage embryos through to the blastocyst stage. The hCGβ was absent in 1PN and arrested embryos as well as all media controls. Prior to hatching, hyperglycosylated hCG (hCGh) was observed selectively in 3PN embryos, but after hatching, along with hCG, became the dominant hCG molecule observed. We have reported at the 2PN stage the earliest evidence of hCGβ expression in embryos. There is a suggestion this may be indicative of quality in early embryos, and hCGh seen at the pronuclear stage may suggest triploid abnormality. The dominance of hCG, and hCGh expression, seen after blastocyst hatching may be indicative of potential implantation success. Thus, hCG isoforms have potential roles as biomarkers of embryo viability for embryo/blastocyst transfer.

  2. Chromosome remodeling and differentiation of tetraploid embryos during preimplantation development.

    PubMed

    Park, Mi-Ryung; Lee, Ah-Reum; Bui, Hong-Thuy; Park, Chankyu; Park, Keun-Kyu; Cho, Ssang-Goo; Song, Hyuk; Kim, Jae-Hwan; Nguyen, Van Thuan; Kim, Jin-Hoi

    2011-07-01

    Although it is known that the tetraploid embryo contributes only to the placenta, the question of why tetraploid embryos differentiate into placenta remains unclear. To study the effect of electrofusion on the development of mouse tetraploid oocytes, mouse two-cell embryos were fused and cultured in vitro in Chatot-Ziomek-Bavister medium. After electrofusion, two chromosome sets from the tetraploid blastomere were individually duplicated before nuclear fusion. At 8-10 hr after electrofusion, each chromosome set was condensing and the nuclear membrane was breaking down. Around 12-14 hr after electrofusion, the two chromosome sets had combined together and had reached the second mitotic metaphase, at this point with 8n sets of chromosomes. Interestingly, we discovered that expression of OCT4, an inner cell mass cells biomarker, is lost by the tetraploid expanded blastocysts, but that CDX2, a trophectoderm cells biomarker, is strongly expressed at this stage. This observation provides evidence clarifying why tetraploid embryos contribute only to trophectoderm.

  3. SYNTHESIS AND STORAGE OF MICROTUBULE PROTEINS BY SEA URCHIN EMBRYOS

    PubMed Central

    Raff, Rudolf A.; Greenhouse, Gerald; Gross, Kenneth W.; Gross, Paul R.

    1971-01-01

    Studies employing colchicine binding, precipitation with vinblastine sulfate, and acrylamide gel electrophoresis confirm earlier proposals that Arbacia punctulata and Lytechinus pictus eggs and embryos contain a store of microtubule proteins. Treatment of 150,000 g supernatants from sea urchin homogenates with vinblastine sulfate precipitates about 5% of the total soluble protein, and 75% of the colchicine-binding activity. Electrophoretic examination of the precipitate reveals two very prominent bands. These have migration rates identical to those of the A and B microtubule proteins of cilia. These proteins can be made radioactive at the 16 cell stage and at hatching by pulse labeling with tritiated amino acids. By labeling for 1 hr with leucine-3H in early cleavage, then culturing embryos in the presence of unlabeled leucine, removal of newly synthesized microtubule proteins from the soluble pool can be demonstrated. Incorporation of labeled amino acids into microtubule proteins is not affected by culturing embryos continuously in 20 µg/ml of actinomycin D. Microtubule proteins appear, therefore, to be synthesized on "maternal" messenger RNA. This provides the first protein encoded by stored or "masked" mRNA in sea urchin embryos to be identified. PMID:5165266

  4. MicroRNA processing machinery in the developing chick embryo.

    PubMed

    Carraco, Gil; Gonçalves, Ana N; Serra, Carlos; Andrade, Raquel P

    2014-11-01

    Gene expression regulation during embryo development is under strict regulation to ensure proper gene expression in both time and space. The involvement of microRNAs (miRNA) in early vertebrate development is documented and inactivation of different proteins involved in miRNA synthesis results in severe malformations or even arrests vertebrate embryo development. However, there is very limited information on when and in what tissues the genes encoding these proteins are expressed. Herein, we report a detailed characterization of the expression patterns of DROSHA, DGCR8, XPO5 and DICER1 in the developing chick embryo, from HH1 (when the egg is laid) to HH25 (5-days incubation), using whole mount in situ hybridization and cross-section analysis. We found that these genes are co-expressed in multiple tissues, mostly after stage HH4. Before early gastrulation DICER1 expression was never detected, suggesting the operation of a Dicer-independent pathway for miRNA synthesis. Our results support an important role for miRNAs in vertebrate embryo development and provide the necessary framework to unveil additional roles for these RNA processing proteins in development.

  5. Spatial distribution of the Sm antigen in Drosophila early embryos.

    PubMed

    Ségalat, L; Lepesant, J A

    1992-01-01

    Anti-Sm antibodies recognize the major small nuclear RNA-protein particles (snRNPs) involved in pre-mRNA processing. The spatial distribution of the snRNPs has been investigated in Drosophila embryos up to the cellularization stage (cycle 14), using the Y12 anti-Sm antibody. Our results show that: 1) all or most of the Sm antigen is localized in the cytoplasm of the syncytial blastoderm until the 12th cycle of division, in both the nuclear and cytoplasmic compartments at cycle 13, and then in the nuclei at cycle 14 and later. This relocalization takes place when zygotic transcriptional activation occurs; 2) at the subcellular level, the Sm antigen localizes in a speckled pattern and in foci-like structures within the nucleus of Drosophila blastoderm embryos; 3) strikingly, some nuclei of embryos at the 14th cycle appear to contain more snRNPs than others. The position of these nuclei differs from one embryo to another, and their distribution does not resemble any known developmental pattern of Drosophila embryogenesis. We propose that random differences in snRNP concentration may serve as an epigenetic signal for stochastic events occurring during development.

  6. Twin Xenopus laevis embryos appearing from flattened eggs.

    PubMed

    Sato, Eiji

    2014-01-01

    Remarkable progress has recently been made in molecular biology of double axis formation in Xenopus laevis. Leaving aside, for the time being, the problem of the gene expressions regulating Xenopus laevis development, here I show that pulse treatment could induce formation of a secondary axis in a fertilized Xenopus laevis egg. At 3 min after insemination, metal oxides were added to Xenopus fertilized eggs, and then twin embryos appeared. Zirconium oxide (ZrO2) was the most effective metal oxide for producing twin embryos. ZrO2 was added to the fertilized eggs, and 30 sec later, the eggs were dejellied with cysteine solution and washed within 7 min after insemination. The fertilized eggs began flattening at around 15 min after insemination. When the degree of flattening (the vertical length of the egg divided by the horizontal length) of the eggs at the 16- and 32-cell stages became less than 0.4 degrees, production of twin embryos occurred. Many flattened eggs at less than 0.4 degrees formed twin embryos. The third cleavage of eggs treated with metal oxides was meridional, while the normal third cleavage was horizontal.

  7. Synchrotron X-ray tomographic microscopy of fossil embryos.

    PubMed

    Donoghue, Philip C J; Bengtson, Stefan; Dong, Xi-ping; Gostling, Neil J; Huldtgren, Therese; Cunningham, John A; Yin, Chongyu; Yue, Zhao; Peng, Fan; Stampanoni, Marco

    2006-08-10

    Fossilized embryos from the late Neoproterozoic and earliest Phanerozoic have caused much excitement because they preserve the earliest stages of embryology of animals that represent the initial diversification of metazoans. However, the potential of this material has not been fully realized because of reliance on traditional, non-destructive methods that allow analysis of exposed surfaces only, and destructive methods that preserve only a single two-dimensional view of the interior of the specimen. Here, we have applied synchrotron-radiation X-ray tomographic microscopy (SRXTM), obtaining complete three-dimensional recordings at submicrometre resolution. The embryos are preserved by early diagenetic impregnation and encrustation with calcium phosphate, and differences in X-ray attenuation provide information about the distribution of these two diagenetic phases. Three-dimensional visualization of blastomere arrangement and diagenetic cement in cleavage embryos resolves outstanding questions about their nature, including the identity of the columnar blastomeres. The anterior and posterior anatomy of embryos of the bilaterian worm-like Markuelia confirms its position as a scalidophoran, providing new insights into body-plan assembly among constituent phyla. The structure of the developing germ band in another bilaterian, Pseudooides, indicates a unique mode of germ-band development. SRXTM provides a method of non-invasive analysis that rivals the resolution achieved even by destructive methods, probing the very limits of fossilization and providing insight into embryology during the emergence of metazoan phyla.

  8. Dignity, marriage and embryo adoption: a look at Dignitas Personae.

    PubMed

    Murphy, Timothy F

    2011-12-01

    The Catholic Church's 2008 Dignitas Personae discusses the moral implications of respecting the dignity of all human beings, regardless of the stage of development. In that text, the Vatican's Congregation for the Doctrine of the Faith argues that respect for this dignity is incompatible with the conception of embryos outside marriage as well as assisted reproduction treatments and certain kinds of human embryonic research. Not only that, but the Congregation also rejects efforts at embryo adoption. As a matter of secular moral philosophy, this view of dignity is disputable and this article shows how an alternate view of dignity--one that depends on interests as against status--serves as a better foundation for decisions about ways in which to help people have children. This view of dignity is entirely compatible with a wide array of assisted reproduction treatments and research and is compatible with the conception of embryos for single parents or opposite-sex couples looking to have children. Using its notion of human dignity, the Congregation makes a case against embryo adoption, but that case is unconvincing given the permissible exercise of individual conscience and the presumptive importance of rescuing human lives where they can be rescued.

  9. AGL15, a MADS domain protein expressed in developing embryos.

    PubMed Central

    Heck, G R; Perry, S E; Nichols, K W; Fernandez, D E

    1995-01-01

    To extend our knowledge of genes expressed during early embryogenesis, the differential display technique was used to identify and isolate mRNA sequences that accumulate preferentially in young Brassica napus embryos. One of these genes encodes a new member of the MADS domain family of regulatory proteins; it has been designated AGL15 (for AGAMOUS-like). AGL15 shows a novel pattern of expression that is distinct from those of previously characterized family members. RNA gel blot analyses and in situ hybridization techniques were used to demonstrate that AGL15 mRNA accumulated primarily in the embryo and was present in all embryonic tissues, beginning at least as early as late globular stage in B. napus. Genomic and cDNA clones corresponding to two AGL15 genes from B. napus and the homologous single-copy gene from Arabidopsis, which is located on chromosome 5, were isolated and analyzed. Antibodies prepared against overexpressed Brassica AGL15 lacking the conserved MADS domain were used to probe immunoblots, and AGL15-related proteins were found in embryos of a variety of angiosperms, including plants as distantly related as maize. Based on these data, we suggest that AGL15 is likely to be an important component of the regulatory circuitry directing seed-specific processes in the developing embryo. PMID:7549483

  10. Deleterious actions of gossypol on bovine spermatozoa, oocytes, and embryos.

    PubMed

    Brocas, C; Rivera, R M; Paula-Lopes, F F; McDowell, L R; Calhoun, M C; Staples, C R; Wilkinson, N S; Boning, A J; Chenoweth, P J; Hansen, P J

    1997-10-01

    Gossypol (50 and 100 micrograms/ml) decreased the percentage of sperm that completed the swim-up procedure. This effect was not blocked by glutathione monoethyl ester. Cleavage rates were not different between oocytes inseminated with gossypol-treated spermatozoa (10 or 50 micrograms/ml) and oocytes inseminated with control spermatozoa. Development to the blastocyst stage at Day 7 after insemination was reduced when spermatozoa treated with 50 micrograms/ml gossypol were used for fertilization. Gossypol toxicity was evident in cows fed cottonseed meal because erythrocyte fragility was greater than for control cows. However, there were no differences between cottonseed meal and control groups in number of oocytes collected per cow, cleavage rate after in vitro maturation and fertilization, or the proportion of oocytes or embryos that developed to blastocysts. Similarly, exposure of oocytes to 2.5-10 micrograms/ml gossypol during in vitro maturation did not affect cleavage rates or subsequent development. In contrast, addition of 10 micrograms/ml gossypol to embryos reduced cleavage rate. Moreover, development of cleaved embryos was reduced by culture with 5 or 10 micrograms/ml gossypol and tended to be reduced by 2.5 micrograms/ml gossypol. In conclusion, bovine gametes are resistant to gossypol at concentrations similar to those in blood of cows fed cottonseed meal. In contrast, the developing embryo is sensitive to gossypol.

  11. Embryo adoption: Some further considerations

    PubMed Central

    Patterson, Colin

    2015-01-01

    Recent discussions of embryo adoption have sought to make sense of the teaching of the Congregation for the Doctrine of the Faith (CDF) document Dignitas personae which appeared to provide a negative judgment on such a practice. This article aims to provide a personalist account of the process of fertilization and implantation that might serve as the basis for the negative judgment of the CDF document. In doing so, it relies upon the idea that a person, including an embryo, is not to be considered in isolation, but always in relation to God and to others. This approach extends the substantialist conceptualizations commonly employed in discussions of this issue. More generally, the article seeks to highlight the value of a personalist re-framing for an understanding of the moral questions surrounding the beginning of life. Lay summary: This article seeks to make sense of what appears to be a clear-cut rejection, set out in the Congregation for the Doctrine of the Faith (CDF) document Dignitas personae, of the proposal for women to “adopt” surplus frozen embryos. It draws upon more recently developed modes of philosophical/theological reasoning to argue that, in human procreation, both fertilization and implantation represent constitutive dimensions of divine creative activity and so must be protected from manipulative technological intervention. Since embryo adoption requires this kind of technology, it makes sense for the Church document not to approve it. PMID:25698841

  12. Untwisting the Caenorhabditis elegans embryo

    PubMed Central

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-01-01

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.10070.001 PMID:26633880

  13. 9 CFR 98.9 - Embryos refused entry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Embryos refused entry. 98.9 Section 98... EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos from Regions Free of Rinderpest and Foot-and-Mouth Disease; and Embryos of Horses and Asses § 98.9 Embryos refused entry. Any embryo refused entry into...

  14. 9 CFR 98.9 - Embryos refused entry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Embryos refused entry. 98.9 Section 98... EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos from Regions Free of Rinderpest and Foot-and-Mouth Disease; and Embryos of Horses and Asses § 98.9 Embryos refused entry. Any embryo refused entry into...

  15. 9 CFR 98.9 - Embryos refused entry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Embryos refused entry. 98.9 Section 98... EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos from Regions Free of Rinderpest and Foot-and-Mouth Disease; and Embryos of Horses and Asses § 98.9 Embryos refused entry. Any embryo refused entry into...

  16. 9 CFR 98.9 - Embryos refused entry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Embryos refused entry. 98.9 Section 98... EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos from Regions Free of Rinderpest and Foot-and-Mouth Disease; and Embryos of Horses and Asses § 98.9 Embryos refused entry. Any embryo refused entry into...

  17. 9 CFR 98.9 - Embryos refused entry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Embryos refused entry. 98.9 Section 98... EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos from Regions Free of Rinderpest and Foot-and-Mouth Disease; and Embryos of Horses and Asses § 98.9 Embryos refused entry. Any embryo refused entry into...

  18. Minimally invasive transabdominal collection of preimplantation embryos from the common marmoset monkey (Callithrix jacchus).

    PubMed

    Hanazawa, K; Mueller, T; Becker, T; Heistermann, M; Behr, R; Sasaki, E

    2012-09-01

    A novel, minimally invasive, transabdominal embryo collection method (transabdominal method) was developed as an alternative to a standard abdominal incision for embryo collection in the common marmoset. The abdominal incision method was used for 304 flushes using 36 female animals, whereas the transabdominal method was used for 488 flushes using 48 females; successful embryo collection rates were 48.0% and 48.4% (P > 0.05), respectively. These techniques were successfully duplicated at another institute (German Primate Center, DPZ). At that institution, successful embryo collection rates were 88.9% and 77.8% for the abdominal incision and transabdominal methods, respectively (P > 0.05), whereas the average numbers of preimplantation embryos obtained per flush were (mean ± SD) 1.91 ± 0.35 and 1.71 ± 0.14 (P > 0.05). The transabdominal method reduced animal stress, did not require incisional wound healing, and enabled successive embryo recoveries to be done much sooner. More embryos in early developmental stages (zygotes/morulae) were recovered using the transabdominal method (76.1%) than the abdominal incision method (52.6%, P < 0.01). In contrast, recovery of arrested or abnormal embryos was not significantly different between these two methods (9.8% and 8.3%). To verify developmental ability of embryos recovered by the transabdominal method, transfer of 28 normal embryos to 14 surrogate mothers yielded a nidation rate of 57%. Five females sustained term pregnancies and eight neonates were born. This novel transabdominal method will facilitate progress in marmoset developmental biology and embryology.

  19. Expression of renin-angiotensin system components in the early bovine embryo.

    PubMed

    Pijacka, Wioletta; Hunter, Morag G; Broughton Pipkin, Fiona; Luck, Martin R

    2012-07-01

    The renin-angiotensin system (RAS), mainly associated with the regulation of blood pressure, has been recently investigated in female reproductive organs and the developing foetus. Angiotensin II (Ang II) influences oviductal gamete movements and foetal development, but there is no information about RAS in the early embryo. The aim of this study was to determine whether RAS components are present in the pre-implantation embryo, to determine how early they are expressed and to investigate their putative role at this stage of development. Bovine embryos produced in vitro were used for analysis of RAS transcripts (RT-PCR) and localisation of the receptors AGTR1 and AGTR2 (immunofluorescent labelling). We also investigated the effects of Ang II, Olmesartan (AGTR1 antagonist) and PD123319 (AGTR2 antagonist) on oocyte cleavage, embryo expansion and hatching. Pre-implanted embryos possessed AGTR1 and AGTR2 but not the other RAS components. Both receptors were present in the trophectoderm and in the inner cell mass of the blastocyst. AGTR1 was mainly localised in granular-like structures in the cytoplasm, suggesting its internalisation into clathrin-coated vesicles, and AGTR2 was found mainly in the nuclear membrane and in the mitotic spindle of dividing trophoblastic cells. Treating embryos with PD123319 increased the proportion of hatched embryos compared with the control. These results, the first on RAS in the early embryo, suggest that the pre-implanted embryo responds to Ang II from the mother rather than from the embryo itself. This may be a route by which the maternal RAS influences blastocyst hatching and early embryonic development.

  20. Effects of brief hypoxia and hyperoxia on tissue element levels in the development chick embryo

    SciTech Connect

    Richards, M.P.; Stock, M.K.; Metcalfe, J. Oregon Health Sciences Univ., Portland )

    1991-03-15

    Brief hypoxia or hyperoxia has been shown to affect growth and metabolism of chick embryos during the later stages of development. The objective of this experiment was to alter the availability of oxygen to chick embryos developing in ovo and to determine the effects on tissue levels of Zn, Cu, Fe and Mn. Hypoxia reduced embryo, heart, brain and liver wts (wet wt), whereas, hyperoxia increased embryo, heart, lung and liver wts compared to normoxic controls. Chorioallantoic membrane (CAM) wt was increased by hypoxia and reduced by hyperoxia. Livers from hyperoxic embryos contained more Zn, Fe and Mn and less Cu than livers from hypoxic or normoxic embryos. Tissue levels of Zn, Cu, Fe and Mn were reduced in brains from hypoxic compared to hyperoxic or normoxic embryos. Hyperoxia increased the concentrations of Zn and Cu in CAM; whereas, hypoxia reduced the levels of Zn and Fe. The amounts of Zn and Cu were increased in hyperoxic compared to normoxic lungs. Hearts from hyperoxic embryos had more Zn, Cu and Mn than hypoxic or normoxic hearts. Hypoxic yolk sac contained more Zn, Cu and Mn than hyperoxic or normoxic yolk sac. Except for yolk sac, the amounts of Zn, Cu, Fe and Mn in tissues from normoxic embryos increased from day 15 to day 18 of incubation in concert with tissue growth. The authors conclude that the availability of O{sub 2} to the developing chick embryo affects tissue trace element levels either through its effects on tissue growth or via effects on the regulation of trace element uptake and assimilation by the tissues.

  1. Aquatic toxicity assessment of single-walled carbon nanotubes using zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Pan, Huichin; Lin, Yu-Jun; Li, Meng-Wei; Chuang, Han-Ni; Chou, Cheng-Chung

    2011-07-01

    Zebrafish embryos selected at the 64-cell stage were exposed to various concentrations of amide functionalized single-walled carbon nanotubes (SWCNTs) ranging from 1 to 10 μg/ml dissolved in 1% Pluronic F-68 (a cell culture grade surfactant), and the development of embryos was examined from 24 to 120 hours post fertili