Science.gov

Sample records for 4-d seismic surveys

  1. The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying

    NASA Astrophysics Data System (ADS)

    Bangs, Nathan L. B.; Hornbach, Matthew J.; Berndt, Christian

    2011-10-01

    Sea floor methane vents and seeps direct methane generated by microbial and thermal decompositions of organic matter in sediment into the oceans and atmosphere. Methane vents contribute to ocean acidification, global warming, and providing a long-term (e.g. 500-4000 years; Powell et al., 1998) life-sustaining role for unique chemosynthetic biological communities. However, the role methane vents play in both climate change and chemosynthetic life remains controversial primarily because we do not understand long-term methane flux and the mechanisms that control it ( Milkov et al., 2004; Shakhova et al., 2010; Van Dover, 2000). Vents are inherently dynamic and flux varies greatly in magnitude and even flow direction over short time periods (hours-to-days), often tidally-driven ( Boles et al., 2001; Tryon et al., 1999). But, it remains unclear if flux changes at vents occur on the order of the life-cycle of various species within chemosynthetic communities (months, years, to decades Leifer et al., 2004; Torres et al., 2001) and thus impacts their sustainability. Here, using repeat high-resolution 3D seismic surveys acquired in 2000 and 2008, we demonstrate in 4D that Hydrate Ridge, a vent off the Oregon coast has undergone significant reduction of methane flow and complete interruption in just the past few years. In the subsurface, below a frozen methane hydrate layer, free gas appears to be migrating toward the vent, but currently there is accumulating gas that is unable to reach the seafloor through the gas hydrate layer. At the same time, abundant authigenic carbonates show that the system has been active for several thousands of years. Thus, it is likely that activity has been intermittent because gas hydrates clog the vertical flow pathways feeding the seafloor vent. Back pressure building in the subsurface will ultimately trigger hydrofracturing that will revive fluid-flow to the seafloor. The nature of this mechanism implies regular recurring flow interruptions

  2. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, Wei; Anderson, Roger N.

    1998-01-01

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

  3. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  4. Impact of Petrophysical Experiments on Quantitative Interpretation of 4D Seismic Data at Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Ivanova, A.; Lueth, S.

    2015-12-01

    Petrophysical investigations for CCS concern relationships between physical properties of rocks and geophysical observations for understanding behavior of injected CO2 in a geological formation. In turn 4D seismic surveying is a proven tool for CO2 monitoring. At the Ketzin pilot site (Germany) 4D seismic data have been acquired by means of a baseline (pre-injection) survey in 2005 and monitor surveys in 2009 and 2012. At Ketzin CO2 was injected in supercritical state from 2008 to 2013 in a sandstone saline aquifer (Stuttgart Formation) at a depth of about 650 m. The 4D seismic data from Ketzin reflected a pronounced effect of this injection. Seismic forward modeling using results of petrophysical experiments on two core samples fromthe target reservoir confirmed that effects of the injected CO2 on the 4D seismic data are significant. The petrophysical data were used in that modeling in order to reflect changes due to the CO2 injection in acoustic parameters of the reservoir. These petrophysical data were further used for a successful quantitative interpretation of the 4D seismic data at Ketzin. Now logs from a well (drilled in 2012) penetrating the reservoir containing information about changes in the acoustic parameters of the reservoir due to the CO2 injection are available. These logs were used to estimate impact of the petrophysical data on the qualitative and quantitative interpretation of the 4D seismic data at Ketzin. New synthetic seismograms were computed using the same software and the same wavelet as the old ones apart from the only difference and namely the changes in the input acoustic parameters would not be affected with any petrophysical experiments anymore. Now these changes were put in computing directly from the logs. In turn the new modelled changes due to the injection in the newly computed seismograms do not include any effects of the petrophysical data anymore. Key steps of the quantitative and qualitative interpretation of the 4D seismic

  5. Binary 4D seismic history matching, a metric study

    NASA Astrophysics Data System (ADS)

    Chassagne, Romain; Obidegwu, Dennis; Dambrine, Julien; MacBeth, Colin

    2016-11-01

    This paper explores 4D seismic history matching and it specifically focuses on the objective function used during the optimisation with seismic data. The objective function is calculated by using binary maps, where one map is obtained from the observed seismic data and the other is from one realisation of the optimisation algorithm from the simulation model. In order to decide which set of parameters is a relevant update for the simulation model, an efficient way is required to measure how similar these two binary images are, during their evaluation within the objective function. Behind this aspect of quantification of the similarities or dissimilarities lies the metric notion, or the art of measuring distances. Four metrics are proposed with this study, the well-known Hamming distance, two widely used metrics, the Hausdorff distance and Mutual Information and a recent metric, called the Current Measure Metric. These metrics will be tested and compared on different case scenarios, designed in accordance to a real field case (gas exsolution) before being used in the second part of the paper. Despite its simplicity, the Hamming distance gives positive results, but the Current Measure Metric appears to be a more efficient choice to cover a wider range of scenarios, these conclusions remain true when tested on synthetic and real dataset in a history matching exercise. Some practical aspects of binary map processes will be examined through the paper, as it is shown that it is more proper to use a derivative free optimisation algorithm and a proper metric should be more inclined to capture global features than local features.

  6. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei

    1996-01-01

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

  7. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  8. Time lapse seismic response (4D) related to industrial-scale CO2 injection at an EOR and CCS site, Cranfield, MS

    NASA Astrophysics Data System (ADS)

    Ditkof, J.; Meckel, T. A.; Zeng, H.; Hovorka, S. D.

    2011-12-01

    4D seismic response can be used to understand reservoir fluid substitution related to multiphase fluid flow. Time lapse seismic surveys have been conducted internationally at well-known CCS field sites like Otway, Weyburn, and Sleipner as well as downhole measurements at Frio and Cranfield in the United States. We present results from the first 4D survey conducted in the U.S. for CCS purposes. Since 2008 continuous CO2 injection has occurred at an EOR project in Cranfield, Mississippi, also the location of our SECARB CCS demonstration project funded by DOE's Regional Carbon Sequestration Partnership. 4D response has been characterized after 3 years of injection, where >3 million tons of CO2 remain in the subsurface. Results from 4D stratal slices show a definitive but complicated CO2 response in the injection interval, and no coherent response above or below the injection interval. Clear examples of seismic amplitude response are seen near injection wells. Qualitatively, some areas that have received large amounts of CO2 do not have coherent seismic response, indicating that 4D response to injected CO2 in some parts of the field is likely to be masked by residual oil, gas, and brine related to historic production (1960's). To further quantify the seismic response, well log data shows that Vp decreases before becoming mostly constant, Vs increases linearly, and density slightly decreases in the injection zone. This is a similar expected result to that observed at other sites. Forward seismic modeling and flow simulation have been integrated to understand seismic response in relation to fluid properties and distribution. Seismic understanding may lead to improved understanding of sweep efficiency (capacity) as well as define sensitivity of seismic imaging for quantifying CO2 storage.

  9. A method to update fault transmissibility multipliers in the flow simulation model directly from 4D seismic

    NASA Astrophysics Data System (ADS)

    Benguigui, Amran; Yin, Zhen; MacBeth, Colin

    2014-04-01

    We propose a new approach to update fault seal estimates in fluid flow simulation models by direct use of 4D seismic amplitudes calibrated by a well geological constraint. The method is suited to compartmentalized reservoirs and based on metrics created from differences in the 4D seismic signature on either side of major faults. The effectiveness of the approach is demonstrated by application to data from the fault controlled Heidrun field in the Norwegian Sea. The results of this application appear favourable and show that our method can detect variations of fault permeability along the major controlling faults in the field. Updates of the field simulation model with the 4D seismic-derived transmissibilities are observed to decrease the mismatch between the predicted and historical field production data in the majority of wells in our sector of interest.

  10. Chemical and biogeophysical impact of four-dimensional (4D) seismic exploration in sub-Saharan Africa, and restoration of dysfunctionalized mangrove forests in the prospect areas.

    PubMed

    Osuji, Leo C; Ayolagha, G; Obute, G C; Ohabuike, H C

    2007-09-01

    Four-dimensional (4D) seismic exploration, an improved geophysical technique for hydrocarbon-data acquisition, was applied for the first time in the Nembe Creek prospect area of Nigeria. The affected soils were slightly alkaline in situ when wet (pH 7.2), but extremely acidic when dry (pH 3.0). The organic carbon content (4.6-26.8%) and other physicochemical properties of soils and water (N, P, and heavy-metal contents, etc.) were higher than the baseline values obtained in 2001 before seismic profiling. Most values also exceeded the baseline compliance standards of the Department of Petroleum Resources (DPR), the World Health Organization (WHO), and the Federal Environmental Protection Agency (FEPA). Rehabilitation of the affected areas was achieved by stabilizing the mangrove floor by liming and appropriate application of nutrients, followed by replanting the cut seismic lines over a distance of 1,372 km with different mangrove species, including juvenile Rhizophora racemosa, R. mangle, and Avicennia species, which were transferred from nursery points. Quicker post-operational intervention is recommended for future 4D surveys, because the time lag between the end of seismic activity and post-impact investigation is critical in determining the relationship between activity and impact: the longer the intervening period, the more mooted the interaction. PMID:17886833

  11. Dynamic reservoir characterization using 4D multicomponent seismic data and rock physics modeling at Delhi Field, Louisiana

    NASA Astrophysics Data System (ADS)

    Carvajal Meneses, Carla C.

    Pore pressure and CO2 saturation changes are important to detect and quantify for maximizing oil recovery in Delhi Field. Delhi Field is a enhanced oil recovery (EOR) project with active monitoring by 4D multicomponent seismic technologies. Dynamic rock physics modeling integrates the rich dataset of core, well logs, petrographic thin sections and facies providing a link between reservoir and elastic properties. The dynamic modeling in this high porosity sandstone reservoir shows that P-wave velocity is more sensitive to CO2 saturation while S-wave velocity is more sensitive to pore pressure changes. I use PP and PS seismic data to jointly invert for Vp=Vs ratio and acoustic impedance. This technique has the advantage of adding more information to the non-unique inversion problem. Combining the inversion results from the monitor surveys of June 2010 and August 2011 provides acoustic impedance and Vp=Vs percentage differences. The time-lapse inverted response enables dynamic characterization of the reservoir by fitting the predicted dynamic models (calibrated at the wells). Dynamic reservoir characterization adds value in this stratigraphic complex reservoir. The results indicate that reservoir heterogeneities and pore pressure gradients control the CO2 flow within the Paluxy reservoir. Injectors 148-2 and 140-1 showed CO2 is moving downdip following a distributary channel induced by differential pressure from an updip injector or a barrier caused by a heterogeneity in the reservoir. CO2 anomalies located above the Paluxy injector 148-2 indicates that CO2 is moving from the Paluxy up into the Tuscaloosa Formation. My work demonstrates that reservoir monitoring is necessary for reservoir management at Delhi Field.

  12. 4D seismic monitoring of the miscible CO2 flood of Hall-Gurney Field, Kansas, U.S

    USGS Publications Warehouse

    Raef, A.E.; Miller, R.D.; Byrnes, A.P.; Harrison, W.E.

    2004-01-01

    A cost-effective, highly repeatable, 4D-optimized, single-pattern/patch seismic data-acquisition approach with several 3D data sets was used to evaluate the feasibility of imaging changes associated with the " water alternated with gas" (WAG) stage. By incorporating noninversion-based seismic-attribute analysis, the time and cost of processing and interpreting the data were reduced. A 24-ms-thick EOR-CO 2 injection interval-using an average instantaneous frequency attribute (AIF) was targeted. Changes in amplitude response related to decrease in velocity from pore-fluid replacement within this time interval were found to be lower relative to background values than in AIF analysis. Carefully color-balanced AIF-attribute maps established the overall area affected by the injected EOR-CO2.

  13. Reservoir Characterization around Geothermal Field, West Java, Indonesia Derived from 4-D Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Verdhora Ry, Rexha; Nugraha, A. D.

    2016-01-01

    Observation of micro-seismic events induced by intensive geothermal exploitation in a particular geothermal field, located in West Java region, Indonesia was used to detect the fracture and permeability zone. Using local monitoring seismometer network, tomographic inversions were conducted for the three-dimensional Vp, Vs, and Vp/Vs structure of the reservoir for January - December 2007, January - December 2008, and January - December 2009. First, hypocenters location was relocated using joint hypocenter determination (JHD) method in purpose to estimate best location. Then, seismic tomographic inversions were conducted using delay time tomography for dataset of every year respectively. The travel times passing through the three-dimensional velocity model were calculated using ray tracing pseudo-bending method. Norm and gradient damping were added to constrain blocks without ray and to produce smooth solution model. The inversion algorithm was developed in Matlab environment. Our tomographic inversion results from 3-years of observations indicate the presence of low Vp, low Vs, and low Vp/Vs ratio at depths of about 1 - 3 km below sea level. These features were interpreted may be related to steam-saturated rock in the reservoir area of this geothermal field. The locations of the reservoir area were supported by the data of well- trajectory, where the zones of high Vp/Vs were observed around the injection wells and the zones of low Vp/Vs were observed around the production wells. The extensive low Vp/Vs anomaly that occupies the reservoir is getting stronger during the 3-years study period. This is probably attributed to depletion of pore liquid water in the reservoir and replacement with steam. Continuous monitoring of Vp, Vs, and Vp/Vs is an effective tool for geothermal reservoir characterization and depletion monitoring and can potentially provide information in parts of the reservoir which have not been drilled.

  14. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  15. 4D Seismic Monitoring at the Ketzin Pilot Site during five years of storage - Results and Quantitative Assessment

    NASA Astrophysics Data System (ADS)

    Lüth, Stefan; Ivanova, Alexandra; Ivandic, Monika; Götz, Julia

    2015-04-01

    The Ketzin pilot site for geological CO2-storage has been operative between June 2008 and August 2013. In this period, 67 kt of CO2 have been injected (Martens et al., this conference). Repeated 3D seismic monitoring surveys were performed before and during CO2 injection. A third repeat survey, providing data from the post-injection phase, is currently being prepared for the autumn of 2015. The large scale 3D surface seismic measurements have been complemented by other geophysical and geochemical monitoring methods, among which are high-resolution seismic surface-downhole observations. These observations have been concentrating on the reservoir area in the vicinity of the injection well and provide high-resolution images as well as data for petrophysical quantification of the CO2 distribution in the reservoir. The Ketzin pilot site is a saline aquifer site in an onshore environment which poses specific challenges for a reliable monitoring of the injection CO2. Although much effort was done to ensure as much as possible identical acquisition conditions, a high degree of repeatability noise was observed, mainly due to varying weather conditions, and also variations in the acquisition geometries due to logistical reasons. Nevertheless, time-lapse processing succeeded in generating 3D time-lapse data sets which could be interpreted in terms of CO2 storage related amplitude variations in the depth range of the storage reservoir. The time-lapse seismic data, pulsed-neutron-gamma logging results (saturation), and petrophysical core measurements were interpreted together in order to estimate the amount of injected carbon dioxide imaged by the seismic repeat data. For the first repeat survey, the mass estimation was summed up to 20.5 ktons, which is approximately 7% less than what had been injected then. For the second repeat survey, the mass estimation was summed up to approximately 10-15% less than what had been injected. The deviations may be explained by several factors

  16. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2005-09-01

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.

  17. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2006-08-31

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in an attempt to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data.

  18. 4D Time-Lapse Seismic Analysis of Active Gas Seepage Systems on the Vestnesa Ridge, Offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Bunz, S.; Hurter, S.; Plaza-Faverola, A. A.; Mienert, J.

    2014-12-01

    Active gas venting occurs on the Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. The crest of the Vestnesa Ridge at water depth between 1200-1300 m is pierced with fluid-flow features. Seafloor pockmarks vary in size up to 1 km in diameter with significant morphological features consisting of small ridges, diapiric structures and small pits. Detailed hydro-acoustic surveying shows that gas mostly emanates from the small-scale pits, where also hydrates have been recovered by sediment sampling. High-resolution P-Cable 3D seismic data acquired in 2012 show vertical focused fluid flow features beneath the seafloor pockmarks. These co-called chimneys extend down to the free-gas zone underneath a bottom-simulating reflection (BSR). Here, they link up with small fault systems that might provide pathways to the deeper subsurface. The chimney features show a high variability in their acoustic characteristics with alternating blanked or masked zones and high-amplitude anomalies scattered through the whole vertical extent of the chimneys. The amplitude anomalies indicate high-impedance contrasts due to the likely presence of gas or a high-velocity material like gas hydrates or carbonates. In most cases, the high-amplitude anomalies line up along specific vertical pathways that connect nicely with the small-scale pits at the surface where gas bubbles seep from the seafloor. We re-acquired the 3D seismic survey in 2013 for time-lapse seismic studies in order to better understand the origin of the amplitude anomalies and in order to track potentially migrating gas fronts up along the chimney structure. The time-lapse seismic analysis indicates several areas, where gas migration may have led to changes in acoustic properties of the subsurface. These areas are located along chimney structures and the BSR. This work provides a basis for better

  19. Astor Pass Seismic Surveys Preliminary Report

    SciTech Connect

    Louie, John; Pullammanappallil, Satish; Faulds, James; Eisses, Amy; Kell, Annie; Frary, Roxanna; Kent, Graham

    2011-08-05

    In collaboration with the Pyramid Lake Paiute Tribe (PLPT), the University of Nevada, Reno (UNR) and Optim re-processed, or collected and processed, over 24 miles of 2d seismic-reflection data near the northwest corner of Pyramid Lake, Nevada. The network of 2d land surveys achieved a near-3d density at the Astor Pass geothermal prospect that the PLPT drilled during Nov. 2010 to Feb. 2011. The Bureau of Indian Affairs funded additional seismic work around the Lake, and an extensive, detailed single-channel marine survey producing more than 300 miles of section, imaging more than 120 ft below the Lake bottom. Optim’s land data collection utilized multiple heavy vibrators and recorded over 200 channels live, providing a state-of-the-art reflection-refraction data set. After advanced seismic analysis including first-arrival velocity optimization and prestack depth migration, the 2d sections show clear fault-plane reflections, in some areas as deep as 4000 ft, tying to distinct terminations of the mostly volcanic stratigraphy. Some lines achieved velocity control to 3000 ft depth; all lines show reflections and terminations to 5000 ft depth. Three separate sets of normal faults appear in an initial interpretation of fault reflections and stratigraphic terminations, after loading the data into the OpendTect 3d seismic visualization system. Each preliminary fault set includes a continuous trace more than 3000 ft long, and a swarm of short fault strands. The three preliminary normal-fault sets strike northerly with westward dip, northwesterly with northeast dip, and easterly with north dip. An intersection of all three fault systems documented in the seismic sections at the end of Phase I helped to locate the APS-2 and APS-3 slimholes. The seismic sections do not show the faults connected to the Astor Pass tufa spire, suggesting that we have imaged mostly Tertiary-aged faults. We hypothesize that the Recent, active faults that produced the tufa through hotspring

  20. Vertical Cable Seismic Survey for Hydrothermal Deposit

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2012-04-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques

  1. Sloan Digital Sky Survey QSO's in the context of the 4D Eigenvector 1 Parameter Space

    NASA Astrophysics Data System (ADS)

    Zamfir, Nicolae Sebastian

    We explore spectroscopic properties of N ~ 470 quasars with redshift z within 0.7. It is a large and homogeneous sample of Sloan Digital Sky Survey (SDSS) "QSO" sources brighter than either 17.5 psf g- or i-band magnitude. The research is developed in the framework of the 4D Eigenvector 1 (4DE1) Parameter Space. We exploit and also test the concept of two quasar populations (labeled A and B) nominally separated at FWHM(Hb) = 4000 km s -1 . The project comprises three chapters: (1) a search for a dichotomy/bimodality between radio-loud (RL) and radio-quiet (RQ) quasars, (2) an analysis of the Hb profile diversity and (3) an investigation of the luminosity effects on the 4DE1 measures. The second part is a dual approach: constructing composite/median spectra and (complementary) defining a set of diagnostic measures (asymmetry, kurtosis, centroid shift) in individual sources profiles. The third section incorporates a sample of N = 53 quasars at z [approximate] 0.9-3.0 with VLT/ISAAC spectra of the Hb region. This addition allows us to cover six decades of luminosity. We find that the RL quasars occupy a much more restricted domain in the optical plane of the 4DE1 compared to the RQ sources, which supports the notion of bimodality. FRII and CD RL sources show significant 4DE1 domain differences that likely reflect differences in line of sight orientation (inclined versus face-on, respectively) for these two classes. Quasars do not distribute randomly about an average optical spectrum. Our results support the conceptof two populations A and B. Population A composite Hb profiles are best described by a Lorentzian, but Population B spectra require a double Gaussian. High and low accretion sources (another version of the Population A/B concept) show significant differences in terms of Black Hole (BH) mass and Eddington ratio L bol /L Edd . Moreover, they show distinct properties in terms of line asymmetry, shift and shapes. The minimum detectable FWHM (Hb) increases with

  2. Vertical Cable Seismic Survey for SMS exploration

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hotoshi; Mizohata, Shigeharu

    2014-05-01

    The Vertical Cable Seismic (VCS) survey is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by sea-surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because the VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed it for the SMS survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We have been developing the VCS survey system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of these surveys are from 100m up to 2100 m. Through these experiments, our VCS data acquisition system has been also completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system is available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed a new approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In 2013, we have carried out the second VCS survey using the surface-towed high-voltage sparker and ocean bottom source in the Izena Cauldron, which is one of the most promising SMS areas around Japan. The positions of ocean bottom source estimated by this method are consistent with the VCS field records. The VCS data with the sparker have been processed with 3D PSTM. It gives the very high resolution 3D volume deeper than two

  3. 4D seismic to image a thin carbonate reservoir during a miscible C02 flood: Hall-Gurney Field, Kansas, USA

    USGS Publications Warehouse

    Raef, A.E.; Miller, R.D.; Franseen, E.K.; Byrnes, A.P.; Watney, W.L.; Harrison, W.E.

    2005-01-01

    The movement of miscible CO2 injected into a shallow (900 m) thin (3.6-6m) carbonate reservoir was monitored using the high-resolution parallel progressive blanking (PPB) approach. The approach concentrated on repeatability during acquisition and processing, and use of amplitude envelope 4D horizon attributes. Comparison of production data and reservoir simulations to seismic images provided a measure of the effectiveness of time-lapse (TL) to detect weak anomalies associated with changes in fluid concentration. Specifically, the method aided in the analysis of high-resolution data to distinguish subtle seismic characteristics and associated trends related to depositional lithofacies and geometries and structural elements of this carbonate reservoir that impact fluid character and EOR efforts.

  4. Vertical cable surveys deliver additional seismic data

    SciTech Connect

    1995-12-01

    Texaco and a Norwegian seismic firm have patented a new system for deploying hydrophones on vertical cables for offshore surveys. The system was used in Texaco North Sea UK Ltd.`s Strathspey field during the summer. The new technique was introduced in the article, ``Peaceful use for war technology,`` published in Texaco UK`s Agenda monthly news magazine, October 1995. That article is summarized here. Using technology developed by the US Navy for antisubmarine warfare, the vertical-cable survey relies on hydrophones attached at regular intervals vertically along cables secured to the ocean floor and held taut by a buoy. The shooting vessel fires the airguns in a pattern over a large area on the surface, over and around the cables. The cables are then moved to a new location and the process is repeated, up to six times in the Strathspey application described here.

  5. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing

    PubMed Central

    Helguera, Marcelo; Rivarola, Máximo; Clavijo, Bernardo; Martis, Mihaela M.; Vanzetti, Leonardo S.; González, Sergio; Garbus, Ingrid; Leroy, Phillippe; Šimková, Hana; Valárik, Miroslav; Caccamo, Mario; Doležel, Jaroslav; Mayer, Klaus F.X.; Feuillet, Catherine; Tranquilli, Gabriela; Paniego, Norma; Echenique, Viviana

    2015-01-01

    Survey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete. The aim of our study is to provide different and complementary set of data for chromosome 4D. A survey sequence was obtained by pyrosequencing of flow-sorted 4DS (7.2×) and 4DL (4.1×) arms. Single ends (SE) and long mate pairs (LMP) reads were assembled into contigs (223 Mb) and scaffolds (65 Mb) that were aligned to Aegilops tauschii draft genome (DD), anchoring 34 Mb to chromosome 4. Scaffolds annotation rendered 822 gene models. A virtual gene order comprising 1973 wheat orthologous gene loci and 381 wheat gene models was built. This order was largely consistent with the scaffold order determined based on a published high density map from the Ae. tauschii chromosome 4, using bin-mapped 4D ESTs as a common reference. The virtual order showed a higher collinearity with homeologous 4B compared to 4A. Additionally, a virtual map was constructed and ∼5700 genes (∼2200 on 4DS and ∼3500 on 4DL) predicted. The sequence and virtual order obtained here using the 454 platform were compared with the Illumina one used by the IWGSC, giving complementary information. PMID:25711827

  6. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing.

    PubMed

    Helguera, Marcelo; Rivarola, Máximo; Clavijo, Bernardo; Martis, Mihaela M; Vanzetti, Leonardo S; González, Sergio; Garbus, Ingrid; Leroy, Phillippe; Šimková, Hana; Valárik, Miroslav; Caccamo, Mario; Doležel, Jaroslav; Mayer, Klaus F X; Feuillet, Catherine; Tranquilli, Gabriela; Paniego, Norma; Echenique, Viviana

    2015-04-01

    Survey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete. The aim of our study is to provide different and complementary set of data for chromosome 4D. A survey sequence was obtained by pyrosequencing of flow-sorted 4DS (7.2×) and 4DL (4.1×) arms. Single ends (SE) and long mate pairs (LMP) reads were assembled into contigs (223Mb) and scaffolds (65Mb) that were aligned to Aegilops tauschii draft genome (DD), anchoring 34Mb to chromosome 4. Scaffolds annotation rendered 822 gene models. A virtual gene order comprising 1973 wheat orthologous gene loci and 381 wheat gene models was built. This order was largely consistent with the scaffold order determined based on a published high density map from the Ae. tauschii chromosome 4, using bin-mapped 4D ESTs as a common reference. The virtual order showed a higher collinearity with homeologous 4B compared to 4A. Additionally, a virtual map was constructed and ∼5700 genes (∼2200 on 4DS and ∼3500 on 4DL) predicted. The sequence and virtual order obtained here using the 454 platform were compared with the Illumina one used by the IWGSC, giving complementary information.

  7. Exposure to seismic survey alters blue whale acoustic communication.

    PubMed

    Di Iorio, Lucia; Clark, Christopher W

    2010-02-23

    The ability to perceive biologically important sounds is critical to marine mammals, and acoustic disturbance through human-generated noise can interfere with their natural functions. Sounds from seismic surveys are intense and have peak frequency bands overlapping those used by baleen whales, but evidence of interference with baleen whale acoustic communication is sparse. Here we investigated whether blue whales (Balaenoptera musculus) changed their vocal behaviour during a seismic survey that deployed a low-medium power technology (sparker). We found that blue whales called consistently more on seismic exploration days than on non-exploration days as well as during periods within a seismic survey day when the sparker was operating. This increase was observed for the discrete, audible calls that are emitted during social encounters and feeding. This response presumably represents a compensatory behaviour to the elevated ambient noise from seismic survey operations. PMID:19776059

  8. Exposure to seismic survey alters blue whale acoustic communication.

    PubMed

    Di Iorio, Lucia; Clark, Christopher W

    2010-02-23

    The ability to perceive biologically important sounds is critical to marine mammals, and acoustic disturbance through human-generated noise can interfere with their natural functions. Sounds from seismic surveys are intense and have peak frequency bands overlapping those used by baleen whales, but evidence of interference with baleen whale acoustic communication is sparse. Here we investigated whether blue whales (Balaenoptera musculus) changed their vocal behaviour during a seismic survey that deployed a low-medium power technology (sparker). We found that blue whales called consistently more on seismic exploration days than on non-exploration days as well as during periods within a seismic survey day when the sparker was operating. This increase was observed for the discrete, audible calls that are emitted during social encounters and feeding. This response presumably represents a compensatory behaviour to the elevated ambient noise from seismic survey operations.

  9. Barren Acidic Soil Assessment using Seismic Refraction Survey

    NASA Astrophysics Data System (ADS)

    Tajudin, S. A. A.; Abidin, M. H. Z.; Madun, A.; Zawawi, M. H.

    2016-07-01

    Seismic refraction method is one of the geophysics subsurface exploration techniques used to determine subsurface profile characteristics. From past experience, seismic refraction method is commonly used to detect soil layers, overburden, bedrock, etc. However, the application of this method on barren geomaterials remains limited due to several reasons. Hence, this study was performed to evaluate the subsurface profile characteristics of barren acidic soil located in Ayer Hitam, Batu Pahat, Johor using seismic refraction survey. The seismic refraction survey was conducted using ABEM Terraloc MK 8 (seismograph), a sledge hammer weighing 7 kg (source) and 24 units of 10 Hz geophones (receiver). Seismic data processing was performed using OPTIM software which consists of SeisOpt@picker (picking the first arrival and seismic configureuration data input) and SeisOpt@2D (generating 2D image of barren acidic soil based on seismic velocity (primary velocity, Vp) distribution). It was found that the barren acidic soil profile consists of three layers representing residual soil (Vp= 200-400 m/s) at 0-2 m, highly to completely weathered soil (Vp= 500-1800 m/s) at 3-8 m and shale (Vp= 2100-6200 m/s) at 9-20 m depth. Furthermore, result verification was successfully done through the correlation of seismic refraction data based on physical mapping and the geological map of the study area. Finally, it was found that the seismic refraction survey was applicable for subsurface profiling of barren acidic soil as it was very efficient in terms of time, cost, large data coverage and sustainable.

  10. Seismic Survey Challenges and Solutions in Industrial And Urban Environments

    NASA Astrophysics Data System (ADS)

    Coueslan, M. L.; El-Kaseeh, G.; Totten, S.

    2011-12-01

    Carbon storage projects are often located in close proximity to anthropogenic sources of CO2. This means that the storage site location may be near industrial power plants, mining activity, or urban centers. Proximity to these environments can present unique challenges for the seismic survey design, acquisition, and processing teams in terms of acquiring surface seismic data that meets the site characterization objectives for a CO2 storage site. Seismic surveys in urban and industrial environments may have acquisition footprints that are severely constrained by surrounding infrastructure. The acquisition crew and survey design team must work closely together in real-time to add in-fill source and receiver locations to surveys in order to ensure that high fold coverage is maintained over the survey. High levels of seismic noise may be generated by the industrial plants themselves. Local and industrial traffic, as well as electrical noise may also be a cause for concern. Near surface conditions, such as water saturated soils, unconsolidated mine tailings, and mining cavities, may accelerate attenuation of the seismic signal and become sources of noise in the survey and further impact data quality. When dealing with such conditions, the acquisition and survey design teams must stay in constant communication to optimize survey parameters to account for noise issues. In some cases, the raw data can be so contaminated with noise that no coherent signal can be seen in the data. However, the use of high density-single sensors is one of the most effective options to deal with noisy acquisition environments as this method allows the recorded noise to be sampled without aliasing so that that it can be removed from the data without impacting the seismic signal. Removing noise and optimizing the final images obtained from the data is the job of the survey design and data processing teams. A final consideration when acquiring seismic surveys in urban areas is the visibility of

  11. Seismic surveys test on Innerhytta Pingo, Adventdalen, Svalbard Islands

    NASA Astrophysics Data System (ADS)

    Boaga, Jacopo; Rossi, Giuliana; Petronio, Lorenzo; Accaino, Flavio; Romeo, Roberto; Wheeler, Walter

    2015-04-01

    We present the preliminary results of an experimental full-wave seismic survey test conducted on the Innnerhytta a Pingo, located in the Adventdalen, Svalbard Islands, Norway. Several seismic surveys were adopted in order to study a Pingo inner structure, from classical reflection/refraction arrays to seismic tomography and surface waves analysis. The aim of the project IMPERVIA, funded by Italian PNRA, was the evaluation of the permafrost characteristics beneath this open-system Pingo by the use of seismic investigation, evaluating the best practice in terms of logistic deployment. The survey was done in April-May 2014: we collected 3 seismic lines with different spacing between receivers (from 2.5m to 5m), for a total length of more than 1 km. We collected data with different vertical geophones (with natural frequency of 4.5 Hz and 14 Hz) as well as with a seismic snow-streamer. We tested different seismic sources (hammer, seismic gun, fire crackers and heavy weight drop), and we verified accurately geophone coupling in order to evaluate the different responses. In such peculiar conditions we noted as fire-crackers allow the best signal to noise ratio for refraction/reflection surveys. To ensure the best geophones coupling with the frozen soil, we dug snow pits, to remove the snow-cover effect. On the other hand, for the surface wave methods, the very high velocity of the permafrost strongly limits the generation of long wavelengths both with these explosive sources as with the common sledgehammer. The only source capable of generating low frequencies was a heavy drop weight system, which allows to analyze surface wave dispersion below 10 Hz. Preliminary data analysis results evidence marked velocity inversions and strong velocity contrasts in depth. The combined use of surface and body waves highlights the presence of a heterogeneous soil deposit level beneath a thick layer of permafrost. This is the level that hosts the water circulation from depth controlling

  12. Seismic refraction survey of the ANS preferred site

    SciTech Connect

    Davis, R.K. ); Hopkins, R.A. ); Doll, W.E. )

    1992-02-01

    Between September 19, 1991 and October 8, 1991 personnel from Martin Marietta Energy Systems, Inc. (Energy Systems), Automated Sciences Group, Inc., and Marrich, Inc. performed a seismic refraction survey at the Advanced Neutron Source (ANS) preferred site. The purpose of this survey was to provide estimates of top-of-rock topography, based on seismic velocities, and to delineate variations in rock and soil velocities. Forty-four seismic refraction spreads were shot to determine top-of-rock depths at 42 locations. Nine of the seismic spreads were shot with long offsets to provide 216 top-of-rock depths for 4 seismic refraction profiles. The refraction spread locations were based on the grid for the ANS Phase I drilling program. Interpretation of the seismic refraction data supports the assumption that the top-of-rock surface generally follows the local topography. The shallow top-of-rock interface interpreted from the seismic refraction data is also supported by limited drill information at the site. Some zones of anomalous data are present that could be the result of locally variable weathering, a localized variation in shale content, or depth to top-of-rock greater than the site norm.

  13. Seismic survey probes urban earthquake hazards in Pacific Northwest

    USGS Publications Warehouse

    Fisher, M.A.; Brocher, T.M.; Hyndman, R.D.; Trehu, A.M.; Weaver, C.S.; Creager, K.C.; Crosson, R.S.; Parsons, T.; Cooper, A. K.; Mosher, D.; Spence, G.; Zelt, B.C.; Hammer, P.T.; Childs, J. R.; Cochrane, G.R.; Chopra, S.; Walia, R.

    1999-01-01

    A multidisciplinary seismic survey earlier this year in the Pacific Northwest is expected to reveal much new information about the earthquake threat to U.S. and Canadian urban areas there. A disastrous earthquake is a very real possibility in the region. The survey, known as the Seismic Hazards Investigation in Puget Sound (SHIPS), engendered close cooperation among geologists, biologists, environmental groups, and government agencies. It also succeeded in striking a fine balance between the need to prepare for a great earthquake and the requirement to protect a coveted marine environment while operating a large airgun array.

  14. A comparative study between a rectilinear 3-D seismic survey and a concentric-circle 3-D seismic survey

    SciTech Connect

    Maldonado, B.; Hussein, H.S.

    1994-12-31

    Due to the rectilinear nature of the previous 3D seismic survey, the details necessary for proper interpretation were absent. Theoretically, concentric 3D seismic technology may provide an avenue for gaining more and higher quality data coverage. Problems associated with recording a rectilinear 3D seismic grid over the salt dome in this area have created the need to investigate the use of such procedures as the concentric-circle 3D seismic acquisition technique. The difficulty of imaging salt dome flanks with conventional rectilinear 3D seismic may be a result of the inability to precisely predict the lateral velocity-field variation adjacent to both salt and sediments. The dramatic difference in the interval velocities of salt and sediments causes the returning ray to severely deviate from being a hyperbolic path. This hampers the ability to predict imaging points near the salt/sediment interface. Perhaps the most difficult areas to image with rectilinear seismic surveys are underneath salt overhangs. Modeling suggests that a significant increase in the number of rays captured from beneath a salt overhang can be achieved with the concentric-circle method. This paper demonstrates the use of the ``circle shoot`` on a survey conducted over a salt dome in the Gulf of Mexico. A total of 80 concentric circles cover an area which is equivalent to 31,000 acres. The final post-stack data were sorted into bins with dimensions of 25 meters by 25 meters. A comparison of 3D rectilinear shooting vs. 3D concentric circle shooting over the same area will show an improvement in data quality and signal-to-noise characteristics.

  15. Effects of Large and Small-Source Seismic Surveys on Marine Mammals and Sea Turtles

    NASA Astrophysics Data System (ADS)

    Holst, M.; Richardson, W. J.; Koski, W. R.; Smultea, M. A.; Haley, B.; Fitzgerald, M. W.; Rawson, M.

    2006-05-01

    L-DEO implements a marine mammal and sea turtle monitoring and mitigation program during its seismic surveys. The program consists of visual observations, mitigation, and/or passive acoustic monitoring (PAM). Mitigation includes ramp ups, powerdowns, and shutdowns of the seismic source if marine mammals or turtles are detected in or about to enter designated safety radii. Visual observations for marine mammals and turtles have taken place during all 11 L-DEO surveys since 2003, and PAM was done during five of those. Large sources were used during six cruises (10 to 20 airguns; 3050 to 8760 in3; PAM during four cruises). For two interpretable large-source surveys, densities of marine mammals were lower during seismic than non- seismic periods. During a shallow-water survey off Yucatán, delphinid densities during non-seismic periods were 19x higher than during seismic; however, this number is based on only 3 sightings during seismic and 11 sightings during non-seismic. During a Caribbean survey, densities were 1.4x higher during non-seismic. The mean closest point of approach (CPA) for delphinids for both cruises was significantly farther during seismic (1043 m) than during non-seismic (151 m) periods (Mann-Whitney U test, P < 0.001). Large whales were only seen during the Caribbean survey; mean CPA during seismic was 1722 m compared to 1539 m during non-seismic, but sample sizes were small. Acoustic detection rates with and without seismic were variable for three large-source surveys with PAM, with rates during seismic ranging from 1/3 to 6x those without seismic (n = 0 for fourth survey). The mean CPA for turtles was closer during non-seismic (139 m) than seismic (228 m) periods (P < 0.01). Small-source surveys used up to 6 airguns or 3 GI guns (75 to 1350 in3). During a Northwest Atlantic survey, delphinid densities during seismic and non-seismic were similar. However, in the Eastern Tropical Pacific, delphinid densities during non-seismic were 2x those during

  16. Ross Ice Shelf Seismic Survey and Future Drilling Recommendation

    NASA Astrophysics Data System (ADS)

    van Haastrecht, Laurine; Ohneiser, Christian; Gorman, Andrew; Hulbe, Christina

    2016-04-01

    The Ross Ice Shelf (RIS) is one of three gateways through which change in the ocean can be propagated into the interior of West Antarctica. Both the geologic record and ice sheet models indicate that it has experienced widespread retreat under past warm climates. But inland of the continental shelf, there are limited data available to validate the models. Understanding what controls the rate at which the ice shelf will respond to future climate change is central to making useful climate projections. Determining the retreat rate at the end of the last glacial maximum is one part of this challenge. In November 2015, four lines of multi-channel seismic data, totalling over 45 km, were collected on the Ross Ice Shelf, approximately 300 km south of Ross Island using a thumper seismic source and a 96 channel snow streamer. The seismic survey was undertaken under the New Zealand Antarctic Research Institute (NZARI) funded Aotearoa New Zealand Ross Ice Shelf Programme to resolve bathymetric details and to image sea floor sediments under a proposed drilling site on the ice shelf, at about 80.7 S and 174 E. The thumper, a purpose-built, trailer mounted, weight-drop seismic source was towed behind a Hägglund tracked vehicle to image the bathymetry and sediments underneath the RIS. Seismic data collection on an ice shelf has unique challenges, in particular strong attenuation of the seismic energy by snow and firn, and complex multiple ray paths. The thumper, which consists of a heavy weight (250kg) that is dropped on a large, ski mounted steel plate, produced a consistent, repeatable higher energy signal when compared to sledge hammer source and allowed for a greater geographic coverage and lower environmental impact than an explosive source survey. Our survey revealed that the seafloor is smooth and that there may be up to 100 m of layered sediments beneath the seafloor and possibly deeper, more complex structures. A multiple generated by internally reflected seismic energy

  17. Repeatability observations from a time-lapse seismic survey

    USGS Publications Warehouse

    Walters, S.L.; Miller, R.D.; Raef, A.E.

    2006-01-01

    Time-lapse seismic surveys have proven extremely valuable in recent years, having numerous economical and environmental applications. To fully utilize this monitoring technique, problems associated with recording repeatability must be minimized. Much work has been done to equalize data from one survey to the next via processing techniques (Huang et al., 1998). The purpose of this study is to investigate the potential for minimized processing, allowing study of extremely small changes in subsurface characteristics. The goal is to evaluate source and receiver terrain combination to optimize signal repeatability, and to improve deconvolution with the ground force to suppress different types of noise and increase repeatability. ?? 2005 Society of Exploration Geophysicists.

  18. Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Okamoto, Taku; Sekino, Yoshihiro; Murakami, Fumitoshi; Mikada, Hitoshi; Takekawa, Junichi; Shimura, Takuya

    2010-05-01

    Hydrothermal vents are commonly found near volcanically active places, areas where tectonic plates are moving apart, ocean basins, and hotspots. Potential new deposits of lead-zinc-copper sulfide are generated by cooling hot water around the vents. There are about ten hydrothermal deposits founded around the water depth of 1000m along Izu-Ogasawara Trench and Okinawa-Trough in Japan. The deposits often exists in very thin layer and spatially limited area surrounded by complex seabottom feature like volcanic caldera. Some hydrothermal vents form roughly cylindrical chimney structures. In order to evaluate hydrothermal deposit, we have proposed the reflection seismic survey with vertical cable recording geometry, which is named as VCS (Vertical Cable Seismic). VCS has great advantages over conventional seismic method as follows: 1. It achieves 3D image within limited area. The target of hydrothermal deposit is within 1km x 1km around the depth of 1000m. The conventional 3D seismic is not effective. 3D image is necessary for the estimate the complex hydrothermal area. 2. Seabottom condition is too rough to deploy ocean bottom sensors, such as OBC or OBS. Vertical cables are located on the seabottom, but the sensors are in the marine water. It avoids the coupling problems. The vertical hydrophone array can separate the wavefield. It can separate upgoing (reflection) and downgoing wave (direct wave and ghost) and distinguish the scattered waves in complex feature in hydrothermal area. 3. Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.), marine vibrator or ocean bottom source. These features imply that VCS is suitable for the hydrothermal deposit exploration. Our first experiment has been carried out in November in Lake Biwa, JAPAN. At first we are interested in geometry of source and receiver distribution and the resultant target coverage, then we did survey planning (2D and 3D) and data simulation. We used the

  19. Quantifying seismic survey reverberation off the Alaskan North Slope.

    PubMed

    Guerra, Melania; Thode, Aaron M; Blackwell, Susanna B; Michael Macrander, A

    2011-11-01

    Shallow-water airgun survey activities off the North Slope of Alaska generate impulsive sounds that are the focus of much regulatory attention. Reverberation from repetitive airgun shots, however, can also increase background noise levels, which can decrease the detection range of nearby passive acoustic monitoring (PAM) systems. Typical acoustic metrics for impulsive signals provide no quantitative information about reverberation or its relative effect on the ambient acoustic environment. Here, two conservative metrics are defined for quantifying reverberation: a minimum level metric measures reverberation levels that exist between airgun pulse arrivals, while a reverberation metric estimates the relative magnitude of reverberation vs expected ambient levels in the hypothetical absence of airgun activity, using satellite-measured wind data. The metrics are applied to acoustic data measured by autonomous recorders in the Alaskan Beaufort Sea in 2008 and demonstrate how seismic surveys can increase the background noise over natural ambient levels by 30-45 dB within 1 km of the activity, by 10-25 dB within 15 km of the activity, and by a few dB at 128 km range. These results suggest that shallow-water reverberation would reduce the performance of nearby PAM systems when monitoring for marine mammals within a few kilometers of shallow-water seismic surveys.

  20. Quantifying seismic survey reverberation off the Alaskan North Slope.

    PubMed

    Guerra, Melania; Thode, Aaron M; Blackwell, Susanna B; Michael Macrander, A

    2011-11-01

    Shallow-water airgun survey activities off the North Slope of Alaska generate impulsive sounds that are the focus of much regulatory attention. Reverberation from repetitive airgun shots, however, can also increase background noise levels, which can decrease the detection range of nearby passive acoustic monitoring (PAM) systems. Typical acoustic metrics for impulsive signals provide no quantitative information about reverberation or its relative effect on the ambient acoustic environment. Here, two conservative metrics are defined for quantifying reverberation: a minimum level metric measures reverberation levels that exist between airgun pulse arrivals, while a reverberation metric estimates the relative magnitude of reverberation vs expected ambient levels in the hypothetical absence of airgun activity, using satellite-measured wind data. The metrics are applied to acoustic data measured by autonomous recorders in the Alaskan Beaufort Sea in 2008 and demonstrate how seismic surveys can increase the background noise over natural ambient levels by 30-45 dB within 1 km of the activity, by 10-25 dB within 15 km of the activity, and by a few dB at 128 km range. These results suggest that shallow-water reverberation would reduce the performance of nearby PAM systems when monitoring for marine mammals within a few kilometers of shallow-water seismic surveys. PMID:22087932

  1. Towards 4-D Noise-based Seismic Probing of Volcanoes: Perspectives from a Large-N Nodal Experiment on Piton de la Fournaise Volcano

    NASA Astrophysics Data System (ADS)

    Brenguier, F.; Ackerley, N. J.; Nakata, N.; Boué, P.; Campillo, M.; Roux, P.; Shapiro, N.

    2015-12-01

    Noise-based seismology is proving to be a complementary approach to active source or earthquake-based methods for imaging and monitoring the Earth's interior and in particular volcanoes and active faults. Until recently, noise-based imaging and monitoring relied only on the inversion of surface waves reconstructed from correlations of mostly microseismic seismic noise. Compared to body-wave tomography, surface wave tomography succeeds in retrieving lateral sub-surface velocity contrasts but is less efficient in resolving velocity perturbations at depth. Moreover reflected body-waves can carry direct information about sharp interfaces at depth. Extracting body-waves from noise correlations is challenging and the use of Large-N seismic arrays proves to be of great benefit for extracting noisy body-waves from noise-correlations by stacking over a large number of receiver pairs and by applying array processing. The purpose of VolcArray Large-N seismic experiment on Piton de la Fournaise Volcano is to extract body-waves travelling directly through the active magma reservoir located at ~2.5 km depth below the summit crater using noise correlations between arrays of seismic nodes. By beamforming noise on individual arrays, we found an unusual strong directional source of body-wave noise. This is thus a favorable context for retrieving the body-wave component of the Green's function between arrays. However, standard correlation techniques between nodes do not allow deciphering between the reconstructed Green's function and artifacts from the correlation of the strong directional source of body-waves. By applying double beamforming to the noise correlations between arrays, we are able to isolate ballistic body-waves travelling across the magma storage zone at depth. The stability of these reconstructed waves over time is encouraging in the perspectives of high resolution monitoring of the volcano feeding system.

  2. Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Sekino, Y.; Okamoto, T.; Murakami, F.; Mikada, H.; Takekawa, J.; Shimura, T.; Watanabe, Y.; Asakawa, K.

    2009-12-01

    Hydrothermal vents are commonly found near volcanically active places, areas where tectonic plates are moving apart, ocean basins, and hotspots. Potential new deposits of lead-zinc-copper sulfide are generated by cooling hot water around the vents. There are about ten hydrothermal deposits founded around the water depth of 1000m along Izu-Ogasawara Trench and Okinawa-Trough in Japan. The deposits often exists in very thin layer and spatially limited area surrounded by complex seabottom feature like volcanic caldera. Some hydrothermal vents form roughly cylindrical chimney structures. In order to evaluate hydrothermal deposit, we have proposed the reflection seismic survey with vertical cable recording geometry, which is named as VCS (Vertical Cable Seismic). With this VCS, the following advantages will be provided for hydrothermal deposit survey. (1) It achieves 3D image within limited area which is necessary for estimating the complex hydrothermal deposit Typical hydrothermal deposit extend horizontally within 1km x 1km at the water depth of around 1000m. The conventional 3D seismic is not efficient for such limited target. (2) Seabottom condition is too rough to deploy ocean bottom sensors, such as OBC or OBS. Vertical cables are located on the seabottom, but the sensors are in the marine water. This is to avoid the coupling problems. With the use of the vertical hydrophone array, wavefield is able be separated. It can separate upgoing (reflection) and downgoing wave (direct wave and ghost) and distinguish the scattered waves in complex feature in hydrothermal area. (3) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) or marine vibrator or ocean bottom source. This paper discusses the design of the surveys that can be the best for the 3D image of the target in the most economic way. We are interested in geometry of source and receiver distribution and the resultant target coverage. The first experiment is

  3. A seismic survey in Antarctica, parallel schemes for seismic migration and target oriented velocity analysis

    NASA Astrophysics Data System (ADS)

    Sen, Vikramaditya

    This dissertation comprises three different studies. The first part describes the acquisition and data processing techniques utilized during a seismic survey conducted in the austral summer of 1994--95 in the interior of Antarctica. Three multichannel seismic reflection profiles and two wide-angle profiles were collected over the central-west Antarctica ice sheet to investigate methods to obtain a shallow to mid-crustal section of the lithosphere below the Byrd subglacial basin. The multichannel seismic data were analysed to develop images of the shallow crustal structure, the base of ice, and intra-ice reflections that (with minor exceptions) conform to the ice-floor topography. The high energy, low frequency seismic energy generated by the larger charges of the wide angle data was more successful in imaging the deep crustal section. The upper crust in this area was determined to be fairly non-reflective. Along the main traverse, the base of ice has significant topographical undulation in both inline and crossline directions and several half grabens and localized basins can be identified. More efficient surveys can be conducted and better signal quality can be obtained by using longer streamers (˜4.5 km) and larger and buried charges. The second part describes a parallel implementation of 3D pre-stack Kirchhoff depth migration using the Parallel Virtual Machine (PVM) environment of message passing and clustering. A simple yet robust strategy has been proposed to distribute the computation load among the nodes of a virtual parallel machine and the performance of the parallel method has been compared with conventional sequential schemes. A near linear speedup was achieved in this implementation which implies that the reduction in computation time (compared to the sequential run time) was almost directly proportional to the number of nodes in the virtual machine. The third part of this dissertation describes an approach for target oriented migration velocity

  4. Sound source localization technique using a seismic streamer and its extension for whale localization during seismic surveys.

    PubMed

    Abadi, Shima H; Wilcock, William S D; Tolstoy, Maya; Crone, Timothy J; Carbotte, Suzanne M

    2015-12-01

    Marine seismic surveys are under increasing scrutiny because of concern that they may disturb or otherwise harm marine mammals and impede their communications. Most of the energy from seismic surveys is low frequency, so concerns are particularly focused on baleen whales. Extensive mitigation efforts accompany seismic surveys, including visual and acoustic monitoring, but the possibility remains that not all animals in an area can be observed and located. One potential way to improve mitigation efforts is to utilize the seismic hydrophone streamer to detect and locate calling baleen whales. This study describes a method to localize low frequency sound sources with data recoded by a streamer. Beamforming is used to estimate the angle of arriving energy relative to sub-arrays of the streamer which constrains the horizontal propagation velocity to each sub-array for a given trial location. A grid search method is then used to minimize the time residual for relative arrival times along the streamer estimated by cross correlation. Results from both simulation and experiment are shown and data from the marine mammal observers and the passive acoustic monitoring conducted simultaneously with the seismic survey are used to verify the analysis.

  5. Distribution and abundance of western gray whales during a seismic survey near Sakhalin Island, Russia.

    PubMed

    Yazvenko, S B; McDonald, T L; Blokhin, S A; Johnson, S R; Meier, S K; Melton, H R; Newcomer, M W; Nielson, R M; Vladimirov, V L; Wainwright, P W

    2007-11-01

    Exxon Neftegas Limited, operator of the Sakhalin-1 consortium, is developing oil and gas reserves on the continental shelf off northeast Sakhalin Island, Russia. DalMorNefteGeofizika (DMNG), on behalf of the Sakhalin-1 consortium, conducted a 3-D seismic survey of the Odoptu license area during 17 August-9 September 2001. A portion of the primary known feeding area of the endangered western gray whale (Eschrichtius robustus) is located adjacent to the seismic block. The data presented here were collected as part of daily monitoring to determine if there was any measurable effect of the seismic survey on the distribution and abundance of western gray whales. Mitigation and monitoring program included aerial surveys conducted between 19 July and 19 November using the methodology outlined by the Southern California High Energy Seismic Survey team (HESS). These surveys provided documentation of the distribution, abundance and bottom feeding activity of western gray whales in relation to seismic survey sounds. From an operations perspective, the aerial surveys provided near real-time data on the location of whales in and outside the feeding area, and documented whether whales were displaced out of an area normally used as feeding habitat. The objectives of this study were to assess (a) temporal changes in the distribution and abundance of gray whales in relation to seismic survey, and (b) the influence of seismic survey, environmental factors, and other variables on the distribution and abundance of gray whales within their preferred feeding area adjacent to Piltun Bay. Multiple regression analysis revealed a limited redistribution of gray whales southward within the Piltun feeding area when the seismic survey was fully operational. A total of five environmental and other variables unrelated to seismic survey (date and proxies of depth, sea state and visibility) and one seismic survey-related variable (seg3d, i.e., received sound energy accumulated over 3 days) had

  6. Shallow Seismic Reflection Survey at Garner Valley Digital Array

    NASA Astrophysics Data System (ADS)

    Lawrence, Z. S.; Brackman, T. B.; Bodin, P.; Stephenson, W. J.; Steidl, J. H.; Gomberg, J.

    2004-12-01

    The Garner Valley Digital Array (GVDA) site is a NEES-sponsored facility in a small, sediment-filled, intermountain valley in Southern California, established for the purpose of investigating ground motion site response and soil-structure interaction, in situ. The site has been well-characterized geotechnically, and is thoroughly instrumented with both surface and downhole instrumentation of various types. Nevertheless, a borehole recently drilled into lake bed sediments and deeply weathered granitic rocks that comprise the valley fill at GVDA encountered hard, unweathered bedrock at an unexpected depth, suggesting an apparent 38 meter offset in the unweathered bedrock between two wells 40 meters apart. The apparent offset can be most easily explained either by faulting, or as a buried erosional surface. The Hot Springs fault, a strand of the San Jacinto fault zone, runs through Garner Valley, although its inferred location is several hundred meters east of GVDA. To better characterize the subsurface strata, particularly the existence and configuration of faulting that may disturb them; we conducted a 120-meter long, 12-fold shallow seismic reflection common midpoint (CMP) survey at GVDA using a 24-channel seismograph, vertical 4.5 Hz geophones at 2-meter intervals and a sledgehammer seismic source. Preliminary processing reveals strong refractors and surface waves that may mask reflections, although reflections are visible in some raw shot records. Semi-continuous reflections seen in the CMP section from a shallow reflector may coincide with the water table. There are also deeper, discontinuous reflectors obscured by bands of coherent noise. We plan to present a fully migrated and interpreted CMP record section.

  7. Review of the Effects of Offshore Seismic Surveys in Cetaceans: Are Mass Strandings a Possibility?

    PubMed

    Castellote, Manuel; Llorens, Carlos

    2016-01-01

    Displacement of cetaceans is commonly reported during offshore seismic surveys. Speculation concerning possible links between seismic survey noise and cetacean strandings is available for a dozen events but without convincing causal evidence. This lack of evidence should not be considered conclusive but rather as reflecting the absence of a comprehensive analysis of the circumstances. Current mitigation guidelines are inadequate for long-range effects such as displacements and the potential for strandings. This review presents the available information for ten documented strandings that were possibly linked to seismic surveys and recommends initial measures and actions to further evaluate this potential link.

  8. Feeding of western gray whales during a seismic survey near Sakhalin Island, Russia.

    PubMed

    Yazvenko, S B; McDonald, T L; Blokhin, S A; Johnson, S R; Melton, H R; Newcomer, M W; Nielson, R; Wainwright, P W

    2007-11-01

    Exxon Neftegas Limited, as operator of the Sakhalin-1 consortium, is developing oil and gas reserves on the continental shelf off northeast Sakhalin Island, Russia. DalMorNefteGeofizika (DMNG) on behalf of the Sakhalin-1 consortium conducted a 3-D seismic survey of the Odoptu license area during 17 August-9 September 2001. A portion of the primary feeding area of the endangered western gray whale (Eschrichtius robustus) is located in the vicinity of the seismic survey. This paper presents data to assess whether western gray whale bottom feeding activity, as indicated by visible mud plumes, was affected by seismic operations. The mitigation and monitoring program associated with the seismic survey included aerial surveys during 19 July-19 November 2001. These aerial surveys documented the local and regional distribution, abundance, and bottom feeding activity of western gray whales. Data on gray whale feeding activity before, during and after the seismic survey were collected, with the whales assumed to be feeding on the benthos if mud plumes were observed on the surface. The data were used to assess the influence of seismic survey and other factors (including environmental) on feeding activity of western gray whales. A stepwise multiple regression analysis failed to find a statistically significant effect (alpha = 0.05) of the seismic survey on frequency of occurrence of mud plumes of western gray whales used as a proxy to evaluate bottom feeding activity in Piltun feeding area. The regression indicated that transect number (a proxy for water depth, related to distance from shore) and swell height (a proxy for sea state) were the only variables that had a significant effect on frequency of whale mud plumes. It is concluded that the 2001 seismic survey had no measurable effect (alpha = 0.05) on bottom feeding activity of western gray whales off Sakhalin Island.

  9. Near-surface velocity structure from borehole and refraction seismic surveys

    SciTech Connect

    Parry, D.; Lawton, D.C.

    1994-12-31

    Seismic refraction and borehole reflection data have been used in conjunction with other geophysical tools to characterize the near-surface geology in the vicinity of a shallow well near Calgary, Alberta. The investigated section is comprised primarily of glacial tills and gravels. Seismic waves generated in the lower gravel units travel as compressional waves up to the till/gravel interface, where they are converted to shear waves upon transmission. Velocity structure from a reverse vertical seismic profile (RVSP) survey agrees closely with that from refraction surveying.

  10. Vertical Cable Seismic Survey for SMS Exploration in Izena Cauldron, Okinawa-Trough

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Tara, K.

    2014-12-01

    The VCS survey is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by seismic sources. Because the VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed it for the SMS survey tool development program started by Japanese government. In 2010, we manufactured the autonomous VCS data acquisition systems. Through several experimental surveys, our VCS is successfully completed. In 2011 and 2013, we carried out the two VCS surveys using GI gun and high-voltage sparker respectively in the Izena Cauldron, Okinawa Trough, which is one of the most promising SMS areas around Japan. Because seismic survey is not proven to be effective for SMS exploration, no seismic surveys have been conducted there so far. Our strategy for SMS exploration consists of two stages. In the first stage, we carried out VCS survey with the lower frequency GI gun (but higher compared to the convebtional oil/gas exploration) and explored deeper (up to 1,500m) structure to obtain the fault system of hydrothermal flow. Next, using a high frequency (about 1 kHz higher) and high-voltage sparker, we explored very shallow (up to 200m) part to delineate the very thin SMS deposits. These two VCS dataset have been processed with 3D Prestack Depth Migration. These results are consistent with geological information from the borehole drilled nearby and give useful information to SMS exploration.

  11. 4-D Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  12. Pen Branch fault program: Interim report on the High Resolution, Shallow Seismic Reflection surveys

    SciTech Connect

    Stieve, A.L.

    1991-01-31

    The Pen Branch fault was identified in the subsurface at the Savannah River Site in 1989 based upon the interpretation of earlier seismic reflection surveys and other geologic investigations. A program was initiated at that time to further define the fault in terms of its capability to release seismic energy. The High-Resolution, Shallow Seismic Reflection survey recently completed at SRS was initiated to determine the shallowest extent of the fault and to demonstrate the presence of flat-lying sediments in the top 300 feet of sediments. Conclusions at this time are based upon this shallow seismic survey and the Conoco deep seismic survey (1988--1989). Deformation related to the Pen Branch fault is at least 200 milliseconds beneath the surface in the Conoco data and at least 150 milliseconds in the shallow seismic reflection data. This corresponds to approximately 300 feet below the surface. Sediments at that depth are lower Tertiary (Danian stage) or over 60 million years old. This indicates that the fault is not capable.

  13. Seismic texture and amplitude analysis of large scale fluid escape pipes using time lapses seismic surveys: examples from the Loyal Field (Scotland, UK)

    NASA Astrophysics Data System (ADS)

    Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare

    2016-04-01

    Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts

  14. Bayesian spatial modeling of cetacean sightings during a seismic acquisition survey.

    PubMed

    Vilela, Raul; Pena, Ursula; Esteban, Ruth; Koemans, Robin

    2016-08-15

    A visual monitoring of marine mammals was carried out during a seismic acquisition survey performed in waters south of Portugal with the aim of assessing the likelihood of encountering Mysticeti species in this region as well as to determine the impact of the seismic activity upon encounter. Sightings and effort data were assembled with a range of environmental variables at different lags, and a Bayesian site-occupancy modeling approach was used to develop prediction maps and evaluate how species-specific habitat conditions evolved throughout the presence or not of seismic activity. No statistical evidence of a decrease in the sighting rates of Mysticeti by comparison to source activity was found. Indeed, it was found how Mysticeti distribution during the survey period was driven solely by environmental variables. Although further research is needed, possible explanations may include anthropogenic noise habituation and zone of seismic activity coincident with a naturally low density area.

  15. 4D Electron Tomography

    NASA Astrophysics Data System (ADS)

    Kwon, Oh-Hoon; Zewail, Ahmed H.

    2010-06-01

    Electron tomography provides three-dimensional (3D) imaging of noncrystalline and crystalline equilibrium structures, as well as elemental volume composition, of materials and biological specimens, including those of viruses and cells. We report the development of 4D electron tomography by integrating the fourth dimension (time resolution) with the 3D spatial resolution obtained from a complete tilt series of 2D projections of an object. The different time frames of tomograms constitute a movie of the object in motion, thus enabling studies of nonequilibrium structures and transient processes. The method was demonstrated using carbon nanotubes of a bracelet-like ring structure for which 4D tomograms display different modes of motion, such as breathing and wiggling, with resonance frequencies up to 30 megahertz. Applications can now make use of the full space-time range with the nanometer-femtosecond resolution of ultrafast electron tomography.

  16. A seismic survey of the Manson disturbed area

    NASA Technical Reports Server (NTRS)

    Sendlein, L. V. A.; Smith, T. A.

    1971-01-01

    The region in north-central Iowa referred to as the Manson disturbed area was investigated with the seismic refraction method and the bedrock configuration mapped. The area is approximately 30 km in diameter and is not detectable from the surface topography; however, water wells that penetrate the bedrock indicate that the bedrock is composed of disturbed Cretaceous sediments with a central region approximately 6 km in diameter composed of Precambrian crystalline rock. Seismic velocity differences between the overlying glacial till and the Cretaceous sediments were so small that a statistical program was developed to analyze the data. The program developed utilizes existing 2 segment regression analyses and extends the method to fit 3 or more regression lines to seismic data.

  17. The scientific value of 4D visualizations

    NASA Astrophysics Data System (ADS)

    Minster, J.; Olsen, K.; Day, S.; Moore, R.; Jordan, T. H.; Maechling, P.; Chourasia, A.

    2006-12-01

    Significant scientific insights derive from viewing measured, or calculated three-dimensional, time-dependent -- that is four-dimensional-- fields. This issue cuts across all disciplines of Earth Sciences. Addressing it calls for close collaborations between "domain" scientists and "IT" visualization specialists. Techniques to display such 4D fields in a intuitive way are a major challenge, especially when the relevant variables to be displayed are not scalars but tensors. This talk will illustrate some attempts to deal with this challenge, using seismic wave fields as specific objects to display. We will highlight how 4D displays can help address very difficult issues of significant scientific import.

  18. Seismic surveys negatively affect humpback whale singing activity off northern Angola.

    PubMed

    Cerchio, Salvatore; Strindberg, Samantha; Collins, Tim; Bennett, Chanda; Rosenbaum, Howard

    2014-01-01

    Passive acoustic monitoring was used to document the presence of singing humpback whales off the coast of Northern Angola, and opportunistically test for the effect of seismic survey activity in the vicinity on the number of singing whales. Two Marine Autonomous Recording Units (MARUs) were deployed between March and December 2008 in the offshore environment. Song was first heard in mid June and continued through the remaining duration of the study. Seismic survey activity was heard regularly during two separate periods, consistently throughout July and intermittently in mid-October/November. Numbers of singers were counted during the first ten minutes of every hour for the period from 24 May to 1 December, and Generalized Additive Mixed Models (GAMMs) were used to assess the effect of survey day (seasonality), hour (diel variation), moon phase and received levels of seismic survey pulses (measured from a single pulse during each ten-minute sampled period) on singer number. Application of GAMMs indicated significant seasonal variation, which was the most pronounced effect when assessing the full dataset across the entire season (p<0.001); however seasonality almost entirely dropped out of top-ranked models when applied to a reduced dataset during the July period of seismic survey activity. Diel variation was significant in both the full and reduced datasets (from p<0.01 to p<0.05) and often included in the top-ranked models. The number of singers significantly decreased with increasing received level of seismic survey pulses (from p<0.01 to p<0.05); this explanatory variable was included among the top ranked models for one MARU in the full dataset and both MARUs in the reduced dataset. This suggests that the breeding display of humpback whales is disrupted by seismic survey activity, and thus merits further attention and study, and potentially conservation action in the case of sensitive breeding populations.

  19. Seismic Surveys Negatively Affect Humpback Whale Singing Activity off Northern Angola

    PubMed Central

    Cerchio, Salvatore; Strindberg, Samantha; Collins, Tim; Bennett, Chanda; Rosenbaum, Howard

    2014-01-01

    Passive acoustic monitoring was used to document the presence of singing humpback whales off the coast of Northern Angola, and opportunistically test for the effect of seismic survey activity in the vicinity on the number of singing whales. Two Marine Autonomous Recording Units (MARUs) were deployed between March and December 2008 in the offshore environment. Song was first heard in mid June and continued through the remaining duration of the study. Seismic survey activity was heard regularly during two separate periods, consistently throughout July and intermittently in mid-October/November. Numbers of singers were counted during the first ten minutes of every hour for the period from 24 May to 1 December, and Generalized Additive Mixed Models (GAMMs) were used to assess the effect of survey day (seasonality), hour (diel variation), moon phase and received levels of seismic survey pulses (measured from a single pulse during each ten-minute sampled period) on singer number. Application of GAMMs indicated significant seasonal variation, which was the most pronounced effect when assessing the full dataset across the entire season (p<0.001); however seasonality almost entirely dropped out of top-ranked models when applied to a reduced dataset during the July period of seismic survey activity. Diel variation was significant in both the full and reduced datasets (from p<0.01 to p<0.05) and often included in the top-ranked models. The number of singers significantly decreased with increasing received level of seismic survey pulses (from p<0.01 to p<0.05); this explanatory variable was included among the top ranked models for one MARU in the full dataset and both MARUs in the reduced dataset. This suggests that the breeding display of humpback whales is disrupted by seismic survey activity, and thus merits further attention and study, and potentially conservation action in the case of sensitive breeding populations. PMID:24618836

  20. Fault and dyke detectability in high resolution seismic surveys for coal: a view from numerical modelling*

    NASA Astrophysics Data System (ADS)

    Zhou, Binzhong 13Hatherly, Peter

    2014-10-01

    Modern underground coal mining requires certainty about geological faults, dykes and other structural features. Faults with throws of even just a few metres can create safety issues and lead to costly delays in mine production. In this paper, we use numerical modelling in an ideal, noise-free environment with homogeneous layering to investigate the detectability of small faults by seismic reflection surveying. If the layering is horizontal, faults with throws of 1/8 of the wavelength should be detectable in a 2D survey. In a coal mining setting where the seismic velocity of the overburden ranges from 3000 m/s to 4000 m/s and the dominant seismic frequency is ~100 Hz, this corresponds to a fault with a throw of 4-5 m. However, if the layers are dipping or folded, the faults may be more difficult to detect, especially when their throws oppose the trend of the background structure. In the case of 3D seismic surveying we suggest that faults with throws as small as 1/16 of wavelength (2-2.5 m) can be detectable because of the benefits offered by computer-aided horizon identification and the improved spatial coherence in 3D seismic surveys. With dykes, we find that Berkhout's definition of the Fresnel zone is more consistent with actual experience. At a depth of 500 m, which is typically encountered in coal mining, and a 100 Hz dominant seismic frequency, dykes less than 8 m in width are undetectable, even after migration.

  1. Seismic monitoring at Deception Island volcano (Antarctica): the 2010-2011 survey

    NASA Astrophysics Data System (ADS)

    Martín, R.; Carmona, E.; Almendros, J.; Serrano, I.; Villaseñor, A.; Galeano, J.

    2012-04-01

    As an example of the recent advances introduced in seismic monitoring of Deception Island volcano (Antarctica) during recent years, we describe the instrumental network deployed during the 2010-2011 survey by the Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR). The period of operation extended from December 19, 2010 to March 5, 2011. We deployed a wireless seismic network composed by four three-component seismic stations. These stations are based on 24-bit SL04 SARA dataloggers sampling at 100 sps. They use a PC with embedded linux and SEISLOG data acquisition software. We use two types of three-component seismometers: short-period Mark L4C with natural frequency of 1 Hz and medium-period Lennartz3D/5s with natural frequency of 0.2 Hz. The network was designed for an optimum spatial coverage of the northern half of Deception, where a magma chamber has been reported. Station locations include the vicinity of the Spanish base "Gabriel de Castilla" (GdC), Obsidianas Beach, a zone near the craters from the 1970 eruptions, and the Chilean Shelter located south of Pendulum Cove. Continuous data from the local seismic network are received in real-time in the base by wifi transmission. We used Ubiquiti Networks Nanostation2 antennas with 2.4 GHz, dual-polarity, 10 dBi gain, and 54 Mbps transmission rate. They have shown a great robustness and speed for real-time applications. To prioritize data acquisition when the battery level is low, we have designed a circuit that allows independent power management for the seismic station and wireless transmission system. The reception antenna located at GdC is connected to a computer running SEISCOMP. This software supports several transmission protocols and manages the visualization and recording of seismic data, including the generation of summary plots to show the seismic activity. These twelve data channels are stored in miniseed format and displayed in real time, which allows for a rapid evaluation of

  2. U. S. Geological Survey begins seismic ground response experiments in Washington State

    USGS Publications Warehouse

    Tarr, A.C.; King, K.W.

    1987-01-01

    The men were Denver-based U.S Geological Survey (USGS) geophysicists working on the Urban Hazards Field Investigations project. On the previous day they had recorded two events on their seismographs-a distant nuclear explosion in Nevada and a blast at amine near Centralia, Washington. On another day, they used seismic refraction equipment to locate the depth of bedrock and seismic velocity to it at several locations in West Seattle and in the Seward Park-Brighton district of southeast Seattle. 

  3. High-resolution seismic reflection survey near SPR surface collapse feature at Weeks Island, Louisiana

    SciTech Connect

    Miller, R.D.; Xia, J.; Harding, R.S. Jr.; Steeples, D.W.

    1994-12-31

    Shallow high resolution 2-D and 3-D seismic reflection techniques are assisting in the subsurface delineation of a surface collapse feature (sinkhole) at Weeks Island, Louisiana. Seismic reflection surveys were conducted in March 1994. Data from walkaway noise tests were used to assist selection of field recording parameters. The top of the salt dome is about 180 ft below ground surface at the sinkhole. The water table is an estimated 90 ft below the ground surface. A single coherent reflection was consistently recorded across the entire area of the survey, although stacking velocity and spectral content of the event varied. On the basis of observed travel times and stacking velocities, the coherent reflection event appears to originate above the top of the salt, possibly at or near the water table. Identification of this reflector will be made form borehole investigations currently planned for the sinkhole site. A depression or time sag in this reflection event is clearly evident in both the 2-D and 3-D seismic data in the immediate vicinity of the sinkhole. The time sag appears to be related to the subsurface structure of the reflector and not to near surface topography or velocity effects. Elsewhere in the survey area, observed changes in reflection travel times and wavelet character appear to be related to subsurface geologic structure. These seismic observations may assist in predicting where future sinkholes will develop after they have been tied to borehole data collected at the site.

  4. Suspended ceiling system survey and seismic bracing recommendations for Lawrence Livermore National Laboratory

    SciTech Connect

    Not Available

    1985-08-01

    In response to the Laboratory's concern that suspended ceilings, installed without proper engineering consideration for earthquake resistance, can be potential source of damage, LLNL commissioned ED2 International Architects and Planners to provide a guide and survey for the installation commercially available suspended ceiling systems. The Survey was to include select ceiling types, their relative costs, and recommendations for seismic design. This Survey is in the format of a handbook with seven major headings: Generic types of suspended ceiling systems; functional comparative analysis of the various system; relative costs of the various ceiling systems; seismic considerations and recommendations; detailed drawings and suggested methods of assembly; code references; and listing of material suppliers, representatives, and available product lines and selection check lists.

  5. Suspended ceiling system survey and seismic bracing recommendations for Lawrence Livermore National Laboratory

    SciTech Connect

    Not Available

    1985-08-01

    In response to the Laboratory's concern that suspended ceilings, installed without proper engineering consideration for earthquake resistance, can be potential source of damage, LLNL commissioned ED2 International Architects and Planners to provide a guide and survey for the installation commercially available suspended ceiling systems. The Survey was to include select ceiling types, their relative costs, and recommendations for seismic design. This Survey is in the format of a handbook with seven major headings: Generic types of suspended ceiling systems; Functional Comparative Analysis of the various systems; Relative costs of various ceiling systems; Seismic considerations and recommendations; Detailed drawings and suggested methods of assembly; Code References; and Listing of Material Suppliers, representatives, and available product lines and selection check lists.

  6. Seismic reflection survey in the geothermal field of the Rotorua Caldera, New Zealand

    SciTech Connect

    Lamarche, G. )

    1992-04-01

    This paper discusses a seismic reflection survey conducted in the southern part of the Rotorua geothermal field (New Zealand). Geological structures were interpreted along the two profiles to a depth of about 300 m. A seismic image of the Mamaku Ignimbrite is obtained and appears to show normal faulting. Depth of the top of the Mamaku Ignimbrite corroborates data from boreholes. Thickness of the Ignimbrite sheet may reach 280 m near Rotorua City. It is suggested that the Rotorua caldera boundary is not a single fault but a fault zone consisting of at least 4 faults. The displacement on any one fault is no greater than 30 m. The near surface cold-warm thermal boundary, at the northern boundary of the Whakarewarewa thermal area, is also shown in the seismic section.

  7. Seismicity surveys with ocean bottom seismographs off Western Canada

    SciTech Connect

    Hyndman, R.D.; Rogers, G.C.

    1981-05-10

    Three arrays of ocean bottom seismographs have been deployed to study the seismicity at the northern end of the Juan de Fuca ridge system off western Canada. Nearly 100 events were located with estimated accuracies generally better than +- 10 km, all lying on or near the en echelon ridge-transform fault plate boundaries as defined in this area by the magnetic anomalies, the seafloor morphology and by other geophysical data. The depths of 12 events were determined to lie between 2 and 6 km below the top of the crust. The seismograms exhibit clear P and S wave arrivals along with phases that involve P to S and sometimes S to P conversion probably at the base of the sediments beneath the instruments. The event magnitudes have been estimated from signal duration using four calibration events that were well recorded by a land station. The magnitude estimates permit the determination of rough magnitude-frequency of occurrence relations over the magnitude range of 1 to 3 that are in surprisingly good agreement with the recurrence relations for the area at larger magnitudes from 75 years of land station data. The mean P wave velocity in the uppermost mantle from the earthquake data recorded by the sea floor arrays is 7.6 km s/sup -1/ and the mean V/sub p//V/sub s/ ratio is 1.71 or a Poisson's ratio of 0.24.

  8. Rapid geo-acoustic characterization from a seismic survey

    NASA Astrophysics Data System (ADS)

    Heaney, Kevin D.; Sternlicht, Daniel; Teranishi, Arthur; Castille, Brett; Hamilton, Michael

    2002-05-01

    A recent transmission loss experiment was conducted in Long Beach Harbor for the THUMS Long Beach Company. The objective of the experiment was to measure the range at which the received level was 160 dB for compliance with Marine Mammal regulations. This short experiment provided the opportunity to test the rapid geo-acoustic characterization (RGC) algorithm and perform real-time geo-acoustic inversions from a seismic source. The airgun source transmitted pulses every 20 s corresponding to every 45 m. The water depth was 10-15 m and the water was assumed to be iso-velocity. The data quality was excellent, providing clear striation patterns in the broadband frequency display. The RGC algorithm matches the observed time-spread, striation slope, and TL slope to precomputed values using a normal mode algorithm and parametric geo-acoustic profiles based on Hamilton and Bachman's model. Precomputation of the acoustic observables, combined with real-time signal processing permits real time geo-acoustic characterization.

  9. Understanding the Long-Term Deformation in the Mississippi Embayment: the Mississippi River Seismic Survey

    NASA Astrophysics Data System (ADS)

    Magnani, M.; McIntosh, K.; Waldron, B.; Mitchell, L.; Saustrup, S.; Towle, M.

    2008-12-01

    The Central US hosts one of the most active intraplate seismic areas in the world, the New Madrid seismic zone (NMSZ). Here the high level of historic and instrumental seismicity clashes with the subdued topography of the Mississippi embayment, minimal geodetic vectors and a puzzling lack of substantial deformation in the post Late-Cretaceous sediments. To explain this apparent paradox it has been proposed that the seismicity in the NMSZ is either 1) very young (at least in its present form), 2) episodic, or 3) migrates throughout a broad region. In order to test these hypotheses and to understand how the deformation is partitioned within the Mississippi embayment, we collected a 300 km-long high-resolution seismic reflection profile along the Mississippi river, from Helena, Arkansas to Caruthersville, Missouri. The profile images a portion of the embayment outside the area of influence of the NMSZ in a region where evidence has been mounting of a seismic source, predating the NMSZ, for which no corresponding structure has yet been identified. The seismic survey exploited the advantages of marine acqui9sition (time effective, low cost) using a 245/245 cm3 (15/15 in3) mini-GI airgun fired at 13.790MPa (2000 psi), a 24-channel 75 m-long active streamer, with 3.125 m group and 12 m nominal shot interval. The high quality data image the Cretaceous and younger sedimentary section, from the top of the Paleozoic unconformity to the Quaternary deposits. Preliminary interpretation of the dataset confirms the general deepening of the Paleozoic basement from ~800 ms at Caruthersville, to ~1 s at the southern end of Crowley's Ridge. In addition, the data reveal prominent recent deformation coincident with the Blytheville arch, the Eastern Reelfoot Rift margin and the White river Fault zone, accommodated by folding and faulting that extend from the top of the Paleozoic through the sedimentary section, and that involves the Quaternary deposits.

  10. Combined microbial, seismic surveys predict oil and gas occurrences in Bolivia

    SciTech Connect

    Lopez, J.P. ); Hitzman, D.; Tucker, J. )

    1994-10-24

    Microbial and geophysical surveys in the jungles of Bolivia's extensive Sub-Andean region have combined for three successful predictions of deep oil and gas reserves in as many tries. Hydrocarbon microseepage measured by microbial soil samples predicted the Carrasco, Katari, and Surubi structures of Bolivia's Chapare region in 1991--92, detecting traps with reserves at depths exceeding 4,500 m. Approximately 800 km of seismic lines covering 3,500 sq km was completed by Yacimientos Petroliferos Fiscales Bolivianos (YPFB) for evaluation of the YPFB reserve block. For 1 month each year at the end of the field season, seismic lines were quickly traversed by several microbial sampling teams. Using hand augers or shovels, the teams collected more than 3,200 samples approximately 20 cm (8 in.) deep at intervals of 250 m next to staked seismic locations. Microbial results were directly compared with seismic profiles for identification and ranking of traps and structures. The paper discusses the survey predictions and the microbial approach.

  11. Downhole seismic logging for high-resolution reflection surveying in unconsolidated overburden

    SciTech Connect

    Hunter, J.A.; Pullan, S.E.; Burns, R.A.; Good, R.L.; Harris, J.B.; Pugin, A.; Skvortsov, A.; Goriainov, N.N.

    1998-07-01

    Downhole seismic velocity logging techniques have been developed and applied in support of high-resolution reflection seismic surveys. Data obtained from downhole seismic logging can provide accurate velocity-depth functions and directly correlate seismic reflections to depth. The methodologies described in this paper are designed for slimhole applications in plastic-cased boreholes (minimum ID of 50 mm) and with source and detector arrays that yield similar frequency ranges and vertical depth resolutions as the surface reflection surveys. Compressional- (P-) wave logging uses a multichannel hydrophone array with 0.5-m detector spacings in a fluid-filled borehole and a high-frequency, in-hole shotgun source at the surface. Overlapping array positions downhole results in redundant first-arrival data which can be processed to provide accurate interval velocities. The data also can be displayed as a record suite, showing reflections and directly correlating reflection events with depths. Example applications include identification of gas zones, lithological boundaries within unconsolidated sediments, and the overburden-bedrock interface. Shear- (S-) wave logging uses a slimhole, well-locked, three-component (3-C) geophone pod and a horizontally polarized, hammer-and-loaded-plate source at ground surface. In unconsolidated sediments, shear-wave velocity contrasts can be associated with changes in material density or dynamic shear modulus, which in turn can be related to consolidation. Example applications include identification of a lithological boundary for earthquake hazard applications and mapping massive ice within permafrost materials.

  12. Pen Branch fault program: Consolidated report on the seismic reflection surveys and the shallow drilling

    SciTech Connect

    Stieve, A.L.; Stephenson, D.E.; Aadland, R.K.

    1991-03-23

    The Pen Branch fault was identified in the subsurface at the Savannah River Site (SRS) in 1989 based upon interpretation of earlier seismic reflection surveys and other geologic investigations (Seismorgraph Services Incorp., 1973; Chapman and DiStefano, 1989; Snipes, Fallaw and Price, 1989). A program was initiated at that time to determine the capability of the fault to release seismic energy (Price and others, 1989) as defined in the Nuclear Regulatory Commission regulatory guidelines, 10 CFR 100 Appendix A. This report presents the results of the Pen Branch fault investigation based on data acquired from seismic reflection surveys and shallow drilling across the fault completed at this time. The Earth Science Advisory Committee (ESAC) has reviewed the results of these investigations and unanimously agrees with the conclusion of Westinghouse Savannah River Company (WSRC) that the Pen Branch fault is a non-capable fault. ESAC is a committee of 12 earth science professionals from academia and industry with the charter of providing outside peer review of SRS geotechnical, seismic, and ground water modeling programs.

  13. Radar imaging of winter seismic survey activity in the National Petroleum Reserve-Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Rykhus, Russ; Lu, Zhiming; Arp, C.D.; Selkowitz, D.J.

    2008-01-01

    During the spring of 2006, Radarsat-1 synthetic aperture radar (SAR) imagery was acquired on a continual basis for the Teshekpuk Lake Special Area (TLSA), in the northeast portion of the National Petroleum Reserve, Alaska (NPR-A) in order to monitor lake ice melting processes. During data processing, it was discovered that the Radarsat-1 imagery detected features associated with winter seismic survey activity. Focused analysis of the image time series revealed various aspects of the exploration process such as the grid profile associated with the seismic line surveys as well as trails and campsites associated with the mobile survey crews. Due to the high temporal resolution of the dataset it was possible to track the progress of activities over a one month period. Spaceborne SAR imagery can provide information on the location of winter seismic activity and could be used as a monitoring tool for land and resource managers as increased petroleum-based activity occurs in the TLSA and NPR-A. ?? 2008 Cambridge University Press.

  14. Crustal structure of the western Yamato Basin, Japan Sea, revealed from seismic survey

    NASA Astrophysics Data System (ADS)

    No, T.; Sato, T.; Kodaira, S.; Miura, S.; Ishiyama, T.; Sato, H.

    2015-12-01

    The Yamato Basin is the second largest basin of the Japan Sea. This basin is important to clarify its formation process. Some studies of crustal structure had been carried out in the Yamato Basin (e.g. Ludwig et al., 1975; Katao, 1988; Hirata et al., 1989; Sato et al., 2006). However, the relationship between formation process and crustal structure is not very clear, because the amount of seismic exploration data is very limited. In addition, since there is ODP Leg 127 site 797 (Tamaki et al., 1990) directly beneath our seismic survey line, we contributed to the study on the formation of the Yamato Basin by examining the relation between the ODP results and our results. During July-August 2014, we conducted a multi-channel seismic (MCS) survey and ocean bottom seismometer (OBS) survey to study the crustal structure of the western Yamato Basin. We present an outline of the data acquisition and results of the data processing and preliminary interpretations from this study. As a result of our study, the crust, which is about 12 km thick, is thicker than standard oceanic crust (e.g., Spudich and Orcutt, 1980; White et al., 1992) revealed from P-wave velocity structure by OBS survey. A clear reflector estimated to be the Moho can be identified by MCS profiles. The characteristics of the sedimentary layer are common within the survey area. For example, a strong coherent reflector that is estimated to be an opal-A/opal-CT BSR (bottom simulating reflector) (Kuramoto et al., 1992) was confirmed in the sediment of all survey lines. On the other hand, a coherent reflector in the crust was confirmed in some lines. It is identified as this reflector corresponding with the deformation structure in the sediment and basement.

  15. Near-surface seismic surveys at Rifle, Colorado for shallow groundwater contamination risk assessment

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zelt, C. A.; Levander, A.

    2013-12-01

    In August 2012, we carried out a series of seismic surveys at a site located approximately 0.3 mile east of the city of Rifle in Garfield County, Colorado. The ground water beneath this site was contaminated by former vanadium and uranium ore-processing operations from 1924 through 1958. The site is on an alluvial terrace created by a flood-plain meander of the Colorado River. On the south side, the terrace is bounded by a steep descending slope to the Colorado River; on the other sides, it is bounded by ascending slopes of the more resistant sedimentary rocks of the Wasatch Formation. Although remedial actions have been taken to remove the contaminated surface materials, there are still potential risks from residual materials and redistribution of the contaminated water harming human health. This seismic project, funded by The U.S. Department of Energy, was designed to provide hydrogeologic information through sub-surface velocity model building and imaging of the water aquifer. A 3D compressional wave seismic survey covers an area that is 96 m in the N-S direction by 60 m in the E-W direction. An orthogonal, symmetric receiver and source template was used with 24 receiver lines, 96 channels per receiver line, and 2.5 m between lines. The inline shot and receiver spacing is 2 m and 1 m, respectively. The source was an accelerated weight drop striking a metal plate. The source has a dominant frequency at ~60 Hz, and is down by 20 db at 20 Hz and 150 Hz, providing data suitable for seismic tomography and seismic migration methods. Besides this 3D survey, three other seismic experiments were performed: (1) a 2D multi-component source and receiver survey, (2) a 3D surface wave experiment using 4.5 Hz geophones, and (3) an ambient noise experiment using 4.5 Hz geophones to record passing vehicles and trains. Preliminary results of the data analysis will be presented.

  16. Three-axis accelerometer package for slimhole and microhole seismic monitoring and surveys

    SciTech Connect

    Hunter, S.L.; Harben, P.E.

    1997-01-07

    The development of microdrilling technology, nominally defined as drilling technology for 1-in.-diameter boreholes, shows potential for reducing the cost of drilling monitoring wells. A major question that arises in drilling microholes is if downhole logging and monitoring in general--and downhole seismic surveying in particular--can be conducted in such small holes since the inner working diameter of such a seismic tool could be as small as 0.31 in. A downhole three-component accelerometer package that fits within a 031-in. inner diameter tube has been designed, built, and tested. The package consists of three orthogonally mounted Entran EGA-125-5g piezoresistive silicon micromachined accelerometers with temperature compensation circuitry, downhole amplification, and line drivers mounted in a thin-walled aluminum tube. Accelerometers are commercially available in much smaller package sizes than conventional geophones, but the noise floor is significantly higher than that for the geophones. Cross-well tests using small explosives showed good signal-to-noise ratio in the recorded waveform at various receiver depths with a 1,50-ft source-receiver well separation. For some active downhole surveys, the accelerometer unit would clearly be adequate. It can be reasonably assumed, however, that for less energetic sources and for greater well separations, the high accelerometer noise floor is not acceptable. By expanding the inner working diameter of a microhole seismic tool to 0.5 in., other commercial accelerometers can be used with substantially lower noise floors.

  17. Vertical Cable Seismic (VCS) Survey for SMS exploration in Izena Cauldron, Okinawa-Trough

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hitoshi; Mizohata, Shigeharu; Tara, Kenji

    2015-04-01

    In 2014, the Japanese government started the Cross-ministerial Strategic Innovation Promotion Program (SIP), which includes 'New-generation Offshore Exploration Techniques' as an area of interest. We proposed the Vertical Cable Seismic (VCS) survey technique for this program, especially for the exploration of Seafloor Massive Sulfides (SMS). VCS is a reflection seismic method that uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by various acoustic sources. This method is useful to delineate detailed structures in a spatially-limited area below the seabed in the deep sea where conventional surface seismic is not effective. We have been developing an autonomous VCS system with the financial support of the Japanese government since 2009. We have carried out several VCS surveys and completed our VCS system. Izena Cauldron, Okinawa Trough is one of the most promising SMS areas around Japan. There are two high potential areas, the north and south mound. We carried out the first VCS survey around the north mound in 2011 and the second survey around the south mound in 2013 respectively. The first VCS survey in Izena Cauldron was carried out using a GI gun in September, 2011, with the objective of surveying the large-scale and deeper structure of the hydrothermal system. The water depth was 1,500-1,600m. Four VCS systems were deployed. The shooting lines covered an area of 9 km x 9 km with a shooting interval of about 25m and line spacing of 200m to 400m. In the second survey, we used a high-voltage sparker. The objective is to explore very shallow parts to delineate very thin SMS deposits. The survey area was about 4 km x 4km with a 12.5 m shooting interval and 100m to 200m line spacing. Three VCS systems were deployed in this survey. The result of the first GI gun VCS survey was a 3D PSDM volume of the subsurface structure. It extends 2,000m horizontally and down to 1,500m in depth. Further, by re-processing the data with a

  18. Application of uphole data from petroleum seismic surveys to groundwater investigations, Abu Dhabi (United Arab Emirates)

    USGS Publications Warehouse

    Woodward, D.; Menges, C.M.

    1991-01-01

    Velocity data from uphole surveys were used to map the water table and the contact at the base dune sand/top alluvium as part of a joint National Drilling Company-United States Geological Survey Ground Water Research Project in the Emirate of Abu Dhabi. During 1981-1983, a reconnaissance seismic survey was conducted for petroleum exploration in the eastern region of Abu Dhabi. Approximately 2800 kilometers of seismic data, consisting of 92 lines, were acquired in the 2500 km2 concession area near Al Ain. Uphole surveys were conducted about 2 km apart along each seismic line, and were used to calculate weathering corrections required to further process in the seismic data. Approximately 1300 uphole surveys were completed in the concession area between March 1981 and June 1983. Reinterpretation of the velocity profiles derived from the uphole surveys provided data for determining the following subsurface layers, listed in descending order: (1) a surficial, unconsolidated weathering layer with a velocity from 300 to 450 m/s; (2) surficial dune sand, from 750 to 900 m/s; (3) unsaturated, unconsolidated alluvium, from 1000 to 1300 m/s; and (4) saturated, unconsolidated alluvium, from 1900 to 2200 m/s. Two interfaces-the water table and the base dune sand/top alluvium - were identified and mapped from boundaries between these velocity layers. Although the regional water table can fluctuate naturally as much as 3 m per year in this area and the water-table determinations from the uphole data span a 27-month period, an extremely consistent and interpretable water-table map was derived from the uphole data throughout the entire concession area. In the northern part of the area, unconfined groundwater moves northward and northwestward toward the Arabian Gulf; and in the central and southern parts of the area, groundwater moves westward away from the Oman Mountains. In the extreme southern area east of Jabal Hafit, groundwater moves southward into Oman. The map of the base

  19. Seismic Survey Report for Central Nevada Test Area, Subsurface, Correction Action Unit 443, Revision 1

    SciTech Connect

    2008-12-19

    The seismic survey was successful in imaging the water table and underlying structures at the site. The configuration of the water table reflector confirms the general southeast horizontal flow direction in the alluvial aquifer. Offsets in the water table reflector, both at known faults that reach the surface and at subsurface faults not previously recognized, indicate that both extension and blast-related faults are barriers to lateral groundwater flow. The results from this study have been used to optimally locate two new wells designed to monitor head levels and possible contaminant migration in the alluvial aquifer at CTNA.

  20. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina

    SciTech Connect

    Berkman, E. )

    1991-04-01

    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  1. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina. Final report

    SciTech Connect

    Berkman, E.

    1991-04-01

    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  2. Results from a new seismic survey around the JFAST drill site

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Kodaira, S.; Yamamoto, Y.; Fujie, G.; Obana, K.; Miura, S.; Takahashi, N.; Cook, B.; Conin, M.; Chester, F. M.; Mori, J. J.; Eguchi, N.; Toczko, S.

    2013-12-01

    After the 2011 Tohoku earthquake, we have carried out several seismic surveys in the Japan Trench region. A high-resolution seismic survey collected in 2011 using a 1300-m-long streamer cable and a gun array with volume of 320 inch3 played an important role for choosing the site location and its results showed detailed structure in the Japan Trench axis area. Due to the short offset of the streamer cable, however, the seismic velocity could not be accurately determined.. Furthermore, the regional structural profiles were not obtained because of the small volume of the sounding source from the high resolution seismic survey. In January 2013, we conducted a seismic survey around the IODP Site C0019 drilled during the IODP Expedition 343 (JFAST) with air gun arrays with volume of 7800 inch3 by R/V Kairei. We used a 6000-m-long streamer cable and 4 OBSs as receivers. The shot interval was 50 m along the survey lines. The primary survey line JFD1 runs across the Japan Trench in WNW-ESE direction and the length of the line is ~ 100 km centered at the Site C0019. The data obtained by the streamer cable were processed through the Pre-stack time migration (PrSTM) technique. On the PrSTM section of the line JFD1, a relatively strong reflection is observed at ~ 1 s two-way travel time (TWT) below the seafloor in the landward part of the section through ~20 km landward from the trench axis, which corresponds to the 'Cretaceous unconformity'. Landward-dipping reflections observed 15-30 km landward of the trench axis could be a 'backstop interface'. Several landward dipping reflections are imaged within the frontal prism. In the vicinity of the trench axis, imbricated structure of incoming sediments is imaged on the PrSTM profile as previously observed on the high resolution profiles. A seaward dipping reflection, which was interpreted as a part of decollement at the landward part of the trench graben, is also observed in the PrSTM section. The top of the subducting oceanic

  3. Simulation of complete seismic surveys for evaluation of experiment design and processing

    SciTech Connect

    Oezdenvar, T.; McMechan, G.A.; Chaney, P.

    1996-03-01

    Synthesis of complete seismic survey data sets allows analysis and optimization of all stages in an acquisition/processing sequence. The characteristics of available survey designs, parameter choices, and processing algorithms may be evaluated prior to field acquisition to produce a composite system in which all stages have compatible performance; this maximizes the cost effectiveness for a given level of accuracy, or for targets with specific characteristics. Data sets synthesized for three salt structures provide representative comparisons of time and depth migration, post-stack and prestack processing, and illustrate effects of varying recording aperture and shot spacing, iterative focusing analysis, and the interaction of migration algorithms with recording aperture. A final example demonstrates successful simulation of both 2-D acquisition and processing of a real data line over a salt pod in the Gulf of Mexico.

  4. Tectonics Of Eastern Offshore Trinidad Based On Integration Of BOLIVAR 2D Seismic Lines With Industry 3D Seismic Surveys

    NASA Astrophysics Data System (ADS)

    Soto, M. D.; Mann, P.; Wood, L. J.

    2004-12-01

    New MCS lines in the eastern offshore area of Trinidad augmented by existing 3D seismic surveys by industry provide new insights into complex, strain partitioning produced along this segment of the South America-Caribbean plate boundary. Two major tectonosequences are imaged separated by a Middle Miocene angular unconformity known from wells and mapping in Trinidad. A thick section of deep-marine carbonate and clastic rocks are cleanly truncated by the Middle Miocene unconformity and are chaotically deformed along vertical to northwest-dipping thrust faults. This shortening event reflects a major pulse of pre-Middle Miocene southeastward overthrusting of the Caribbean arc over the passive margin of South America. An upper 2-7-km-thick tectonosequence consisting of late Miocene-Quaternary shelf-related sandstone and shale was deposited by the nearby Orinoco delta. This section is folded to lesser degree and deformed by the sub-vertical, right-lateral Central Range fault zone (CRFZ), known from GPS studies to accommodate 12 mm/yr, of the total 20 mm/yr of interplate motion. Deep, continuous reflec-tors are observed at a depth of 12-17 km beneath eastern Trinidad are correlated with authochthonous, late Cretaceous-early Tertiary carbonate and clastic rocks of the South American passive margin. The Darien fault southeast of the CRFZ accommodates active shortening, elevates passive margin rocks to the surface in Trinidad, and forms the northeastern limit of a large, 12-km-thick foreland basin (Columbus basin) that extends onshore.

  5. Variation in harbour porpoise activity in response to seismic survey noise.

    PubMed

    Pirotta, Enrico; Brookes, Kate L; Graham, Isla M; Thompson, Paul M

    2014-05-01

    Animals exposed to anthropogenic disturbance make trade-offs between perceived risk and the cost of leaving disturbed areas. Impact assessments tend to focus on overt behavioural responses leading to displacement, but trade-offs may also impact individual energy budgets through reduced foraging performance. Previous studies found no evidence for broad-scale displacement of harbour porpoises exposed to impulse noise from a 10 day two-dimensional seismic survey. Here, we used an array of passive acoustic loggers coupled with calibrated noise measurements to test whether the seismic survey influenced the activity patterns of porpoises remaining in the area. We showed that the probability of recording a buzz declined by 15% in the ensonified area and was positively related to distance from the source vessel. We also estimated received levels at the hydrophones and characterized the noise response curve. Our results demonstrate how environmental impact assessments can be developed to assess more subtle effects of noise disturbance on activity patterns and foraging efficiency. PMID:24850891

  6. Variation in harbour porpoise activity in response to seismic survey noise

    PubMed Central

    Pirotta, Enrico; Brookes, Kate L.; Graham, Isla M.; Thompson, Paul M.

    2014-01-01

    Animals exposed to anthropogenic disturbance make trade-offs between perceived risk and the cost of leaving disturbed areas. Impact assessments tend to focus on overt behavioural responses leading to displacement, but trade-offs may also impact individual energy budgets through reduced foraging performance. Previous studies found no evidence for broad-scale displacement of harbour porpoises exposed to impulse noise from a 10 day two-dimensional seismic survey. Here, we used an array of passive acoustic loggers coupled with calibrated noise measurements to test whether the seismic survey influenced the activity patterns of porpoises remaining in the area. We showed that the probability of recording a buzz declined by 15% in the ensonified area and was positively related to distance from the source vessel. We also estimated received levels at the hydrophones and characterized the noise response curve. Our results demonstrate how environmental impact assessments can be developed to assess more subtle effects of noise disturbance on activity patterns and foraging efficiency. PMID:24850891

  7. A combined surface and borehole seismic survey at the COSC-1 borehole

    NASA Astrophysics Data System (ADS)

    Simon, Helge; Krauß, Felix; Hedin, Peter; Buske, Stefan; Giese, Rüdiger; Juhlin, Christopher

    2015-04-01

    The ICDP project COSC (Collisional Orogeny in the Scandinavian Caledonides) focuses on the mid Paleozoic Caledonide Orogen in Scandinavia in order to better understand orogenic processes, from the past and in recent active mountain belts. The Scandinavian Caledonides provide a well preserved example of a Paleozoic continent-continent collision. Surface geology in combination with geophysical data provide control of the geometry of the Caledonian structure, including the allochthon and the underlying autochthon, as well as the shallow W-dipping décollement surface that separates the two and consist of a thin skin of Cambrian black shales. During spring/summer 2014 the COSC-1 borehole was drilled to approx. 2.5 km depth near the town of Åre (western Jämtland/Sweden) with nearly 100 % of core recovery and cores in best quality. After the drilling was finished, a major seismic survey was conducted in and around the COSC-1 borehole which comprised both seismic reflection and transmission experiments. Besides a high resolution zero-offset VSP (Vertical Seismic Profiling) experiment also a multi-azimuthal walkaway VSP survey took place. For the latter the source points were distributed along three profile lines centered radially around the borehole. For the central part up to 2.5 km away from the borehole, a hydraulic hammer source was used, which hits the ground for about 20 s with an linear increasing hit rate. For the far offset shots up to 5 km, explosive sources were used. The wavefield of both source types was recorded in the borehole using an array of 15 three-component receivers with a geophone spacing of 10 m. This array was deployed at 7 different depth levels during the survey. At the same time the wavefield was also recorded at the surface by 180 standalone three-component receivers placed along each of the three up to 10 km long lines, as well as with a 3D array of single-component receivers in the central part of the survey area around the borehole. Here

  8. Abundance, behavior, and movement patterns of western gray whales in relation to a 3-D seismic survey, Northeast Sakhalin Island, Russia.

    PubMed

    Gailey, Glenn; Würsig, Bernd; McDonald, Trent L

    2007-11-01

    A geophysical seismic survey was conducted in the summer of 2001 off the northeastern coast of Sakhalin Island, Russia. The area of seismic exploration was immediately adjacent to the Piltun feeding grounds of the endangered western gray whale (Eschrichtius robustus). This study investigates relative abundance, behavior, and movement patterns of gray whales in relation to occurrence and proximity to the seismic survey by employing scan sampling, focal follow, and theodolite tracking methodologies. These data were analyzed in relation to temporal, environmental, and seismic related variables to evaluate potential disturbance reactions of gray whales to the seismic survey. The relative numbers of whales and pods recorded from five shore-based stations were not significantly different during periods when seismic surveys were occurring compared to periods when no seismic surveys were occurring and to the post-seismic period. Univariate analyses indicated no significant statistical correlation between seismic survey variables and any of the eleven movement and behavior variables. Multiple regression analyses indicated that, after accounting for temporal and environmental variables, 6 of 11 movement and behavior variables (linearity, acceleration, mean direction, blows per surfacing, and surface-dive blow rate) were not significantly associated with seismic survey variables, and 5 of 11 variables (leg speed, reorientation rate, distance-from-shore, blow interval, and dive time) were significantly associated with seismic survey variables. In summary, after accounting for environmental variables, no correlation was found between seismic survey variables and the linearity of whale movements, changes in whale swimming speed between theodolite fixes, mean direction of whale movement, mean number of whale exhalations per minute at the surface, mean time at the surface, and mean number of exhalations per minute during a whales surface-to-dive cycle. In contrast, at higher

  9. First results of a high resolution reflection seismic survey of the Central Northern Venezuelan Shelf

    NASA Astrophysics Data System (ADS)

    Avila, J.; van Welden, A.; Audemard, F.; de Batist, M.; Beck, C.; Scientific Party, G.

    2008-05-01

    In September - November 2007 the first high resolution marine seismic campaign on the North-Central coast of Venezuela was carried out between Cabo Codera and Golfo Triste. The principal aim of this work was to characterize the active San Sebastian Fault (SSF) and to analyze Cenozoic sedimentation on the Venezuela shelf focusing on: i) effects of active tectonics and ii) coastal landslides/flashflood deposits related to 1999 Vargas catastrophic event or to similar phenomena. Data were acquired onboard R/V GUAIQUERI II from the Oceanographic Institute of the Oriente University. The seismic source was a "CENTIPEDE" sparker (RCGM) operated between 300 and 600 J, 1.3 kHz main frequency. We used a single-channel streamer with 10 hydrophones. In total, 49 seismic profiles were collected, with a cumulative length of 1000 km approximately. In these seismic profiles we identified and separated the deposits into three main units. Unit (U1) comprises low energy reflectors mainly dipping in southward direction (i.e. toward the coast bounded by the San Sebastian Fault). This unit also includes a number of isolated acoustic anomalies, which we tentatively interpret as coral reefs. Its top is defined as Basal Erosional Discontinuity (BED) onto which Unit 2 (U2) deposits are onlapping. U2 is acoustically well-stratified, with strong reflectors. Gradual variations in thickness and a wavy configuration allow us to interpret U2 as probably Quaternary current-related deposits. Last Unit (U3) was defined on the Venezuela shelf and corresponds to prograding sequences probably related to the terrigenous input of the Tuy River. Impact of eustatic fluctuations on these deposits are discussed. The data were also used to construct a simplified bathymetry of the studied area. The lateral transition from the western Cariaco-Tuy pull-apart basin to the (single) SSF was clearly imaged (mostly folds and gravity faults). The survey also displayed prograding sediments bodies in La Tortuga Shelf

  10. Use of Preoperation Acoustic Modeling Combined with Real-Time Sound Level Monitoring to Mitigate Behavioral Effects of Seismic Surveys.

    PubMed

    Racca, Roberto; Austin, Melanie

    2016-01-01

    Underwater acoustic modeling is often used to estimate the injury radius around a seismic exploration source; only occasionally has it been applied to the mitigation of behavioral effects, where the safety boundary may extend to many kilometers. Such a mitigation strategy requires precise estimation of the sound field for many source locations and likely entails field validation over the course of the operation to ensure that mitigation regions are accurate. This article reviews the enactment of such an approach for a seismic survey off Sakhalin Island and examines how similar principles may be applied to other surveys under suitable conditions.

  11. A western gray whale mitigation and monitoring program for a 3-D seismic survey, Sakhalin Island, Russia.

    PubMed

    Johnson, S R; Richardson, W J; Yazvenko, S B; Blokhin, S A; Gailey, G; Jenkerson, M R; Meier, S K; Melton, H R; Newcomer, M W; Perlov, A S; Rutenko, S A; Würsig, B; Martin, C R; Egging, D E

    2007-11-01

    The introduction of anthropogenic sounds into the marine environment can impact some marine mammals. Impacts can be greatly reduced if appropriate mitigation measures and monitoring are implemented. This paper concerns such measures undertaken by Exxon Neftegas Limited, as operator of the Sakhalin-1 Consortium, during the Odoptu 3-D seismic survey conducted during 17 August-9 September 2001. The key environmental issue was protection of the critically endangered western gray whale (Eschrichtius robustus), which feeds in summer and fall primarily in the Piltun feeding area off northeast Sakhalin Island. Existing mitigation and monitoring practices for seismic surveys in other jurisdictions were evaluated to identify best practices for reducing impacts on feeding activity by western gray whales. Two buffer zones were established to protect whales from physical injury or undue disturbance during feeding. A 1 km buffer protected all whales from exposure to levels of sound energy potentially capable of producing physical injury. A 4-5 km buffer was established to avoid displacing western gray whales from feeding areas. Trained Marine Mammal Observers (MMOs) on the seismic ship Nordic Explorer had the authority to shut down the air guns if whales were sighted within these buffers. Additional mitigation measures were also incorporated: Temporal mitigation was provided by rescheduling the program from June-August to August-September to avoid interference with spring arrival of migrating gray whales. The survey area was reduced by 19% to avoid certain waters <20 m deep where feeding whales concentrated and where seismic acquisition was a lower priority. The number of air guns and total volume of the air guns were reduced by about half (from 28 to 14 air guns and from 3,390 in(3) to 1,640 in(3)) relative to initial plans. "Ramp-up" (="soft-start") procedures were implemented. Monitoring activities were conducted as needed to implement some mitigation measures, and to assess

  12. A Three-dimensional Reflection Seismic Survey In The Earstern Nankai Accretionary Prism.

    NASA Astrophysics Data System (ADS)

    Ike, T.; Tokuyama, H.; Kuramoto, S.; Matsushima, J.; Yokota, T.; Pascal, G.; Lalememant, S.

    The Three-Dimensional Multi-Channel Seismic (3D-MCS) reflection survey using a tuned air gun source was held in the eastern Nankai accretionary prism from June to July 2000. The crustal deformation of the eastern Nankai accretionary prism is affected by a nearby collision between the Izu-Bonin arc and the central Japan. Sev- eral active fault systems were described by many high-resolution seismic data, and proposed that the Tokai and Kodaiba fault systems were derived from a decollement plane. From the deformation style in the Nankai Trough, we concern about the oc- currence of a great earthquake in recent years. The main objective of our experiment is to resolve the structural image of the plate boundary and identify the up-dip limit of seismogenic zone. The 3-D survey covers 45km long and 5km wide area with 51 seismic lines, located about 50km southwest from Omaezaki. We applied the non- iterative Kirchhoff pre-stack time migration method (Matsushima et.,al 2001) with stacking velocity analysis to our 3-D data. The derived 3-D prestack time migra- tion profile shows a better development at the deep structure on the top of oceanic crust, compared with preliminary 2-D prestack time migration processed profile. The processed 3-D data gives us a significantly clear image of the thrust faults and the relationship between sediment deformation and thrust activity. A preliminary 3-D in- terpretation was conducted and leaded the following results.1) The Tokai and Kodaiba thrusts are confirmed to be sets of out-of-sequence thrusts. 2) Both thrusts are ac- tive fault that revealed by the structure of the deformation of surface sediments. 3) A strong and low frequency reflector can be identified in the entire profile at two-way- time 7-7.5sec that should be a decollement plane. 4)Tokai and Kodaiba fault systems merged to the decollement plane at same depth. The contact area of the thrust faults to the decollement corresponds to south end of seismic coupling region presumed

  13. Crosswell acoustic surveying in gas sands: travel-time pattern recognition, seismic Q and channel waves

    SciTech Connect

    Albright, J.N.; Johnson, P.A.

    1985-01-01

    The application of crosswell acoustic measurements to gas sands research has been explored through surveys conducted in the Mesa Verde formation at the Department of Energy Multi-Well Experiment (MWX) site near Rifle, Colorado. The borehole tools used in the survey are similar in concept to those used in commercial service for sonic logging, but they are especially adapted for the stringent requirements of crosswell shooting in hot gas wells. Important information about the geologic structure between wells can be extracted from crosswell scans without resorting to elaborate processing. A useful representation is a display of the travel time of P-waves in terms of the cylindrical coordinates of the transmitter referenced to the receiver. This is known as a gamma-depth (..gamma..-Z) plot. Such a representation may yield distinctive patterns, which can be interpreted based on the successful replication of the pattern through computer simulations. The apparent seismic Q of P-waves transmitted through the sands at the MWX site is derived using two methods. The first applies to crosswell surveys in which signals can be acquired over a significant range of source-receiver distances. A Q of 15 between well pair MWX 1/2 is derived in this manner. The second method makes use of signals transmitted between wells in a three-well complex and provides an estimate of seismic Q for the rocks bounded by each well pair. Q estimates derived from this technique are 18, 30, and 28 for well bores MWX-1/2, MWX-2/3 and MWX-3/1, respectively. Channel waves propagate through the MWX coals. Evidence suggests that tube waves launched in the transmitter well give rise, under appropriate conditions, to channel waves, which in turn excite tube waves in nearby wells that penetrate the same channel. Although the sequence of conversions is weak, the resulting waveforms are coherent enough to resolve the channel waves through stacking. 8 refs., 10 figs.

  14. A High-resolution Seismic Reflection Survey at the Hanford Nuclear Site Using a Land Streamer

    NASA Astrophysics Data System (ADS)

    Hyde, E. R.; Speece, M. A.; Link, C. A.; Repasky, T.; Thompson, M.; Miller, S.; Cummins, G.

    2009-12-01

    From the 1940s through the mid 1990s, radioactively and chemically contaminated effluent waste was released into the ground at the Hanford Nuclear Site. Currently, Hanford is the site of a large-scale and ongoing environmental cleanup effort which includes the remediation of contaminated ground water. Identifying preferential pathways of groundwater contaminant flow is critical for the groundwater cleanup effort. During the summer of 2009, Montana Tech, in collaboration with the Confederated Tribes of the Umatilla Indian Reservation, collected a high resolution shallow seismic survey on the Hanford Central Plateau near the Gable Gap area of the Hanford Nuclear site. The goal of the survey was to demonstrate the feasibility of using a land streamer/gimbaled geophone acquisition approach to image the basalt bedrock topography. The survey objective is to improve the understanding of the subsurface water flow by identifying the topography of the basement basalt and possible erosional channels created during the Missoula flood events. Data was collected for a total of eight 2D lines with a combined length of about 11 km with a coverage area of approximately 6 sq.km. The profiles were aligned in north-south and east-west intersecting lines with a total of 5 profile intersections. The survey used a 227 kg accelerated weight drop and a 96-channel land streamer. The land streamer used gimbaled geophones with 2 m spacing. Source spacing was also 2 m for a nominal fold of 48. The rapid deployment land streamer, compared to conventional spiked geophones, significantly increased production in this off-road application. Typically, between 45 and 55 stations could be shot per hour in a pull and shoot approach. Deployment of the land streamer required about 45 minutes and about 30 minutes was required to shut down the survey. The survey successfully imaged the top of the basalt and demonstrated that a land streamer can produce quality seismic data in this area. The basalt bedrock

  15. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    USGS Publications Warehouse

    Haines, Seth S.; Burton, Bethany L.; Sweetkind, Donald S.; Asch, Theodore H.

    2008-01-01

    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we

  16. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    SciTech Connect

    Seth S. Haines; Bethany L. Burton; Donald S. Sweetkind; Theodore H. Asch

    2009-03-30

    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we

  17. Wide-angle seismic survey in the trench-outer rise region of the central Japan Trench

    NASA Astrophysics Data System (ADS)

    Fujie, G.; Kodaira, S.; Iwamaru, H.; Shirai, T.; Dannowski, A.; Thorwart, M.; Grevemeyer, I.; Morgan, J. P.

    2015-12-01

    Dehydration process within the subducting oceanic plate and expelled water from there affect various subduction-zone processes, including arc volcanism and generation of earthquakes. This implies that the degree of hydration within the incoming oceanic plate just prior to subduction might be a key control factor on the regional variations in subduction zone processes like interplate earthquakes and arc volcanism. Recent advances in seismic structure studies in the trench-outer rise region of the Japan Trench have revealed that seismic velocities within the incoming oceanic plate become lower owing to the plate bending-related faulting, suggesting the hydration of the oceanic plate. If the degree of the oceanic plate hydration is one of key factors controlling the regional variations of the interplate earthquakes, the degree of the oceanic plate hydration just prior to subduction is expected to show the along-trench variation because the interplate seismicity in the forearc region of the Japan Trench show along-trench variations. However, we cannot discuss the along-trench variation of the incoming plate structure because seismic structure studies have been confined only to the northern Japan Trench so far.In 2014 and 2015, JAMSTEC and GEOMAR conducted wide-angle seismic surveys in the trench-outer rise region of the central Japan Trench to reveal the detailed seismic structure of the incoming oceanic plate. The western extension of our survey line corresponds to the epicenter of the 2011 M9 Tohoku earthquakes. We deployed 88 Ocean Bottom Seismometers (OBSs) at intervals of 6 km and shot a tuned air-gun array of R/V Kairei at 200 m spacing. In this presentation, we will show the overview of our seismic survey and present seismic structure models obtained by the data of mainly 2014 seismic survey together with the several OBS data from 2015 survey. The preliminary results show P-wave velocity (Vp) within the oceanic crust and mantle decreases toward the trench axis

  18. Seismic site survey investigations in urban environments: The case of the underground metro project in Copenhagen, Denmark.

    NASA Astrophysics Data System (ADS)

    Martínez, K.; Mendoza, J. A.; Colberg-Larsen, J.; Ploug, C.

    2009-05-01

    Near surface geophysics applications are gaining more widespread use in geotechnical and engineering projects. The development of data acquisition, processing tools and interpretation methods have optimized survey time, reduced logistics costs and increase results reliability of seismic surveys during the last decades. However, the use of wide-scale geophysical methods under urban environments continues to face great challenges due to multiple noise sources and obstacles inherent to cities. A seismic pre-investigation was conducted to investigate the feasibility of using seismic methods to obtain information about the subsurface layer locations and media properties in Copenhagen. Such information is needed for hydrological, geotechnical and groundwater modeling related to the Cityringen underground metro project. The pre-investigation objectives were to validate methods in an urban environment and optimize field survey procedures, processing and interpretation methods in urban settings in the event of further seismic investigations. The geological setting at the survey site is characterized by several interlaced layers of clay, till and sand. These layers are found unevenly distributed throughout the city and present varying thickness, overlaying several different unit types of limestone at shallow depths. Specific results objectives were to map the bedrock surface, ascertain a structural geological framework and investigate bedrock media properties relevant to the construction design. The seismic test consisted of a combined seismic reflection and refraction analyses of a profile line conducted along an approximately 1400 m section in the northern part of Copenhagen, along the projected metro city line. The data acquisition was carried out using a 192 channels array, receiver groups with 5 m spacing and a Vibroseis as a source at 10 m spacing. Complementarily, six vertical seismic profiles (VSP) were performed at boreholes located along the line. The reflection

  19. Information system evolution at the French National Network of Seismic Survey (BCSF-RENASS)

    NASA Astrophysics Data System (ADS)

    Engels, F.; Grunberg, M.

    2013-12-01

    The aging information system of the French National Network of Seismic Survey (BCSF-RENASS), located in Strasbourg (EOST), needed to be updated to satisfy new practices from Computer science world. The latter means to evolve our system at different levels : development method, datamining solutions, system administration. The new system had to provide more agility for incoming projects. The main difficulty was to maintain old system and the new one in parallel the time to validate new solutions with a restricted team. Solutions adopted here are coming from standards used by the seismological community and inspired by the state of the art of devops community. The new system is easier to maintain and take advantage of large community to find support. This poster introduces the new system and choosen solutions like Puppet, Fabric, MongoDB and FDSN Webservices.

  20. High resolution, shallow seismic reflection survey of the Pen Branch fault

    SciTech Connect

    Stieve, A.

    1991-05-15

    The purpose of this project, at the Savannah River River Site (SRS) was to acquire, process, and interpret 28 km (17.4 miles) of high resolution seismic reflection data taken across the trace of the Pen Branch fault and other suspected, intersecting north-south trending faults. The survey was optimized for the upper 300 ft of geologic strata in order to demonstrate the existence of very shallow, flat lying horizons, and to determine the depth of the fault or to sediments deformed by the fault. Field acquisition and processing parameters were selected to define small scale spatial variability and structural features in the vicinity of the Pen Branch fault leading to the definition and the location of the Pen Branch fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. Associated geophysical, borehole, and geologic data were incorporated into the investigation to assist in the determination of optimal parameters and aid in the interpretation.

  1. 3-Component Reflection Seismic Survey Across the Seismogenic Coupling Zone in Chile (Project TIPTEQ)

    NASA Astrophysics Data System (ADS)

    Micksch, U.; Gross, K.; Buske, S.; Krawczyk, C. M.; Stiller, M.; Wigger, P.; Araneda, M.; Bataille, K.; Bribach, J.; Lüth, S.; Mechie, J.; Schulze, A.; Shapiro, S. A.; Ziegenhagen, T.

    2005-12-01

    The TIPTEQ project (from The Incoming Plate to mega-Thrust EarthQuake processes) studies processes which generate mega-thrust earthquakes at convergent plate margins, with the Chilean subduction zone as natural laboratory. The seismogenic coupling zones at convergent margin plate interfaces harbour some 90% of the global seismicity, and in the case of Chile, the hypocenter of the largest historically recorded earthquake in 1960 (Mw = 9.5). The rupture started at 38° S with a hypocentral depth of some 30 km below the continental forearc and continued towards the south for approximately 1000 km. The active seismic experiment component of TIPTEQ crosses the 1960 earthquake hypocenter. The survey consists of a 95 km long near-vertical reflection seismic profile shot in January 2005. 180 three-component geophones were deployed along an 18 km long spread, moving 4.5 km in a daily roll-along. Explosive shots, with a spacing of 1.5 km, allow an up to 8-fold CDP coverage. The W-E trending line runs across part of the Central Valley and continues over the coastal cordillera towards the Pacific. The seismic line shows good reflectivity and internal structures of the accretionary wedge and the plate interface. The down-going plate is clearly visible at c. 8 s TWT near the coast, reaching 17 s TWT at the eastern end of the profile. Two more experiment configurations were applied in addition: An expanding spread profiling setup aims at the down-dip limit of the seismogenic coupling zone at 30-50 km depth to image the hypocenter of the 1960 earthquake in more detail (10-fold coverage); a SH experiment configuration (1-fold coverage) served as a pilot study to test SH-wave generation in a crustal regime. Using the three component data, S-wave images could yield an improved picture of the petrophysical contrasts within the subduction zone. We present the results from poststack- and prestack-migration of the near-vertical reflection experiment, as well as a first interpretation of

  2. Seismic Refraction Surveys in Devils Lane and Cyclone Grabens, Canyonlands National Park, Utah

    NASA Astrophysics Data System (ADS)

    Kroeger, G. C.; Grosfils, E. B.; Schultz, R. A.; Reno, B. L.; Godchaux, J. D.

    2002-12-01

    Bounding fault offsets in the geologically young (60-70 ka) grabens of Canyonlands National Park have been estimated previously by adding measured scarp topography to estimates of sediment fill thickness beneath the graben floor. Published values of sediment fill thickness have ranged from 5-50 m with most estimates less than 20 m and most previous measured thickness in the 3-10 m range. We have conducted shallow seismic refraction surveys in two grabens, Devils Lane and Cyclone. Geophysical work in this remote area is difficult due to the lack of power or water supplies, the difficulty of vehicle transport over one of the most technical 4-wheel drive roads in Utah, and the environmentally sensitive nature of the cryptobiotic soils in the grabens. In Devils Lane graben, 10 24-channels spreads were employed in a 2 km long line along the axis of this 3 km long graben. A 15-station gravity survey was also conducted along the axis of this graben. Three separate seismic lines were used to sample the ends and center of Cyclone graben that is nearly twice as large as Devils Lane. The seismic data were modeled using iterative ray tracing. Our results from Devils Lane (Grosfils et al., JSG, in press) show a well-defined layer of basin sediment that deepens rapidly from the end of the graben, from depths of 30 m to over 90 m. Typical depths in the center of the graben range from 70-80 m. Under some portions of the line, the sediment thickness is so large that our cable lengths were not long enough to record the bedrock refraction, suggesting sediment thickness of over 100 m. Sediment velocities range from 700-900 m/s with underlying bedrock velocities averaging 3000 m/s. Our results from Cyclone graben are similar, with typical sediment thickness of 70-80 m in the center of the graben and abrupt shallowing at the ends of the graben. Our results indicate significantly thicker sediment fill than assumed in most previous studies and may necessitate revising estimates of both

  3. Constraining Subsurface Structure and Composition Using Seismic Refraction Surveys of Proglacial Valleys in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Mark, B. G.; Baker, E. A.; Aubry-Wake, C.; Somers, L. D.; Wigmore, O.

    2015-12-01

    As tropical glaciers rapidly recede in response to climate change, the storage and discharge of groundwater will play an increasing role in regulating river baseflow, particularly during the dry season, when stream flow is currently sustained predominantly by glacial melt. Little is understood regarding the hydrogeologic processes controlling base flow characteristics of low-gradient proglacial valleys of the Cordillera Blanca in Northwestern Peru, which has the world's highest density of tropical glaciers. To better understand the processes of groundwater storage and discharge in proglacial meadows, we completed seismic refraction surveys in three representative valleys of the Cordillera Blanca range: the Quilcayhuanca, Yanamarey, and Pachacoto valleys. The locations of survey transects were chosen based on locations of previous sediment core sampling, GPR lines, and quantification of groundwater-surface water interaction derived from dye and temperature tracing experiments. The seismic surveys consisted of 48 vertical component geophones with 2.5 m spacing. Across the three representative valleys a total of 15 surveys were conducted, covering a distance of 1800 m in cross, down, and oblique-valley directions. Preliminary interpretation of the seismic refraction data indicates a maximum imaging depth of 16 m below land surface, and a transition from glacio-lacustrine sediments to buried saturated talus at a depth of 6 m in the Quilcayhuanca valley. The organic-rich glacio-lacustrine sediments in the Yanamarey valley have seismic velocities ranging from 300 to 800 m/s and are >16 m in thickness at mid- valley. Weathered metasedimentary bedrock in the Pachacoto valley was imaged at ~5 m below the valley surface, exhibiting a p-wave velocity of 3400 m/s. The knowledge of hydrogeologic structure derived from seismic refraction surveys will provide crucial boundary conditions for future groundwater models of the valleys of the Cordillera Blanca.

  4. Reflection seismic survey across a fault zone in the Leinetal Graben, Germany, using P- and SH-waves

    NASA Astrophysics Data System (ADS)

    Musmann, P.; Polom, U.; Buness, H.; Thomas, R.

    2012-04-01

    Fault systems are considered as a valuable hydro-geothermal reservoir for heat and energy extraction, as permeability may be enhanced compared to the surrounding host rock. Seismic measurements are a well established tool to reveal their structure at depth. Apart from structural parameters like dip, extent and throw, they allow us to derive lithologic parameters, e.g. seismic velocities and impedance. Usually, only compressional waves have been used so far. In the context of the "gebo" Collaborative Research Program, seismic methods are revised to image and characterize geological fault zones in order to minimize the geological and technical risk for geothermal projects. In doing so, we evaluate and develop seismic acquisition, processing and interpretation techniques both for compressional and shear wave surveys to estimate the geothermal potential of fault zones. Here, we present results from high-resolution P- and SH-wave reflection seismic surveys along one and the same profile. They were carried out across the eastern border of the Leinetal Graben, Lower Saxony, Germany. At this survey site, primarily Triassic units crop out that are disrupted by major fault system probably extending down into Permian Zechstein. The seismic P-wave measurements (2.5 m CDP spacing, 20 - 180 Hz sweep sent out by a small vibrator) imaged the structure of the subsurface and its fault inventory with high resolution. Imaging ranges from approximately 50 m (base Keuper) to approximately 1.8 km (within Zechstein) depth. The profiles reveal that the area has undergone multiphase tectonics. This becomes manifest in a complex seismic reflection pattern. In addition the P-wave velocity model shows several features that can be related to folding and faulting. Preliminary results of the SH-wave measurements (0.5 m CDP spacing, 10 - 100 Hz sweep) show that the complex structural geological settings in the subsurface, as imaged by the P-wave survey, can also be imaged by a reflection shear

  5. Site study plan for EDBH (Engineering Design Boreholes) seismic surveys, Deaf Smith County site, Texas: Revision 1

    SciTech Connect

    Hume, H.

    1987-12-01

    This site study plan describes seismic reflection surveys to run north-south and east-west across the Deaf Smith County site, and intersecting near the Engineering Design Boreholes (EDBH). Both conventional and shallow high-resolution surveys will be run. The field program has been designed to acquire subsurface geologic and stratigraphic data to address information/data needs resulting from Federal and State regulations and Repository program requirements. The data acquired by the conventional surveys will be common-depth- point, seismic reflection data optimized for reflection events that indicate geologic structure near the repository horizon. The data will also resolve the basement structure and shallow reflection events up to about the top of the evaporite sequence. Field acquisition includes a testing phase to check/select parameters and a production phase. The field data will be subjected immediately to conventional data processing and interpretation to determine if there are any anamolous structural for stratigraphic conditions that could affect the choice of the EDBH sites. After the EDBH's have been drilled and logged, including vertical seismic profiling, the data will be reprocessed and reinterpreted for detailed structural and stratigraphic information to guide shaft development. The shallow high-resulition seismic reflection lines will be run along the same alignments, but the lines will be shorter and limited to immediate vicinity of the EDBH sites. These lines are planned to detect faults or thick channel sands that may be present at the EDBH sites. 23 refs. , 7 figs., 5 tabs.

  6. Assessing risk of baleen whale hearing loss from seismic surveys: The effect of uncertainty and individual variation.

    PubMed

    Gedamke, Jason; Gales, Nick; Frydman, Sascha

    2011-01-01

    The potential for seismic airgun "shots" to cause acoustic trauma in marine mammals is poorly understood. There are just two empirical measurements of temporary threshold shift (TTS) onset levels from airgun-like sounds in odontocetes. Considering these limited data, a model was developed examining the impact of individual variability and uncertainty on risk assessment of baleen whale TTS from seismic surveys. In each of 100 simulations: 10000 "whales" are assigned TTS onset levels accounting for: inter-individual variation; uncertainty over the population's mean; and uncertainty over weighting of odontocete data to obtain baleen whale onset levels. Randomly distributed whales are exposed to one seismic survey passage with cumulative exposure level calculated. In the base scenario, 29% of whales (5th/95th percentiles of 10%/62%) approached to 1-1.2 km range were exposed to levels sufficient for TTS onset. By comparison, no whales are at risk outside 0.6 km when uncertainty and variability are not considered. Potentially "exposure altering" parameters (movement, avoidance, surfacing, and effective quiet) were also simulated. Until more research refines model inputs, the results suggest a reasonable likelihood that whales at a kilometer or more from seismic surveys could potentially be susceptible to TTS and demonstrate that the large impact uncertainty and variability can have on risk assessment.

  7. Sourcebook of locations of geophysical surveys in tunnels and horizontal holes including results of seismic-refraction surveys: Rainier Mesa, Aqueduct Mesa, and Area 16, Nevada Test Site

    SciTech Connect

    Carroll, R.D.; Kibler, J.E.

    1983-01-01

    Seismic refraction surveys have been obtained sporadically in tunnels in zeolitized tuff at the Nevada Test Site since the late 1950's. Commencing in 1967 and continuing to date (1982), extensive measurements of shear- and compressional-wave velocities have been made in five tunnel complexes in Rainier and Aqueduct Mesas and in one tunnel complex in Shoshone Mountain. The results of these surveys to 1980 are compiled in this report. In addition, extensive horizontal drilling was initiated in 1967 in connection with geologic exploration in these tunnel complexes for sites for nuclear weapons tests. Seismic and electrical surveys were conducted in the majority of these holes. The type and location of these tunnel and borehole surveys are indexed in this report. Synthesis of the seismic refraction data indicates a mean compressional-wave velocity near the nuclear device point (WP) of 23 tunnel events of 2430 m/s (7970 f/s) with a range of 1846 to 2753 m/s (6060 to 9030 f/s). The mean shear-wave velocity of 17 tunnel events is 1276 m/s (4190 f/s) with a range of 1140 to 1392 m/s (3740 to 4570 f/s). Experience indicates that these velocity variations are due chiefly to the extent of fracturing and (or) the presence of partially saturated rock in the region of the survey.

  8. Sourcebook of locations of geophysical surveys in tunnels and horizontal holes, including results of seismic refraction surveys, Rainier Mesa, Aqueduct Mesa, and Area 16, Nevada Test Site

    USGS Publications Warehouse

    Carroll, R.D.; Kibler, J.E.

    1983-01-01

    Seismic refraction surveys have been obtained sporadically in tunnels in zeolitized tuff at the Nevada Test Site since the late 1950's. Commencing in 1967 and continuing to date (1982), .extensive measurements of shear- and compressional-wave velocities have been made in five tunnel complexes in Rainier and Aqueduct Mesas and in one tunnel complex in Shoshone Mountain. The results of these surveys to 1980 are compiled in this report. In addition, extensive horizontal drilling was initiated in 1967 in connection with geologic exploration in these tunnel complexes for sites for nuclear weapons tests. Seismic and electrical surveys were conducted in the majority of these holes. The type and location of these tunnel and borehole surveys are indexed in this report. Synthesis of the seismic refraction data indicates a mean compressional-wave velocity near the nuclear device point (WP) of 23 tunnel events of 2,430 m/s (7,970 f/s) with a range of 1,846-2,753 m/s (6,060-9,030 f/s). The mean shear-wave velocity of 17 tunnel events is 1,276 m/s (4,190 f/s) with a range of 1,140-1,392 m/s (3,740-4,570 f/s). Experience indicates that these velocity variations are due chiefly to the extent of fracturing and (or) the presence of partially saturated rock in the region of the survey.

  9. Seismic reflection survey of the crustal structure beneath Unzen volcano, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Shimizu, Hiroshi; Onishi, Masazumi; Uehira, Kenji

    2012-05-01

    Unzen volcano is located in the western part of Kyushu, Japan. We carried out a seismic reflection survey at Unzen volcano in order to elucidate the structure of the volcano. Although the survey was conducted in a volcanic area under difficult conditions, such as artificial noises and a complex structure, we were able to resolve the structure beneath the profile using vibrator sources and a large number of stacking signals. The processed depth sections confirmed that Unzen volcano developed in a graben structure, as has been suggested in other geological studies. We imaged many subsurface normal faults shallower than 1 km. These faults, mostly covered with volcanic lava and deposits, were identified at the surface. Strong reflectors were found at a depth of approximately 3 km. They were located just above the pressure source of the latest eruption, as inferred from geodetic data. The geometric relationship between the reflection image, the pressure source location, and the lava dome suggests that the conduit from the lava dome could connect to the magma chamber located 4 km away from the lava dome.

  10. Structure and Tectonics of the Cheb Basin (NW-Bohemia) from a shallow reflection seismic survey

    NASA Astrophysics Data System (ADS)

    Halpaap, Felix; Paschke, Marco; Bleibinhaus, Florian

    2015-04-01

    In the seismically active region of Northwest Bohemia, we imaged structural characteristics of the Cenozoic Cheb Basin with a shallow 3.5 km reflection seismic survey to find proof of faulting along the Počatky-Plesná shear zone (PPZ). Previously, the shear zone's existence has been inferred from earthquakes that occur in swarms and concentrate in the focal zone of Nový Kostel, below the Cheb Basin, along a plane striking at 170°. The difference in strike between the planar focal zone and the 145° oriented, crustal-scale eastern border fault of the Cheb Basin, which forms the northern termination of the geomorphologically dominant Mariánské Lazně fault, was interpreted to hint to the existence of a second major crustal fault zone. With additional interpretations of river drainage patterns, a distinct 25 m terrain escarpment and the distribution of Quaternary sediments around the Plesná river, the surface outcrop of the PPZ was thought to be found. A P-velocity model which we obtained from tomographic inversion of the first arrivals revealed an uppermost layer of very slow seismic velocities (about 1 km/s) that varies strongly in thickness. We interpret this layer as unconsolidated Quaternary sediments, which impacted the quality of our recorded shot gathers negatively with increasing thickness of the layer. The result of our standard reflection seismic processing, challenged by strong ground roll, is an image of the eastern Cheb Basin's layers and several tectonic features along a cross-strike profile with varying resolution. Our seismic image shows undisturbed younger sediments of the upper neogene Vildštejn and Cypris Formation, overlying the early miocene Main Coal Seam Formation and a structured basement. The imaged maximum basin depth of 300 m and unconformities below and above the Vildštejn Formation correspond well with litostratigraphic borehole data and previous sedimentological and tectonic models. We observe reverse faults in the lower

  11. Deep crustal structure of the North-West African margin from combined wide-angle and reflection seismic data (MIRROR seismic survey)

    NASA Astrophysics Data System (ADS)

    Biari, Y.; Klingelhoefer, F.; Sahabi, M.; Aslanian, D.; Schnurle, P.; Berglar, K.; Moulin, M.; Mehdi, K.; Graindorge, D.; Evain, M.; Benabdellouahed, M.; Reichert, C.

    2015-08-01

    The structure of the Moroccan and Nova Scotia conjugate rifted margins is of key importance for understanding the Mesozoic break-up and evolution of the northern central Atlantic Ocean basin. Seven combined multichannel reflection (MCS) and wide-angle seismic (OBS) data profiles were acquired along the Atlantic Moroccan margin between the latitudes of 31.5° and 33° N during the MIRROR seismic survey in 2011, in order to image the transition from continental to oceanic crust, to study the variation in crustal structure, and to characterize the crust under the West African Coast Magnetic Anomaly (WACMA). The data were modeled using a forward modeling approach. The final models image crustal thinning from 36 km thickness below the continent to approximately 8 km in the oceanic domain. A 100 km wide zone characterized by rough basement topography and high seismic velocities up to 7.4 km/s in the lower crust is observed westward of the West African Coast Magnetic Anomaly. No basin underlain by continental crust has been imaged in this region, as has been identified north of our study area. Comparison to the conjugate Nova Scotian margin shows a similar continental crustal thickness and layer geometry, and the existence of exhumed and serpentinized upper mantle material on the Canadian side only. The oceanic crustal thickness is lower on the Canadian margin.

  12. Urban Reflection Seismics: A High-resolution Shear-wave Survey in the Trondheim harbour area, Norway

    NASA Astrophysics Data System (ADS)

    Krawczyk, Charlotte; Polom, Ulrich; L'Heureux, Jean-Sebastien; Hansen, Louise; Lecomte, Isabelle; Longva, Oddva

    2010-05-01

    A shallow reflection shear-wave seismic survey was carried out in mid summer 2008 in the harbour area of Trondheim, Norway, that suffers from prominent landslide events in the last decades. The harbour has been built on man-made land fillings at the coast of the Trondheim Fjord in several expansions implicated in some submarine landslides, which are reported since about 100 years. Whereas high-resolution marine seismic methods mapped the fjord area in detail in the range of decimeters, the seismic investigation below the infilled and paved harbour area was a difficult challenge. Therefore, SH-polarized shear-wave reflection seismics was applied experimentally, and the field configuration was especially adapted for the application on paved surfaces with underlying soft soil of estimated more than 150 m thickness. A land streamer system of 120 channels (geophone interval of 1 m) was used in combination with LIAG's newly developed shear-wave vibrator buggy of 30 kN peak force. This mini truck is designed for full environment-friendly urban use and enables fast and sensitive operation within a seismic survey area. The sweep parameters were configured to 25-100 Hz range, 10 s duration, using 14 s recording time sampled by 1 ms interval. Shear wave frequencies above the used frequency range, which can also be generated by the seismic source, were avoided consciously to prevent disturbing air wave reflections during operation. For an advantageous solution for the seismic imaging of the subsoil down to the bedrock a grid of 4.2 profile-km was gathered. The data recorded experimentally in the initial seismic survey stage achieved finally a highly resolved image of the structure of the sediment body with ca. 1 m vertical resolution, clear detection of the bedrock, and probably deeper structures. The profiles were processed up to FD time migration, and indicate that slip planes, turbidity masses and other features relevant for geohazards are present within the top of the

  13. Urban Shear-wave Reflection Seismics: A High-resolution Survey in the Landslide-affected Trondheim Harbour Area, Norway

    NASA Astrophysics Data System (ADS)

    Krawczyk, C. M.; Polom, U.; Hansen, L.; L'Heureux, J.; Longva, O.; Lecomte, I.

    2009-12-01

    A shallow reflection shear-wave seismic survey was carried out in mid summer 2008 in the harbour area of Trondheim, Norway, that suffers from prominent landslide events in the last decades. The harbour has been built on man-made land fillings at the coast of the Trondheim Fjord in several expansions implicated in some submarine landslides. Whereas high-resolution marine seismic methods mapped the fjord area in detail, common seismic investigation of the infilled, paved harbour area was a difficult challenge. Therefore, SH-polarized shear-wave reflection seismics was applied experimentally, and the field configuration was especially adapted for the application on paved surfaces with underlying soft soil of more than 100 m thickness. A land streamer system of 120 channels (geophone interval of 1 m) was used in combination with LIAG's newly developed shear-wave vibrator buggy of 30 kN peak force. This mini truck is full environment-friendly for urban use and enables fast operation within a seismic survey area. The sweep parameters were configured to 25-100 Hz range, 10 s duration, using 14 s recording time sampled by 1 ms interval. Shear wave frequencies above the used frequency range, which can also be generated by the seismic source, were avoided consciously to prevent disturbing air wave reflections during operation. For an advantageous solution for the seismic imaging of the subsoil down to the bedrock ca. 4 km of 2.5-D profiles were gathered. The data recorded experimentally in the initial seismic survey stage achieved finally a highly resolved image of the structure of the sediment body with 1 m vertical resolution, clear detection of the bedrock, and probably deeper structures. These were processed up to FD time migration, and indicate that slip planes are present within the top of the bedrock. Due to the clear and continuous reflection events, also the shear-wave velocity could be calculated at least down to the bedrock to indicate the dynamic stiffness of the

  14. Three dimensional marine seismic survey has no measurable effect on species richness or abundance of a coral reef associated fish community.

    PubMed

    Miller, Ian; Cripps, Edward

    2013-12-15

    Underwater visual census was used to determine the effect of a three dimensional seismic survey on the shallow water coral reef slope associated fish community at Scott Reef. A census of the fish community was conducted on six locations at Scott Reef both before and after the survey. The census included small site attached demersal species belonging to the family Pomacentridae and larger roving demersal species belonging to the non-Pomacentridae families. These data were combined with a decade of historical data to assess the impact of the seismic survey. Taking into account spatial, temporal, spatio-temporal and observer variability, modelling showed no significant effect of the seismic survey on the overall abundance or species richness of Pomacentridae or non-Pomacentridae. The six most abundant species were also analysed individually. In all cases no detectable effect of the seismic survey was found on the abundance of these fish species at Scott Reef.

  15. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    USGS Publications Warehouse

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-03-02

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  16. Balancing Mitigation Against Impact: A Case Study From the 2005 Chicxulub Seismic Survey

    NASA Astrophysics Data System (ADS)

    Barton, P.; Diebold, J.; Gulick, S.

    2006-05-01

    In early 2005 the R/V Maurice Ewing conducted a large-scale deep seismic reflection-refraction survey offshore Yucatan, Mexico, to investigate the internal structure of the Chicxulub impact crater, centred on the coastline. Shots from a tuned 20 airgun, 6970 cu in array were recorded on a 6 km streamer and 25 ocean bottom seismometers (OBS). The water is exceptionally shallow to large distances offshore, reaching 30 m about 60 km from the land, making it unattractive to the larger marine mammals, although there are small populations of Atlantic and spotted dolphins living in the area, as well as several turtle breeding and feeding grounds on the Yucatan peninsula. In the light of calibrated tests of the Ewing's array (Tolstoy et al., 2004, Geophysical Research Letters 31, L14310), a 180 dB safety radius of 3.5 km around the gun array was adopted. An energetic campaign was organised by environmentalists opposing the work. In addition to the usual precautions of visual and listening watches by independent observers, gradual ramp-ups of the gun arrays, and power-downs or shut-downs for sightings, constraints were also placed to limit the survey to daylight hours and weather conditions not exceeding Beaufort 4. The operations were subject to several on-board inspections by the Mexican environmental authorities, causing logistical difficulties. Although less than 1% of the total working time was lost to shutdowns due to actual observation of dolphins or turtles, approximately 60% of the cruise time was taken up in precautionary inactivity. A diver in the water 3.5 km from the profiling ship reported that the sound in the water was barely noticeable, leading us to examine the actual sound levels recorded by both the 6 km streamer and the OBS hydrophones. The datasets are highly self-consistent, and give the same pattern of decay with distance past about 2 km offset, but with different overall levels: this may be due to geometry or calibration differences under

  17. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    NASA Astrophysics Data System (ADS)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio

    2016-04-01

    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  18. Structure of the San Andreas fault zone at SAFOD from a seismic refraction survey

    USGS Publications Warehouse

    Hole, J.A.; Ryberg, T.; Fuis, G.S.; Bleibinhaus, F.; Sharma, A.K.

    2006-01-01

    Refraction traveltimes from a 46-km long seismic survey across the San Andreas Fault were inverted to obtain two-dimensional velocity structure of the upper crust near the SAFOD drilling project. The model contains strong vertical and lateral velocity variations from <2 km/s to ???6 km/s. The Salinian terrane west of the San Andreas Fault has much higher velocity than the Franciscan terrane east of the fault. Salinian basement deepens from 0.8 km subsurface at SAFOD to ???2.5 km subsurface 20 km to the southwest. A strong reflection and subtle velocity contrast suggest a steeply dipping fault separating the Franciscan terrane from the Great Valley Sequence. A low-velocity wedge of Cenozoic sedimentary rocks lies immediately southwest of the San Andreas Fault. This body is bounded by a steep fault just northeast of SAFOD and approaches the depth of the shallowest earthquakes. Multiple active and inactive fault strands complicate structure near SAFOD. Copyright 2006 by the American Geophysical Union.

  19. Geothermal Potential of the Siǧacik Gulf (Seferihisar) and Preliminary investigations with Seismic and Magnetic Surveys

    NASA Astrophysics Data System (ADS)

    Bakak, Özde; Özel, Erdeniz; Ergün, Mustafa

    2015-04-01

    The Aegean region, including both W. Turkey and Central Greece, is one of the world's most rapidly-deforming regions of continental crust and has a seismic rate is exceptional on a world scale. SW Turkey is one of the most rapidly extending regions in the world where the extension appears to have commenced in middle or late Miocene time. Paleomagnetic work in W Turkey and Aegean islands has revealed the horizontal rotation of some crustal blocks. In W Turkey clockwise rotation on Karaburun peninsula west of Izmir by 44° in the last few Ma is detected, and anticlockwise rotation of 37° for the Seferihisar region. The area of W Turkey and the Aegean islands has very strong geothermal gradient in the world scale. Sığacık Gulf is located on south of Karaburun Peninsula, and it is restricted by two important ridges as Karaburun and Seferihisar Ridges. Recent geological and geophysical studies suggested that this area is both E-W trending normal and NE-SW trending strike-slip faulting caused deformation. The Seferihisar earthquake series were occurred here during 17-20 October 2005. For investigation of geothermal potential and hot water outlets on the seafloor, shallow seismic and magnetic surveys are preferred, which were carried out onboard Dokuz Eylül-1 vessel belongs to Dokuz Eylül University, in 2011. Approximately 250km seismic reflection data was collected along 27 lines. During seismic method used Sparker system which has 1 channel and 12 hydrophone with 17 m long streamer, as a seismic source used SIG Seismic Marine ELC 80 (4 kV & 3.2 KV DC). Seismic data processing (band pass filter, bottom mute, top mute, true amplitude recovery, time migration) was made using Promax program in the Seismic Laboratory in the Institute of Marine Science and Technology. The basement topography map was prepared using Kingdom Suite program drawing seabed line on these sections. Sea floor topography changes between 30-120 m, and this increases towards Ikaria Basin

  20. National Archive of Marine Seismic Surveys (NAMSS): Status Report on U.S. Geological Survey Program Providing Access to Proprietary Data

    NASA Astrophysics Data System (ADS)

    Hart, P. E.; Childs, J. R.

    2005-05-01

    During the last four decades, hundreds of thousands of line kilometers of 2D marine seismic reflection data have been collected by the hydrocarbon exploration industry within the United States Exclusive Economic Zone. The commercial value of much of these data has decreased significantly because of drilling moratoria and new technology such as 3D acquisition. However, these data still have tremendous value for scientific research and education purposes. The U.S. Geological Survey has recently made agreements with two commercial owners of large data holdings to transfer to the public domain over 250,000 line kilometers of marine data from off the eastern, western, and Alaskan coasts of the United States. In order to provide access to the data, the USGS has developed the National Archive of Marine Seismic Surveys (NAMSS) program. For a small fraction of the money that would be required to collect new data, work is underway to organize and recover digital data currently stored on tens of thousands of 9-track tapes. Even where new data collection efforts could be funded, current environmental restrictions on marine seismic exploration could preclude operations. The NAMSS web site at http://walrus.wr.usgs.gov/NAMSS/ has trackline maps of surveys that are now or will soon be available for downloading in SEG-Y format. As more owners and users become aware of this new data resource, it is hoped that additional partners in will join this data rescue effort.

  1. Evidence of a possible NNE-trending fault zone in the Summerville, South Carolina, area from shallow seismic reflection surveys

    SciTech Connect

    Marple, R.T.; Talwani, P. . Geology Dept.)

    1994-03-01

    Five high-resolution seismic-reflection surveys trending approximately WNW-ESE and totaling about 31 km were acquired in the Summerville, South Carolina, area. The surveys trend across the postulated Woodstock fault zone. These newly acquired data together with earlier data revealed the existence of an [approximately]50-km-long feature associated with gentle warping of the shallow sediments that lies along a recently described zone of river anomalies (ZRA). The first ([approximately]5.9-km-long) seismic reflection profile located about 14 km NNE of Summerville revealed that the J reflector (basalt) at about 670 m depth is offset about 30--40 m with the west side up. The overlying sediments displayed upwarping rather than brittle offset. A second ([approximately]6.7-km-long) survey located along interstate Highway 26 revealed as much as 30--40 m of upwarping of the sediments above about 450 m depth. A third ([approximately]7.3-km-long) profile acquired through the town of Summerville revealed four, [approximately]200--300 m wide, nearly vertical zones in which the reflectors are noncoherent. Away from these zones the reflectors are relatively flat and are slightly higher on the west side of each zone. The fourth (3-km-long) survey was located about 5 km SW of Middleton Gardens and indicated minor faulting at about 500 m depth. The fifth ([approximately]6.4-km-long) seismic survey acquired just north of Ravenel revealed an [approximately]0.5-km-wide zone in which the reflectors in the top 350 m displayed as much as 20 m of upwarping. On all the surveys, except for the first, the basalt was at too great a depth to be resolved.

  2. A Seismic Reflection Profiling Survey of Lake Toba, Sumatra, Indonesia: Preliminary Findings from the Field

    NASA Astrophysics Data System (ADS)

    Chesner, C. A.; Dolan, M. T.; Halsor, S. P.; Bohnenstiehl, D. R.; Liu, J.; Nasution, A.

    2012-12-01

    Lake Toba lies within the giant Toba Caldera that last erupted 74,000 years ago. In its early history, Lake Toba may have covered about 1800 km2, possibly reaching depths of 750 m. The central portion of the 100 x 30 km caldera has since been uplifted to form the asymmetrical Samosir Island resurgent dome (60 x 20 km). Its upper surface dips gently to the west while its eastern margin consists of a series of parallel normal faults with total displacement of at least 1100 m. Several lava domes have been emplaced along these faults as well as the southwestern caldera ring fracture. At least 30 m of laminated tuffaceous sand and silt, diatomaceous clay, diatomites, and volcanic ash cover Samosir Island and sediments up to 100 m have been reported. In an effort to understand the post-collapse sedimentation, structural, volcanic, and resurgent histories of the caldera, we conducted a 14 day seismic reflection profiling survey of Lake Toba in July/August 2012. An EdgeTech SB-512i "chirp" sonar unit was towed across about 900 km of transect lines. Signal penetration was not affected by water depth, which sometimes exceeded 500 m, but was often reduced by adverse tow conditions or strong stratigraphic reflectors, and occasionally lost altogether possibly due to gas pockets in the sediments. In areas of flat-lying or gently sloping lake bottom, about 10-30 m of lake sediments was typically detected. Along the steep caldera bounding faults and the faulted eastern margin of the Samosir resurgent dome virtually no sediments were detected. However, up to 90 m of laminated sediments were apparent on the crest and gently sloping submerged portions of Samosir. These thick sedimentary sequences showed distinct marker horizons with evidence of faulting, folding, sliding, and slumping. Local unconformities or onlapping sequences demonstrated discrete sedimentary episodes. Several subaqueous lava domes were discovered that uplifted, folded, and sometimes truncated the sedimentary

  3. Seismic investigation of gas hydrates in the Gulf of Mexico: Results from 2013 high-resolution 2D and multicomponent seismic surveys

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Shedd, W. W.; Frye, M.; Agena, W.; Miller, J. J.; Ruppel, C. D.

    2013-12-01

    In the spring of 2013, the U.S. Geological Survey led a 16-day seismic acquisition cruise aboard the R/V Pelican in the Gulf of Mexico to survey two established gas hydrate study sites. We used a pair of 105/105 cubic inch generator/injector airguns as the seismic source, and a 450-m 72-channel hydrophone streamer to record two-dimensional (2D) data. In addition, we also deployed at both sites an array of 4-component ocean-bottom seismometers (OBS) to record P- and S-wave energy at the seafloor from the same seismic source positions as the streamer data. At lease block Green Canyon 955 (GC955), we acquired 400 km of 2-D streamer data, in a 50- to 250-m-spaced grid augmented by several 20-km transects that provide long offsets for the OBS. The seafloor recording at GC955 was accomplished by a 2D array of 21 OBS at approximately 400-m spacing, including instruments carefully positioned at two of the three boreholes where extensive logging-while-drilling data is available to characterize the presence of gas hydrate. At lease block Walker Ridge 313 (WR313), we acquired 450 km of streamer data in a set of 11-km, 150- to 1,000-m-spaced, dip lines and 6- to 8-km, 500- to 1000-m-spaced strike lines. These were augmented by a set of 20-km lines that provide long offsets for a predominantly linear array of 25 400- to 800-m spaced OBS deployed in the dip direction in and around WR313. The 2D data provide at least five times better resolution of the gas hydrate stability zone than the available petroleum industry seismic data from the area; this enables considerably improved analysis and interpretation of stratigraphic and structural features including previously unseen faults and gas chimneys that may have considerable impact on gas migration. Initial processing indicates that the OBS data quality is good, and we anticipate that these data will yield estimates of P- and S-wave velocities, as well as PP (reflected) and PS (converted wave) images beneath each sensor location.

  4. US Geological Survey begins seismic ground response experiments in Washington State

    USGS Publications Warehouse

    Tarr, A.C.; King, K.W.

    1988-01-01

    This article briefly describes the experimental monitoring of minor seismic features caused by distant nuclear explosions, mining blasts and rhythmic human pushing against wooden homes. Some means of response prediction are outlined in Washington State and some effects of seismic amplification by weak clayey sediments are described. The results of several experiments are described. -A.Scarth

  5. A preliminary summary of a seismic-refraction survey in the vicinity of the Tonto Forest Observatory, Arizona

    USGS Publications Warehouse

    Roller, J.C.; Jackson, W.H.; Warren, D.H.; Healy, J.H.

    1964-01-01

    The U.S. Geological Survey complete d a seismic-refraction survey in the vicinity of the Tonto Forest Seismological Observatory (T.F.S.O.) in April and May 1964. More than 1200 km of reversed profiles were surveyed to determine the crustal structure and crustal and upper mantle velocities in this area. The purpose of this work was to provide information on wave-propagation paths of seismic events recorded at T.F.S.O. and to improve the performance of the Observatory in locating and identifying these events. First arrivals indicate that the Mohorovicic discontinuity dips to the northeast by as much as 6 degrees under T.F.S.O., and may even be displaced vertically by as much as 5 km immediately north of the Observatory near the boundary of the Basin and Range a n d t he Colorado Plateau Provinces. A preliminary examination of the first arrivals indicates that the crust at T.F.S.O. is at least 30 km thick and is made up of at least two seismic layers. A thin veneer at the surface with a velocity of approximately 4 km/sec is underlain by a layer with a velocity of approximately 5.9 km/sec to 6.1 km/sec. An intermediate layer with velocity of 6.6 to 7.0 km/sec is probably present in the lower crust, but is not revealed by first arrivals. The velocity of seismic waves in the upper mantle is about 7.9 km/sec.

  6. Adapting Industry Multiple Attenuation Techniques to Crustal-Scale Marine Seismic Surveys

    NASA Astrophysics Data System (ADS)

    Gunther, R. H.; Levin, S. A.; Taylor, B. L.; Klemperer, S. L.; Goodliffe, A. M.; Oakley, A. J.; Taylor, B.

    2004-12-01

    Academic marine seismic surveys often focus on crustal targets situated in areas with deep water and rough topography. Thinly-sedimented seafloor creates strong and late-arriving water-column reverberations, often termed multiples, that can completely obscure deeper primary reflections. In a 2002 survey of the Mariana back-arc, arc, and fore-arc regions, large topographic variations produced strong multiples which were not significantly attenuated by stacking or migration. Using swath bathymetry, collected by the onboard multi-beam sonar system, we adapt industry multiple attenuation tools to extract useable data from below the water-bottom multiple. Standard approaches to multiple removal either take advantage of differences in move-out velocities between primary and multiple arrivals in order to filter out multiples or attempt to model multiples so that they can be adaptively subtracted from the data. Until recently, most modeling tools were restricted to 2D but still performed effectively against the well-behaved multiples often encountered in commercially important areas. But these algorithms have limited effectiveness against multiples generated from 3D structures such as salt domes, so the petroleum industry has recently made a strong push for 3D algorithms. In academic surveys, out-of-plane effects are all-too-often too large for successful application of 2D models, but due to the large regions of interest and budget constraints, 3D surveys are typically out of reach. Surface-Related Multiple Elimination (SRME) is a powerful approach that predicts multiples that reflect at least once off the free surface and can model any multiples that bounce off the surface along the source-receiver line. Developed from 1D theory laid down in the late `70s at Stanford University and extended to 2D in the `80s by Delft University, it has become widely used in commercial hydrocarbon exploration. The version of SRME we adapt to the Marianas survey convolves field shot gathers

  7. Assessing the deep drilling potential of Lago de Tota, Colombia, with a seismic survey

    NASA Astrophysics Data System (ADS)

    Bird, B. W.; Wattrus, N. J.; Fonseca, H.; Velasco, F.; Escobar, J.

    2015-12-01

    Reconciling orbital-scale patterns of inter-hemispheric South American climate during the Quaternary requires continuous, high-resolution paleoclimate records that span multiple glacial cycles from both hemispheres. Southern Andean Quaternary climates are represented by multi-proxy results from Lake Titicaca (Peru-Bolivia) spanning the last 400 ka and by pending results from the Lago Junin Drilling Project (Peru). Although Northern Andean sediment records spanning the last few million years have been retrieved from the Bogota and Fúquene Basins in the Eastern Cordillera of the Colombian Andes, climatic reconstructions based on these cores have thus far been limited to pollen-based investigations. When viewed together with the Southern Hemisphere results, these records suggest an anti-phased hemispheric climatic response during glacial cycles. In order to better assess orbital-scale climate responses, however, independent temperature and hydroclimate proxies from the Northern Hemisphere are needed in addition to vegetation histories. As part of this objective, an effort is underway to develop a paleoclimate record from Lago de Tota (3030 m asl), the largest lake in Colombia and the third largest lake in the Andes. One of 17 highland tectonic basins in Eastern Cordillera, Lago de Tota formed during Tertiary uplift that deformed pre-foreland megasequences, synrift and back-arc megasequences. The precise age and thickness of sediments in the Lago de Tota basin has not previously been established. Here, we present results from a recent single-channel seismic reflection survey collected with a small (5 cubic inch) air gun and high-resolution CHIRP sub-bottom data. With these data, we examine the depositional history and sequence stratigraphy of Lago de Tota and assess its potential as a deep drilling target.

  8. 4-D OCT in Developmental Cardiology

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  9. The ancient harbour system of Terracina (Latium, Italy) obtained by gravity and seismic surveys.

    NASA Astrophysics Data System (ADS)

    di Nezza, Maria; di Filippo, Michele

    2010-05-01

    Historical research has shown that Terracina (Latina, Latium) played a fundamental role in the maritime and land traffic since before the foundation of the colony. The settlement was established where the organized system of maritime, land, coastal, and fluvial transport had the most ideal conditions to constitute an important commercial crossroads, apparently since the beginning of recorded history. In order to reconstruction the buried archaeological structures attributed to the ancient Roman port, traditionally attributed to Traiano, in the current area of the harbour of Terracina, it was carried out a gravity survey, more than 380 gravity stations. The gravity method enables to recognize the cavity and the structures of the buildings underground through the results of variations density in the subsoil. Seismic tomography treats the problem of identifying a buried structure as a wave propagation process by inverting the linearized wave equation to compute the spatial distribution of the slowness of the velocity. The purpose of our tomographic study is to further test the method and to guide archaeologists in their future excavations by locating and identifying buried structures. In the residual gravity anomaly map a series of positive anomalies are visible which confirm the round structures and the pier of the buried foundations of the Imperial harbour. Unfortunately, little remains of the functioning facilities of the harbour's activities. The modern construction of the harbour, in fact, has to be developed around the new inhabitable commercial area, know today as Terracina Bassa or Borgo alla Marina. It had to be developed with a modern infrastructure of a harbor area, as in the construction of the rooms for storage of goods, warehouses, as well as for the thermal baths, hotels and amphitheatre. Furthermore, there are always the positive anomalies that characterize the area to the north-east of "Montone" hill where archaeological remains are easily visible

  10. Continuous seismic-reflection survey of the Great Salt Lake, Utah- east of Antelope and Fremont Islands

    USGS Publications Warehouse

    Lambert, P.M.; West, J.C.

    1989-01-01

    A continuous seismic-reflection survey of the Great Salt Lake, Utah, was conducted east of Fremont and Antelope Islands in 1984 by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources and produced data along approximately 80 miles of seismic lines. The survey was conducted to determine depth to consolidated rock, and definition and continuity of overlying basin fill under the lake. Interpretation of the data indicates the presence of faulted rock dipping away from Fremont and Antelope Islands. A north-south-trending consolidated-rock ridge is identified 200 ft below lake bottom, 275 miles east of Fremont Island. Shallow rock is also inferred 380 ft below lake bottom, near Hooper Hot Springs, and 520 ft below lake bottom approximately 4 miles east of the south end of Antelope Island. Interpretation of reflections from overlying basin fill indicates fine-grained, thinly-bedded deposits that become coarser with depth. Strong reflectors in the basin fill can be correlated with water-bearing strata penetrated by wells near the north end of Antelope Island and along the east shore of the lake. Many continuous, high-amplitude reflections can be identified in data from basin fill and may represent sedimentary sections or aquifer boundaries but cannot be defined because of a lack of subsurface control in the area. (USGS)

  11. Data report for seismic refraction surveys conducted from 1980 to 1982 in the Livermore Valley and the Santa Cruz Mountains, California

    USGS Publications Warehouse

    Williams, Angela J.; Brocher, Thomas M.; Mooney, Walter D.; Boken, Annette

    1999-01-01

    We provide documentation for two seismic refraction profiles acquired by the U.S. Geological Survey in the San Francisco Bay area between 1980 and 1982 in Livermore Valley and the Santa Cruz Mountains. We also include the waveforms and travel times from five aftershocks of the April 1980 Livermore earthquake that were recorded on temporary seismic stations and that have not been published. Although seismic refraction profiles from the 1980 Livermore study have been published, none of the other data for this experiment, including shot times and locations, receiver locations, data quality, and travel times, have been reported. Similarly, such data from the 1981 to 1982 seismic refraction survey in the Santa Cruz Mountains included here have not been published. The first-arrival travel times from these profiles are reported in the hope that they can be used for three-dimensional velocity models in the San Francisco Bay area, particularly for the Livermore Valley and Santa Cruz Mountains.

  12. Crustal nature and seismic structure of the geological provinces offshore the SW Iberia: Highlights of the NEAREST-SEIS wide-angle seismic survey

    NASA Astrophysics Data System (ADS)

    Martínez-Loriente, S.; Sallares, V.; Gailler, A.; Bartolome, R.; Gracia, E.; Gutscher, M.; Diaz, J.

    2011-12-01

    The SW Iberian margin hosts the present day NW-SE plate convergence between the European and African Plates at a rate of 4.5 mm/yr causing seismic activity of moderate magnitude. During fall 2008 and in the frame of the EU-funded NEAREST project, was carried out a wide-angle seismic survey (NEAREST-SEIS cruise) consisting in 2 profiles. The main objectives of the survey were to gather information about the geometry of the crust-mantle boundary, identify the nature of the different geological provinces, obtain the physical properties of the crust, and unveil the deep geometry of the interfaces between main faults. A total of 30 OBS were deployed along profile P1, which is 356 km long and trends NW-SE running from the Tagus Abyssal Plain (TAP), Gorringe Bank (GB), Horseshoe Abyssal Plain (HAP), Coral Patch Ridge (CPR), and finally reaching the thrust-and-fold belt of the Seine Abyssal Plain (SAP). The inverted model shows four well-differentiated domains in terms of seismic structure. In the TAP there is a 3-4 km-thick sediment layer with low velocity, lying above a basement showing a remarkably high velocity (< 7 km/s), similar to that of the basement outcropping in the GB. In the HAP the sedimentary cover is thicker, showing an uppermost unit with very low velocity corresponding to the Upper Miocene Horseshoe Gravitational Unit, on top of a higher velocity lower unit, which corresponds to the Mesozoic sedimentary sequence, with a total thickness of 5 km. The basement shows the same velocity distribution as in TAP and GB, suggesting a common nature and origin. According to its seismic structure, we interpret this basement as very serpentinized, exhumed upper mantle. In contrast, the CPR and SAP show evidence for the presence of a well-developed, 6-7 km-thick oceanic crust, underlying the 2-3 km thick Mesozoic and Neogene sedimentary sequence. Profile P2 is 256 km long and trends N-S, across the Iberian margin shelf, Portimao Bank, Gulf of Cadiz imbricated wedge and

  13. Airgun inter-pulse noise field during a seismic survey in an Arctic ultra shallow marine environment.

    PubMed

    Guan, Shane; Vignola, Joseph; Judge, John; Turo, Diego

    2015-12-01

    Offshore oil and gas exploration using seismic airguns generates intense underwater pulses that could cause marine mammal hearing impairment and/or behavioral disturbances. However, few studies have investigated the resulting multipath propagation and reverberation from airgun pulses. This research uses continuous acoustic recordings collected in the Arctic during a low-level open-water shallow marine seismic survey, to measure noise levels between airgun pulses. Two methods were used to quantify noise levels during these inter-pulse intervals. The first, based on calculating the root-mean-square sound pressure level in various sub-intervals, is referred to as the increment computation method, and the second, which employs the Hilbert transform to calculate instantaneous acoustic amplitudes, is referred to as the Hilbert transform method. Analyses using both methods yield similar results, showing that the inter-pulse sound field exceeds ambient noise levels by as much as 9 dB during relatively quiet conditions. Inter-pulse noise levels are also related to the source distance, probably due to the higher reverberant conditions of the very shallow water environment. These methods can be used to quantify acoustic environment impacts from anthropogenic transient noises (e.g., seismic pulses, impact pile driving, and sonar pings) and to address potential acoustic masking affecting marine mammals. PMID:26723302

  14. Airgun inter-pulse noise field during a seismic survey in an Arctic ultra shallow marine environment.

    PubMed

    Guan, Shane; Vignola, Joseph; Judge, John; Turo, Diego

    2015-12-01

    Offshore oil and gas exploration using seismic airguns generates intense underwater pulses that could cause marine mammal hearing impairment and/or behavioral disturbances. However, few studies have investigated the resulting multipath propagation and reverberation from airgun pulses. This research uses continuous acoustic recordings collected in the Arctic during a low-level open-water shallow marine seismic survey, to measure noise levels between airgun pulses. Two methods were used to quantify noise levels during these inter-pulse intervals. The first, based on calculating the root-mean-square sound pressure level in various sub-intervals, is referred to as the increment computation method, and the second, which employs the Hilbert transform to calculate instantaneous acoustic amplitudes, is referred to as the Hilbert transform method. Analyses using both methods yield similar results, showing that the inter-pulse sound field exceeds ambient noise levels by as much as 9 dB during relatively quiet conditions. Inter-pulse noise levels are also related to the source distance, probably due to the higher reverberant conditions of the very shallow water environment. These methods can be used to quantify acoustic environment impacts from anthropogenic transient noises (e.g., seismic pulses, impact pile driving, and sonar pings) and to address potential acoustic masking affecting marine mammals.

  15. Advances in 4D radiation therapy for managing respiration: part I - 4D imaging.

    PubMed

    Hugo, Geoffrey D; Rosu, Mihaela

    2012-12-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available "first generation" 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are described, including necessity of breathing surrogates for 4D image reconstruction, assumptions made in acquisition and reconstruction about the breathing pattern, and commonly-observed artifacts. Both established and developmental methods to deal with these limitations are detailed. Finally, strategies to construct 4D targets and images and, alternatively, to compress 4D information into static targets and images for radiation therapy planning are described.

  16. Advances in 4D Radiation Therapy for Managing Respiration: Part I – 4D Imaging

    PubMed Central

    Hugo, Geoffrey D.; Rosu, Mihaela

    2014-01-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available “first generation” 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are described, including necessity of breathing surrogates for 4D image reconstruction, assumptions made in acquisition and reconstruction about the breathing pattern, and commonly-observed artifacts. Both established and developmental methods to deal with these limitations are detailed. Finally, strategies to construct 4D targets and images and, alternatively, to compress 4D information into static targets and images for radiation therapy planning are described. PMID:22784929

  17. Integrated Seismic Survey for Detecting Landslide Effects on High Speed Rail Line at Istanbul-Turkey

    NASA Astrophysics Data System (ADS)

    Grit, Mert; Kanli, Ali Ismet

    2016-02-01

    In this study, Multichannel Analysis of Surface Waves Method (MASW), seismic refraction tomography and seismic reflection methods are used together at Silivri district in Istanbul - a district with a landslide problem because of the high speed rail line project crossing through the area. The landslide structure, border and depth of the slip plane are investigated and correlated within the local geology. According to the obtained 2D seismic sections, the landslide occurs through the East-West direction in the study area and the landslide slip plane with its border are clearly obtained under the subsurface. The results prove that the study area is suitable enough for the landslide development and this evolution also affects the high speed rail line project.

  18. Contributions to a shallow aquifer study by reprocessed seismic sections from petroleum exploration surveys, eastern Abu Dhabi, United Arab Emirates

    USGS Publications Warehouse

    Woodward, D.

    1994-01-01

    The US Geological Survey, in cooperation with the National Drilling Company of Abu Dhabi, is conducting a 4-year study of the fresh and slightly saline groundwater resources of the eastern Abu Dhabi Emirate. Most of this water occurs in a shallow aquifer, generally less than 150 m deep, in the Al Ain area. A critical part of the Al Ain area coincides with a former petroleum concession area where about 2780 km of vibroseis data were collected along 94 seismic lines during 1981-1983. Field methods, acquistion parameters, and section processing were originally designed to enhance reflections expected at depths ranging from 5000 to 6000 m, and subsurface features directly associated with the shallow aquifer system were deleted from the original seismic sections. The original field tapes from the vibroseis survey were reprocessed in an attempt to extract shallow subsurface information (depths less than 550 m) for investigating the shallow aquifer. A unique sequence of reproccessing parameters was established after reviewing the results from many experimental tests. Many enhancements to the resolution of shallow seismic reflections resulted from: (1) application of a 20-Hz, low-cut filter; (2) recomputation of static corrections to a datum nearer the land surface; (3) intensive velocity analyses; and (4) near-trace muting analyses. The number, resolution, and lateral continuity of shallow reflections were greatly enhanced on the reprocessed sections, as was the delineation of shallow, major faults. Reflections on a synthetic seismogram, created from a borehole drilled to a depth of 786 m on seismic line IQS-11, matcheddprecisely with shallow reflections on the reprocessed section. The 33 reprocessed sections were instrumental in preparing a map showing the major structural features that affect the shallow aquifer system. Analysis of the map provides a better understanding of the effect of these shallow features on the regional occurrence, movement, and quality of

  19. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  20. Local Ambient Seismic Noise Survey in Dixie Valley, NV for Engineered Geothermal System Favorability Assessment

    NASA Astrophysics Data System (ADS)

    Tibuleac, I. M.; Iovenitti, J. L.; von Seggern, D. H.; Sainsbury, J.

    2013-12-01

    The primary objective of this study is to develop and test the seismic component of a calibrated exploration method that integrated geological, geophysical, and geochemical data to identify potential drilling targets for Engineered Geothermal Systems (EGS). In exploring for EGS sites, the selection criteria identified by the AltaRock Energy, Inc. (AltaRock) and University of Nevada, Reno teams are, in order of importance, (1) temperature greater than 200C at 1.5 km depth, (2) rock type at the depth of interest (porous rocks at 1-3 km); and (3) favorable stress regime (tensional environment). To improve spatial resolution, a dense seismic array (21 three-component, broadband sensors, with an overall array aperture of 45km) was installed in two deployments in Dixie Valley, NV, each deployment having a three-month duration Ambient seismic noise and signal were used to retrieve inter-station and same-station Green's Functions (GFs), to be used for subsurface imaging. We used ambient seismic noise interferometry to extract GFs from crosscorrelation of continuous records. An innovative aspect of the seismic work was estimating the receiver functions beneath the stations using noise auto-correlation which was used to image the substructure. We report results of applying the technique to estimate a P/S velocity model from the GF surface wave components and from the GF body-wave reflection component, retrieved from ambient noise and signal cross-correlation and auto-correlation beams. We interpret our results in terms of temperature, pressure and rock composition. The estimated seismic velocity model capability to infer temperature is statistically assessed, in combination with other geophysical technique results.

  1. National Archive of Marine Seismic Surveys (NAMSS): A USGS-Boem Partnership to Provide Free and Easy Access to Previously Proprietary Seismic Reflection Data on the U.S. Outer Continental Shelf

    NASA Astrophysics Data System (ADS)

    Triezenberg, P. J.; Hart, P. E.; Childs, J. R.

    2014-12-01

    The National Archive of Marine Seismic Surveys (NAMSS) was established by the USGS in 2004 in an effort to rescue marine seismic reflection profile data acquired largely by the oil exploration industry throughout the US outer continental shelf (OCS). It features a Web interface for easy on-line geographic search and download. The commercial value of these data had decreased significantly because of drilling moratoria and newer acquisition technology, and large quantities were at risk of disposal. But, the data still had tremendous value for scientific research and education purposes, and an effort was undertaken to ensure that the data were preserved and publicly available. More recently, the USGS and Bureau of Ocean Energy Management (BOEM) have developed a partnership to make similarly available a much larger quantity of 2D and 3D seismic data acquired by the U.S. government for assessment of resources in the OCS. Under Federal regulation, BOEM is required to publicly release all processed geophysical data, including seismic profiles, acquired under an exploration permit, purchased and retained by BOEM, no sooner than 25 years after issuance of the permit. Data acquired prior to 1989 are now eligible for release. Currently these data are distributed on CD or DVD, but data discovery can be tedious. Inclusion of these data within NAMSS vastly increases the amount of seismic data available for research purposes. A new NAMSS geographical interface provides easy and intuitive access to the data library. The interface utilizes OpenLayers, Mapnik, and the Django web framework. In addition, metadata capabilities have been greatly increased using a PostgresSQL/PostGIS database incorporating a community-developed ISO-compliant XML template. The NAMSS database currently contains 452 2D seismic surveys comprising 1,645,956 line km and nine 3D seismic surveys covering 9,385 square km. The 2D data holdings consist of stack, migrated and depth sections, most in SEG-Y format.

  2. Modeling acoustic wave propagation in the Southern Ocean to estimate the acoustic impact of seismic surveys on marine mammals

    NASA Astrophysics Data System (ADS)

    Breitzke, M.; Bohlen, T.

    2007-12-01

    According to the Protocol on Environmental Protection to the Antarctic Treaty, adopted 1991, seismic surveys in the Southern Ocean south of 60°S are exclusively dedicated to academic research. The seismic surveys conducted by the Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany during the last 20 years focussed on two areas: The Wedell Sea (60°W - 0°W) and the Amundsen/Bellinghausen Sea (120°W - 60°W). Histograms of the Julian days and water depths covered by these surveys indicate that maximum activities occurred in January and February, and most lines were collected either in shallow waters of 400 - 500 m depth or in deep waters of 2500 - 4500 m depth. To assess the potential risk of future seismic research on marine mammal populations an acoustic wave propagation modeling study is conducted for the Wedell and the Amundsen/ Bellinghausen Sea. A 2.5D finite-difference code is used. It allows to simulate the spherical amplitude decay of point sources correctly, considers P- and S-wave velocities at the sea floor and provides snapshots of the wavefield at any spatial and temporal resolution. As source signals notional signatures of GI-, G- and Bolt guns, computed by the NUCLEUS software (PGS) are used. Based on CTD measurements, sediment core samplings and sediment echosounder recordings two horizontally-layered, range-independent generic models are established for the Wedell and the Amundsen/Bellinghausen Sea, one for shallow (500 m) and one for deep water (3000 m). They indicate that the vertical structure of the water masses is characterized by a 100 m thick, cold, low sound velocity layer (~1440 - 1450 m/s), centered in 100 m depth. In the austral summer it is overlain by a warmer, 50 m thick surface layer with slightly higher sound velocities (~1447 - 1453 m/s). Beneath the low-velocity layer sound velocities increase rapidly to ~1450 - 1460 m/s in 200 m depth, and smoothly to ~1530 m/s in 4700 m depth. The sea floor is mainly

  3. Toward long-term all-sky time domain surveys-SINDICS: a prospective concept for a Seismic INDICes Survey of half a million red giants

    NASA Astrophysics Data System (ADS)

    Michel, Eric; Haywood, Misha; Mosser, Benoit; García, Rafael A.; Babusiaux, Carine; Ballot, Jérôme; Samadi, Reza; Katz, David; Belkacem, Kevin; Bernardi, Pernelle; Buey, Tristan

    2015-09-01

    CoRoT and Kepler have brought a new and deep experience in long-term photometric surveys and how to use them. This is true for exoplanets characterizing, stellar seismology and beyond for studying several other phenomena, like granulation or activity. Based on this experience, it has been possible to propose new generation projects, like TESS and PLATO, with more specific scientific objectives and more ambitious observational programs in terms of sky coverage and/or duration of the observations. In this context and as a prospective exercise, we explore here the possibility to set up an all-sky survey optimized for seismic indices measurement, providing masses, radii and evolution stages for half a million solar-type pulsators (subgiants and red giants), in our galactic neighborhood and allowing unprecedented stellar population studies.

  4. Comparison of microbial and sorbed soil gas surgace geochemical techniques with seismic surveys from the Southern Altiplano, Bolivia

    SciTech Connect

    Aranibar, O.R.; Tucker, J.D.; Hiltzman, D.C.

    1995-12-31

    Yacimientos Petroliferos Fiscales Bolivianos (YPFB) undertook a large seismic evaluation in the southern Altiplano, Bolivia in 1994. As an additional layer of information, sorbed soil gas and Microbial Oil Survey Technique (MOST) geochemical surveys were conducted to evaluate the hydrocarbon microseepage potential. The Wara Sara Prospect had 387 sorbed soil gas samples, collected from one meter depth, and 539 shallow soil microbial samples, collected from 15 to 20 centimeter depth. The sorbed soil gas samples were collected every 500 meters and microbial samples every 250 meters along geochemical traverses spaced 1 km apart. The presence of anmalous hydrocarbon microseepage is indicated by (1) a single hydrocarbon source identified by gas crossplots, (2) the high gas values with a broad range, (3) the high overall gas average, (4) the clusters of elevated samples, and (5) the right hand skewed data distributions.

  5. A groundwater model for the Spruce Hole aquifer, Durham, NH, based on a detailed seismic refraction survey

    SciTech Connect

    Kerwin, R.A. . Dept. of Earth Sciences)

    1993-03-01

    The town of Durham and the University of New Hampshire are interested in using the Spruce Hole aquifer as a municipal pumping well site. The goals of this project were to determine the approximate thickness and areal extent of the aquifer, to determine the hydrologic characteristics and capabilities of the aquifer (groundwater flow directions and transmissivities), and to simulate the effect that pumping of the aquifer may have on the delicate ecosystem of Spruce Hole bog. The Spruce Hole aquifer is a drift deposit composed of glacial till and stratified sand and gravel and is underlain by metasedimentary bedrock. A kettlehole bog with a unique ecosystem with rare plants and insects is located near the center of the deposit. The author conducted a 65 site seismic refraction survey of the Spruce Hole aquifer to estimate water table elevation, bedrock depth, and saturated thickness, as well as till elevations (seismic velocities between 1.9 km/s and 2.6 km/s) at many of the locations. One-dimensional (cross section) and two-dimensional (map view) transmissivity based finite-difference groundwater models were developed to simulate the groundwater flow of the system and to determine transmissivity values for the stratified drift. An average transmissivity for the aquifer at each grid point in the model was determined through data from wells, the seismic refraction survey, and by matching estimated water table values with those calculated by the model. This model has produced simulations that are plausible representations of the ground-water system of the aquifer. A better understanding of kettlehole bog/groundwater system can be gotten from this work.

  6. A critique of the UK's JNCC seismic survey guidelines for minimising acoustic disturbance to marine mammals: best practise?

    PubMed

    Parsons, E C M; Dolman, Sarah J; Jasny, Michael; Rose, Naomi A; Simmonds, Mark P; Wright, Andrew J

    2009-05-01

    The United Kingdom's statutory conservation agency, the Joint Nature Conservation Committee (JNCC), developed guidelines in 1995 to minimise acoustic disturbance of marine mammals by oil and gas industry seismic surveys. These were the first national guidelines to be developed and have subsequently become the standard, or basis, of international mitigation measures for noise pollution during seismic surveys. However, relatively few aspects of these measures have a firm scientific basis or proven efficacy. Existing guidelines do not offer adequate protection to marine mammals, given the complex propagation of airgun pulses; the difficulty of monitoring in particular the smaller, cryptic, and/or deep-diving species, such as beaked whales and porpoises; limitations in monitoring requirements; lack of baseline data; and other biological and acoustical complications or unknowns. Current guidelines offer a 'common sense' approach to noise mitigation, but in light of recent research and ongoing concerns, they should be updated, with broader measures needed to ensure adequate species protection and to address data gaps.

  7. The preglacial sediment record of Lake Ladoga, Russia - first results from a seismic survey and sediment coring in 2013

    NASA Astrophysics Data System (ADS)

    Melles, Martin; Krastel, Sebastian; Fedorov, Grigory; Subetto, Dmitry A.; Savelieva, Larisa A.; Andreev, Andrej; Wagner, Bernd

    2014-05-01

    The new German-Russian project PLOT (Paleolimnological Transect) aims at investigating the Late Quaternary climatic and environmental history along a more than 6000 km long longitudinal transect crossing northern Eurasia. Special emphasis is put on the preglacial history. For this purpose shallow and deep seismic surveys shall be carried out on five lakes, which potentially host preglacial sediment records, followed by sediment coring based on the results of the seismic campaigns. The well-studied Lake El'gygytgyn represents the eastern-most location of the transect and acts as reference site. Within the scope of a pilot phase for the PLOT project, funded by the German Federal Ministry of Education and Research, we were able to investigate Lake Ladoga, which is located close to St. Petersburg at the western end of the transect. Lake Ladoga is the largest lake in Europe, covering an area of almost 18.000 km2. The modern sedimentation as well as the late glacial and Holocene history of the lake were already studied in detail over the past decades. The older, preglacial lake history, however, is only rudimentary known from a core transect drilled in the southern lake in the 1930th. The cores of up to about 60 m length were only briefly described and are not existing any more. The results from these cores, known from unpublished reports only, suggest the existence of marine sediments of presumably Eemian age, representing a time when Lake Lagoga was part of a precursor of the Baltic Sea, which had a connection via Ladoga and Onega Lakes to the White Sea and further to the Arctic Ocean. In late August/early September 2013 we carried out a seismic survey on Lake Ladoga using a Mini-GI-Gun and a 32-channel seismic streamer. In total, 1500 km of seismic profiles were measured, covering most parts of the lake. The seismic lines typically show acoustically well stratified Holocene muds overlaying rather transparent postglacial varves. These sediment successions can reach

  8. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys

    NASA Astrophysics Data System (ADS)

    Bombosch, Annette; Zitterbart, Daniel P.; Van Opzeeland, Ilse; Frickenhaus, Stephan; Burkhardt, Elke; Wisz, Mary S.; Boebel, Olaf

    2014-09-01

    Seismic surveys are frequently a matter of concern regarding their potentially negative impacts on marine mammals. In the Southern Ocean, which provides a critical habitat for several endangered cetacean species, seismic research activities are undertaken at a circumpolar scale. In order to minimize impacts of these surveys, pre-cruise planning requires detailed, spatio-temporally resolved knowledge on the likelihood of encountering these species in the survey area. In this publication we present predictive habitat modelling as a potential tool to support decisions for survey planning. We associated opportunistic sightings (2005-2011) of humpback (Megaptera novaeangliae, N=93) and Antarctic minke whales (Balaenoptera bonaerensis, N=139) with a range of static and dynamic environmental variables. A maximum entropy algorithm (Maxent) was used to develop habitat models and to calculate daily basinwide/circumpolar prediction maps to evaluate how species-specific habitat conditions evolved throughout the spring and summer months. For both species, prediction maps revealed considerable changes in habitat suitability throughout the season. Suitable humpback whale habitat occurred predominantly in ice-free areas, expanding southwards with the retreating sea ice edge, whereas suitable Antarctic minke whale habitat was consistently predicted within sea ice covered areas. Daily, large-scale prediction maps provide a valuable tool to design layout and timing of seismic surveys as they allow the identification and consideration of potential spatio-temporal hotspots to minimize potential impacts of seismic surveys on Antarctic cetacean species.

  9. Los Alamos National Laboratory 4D Database

    SciTech Connect

    Atencio, Julian J.

    2014-05-02

    4D is an integrated development platform - a single product comprised of the components you need to create and distribute professional applications. You get a graphical design environment, SQL database, a programming language, integrated PHP execution, HTTP server, application server, executable generator, and much more. 4D offers multi-platform development and deployment, meaning whatever you create on a Mac can be used on Windows, and vice-versa. Beyond productive development, 4D is renowned for its great flexibility in maintenance and modification of existing applications, and its extreme ease of implementation in its numerous deployment options. Your professional application can be put into production more quickly, at a lower cost, and will always be instantly scalable. 4D makes it easy, whether you're looking to create a classic desktop application, a client-server system, a distributed solution for Web or mobile clients - or all of the above!

  10. 75 FR 39335 - Incidental Takes of Marine Mammals During Specified Activities; Marine Seismic Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... Tracklines for USGS and Geological Survey of Canada (GSC) 2010 Extended Continental Shelf Survey in the.... Laurent and Healy Extended Continental Shelf expeditions in the Arctic Ocean, August 3 to September 16... Icebreaking Effort for USGS/GSC 2010 Extended Continental Shelf Survey in the Northern Beaufort Sea and...

  11. New methods for engineering site characterization using reflection and surface wave seismic survey

    NASA Astrophysics Data System (ADS)

    Chaiprakaikeow, Susit

    This study presents two new seismic testing methods for engineering application, a new shallow seismic reflection method and Time Filtered Analysis of Surface Waves (TFASW). Both methods are described in this dissertation. The new shallow seismic reflection was developed to measure reflection at a single point using two to four receivers, assuming homogeneous, horizontal layering. It uses one or more shakers driven by a swept sine function as a source, and the cross-correlation technique to identify wave arrivals. The phase difference between the source forcing function and the ground motion due to the dynamic response of the shaker-ground interface was corrected by using a reference geophone. Attenuated high frequency energy was also recovered using the whitening in frequency domain. The new shallow seismic reflection testing was performed at the crest of Porcupine Dam in Paradise, Utah. The testing used two horizontal Vibroseis sources and four receivers for spacings between 6 and 300 ft. Unfortunately, the results showed no clear evidence of the reflectors despite correction of the magnitude and phase of the signals. However, an improvement in the shape of the cross-correlations was noticed after the corrections. The results showed distinct primary lobes in the corrected cross-correlated signals up to 150 ft offset. More consistent maximum peaks were observed in the corrected waveforms. TFASW is a new surface (Rayleigh) wave method to determine the shear wave velocity profile at a site. It is a time domain method as opposed to the Spectral Analysis of Surface Waves (SASW) method, which is a frequency domain method. This method uses digital filtering to optimize bandwidth used to determine the dispersion curve. Results from testings at three different sites in Utah indicated good agreement with the dispersion curves measured using both TFASW and SASW methods. The advantage of TFASW method is that the dispersion curves had less scatter at long wavelengths as a

  12. Helical 4D CT and Comparison with Cine 4D CT

    NASA Astrophysics Data System (ADS)

    Pan, Tinsu

    4D CT was one of the most important developments in radiation oncology in the last decade. Its early development in single slice CT and commercialization in multi-slice CT has radically changed our practice in radiation treatment of lung cancer, and has enabled the stereotactic radiosurgery of early stage lung cancer. In this chapter, we will document the history of 4D CT development, detail the data sufficiency condition governing the 4D CT data collection; present the design of the commercial helical 4D CTs from Philips and Siemens; compare the differences between the helical 4D CT and the GE cine 4D CT in data acquisition, slice thickness, acquisition time and work flow; review the respiratory monitoring devices; and understand the causes of image artifacts in 4D CT.

  13. Fault Architecture of the Salton Sea through multi-scale Seismic Reflection Surveys

    NASA Astrophysics Data System (ADS)

    Kell, A. M.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Baskin, R. L.

    2011-12-01

    Two sets of seismic reflection images collected in the Salton Sea, California in May 2010 and April 2011 highlight a longstanding episode of extension-related deformation within the Salton Sea pull-apart system. These data are part of a continued multi-scale network of seismic studies of the faults within the Salton Trough. In 2010, we collected ~350 line-km of data using a 75-m-long, 24-channel streamer and a 1.6kJ "sparker" source fired at 1.2 sec intervals. These images document a series of south-east dipping normal faults that are related to the current pull-apart geometry; this configuration appears to persist for only the past 20-40 ka. Newly acquired low fold images (~150 line-km) collected using a 300-m-long, 48-channel streamer and a Generator Injector (GI) airgun source firing at 1 min intervals show that the same structures seen in the higher resolution (2010) data as well as high-resolution seismic CHIRP images collected in 2007 (Brothers et al., 2009, 2010) continue to depths of >2.5 km. From this deeper imagery, we infer that the structures seen in the very shallow CHIRP data are through-going to seismogenic depths and play a dominant role in strain partitioning from the Imperial Fault to the San Andreas Fault through the Brawley Seismic Zone. The 2011 reflection and refraction data are part of a larger collaborative project involving Cal Tech, Virginia Tech, the USGS, University of Nevada, Reno and Scripps Institution of Oceanography. Within this study we seek to understand the mechanisms of how crustal thinning and rifting develops. The fault dip imaged at both scales is ~50-60° and show vertical offsets (sub-meter to tens of meters) distinguishable to the limits of our imaging resolution. These multi-scale data offer a unique opportunity to calculate the timing and mode of motion in the most actively deforming portion of the Salton Trough. The insights gained through these data allow a greater understanding of the tectonics and seismic hazards

  14. Deciphering lake and maar geometries from seismic refraction and reflection surveys in Laguna Potrok Aike (southern Patagonia, Argentina)

    NASA Astrophysics Data System (ADS)

    Gebhardt, A. C.; De Batist, M.; Niessen, F.; Anselmetti, F. S.; Ariztegui, D.; Haberzettl, T.; Kopsch, C.; Ohlendorf, C.; Zolitschka, B.

    2011-04-01

    Laguna Potrok Aike is a bowl-shaped maar lake in southern Patagonia, Argentina, with a present mean diameter of ~ 3.5 km and a maximum water depth of ~ 100 m. Seismic surveys were carried out between 2003 and 2005 in order to get a deeper knowledge on the lake sediments and the deeper basin geometries. A raytracing model of the Laguna Potrok Aike basin was calculated based on refraction data while sparker data were additionally used to identify the crater-wall discordance and thus the upper outer shape of the maar structure. The combined data sets show a rather steep funnel-shaped structure embedded in the surrounding Santa Cruz Formation that resembles other well-known maar structures. The infill consists of up to 370 m lacustrine sediments underlain by probably volcanoclastic sediments of unknown thickness. The lacustrine sediments show a subdivision into two sub-units: (a) the upper with seismic velocities between 1500 and 1800 m s - 1 , interpreted as unconsolidated muds, and (b) the lower with higher seismic velocities of up to 2350 m s - 1 , interpreted as lacustrine sediments intercalated with mass transport deposits of different lithology and/or coarser-grained sediments. The postulated volcanoclastic layer has acoustic velocities of > 2400 m s - 1 . The lake sediments were recently drilled within the PASADO project in the framework of the International Continental Scientific Drilling Program (ICDP). Cores penetrated through lacustrine unconsolidated sediments down to a depth of ~ 100 m below lake floor. This minimal thickness for the unconsolidated and low-velocity lithologies is in good agreement with our raytracing model.

  15. 4D flow imaging with MRI

    PubMed Central

    Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.

    2014-01-01

    Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414

  16. Crustal seismicity and subduction morphology around Antofagasta, Chile: preliminary results from a microearthquake survey

    NASA Astrophysics Data System (ADS)

    Comte, D.; Pardo, M.; Dorbath, L.; Dorbath, C.; Haessler, H.; Rivera, L.; Cisternas, A.; Ponce, L.

    1992-04-01

    During September-October 1988, 13 analog and 16 digital seismographs were installed in northern Chile within 100 km around the city of Antofagasta (22.5-24.5°S; 68.5-70.5°W). The purposes of this study were to observe the microseismicity, to describe the morphology of the subducting slab near the southern edge of the rupture of the last great 1877 earthquake ( Mw= 8.8) in the northern Chile seismic gap, and to monitor the seismic activity probably associated with the Atacama fault system that is roughly parallel to the coast. The analysis of the analog records provides a total of 552 reliable events (2.0 < M < 5.0), whose hypocentres delineate the morphology of the subducting plate in the region. The Nazca plate subducts to the east with a dip of 10° along the trench from 22°S to 25°S down to 30 km depth. At 30-60 km depth a slight variation in the dip angle is observed from 17° (22-23.5°S) to 14° (24-25°S). Downplate, from 60 to 100 km in depth, the dip angle increases more rapidly to the north of 23.5°S than to the south of this latitude, where an almost constant dip (14-16°) is observed and the subducting plate becomes more subhorizontal. For greater depths (100-150 km), the dip of the subducting Nazca plate gradually varies from 36° to 18° between 22°S and 24.5°S. South of 24°S and below 100 km depth, an absence of seismicity is observed. However, a cluster of intermediate depth activity is located near the hypocentre of the December 9, 1950 ( Mw= 8.2) intraplate normal fault earthquake, around 500 km inland from the trench. Shallow seismicity (depth ⩽ 30 km) is located near the Atacama fault system. Focal mechanisms show normal faulting with slight left-lateral motion along an average strike in the north-northeast-south-southwest direction, which is in agreement with the observed superficial orientation of the fault. Shallow seismicity is also observed on the Mejillones Peninsula, the main irregularity along the coastline. Focal mechanisms of

  17. Phosphodiesterase4D (PDE4D)--A risk factor for atrial fibrillation and stroke?

    PubMed

    Jørgensen, Carina; Yasmeen, Saiqa; Iversen, Helle K; Kruuse, Christina

    2015-12-15

    Mutations in the gene encoding phosphodiesterase 4D (PDE4D) enzyme are associated with ischemic stroke; however the functional implications of such mutations are not well understood. PDE4D is part of a complex protein family modulating intracellular signalling by cyclic nucleotides. The PDE4 family includes subtypes A-D, all of which show unique intracellular, cellular and tissue distribution. PDE4D is the major subtype expressed in human atrial myocytes and involved in the pathophysiology of arrhythmias, such as atrial fibrillation. The PDE4D enzyme hydrolyses cyclic adenosine monophosphate (cAMP). Though diverging results are reported, several population based studies describe association of various PDE4D single nucleotide polymorphisms (SNP) with cardio-embolic stroke in particular. Functionally, a down regulation of PDE4D variants has been reported in stroke patients. The anti-inflammatory and vasodilator properties of PDE4 inhibitors make them suitable for treatment of stroke and cardiovascular disease. PDE4D has recently been suggested as factor in atrial fibrillation. This review summarizes the possible function of PDE4D in the brain, heart, and vasculature. Further, association of the described SNPs, in particular, with cardioembolic stroke, is reviewed. Current findings on the PDE4D mutations suggest functionality involves an increased cardiac risk factor as well as augmented risk of atrial fibrillation. PMID:26671126

  18. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013.

    PubMed

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-01-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries. PMID:27479914

  19. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013.

    PubMed

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-08-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  20. Methods and apparatus of suppressing tube waves within a bore hole and seismic surveying systems incorporating same

    DOEpatents

    West, Phillip B.; Haefner, Daryl

    2005-12-13

    Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.

  1. Methods and apparatus of suppressing tube waves within a bore hole and seismic surveying systems incorporating same

    DOEpatents

    West, Phillip B.; Haefner, Daryl

    2004-08-17

    Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.

  2. JNCC guidelines for minimising the risk of injury and disturbance to marine mammals from seismic surveys: We can do better.

    PubMed

    Wright, Andrew J; Cosentino, A Mel

    2015-11-15

    The U.K.'s Joint Nature Conservation Committee 1998 guidelines for minimising acoustic impacts from seismic surveys on marine mammals were the first of their kind. Covering both planning and operations, they included various measures for reducing the potential for damaging hearing - an appropriate focus at the time. Since introduction, the guidelines have been criticised for, among other things: the arbitrarily-sized safety zones; the lack of shut-down provisions; the use of mitigation measures that introduce more noise into the environment (e.g., soft-starts); inadequate observer training; and the lack of standardised data collection protocols. Despite the concerns, the guidelines have remained largely unchanged. Moreover, increasing scientific recognition of the scope and magnitude of non-injurious impacts of sound on marine life has become much more widespread since the last revisions in 2010. Accordingly, here we present feasible and realistic recommendations for such improvements, in light of the current state of knowledge.

  3. Multisensor surveys of historical buildings before, during and after a seismic sequence: the leaning bell tower of Ficarolo (Rovigo)

    NASA Astrophysics Data System (ADS)

    Teza, Giordano; Pesci, Arianna; Trevisani, Sebastiano

    2014-05-01

    Three regions of Northern Italy (Emilia Romagna, Veneto and Lombardy) were struck in May-June 2012 by a seismic sequence that included a moment magnitude 5.9 earthquake. Such a sequence caused significant damage to several historical buildings; in some cases complete structural collapse occurred. The 69-m high bell tower of Ficarolo (Rovigo province, Northern Italy) leans at a significant angle (~3° in the shaft). Because the combination of height and leaning angle is visually impressive, Ficarolo is also known as the 'Pisa of Polesine' (Polesine is the Venetian bank of the Po River), referring to the well-known 55-m high, 4° leaning tower of Pisa. A project aimed at studying the geometry of the tower, by means of terrestrial laser scanning (TLS), possible local seismic amplification and soil-structure interaction (SSI), by means of low-cost operational modal analysis (OMA) and geophysical measurements, began in early 2012, before the earthquake. In particular, the first series of data were taken in February 2012 (OMA) and April 2012 (TLS). The distance from Ficarolo of the epicenters of the six events with moment magnitude higher than 5.0 ranged from 9 km to 37 km. Several cracks appeared in the bell tower belfry and cusp. An inclinometer installed in 2003 showed that the base was unchanged, but the upper part of the shaft had moved by 2.5 cm after the main shock. No further displacements were detected as a result of the aftershocks. The repetition of the TLS and OMA surveys during and after the seismic sequence, together with infrared thermal imaging (IRT) measurements, allowed an evaluation of the changes caused by the earthquake. Two main results were obtained: (1) an estimate of earthquake induced damage to the Ficarolo's bell tower, which were relatively limited thanks to absence of SSI, and (2) it was demonstrated that fast measurements can be repeated during earthquake emergencies and that preventive measures can be carried out under reasonable time and

  4. Seismic reflection survey at Ayer Hangat site to investigate shallow subsurface structures

    NASA Astrophysics Data System (ADS)

    Khalil, Amin E.; Nawawi, Mohd; Kamel, Rami

    2016-01-01

    Ayer Hangat site is located in the island of Langkawi, northwest Malaysia. The site is characterized by the presence of hot spring. This hot spring is believed to be related to granitic intrusion nearby. Hence the present work is focusing on defining the shallow subsurface structures that control the migration of hot water to the surface. Seismic reflection method is used to achieve the goal of the present study. Forty three shot points were used with an offset of 5m of the nearest geophone. The shot-points interval is set to 1m. Seismograms were recorded on 24 channel TERRALOC instrument. The Geophone interval used was 1m. Conventional seismic data processing scheme was adopted. However, due to the fact that TERRALOC produce SEG2 data files, a script based on Obspy was written and used to convert to SEG-Y format. Afterwards, analyses were carried out using SU Package. The processed data is used to develop a model for the subsurface controlling structures. Such model will help in the understanding of the geothermal hot spring system in the area.

  5. Shadow-driven 4D haptic visualization.

    PubMed

    Zhang, Hui; Hanson, Andrew

    2007-01-01

    Just as we can work with two-dimensional floor plans to communicate 3D architectural design, we can exploit reduced-dimension shadows to manipulate the higher-dimensional objects generating the shadows. In particular, by taking advantage of physically reactive 3D shadow-space controllers, we can transform the task of interacting with 4D objects to a new level of physical reality. We begin with a teaching tool that uses 2D knot diagrams to manipulate the geometry of 3D mathematical knots via their projections; our unique 2D haptic interface allows the user to become familiar with sketching, editing, exploration, and manipulation of 3D knots rendered as projected imageson a 2D shadow space. By combining graphics and collision-sensing haptics, we can enhance the 2D shadow-driven editing protocol to successfully leverage 2D pen-and-paper or blackboard skills. Building on the reduced-dimension 2D editing tool for manipulating 3D shapes, we develop the natural analogy to produce a reduced-dimension 3D tool for manipulating 4D shapes. By physically modeling the correct properties of 4D surfaces, their bending forces, and their collisions in the 3D haptic controller interface, we can support full-featured physical exploration of 4D mathematical objects in a manner that is otherwise far beyond the experience accessible to human beings. As far as we are aware, this paper reports the first interactive system with force-feedback that provides "4D haptic visualization" permitting the user to model and interact with 4D cloth-like objects.

  6. 4D Confocal Imaging of Yeast Organelles.

    PubMed

    Day, Kasey J; Papanikou, Effrosyni; Glick, Benjamin S

    2016-01-01

    Yeast cells are well suited to visualizing organelles by 4D confocal microscopy. Typically, one or more cellular compartments are labeled with a fluorescent protein or dye, and a stack of confocal sections spanning the entire cell volume is captured every few seconds. Under appropriate conditions, organelle dynamics can be observed for many minutes with only limited photobleaching. Images are captured at a relatively low signal-to-noise ratio and are subsequently processed to generate movies that can be analyzed and quantified. Here, we describe methods for acquiring and processing 4D data using conventional scanning confocal microscopy. PMID:27631997

  7. Land 3D-seismic data: Preprocessing quality control utilizing survey design specifications, noise properties, normal moveout, first breaks, and offset

    USGS Publications Warehouse

    Raef, A.

    2009-01-01

    The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near-surface carbon dioxide sequestration in shallow saline aquifers around the world, justifies the emphasis on cost-effective and robust quality control and assurance (QC/QA) workflow of 3D seismic data preprocessing that is suitable for near-surface applications. The main purpose of our seismic data preprocessing QC is to enable the use of appropriate header information, data that are free of noise-dominated traces, and/or flawed vertical stacking in subsequent processing steps. In this article, I provide an account of utilizing survey design specifications, noise properties, first breaks, and normal moveout for rapid and thorough graphical QC/QA diagnostics, which are easy to apply and efficient in the diagnosis of inconsistencies. A correlated vibroseis time-lapse 3D-seismic data set from a CO2-flood monitoring survey is used for demonstrating QC diagnostics. An important by-product of the QC workflow is establishing the number of layers for a refraction statics model in a data-driven graphical manner that capitalizes on the spatial coverage of the 3D seismic data. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  8. Summary of workshops concerning regional seismic source zones of parts of the conterminous United States, convened by the U.S. Geological Survey, 1979-1980, Golden, Colorado

    USGS Publications Warehouse

    Thenhaus, Paul C.

    1983-01-01

    Workshops were convened by the U.S. Geological Survey to obtain the latest information and concepts relative to defining seismic source zones for five regions of the United States. The zones, with some modifications, have been used in preparation of new national probabilistic ground motion hazard maps by the U.S. Geological Survey. The five regions addressed are the Great Basin, the Northern Rocky Mountains, the Southern Rocky Mountains, the Central Interior, and' the northeastern United States. Discussions at the workshops focussed on possible temporal and spatial variations of seismicity within the regions, latest ages of surface-fault displacements, most recent uplift or subsidence, geologic structural provinces as they relate to seismicity, and speculation on earthquake causes. Within the Great Basin region, the zones conform to areas characterized by a predominance of faults that have certain ages of latest surface displacements. In the Northern and Southern Rocky Mountain regions, zones primarily conform to distinctive structural terrane. In the Central Interior, primary emphasis was placed on an interpretation of the areal distribution of historic seismicity, although geophysical studies in the Reelfoot rift area provided data for defining zones in the New Madrid earthquake area. An interpretation of the historic seismicity also provided the basis for drawing the zones of the New England region. Estimates of earthquake maximum magnitudes and of recurrence times for these earthquakes are given for most of the zones and are based on either geologic data or opinion.

  9. Deep seismic survey images crustal structure of Tornquist Zone beneath southern Baltic Sea

    SciTech Connect

    Not Available

    1991-06-01

    The Tornquist Zone is Europe's longest tectonic lineament and bisects the continent in a NW-SE direction from the North Sea (off NW Denmark) to the Black Sea. New deep seismic reflection and coincident refraction data have been collected across its 50 km wide, intensely faulted and inverted NW part. The marine reflection profile in the area north of Bornholm Island shows a tilted block structure in the rigid upper crust, whereas the lower crust seems to be more gently uplifted. A complex transition from the highly reflective lower crust to the mantle is indicated by mantle reflections and a curious wide-angle event recorded by a landstation on Bornholm Island. The authors suggest that deep-reaching inversion tectonics, induced by Alpine and Carpathian orogeny, were responsible for the development of the gross crust-mantle structure of the Tornquist Zone in the study area, which seems to be similar to that in Poland.

  10. High-resolution seismic reflection survey at the Manson crater, Iowa

    NASA Technical Reports Server (NTRS)

    Keiswetter, D. A.; Black, R.; Steeples, D. W.; Anderson, R. R.

    1993-01-01

    Approximately 17.4 km of high-resolution reflection data were acquired along an east-west radius of the Manson Impact Structure (MIS) to delineate the shallow (upper 300 m) subsurface structural configuration. The geometry of the shallow structure is poorly known due to a 30-90 m thick Pleistocene till cover. The resolution of the new seismic data is roughly 5-10 times that of existing Vibroseis data. Data quality varies rapidly along the line from exceptional to poor, due primarily to velocity variations associated with the geological complexity of the area. Preliminary results indicate subsurface structural blocks previously envisioned to be several hundreds of meters in size are actually an order of magnitude smaller and more complex. A seismogram-by-seismogram analysis is necessary to confidently identify intricate stratigraphic and structural relationships seen on preliminary CDP sections, as numerous faults, diffractions, and complicated reflection patterns create potential pitfalls.

  11. Constrained reconstructions for 4D intervention guidance.

    PubMed

    Kuntz, J; Flach, B; Kueres, R; Semmler, W; Kachelriess, M; Bartling, S

    2013-05-21

    Image-guided interventions are an increasingly important part of clinical minimally invasive procedures. However, up to now they cannot be performed under 4D (3D + time) guidance due to the exceedingly high x-ray dose. In this work we investigate the applicability of compressed sensing reconstructions for highly undersampled CT datasets combined with the incorporation of prior images in order to yield low dose 4D intervention guidance. We present a new reconstruction scheme prior image dynamic interventional CT (PrIDICT) that accounts for specific image features in intervention guidance and compare it to PICCS and ASD-POCS. The optimal parameters for the dose per projection and the numbers of projections per reconstruction are determined in phantom simulations and measurements. In vivo experiments in six pigs are performed in a cone-beam CT; measured doses are compared to current gold-standard intervention guidance represented by a clinical fluoroscopy system. Phantom studies show maximum image quality for identical overall doses in the range of 14 to 21 projections per reconstruction. In vivo studies reveal that interventional materials can be followed in 4D visualization and that PrIDICT, compared to PICCS and ASD-POCS, shows superior reconstruction results and fewer artifacts in the periphery with dose in the order of biplane fluoroscopy. These results suggest that 4D intervention guidance can be realized with today's flat detector and gantry systems using the herein presented reconstruction scheme.

  12. 4D-Var Developement at GMAO

    NASA Technical Reports Server (NTRS)

    Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.

  13. Constrained reconstructions for 4D intervention guidance

    NASA Astrophysics Data System (ADS)

    Kuntz, J.; Flach, B.; Kueres, R.; Semmler, W.; Kachelrieß, M.; Bartling, S.

    2013-05-01

    Image-guided interventions are an increasingly important part of clinical minimally invasive procedures. However, up to now they cannot be performed under 4D (3D + time) guidance due to the exceedingly high x-ray dose. In this work we investigate the applicability of compressed sensing reconstructions for highly undersampled CT datasets combined with the incorporation of prior images in order to yield low dose 4D intervention guidance. We present a new reconstruction scheme prior image dynamic interventional CT (PrIDICT) that accounts for specific image features in intervention guidance and compare it to PICCS and ASD-POCS. The optimal parameters for the dose per projection and the numbers of projections per reconstruction are determined in phantom simulations and measurements. In vivo experiments in six pigs are performed in a cone-beam CT; measured doses are compared to current gold-standard intervention guidance represented by a clinical fluoroscopy system. Phantom studies show maximum image quality for identical overall doses in the range of 14 to 21 projections per reconstruction. In vivo studies reveal that interventional materials can be followed in 4D visualization and that PrIDICT, compared to PICCS and ASD-POCS, shows superior reconstruction results and fewer artifacts in the periphery with dose in the order of biplane fluoroscopy. These results suggest that 4D intervention guidance can be realized with today’s flat detector and gantry systems using the herein presented reconstruction scheme.

  14. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey -

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.

    2009-12-01

    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  15. Seismic Vulnerability Evaluations Within The Structural And Functional Survey Activities Of The COM Bases In Italy

    SciTech Connect

    Zuccaro, G.; Cacace, F.; Albanese, V.; Mercuri, C.; Papa, F.; Pizza, A. G.; Sergio, S.; Severino, M.

    2008-07-08

    The paper describes technical and functional surveys on COM buildings (Mixed Operative Centre). This activity started since 2005, with the contribution of both Italian Civil Protection Department and the Regions involved. The project aims to evaluate the efficiency of COM buildings, checking not only structural, architectonic and functional characteristics but also paying attention to surrounding real estate vulnerability, road network, railways, harbours, airports, area morphological and hydro-geological characteristics, hazardous activities, etc. The first survey was performed in eastern Sicily, before the European Civil Protection Exercise 'EUROSOT 2005'. Then, since 2006, a new survey campaign started in Abruzzo, Molise, Calabria and Puglia Regions. The more important issue of the activity was the vulnerability assessment. So this paper deals with a more refined vulnerability evaluation technique by means of the SAVE methodology, developed in the 1st task of SAVE project within the GNDT-DPC programme 2000-2002 (Zuccaro, 2005); the SAVE methodology has been already successfully employed in previous studies (i.e. school buildings intervention programme at national scale; list of strategic public buildings in Campania, Sicilia and Basilicata). In this paper, data elaborated by SAVE methodology are compared with expert evaluations derived from the direct inspections on COM buildings. This represents a useful exercise for the improvement either of the survey forms or of the methodology for the quick assessment of the vulnerability.

  16. Analysis of the repeatability of time-lapse 3d vsp multicomponent surveys, delhi field

    NASA Astrophysics Data System (ADS)

    Carvalho, Mariana Fernandes de

    Delhi Field is a producing oil field located in northeastern Louisiana. In order to monitor the CO2 sweep efficiency, time-lapse 3D seismic data have been acquired in this area. Time-lapse studies are increasingly used to evaluate changes in the seismic response induced by the production of hydrocarbons or the injection of water, CO2 or steam into a reservoir. A 4D seismic signal is generated by a combination of production and injection effects within the reservoir as well as non-repeatability effects. In order to get reliable results from time-lapse seismic methods, it is important to distinguish the production and injection effects from the non-repeatability effects in the 4D seismic signal. Repeatability of 4D land seismic data is affected by several factors. The most significant of them are: source and receiver geometry inaccuracies, differences in seismic sources signatures, variations in the immediate near surface and ambient non-repeatable noise. In this project, two 3D multicomponent VSP surveys acquired in Delhi Field were used to quantify the relative contribution of each factor that can affect the repeatability in land seismic data. The factors analyzed in this study were: source and receiver geometry inaccura- cies, variations in the immediate near surface and ambient non-repeatable noise. This study showed that all these factors had a significant impact on the repeatability of the successive multicomponent VSP surveys in Delhi Field. This project also shows the advantages and disadvantages in the use of different repeata- bility metrics, normalized-root-mean-square (NRMS) difference and signal-to-distortion ratio (SDR) attribute, to evaluate the level of seismic repeatability between successive time-lapse seismic surveys. It is observed that NRMS difference is greatly influenced by time-shifts and that SDR attribute combined with the time-shift may give more distinct and representative repeatability information than the NRMS difference.

  17. Interactive animation of 4D performance capture.

    PubMed

    Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian

    2013-05-01

    A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance.

  18. Nondipole Effects in Xe 4d Photoemission

    SciTech Connect

    Hemmers, O; Guillemin, R; Wolska, A; Lindle, D W; Rolles, D; Cheng, K T; Johnson, W R; Zhou, H L; Manson, S T

    2004-07-14

    We measured the nondipole parameters for the spin-orbit doublets Xe 4d{sub 5/2} and Xe 4d{sub 3/2} over a photon-energy range from 100 eV to 250 eV at beamline 8.0.1.3 of the Advanced Light Source at the Lawrence Berkeley National Laboratory. Significant nondipole effects are found at relatively low energies as a result of Cooper minima in dipole channels and interchannel coupling in quadrupole channels. Most importantly, sharp disagreement between experiment and theory, when otherwise excellent agreement was expected, has provided the first evidence of satellite two-electron quadrupole photoionization transitions, along with their crucial importance for a quantitatively accurate theory.

  19. Interactive animation of 4D performance capture.

    PubMed

    Casas, Dan; Tejera, Margara; Guillemaut, Jean-Yves; Hilton, Adrian

    2013-05-01

    A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple mesh sequences of related motions. A real-time mesh sequence blending approach is introduced, which combines the realistic deformation of previous nonlinear solutions with efficient online computation. Transitions between different parametric motion spaces are evaluated in real time based on surface shape and motion similarity. Four-dimensional parametric motion graphs allow real-time interactive character animation while preserving the natural dynamics of the captured performance. PMID:23492379

  20. Results of a shallow seismic-refraction survey in the Little Valley area near Hemet, Riverside County, California

    USGS Publications Warehouse

    Duell, L.F., Jr.

    1995-01-01

    Little Valley, a small locally named valley southeast of the city of Hemet in Riverside County, California, is being evaluated for development of a constructed wetland and infiltration area as part of a water-resources management program in the area. The valley is a granitic basin filled with unconsolidated material. In August 1993 and June and July 1994, the U.S. Geological Survey conducted a seismic-refraction survey consisting of four lines northwest of the valley, eight lines in the valley, and six lines northeast of the valley. Two interpretations were made for the lines: a two-layer model yielded an estimate of the minimum depths to bedrock and a three-layer model yielded the most likely depths to bedrock. Results of the interpretation of the three-layer model indicate that the unsaturated unconsolidated surface layer ranges in thickness from 12 to 83 feet in the valley and 24 to 131 feet northeast of the valley. The mean compressional velocity for this layer was about 1,660 feet per second. A saturated middle layer was detected in some parts of the study area, but not in others--probably because of insufficient thickness in some places; however, in order to determine the "most likely" depths to bedrock, it was assumed that the layer was present throughout the valley. Depths to this layer were verified on three seismic lines using the water level from the only well in the valley. Data for additional verification were not available for wells near Little Valley. The bedrock slope from most of Little Valley is down toward the northeast. Bedrock profiles show that the bedrock surface is very uneven in the study area. The interpreted most likely depth to bedrock in the valley ranged from land surface (exposed) to a depth of 176 feet below land surface, and northeast of the valley it ranged from 118 to 331 feet below land surface. Bedrock depths were verified using lithologic logs from test holes drilled previously in the area. On the basis of a measured mean

  1. Crosswell acoustic surveying in gas sands: Travel-time pattern recognition, seismic Q and channel waves

    NASA Astrophysics Data System (ADS)

    Albright, J. N.; Johnson, P. A.

    The application of crosswell acoustic measurements to gas sands research has been explored through surveys conducted in the Mesa Verde formation at the Department of Energy Multi-Well Experiment (MWX) site near Rifle, Colorado. The borehole tools used in the survey are similar in concept to those used in commercial service for sonic logging, but they are especially adapted for the stringent requirements of crosswell shooting in hot gas wells. Important information about the geologic structure between wells can be extracted from crosswell scans without resorting to elaborate processing. A useful representation is a display of the travel time of P-waves in terms of the cylindrical coordinates of the transmitter referenced to the receiver. This is known as a gamma-depth ((GAMMA)-Z) plot. Such a representation may yield distinctive patterns, which can be interpreted based on the successful replication of the pattern through computer simulations.

  2. Seismic anisotropy across the Longmen Shan mountain range from a passive seismological survey.

    NASA Astrophysics Data System (ADS)

    Herquel, G.; Robert, A.; Vergne, J.; Zhu, J.

    2008-12-01

    Located between the eastern margin of the Tibetan plateau and the Yangtze craton, the Longmen Shan mountains range is a key area for understanding mechanisms that control the deformation and the eastward extrusion of the Tibetan plateau. This context motivated several French institutes and the University of Chengdu to set up a seismic network across the Longmen Shan to determine the patterns of the lithospheric deformation in this region. The profile, composed of 36 stations with a mean inter-station spacing of 10km, was deployed in several phases from November 2005 to April 2007 and ran from the Sichuan basin, across the Longmen Shan fold belt, the Songpan Garze terrane and up to the Xianshuhe fault. Here, we present the first results from this experiment about the anisotropy within the lithosphere based on shear wave splitting measurements. 41 clear SKS and SKKS phases from 23 teleseismic events were recorded during the two periods of deployment and selected through visual inspection. We used the cross- correlation method to calculate the splitting parameters, that is, the azimuth of the past polarization direction and the delay time between the split phases arrivals. We show that 1) The polarization directions are coherent in all the studied zone. They are compatible with previous observations, GPS measurements and with the main known surface features like the Xianshuhe strike-slip fault. Strikingly, no significant change is observed between the Longmen Shan region and the eastern part of the Yangtze craton; 2) The measured delays are small and don't reflect important asthenospheric flow. Some measurements of S splitting near the Beichuan-Weichuan fault system show normal anisotropy for the crust (around 0.05 to 0.1s). Based on these results, the origin of anisotropy seems to be confined to the lithosphere and coherent deformation of the crust and mantle lithosphere cannot be excluded.

  3. Using Vertical electrical sounding survey and refraction seismic survey for determining the geological layers depths, the structural features and assessment groundwater in Aqaba area in South Jordan.

    NASA Astrophysics Data System (ADS)

    Akawwi, Emad; Alzoubi, Abdallah; Ben Abraham, Zvi; Rahamn Abo Alades, Abdel; Alrzouq, Rami; Tiber, Gidon; Neimi, Tina

    2010-05-01

    The study area is the Aqaba region (Southern wadi Araba basin). Aqaba region area located at 87900 and 89000 North and 147000 and 158000 East (Palestine grid). Tectonically Aqaba area lies within the tectonic plate boundary along the Arabian and African plate slide. This plate boundary comprises numerous and shot fault segments. The main aims of this study are to assessing the groundwater potential and its quality, to explain the subsurface geological conditions and support the ongoing geological, environmental and hydrogeological studies. Therefore, it was anticipated that the results of the geophysical surveying will give many different important parameters as The subsurface geological features, thicknesses of the different lithological units, depth to the bed rocks and depth to the water table. The groundwater can apply an important role in ensuring sustainable water supply in the area. This study was carried out in order to assess groundwater condition, geological layers thicknesses and structural features in Aqaba area by using vertical electrical sounding (VES) surveys and refraction seismic techniques. There are three geoelectrical cross section were carried out at different sites by using the Schlumberger array. The first cross section indicated three layers of different resistivity. The second cross section indicated four layers of different resistivity. The third geoelectrical cross sections indicated three layers. The refraction seismic method also has been conducted in the same area as VES. About 12 refraction seismic profiles have been carried out in the study area. The length of the first profile was 745 m at the direction N-S. This profile indicated two different layers with a different velocities. The length of the second profile was 1320 m with E-W direction. This profile indicated two different layers. The length of the third profile was about 515 m with a direction SE-NW. It recognized two different layers with a different velocities. The fourth

  4. Abdominal and pancreatic motion correlation using 4D CT, 4D transponders, and a gating belt.

    PubMed

    Betancourt, Ricardo; Zou, Wei; Plastaras, John P; Metz, James M; Teo, Boon-Keng; Kassaee, Alireza

    2013-01-01

    The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath-hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R-square values larger than 0.8 for the inferior-superior (inf-sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior-posterior (ant-post) and the inf-post directions. These directions have a correlation value of -0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf-sup and the ant-post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable. PMID:23652242

  5. Abdominal and pancreatic motion correlation using 4D CT, 4D transponders, and a gating belt.

    PubMed

    Betancourt, Ricardo; Zou, Wei; Plastaras, John P; Metz, James M; Teo, Boon-Keng; Kassaee, Alireza

    2013-05-06

    The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath-hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R-square values larger than 0.8 for the inferior-superior (inf-sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior-posterior (ant-post) and the inf-post directions. These directions have a correlation value of -0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf-sup and the ant-post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable.

  6. Overdeepened glacigenic landforms in Lake Thun (Switzerland) revealed by a multichannel reflection seismic survey

    NASA Astrophysics Data System (ADS)

    Fabbri, Stefano; Herwegh, Marco; Schlunegger, Fritz; Hübscher, Christian; Weiss, Benedikt J.; Schmelzbach, Cédric; Horstmeyer, Heinrich; Buechi, Marius W.; Anselmetti, Flavio S.

    2016-04-01

    Recently acquired high-resolution multibeam bathymetry, in combination with a 2D multichannel reflection seismic campaign on perialpine Lake Thun (Switzerland) reveals new insights into the diverse geometry of the lake basin and a so far unknown subaquatic moraine crest with unprecedented clarity. These new data will improve our comprehension concerning the retreat phases of the Aare glacier, the morphology of its proximal deposits and the facies architecture of the subglacial units. The overdeepened basin of Lake Thun was formed by a combination of tectonically predefined weak zones and glacial erosion during the last glacial periods. The new data indicate that below the outermost edge of a morphologically distinct platform in the south eastern part of the lake basin, a ridge structure marked by strong reflection amplitudes occurs. This structure is interpreted as a subaquatic terminal moraine crest, most likely created by a slightly advancing or stagnant grounded Aare glacier during its major retreating phase. The terminal moraine smoothly transforms downstream into well distinguishable foresets with internally recognisable layering, which dip steeply towards the deepest part of the basin, eventually transforming into bottomsets. This depositional sequence formed by the fore- and bottomsets represents ˜50% of the overall sediment volume that fills the basin and was deposited while the glacier was stagnant, interpreted to represent a rather short period of time of a few hundreds of years. This sequence is overlain by lacustrine deposits formed by late-glacial and Holocene laminated muds comprising intercalated turbidites (Wirth et al. 2011). Little is known about the exact timing and behaviour of retreating glaciers between their recessional phase from the Alpine foreland to the deglaciation of the inner-Alpine ice cap, mostly due to the lack of well-developed moraines that indicate glacial stabilization or slight readvance. Findings from pollen analyses by

  7. Reflection seismic mapping of shallow quick-clay landslides in Sweden - new insights from shear-wave surveying

    NASA Astrophysics Data System (ADS)

    Polom, U.; Krawczyk, C. M.; Malehmir, A.; Bastani, M.

    2012-04-01

    As part of a joint project studying clay-related landslides in Nordic countries, we successfully tested the use of shear wave reflection seismics to survey shallow structures that are known to be related to quick-clay landslide processes. Co-sponsored via the Society of Exploration Geophysicists (SEG) program 'Geoscientists Without Borders (GWB)', several international groups apply a suite of applied geophysical and geotechnical methods to understand structural and physical conditions and the conditioning of this type of liquefaction. For this purpose, three 2D profiles were recorded in Frastadt, southern Sweden, above the main slide plane area. Using a 120 m long streamer of 120 SH-geophones at 1 m spacing, and the ELVIS micro-vibrator as source, shear-wave data of very high quality were gathered. The longest profile along a paved road shows clear internal structuring of the up to 50 m thick marine sediments as well as strong undulations of top basement underneath. The sedimentary shear wave velocities suggest extremely low values of 100-120 m/s, which geotechnically prohibits building areas. In addition, test measurements on a stubble field showed the first time that the suppression of Love waves is not only restricted to paved surfaces and may also be achieved if reflection contrasts and low dispersion allow a suitable data processing. This opens new possibilities for a wide range of applications and specialized equipment adaptions.

  8. Seismic monitoring results from the first 6 months of CO2 injection at the Aquistore geological storage site, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Daley, T. M.; White, D. J.; Stork, A.; Schmitt, D. R.; Worth, K.; Harris, K.; Roberts, B.; Samson, C.; Kendal, M. J.

    2015-12-01

    The Aquistore Project, located in SE Saskatchewan, Canada, is a demonstration project for CO2 storage in a deep saline aquifer. CO2 captured from a nearby coal-fired power plant is being injected into a brine-filled sandstone formation at 3100-3300 m depth. CO2 injection commenced in April, 2015, at initial rates of up to 250 tonnes per day. Seismic monitoring methods have been employed to track the subsurface CO2 plume and to record any injection-induced microseismicity. Active seismic methods utilized include 4D surface seismics using a sparse permanent array, 4D vertical seismic profiles (VSP) with both downhole geophones and a fiber optic distributed acoustic sensor (DAS) system. Pre-injection baseline seismic surveys have established very good repeatability with NRMS values as low as 0.07. 3D finite-difference seismic modelling of fluid flow simulations is used with the repeatability estimates to determine the appropriate timing for the first CO2 monitor surveys. Time-lapse logging is being conducted on a regular basis to provide in situ measurement of the change in seismic velocity associated with changes in CO2 saturation. Continuous passive seismic recording has been ongoing since the summer of 2012 to establish background local seismicity prior to the start of CO2 injection. Passive monitoring is being conducted using two, 2.5 km long, orthogonal linear arrays of surface geophones.with 3-component short-period geophones, 3 broadband surface seismometers, and an array of 3-component short-period geophones in an observation well. No significant injection-related seismicity (Mw > -1) has been detected at the surface during the first 4 months of CO2 injection. On-going analysis of the downhole passive data will provide further information as to the occurrence of lower magnitude microseismicity (Mw of -1 to -3).

  9. Gpr and Seismic Based Non-Destructive Geophysical Survey for Reinforcement of Historical Fire Tower of Sopron-Hungary

    NASA Astrophysics Data System (ADS)

    Kanli, A. I.; Taller, G.; Nagy, P.; Tildy, P.; Pronay, Z.; Toros, E.

    2013-12-01

    The Fire-Tower which is located in the main square at the hearth of Sopron is the symbol of the city. The museum of Sopron exists in the Storno-house west from the tower. The new city hall stands next to the tower to the east. Funds are from the roman age while the tower was first mentioned in writing in 1409. In 1676, it was burned down to the ground, but re-constructed. In 1894, the old City Hall was deconstucted, but the tower became unstable. István Kiss and Frigyes Schulek saved it by the walling up of the gate. In the year 1928, the scuptures of the main gate which symbolizes the fidelity of the town was sculpted by Zsigmond Kisfaludy Strobl. The old building was deconstructed from its west side, a new concrate museum was built in 1970. After years, important renovation and reinforcement studies had to be needed. For this aim, during the renovation and reinforcement studies, GPR and Seismic based non-destructive geophysical surveys were carried out before and after cement injection to observe the changes of the wall conditions of the historical tower located in Sopron-Hungary for understanding the success of the reinforcements studies. In the GPR survey, 400 MHz and 900 MHz antennas were used. The space between each profiles were taken as 0.5 m for 400 MHz and 0.25m for 900 MHz respectively. After the injection process, reflections from the fractured and porous zones were weakened imaged clearly by GPR data and significant rise of the p-wave velocities were observed.

  10. TOMO-ETNA MED-SUV.ISES an active seismic and passive seismic experiment at Mt. Etna volcano. An integrated marine and onland geophysical survey.

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesus. M.; Patane, Domenico; Puglisi, Guisseppe; Zuccarello, Lucciano; Bianco, Francesca; Luehr, Birger; Diaz-Moreno, Alejandro; Prudencio, Janire; Koulakov, Ivan; Del Pezzo, Edoardo; Cocina, Ornella; Coltelli, Mauro; Scarfi, Lucciano; De Gori, Pascuale; Carrion, Francisco

    2014-05-01

    An active seismic experiment to study the internal structure of Etna Volcano is going to carried out on Sicily and Aeolian islands. The main objective of the TOMO-ETNA MED-SUV.ISES experiment, beginning in summer 2014, is to perform a high resolution seismic tomography, in velocity and attenuation, in Southern Italy, by using active and passive seismic data, in an area encompassing outstanding volcanoes as Mt. Etna, and Aeolian volcanoes. The achievement of this objective is based on the integration and sharing of the in-situ marine and land experiments and observations and on the implementation of new instruments and monitoring systems. For the purpose, onshore and offshore seismic stations and passive and active seismic data generated both in marine and terrestrial environment will be used. Additionally, other geophysical data, mainly magnetic and gravimetric data will be considered to obtain a joint Upper Mantle-Crust structure that could permit to make progress in the understanding of the dynamic of the region. This multinational experiment which involves institutions from Spain, Italy, Germany, United Kingdom, Ireland, France, Malta, Portugal, Russia, USA and Mexico. During the experiment more than 6.600 air gun shots performed by the Spanish Oceanographic vessel "Sarmiento de Gamboa" will be recorder on a dense local seismic network consisting of 100 on land non-permanent stations, 70 on land permanent stations and 20-25 OBSs. Contemporaneously other marine geophysical measures will be performed using a marine Gravimeter LaCoste&Romberg Air-Sea Gravity System II and a Marine Magnetometer SeaSPY. The experiments will provide a unique data set in terms of data quantity and quality, and it will provide a detailed velocity and attenuation structural image of volcano edifice. The results will be essential in the development and interpretation of future volcanic models. It is noteworthy that this project is fully transversal, multidisciplinary and crosses several

  11. High resolution (chirp) survey in the Ionian sea (Italy, central Maditerranean): seismic evidence of mud diapirism and coral colonies

    NASA Astrophysics Data System (ADS)

    Fusi, N.; Savini, A.; Corselli, C.

    2003-04-01

    A CHIRP survey in the Ionian Sea between Calabria and Puglia (Italy) investigated: 1) the Calabrian margin, characterized by Eward dipping dip slip faults, which offset the sea bottom for a total throw of about 1200, and interested by diffuse mass-flow phenomena (slides and slumps); 2) the accretionary wedge, chiefly characterised by creep deposits; a flat plateau, identified in this area, is interpreted as the outcrop of coarse grained turbidites, coming from the steep Calabrian margin; 3) the Taranto Trench, affected by slumps in its upper part and by sedimentation of coarse grained sediments in the lower one; 4) the Apulian foreland, which rises from the Taranto trench through some appeninic (NNW-SSE) dip slip faults, with a total throw of about 1500 m; some anticlines, probably formed by Neogene-Pleistocene sediments and partly eroded, are interpreted on the basis of other seismic data (Doglioni et al., 1999; Merlini et al., 2000) as a local compression in a general extensive context. The identified echo characters have been compared with those described by Lee et al. (2002) and, on the basis of cores collected on some particular sites, they have been related to different kinds of sediments. In particular two echo characters have an interesting interpretation: 1) On the Apulian plateau we found a widespread presence of mounds, up to 50 m high, occurring as isolated mounds in the deepest zones (1600-800 m) and in groups in the shallower ones (800-600 m); they have been interpreted as coral mounds, in according to a recent discovery of living deep water coral colonies in this zone (Tursi A., Mastrototaro F., in press) and on the basis of their acoustic and morphological characters; in fact, due to high porosity and high water content, reef structures represent a poor seismic reflectors, appearing thus transparent (Hovland and Thomsen, 1997). Those coral mounds could be related to the intense fracturation of this area as a main via for fluid flow uprising. 2) Some

  12. Co-seismic displacement of the 11 March 2011 Tohoku-Oki Earthquake detected by differential multi-narrow beam bathymetric survey

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Kodaira, S.; No, T.; Kaiho, Y.; Fujie, G.; Nakamura, Y.; Takahashi, T.; Yamamoto, Y.; Takahashi, N.; Kaneda, Y.

    2011-12-01

    The large tsunami that followed the 2011 Tohoku-Oki Earthquake is believed to have been caused by a fault rupture extending to a shallow part of the subduction zone at the Japan Trench. This is indicated by the results obtained by primary seismic and geodetic inversion procedures; however, an accurate up-dip limit of the co-seismic displacement has not yet been determined. In order to estimate the co-seismic displacement around the trench axis, which is a key to understand the tsunami generation, we carried out post-earthquake, multi-channel seismic reflection and multi-narrow beam bathymetric surveys [Kodaira et al.; Nakamura et al., this AGU meeting] along the survey lines obtained before the earthquake [e.g. Tsuru et al., 2002; Ito et al., 2005]. We analyzed the difference in bathymetry before and after the earthquake, and the results revealed that in a large slip area (~38°N), the seafloor on the landward side of the trench moved by 50 m horizontally to the SE to ESE direction and 10 m upward. Our results show the co-seismic displacement increasing toward the trench axis [for landward side results, refer to Kido et al., 2011; Sato et al., 2011], and the displacement reaches immediately at the trench axis, and also topographic changes were probably caused by land sliding at the axial seafloor. This observation suggests that the plate-coupled zone between earthquakes does extend at the shallowest part of the subduction zone, which was believed to be a stable sliding region. The landward slope near the Japan Trench has steep angle (~5°). Therefore the resultant large horizontal displacement effectively lifted the steep slope area in addition to the actual uplift. Together, these uplifts have caused the massive tsunami.

  13. Active origami by 4D printing

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  14. Short-term disturbance by a commercial two-dimensional seismic survey does not lead to long-term displacement of harbour porpoises.

    PubMed

    Thompson, Paul M; Brookes, Kate L; Graham, Isla M; Barton, Tim R; Needham, Keith; Bradbury, Gareth; Merchant, Nathan D

    2013-11-22

    Assessments of the impact of offshore energy developments are constrained because it is not known whether fine-scale behavioural responses to noise lead to broader-scale displacement of protected small cetaceans. We used passive acoustic monitoring and digital aerial surveys to study changes in the occurrence of harbour porpoises across a 2000 km(2) study area during a commercial two-dimensional seismic survey in the North Sea. Acoustic and visual data provided evidence of group responses to airgun noise from the 470 cu inch array over ranges of 5-10 km, at received peak-to-peak sound pressure levels of 165-172 dB re 1 µPa and sound exposure levels (SELs) of 145-151 dB re 1 µPa(2) s(-1). However, animals were typically detected again at affected sites within a few hours, and the level of response declined through the 10 day survey. Overall, acoustic detections decreased significantly during the survey period in the impact area compared with a control area, but this effect was small in relation to natural variation. These results demonstrate that prolonged seismic survey noise did not lead to broader-scale displacement into suboptimal or higher-risk habitats, and suggest that impact assessments should focus on sublethal effects resulting from changes in foraging performance of animals within affected sites. PMID:24089338

  15. Short-term disturbance by a commercial two-dimensional seismic survey does not lead to long-term displacement of harbour porpoises

    PubMed Central

    Thompson, Paul M.; Brookes, Kate L.; Graham, Isla M.; Barton, Tim R.; Needham, Keith; Bradbury, Gareth; Merchant, Nathan D.

    2013-01-01

    Assessments of the impact of offshore energy developments are constrained because it is not known whether fine-scale behavioural responses to noise lead to broader-scale displacement of protected small cetaceans. We used passive acoustic monitoring and digital aerial surveys to study changes in the occurrence of harbour porpoises across a 2000 km2 study area during a commercial two-dimensional seismic survey in the North Sea. Acoustic and visual data provided evidence of group responses to airgun noise from the 470 cu inch array over ranges of 5–10 km, at received peak-to-peak sound pressure levels of 165–172 dB re 1 µPa and sound exposure levels (SELs) of 145–151 dB re 1 µPa2 s−1. However, animals were typically detected again at affected sites within a few hours, and the level of response declined through the 10 day survey. Overall, acoustic detections decreased significantly during the survey period in the impact area compared with a control area, but this effect was small in relation to natural variation. These results demonstrate that prolonged seismic survey noise did not lead to broader-scale displacement into suboptimal or higher-risk habitats, and suggest that impact assessments should focus on sublethal effects resulting from changes in foraging performance of animals within affected sites. PMID:24089338

  16. Advances in 4D radiation therapy for managing respiration: part II - 4D treatment planning.

    PubMed

    Rosu, Mihaela; Hugo, Geoffrey D

    2012-12-01

    The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle - an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems.

  17. Advances in 4D Radiation Therapy for Managing Respiration: Part II – 4D Treatment Planning

    PubMed Central

    Rosu, Mihaela; Hugo, Geoffrey D.

    2014-01-01

    The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle – an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems. PMID:22796324

  18. 3D elastic full waveform inversion: case study from a land seismic survey

    NASA Astrophysics Data System (ADS)

    Kormann, Jean; Marti, David; Rodriguez, Juan-Esteban; Marzan, Ignacio; Ferrer, Miguel; Gutierrez, Natalia; Farres, Albert; Hanzich, Mauricio; de la Puente, Josep; Carbonell, Ramon

    2016-04-01

    Full Waveform Inversion (FWI) is one of the most advanced processing methods that is recently reaching a mature state after years of solving theoretical and technical issues such as the non-uniqueness of the solution and harnessing the huge computational power required by realistic scenarios. BSIT (Barcelona Subsurface Imaging Tools, www.bsc.es/bsit) includes a FWI algorithm that can tackle with very complex problems involving large datasets. We present here the application of this system to a 3D dataset acquired to constrain the shallow subsurface. This is where the wavefield is the most complicated, because most of the wavefield conversions takes place in the shallow region and also because the media is much more laterally heterogeneous. With this in mind, at least isotropic elastic approximation would be suitable as kernel engine for FWI. The current study explores the possibilities to apply elastic isotropic FWI using only the vertical component of the recorded seismograms. The survey covers an area of 500×500 m2, and consists in a receivers grid of 10 m×20 m combined with a 250 kg accelerated weight-drop as source on a displaced grid of 20 m×20 m. One of the main challenges in this case study is the costly 3D modeling that includes topography and substantial free surface effects. FWI is applied to a data subset (shooting lines 4 to 12), and is performed for 3 frequencies ranging from 15 to 25 Hz. The starting models are obtained from travel-time tomography and the all computation is run on 75 nodes of Mare Nostrum supercomputer during 3 days. The resulting models provide a higher resolution of the subsurface structures, and show a good correlation with the available borehole measurements. FWI allows to extend in a reliable way this 1D knowledge (borehole) to 3D.

  19. ICT4D: A Computer Science Perspective

    NASA Astrophysics Data System (ADS)

    Sutinen, Erkki; Tedre, Matti

    The term ICT4D refers to the opportunities of Information and Communication Technology (ICT) as an agent of development. Research in that field is often focused on evaluating the feasibility of existing technologies, mostly of Western or Far East Asian origin, in the context of developing regions. A computer science perspective is complementary to that agenda. The computer science perspective focuses on exploring the resources, or inputs, of a particular context and on basing the design of a technical intervention on the available resources, so that the output makes a difference in the development context. The modus operandi of computer science, construction, interacts with evaluation and exploration practices. An analysis of a contextualized information technology curriculum of Tumaini University in southern Tanzania shows the potential of the computer science perspective for designing meaningful information and communication technology for a developing region.

  20. 4D Clinical Imaging for Dynamic CAD

    PubMed Central

    McIntyre, Frederick

    2013-01-01

    A basic 4D imaging system to capture the jaw motion has been developed that produces high resolution 3D surface data. Fluorescent microspheres are brushed onto the areas of the upper and the lower arches to be imaged, producing a high-contrast random optical pattern. A hand-held imaging device operated at about 10 cm from the mouth captures time-based perspective images of the fluorescent areas. Each set of images, containing both upper and the lower arch data, is converted to a 3d point mesh using photogrammetry, thereby providing an instantaneous relative jaw position. Eight 3d positions per second are captured. Using one of the 3d frames as a reference, incremental transforms are derived to express the free body motion of the mandible. Conventional 3d models of the dentition are directly registered to the reference frame, allowing them to be animated using the derived transforms. PMID:24082882

  1. Soft Route to 4D Tomography.

    PubMed

    Taillandier-Thomas, Thibault; Roux, Stéphane; Hild, François

    2016-07-01

    Based on the assumption that the time evolution of a sample observed by computed tomography requires many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can be tracked from no more than two radiographs in situations where a complete 3D view would require several hundreds of radiographs. This 2 order of magnitude gain opens the way to a "computed" 4D tomography, which complements the recent progress achieved in fast or ultrafast computed tomography, which is based on beam brightness, detector sensitivity, and signal acquisition technologies.

  2. Soft Route to 4D Tomography

    NASA Astrophysics Data System (ADS)

    Taillandier-Thomas, Thibault; Roux, Stéphane; Hild, François

    2016-07-01

    Based on the assumption that the time evolution of a sample observed by computed tomography requires many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can be tracked from no more than two radiographs in situations where a complete 3D view would require several hundreds of radiographs. This 2 order of magnitude gain opens the way to a "computed" 4D tomography, which complements the recent progress achieved in fast or ultrafast computed tomography, which is based on beam brightness, detector sensitivity, and signal acquisition technologies.

  3. Long-Term Soil Gas Surveys in the Northern Part of the Modena Province Pre, During and After the 2012 Seismic Sequence

    NASA Astrophysics Data System (ADS)

    Sciarra, A.; Cantucci, B.; Galli, G.; Cinti, D.; Quattrocchi, F.

    2014-12-01

    Three geochemical surveys of soil gas (CO2 and CH4 flux measurements, He, H2, CO2, CH4 and C2H6 concentrations) and isotopic analyses (δ13C-CH4, δD-CH4, δ13C-CO2) were carried out as part of a feasibility study for a natural gas storage site in the Modena Province (Northern Italy), during the 2006-2009 period. In May-June 2012, a seismic sequence (main shocks of ML 5.9 and 5.8) was occurred closely to the investigated area. Chemical and isotopic analysis were repeated in May 2012, September 2012, June 2013 and July 2014. In the 2006-2009 period, at the pre-seismic conditions, chemical composition of soil gas showed that the southern part of the studied area is CH4-dominated, whereas the northern part is CO2-dominated. Relatively anomalous fluxes and concentrations were recorded with a spotted areal distribution. Anyway, CO2 and CH4 values are within the typical range of vegetative and of organic exhalation of the cultivated soil. 2012-2013 soil gas results show CO2 values essentially unvaried with respect to pre-earthquake surveys, while the 2014 values highlight an increasing of CO2 flux in the whole study area. On the contrary, CH4 values seem to be on average higher after the seismic sequence, although with a decreasing trend in the last survey (2014). Isotopic analysis were carried out only on samples with anomalous values. The δ13C-CO2 value suggests a prevalent shallow origin of CO2 (i.e. organic and/or soil-derived) probably related to anaerobic oxidation of heavy hydrocarbons. Methane isotopic data (δ13C-CH4) indicate a typical biogenic origin (i.e. microbial hydrocarbon production) of the CH4, as recognized elsewhere in the Po Plain and surroundings. Obtained results highlight a different CO2 and CH4 behaviour before, during and after the seismic events. These variations could be produced by increasing of bacterial (e.g. peat strata) and methanogenic fermentation processes in the first meters of the soil. No hints of deep degassing can be inferred for

  4. Opening the Black Box of ICT4D: Advancing Our Understanding of ICT4D Partnerships

    ERIC Educational Resources Information Center

    Park, Sung Jin

    2013-01-01

    The term, Information and Communication Technologies for Development (ICT4D), pertains to programs or projects that strategically use ICTs (e.g. mobile phones, computers, and the internet) as a means toward the socio-economic betterment for the poor in developing contexts. Gaining the political and financial support of the international community…

  5. 4D GPR Experiments--Towards the Virtual Lysimeter

    NASA Astrophysics Data System (ADS)

    Grasmueck, M.; Viggiano, D. A.; Day-Lewis, F. D.; Drasdis, J. B.; Kruse, S. E.; Or, D.

    2006-05-01

    In-situ monitoring of infiltration, water flow and retention in the vadose zone currently rely primarily on invasive methods, which irreversibly disturb original soil structure and alter its hydrologic behavior in the vicinity of the measurement. For example, use of lysimeters requires extraction and repacking of soil samples, and time- domain reflectometry (TDR) requires insertion of probes into the soil profile. This study investigates the use of repeated high-density 3D ground penetrating radar surveys (also known as 4D GPR) as a non-invasive alternative for detailed visualization and quantification of water flow in the vadose zone. Evaluation of the 4D GPR method was based on a series of controlled point-source water injection experiments into undisturbed beach sand deposits at Crandon Park in Miami, Florida. The goal of the GPR surveys was to image the shape and evolution of a wet-bulb as it propagates from the injection points (~0.5 m) towards the water table at 2.2 m depth. The experimental design was guided by predictive modeling using Hydrus 2D and finite-difference GPR waveform codes. Input parameters for the modeling were derived from hydrologic and electromagnetic characterization of representative sand samples. Guided by modeling results, we injected 30 to 40 liters of tap water through plastic-cased boreholes with slotted bottom sections (0.1 m) located 0.4 to 0.6 m below the surface. During and after injection, an area of 25 m2 was surveyed every 20 minutes using 250 and 500 MHz antennas with a grid spacing of 0.05 x 0.025 m. A total of 20 3D GPR surveys were completed over 3 infiltration sites. To confirm wet-bulb shapes measured by GPR, we injected 2 liters of "brilliant blue" dye (~100 mg/l) along with a saline water tracer towards the end of one experiment. After completion of GPR scanning, a trench was excavated to examine the distribution of the saltwater and dye using TDR and visual inspection, respectively. Preliminary analysis of the 4D GPR

  6. Structure and Velocities of the Northeastern Santa Cruz Mountains and the Western Santa Clara Valley, California, from the SCSI-LR Seismic Survey

    USGS Publications Warehouse

    Catchings, R.D.; Goldman, M.R.; Gandhok, G.

    2006-01-01

    earthquakes sources. As one component of these joint studies, the U. S. Geological Survey acquired more than 28 km of combined seismic reflection/refraction data from the Santa Cruz Mountains to the central Santa Clara Valley in December 2000. The seismic investigation included both high-resolution (~5-m shot and sensor spacing) and relatively lower-resolution (~50-m sensor) seismic surveys from the central Santa Cruz Mountains to the central part of the valley. Collectively, we refer to these seismic investigations as the 2000 western Santa Clara Seismic Investigations (SCSI).

  7. Ambient seismic noise levels: A survey of the permanent and temporary seismographic networks in Morocco, North Africa

    NASA Astrophysics Data System (ADS)

    El Fellah, Y.; Khairy Abd Ed-Aal, A.; El Moudnib, L.; Mimoun, H.; Villasenor, A.; Gallart, J.; Thomas, C.; Elouai, D.; Mimoun, C.; Himmi, M.

    2013-12-01

    Abstract The results, of a conducted study carried out to analyze variations in ambient seismic noise levels at sites of the installed broadband stations in Morocco, North Africa, are obtained. The permanent and the temporary seismic stations installed in Morocco of the Scientific Institute ( IS, Rabat, Morocco), institute de Ciencias de la Tierra Jaume almera (ICTJA, Barcelona, Spain) and Institut für Geophysik (Munster, Germany) were used in this study. In this work, we used 23 broadband seismic stations installed in different structural domains covering all Morocco from south to north. The main purposes of the current study are: 1) to present a catalog of seismic background noise spectra for Morocco obtained from recently installed broadband stations, 2) to assess the effects of experimental temporary seismic vault construction, 3) to determine the time needed for noise at sites to stabilize, 4) to establish characteristics and origin of seismic noise at those sites. We calculated power spectral densities of background noise for each component of each broadband seismometer deployed in the different investigated sites and then compared them with the high-noise model and low-noise Model of Peterson (1993). All segments from day and night local time windows were included in the calculation without parsing out earthquakes. The obtained results of the current study could be used forthcoming to evaluate permanent station quality. Moreover, this study could be considered as a first step to develop new seismic noise models in North Africa not included in Peterson (1993). Keywords Background noise; Power spectral density; Model of Peterson; Scientific Institute; Institute de Ciencias de la Tierra Jaume almera; Institut für Geophysik

  8. Method of attenuating sea ice flexure noise during seismic surveys of permafrost regions involving a precursor aerial and/or satellite mapping step

    SciTech Connect

    Ostrander, W.J.

    1986-11-04

    This patent describes a method of improving resolution of seismic data collected in a transition zone of a permafrost region between a frozen land mass and an adjacent sea-ice region. The data is collected by common midpoint (CMP) collection methods including sequentially activating at least one conventional vibratory source at a series of sourcepoint locations across the surface of the permafrost region. In this region the amplitude and phase spectra of the generated energy are controlled so that the generated energy changes smoothly as a function of time, and redundantly collection reflections thereof via a series of receivers at receiver stations provide 2-dimensional multifold coverage of the subsurface along a survey line. The method comprises: (a) adopting a survey strategy wherein the sourcepoint locations established for the at least one vibratory source, are always separated from the receiver stations by one or more ice fracture areas formed on or about the surface of the along the survey line; and (b) generating seismic field records by positioning and employing the at least one vibratory source and the series of receivers in accordance with the collection strategy of step (a) such that individual sourcepoint-receiver station locations can be redundantly associated with a selected number of traces to form a series of CMP gathers.

  9. 4-D ultrafast shear-wave imaging.

    PubMed

    Gennisson, Jean-Luc; Provost, Jean; Deffieux, Thomas; Papadacci, Clément; Imbault, Marion; Pernot, Mathieu; Tanter, Mickael

    2015-06-01

    Over the last ten years, shear wave elastography (SWE) has seen considerable development and is now routinely used in clinics to provide mechanical characterization of tissues to improve diagnosis. The most advanced technique relies on the use of an ultrafast scanner to generate and image shear waves in real time in a 2-D plane at several thousands of frames per second. We have recently introduced 3-D ultrafast ultrasound imaging to acquire with matrix probes the 3-D propagation of shear waves generated by a dedicated radiation pressure transducer in a single acquisition. In this study, we demonstrate 3-D SWE based on ultrafast volumetric imaging in a clinically applicable configuration. A 32 × 32 matrix phased array driven by a customized, programmable, 1024-channel ultrasound system was designed to perform 4-D shear-wave imaging. A matrix phased array was used to generate and control in 3-D the shear waves inside the medium using the acoustic radiation force. The same matrix array was used with 3-D coherent plane wave compounding to perform high-quality ultrafast imaging of the shear wave propagation. Volumetric ultrafast acquisitions were then beamformed in 3-D using a delay-and-sum algorithm. 3-D volumetric maps of the shear modulus were reconstructed using a time-of-flight algorithm based on local multiscale cross-correlation of shear wave profiles in the three main directions using directional filters. Results are first presented in an isotropic homogeneous and elastic breast phantom. Then, a full 3-D stiffness reconstruction of the breast was performed in vivo on healthy volunteers. This new full 3-D ultrafast ultrasound system paves the way toward real-time 3-D SWE. PMID:26067040

  10. Reactivation of Stromboli's summit craters at the end of the 2007 effusive eruption detected by thermal surveys and seismicity

    NASA Astrophysics Data System (ADS)

    Marotta, E.; Calvari, S.; Cristaldi, A.; D'Auria, L.; Di Vito, M. A.; Moretti, R.; Peluso, R.; Spampinato, L.; Boschi, E.

    2015-11-01

    This work arises from the field observations made during the civil protection emergency period connected to the 2007 Stromboli eruption. We observed changes in the shallow feeding system of the volcano to which we give a volcanological interpretation and the relative implications. Here we describe the processes that occurred in the upper feeding system from the end of the 2007 effusive eruption on 3 April to the renewal of the strombolian explosive activity at the summit craters (30 June), interpreted using multidisciplinary data. We used thermal camera data collected both from helicopter and from a fixed station at 400 m to retrieve the evolving summit crater activity. These data, compared with seismic signals and published geochemical records, allowed us to detail the shifting of the degassing activity within the crater terrace from NE to SW, occurred between 15 and 25 April 2007 prior to the resumption of the strombolian activity. In particular, from mid-April, a gradual SW displacement in the maximum apparent temperatures was recorded at the vents within the summit craters, together with a change in the very long period location and confirmed by variations in geochemical indicators (CO2/SO2 plume ratios and CO2 fluxes) from literature. The shallow feeding system experienced a major readjustment after the end of the effusive activity, determining variations in the pressure leakage of the source, slowly deepening and shifting toward SW. All these data, together with the framework supplied by previous structural surveys, allowed us to propose that the compaction of debris accumulated in the uppermost conduit by inward crater collapses, occurred in early March, produced the observed anomalies. At Stromboli, major morphology changes, taking place in the following years, were anticipated by these small and apparently minor processes occurred in the upper feeding system. Other studies are relating similar changes to modifications of the eruptive activity also at other

  11. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  12. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2012 CFR

    2005-04-01

    ... 17 Commodity and Securities Exchanges 3 2005-04-01 2005-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  13. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2013 CFR

    2000-04-01

    ... 17 Commodity and Securities Exchanges 3 2000-04-01 2000-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a) Each application for an order under section 304(d)...

  14. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  15. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  16. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  17. 76 FR 55814 - 2,4-D; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... AGENCY 40 CFR Part 180 2,4-D; Pesticide Tolerances AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This regulation establishes tolerances for residues of 2,4-D in or on teff, bran... 180.142 be amended by establishing a tolerance for residues of the herbicide 2,4-D...

  18. 17 CFR 260.4d-8 - Content.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Content. 260.4d-8 Section 260.4d-8 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 304 § 260.4d-8 Content. (a)...

  19. Geophysical Surveys of the San Andreas and Crystal Springs Reservoir System Including Seismic-Reflection Profiles and Swath Bathymetry, San Mateo County, California

    USGS Publications Warehouse

    Finlayson, David P.; Triezenberg, Peter J.; Hart, Patrick E.

    2010-01-01

    This report describes geophysical data acquired by the U.S. Geological Survey (USGS) in San Andreas Reservoir and Upper and Lower Crystal Springs Reservoirs, San Mateo County, California, as part of an effort to refine knowledge of the location of traces of the San Andreas Fault within the reservoir system and to provide improved reservoir bathymetry for estimates of reservoir water volume. The surveys were conducted by the Western Coastal and Marine Geology (WCMG) Team of the USGS for the San Francisco Public Utilities Commission (SFPUC). The data were acquired in three separate surveys: (1) in June 2007, personnel from WCMG completed a three-day survey of San Andreas Reservoir, collecting approximately 50 km of high-resolution Chirp subbottom seismic-reflection data; (2) in November 2007, WCMG conducted a swath-bathymetry survey of San Andreas reservoir; and finally (3) in April 2008, WCMG conducted a swath-bathymetry survey of both the upper and lower Crystal Springs Reservoir system. Top of PageFor more information, contact David Finlayson.

  20. Elements of the Seismic Structure and Activity of the Lesser Antilles Subduction Zone (Guadeloupe and Martinique Islands) from the SISMANTILLES Seismic Survey

    NASA Astrophysics Data System (ADS)

    Laigle, M.; Roux, E.; Sapin, M.; Hirn, A.; de Voogd, B.; Charvis, P.; Hello, Y.; Murai, Y.; Nishimura, Y.; Shimamura, H.; Galve, A.; Lepine, J.; Lebrun, J.; Diaz, J.; Gallart, J.; Beauducel, F.; Viode, J.

    2005-12-01

    The Lesser Antilles is an active subduction zone, prone to future major earthquakes as it has experienced in the past with the occurrence in 1843 of a M>7.5 probably mega-thrust earthquake that destroyed Pointe-a-Pitre city on Guadeloupe Island. The SISMANTILLES project was carried out at a regional scale for a first reconnaissance of the seismic structure and activity from northern Guadeloupe to Martinique islands. The project focused more particularly on the detection, mapping and characterisation of the potentially seimogenic part of the interplate subduction fault. The french N/O Nadir vessel acquired 2500 km of deep-penetration multichannel reflection seismic (MCS) profiles. Up to 37 3-components Ocean Bottom Seismometers (OBS) were deployed offshore over several weeks together with a set of 3-components broadened-band stations on the islands (Martinique, Dominica, Guadeloupe and Antigua). These instruments recorded continuously both the MCS shots that provided wide angle reflexion and refraction (WARR) data as well as the local, regional and teleseismic earthquakes. On MCS profiles, reflections from the top of the subducting oceanic crust and decollement can be followed down to several km depth beneath the thick accretionary prism. Detailed velocity analysis provided depth structural sections that are used as an input for the forward modeling of WARR data. Thanks to these data, we can constrain on 3 transects to the arc, the part where the forearc deep crust is in contact with the subducting oceanic plate, considered as a proxy for the seismogenic part. Its location with respect to the deformation front and the volcanic arc and its downdip size appear significantly variable along the arc. The local earthquakes now reliably located in map and depth thanks to the high-quality P and S observations of the OBS network can be discussed with respect to these imaged structures. Local earthquakes P & S tomography as well as receiver functions analysis will bring more

  1. Angola Seismicity MAP

    NASA Astrophysics Data System (ADS)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  2. 4D electron microscopy: principles and applications.

    PubMed

    Flannigan, David J; Zewail, Ahmed H

    2012-10-16

    achievable with short intense pulses containing a large number of electrons, however, are limited to tens of nanometers and nanoseconds, respectively. This is because Coulomb repulsion is significant in such a pulse, and the electrons spread in space and time, thus limiting the beam coherence. It is therefore not possible to image the ultrafast elementary dynamics of complex transformations. The challenge was to retain the high spatial resolution of a conventional TEM while simultaneously enabling the temporal resolution required to visualize atomic-scale motions. In this Account, we discuss the development of four-dimensional ultrafast electron microscopy (4D UEM) and summarize techniques and applications that illustrate the power of the approach. In UEM, images are obtained either stroboscopically with coherent single-electron packets or with a single electron bunch. Coulomb repulsion is absent under the single-electron condition, thus permitting imaging, diffraction, and spectroscopy, all with high spatiotemporal resolution, the atomic scale (sub-nanometer and femtosecond). The time resolution is limited only by the laser pulse duration and energy carried by the electron packets; the CCD camera has no bearing on the temporal resolution. In the regime of single pulses of electrons, the temporal resolution of picoseconds can be attained when hundreds of electrons are in the bunch. The applications given here are selected to highlight phenomena of different length and time scales, from atomic motions during structural dynamics to phase transitions and nanomechanical oscillations. We conclude with a brief discussion of emerging methods, which include scanning ultrafast electron microscopy (S-UEM), scanning transmission ultrafast electron microscopy (ST-UEM) with convergent beams, and time-resolved imaging of biological structures at ambient conditions with environmental cells.

  3. Shear-wave reflection seismics as bridge between georadar and deeper subsurface surveying - a case study for quick-clay landslides in Sweden

    NASA Astrophysics Data System (ADS)

    Krawczyk, Charlotte M.; Polom, Ulrich; Malehmir, Alireza; Bastani, Mehrdad

    2013-04-01

    As part of a joint project studying clay-related landslides in Nordic countries, we successfully tested the use of shear-wave reflection seismics to survey shallow structures that are known to be related to quick-clay landslide processes. Co-sponsored via the Society of Exploration Geophysicists (SEG) program 'Geoscientists Without Borders (GWB)', several international groups apply a suite of applied geophysical and geotechnical methods to understand structural and physical conditions and the conditioning of this type of liquefaction. For this purpose, three 2D profiles were recorded in Frastad, southern Sweden, above the main slide plane area. Using a 120 m long streamer of 120 SH-geophones at 1 m spacing, and the ELVIS micro-vibrator as source, shear-wave data of very high quality were gathered, allowing a vertical resolution of 1 m and less. The longest profile along a paved road shows clear internal structuring of the up to 50 m thick marine sediments as well as strong undulations of top basement underneath. Different sedimentary sequences can be distinguished, and the quick clay sequence is interpreted in 15-20 m depth, which correlates well with the height of the most recent scarp. The sedimentary shear wave velocities suggest extremely low values of 100-120 m/s, which geotechnically prohibits building areas. In addition, test measurements on a stubble field showed the first time that the suppression of Love waves is not only restricted to paved surfaces and may also be achieved if reflection contrasts and low dispersion allow a suitable data processing. This opens new possibilities for a wide range of applications and specialized equipment adaptions with respect to reflection seismic surveying. In addition, the gap between structural data from georadar and P-wave seismic can be closed.

  4. Use of Seismic and Magnetic Surveys in a Regional Geophysical Study for Geothermal Exploration in NE Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Poureslami Ardakani, E.; Schmitt, D. R.; Moeck, I.

    2012-12-01

    NE Alberta hosts many producing oil sand projects. These projects require large amounts of thermal energy to produce most of which is currently provided by burning natural gas; and this increases the greenhouse gas footprint to producing such hydrocarbons. One possible solution is to instead use geothermal heat directly with hot fluids produced using Engineered Geothermal Systems (EGS). Geothermal exploration always starts with broad geological structure reconnaissance of the area. Unfortunately, the larger geological context particularly beneath those relatively shallow depths (typically less than 400 m) of interest to hydrocarbon exploration, is still poorly understood. As such, we have selected a rectangular area of 22000 km2 extending across 56.25 to 57.12N and 111.92 to 113.52W that we refer to as the Athabasca region. . The main two categories of data which are in used consist of over 600 km seismic reflection profiles and 22,000 km2 high resolution aeromagnetic (HRAM) data. Also there is a large amount of available well-logs from 1,000 boreholes in this area that have a key role in interpretation of seismic profiles. These integrated data sets are used for outlining sedimentary basin, mapping geological formation tops, locating fault zones and other structural lineaments, finding true depth of metamorphic basement and Curie point, and finally building a geological model of the region. To date all the formation tops are mapped through the area and picked on the seismic profiles. HRAM data is gridded using minimum curvature method. Some structural lineaments are picked on the HRAM data including a great NE-SW fault zone which is in agreement with seismic and well-logs. Additionally, the region hosts interesting geological features such as channels, pinnacle reefs and unconformities that are distinguishable on seismic profiles. Any of these findings help us to get a better view of the region for geothermal exploration.

  5. Motion4D-library extended

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2011-06-01

    The new version of the Motion4D-library now also includes the integration of a Sachs basis and the Jacobi equation to determine gravitational lensing of pointlike sources for arbitrary spacetimes.New version program summaryProgram title: Motion4D-libraryCatalogue identifier: AEEX_v3_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v3_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 219 441No. of bytes in distributed program, including test data, etc.: 6 968 223Distribution format: tar.gzProgramming language: C++Computer: All platforms with a C++ compilerOperating system: Linux, WindowsRAM: 61 MbytesClassification: 1.5External routines: Gnu Scientic Library (GSL) (http://www.gnu.org/software/gsl/)Catalogue identifier of previous version: AEEX_v2_0Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 703Does the new version supersede the previous version?: YesNature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes. Determine gravitational lensing by integration of Jacobi equation and parallel transport of Sachs basis.Solution method: Integration of ordinary differential equations.Reasons for new version: The main novelty of the current version is the extension to integrate the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. In combination, the change of the cross section of a light bundle and thus the gravitational lensing effect of a spacetime can be determined. Furthermore, we have implemented several new metrics.Summary of revisions: The main novelty of the current version is the integration of the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. The corresponding set of equations readd2xμdλ2=-Γρ

  6. Report for borehole explosion data acquired in the 1999 Los Angeles Region Seismic Experiment (LARSE II), Southern California: Part I, description of the survey

    USGS Publications Warehouse

    Fuis, Gary S.; Murphy, Janice M.; Okaya, David A.; Clayton, Robert W.; Davis, Paul M.; Thygesen, Kristina; Baher, Shirley A.; Ryberg, Trond; Benthien, Mark L.; Simila, Gerry; Perron, J. Taylor; Yong, Alan K.; Reusser, Luke; Lutter, William J.; Kaip, Galen; Fort, Michael D.; Asudeh, Isa; Sell, Russell; Van Schaack, John R.; Criley, Edward E.; Kaderabek, Ronald; Kohler, Will M.; Magnuski, Nickolas H.

    2001-01-01

    The Los Angeles Region Seismic Experiment (LARSE) is a joint project of the U.S. Geological Survey (USGS) and the Southern California Earthquake Center (SCEC). The purpose of this project is to produce seismic images of the subsurface of the Los Angeles region down to the depths at which earthquakes occur, and deeper, in order to remedy a deficit in our knowledge of the deep structure of this region. This deficit in knowledge has persisted despite over a century of oil exploration and nearly 70 years of recording earthquakes in southern California. Understanding the deep crustal structure and tectonics of southern California is important to earthquake hazard assessment. Specific imaging targets of LARSE include (a) faults, especially blind thrust faults, which cannot be reliably detected any other way; and (b) the depths and configurations of sedimentary basins. Imaging of faults is important in both earthquake hazard assessment but also in modeling earthquake occurrence. Earthquake occurrence cannot be understood unless the earthquake-producing "machinery" (tectonics) is known (Fuis and others, 2001). Imaging the depths and configurations of sedimentary basins is important because earthquake shaking at the surface is enhanced by basin depth and by the presence of sharp basin edges (Wald and Graves, 1998, Working Group on California Earthquake Probabilities, 1995; Field and others, 2001). (Sedimentary basins are large former valleys now filled with sediment eroded from nearby mountains.) Sedimentary basins in the Los Angeles region that have been investigated by LARSE include the Los Angeles, San Gabriel Valley, San Fernando Valley, and Santa Clarita Valley basins. The seismic imaging surveys of LARSE include recording of earthquakes (both local and distant earthquakes) along several corridors (or transects) through the Los Angeles region and also recording of man-made sources along these same corridors. Man-made sources have included airguns offshore and borehole

  7. The effect of deformation after backarc spreading between the rear arc and current volcanic front in Shikoku Basin obtained by seismic reflection survey

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Takahashi, N.; Nakanishi, A.; Kodaira, S.; Tamura, Y.

    2012-12-01

    Detailed crustal structure information of a back-arc basin must be obtained to elucidate the mechanism of its opening. Especially, the Shikoku Basin, which occupies the northern part of the Philippine Sea Plate between the Kyushu-Palau Ridge and the Izu-Bonin (Ogasawara) Arc, is an important area to understand the evolution of the back-arc basins as a part of the growth process of the Philippine Sea. Especially, the crustal structure oft the east side of Shikoku Basin is complicated by colliding to the Izu Peninsula Japan Agency for Marine-Earth Science and Technology has been carried out many multi-channel seismic reflection surveys since 2004 in Izu-Bonin region. Kodaira et al. (2008) reported the results of a refraction seismic survey along a north-south profile within paleoarc in the rear arc (i.e., the Nishi-shichito ridge) about 150 km west of current volcanic front. According to their results, the variation relationship of crustal thickness between the rear arc and volcanic front is suggested the evidence of rifting from current volcanic arc. There is the en-echelon arrangement is located in the eastern side of Shikoku Basin from current arc to rear arc, and it is known to activate after ceased spreading at 15 Ma (Okino et al., 1994) of Shikoku Basin by geologic sampling of Ishizuka et al. (2003). Our MCS results are also recognized the recent lateral fault zone is located in east side of Shikoku Basin. We carried out high density grid multi-channel seismic reflection (MCS) survey using tuned airgun in order to obtain the relationship between the lateral faults and en-echelon arrangement in KR08-04 cruise. We identified the deformation of sediments in Shikoku Basin after activity of Kanbun seamount at 8 Ma in MCS profile. It is estimated to activate a part of the eastern side of Shikoku Basin after construction of en-echelon arrangement and termination of Shikoku Basin spreading. Based on analyses of magnetic and gravity anomalies, Yamazaki and Yuasa (1998

  8. Tsujal Marine Survey: Crustal Characterization of the Rivera Plate-Jalisco Block Boundary and its Implications for Seismic and Tsunami Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Bartolome, R.; Danobeitia, J.; Barba, D. C., Sr.; Nunez-Cornu, F. J.; Cameselle, A. L.; Estrada, F.; Prada, M.; Bandy, W. L.

    2014-12-01

    During the spring of 2014, a team of Spanish and Mexican scientists explored the western margin of Mexico in the frame of the TSUJAL project. The two main objectives were to characterize the nature and structure of the lithosphere and to identify potential sources triggering earthquakes and tsunamis at the contact between Rivera plate-Jalisco block with the North American Plate. With these purposes a set of marine geophysical data were acquired aboard the RRS James Cook. This work is focus in the southern part of the TSUJAL survey, where we obtain seismic images from the oceanic domain up to the continental shelf. Thus, more than 800 km of MCS data, divided in 7 profiles, have been acquired with a 6km long streamer and using an air-gun sources ranging from 5800 c.i. to 3540 c.i. Furthermore, a wide-angle seismic profile of 190 km length was recorded in 16 OBS deployed perpendicular to the coast of Manzanillo. Gravity and magnetic, multibeam bathymetry and sub-bottom profiler data were recorded simultaneously with seismic data in the offshore area. Preliminary stacked MCS seismic sections reveal the crustal structure in the different domains of the Mexican margin. The contact between the Rivera and NA Plates is observed as a strong reflection at 6 s two way travel time (TWTT), in a parallel offshore profile (TS01), south of Manzanillo. This contact is also identified in a perpendicular profile, TS02, along a section of more than 100 km in length crossing the Rivera transform zone, and the plate boundary between Cocos and Rivera Plates. Northwards, offshore Pto. Vallarta, the MCS data reveals high amplitude reflections at around 7-8.5 s TWTT, roughly 2.5-3.5 s TWTT below the seafloor, that conspicuously define the subduction plane (TS06b). These strong reflections which we interpret as the Moho discontinuity define the starting bending of subduction of Rivera Plate. Another clear pattern observed within the first second of the MCS data shows evidences of a bottom

  9. Structure of the Palomares margin from preliminary results of the TOPOMED-GASSIS seismic survey (Algero-Balearic basin, Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Giaconia, F.; Guzman Vendrell, M.; Booth-Rea, G.; Ranero, C. R.; Grácia, E.; Lo Iacono, C.

    2012-04-01

    We present two deep seismic reflection lines acquired during the TOPOMED-GASSIS seismic survey across the Palomares margin at the northwestern side of the Algero-Balearic basin. Simultaneously 3.5 kHz multi parametric echo-sounder profiles and bathymetric data were acquired, in order to obtain information of the most recent sedimentary/tectonic records, to relate tectonic structure with seafloor features and find out a possible tectonic control on them. The deep seismic reflection and the 3.5 kHz multi parametric echo-sounder profiles evidence anticlines and synclines affecting the Quaternary sediments. The southeastern limbs of the anticlines are cut by reverse faults suggesting a fault propagation origin for the folds. The recent to present character of these structures is confirmed by the congruence between structural and bathymetric highs and lows. Indeed, the submarine channels that cut across the margin are deflected by the folds flowing parallel to the major synclines, although cutting and incising into one of the anticlines. The folds have a N40-50°E orientation oblique to the Palomares active N20°E sinistral strike-slip fault zone. The data obtained from the TOPOMED-GASSIS seismic survey highlight the presence of contractive structures along the Palomares margin oriented perpendicular to the present NW-SE shortening stress field and according with the present GPS geodetic displacements. This preliminary result depicts a contractive Palomares margin where NW-SE shortening is accommodated by Quaternary NE-SW folds and thrusts. In the coastline and on land the shortening is also accommodated by reverse faults that cut both limbs of the Sierra Cabrera anticline. These faults and folds accommodate the sinistral displacement of the more northerly striking Palomares fault zone. Thus, the Palomares fault zone probably terminates close to the coast line to the south of the Vera basin by merging into these more northeasterly oriented structures. These folds

  10. The 4D-TECS integration for NASA TSRV airplane

    NASA Technical Reports Server (NTRS)

    Kaminer, I.; Oshaughnessy, P. R.

    1989-01-01

    The integration of the Total Energy Control System (TECS) concept with 4D navigation is described. This integration was made to increase the operational capacity of modern aircraft and encourage incorporation of this increased capability with the evolving National Airspace System (NAS). Described herein is: 4D smoothing, the basic concepts of TECS, the spoiler integration concept, an algorithm for nulling out time error, speed and altitude profile modes, manual spoiler implementation, 4D logic, and the results of linear and nonlinear analysis.

  11. Killing Weeds with 2,4-D. Extension Bulletin 389.

    ERIC Educational Resources Information Center

    Lee, Oliver C.

    Discussed is the use of the herbicide 2,4-D. Though written for farmers and agricultural workers, the pamphlet considers turf weed control and use of 2,4-D near ornamental plants. Aspects of the use of this herbicide covered are: (1) the common forms of 2,4-D; (2) plant responses and tolerances to the herbicide; (3) dilution and concentration of…

  12. Pros and cons for C4d as a biomarker.

    PubMed

    Cohen, Danielle; Colvin, Robert B; Daha, Mohamed R; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E; Sis, Banu; Zhao, Ming-Hui; Bruijn, Jan A; Bajema, Ingeborg M

    2012-04-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations C4d is present in the majority of grafts but this seems to point at 'graft accommodation' rather than antibody-mediated rejection. C4d is now increasingly recognized as a potential biomarker in other fields where antibodies can cause tissue damage, such as systemic autoimmune diseases and pregnancy. In all these fields, C4d holds promise to detect patients at risk for the consequences of antibody-mediated disease. Moreover, the emergence of new therapeutics that block complement activation makes C4d a marker with potential to identify patients who may possibly benefit from these drugs. This review provides an overview of the past, present, and future perspectives of C4d as a biomarker, focusing on its use in solid organ transplantation and discussing its possible new roles in autoimmunity and pregnancy. PMID:22297669

  13. Locating Desired Source Rocks by Using Shallow Ground Penetrating Radar and Seismic Survey Methods in western Washington, Pacific Northwest of the U.S

    NASA Astrophysics Data System (ADS)

    Cakir, R.; Meng, X.; Butler, Q.; Jenkins, J.; Keck, J.; Walsh, T. J.

    2015-12-01

    The Washington State Department of Natural Resources (WADNR) manages 2.1 million acres of forested state trust lands in Washington. WADNR sells timber and other agricultural products to help fund local services and the construction of institutions such as public schools and universities. Quality of rocks used as a surface on the roads built to access the timber is the essential and selecting appropriate rock quarry locations is challenging. Traditional borehole drilling methods only provide information from discrete locations. The study was conducted in the Capitol Forest area of western Washington. In our previous study, we suggested that a combination of P-wave seismic and ground penetrating radar (GPR) can be a rapid, comprehensive and cost effective alternative for identifying desired rock sources. In this study, we further improved upon that method and accomplished the following: 1) rock quality at a relatively fine resolution was distinguished and 2) the spatial variability of the rock was identified. Both 450 MHz and 80 MHz GPR antennas were used to obtain high resolution radargrams in the near-surface zone with 5m maximum penetration depth and lower resolution radargrams in the deeper subsurface zone with about 20m maximum penetration depth. We then correlated the GPR radargrams with P-wave velocities using the refraction survey data as well as S-wave velocities, estimated using Multi-Channel Analysis of Surface Waves (MASW) survey data. Additionally, nearby test pits and boreholes (maximum depth = 15 meters) were used to confirm the geophysical measurements. Our study results demonstrate that the combination of GPR, using the two antennas, and seismic surveys provides very useful subsurface information regarding quality and spatial distribution of the rocks beneath the overburden. Subsurface images gathered from these combined geophysical methods do assist quarry operators to rapidly locate the desired rock sources.

  14. EarthScope imaging of 4D stress evolution of the San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Smith-Konter, B. R.; Del Pardo, C.

    2011-12-01

    EarthScope seismic and geodetic observations, combined with sophisticated computational models and powerful visualization tools, are now providing a critical ensemble of information about interseismic stressing rates along the San Andreas Fault System (SAFS). When combined with paleoseismic chronologies of earthquake ruptures spanning the last several hundreds of years, four-dimensional (4D) simulations of stress evolution spanning multiple earthquake cycles are now possible. To investigate stress variations at depth along the SAFS over multiple earthquake cycles, we use a 4D semi-analytic model that simulates interseismic strain accumulation, coseismic displacement, and post-seismic viscoelastic relaxation of the mantle. The model utilizes geologic estimates of fault locations and slip rates, as well as paleoseismic earthquake rupture histories, and is computed at a 500 m grid resolution to better resolve the sharp deformation gradients at creeping faults. Using EarthScope PBO and ALOS InSAR data, we tune the model locking depths and slip rates to compute the 4D stress accumulation within the seismogenic crust. 4D models show that stress accumulation and stress drop are a complex function of space and time. We use ParaView 3.10, an open-source multi-platform visualization package, for manipulation and visualization of 4D stress variations of fault segments at depth. We use ParaView to create a 3D meshed volume spanning a ~1000 x 1500 x 50 km region of the SAFS and present both volume and sliced views of stress from several viewpoints along the plate boundary. These models reveal pockets of stress concentrated at depth due to the interaction of neighboring fault segments and at fault segment branching junctions. We present several sensitivity tests that reveal the variation of stress at depth as a function of locking depth, slip rate, coefficient of friction, elastic plate thickness, and viscosity. These visualizations lay the groundwork for 4D time

  15. A wide-angle seismic survey of the Hecataeus Ridge, south of Cyprus: a microcontinental block from the African plate docked in a subduction zone?

    NASA Astrophysics Data System (ADS)

    Rahimi, Ayda; Welford, Kim; Hall, Jeremy; Hübscher, Christian; Louden, Keith; Ehrhardt, Axel

    2013-04-01

    Cyprus lies at the southern edge of the Aegean-Anatolian microplate, caught in the convergence of Africa and Eurasia. Subduction of the African plate below Cyprus has probably ceased and this has been attributed to the docking in the subduction zone of the Eratosthenes Seamount microcontinental fragment on the northern edge of the African plate. In early 2010, on R.V. Maria S. Merian, we conducted a wide-angle seismic survey to test the hypothesis that the Hecataeus Ridge, another possible microcontinental block lying immediately offshore SE Cyprus, might be related to an earlier docking event. The upper crust of southern Cyprus is dominated by ophiolites, with seismic velocities of up to 7 km s-1. A wide angle seismic profile along Hecataeus Ridge was populated with 15 Canadian and German ocean-bottom seismographs at 5 km intervals and these recorded shots from a 6000 cu. in. air gun array, fired approximately every 100 m. Rough topography of the seabed has made picking of phases and their modelling a demanding task. Bandpass and coherency filtering have enabled us to pick phases out to around 80 km. Tomographic inversion of short-range first arrivals provided an initial model of the shallow sub-seabed structure. Forward modelling by ray-tracing, using the code of Zelt and Smith, was then used to model crustal structure down to depths of around 20 km, with occasional evidence of reflections from deeper boundaries (Moho?). Modelling results provide good control on P-wave velocities in the top 20 km and some indications of deeper events. There is no evidence of true velocities approaching 7 km/s in the top 20 km below the Ridge that might indicate the presence of ophiolitic rocks. Regional gravity and magnetic field data tend to support this proposition. We thus conclude that Hecataeus Ridge is not composed of characteristically ophiolitic, Cyprus (upper plate) crust, and it might well be derived from the African (lower) plate.

  16. Application of disturbance theory to assess impacts associated with a three-dimensional seismic survey in a freshwater marsh in southwest Louisiana

    NASA Astrophysics Data System (ADS)

    Bass, Aaron Stuard

    This study examined various practical and theoretical aspects of disturbance in a coastal wetland marsh in southern Louisiana. A literature review approached disturbance ecology from both practical and theoretical perspectives and assessed its applicability to developing broad predictive models. However, specific knowledge of environmental variables, competitive relationships, and the interactive effects of multiple disturbances are required for meaningful usage of these models. The Lacassine National Wildlife Refuge (LNWR) proved to be an ideal laboratory to test various aspects of ecological disturbance theory. I found that the primary disturbances affecting the LNWR have been hurricanes, droughts, water-level manipulations, prescribed burning, oil and gas recovery activities, grazing by Myocastor coypus (nutria), and managed cattle grazing. The 1990's application of three-dimensional (3-D) seismic technology used in the oil and gas recovery business challenged landowners, government regulators, and industry to develop ways to recover these resources without damaging surface features. I developed a conservative estimate that an area exceeding 2.5 times the area of Louisiana's coastal wetlands was covered by overlapping seismic surveys in southern Louisiana from 1997 through 2002, equal to 22.5 km2/year. I provided a general overview of 3-D seismic survey programs, potential adverse impacts, and management and restoration strategies. I also conducted a field study at the LNWR on vegetation in control and treatment transects before, and for two years after, a 3-D survey. I found vegetative cover and the amount of dead plant biomass were significantly lower in treatment plots, but live biomass was not different in treatment and control plots. Species richness was higher in treatment plots compared to control plots, but the live biomass and cover of the dominant species ( Panicum hemitomon) was lower. The live biomass and cover of Eleocharis spp., a colonizing

  17. Phosphodiesterase 4D Inhibitors Limit Prostate Cancer Growth Potential

    PubMed Central

    Powers, Ginny L.; Hammer, Kimberly D.P.; Domenech, Maribella; Frantskevich, Katsiaryna; Malinowski, Rita L.; Bushman, Wade; Beebe, David J.; Marker, Paul C.

    2014-01-01

    Phosphodiesterase 4D (PDE4D) has recently been implicated as a proliferation-promoting factor in prostate cancer and is over-expressed in human prostate carcinoma. However, the effects of PDE4D inhibition using pharmacological inhibitors have not been examined in prostate cancer. These studies examined the effects of selective PDE4D inhibitors, NVP-ABE171 and cilomilast, as anti-prostate cancer therapies in both in vitro and in vivo models. The effects of PDE4D inhibitors on pathways that are critical in prostate cancer and/or downstream of cyclic AMP (cAMP) were examined. Both NVP-ABE171 and cilomilast decreased cell growth. In vitro, PDE4D inhibitors lead to decreased signaling of the sonic hedgehog (SHH), Androgen Receptor (AR), and MAPK pathways, but growth inhibition was best correlated to the sonic hedgehog pathway. PDE4D inhibition also reduced proliferation of epithelial cells induced by paracrine signaling from co-cultured stromal cells that had activated hedgehog signaling. In addition, PDE4D inhibitors decreased the weight of the prostate in wild-type mice. Prostate cancer xenografts grown in nude mice that were treated with cilomilast or NVP-ABE171 had decreased wet weight and increased apoptosis compared to vehicle treated controls. These studies suggest the pharmacological inhibition of PDE4D using small molecule inhibitors is an effective option for prostate cancer therapy. Implications PDE4D inhibitors decrease the growth of prostate cancer cells in vivo and in vitro, and PDE4D inhibition has therapeutic potential in prostate cancer. PMID:25149359

  18. High-resolution, three-dimensional, seismic survey over the geopressured-geothermal reservoir at Parcperdue, Louisiana. Final report, January 1, 1981-July 31, 1985

    SciTech Connect

    Kinsland, G.L.

    1985-07-01

    A high resolution three-dimensional seismic survey was performed over the reservoir of the geopressured-geothermal production experiment at Parcperdue, Louisiana and high quality results have been obtained. The reservoir is now mapped with more control and assurance than was possible with the previously existing data. Three differences between the map of this project and those available before are significant in the interpretation of the depletion experiment: (1) the western bounding fault is further west leading to a larger reservoir volume; (2) a down to the north (relief) fault through the reservoir has been found; and (3) there are structural highs in which small petroleum accumulations may exist within the reservoir. An original goal of testing the before and after seismic experiment idea as a production monitor has not been realized. However, the quality of the data at the stages of processing presently available is high enough that, had the well not failed, it would have been prudent to have proceeded with the project toward the second experiment. 3 refs., 16 figs., 3 tabs.

  19. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.

    PubMed

    Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M

    2015-06-01

    A smart valve is created by 4D printing of hydrogels that are both mechanically robust and thermally actuating. The printed hydrogels are made up of an interpenetrating network of alginate and poly(N-isopropylacrylamide). 4D structures are created by printing the "dynamic" hydrogel ink alongside other static materials. PMID:25864515

  20. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  1. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.

    PubMed

    Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M

    2015-06-01

    A smart valve is created by 4D printing of hydrogels that are both mechanically robust and thermally actuating. The printed hydrogels are made up of an interpenetrating network of alginate and poly(N-isopropylacrylamide). 4D structures are created by printing the "dynamic" hydrogel ink alongside other static materials.

  2. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  3. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  4. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  5. 32 CFR 1645.4 - Exclusion from Class 4-D.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  6. Mapping Subsea Permafrost, Relict Methane Hydrate, and Gas Migration: New Cross-Shelf Multichannel Seismic Surveys on the Central US Beaufort Shelf

    NASA Astrophysics Data System (ADS)

    Ruppel, C. D.; Hart, P. E.; Moore, E.; Worley, C.; Brothers, L.

    2012-12-01

    In August 2012, the USGS Gas Hydrates Project, with support from DOE's Methane Hydrates R&D Program, conducted the first research-oriented multichannel seismic survey in 35 years across the Alaskan Beaufort Sea continental shelf. Our Central Beaufort margin study area stretches from Camden Bay on the west to Harrison Bay on the east and lies offshore some of the North Slope's most important petroleum systems. The new MCS data were collected in the eastern part of the Alaskan passive margin terrane, near the transition zone to the compressional Canning Mackenzie Deformed Margin described by Houseknecht and Bird. The Central Beaufort shelf was mostly exposed subaerially during Late Pleistocene time, leading to the formation of continuous permafrost and associated gas hydrates at depths greater than ~225 m. As Holocene sea level rise inundated the present-day shelf, the now-subsea permafrost began to thaw and associated gas hydrates would have begun to dissociate. The new surveys constitute the shelf component of site survey activities for Integrated Ocean Drilling pre-proposal 797, which outlines a multiplatform drilling program at 9 sites from the innermost shelf to the upper continental slope of the Alaskan Beaufort margin. The proposed drilling program will elucidate Late Pleistocene to contemporary climate history by accessing sediments currently or formerly hosting subsea permafrost and permafrost-associated methane hydrates on the shelf and sediments in which gas hydrate dynamics are driven by warming of impinging intermediate waters on the upper continental slope. Using a 24-channel digital streamer and a 2 kJ sparker source, the new MCS surveys provided up to several hundred meters of subseafloor penetration and were complemented by 4-24 kHz Chirp surveys for the shallowmost section, high frequency water column imaging for gas plumes, and Swathplus bathymetric mapping at water depths less than 60 to 80 m. The new MCS data, which in part reoccupy 30-year

  7. Modelling sound propagation in the Southern Ocean to estimate the acoustic impact of seismic research surveys on marine mammals

    NASA Astrophysics Data System (ADS)

    Breitzke, Monika; Bohlen, Thomas

    2010-05-01

    Modelling sound propagation in the ocean is an essential tool to assess the potential risk of air-gun shots on marine mammals. Based on a 2.5-D finite-difference code a full waveform modelling approach is presented, which determines both sound exposure levels of single shots and cumulative sound exposure levels of multiple shots fired along a seismic line. Band-limited point source approximations of compact air-gun clusters deployed by R/V Polarstern in polar regions are used as sound sources. Marine mammals are simulated as static receivers. Applications to deep and shallow water models including constant and depth-dependent sound velocity profiles of the Southern Ocean show dipole-like directivities in case of single shots and tubular cumulative sound exposure level fields beneath the seismic line in case of multiple shots. Compared to a semi-infinite model an incorporation of seafloor reflections enhances the seismically induced noise levels close to the sea surface. Refraction due to sound velocity gradients and sound channelling in near-surface ducts are evident, but affect only low to moderate levels. Hence, exposure zone radii derived for different hearing thresholds are almost independent of the sound velocity structure. With decreasing thresholds radii increase according to a spherical 20 log10 r law in case of single shots and according to a cylindrical 10 log10 r law in case of multiple shots. A doubling of the shot interval diminishes the cumulative sound exposure levels by -3 dB and halves the radii. The ocean bottom properties only slightly affect the radii in shallow waters, if the normal incidence reflection coefficient exceeds 0.2.

  8. Multichannel seismic reflection surveys over the Antarctic continental margin relevant to petroleum resource studies: Chapter 5 in Antarctica as an exploration-hydrocarbon potential, geology, and hazards

    USGS Publications Warehouse

    Behrendt, John C.

    1990-01-01

    More than 100,000 km of marine multichannel seismic profiles have been acquired over the continental margin of Antarctica since 1976 by scientific research programs of Australia, Brazil, France, Italy, Japan, Norway, Poland, United Kingdom, United States, U.S.S.R. and West Germany. Although scientific results are reported for most of these data, they also are relevant to petroleum resource assessment. Because of the one or two orders of magnitude greater cost of standard land survey techniques in Antarctica compared with marine techniques in areas of open water, there will likely be no great amount of coverage on the interior of the Antarctic ice sheet. Despite this, several countries are experimenting in a research mode using land systems, and deep crustal reflection sur eys at carefully selected interior sites will probably be made soon.

  9. Seismic-refraction survey to the top of salt in the north end of the Salt Valley Anticline, Grand County, Utah

    USGS Publications Warehouse

    Ackermann, Hans D.

    1979-01-01

    A seismic-refraction survey, consisting of three lines about 2700, 2760, and 5460 meters long, was made at the north end of the Salt Valley anticline of the Paradox Basin in eastern Utah. The target was the crest of a diapiric salt mass and the overlying, deformed caprock. The interpretations reveal an undulating salt surface with as much as 80 meters of relief. The minimum depth of about 165 meters is near the location of three holes drilled by the U.S. Department of Energy for the purpose of evaluating the Salt Valley anticline as a potential site for radioactive waste storages Caprock properties were difficult to estimate because the contorted nature of these beds invalidated a geologic interpretation in terms of velocity layers. However, laterally varying velocities of the critically refracted rays throughout the area suggest differences in the gross physical properties of the caprock.

  10. Lake Nam Co (Tibet, China) - a suitable target for a deep drilling project as confirmed by a preliminary airgun seismic survey

    NASA Astrophysics Data System (ADS)

    Spiess, V.; Daut, G.; Wenau, S.; Gernhardt, F.; Wang, J.; Schwenk, T.; Haberzettl, T.; Zhu, L.; Maeusbacher, R.

    2014-12-01

    Lake Nam Co, located on the central Tibetan Plateau at the intersection of the Westerlies and the Indian Ocean Summer Monsoon, is well suited to study the monsoonal regime over different time scales. High-resolution and continuous sedimentary records from the Tibetan Plateau are still rare and only few reach back to the Last Glacial Maximum. For Nam Co, numerous multiproxy studies unravel the regional paleoclimate and paleoenvironmental history for the past 24,000 years. These promising results demonstrate the potential of Lake Nam Co as a geoarchive, but nature, thickness and geologic time of the sediment fill have not yet been determined. Therefore the Institute of Tibetan Plateau Research (Chinese Academy of Sciences) and the Universities of Bremen and Jena jointly carried out an airgun multichannel seismic survey at Nam Co in June/July 2014. As main equipment, a micro GI Gun(2 x 0.1 L) was used in conjunction with a 64 m long seismic streamer (32 channels/2 m spacing) to achieve deep signal penetration, to confirm a thick sediment infill and to prove the suitability for deep coring of several hundred meters. Although only few lines could be shot due to technical and weather issues, several lines particularly from the deepest part of the lake provide new insight. Preliminary data processing and interpretation reveal a well layered sediment cover of >700 m in the center of the lake. Seismic facies appears to vary in a cyclic manner, indicating a coupling to climatically-driven changes in lake level and sediment delivery. From a comparison with the Holocene/Late Glacial sedimentary and seismic record, several similar units could be imaged. Furthermore, rapid sedimentation is confirmed from the continuous cover of growth faults and doming, and continuous sedimentation throughout glacial/interglacial cycles appears likely due to the absence of erosional unconformities. By tentatively assigning these units to marine isotope stages, different seismostratigraphies can

  11. A tale of two sutures: COCORP's deep seismic surveys of the Grenville province in the eastern U.S. midcontinent

    NASA Astrophysics Data System (ADS)

    Culotta, Raymond C.; Pratt, T.; Oliver, J.

    1990-07-01

    A pair of oppositely dipping, crustal-scale shear zones imaged within Grenville basement beneath the Paleozoic cover of Ohio can be correlated, via geopotential lineaments, with similarly oriented geologic and seismically imaged structures hundreds of kilometres to the northeast and southwest, suggesting a relatively simple structural framework for the eastern midcontinent region. An east-dipping zone extending from Lake Huron through western Ohio, and possibly farther southwest, marks the western edge of the Grenville province. Perhaps of greater consequence to an understanding of Grenville tectonics is the discovery of a west-dipping zone underlying the Appalachian basin from northern Alabama to New York within the Grenville province. Correlation of this feature with the seismogenic Clarendon-Linden fault in western New York and a boundary between terranes containing magmatic-arc rocks exposed in Canada suggests that it could mark the site of an intra-Grenville province suture zone. Implications of this interpretation are that the Precambrian foundation of the eastern U.S. midcontinent comprises a relatively simple assemblage of laterally extensive terranes or belts of coeval terranes accreted by familiar plate tectonic processes, and that deep seismic profiling is an effective tool for mapping the three-dimensional distribution of these terranes.

  12. A tale of two sutures: COCORP's deep seismic surveys of the Grenville province in the eastern U. S. midcontinent

    SciTech Connect

    Culotta, R.C.; Oliver, J.; Pratt, T. )

    1990-07-01

    A pair of oppositely dipping, crustal-scale shear zones imaged within Grenville basement beneath the Paleozoic cover of Ohio can be correlated, via geopotential lineaments, with similarly oriented geologic and seismically imaged structures hundreds of kilometres to the northeast and southwest, suggesting a relatively simple structural framework for the eastern midcontinent region. An east-dipping zone extending from Lake Huron through western Ohio, and possibly farther southwest, marks the western edge of the Grenville province. Perhaps of greater consequence to an understanding of Grenville tectonics is the discovery of a west-dipping zone underlying the Appalachian basin from northern Alabama to New York within the Grenville province. Correlation of this feature with the seismogenic Clarendon-Linden fault in western New York and a boundary between terranes containing magmatic-arc rocks exposed in Canada suggests that it could mark the site of an intra-Grenville province suture zone. Implications of this interpretation are that the Precambrian foundation of the eastern U.S. midcontinent comprises a relatively simple assemblage of laterally extensive terranes or belts of coeval terranes accreted by familiar plate tectonic processes, and that deep seismic profiling is an effective tool for mapping the three-dimensional distribution of these terranes.

  13. Evidencing a prominent Moho topography beneath the Iberian-Western Mediterranean Region, compiled from controlled-source and natural seismic surveys

    NASA Astrophysics Data System (ADS)

    Diaz, Jordi; Gallart, Josep; Carbonell, Ramon

    2016-04-01

    The complex tectonic interaction processes between the European and African plates at the Western Mediterranean since Mesozoic times have left marked imprints in the present-day crustal architecture of this area, particularly as regarding the lateral variations in crustal and lithospheric thicknesses. The detailed mapping of such variations is essential to understand the regional geodynamics, as it provides major constraints for different seismological, geophysical and geodynamic modeling methods both at lithospheric and asthenospheric scales. Since the 1970s, the lithospheric structure beneath the Iberian Peninsula and its continental margins has been extensively investigated using deep multichannel seismic reflection and refraction/wide-angle reflection profiling experiments. Diaz and Gallart (2009) presented a compilation of the results then available beneath the Iberian Peninsula. In order to improve the picture of the whole region, we have now extended the geographical area to include northern Morocco and surrounding waters. We have also included in the compilation the results arising from all the seismic surveys performed in the area and documented in the last few years. The availability of broad-band sensors and data-loggers equipped with large storage capabilities has allowed in the last decade to boost the investigations on crustal and lithospheric structure using natural seismicity, providing a spatial resolution never achieved before. The TopoIberia-Iberarray network, deployed over Iberia and northern Morocco, has provided a good example of those new generation seismic experiments. The data base holds ~300 sites, including the permanent networks in the area and hence forming a unique seismic database in Europe. In this contribution, we retrieve the results on crustal thickness presented by Mancilla and Diaz (2015) using data from the TopoIberia and associated experiments and we complement them with additional estimations beneath the Rif Cordillera

  14. Borehole-explosion and air-gun data acquired in the 2011 Salton Seismic Imaging Project (SSIP), southern California: description of the survey

    USGS Publications Warehouse

    Rose, Elizabeth J.; Fuis, Gary S.; Stock, Joann M.; Hole, John A.; Kell, Annie M.; Kent, Graham; Driscoll, Neal W.; Goldman, Mark; Reusch, Angela M.; Han, Liang; Sickler, Robert R.; Catchings, Rufus D.; Rymer, Michael J.; Criley, Coyn J.; Scheirer, Daniel S.; Skinner, Steven M.; Slayday-Criley, Coye J.; Murphy, Janice M.; Jensen, Edward G.; McClearn, Robert; Ferguson, Alex J.; Butcher, Lesley A.; Gardner, Max A.; Emmons, Iain; Loughran, Caleb L.; Svitek, Joseph R.; Bastien, Patrick C.; Cotton, Joseph A.; Croker, David S.; Harding, Alistair J.; Babcock, Jeffrey M.; Harder, Steven H.; Rosa, Carla M.

    2013-01-01

    The Imperial and Coachella Valleys are being formed by active plate-tectonic processes. From the Imperial Valley southward into the Gulf of California, plate motions are rifting the continent apart. In the Coachella Valley, the plates are sliding past one another along the San Andreas and related faults (fig. 1). These processes build the stunning landscapes of the region, but also produce damaging earthquakes. Rupture of the southern section of the San Andreas Fault (SAF), from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard that California will face in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of infrastructure (freeways, aqueducts, power, petroleum, and communication lines) that might bring much of southern California to a standstill. As part of the nation’s efforts to avert a catastrophe of this magnitude, a number of projects have been undertaken to more fully understand and mitigate the effects of such an event. The Salton Seismic Imaging Project (SSIP), funded jointly by the National Science Foundation (NSF) and the U.S. Geological Survey (USGS), seeks to understand, through seismic imaging, the structure of the Earth surrounding the SAF, including the sedimentary basins on which cities are built. The principal investigators (PIs) of this collaborative project represent the USGS, Virginia Polytechnic Institute and State University (Virginia Tech), California Institute of Technology (Caltech), Scripps Institution of Oceanography (Scripps), University of Nevada, Reno (UNR), and Stanford University. SSIP will create images of underground structure and sediments in the Imperial and Coachella Valleys and adjacent mountain ranges to investigate the earthquake hazards posed to cities in this area. Importantly, the images will help determine the underground geometry of the SAF, how deep the sediments are, and how fast

  15. 4D-fingerprints, universal QSAR and QSPR descriptors.

    PubMed

    Senese, Craig L; Duca, J; Pan, D; Hopfinger, A J; Tseng, Y J

    2004-01-01

    An elusive goal in the field of chemoinformatics and molecular modeling has been the generation of a set of descriptors that, once calculated for a molecule, may be used in a wide variety of applications. Since such universal descriptors are generated free from external constraints, they are inherently independent of the data set in which they are employed. The realization of a set of universal descriptors would significantly streamline such chemoinformatics tasks as virtual high-throughout screening (VHTS) and toxicity profiling. The current study reports the derivation and validation of a potential set of universal descriptors, referred to as the 4D-fingerprints. The 4D-fingerprints are derived from the 4D-molecular similarity analysis. To evaluate the applicability of the 4D-fingerprints as universal descriptors, they are used to generate descriptive QSAR models for 5 independent training sets. Each of the training sets has been analyzed previously by several varying QSAR methods, and the results of the models generated using the 4D-fingerprints are compared to the results of the previous QSAR analyses. It was found that the models generated using the 4D-fingerprints are comparable in quality, based on statistical measures of fit and test set prediction, to the previously reported models for the other QSAR methods. This finding is particularly significant considering the 4D-fingerprints are generated independent of external constraints such as alignment, while the QSAR methods used for comparison all require an alignment analysis.

  16. Interactive 4D Visualization of Sediment Transport Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.; Englert, C. M.

    2013-12-01

    Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the

  17. C4d staining as immunohistochemical marker in inflammatory myopathies.

    PubMed

    Pytel, Peter

    2014-10-01

    The diagnosis of an inflammatory myopathy is often established based on basic histologic studies. Additional immunohistochemical studies are sometimes required to support the diagnosis and the classification of inflammatory myopathies. Staining for major histocompatibility complex 1 (MHC1) often shows increased sarcolemmal labeling in inflammatory myopathies. Endomysial capillary staining C5b-9 (membrane attack complex) is a feature that is reported as frequently associated with dermatomyositis. Immunohistochemical staining for C4d is widely used for various applications including the assessment of antibody-mediated rejection after solid organ transplantation. In the context of dermatomyositis, C4d staining has been described in skin biopsies but not in muscle biopsies. A total of 32 muscle biopsy specimens were examined. The hematoxylin and eosin-stained slides were reviewed, and immunohistochemical studies for MHC1, C5b-9, and C4d were conducted. The staining observed for C5b-9 and C4d was compared. Overall, the staining pattern for C4d mirrored the one observed for C5b-9 in the examined muscle biopsy specimens. There was high and statistically significant (P<0.0001) correlation between the staining seen with these 2 antibodies. Both antibodies labeled the cytoplasm of degenerating necrotic myofibers. In addition, both antibodies showed distinct endomysial capillary labeling in a subset of dermatomyositis. Areas with perifascicular atrophy often exhibited the most prominent vascular labeling for C4d and C5b-9. In conclusion, C4d and C5b-9 show similar expression patterns in muscle biopsies of patients with inflammatory myopathies and both highlight the presence of vascular labeling associated with dermatomyositis. C4d antibodies are widely used and may offer an alternative for C5b-9 staining.

  18. Substitutional 4d and 5d impurities in graphene.

    PubMed

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2016-08-21

    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities.

  19. Substitutional 4d and 5d impurities in graphene.

    PubMed

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2016-08-21

    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities. PMID:27439363

  20. The Evolution of the Campi Flegrei caldera (Italy): High- and low-frequency multichannel 2.5D seismic surveying for an amphibian IODP/ICDP drilling approach

    NASA Astrophysics Data System (ADS)

    Steinmann, Lena; Spiess, Volkhard; Sacchi, Marco

    2016-04-01

    offshore IODP drilling campaign. These data are of outstanding quality and high vertical resolution (~1 m), however, limited by their low signal penetration of ~200 m below seafloor. Hence, only the shallow structures of the Campi Flegrei caldera could be imaged and, consequently, the interpretation was mainly focused on the evolution of the Campi Flegrei caldera since the NYT eruption at 15 ka. Nonetheless, the data also show first evidence for a collapse prior the NYT eruption, supporting the existence of a nested-caldera system formed by collapses related to both the CI and NYT eruptions. Detailed imaging of the upper 2 km - target of the IODP/ICDP drilling campaigns - will be provided through an additional semi-3D (50 m profile spacing) low-frequency (20-200 Hz) multichannel seismic survey collected in February 2016. Preliminary results from a combination of both low- and high-frequency seismic surveys will be presented on (1) deeper-seated collapse structures related to the CI eruption, (2) the extent of the caldera fill, and (3) the hypothesized shallow hydrothermal system.

  1. The Crustal Structure of Northern Continental Margin of South China Sea: Revealed by Joint Onshore-Offshore Wide-Angle Seismic Survey

    NASA Astrophysics Data System (ADS)

    Cao, J.; Sun, J.; Xia, S.; Xu, H.

    2015-12-01

    The northern margin of South China Sea (SCS) is a rifted margin which located in the jointing area between South China Block and SCS Basin, it not only preserved the information about intensive tectonic deformation and magmatism generated by the west Pacific subducted to Eurasian Plate in late Mesozoic, but also recorded the process from continental margin rifting to seafloor spreading of SCS in Cenozoic for the same mechanical property. To investigate crustal structure of northern margin of SCS, a wide-angle onshore-offshore seismic experiment and a coincident multi-channel seismic (MCS) profile were carried out in the northern margin of SCS, 2010. A total of 14 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure model of Pearl River Estuary (PRE) region was constructed from onshore to offshore. The model reveals that South mainland of China is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The Littoral Fault Zone (LFZ) lies 12 km south of Dangan Island with a width of 18-20 km low-velocity fracture zone from surface to Moho discontinuity. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. All these results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one from late Mesozoic to Cenozoic.

  2. Program and plans of the U.S. Geological Survey for producing information needed in National Seismic hazards and risk assessment, fiscal years 1980-84

    USGS Publications Warehouse

    Hays, Walter W.

    1979-01-01

    In accordance with the provisions of the Earthquake Hazards Reduction Act of 1977 (Public Law 95-124), the U.S. Geological Survey has developed comprehensive plans for producing information needed to assess seismic hazards and risk on a national scale in fiscal years 1980-84. These plans are based on a review of the needs of Federal Government agencies, State and local government agencies, engineers and scientists engaged in consulting and research, professional organizations and societies, model code groups, and others. The Earthquake Hazards Reduction Act provided an unprecedented opportunity for participation in a national program by representatives of State and local governments, business and industry, the design professions, and the research community. The USGS and the NSF (National Science Foundation) have major roles in the national program. The ultimate goal of the program is to reduce losses from earthquakes. Implementation of USGS research in the Earthquake Hazards Reduction Program requires the close coordination of responsibility between Federal, State and local governments. The projected research plan in national seismic hazards and risk for fiscal years 1980-84 will be accomplished by USGS and non-USGS scientists and engineers. The latter group will participate through grants and contracts. The research plan calls for (1) national maps based on existing methods, (2) improved definition of earthquake source zones nationwide, (3) development of improved methodology, (4) regional maps based on the improved methodology, and (5) post-earthquake investigations. Maps and reports designed to meet the needs, priorities, concerns, and recommendations of various user groups will be the products of this research and provide the technical basis for improved implementation.

  3. Seismic investigations of ancient Lake Ohrid (Macedonia/Albania): a pre-site survey for the SCOPSCO ICDP-drilling campaign

    NASA Astrophysics Data System (ADS)

    Lindhorst, K.; Krastel, S.; Schwenk, T.; Kurschat, S.; Daut, G.; Wessel, M.; Wagner, B.

    2009-04-01

    Lake Ohrid (Macedonia/Albania) is probably the oldest lake in Europe (2-5 Ma), and has been found as an important archive to study the sedimentary evolution of a graben system over several million years. Lake Ohrid has a length of 30 km (N-S) and a width of 15 km (W-E) and covers an area of 360 sqkm. Two major mountain chains surround the lake, on the west side the Mocra Mountains (app. 1500 m) and on the east side the Galicica Mountain (app. 2250 m). With more than 210 endemic species described, the lake is a unique aquatic ecosystem that is of worldwide importance. An international group of scientists has recently submitted a full drilling proposal entitled SCOPSCO (Scientific Collaboration On Past Speciation Conditions in Lake Ohrid) to ICDP in order to (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (iii) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (iv) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. The lake was the target of several geophysical pre-site surveys starting with a first shallow seismic campaign in spring 2004 using a high resolution parametric sediment echosounder (INNOMAR SES-96 light). Airgun multichannel seismic data were collected during two surveys in 2007 and 2008, resulting in a dense grid of seismic lines over the entire lake. In total 650 km of shallow seismic lines 400 km of airgun multichannel seismics demonstrates the potential of Lake Ohrid as target for ICDP. Seismic profiles show that the lake can be divided into slope areas and a large central basin. The slope areas are characterized by a dense net of faults

  4. A Very High-Resolution Deep-Towed Multichannel Seismic Survey in the Yaquina Basin off Peru - First Data Processing Results

    NASA Astrophysics Data System (ADS)

    Breitzke, M.; Bialas, J.; Kostrov, A.

    2002-12-01

    The finely layered hemipelagic sediment coverage of the Yaquina Basin off Peru shows various features which can be related to the occurrence of fluid flow and gas hydrates. These features were the first test targets studied by a newly developed hybrid deep-towed digital multichannel seismic streamer and side scan sonar system. The streamer configuration used for this survey had an overall length of 75 m and consisted of a 50 m lead-in cable and 26 digital nodes separated by 1 m long cables. A conventional GI gun of 0.7 l volume and a Prakla-type airgun of 1.6 l volume were used as seismic sources and excited frequencies between about 20 - 300 Hz. Compared to formerly used deep-towed systems the determination of the position and depth of the streamer and side scan sonar fish is significantly improved by two components included in the newly developed system: (1) The ultra-short base line (USBL) system POSIDONIA maps the track and depth of the side scan sonar fish. (2) Three engineering nodes located at the beginning, middle and end of the streamer monitor the heading and depth variations along the streamer by a compass and depth sensor. By interpolation of these values depth and geographical coordinates of each streamer node can be computed relative to the position of the side scan sonar fish. Subsequent multichannel data processsing steps have to consider the asymmetric source-receiver geometry of the hybrid system and mainly include two steps: (1) A wavefield continuation which corrects the depth variations of the streamer and determines the wavefield in a constant reference depth. (2) A pre-stack migration which images the sedimentary structures based on all multichannel data. Examples from two locations are presented. In the first area, the deep tow seismic line crosses a formerly recorded MCS line (RV Sonne Cruise SO146, 2000) along which a weak BSR was observed. In the deep tow data several very small scale blanking zones or faults are additionally observed

  5. First seismic survey of Lake Saint-Jean (Québec, Canada): sedimentary record of the last deglaciation

    NASA Astrophysics Data System (ADS)

    Nutz, Alexis; Schuster, Mathieu; Ghienne, Jean-François; Raphaël, Certain; Nicolas, Robin; Claude, Roquin; Frédéric, Bouchette; Cousineau Pierre, A.

    2015-04-01

    The general post-glacial evolution of the Lake Saint-Jean region (Canada/Québec) was, until now, only known from onshore studies (outcrops and geomorphology). Because this lake corresponds to sediment depocentre since the area is ice free (latest Pleistocene and the entire Holocene), a comprehensive sedimentary archive could be expected from this area. As a consequence, the offshore archives of Lake Saint-Jean leave a basic, but crucial, question: can the transition from glacial to post-glacial periods be deciphered? The stratigraphy of the last deglacial sequence is investigated in Lake Saint-Jean (Québec, Canada) from 300 km of echo-sounder 2D seismic profiles. The sedimentary archive of this basin is documented from the Late Pleistocene Laurentidian ice-front recession to the present-day situation. Ten seismic units have been identified that reflect spatio-temporal variations in depositional processes characterizing different periods of the Lake Saint-Jean basin evolution. During the postglacial marine flooding, a high deposition rate of mud settling, from proglacial glacimarine and then prodeltaic plumes in the Laflamme Gulf, produced an extensive, up to 50 m thick mud sheet draping the isostatically depressed marine basin floor. Subsequently, closing of the water body due to glacio-isostatic rebound that occurred at 8.5 cal. ka BP and ice-sheet retreat outside the Saint-Jean catchment at 7.5 cal. ka BP drastically modify the hydrodynamics and sedimentation. Hyperpycnal flows appeared because fresh lake water replaced dense marine water. River sediments were transferred towards the deeper part of the lake into river-related confined lobes. The water body is also marked by the onset of a wind-driven internal circulation associating wave-related hydrodynamics and bottom currents with sedimentary features including shoreface deposits, sediment drifts, a sedimentary shelf and important erosional surfaces. The Lake Saint-Jean reveals important diversity and

  6. Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer.

    PubMed

    Yang, Ying-Hua; Buhamrah, Asma; Schneider, Abraham; Lin, Yi-Ling; Zhou, Hua; Bugshan, Amr; Basile, John R

    2016-01-01

    Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects.

  7. Soil matrix and macropore biodegradation of 2,4-D

    SciTech Connect

    Pivetz, B.E.; Steenhuis, T.S.

    1995-07-01

    Preferential flow of pesticides in macropores can lead to decreased travel times through the vadose zone and increased groundwater contamination. Macropores, however, may present a favorable environment for biodegradation because of greater oxygen, nutrient, and substrate supply, and higher microbial populations in earthworm burrows, compared to the soil matrix. The biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was measured in macropores and soil matrix of packed soil columns (7.0-cm diam., 10-cm length) and undisturbed cores contained as well-defined artificial macropore and the undisturbed cores contained earthworm-burrow macropores. A 50 {mu}g/L 2,4-D solution was continuously applied to the unsaturated soil surface and breakthrough curves (BTCs) indicating pesticide loss in the effluent were obtained from the soil matrix and macropore flow paths. Biodegradation rates were calculated separately for each flow path by comparing the BTCs to BTCs representing abiotic conditions, and dividing the 2,4-D loss by the travel time through each flow path. The biodegradation rates increased with time in both flow paths, and the final biodegradation rate in the macropore region surpassed that of the matrix, presumably because of increased microbial populations in the macropore. Complete loss of the 2,4-D in both flow paths was observed after continuous application of 2,4-D for 400 h, with maximum column-averaged 2,4-D loss rates of 0.879 {mu}g/(L h) in the matrix and 1.073 {mu}g/(L h) in the macropore. Biodegradation of 2,4-D was also observed in the macropore and matrix regions of the undisturbed soil cores. 19 refs., 7 figs., 2 tabs.

  8. Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer

    PubMed Central

    Yang, Ying-Hua; Buhamrah, Asma; Schneider, Abraham; Lin, Yi-Ling; Zhou, Hua; Bugshan, Amr; Basile, John R.

    2016-01-01

    Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects. PMID:26910109

  9. A Very High Resolution, Deep-Towed Multichannel Seismic Survey in the Yaquina Basin off Peru ? Technical Design of the new Deep-Tow Streamer

    NASA Astrophysics Data System (ADS)

    Bialas, J.; Breitzke, M.

    2002-12-01

    Within the project INGGAS a new deep towed acoustic profiling instrument consisting of a side scan sonar fish and a 26 channel seismic streamer has been developed for operation in full ocean depth. The digital channels are build by single hydrophones and three engineering nodes (EN) which are connected either by 1 m or 6.5 m long cable segments. Together with high frequent surface sources (e.g. GI gun) this hybrid system allows to complete surveys with target resolutions of higher frequency content than from complete surface based configurations. Consequently special effort has been addressed to positioning information of the submerged towed instrument. Ultra Short Base Line (USBL) navigation of the tow fish allows precise coordinate evaluation even with more than 7 km of tow cable. Specially designed engineering nodes comprise a single hydrophone with compass, depth, pitch and roll sensors. Optional extension of the streamer up to 96 hydrophone nodes and 75 engineering nodes is possible. A telemetry device allows up- and downlink transmission of all system parameters and all recorded data from the tow fish in real time. Signals from the streamer and the various side scan sensors are multiplexed along the deep-sea cable. Within the telemetry system coaxial and fiber optic connectors are available and can be chosen according to the ships needs. In case of small bandwidth only selected portions of data are transmitted onboard to provide full online quality control while a copy of the complete data set is stored within the submerged systems. Onboard the record strings of side scan and streamer are demultiplexed and distributed to the quality control (QC) systems by Ethernet. A standard marine multichannel control system is used to display shot gather, spectra and noise monitoring of the streamer channels as well as data storage in SEG format. Precise navigation post processing includes all available positioning information from the vessel (DGPS), the USBL, the

  10. Motion artifacts occurring at the lung/diaphragm interface using 4D CT attenuation correction of 4D PET scans.

    PubMed

    Killoran, Joseph H; Gerbaudo, Victor H; Mamede, Marcelo; Ionascu, Dan; Park, Sang-June; Berbeco, Ross

    2011-11-15

    For PET/CT, fast CT acquisition time can lead to errors in attenuation correction, particularly at the lung/diaphragm interface. Gated 4D PET can reduce motion artifacts, though residual artifacts may persist depending on the CT dataset used for attenuation correction. We performed phantom studies to evaluate 4D PET images of targets near a density interface using three different methods for attenuation correction: a single 3D CT (3D CTAC), an averaged 4D CT (CINE CTAC), and a fully phase matched 4D CT (4D CTAC). A phantom was designed with two density regions corresponding to diaphragm and lung. An 8 mL sphere phantom loaded with 18F-FDG was used to represent a lung tumor and background FDG included at an 8:1 ratio. Motion patterns of sin(x) and sin4(x) were used for dynamic studies. Image data was acquired using a GE Discovery DVCT-PET/CT scanner. Attenuation correction methods were compared based on normalized recovery coefficient (NRC), as well as a novel quantity "fixed activity volume" (FAV) introduced in our report. Image metrics were compared to those determined from a 3D PET scan with no motion present (3D STATIC). Values of FAV and NRC showed significant variation over the motion cycle when corrected by 3D CTAC images. 4D CTAC- and CINE CTAC-corrected PET images reduced these motion artifacts. The amount of artifact reduction is greater when the target is surrounded by lower density material and when motion was based on sin4(x). 4D CTAC reduced artifacts more than CINE CTAC for most scenarios. For a target surrounded by water equivalent material, there was no advantage to 4D CTAC over CINE CTAC when using the sin(x) motion pattern. Attenuation correction using both 4D CTAC or CINE CTAC can reduce motion artifacts in regions that include a tissue interface such as the lung/diaphragm border. 4D CTAC is more effective than CINE CTAC at reducing artifacts in some, but not all, scenarios.

  11. 4-D reconstruction for dynamic fluorescence diffuse optical tomography.

    PubMed

    Liu, Xin; Zhang, Bin; Luo, Jianwen; Bai, Jing

    2012-11-01

    Dynamic fluorescence diffuse optical tomography (FDOT) is important for the research of drug delivery, medical diagnosis and treatment. Conventionally, dynamic tomographic images are reconstructed frame by frame, independently. This approach fails to account for the temporal correlations in measurement data. Ideally, the entire image sequence should be considered as a whole and a four-dimensional (4-D) reconstruction should be performed. However, the fully 4-D reconstruction is computationally intensive. In this paper, we propose a new 4-D reconstruction approach for dynamic FDOT, which is achieved by applying a temporal Karhunen-Loève (KL) transformation to the imaging equation. By taking advantage of the decorrelation and compression properties of the KL transformation, the complex 4-D optical reconstruction problem is greatly simplified. To evaluate the performance of the method, simulation, phantom, and in vivo experiments (N=7) are performed on a hybrid FDOT/x-ray computed tomography imaging system. The experimental results indicate that the reconstruction images obtained by the KL method provide good reconstruction quality. Additionally, by discarding high-order KL components, the computation time involved with fully 4-D reconstruction can be greatly reduced in contrast to the conventional frame-by-frame reconstruction.

  12. New C4D Sensor with a Simulated Inductor

    PubMed Central

    Lyu, Yingchao; Ji, Haifeng; Yang, Shijie; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2016-01-01

    A new capacitively coupled contactless conductivity detection (C4D) sensor with an improved simulated inductor is developed in this work. The improved simulated inductor is designed on the basis of the Riordan-type floating simulated inductor. With the improved simulated inductor, the negative influence of the coupling capacitances is overcome and the conductivity measurement is implemented by the series resonance principle. The conductivity measurement experiments are carried out in three pipes with different inner diameters of 3.0 mm, 4.6 mm and 6.4 mm, respectively. The experimental results show that the designs of the new C4D sensor and the improved simulated inductor are successful. The maximum relative error of the conductivity measurement is less than 5%. Compared with the C4D sensors using practical inductors, the measurement accuracy of the new C4D sensor is comparable. The research results also indicate that the adjustability of a simulated inductor can reduce the requirement for the AC source and guarantee the interchangeableness. Meanwhile, it is recommended that making the potential of one terminal of a simulated inductor stable is beneficial to the running stability. Furthermore, this work indirectly verifies the possibility and feasibility of the miniaturization of the C4D sensor by using the simulated inductor technique and lays a good foundation for future research work. PMID:26828493

  13. Martian seismicity

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Grimm, Robert E.

    1991-01-01

    The design and ultimate success of network seismology experiments on Mars depends on the present level of Martian seismicity. Volcanic and tectonic landforms observed from imaging experiments show that Mars must have been a seismically active planet in the past and there is no reason to discount the notion that Mars is seismically active today but at a lower level of activity. Models are explored for present day Mars seismicity. Depending on the sensitivity and geometry of a seismic network and the attenuation and scattering properties of the interior, it appears that a reasonable number of Martian seismic events would be detected over the period of a decade. The thermoelastic cooling mechanism as estimated is surely a lower bound, and a more refined estimate would take into account specifically the regional cooling of Tharsis and lead to a higher frequency of seismic events.

  14. High-resolution single-channel seismic reflection surveys of Orange Lake and other selected sites of north central Florida

    USGS Publications Warehouse

    Kindinger, Jack G.; Davis, Jeffrey B.; Flocks, James G.

    1994-01-01

    The potential fluid exchange between lakes of north central Florida and the Floridan aquifer and the process by which exchange occurs is of critical concern to the St. Johns Water Management District. High-resolution seismic tools with relatively new digital technology were utilized in collecting geophysical data from Orange, Kingsley, Lowry and Magnolia Lakes, and the Drayton Island area of St. Johns River. The data collected shows the application of these techniques in understanding the formation of individual lakes, thus aiding in the management of these natural resources by identifying breaches or areas where the confining units are thin or absent between the water bodies and the Floridan aquifer. Orange Lake, the primary focus of the study, is a shallow flooded plain that was formed essentially as an erosional depression in the clayey Hawthorn formation. The primary karstic features identified in the lake were cover subsidence, cover collapse and buried sinkholes structures in various sizes and stages of development. Orange Lake was divided into three areas southeast, southwest, and north-central. Karst features within the southeast area of Orange Lake are mostly cover subsidence sinkholes and associated features. Many of the subsidence features found are grouped together to form larger composite sinkholes, some greater than 400 m in diameter. The size of these composite sinkholes and the number of buried subsidence sinkholes distinguish the southeast area from the others. The potential of lake waters leaking to the aquifer in the southeast area is probably controlled by the permeability of the cover sediments or by fractures that penetrate the lake floor. The lake bottom and subsurface of the north-central areas are relatively subsidence sinkholes that have no cover sediments overlying them, implying that the sinks have been actively subsiding with some seepage into the aquifer from the lake in this area due to the possible presence of the active subsidence

  15. LITHOPROBE East onshore-offshore seismic refraction survey -constraints on interpretation of reflection data in the Newfoundland Appalachians

    USGS Publications Warehouse

    Marillier, F.; Hall, J.; Hughes, S.; Louden, K.; Reid, I.; Roberts, B.; Clowes, R.; Cote, T.; Fowler, J.; Guest, S.; Lu, H.; Luetgert, J.; Quinlan, G.; Spencer, C.; Wright, J.

    1994-01-01

    Combined onshore-offshore seismic refraction/ wide-angle reflection data have been acquired across Newfoundland, eastern Canada, to investigate the structural architecture of the northern Appalachians, particularly of distinct crustal zones recognized from earlier LITHOPROBE vertical incidence studies. A western crustal unit, correlated with the Grenville province of the Laurentian plate margin thins from 44 to 40 km and a portion of the lower crust becomes highly reflective with velocities of 7.2 km/s. In central Newfoundland, beneath the central mobile belt, the crust thins to 35 km or less and is marked by average continental velocities, not exceeding 7.0 km/s in the lower crust. Further east, in a crustal unit underlying the Avalon zone and associated with the Gondwanan plate margin, the crust is 40 km thick, and has velocities of 6.8 km/s in the lower crust. Explanations for the thin crust beneath the central mobile belt include (1) post-orogenic isostatic readjustment associated with a density in the mantle which is lower beneath this part of the orogen than beneath the margin, (2) mechanical thinning at the base of the crust during orogenic collapse perhaps caused by delamination, and (3) transformation by phase change of a gabbroic lower crust to eclogite which seismologically would be difficult to distinguish from mantle. Except for a single profile in western Newfoundland, velocities in the crust are of typical continental affinity with lower-crustal velocities less than 7.0 km/s. This indicates that there was no significant magmatic underplating under the Newfoundland Appalachians during Mesozoic rifting of the Atlantic Ocean as proposed elsewhere for the New England Appalachians. A mid-crustal velocity discontinuity observed in the Newfoundland region does not coincide with any consistent reflection pattern on vertical incidence profiles. However, we suggest that localized velocity heterogeneities at mid-crustal depths correspond to organized vertical

  16. High-resolution seismic reflection survey results in the eastern coastal area of Boso Peninsula, Central Japan

    NASA Astrophysics Data System (ADS)

    Furuyama, S.; Sato, T.

    2015-12-01

    GSJ has conducted the coastal project since 2008 in order to equip seamless geoinformations of land and sea. This project has approached the eastern coastal area in Boso Peninsula, eastern part of the Kanto region, Japan. In the waters off the Boso Peninsula, the Philippine Sea plate subducts under the Honshu arc. Therefore, the subsurface structure in this area is important for understanding of tectonics of Kanto region, Japan. In this study, we obtained seismic sections of ca. 1100 km in total length with a boomer and multi-channel streamer (24 channel with 3.125 m spacing) and report the geological significance of the subsurface structure in the area. We mainly research the Kujukuri area, eastern part of Boso peninsula. The broad shelf characterizes this area and that width is ca. 50 km. A clear unconformity can be distinguished separating two strata and we define them as the Kujukuri A Unit and the Kujukuri B Unit, in ascending order. The planner stratification characterizes the Kujukuri A Unit and this unit buries many channels. Distinct stratification deformed by synclines and anticlines develops in the Kujukuri B Unit. The amounts of displacement of them are over 50 msec (TWT) and it exceeds 100 msec in some locations. Additionally, a lot of faults develop in the Kujukuri B Unit near land and the vertical amounts of displacement of faults exceed 100 msec. These structures in the Kujukuri B Unit might have an effect on tectonics of the Kanto region. The understanding of geology in the Kujukuri area contributes to the tectonics of Japan.

  17. Borehole-explosion and air-gun data acquired in the 2011 Salton Seismic Imaging Project (SSIP), southern California: description of the survey

    USGS Publications Warehouse

    Rose, Elizabeth J.; Fuis, Gary S.; Stock, Joann M.; Hole, John A.; Kell, Annie M.; Kent, Graham; Driscoll, Neal W.; Goldman, Mark; Reusch, Angela M.; Han, Liang; Sickler, Robert R.; Catchings, Rufus D.; Rymer, Michael J.; Criley, Coyn J.; Scheirer, Daniel S.; Skinner, Steven M.; Slayday-Criley, Coye J.; Murphy, Janice M.; Jensen, Edward G.; McClearn, Robert; Ferguson, Alex J.; Butcher, Lesley A.; Gardner, Max A.; Emmons, Iain; Loughran, Caleb L.; Svitek, Joseph R.; Bastien, Patrick C.; Cotton, Joseph A.; Croker, David S.; Harding, Alistair J.; Babcock, Jeffrey M.; Harder, Steven H.; Rosa, Carla M.

    2013-01-01

    The Imperial and Coachella Valleys are being formed by active plate-tectonic processes. From the Imperial Valley southward into the Gulf of California, plate motions are rifting the continent apart. In the Coachella Valley, the plates are sliding past one another along the San Andreas and related faults (fig. 1). These processes build the stunning landscapes of the region, but also produce damaging earthquakes. Rupture of the southern section of the San Andreas Fault (SAF), from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard that California will face in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of infrastructure (freeways, aqueducts, power, petroleum, and communication lines) that might bring much of southern California to a standstill. As part of the nation’s efforts to avert a catastrophe of this magnitude, a number of projects have been undertaken to more fully understand and mitigate the effects of such an event. The Salton Seismic Imaging Project (SSIP), funded jointly by the National Science Foundation (NSF) and the U.S. Geological Survey (USGS), seeks to understand, through seismic imaging, the structure of the Earth surrounding the SAF, including the sedimentary basins on which cities are built. The principal investigators (PIs) of this collaborative project represent the USGS, Virginia Polytechnic Institute and State University (Virginia Tech), California Institute of Technology (Caltech), Scripps Institution of Oceanography (Scripps), University of Nevada, Reno (UNR), and Stanford University. SSIP will create images of underground structure and sediments in the Imperial and Coachella Valleys and adjacent mountain ranges to investigate the earthquake hazards posed to cities in this area. Importantly, the images will help determine the underground geometry of the SAF, how deep the sediments are, and how fast

  18. A 4D Hyperspherical Interpretation of q-Space

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Alexander, Andrew L.; Bendlin, Barbara B.

    2014-01-01

    3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we analytically derive several quantitative indices and numerically estimate the diffusion ODF. Importantly, we derive the integral transform describing the relationship between the diffusion signal and propagator on a hypersphere. We also show that the HSH basis expends less fitting parameters than other well-established methods to achieve comparable signal and better ODF reconstructions. All in all, this work provides a new way of looking at q-space. PMID:24505799

  19. High-resolution seismic surveys in the Lake Balaton to image the stratigraphic architecture of Late Miocene basin fill beneath the lake

    NASA Astrophysics Data System (ADS)

    Visnovitz, Ferenc; Balázs, Attila; Horváth, Ferenc

    2013-04-01

    In the area of Lake Balaton ultrahigh-resolution single channel seismic surveys have been carried out in a total length of 1300 km in the past 20 years. In addition, a 500 km of multichannel profiles were also measured in cooperation with the University of Bremen, Germany. Multichannel profiles can give an image of the main structures of the Late Miocene strata and follow their acoustic basement in a depth of 100-200 meters. However, the multichannel profiles have lower resolution relative to the single channel ones (5 meters and 0.2 meters, respectively). A joint application of the two techniques can offer a most complete stratigraphic and structural information particularly if it is combined with adequate well logs from the area. The Lake Balaton with a present surface area of about 600 km2 is a shallow water (0 - 4 m) with an average of 5 meters of calcareous mud deposited in the last 12 000 to 16 000 years. The mud is unconformably underlain by the Late Miocene strata, which represent the early postrift sedimentary fill of the Pannonian basin. The termination of the synrift phase is defined by Sarmatian (11.3 to 13 Ma) biogenic limestones which represent the acoustic basement in major part of the area. The syn/postrift boundary is normally at a depth of 2 to 4 km in the Pannonian basin and the elevated position over here in the Balaton region is connected to the Quaternary uplift and erosion of the Transdanubian Central Range. The shallow position of the Late Miocene strata, the overlying water and the unconsolidated mud allow the penetration of high frequency acoustic waves (100 - 2000 Hz). It results in decimeter to meter scale vertical resolution which can be directly compared to outcrop scale features. All of these data can be interpreted in terms of shoreline clinoforms deposited on the landward edge of the shelf the same time when the major progradational and aggradational system (shelf-slope-basin chloroforms) filled progressively up the deeper parts of

  20. Relative charge transfer cross section from Rb (4d)

    NASA Astrophysics Data System (ADS)

    Shah, M. H.; Camp, H. A.; Trachy, M. L.; Fléchard, X.; Gearba, M. A.; Nguyen, H.; Brédy, R.; Lundeen, S. R.; Depaola, B. D.

    2005-08-01

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7keV Na+ is reported. The specific channels reported are Na++Rb(4d5/2)→Na(nl)+Rb+ , where the dominant transfer cross sections channels were nl=3d and 4s . Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na++Rb(5s,5p) systems at the same collision energy.

  1. Relative charge transfer cross section from Rb(4d)

    SciTech Connect

    Shah, M.H.; Camp, H.A.; Trachy, M.L.; De Paola, B.D.; Flechard, X.; Gearba, M.A.; Nguyen, H.; Bredy, R.; Lundeen, S.R.

    2005-08-15

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7 keV Na{sup +} is reported. The specific channels reported are Na{sup +}+Rb(4d{sub 5/2}){yields}Na(nl)+Rb{sup +}, where the dominant transfer cross sections channels were nl=3d and 4s. Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na{sup +}+Rb(5s,5p) systems at the same collision energy.

  2. The 4-D approach to visual control of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dickmanns, Ernst D.

    1994-01-01

    Development of a 4-D approach to dynamic machine vision is described. Core elements of this method are spatio-temporal models oriented towards objects and laws of perspective projection in a foward mode. Integration of multi-sensory measurement data was achieved through spatio-temporal models as invariants for object recognition. Situation assessment and long term predictions were allowed through maintenance of a symbolic 4-D image of processes involving objects. Behavioral capabilities were easily realized by state feedback and feed-foward control.

  3. Emerging Applications of Abdominal 4D Flow MRI

    PubMed Central

    Roldán-Alzate, Alejandro; Francois, Christopher J.; Wieben, Oliver; Reeder, Scott B.

    2016-01-01

    OBJECTIVE Comprehensive assessment of abdominal hemodynamics is crucial for many clinical diagnoses but is challenged by a tremendous complexity of anatomy, normal physiology, and a wide variety of pathologic abnormalities. This article introduces 4D flow MRI as a powerful technique for noninvasive assessment of the hemodynamics of abdominal vascular territories. CONCLUSION Four-dimensional flow MRI provides clinicians with a more extensive and straightforward approach to evaluate disorders that affect blood flow in the abdomen. This review presents a series of clinical cases to illustrate the utility of 4D flow MRI in the comprehensive assessment of the abdominal circulation. PMID:27187681

  4. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    SciTech Connect

    Teplow, William J.; Warren, Ian

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  5. High-Resolution Seismic Reflection to Monitor Change

    NASA Astrophysics Data System (ADS)

    Miller, R. D.; Raef, A. E.; Lambrecht, J. L.; Byrnes, A. P.

    2006-05-01

    High-resolution seismic reflection has proven a valuable tool detecting changes in fluid composition, rock petrophysical properties, and structures critical to reservoir production management and groundwater protection in Kansas. Surface seismic reflection is not a method that lends itself to direct detection and delineation of boundaries between different fluid compositions in porous media. However, time-lapse seismic does appear to have been successful identifying areas where calculated changes in seismic characteristics (specifically velocity) are greater than 10% at a miscible CO2 flood in Russell County, Kansas. Empirically a 10% change in seismic velocity has proven to be the minimum practical threshold where signal emerging from the noise can be interpreted with any degree of confidence. This change in velocity occurs when the saturation of injection CO2 exceeds 30% of the total pore fluid at this site. To evaluate the potential of high-resolution seismic reflection to monitor the injection in a miscible CO2 enhanced oil recovery pilot study in a 900 m deep 5 m thick oolitic carbonate petroleum reservoir, a 4-D seismic reflection program was undertaken that includes 12 different 3-D surveys over 6 years. The first 3 years (8 surveys) were designed to specifically address the potential application of this method to enhanced oil recovery. The last 3 years (3 surveys) are intended to evaluate the effective of seismic in providing the assurances necessary for CO2 sequestration. Collapse structures related to karst features and anthropogenic leaching resulting from faulty bore fluid containment have posed serious threats to the quality of groundwater above the Hutchinson Salt Member of the Permian Wellington Formation in central Kansas. High-resolution seismic reflection played a key role in characterizing the preferential growth of a sinkhole resulting from the dissolution of the Hutchinson Salt in Pawnee County, Kansas. Salt leaching was instigated by

  6. 2,4-Dichlorophenoxyacetic acid (2,4-D)

    Integrated Risk Information System (IRIS)

    2,4 - Dichlorophenoxyacetic acid ( 2,4 - D ) ; CASRN 94 - 75 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asses

  7. Enterococcus faecalis promotes osteoclastogenesis and semaphorin 4D expression.

    PubMed

    Wang, Shuai; Deng, Zuhui; Seneviratne, Chaminda J; Cheung, Gary S P; Jin, Lijian; Zhao, Baohong; Zhang, Chengfei

    2015-10-01

    Enterococcus faecalis is considered a major bacterial pathogen implicated in endodontic infections and contributes considerably to periapical periodontitis. This study aimed to investigate the potential mechanisms by which E. faecalis accounts for the bone destruction in periapical periodontitis in vitro. Osteoclast precursor RAW264.7 cells were treated with E. faecalis ATCC 29212 and a wild strain of E. faecalis derived clinically from an infected root canal. The results showed that, to some extent, E. faecalis induced the RAW264.7 cells to form tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclast-like cells. This pathogen markedly stimulated RAW264.7 cells to express semaphorin 4D (Sema4D), which inhibits bone formation. Once RAW264.7 cells were primed by low-dose receptor activator of nuclear factor-kappa B ligand (RANKL), E. faecalis could significantly increase the production of TRAP-positive multinucleated cells and up-regulate the expression of osteoclast-specific markers, including NFATc1, TRAP and cathepsin K. Both p38 and ERK1/2 MAPK signaling pathways were activated by E. faecalis in RANKL-primed RAW264.7 cells, and meanwhile the expression of Sema4D was highly increased. In conclusion, E. faecalis may greatly contribute to the bone resorption in periapical periodontitis by promoting RANKL-dependent osteoclastogenesis and expression of Sema4D through activation of p38 and ERK1/2 MAPK signaling pathways.

  8. Scientific Subsurface data for EPOS - integration of 3D and 4D data services

    NASA Astrophysics Data System (ADS)

    Kerschke, Dorit; Hammitzsch, Martin; Wächter, Joachim

    2016-04-01

    The provision of efficient and easy access to scientific subsurface data sets obtained from field studies and scientific observatories or by geological 3D/4D-modeling is an important contribution to modern research infrastructures as they can facilitate the integrated analysis and evaluation as well as the exchange of scientific data. Within the project EPOS - European Plate Observing System, access to 3D and 4D data sets will be provided by 'WP15 - Geological information and modeling' and include structural geology models as well as numerical models, e.g., temperature, aquifers, and velocity. This also includes validated raw data, e.g., seismic profiles, from which the models where derived. All these datasets are of high quality and of unique scientific value as the process of modeling is time and cost intensive. However, these models are currently not easily accessible for the wider scientific community, much less to the public. For the provision of these data sets a data management platform based on common and standardized data models, protocols, and encodings as well as on a predominant use of Free and Open Source Software (FOSS) has been devised. The interoperability for disciplinary and domain applications thus highly depends on the adoption of generally agreed technologies and standards (OGC, ISO…) originating from Spatial Data Infrastructure related efforts (e.g., INSPIRE). However, since not many standards for 3D and 4D geological data exists, this work also includes new approaches for project data management, interfaces for tools used by the researchers, and interfaces for the sharing and reusing of data.

  9. Natural and Induced Fracture Diagnostics from 4-D VSP Low Permeability Gas Reservoirs

    SciTech Connect

    Mark E. Willis; Daniel R. Burns; M. Nafi Toksoz

    2008-09-30

    Tight gas sand reservoirs generally contain thick gas-charged intervals that often have low porosity and very low permeability. Natural and induced fractures provide the only means of production. The objective of this work is to locate and characterize natural and induced fractures from analysis of scattered waves recorded on 4-D (time lapse) VSP data in order to optimize well placement and well spacing in these gas reservoirs. Using model data simulating the scattering of seismic energy from hydraulic fractures, we first show that it is possible to characterize the quality of fracturing based upon the amount of scattering. In addition, the picked arrival times of recorded microseismic events provide the velocity moveout for isolating the scattered energy on the 4-D VSP data. This concept is applied to a field dataset from the Jonah Field in Wyoming to characterize the quality of the induced hydraulic fractures. The time lapse (4D) VSP data from this field are imaged using a migration algorithm that utilizes shot travel time tables derived from the first breaks of the 3D VSPs and receiver travel time tables based on the microseismic arrival times and a regional velocity model. Four azimuthally varying shot tables are derived from picks of the first breaks of over 200 VSP records. We create images of the fracture planes through two of the hydraulically fractured wells in the field. The scattered energy shows correlation with the locations of the microseismic events. In addition, the azimuthal scattering is different from the azimuthal reflectivity of the reservoir, giving us more confidence that we have separated the scattered signal from simple formation reflectivity. Variation of the scattered energy along the image planes suggests variability in the quality of the fractures in three distinct zones.

  10. 4D flow mri post-processing strategies for neuropathologies

    NASA Astrophysics Data System (ADS)

    Schrauben, Eric Mathew

    4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a

  11. Seismic Ecology

    NASA Astrophysics Data System (ADS)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  12. Identification of a gene set to evaluate the potential effects of loud sounds from seismic surveys on the ears of fishes: a study with Salmo salar.

    PubMed

    Andrews, C D; Payne, J F; Rise, M L

    2014-06-01

    identified the transcript encoding growth hormone I as up-regulated by loud sound, supporting previous evidence linking growth hormone to hair cell regeneration in fishes. Quantitative (q) reverse transcription (RT) polymerase chain reaction (qRT-PCR) analyses confirmed dysregulation of some microarray-identified transcripts and in some cases revealed a high level of biological variability in the exposed group. These results support the potential utility of molecular biomarkers to evaluate the effect of seismic surveys on fishes with studies on the ears being placed in a priority category for development of exposure-response relationships. Knowledge of such relationships is necessary for addressing the question of potential size of injury zones. PMID:24814183

  13. Identification of a gene set to evaluate the potential effects of loud sounds from seismic surveys on the ears of fishes: a study with Salmo salar

    PubMed Central

    Andrews, C D; Payne, J F; Rise, M L

    2014-01-01

    identified the transcript encoding growth hormone I as up-regulated by loud sound, supporting previous evidence linking growth hormone to hair cell regeneration in fishes. Quantitative (q) reverse transcription (RT) polymerase chain reaction (qRT-PCR) analyses confirmed dysregulation of some microarray-identified transcripts and in some cases revealed a high level of biological variability in the exposed group. These results support the potential utility of molecular biomarkers to evaluate the effect of seismic surveys on fishes with studies on the ears being placed in a priority category for development of exposure–response relationships. Knowledge of such relationships is necessary for addressing the question of potential size of injury zones. PMID:24814183

  14. Identification of a gene set to evaluate the potential effects of loud sounds from seismic surveys on the ears of fishes: a study with Salmo salar.

    PubMed

    Andrews, C D; Payne, J F; Rise, M L

    2014-06-01

    identified the transcript encoding growth hormone I as up-regulated by loud sound, supporting previous evidence linking growth hormone to hair cell regeneration in fishes. Quantitative (q) reverse transcription (RT) polymerase chain reaction (qRT-PCR) analyses confirmed dysregulation of some microarray-identified transcripts and in some cases revealed a high level of biological variability in the exposed group. These results support the potential utility of molecular biomarkers to evaluate the effect of seismic surveys on fishes with studies on the ears being placed in a priority category for development of exposure-response relationships. Knowledge of such relationships is necessary for addressing the question of potential size of injury zones.

  15. 4D MR imaging using robust internal respiratory signal

    NASA Astrophysics Data System (ADS)

    Hui, CheukKai; Wen, Zhifei; Stemkens, Bjorn; Tijssen, R. H. N.; van den Berg, C. A. T.; Hwang, Ken-Pin; Beddar, Sam

    2016-05-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D.

  16. 4-D monitoring of the Solfatara crater (Italy) by ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Pilz, M.; Woith, H.; Parolai, S.; Festa, G.

    2014-12-01

    Imaging shallow subsurface structures and monitoring related temporal variations are two of the main tasks for modern seismology. Although many observations have reported temporal velocity changes, e.g., in volcanic areas and on landslides, new methods based on passive sources like ambient seismic noise can provide accurate spatially and temporally resolved information on the velocity structure and on velocity changes. The success of these passive applications is explained by the fact that these methods are based on surface waves which are always present in the ambient seismic noise wave field because they are excited preferentially by superficial sources. Such surface waves can easily be extracted because they dominate the Green´s function between receivers located at the surface. For real-time monitoring of the shallow velocity structure of the Solfatara crater, one the forty volcanoes in the Campi Flegrei area characterized by an intense hydrothermal activity due to the interaction of deep convection and meteoric water, we have installed a dense network of 50 seismological sensing units covering the whole surface area in the framework of the European project MED-SUV. Continuous recordings of the ambient seismic noise over several days as well as signals of an active vibroseis source have been used. Based on a weighted inversion procedure for 3D-passive imaging using ambient noise cross-correlations of both Rayleigh and Love waves, we will present a high-resolution velocity model of the structure beneath the Solfatara crater. We discuss why and how it is possible to perform high precision and real-time monitoring of temporal changes in the properties of the propagation medium at small scales. In particular, we will focus on the depth resolution of the presented approach and further discuss the perspectives of noise-based real-time 4-D tomography.

  17. Annual Hanford seismic report -- fiscal year 1996

    SciTech Connect

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site.

  18. Wave Propagation in the Ionosphere Associated With Earthquakes Revealed by GPS- TEC 4D Tomography

    NASA Astrophysics Data System (ADS)

    Watada, S.; Obayashi, M.; Ozawa, S.

    2008-12-01

    Hi-density high-rate sampling GPS network data is ideal for imaging quickly changing 3D structures in the ionosphere. GPS-TEC observation by GEONET in Japan during the 2003 Tokachi-Oki earthquake shows a clear propagating ionospheric disturbance. Heki and Ping (2005) interpreted the phenomena as a propagating sound wave in the thermosphere which was originally radiated into the atmosphere from the earthquake source region. To understand the ionosphere disturbance directly, we developed 4D ionosphere tomography method as an extension of a mantle tomography method to retrieve 3D seismic velocity structure of the mantle from traveltimes of seismic body waves from earthquakes to the seismic stations. We applied this tomography method to 1 Hz GPS-TEC data from GEONET which provides a dense line of sight coverage of space and time above and around the Japanese islands during and the after the earthquake. The image results show dispersive propagating waves, i.e., the phase speed of the waves is different from the wave energy propagation speed. The first phase, which appears first 100 km above the epicenter area, propagates horizontally with a phase speed about 1km/s and the secondary phase propagates slower. A close examination of the propagation of the first phase shows dispersion of the phase. The positive peak of the first phase travels 10% faster than the negative peak so that the peak shape broadens as it proceeds. The amplitude of the positive peak diminishes as it propagates over 1400 km distance from the source region. In contrast to the positive peak, the negative peak first appears as small amplitude and grows after traveling over 1000 km from the source region. Study of the evolution of the 4D GPS-TEC disturbance will provide rich information about the mechanisms of generation and propagation of ionospheric disturbance through the solid-earth-atmosphere-ionosphere coupling. Ionospheric disturbance can be generated from land surface deformation and the ocean

  19. Impact of incorporating visual biofeedback in 4D MRI.

    PubMed

    To, David T; Kim, Joshua P; Price, Ryan G; Chetty, Indrin J; Glide-Hurst, Carri K

    2016-05-08

    Precise radiation therapy (RT) for abdominal lesions is complicated by respiratory motion and suboptimal soft tissue contrast in 4D CT. 4D MRI offers improved con-trast although long scan times and irregular breathing patterns can be limiting. To address this, visual biofeedback (VBF) was introduced into 4D MRI. Ten volunteers were consented to an IRB-approved protocol. Prospective respiratory-triggered, T2-weighted, coronal 4D MRIs were acquired on an open 1.0T MR-SIM. VBF was integrated using an MR-compatible interactive breath-hold control system. Subjects visually monitored their breathing patterns to stay within predetermined tolerances. 4D MRIs were acquired with and without VBF for 2- and 8-phase acquisitions. Normalized respiratory waveforms were evaluated for scan time, duty cycle (programmed/acquisition time), breathing period, and breathing regularity (end-inhale coefficient of variation, EI-COV). Three reviewers performed image quality assessment to compare artifacts with and without VBF. Respiration-induced liver motion was calculated via centroid difference analysis of end-exhale (EE) and EI liver contours. Incorporating VBF reduced 2-phase acquisition time (4.7 ± 1.0 and 5.4 ± 1.5 min with and without VBF, respectively) while reducing EI-COV by 43.8% ± 16.6%. For 8-phase acquisitions, VBF reduced acquisition time by 1.9 ± 1.6 min and EI-COVs by 38.8% ± 25.7% despite breathing rate remaining similar (11.1 ± 3.8 breaths/min with vs. 10.5 ± 2.9 without). Using VBF yielded higher duty cycles than unguided free breathing (34.4% ± 5.8% vs. 28.1% ± 6.6%, respectively). Image grading showed that out of 40 paired evaluations, 20 cases had equivalent and 17 had improved image quality scores with VBF, particularly for mid-exhale and EI. Increased liver excursion was observed with VBF, where superior-inferior, anterior-posterior, and left-right EE-EI displacements were 14.1± 5.8, 4.9 ± 2.1, and 1.5 ± 1.0 mm, respectively, with VBF compared to 11.9

  20. Exome sequencing identifies PDE4D mutations in acrodysostosis.

    PubMed

    Lee, Hane; Graham, John M; Rimoin, David L; Lachman, Ralph S; Krejci, Pavel; Tompson, Stuart W; Nelson, Stanley F; Krakow, Deborah; Cohn, Daniel H

    2012-04-01

    Acrodysostosis is a dominantly-inherited, multisystem disorder characterized by skeletal, endocrine, and neurological abnormalities. To identify the molecular basis of acrodysostosis, we performed exome sequencing on five genetically independent cases. Three different missense mutations in PDE4D, which encodes cyclic AMP (cAMP)-specific phosphodiesterase 4D, were found to be heterozygous in three of the cases. Two of the mutations were demonstrated to have occurred de novo, providing strong genetic evidence of causation. Two additional cases were heterozygous for de novo missense mutations in PRKAR1A, which encodes the cAMP-dependent regulatory subunit of protein kinase A and which has been recently reported to be the cause of a form of acrodysostosis resistant to multiple hormones. These findings demonstrate that acrodysostosis is genetically heterogeneous and underscore the exquisite sensitivity of many tissues to alterations in cAMP homeostasis. PMID:22464252

  1. Intelligent Vehicle Systems: A 4D/RCS Approach

    SciTech Connect

    Madhavan, Raj

    2007-04-01

    This book presents new research on autonomous mobility capabilities and shows how technological advances can be anticipated in the coming two decades. An in-depth description is presented on the theoretical foundations and engineering approaches that enable these capabilities. Chapter 1 provides a brief introduction to the 4D/RCS reference model architecture and design methodology that has proven successful in guiding the development of autonomous mobility systems. Chapters 2 through 7 provide more detailed descriptions of research that has been conducted and algorithms that have been developed to implement the various aspects of the 4D/RCS reference model architecture and design methodology. Chapters 8 and 9 discuss applications, performance measures, and standards. Chapter 10 provides a history of Army and DARPA research in autonomous ground mobility. Chapter 11 provides a perspective on the potential future developments in autonomous mobility.

  2. Brain tissue segmentation in 4D CT using voxel classification

    NASA Astrophysics Data System (ADS)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  3. 4D embryonic cardiography using gated optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jenkins, M. W.; Rothenberg, F.; Roy, D.; Nikolski, V. P.; Hu, Z.; Watanabe, M.; Wilson, D. L.; Efimov, I. R.; Rollins, A. M.

    2006-01-01

    Simultaneous imaging of very early embryonic heart structure and function has technical limitations of spatial and temporal resolution. We have developed a gated technique using optical coherence tomography (OCT) that can rapidly image beating embryonic hearts in four-dimensions (4D), at high spatial resolution (10-15 μm), and with a depth penetration of 1.5 - 2.0 mm that is suitable for the study of early embryonic hearts. We acquired data from paced, excised, embryonic chicken and mouse hearts using gated sampling and employed image processing techniques to visualize the hearts in 4D and measure physiologic parameters such as cardiac volume, ejection fraction, and wall thickness. This technique is being developed to longitudinally investigate the physiology of intact embryonic hearts and events that lead to congenital heart defects.

  4. Visualization of volumetric seismic data

    NASA Astrophysics Data System (ADS)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  5. 4D flow cardiovascular magnetic resonance consensus statement.

    PubMed

    Dyverfeldt, Petter; Bissell, Malenka; Barker, Alex J; Bolger, Ann F; Carlhäll, Carl-Johan; Ebbers, Tino; Francios, Christopher J; Frydrychowicz, Alex; Geiger, Julia; Giese, Daniel; Hope, Michael D; Kilner, Philip J; Kozerke, Sebastian; Myerson, Saul; Neubauer, Stefan; Wieben, Oliver; Markl, Michael

    2015-01-01

    Pulsatile blood flow through the cavities of the heart and great vessels is time-varying and multidirectional. Access to all regions, phases and directions of cardiovascular flows has formerly been limited. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has enabled more comprehensive access to such flows, with typical spatial resolution of 1.5×1.5×1.5 - 3×3×3 mm(3), typical temporal resolution of 30-40 ms, and acquisition times in the order of 5 to 25 min. This consensus paper is the work of physicists, physicians and biomedical engineers, active in the development and implementation of 4D Flow CMR, who have repeatedly met to share experience and ideas. The paper aims to assist understanding of acquisition and analysis methods, and their potential clinical applications with a focus on the heart and greater vessels. We describe that 4D Flow CMR can be clinically advantageous because placement of a single acquisition volume is straightforward and enables flow through any plane across it to be calculated retrospectively and with good accuracy. We also specify research and development goals that have yet to be satisfactorily achieved. Derived flow parameters, generally needing further development or validation for clinical use, include measurements of wall shear stress, pressure difference, turbulent kinetic energy, and intracardiac flow components. The dependence of measurement accuracy on acquisition parameters is considered, as are the uses of different visualization strategies for appropriate representation of time-varying multidirectional flow fields. Finally, we offer suggestions for more consistent, user-friendly implementation of 4D Flow CMR acquisition and data handling with a view to multicenter studies and more widespread adoption of the approach in routine clinical investigations. PMID:26257141

  6. Phosphodiesterase 4D gene polymorphisms in sudden sensorineural hearing loss.

    PubMed

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wang, Hsun-Mo; Wu, Ming-Tsang; Ho, Kuen-Yao

    2016-09-01

    The phosphodiesterase 4D (PDE4D) gene has been reported as a risk gene for ischemic stroke. The vascular factors are between the hypothesized etiologies of sudden sensorineural hearing loss (SSNHL), and this genetic effect might be attributed for its role in SSNHL. We hypothesized that genetic variants of the PDE4D gene are associated with susceptibility to SSNHL. We conducted a case-control study with 362 SSNHL cases and 209 controls. Three single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology. Hardy-Weinberg equilibrium (HWE) was tested for each SNP, and genetic effects were evaluated according to three inheritance modes. We carried out sex-specific analysis to analyze the overall data. All three SNPs were in HWE. When subjects were stratified by sex, the genetic effect was only evident in females but not in males. The TT genotype of rs702553 exhibited an adjusted odds ratio (OR) of 3.83 (95 % confidence interval = 1.46-11.18) (p = 0.006) in female SSNHL. The TT genotype of SNP rs702553 was associated with female SSNHL under the recessive model (p = 0.004, OR 3.70). In multivariate logistic regression analysis, TT genotype of rs702553 was significantly associated with female SSNHL (p = 0.0043, OR 3.70). These results suggest that PDE4D gene polymorphisms influence the susceptibility for the development of SSNHL in the southern Taiwanese female population.

  7. Microclimate controls on weathering: Insights into deep critical zone evolution from seismic refraction surveys in the Susquehanna Shale Hills Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    West, N.; Kirby, E.; Nyblade, A.; Brantley, S. L.; Clarke, B. A.

    2015-12-01

    The formation of regolith is fundamental to the functioning and structure of the critical zone - the physically and chemically altered material formed from in situ parent bedrock that is available for transport. Understanding how regolith production and transport respond to perturbations in climate and/or tectonic forcing remains a first-order question. At the Susquehanna Shale Hills Critical Zone Observatory (SSHO), high resolution LiDAR-derived topographic data and depths to hand auger refusal reveal a systematic asymmetry in hillslope gradient and mobile regolith thickness; both are greater on north-facing hillslopes. Hydrologic and geochemical studies at the SSHO also suggest asymmetric sediment transport, fluid flow, and mineral weathering with respect to hillslope aspect. Here, we combine shallow seismic surveys completed along 4 hillslope transects (2 north-facing and 2-south facing), 2 ridgetops transects, and subsurface observations in boreholes to investigate the role of climate in inducing fracturing and priming the development of the observed asymmetry. Comparisons of shallow p-wave velocities with borehole and pit observations lead us to hypothesize the presence of three distinct layers at SSHO: 1) a deep, high velocity layer that is consistent with unweathered shale bedrock; 2) an intermediate velocity layer that is consistent with fractured and chemically altered bedrock which overlies unaltered bedrock, and 3) a shallow, slow velocity layer that is consistent with mobile material or shallow soil. Shallow p-wave velocity profiles suggest differences in thickness for both the mobile and immobile regolith material with respect to aspect. Patterns of p-wave velocities with depth are consistent with patterns of fracture densities observed in boreholes and with predictive cracking intensity models related to frost action. The models and data are consistent with climate as a primary driver for the development of asymmetry in the subsurface architecture at

  8. Landslide seismic magnitude

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  9. A 4D Hyperspherical Interpretation of q-Space

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Bendlin, Barbara B.; Alexander, Andrew L.

    2015-01-01

    3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we derive several well-established q-space indices and numerically estimate the diffusion orientation distribution function (dODF). We also derive the integral transform describing the relationship between the diffusion signal and propagator on a hypersphere. Most importantly, we will demonstrate that for hybrid diffusion imaging (HYDI) acquisitions low order linear expansion of the HSH basis is sufficient to characterize diffusion in neural tissue. In fact, the HSH basis achieves comparable signal and better dODF reconstructions than other well-established methods, such as Bessel Fourier orientation reconstruction (BFOR), using fewer fitting parameters. All in all, this work provides a new way of looking at q-space. PMID:25624043

  10. 4D-Flow validation, numerical and experimental framework

    NASA Astrophysics Data System (ADS)

    Sansom, Kurt; Liu, Haining; Canton, Gador; Aliseda, Alberto; Yuan, Chun

    2015-11-01

    This work presents a group of assessment metrics of new 4D MRI flow sequences, an imaging modality that allows for visualization of three-dimensional pulsatile flow in the cardiovascular anatomy through time-resolved three-dimensional blood velocity measurements from cardiac-cycle synchronized MRI acquisition. This is a promising tool for clinical assessment but lacks a robust validation framework. First, 4D-MRI flow in a subject's stenotic carotid bifurcation is compared with a patient-specific CFD model using two different boundary condition methods. Second, Particle Image Velocimetry in a patient-specific phantom is used as a benchmark to compare the 4D-MRI in vivo measurements and CFD simulations under the same conditions. Comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, Lagrangian particle residence time, will be discussed, with justification for their biomechanics relevance and the insights they can provide on the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new sequence to provide a quantitative assessment. A parametric analysis on the carotid bifurcation pulsatile flow conditions will be presented and an accuracy assessment provided.

  11. Micro-seismicity survey of a seismic gap caused by the subduction of the Louisville seamount chain in the Tonga trench, 25°30’S to 28°S

    NASA Astrophysics Data System (ADS)

    Grevemeyer, I.; Dannowski, A.; Flueh, E. R.; Moeller, S.

    2009-12-01

    The distribution of teleseismically recorded earthquakes in the Kermadec-Tonga subduction zone reveals a major seismic gap centered roughly at 26°S. The gap parallels the trench axis and stretches for approximately 250 km. The seismic gap coincides with the area, where the Louisville hotspot chain enters the Tonga trench. Subducting seamounts may therefore control seismic coupling and hence define seismogenic asperities in subduction zones. Louisville seamounts rise 3 to 4 km above the regional seafloor. Seamounts and guyots are between 10 to 40 km in diameter and hence smaller than the width of the seismic gap, suggesting that other features - like the hotspot swell, crustal underplating or the flexural may contribute or control seismic locking. We deployed a network of 21 ocean-bottom-seismometers (OBS) and 2 ocean-bottom-hydrophones (OBH), including 9 broadband OBS with Guralp CMG-40T sensors. The network covered the southern portion of the seismic gap and the transition zone to “normal” seismic behavior. The ocean bottom seismic stations provided data from July 9, 2007 to December 31, 2007. For the earthquake location procedure we derived a minimum 1-D velocity model from active seismic wide-angle profiling in the uppermost 6 km of the fore-arc crust and earthquake arrival time data at greater depths. In total 1523 local and regional earthquake could be located. Within the network, 383 events have been recorded with a gap of <230 degree at 4 stations, and 160 events with a gap of <180 degree at 6 stations. It is interesting to note that local earthquakes (M < 4) did not mimic the teleseismic gap. Overall, seismicity seems to be randomly distributed within the network. Furthermore, in contrast to other subduction zones, where earthquakes occur predominantly along the subduction megathrust fault, we observed only a few events along the plate boundary. Thus, most local earthquakes occur in the uppermost mantle, perhaps caused by extension related to the slab

  12. Time Lapse Gravity and Seismic Monitoring of CO2 Injection at the West Hastings Field, Texas

    NASA Astrophysics Data System (ADS)

    Ferguson, J. F.; Richards, T.; Klopping, F.; MacQueen, J.; Hosseini, S. A.

    2015-12-01

    Time lapse or 4D gravity and seismic reflection surveys are being conducted at the West Hastings Field near Houston, Texas to monitor the progress of CO2 injection. This Department of Energy supported CO2 sequestration experiment is conducted in conjunction with a Denbury Onshore, LLC tertiary recovery project. The reservoir is at a depth of 1.8 km in the Oligocene Frio sands and has been produced since the 1930s. Goals are an accounting and mapping of the injected CO2 and to determine if migration occurs along intra-reservoir faults. An integrated interpretation of the geophysical surveys will be made together with well logs and engineering data. Gravity monitoring of water versus gas replacement has been very successful, but liquid phase CO2 monitoring is problematic due to the smaller density contrast with respect to oil and water. This reservoir has a small volume to depth ratio and hence only a small gravity difference signal is expected on the surface. New borehole gravity technology introduced by Micro-g-Lacoste can make gravity measurements at near reservoir depths with a much higher signal to noise ratio. This method has been successfully evaluated on a simulation of the Hastings project. Field operations have been conducted for repeated surface and borehole gravity surveys beginning in 2013. The surface survey of 95 stations covers an area of 3 by 5 km and 22 borehole gravity logs are run in the interval above the Frio formation. 4D seismic reflection surveys are being made at 6 month intervals on the surface and in 3 VSP wells. CO2 injection into the targeted portion of the reservoir only began in early 2015 and monitoring will continue into 2017. To date only the baseline reservoir conditions have been assessed. The overall success of the gravity monitoring will not be determined until 2017.

  13. Seismic monitoring of geomorphic processes

    NASA Astrophysics Data System (ADS)

    Burtin, A.; Hovius, N.; Turowski, J. M.

    2014-12-01

    In seismology, the signal is usually analysed for earthquake data, but these represent less than 1% of continuous recording. The remaining data are considered as seismic noise and were for a long time ignored. Over the past decades, the analysis of seismic noise has constantly increased in popularity, and this has led to develop new approaches and applications in geophysics. The study of continuous seismic records is now open to other disciplines, like geomorphology. The motion of mass at the Earth's surface generates seismic waves that are recorded by nearby seismometers and can be used to monitor its transfer through the landscape. Surface processes vary in nature, mechanism, magnitude and space and time, and this variability can be observed in the seismic signals. This contribution aims to give an overview of the development and current opportunities for the seismic monitoring of geomorphic processes. We first describe the common principles of seismic signal monitoring and introduce time-frequency analysis for the purpose of identification and differentiation of surface processes. Second, we present techniques to detect, locate and quantify geomorphic events. Third, we review the diverse layout of seismic arrays and highlight their advantages and limitations for specific processes, like slope or channel activity. Finally, we illustrate all these characteristics with the analysis of seismic data acquired in a small debris-flow catchment where geomorphic events show interactions and feedbacks. Further developments must aim to fully understand the richness of the continuous seismic signals, to better quantify the geomorphic activity and improve the performance of warning systems. Seismic monitoring may ultimately allow the continuous survey of erosion and transfer of sediments in the landscape on the scales of external forcing.

  14. Albuquerque Basin seismic network

    USGS Publications Warehouse

    Jaksha, Lawrence H.; Locke, Jerry; Thompson, J.B.; Garcia, Alvin

    1977-01-01

    The U.S. Geological Survey has recently completed the installation of a seismic network around the Albuquerque Basin in New Mexico. The network consists of two seismometer arrays, a thirteen-station array monitoring an area of approximately 28,000 km 2 and an eight-element array monitoring the area immediately adjacent to the Albuquerque Seismological Laboratory. This report describes the instrumentation deployed in the network.

  15. 4D Proton treatment planning strategy for mobile lung tumors

    SciTech Connect

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei . E-mail: ldong@mdanderson.org

    2007-03-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE{sub R}IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE{sub R}IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE{sub R}IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors.

  16. Localization of 4D gravity on pure geometrical thick branes

    SciTech Connect

    Barbosa-Cendejas, Nandinii; Herrera-Aguilar, Alfredo

    2006-04-15

    We consider the generation of thick brane configurations in a pure geometric Weyl integrable 5D spacetime which constitutes a non-Riemannian generalization of Kaluza-Klein (KK) theory. In this framework, we show how 4D gravity can be localized on a scalar thick brane which does not necessarily respect reflection symmetry, generalizing in this way several previous models based on the Randall-Sundrum (RS) system and avoiding both, the restriction to orbifold geometries and the introduction of the branes in the action by hand. We first obtain a thick brane solution that preserves 4D Poincare invariance and breaks Z{sub 2}-symmetry along the extra dimension which, indeed, can be either compact or extended, and supplements brane solutions previously found by other authors. In the noncompact case, this field configuration represents a thick brane with positive energy density centered at y=c{sub 2}, whereas pairs of thick branes arise in the compact case. Remarkably, the Weylian scalar curvature is nonsingular along the fifth dimension in the noncompact case, in contraposition to the RS thin brane system. We also recast the wave equations of the transverse traceless modes of the linear fluctuations of the classical background into a Schroedinger's equation form with a volcano potential of finite bottom in both the compact and the extended cases. We solve Schroedinger equation for the massless zero mode m{sup 2}=0 and obtain a single bound wave function which represents a stable 4D graviton. We also get a continuum gapless spectrum of KK states with m{sup 2}>0 that are suppressed at y=c{sub 2} and turn asymptotically into plane waves.

  17. Phase and amplitude binning for 4D-CT imaging

    NASA Astrophysics Data System (ADS)

    Abdelnour, A. F.; Nehmeh, S. A.; Pan, T.; Humm, J. L.; Vernon, P.; Schöder, H.; Rosenzweig, K. E.; Mageras, G. S.; Yorke, E.; Larson, S. M.; Erdi, Y. E.

    2007-07-01

    We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2π rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error μe ± σe in PB ranged from 18% ± 20% to 30% ± 35%, while in AB the error ranged from 11% ± 14% to 20% ± 24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis.

  18. Non-spherical particle generation from 4D optofluidic fabrication.

    PubMed

    Paulsen, Kevin S; Chung, Aram J

    2016-08-01

    Particles with non-spherical shapes can exhibit properties which are not available from spherical shaped particles. Complex shaped particles can provide unique benefits for areas such as drug delivery, tissue engineering, structural materials, and self-assembly building blocks. Current methods of creating complex shaped particles such as 3D printing, photolithography, and imprint lithography are limited by either slow speeds, shape limitations, or expensive processes. Previously, we presented a novel microfluidic flow lithography fabrication scheme combined with fluid inertia called optofluidic fabrication for the creation of complex shaped three-dimensional (3D) particles. This process was able to address the aforementioned limits and overcome two-dimensional shape limitations faced by traditional flow lithography methods; however, all of the created 3D particle shapes displayed top-down symmetry. Here, by introducing the time dimension into our existing optofluidic fabrication process, we break this top-down symmetry, generating fully asymmetric 3D particles where we termed the process: four-dimensional (4D) optofluidic fabrication. This 4D optofluidic fabrication is comprised of three sequential procedures. First, density mismatched precursor fluids flow past pillars within fluidic channels to manipulate the flow cross sections via fluid inertia. Next, the time dimension is incorporated by stopping the flow and allowing the denser fluids to settle by gravity to create asymmetric flow cross sections. Finally, the fluids are exposed to patterned ultraviolet (UV) light in order to polymerize fully asymmetric 3D-shaped particles. By varying inertial flow shaping, gravity-induced flow shaping, and UV light patterns, 4D optofluidic fabrication can create an infinite set of complex shaped asymmetric particles. PMID:27092661

  19. Non-spherical particle generation from 4D optofluidic fabrication.

    PubMed

    Paulsen, Kevin S; Chung, Aram J

    2016-08-01

    Particles with non-spherical shapes can exhibit properties which are not available from spherical shaped particles. Complex shaped particles can provide unique benefits for areas such as drug delivery, tissue engineering, structural materials, and self-assembly building blocks. Current methods of creating complex shaped particles such as 3D printing, photolithography, and imprint lithography are limited by either slow speeds, shape limitations, or expensive processes. Previously, we presented a novel microfluidic flow lithography fabrication scheme combined with fluid inertia called optofluidic fabrication for the creation of complex shaped three-dimensional (3D) particles. This process was able to address the aforementioned limits and overcome two-dimensional shape limitations faced by traditional flow lithography methods; however, all of the created 3D particle shapes displayed top-down symmetry. Here, by introducing the time dimension into our existing optofluidic fabrication process, we break this top-down symmetry, generating fully asymmetric 3D particles where we termed the process: four-dimensional (4D) optofluidic fabrication. This 4D optofluidic fabrication is comprised of three sequential procedures. First, density mismatched precursor fluids flow past pillars within fluidic channels to manipulate the flow cross sections via fluid inertia. Next, the time dimension is incorporated by stopping the flow and allowing the denser fluids to settle by gravity to create asymmetric flow cross sections. Finally, the fluids are exposed to patterned ultraviolet (UV) light in order to polymerize fully asymmetric 3D-shaped particles. By varying inertial flow shaping, gravity-induced flow shaping, and UV light patterns, 4D optofluidic fabrication can create an infinite set of complex shaped asymmetric particles.

  20. Founding Gravitation in 4D Euclidean Space-Time Geometry

    SciTech Connect

    Winkler, Franz-Guenter

    2010-11-24

    The Euclidean interpretation of special relativity which has been suggested by the author is a formulation of special relativity in ordinary 4D Euclidean space-time geometry. The natural and geometrically intuitive generalization of this view involves variations of the speed of light (depending on location and direction) and a Euclidean principle of general covariance. In this article, a gravitation model by Jan Broekaert, which implements a view of relativity theory in the spirit of Lorentz and Poincare, is reconstructed and shown to fulfill the principles of the Euclidean approach after an appropriate reinterpretation.

  1. CMT4D (NDRG1 mutation): genotype-phenotype correlations.

    PubMed

    Ricard, Emilie; Mathis, Stéphane; Magdelaine, Corinne; Delisle, Marie-Bernadette; Magy, Laurent; Funalot, Benoît; Vallat, Jean-Michel

    2013-09-01

    Charcot-Marie-Tooth (CMT) disease is a heterogeneous condition with a large number of clinical, electrophysiological and pathological phenotypes. More than 40 genes are involved. We report a child of gypsy origin with an autosomal recessive demyelinating phenotype. Clinical data, familial history, and electrophysiological studies were in favor of a CMT4 sub-type. The characteristic N-Myc downstream-regulated gene 1 (NDRG1) mutation responsible for this CMT4D phenotype was confirmed: p.R148X. The exact molecular function of the NDRG1 protein has yet to be elucidated.

  2. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets.

    PubMed

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y; Du, Shengwang; Loy, M M T

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel ('non-diffracting') light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  3. Oblique sounding using the DPS-4D stations in Europe

    NASA Astrophysics Data System (ADS)

    Mosna, Zbysek; Kouba, Daniel; Koucka Knizova, Petra; Arikan, Feza; Arikan, Orhan; Gok, Gokhan; Rejfek, Lubos

    2016-07-01

    The DPS-4D Digisondes are capable of detection of echoes from neighbouring European stations. Currently, a campaign with high-temporal resolution of 5 min is being run. Further, ionograms from regular vertical sounding with 15 min resolution provide us with oblique reflections together with vertical reflections. We analyzed profiles of electron concentration and basic ionospheric parameters derived from the ionograms. We compared results derived from reflections from the ionosphere above the stations (vertical sounding) with information derived from oblique reflections between the stations. This study is supported by the Joint TUBITAK 114E092 and AS CR 14/001 projects.

  4. Lagrangian constraints and renormalization of 4D gravity

    NASA Astrophysics Data System (ADS)

    Park, I. Y.

    2015-04-01

    It has been proposed in [21] that 4D Einstein gravity becomes effectively reduced to 3D after solving the Lagrangian analogues of the Hamiltonian and momentum constraints of the Hamiltonian quantization. The analysis in [21] was carried out at the classical/operator level. We review the proposal and make a transition to the path integral account. We then set the stage for explicitly carrying out the two-loop renormalization procedure of the resulting 3D action. We also address a potentially subtle issue in the gravity context concerning whether renormalizability does not depend on the background around which the original action is expanded.

  5. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets

    PubMed Central

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y.; Du, Shengwang; Loy, M. M. T.

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel (‘non-diffracting’) light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  6. All the supersymmetric configurations of N=4, d=4 supergravity

    NASA Astrophysics Data System (ADS)

    Bellorín, Jorge; Ortín, Tomás

    2005-10-01

    All the supersymmetric configurations of pure, ungauged, N=4, d=4 supergravity are classified in a formalism that keeps manifest the S and T dualities of the theory. We also find simple equations that need to be satisfied by the configurations to be classical solutions of the theory. While the solutions associated to null Killing vectors were essentially classified by Tod (a classification that we refine), we find new configurations and solutions associated to timelike Killing vectors that do not satisfy Tod's rigidity hypothesis (hence, they have a nontrivial U(1) connection) and whose supersymmetry projector is associated to 1-dimensional objects (strings), although they have a trivial axion field.

  7. Actively triggered 4d cone-beam CT acquisition

    SciTech Connect

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  8. 4D micro-CT using fast prospective gating

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  9. Time lapse seismic signal analysis for Cranfield, MS, EOR and CCS site

    NASA Astrophysics Data System (ADS)

    Ditkof, J.; Caspari, E.; Pevzner, R.; Urosevic, M.; Meckel, T. A.; Hovorka, S. D.

    2012-12-01

    The Cranfield field located in Southwest Mississippi is an EOR and CCS project which has been under continuous CO2 injection by Denbury Onshore LLC since 2008. To date, more than 3 million tons of CO2 remain in the subsurface. In 2007 and 2010, 3D seismic surveys were shot and an initial 4D seismic response was characterized showing coherent amplitude anomalies in some areas which received large amounts of CO2, but not in others. Previous work used Gassmann fluid substitution at two different wells, 31F-2 observation well and the 28-1 injection well to predict a post-injection saturation curves and acoustic impedance change through the reservoir. Since this writing, a second injection well, the 44-2 well, was added to the analysis to improve the practically unconstrained inversion. The two seismic volumes were cross-equalized with an appropriate correlation coefficient through well ties. Acoustic impedance inversions were carried out on each survey resulting with higher acoustic impedance changes than predicted by Gassmann for the 28-1 and 44-2 injection wells. The time-lapse acoustic impedance however is similar to the difference calculated from a time-delay along a horizon below the reservoir.

  10. Seismic seiches

    USGS Publications Warehouse

    McGarr, Arthur; Gupta, Harsh K.

    2011-01-01

    Seismic seiche is a term first used by Kvale (1955) to discuss oscillations of lake levels in Norway and England caused by the Assam earthquake of August 15, 1950. This definition has since been generalized to apply to standing waves set up in closed, or partially closed, bodies of water including rivers, shipping channels, lakes, swimming pools and tanks due to the passage of seismic waves from an earthquake.

  11. Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology

    SciTech Connect

    Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava

    2006-07-31

    The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.

  12. Functional organization of the human 4D Nucleome

    PubMed Central

    Chen, Haiming; Chen, Jie; Muir, Lindsey A.; Ronquist, Scott; Meixner, Walter; Ljungman, Mats; Ried, Thomas; Smale, Stephen; Rajapakse, Indika

    2015-01-01

    The 4D organization of the interphase nucleus, or the 4D Nucleome (4DN), reflects a dynamical interaction between 3D genome structure and function and its relationship to phenotype. We present initial analyses of the human 4DN, capturing genome-wide structure using chromosome conformation capture and 3D imaging, and function using RNA-sequencing. We introduce a quantitative index that measures underlying topological stability of a genomic region. Our results show that structural features of genomic regions correlate with function with surprising persistence over time. Furthermore, constructing genome-wide gene-level contact maps aided in identifying gene pairs with high potential for coregulation and colocalization in a manner consistent with expression via transcription factories. We additionally use 2D phase planes to visualize patterns in 4DN data. Finally, we evaluated gene pairs within a circadian gene module using 3D imaging, and found periodicity in the movement of clock circadian regulator and period circadian clock 2 relative to each other that followed a circadian rhythm and entrained with their expression. PMID:26080430

  13. Atlas construction for dynamic (4D) PET using diffeomorphic transformations.

    PubMed

    Bieth, Marie; Lombaert, Hervé; Reader, Andrew J; Siddiqi, Kaleem

    2013-01-01

    A novel dynamic (4D) PET to PET image registration procedure is proposed and applied to multiple PET scans acquired with the high resolution research tomograph (HRRT), the highest resolution human brain PET scanner available in the world. By extending the recent diffeomorphic log-demons (DLD) method and applying it to multiple dynamic [11C]raclopride scans from the HRRT, an important step towards construction of a PET atlas of unprecedented quality for [11C]raclopride imaging of the human brain has been achieved. Accounting for the temporal dimension in PET data improves registration accuracy when compared to registration of 3D to 3D time-averaged PET images. The DLD approach was chosen for its ease in providing both an intensity and shape template, through iterative sequential pair-wise registrations with fast convergence. The proposed method is applicable to any PET radiotracer, providing 4D atlases with useful applications in high accuracy PET data simulations and automated PET image analysis. PMID:24579121

  14. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    SciTech Connect

    Phifer, M.

    2014-11-17

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  15. 4D Dynamic Required Navigation Performance Final Report

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  16. Complete valvular heart apparatus model from 4D cardiac CT.

    PubMed

    Grbic, Sasa; Ionasec, Razvan; Vitanovski, Dime; Voigt, Ingmar; Wang, Yang; Georgescu, Bogdan; Navab, Nassir; Comaniciu, Dorin

    2012-07-01

    The cardiac valvular apparatus, composed of the aortic, mitral, pulmonary and tricuspid valves, is an essential part of the anatomical, functional and hemodynamic characteristics of the heart and the cardiovascular system as a whole. Valvular heart diseases often involve multiple dysfunctions and require joint assessment and therapy of the valves. In this paper, we propose a complete and modular patient-specific model of the cardiac valvular apparatus estimated from 4D cardiac CT data. A new constrained Multi-linear Shape Model (cMSM), conditioned by anatomical measurements, is introduced to represent the complex spatio-temporal variation of the heart valves. The cMSM is exploited within a learning-based framework to efficiently estimate the patient-specific valve parameters from cine images. Experiments on 64 4D cardiac CT studies demonstrate the performance and clinical potential of the proposed method. Our method enables automatic quantitative evaluation of the complete valvular apparatus based on non-invasive imaging techniques. In conjunction with existent patient-specific chamber models, the presented valvular model enables personalized computation modeling and realistic simulation of the entire cardiac system.

  17. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

    SciTech Connect

    Brian Toelle

    2008-11-30

    This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This simulation predicted

  18. 3&4D Geomodeling Applied to Mineral Resources Exploration - A New Tool for Targeting Deposits.

    NASA Astrophysics Data System (ADS)

    Royer, Jean-Jacques; Mejia, Pablo; Caumon, Guillaume; Collon-Drouaillet, Pauline

    2013-04-01

    3 & 4D geomodeling, a computer method for reconstituting the past deformation history of geological formations, has been used in oil and gas exploration for more than a decade for reconstituting fluid migration. It begins nowadays to be applied for exploring with new eyes old mature mining fields and new prospects. We describe shortly the 3&4D geomodeling basic notions, concepts, and methodology when applied to mineral resources assessment and modeling ore deposits, pointing out the advantages, recommendations and limitations, together with new challenges they rise. Several 3D GeoModels of mining explorations selected across Europe will be presented as illustrative case studies which have been achieved during the EU FP7 ProMine research project. It includes: (i) the Cu-Au porphyry deposits in the Hellenic Belt (Greece); (ii) the VMS in the Iberian Pyrite Belt including the Neves Corvo deposit (Portugal) and (iii) the sediment-hosted polymetallic Cu-Ag (Au, PGE) Kupferschiefer ore deposit in the Foresudetic Belt (Poland). In each case full 3D models using surfaces and regular grid (Sgrid) were built from all dataset available from exploration and exploitation including geological primary maps, 2D seismic cross-sections, and boreholes. The level of knowledge may differ from one site to another however those 3D resulting models were used to pilot additional field and exploration works. In the case of the Kupferschiefer, a sequential restoration-decompaction (4D geomodeling) from the Upper Permian to Cenozoic was conducted in the Lubin- Sieroszowice district of Poland. The results help in better understanding the various superimposed mineralization events which occurred through time in this copper deposit. A hydro-fracturing index was then calculated from the estimated overpressures during a Late Cretaceous-Early Paleocene up-lifting, and seems to correlate with the copper content distribution in the ore-series. These results are in agreement with an Early Paleocene

  19. Seismic bearing

    NASA Astrophysics Data System (ADS)

    Power, Dennis

    2009-05-01

    Textron Systems (Textron) has been using geophones for target detection for many years. This sensing capability was utilized for detection and classification purposes only. Recently Textron has been evaluating multiaxis geophones to calculate bearings and track targets more specifically personnel. This capability will not only aid the system in locating personnel in bearing space or cartesian space but also enhance detection and reduce false alarms. Textron has been involved in the testing and evaluation of several sensors at multiple sites. One of the challenges of calculating seismic bearing is an adequate signal to noise ratio. The sensor signal to noise ratio is a function of sensor coupling to the ground, seismic propagation and range to target. The goals of testing at multiple sites are to gain a good understanding of the maximum and minimum ranges for bearing and detection and to exploit that information to tailor sensor system emplacement to achieve desired performance. Test sites include 10A Site Devens, MA, McKenna Airfield Ft. Benning, GA and Yuma Proving Ground Yuma, AZ. Geophone sensors evaluated include a 28 Hz triax spike, a 15 Hz triax spike and a hybrid triax spike consisting of a 10 Hz vertical geophone and two 28 Hz horizontal geophones. The algorithm uses raw seismic data to calculate the bearings. All evaluated sensors have triaxial geophone configuration mounted to a spike housing/fixture. The suite of sensors also compares various types of geophones to evaluate benefits in lower bandwidth. The data products of these tests include raw geophone signals, seismic features, seismic bearings, seismic detection and GPS position truth data. The analyses produce Probability of Detection vs range, bearing accuracy vs range, and seismic feature level vs range. These analysis products are compared across test sites and sensor types.

  20. 4D XCAT phantom for multimodality imaging research

    SciTech Connect

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-09-15

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ''Basic anatomical and physiological data for use in radiological protection: reference values,'' ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  1. 4D Light Field Imaging System Using Programmable Aperture

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam

    2012-01-01

    Complete depth information can be extracted from analyzing all angles of light rays emanated from a source. However, this angular information is lost in a typical 2D imaging system. In order to record this information, a standard stereo imaging system uses two cameras to obtain information from two view angles. Sometimes, more cameras are used to obtain information from more angles. However, a 4D light field imaging technique can achieve this multiple-camera effect through a single-lens camera. Two methods are available for this: one using a microlens array, and the other using a moving aperture. The moving-aperture method can obtain more complete stereo information. The existing literature suggests a modified liquid crystal panel [LC (liquid crystal) panel, similar to ones commonly used in the display industry] to achieve a moving aperture. However, LC panels cannot withstand harsh environments and are not qualified for spaceflight. In this regard, different hardware is proposed for the moving aperture. A digital micromirror device (DMD) will replace the liquid crystal. This will be qualified for harsh environments for the 4D light field imaging. This will enable an imager to record near-complete stereo information. The approach to building a proof-ofconcept is using existing, or slightly modified, off-the-shelf components. An SLR (single-lens reflex) lens system, which typically has a large aperture for fast imaging, will be modified. The lens system will be arranged so that DMD can be integrated. The shape of aperture will be programmed for single-viewpoint imaging, multiple-viewpoint imaging, and coded aperture imaging. The novelty lies in using a DMD instead of a LC panel to move the apertures for 4D light field imaging. The DMD uses reflecting mirrors, so any light transmission lost (which would be expected from the LC panel) will be minimal. Also, the MEMS-based DMD can withstand higher temperature and pressure fluctuation than a LC panel can. Robotics need

  2. 4D XCAT phantom for multimodality imaging research

    PubMed Central

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-01-01

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ‘‘Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  3. Semaphorin 4D Contributes to Rheumatoid Arthritis by Inducing Inflammatory Cytokine Production: Pathogenic and Therapeutic Implications

    PubMed Central

    Yoshida, Yuji; Kang, Sujin; Ebina, Kousuke; Shi, Kenrin; Nojima, Satoshi; Kimura, Tetsuya; Ito, Daisuke; Morimoto, Keiko; Nishide, Masayuki; Hosokawa, Takashi; Hirano, Toru; Shima, Yoshihito; Narazaki, Masashi; Tsuboi, Hideki; Saeki, Yukihiko; Tomita, Tetsuya; Tanaka, Toshio; Kumanogoh, Atsushi

    2015-01-01

    Objective Semaphorin 4D (Sema4D)/CD100 has pleiotropic roles in immune activation, angiogenesis, bone metabolism, and neural development. We undertook this study to investigate the role of Sema4D in rheumatoid arthritis (RA). Methods Soluble Sema4D (sSema4D) levels in serum and synovial fluid were analyzed by enzyme‐linked immunosorbent assay. Cell surface expression and transcripts of Sema4D were analyzed in peripheral blood cells from RA patients, and immunohistochemical staining of Sema4D was performed in RA synovium. Generation of sSema4D was evaluated in an ADAMTS‐4–treated monocytic cell line (THP‐1 cells). The efficacy of anti‐Sema4D antibody was evaluated in mice with collagen‐induced arthritis (CIA). Results Levels of sSema4D were elevated in both serum and synovial fluid from RA patients, and disease activity markers were correlated with serum sSema4D levels. Sema4D‐expressing cells also accumulated in RA synovium. Cell surface levels of Sema4D on CD3+ and CD14+ cells from RA patients were reduced, although levels of Sema4D transcripts were unchanged. In addition, ADAMTS‐4 cleaved cell surface Sema4D to generate sSema4D in THP‐1 cells. Soluble Sema4D induced tumor necrosis factor α (TNFα) and interleukin‐6 (IL‐6) production from CD14+ monocytes. IL‐6 and TNFα induced ADAMTS‐4 expression in synovial cells. Treatment with an anti‐Sema4D antibody suppressed arthritis and reduced proinflammatory cytokine production in CIA. Conclusion A positive feedback loop involving sSema4D/IL‐6 and TNFα/ADAMTS‐4 may contribute to the pathogenesis of RA. The inhibition of arthritis by anti‐Sema4D antibody suggests that Sema4D represents a potential therapeutic target for RA. PMID:25707877

  4. Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: A technical feasibility study

    SciTech Connect

    Boye, Dirk; Lomax, Tony; Knopf, Antje

    2013-06-15

    Purpose: Target sites affected by organ motion require a time resolved (4D) dose calculation. Typical 4D dose calculations use 4D-CT as a basis. Unfortunately, 4D-CT images have the disadvantage of being a 'snap-shot' of the motion during acquisition and of assuming regularity of breathing. In addition, 4D-CT acquisitions involve a substantial additional dose burden to the patient making many, repeated 4D-CT acquisitions undesirable. Here the authors test the feasibility of an alternative approach to generate patient specific 4D-CT data sets. Methods: In this approach motion information is extracted from 4D-MRI. Simulated 4D-CT data sets [which the authors call 4D-CT(MRI)] are created by warping extracted deformation fields to a static 3D-CT data set. The employment of 4D-MRI sequences for this has the advantage that no assumptions on breathing regularity are made, irregularities in breathing can be studied and, if necessary, many repeat imaging studies (and consequently simulated 4D-CT data sets) can be performed on patients and/or volunteers. The accuracy of 4D-CT(MRI)s has been validated by 4D proton dose calculations. Our 4D dose algorithm takes into account displacements as well as deformations on the originating 4D-CT/4D-CT(MRI) by calculating the dose of each pencil beam based on an individual time stamp of when that pencil beam is applied. According to corresponding displacement and density-variation-maps the position and the water equivalent range of the dose grid points is adjusted at each time instance. Results: 4D dose distributions, using 4D-CT(MRI) data sets as input were compared to results based on a reference conventional 4D-CT data set capturing similar motion characteristics. Almost identical 4D dose distributions could be achieved, even though scanned proton beams are very sensitive to small differences in the patient geometry. In addition, 4D dose calculations have been performed on the same patient, but using 4D-CT(MRI) data sets based on

  5. Biomechanics of DNA structures visualized by 4D electron microscopy

    PubMed Central

    Lorenz, Ulrich J.; Zewail, Ahmed H.

    2013-01-01

    We present a technique for in situ visualization of the biomechanics of DNA structural networks using 4D electron microscopy. Vibrational oscillations of the DNA structure are excited mechanically through a short burst of substrate vibrations triggered by a laser pulse. Subsequently, the motion is probed with electron pulses to observe the impulse response of the specimen in space and time. From the frequency and amplitude of the observed oscillations, we determine the normal modes and eigenfrequencies of the structures involved. Moreover, by selective “nano-cutting” at a given point in the network, it was possible to obtain Young’s modulus, and hence the stiffness, of the DNA filament at that position. This experimental approach enables nanoscale mechanics studies of macromolecules and should find applications in other domains of biological networks such as origamis. PMID:23382239

  6. Myocardial motion and function assessment using 4D images

    NASA Astrophysics Data System (ADS)

    Shi, Peng-Cheng; Robinson, Glynn P.; Duncan, James S.

    1994-09-01

    This paper describes efforts aimed at more objectively and accurately quantifying the local, regional and global function of the left ventricle (LV) of the heart from 4D image data. Using our shape-based image analysis methods, point-wise myocardial motion vector fields between successive image frames through the entire cardiac cycle will be computed. Quantitative LV motion, thickening, and strain measurements will then be established from the point correspondence maps. In the paper, we will also briefly describe an in vivo experimental model which uses implanted imaging-opaque markers to validate the results of our image analysis methods. Finally, initial experimental results using image sequences from two different modalities will be presented.

  7. Chaos in a 4D dissipative nonlinear fermionic model

    NASA Astrophysics Data System (ADS)

    Aydogmus, Fatma

    2015-12-01

    Gursey Model is the only possible 4D conformally invariant pure fermionic model with a nonlinear self-coupled spinor term. It has been assumed to be similar to the Heisenberg's nonlinear generalization of Dirac's equation, as a possible basis for a unitary description of elementary particles. Gursey Model admits particle-like solutions for the derived classical field equations and these solutions are instantonic in character. In this paper, the dynamical nature of damped and forced Gursey Nonlinear Differential Equations System (GNDES) are studied in order to get more information on spinor type instantons. Bifurcation and chaos in the system are observed by constructing the bifurcation diagrams and Poincaré sections. Lyapunov exponent and power spectrum graphs of GNDES are also constructed to characterize the chaotic behavior.

  8. 43 CFR 3836.13 - What are geological, geochemical, or geophysical surveys?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... anomalous mineral values and quantities that may in turn identify mineral deposits. (c) Geophysical surveys... other things, magnetic and electromagnetic surveys, gravity surveys, seismic surveys, and...

  9. Parallel Wavefront Analysis for a 4D Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  10. Seismic Studies

    SciTech Connect

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  11. 4-D Transdimensional Tomography of Iceland Using Ambient Noise

    NASA Astrophysics Data System (ADS)

    Bhowmick, D.; Tkalcic, H.; Young, M.

    2012-12-01

    Located at the east of Greenland and immediately south of Arctic Circle, Iceland is the largest volcanic island in the world and represents a unique region of particular interest to geosciences. Various seismological imaging techniques have been deployed to shed light on composition and thickness of the Icelandic crust with serious geodynamic repercussions (for a recent review, see Foulger (2010)). Due to an abundance of active volcanoes, Iceland can be considered a natural laboratory for studying volcanic earthquakes with anomalous seismic radiation (e.g. Tkalcic et al., 2009; Fichtner and Tkalcic, 2010). Temporal changes in the velocity field due to volcanic processes effect seismic waveforms and are important to consider in the context of seismic sources, whose understanding relies on complete understanding of Earth structure. Apart from reflection and refraction studies and teleseismic signals, ambient noise tomography has been recently utilised to image shallow subsurface of Iceland (Gudmundson et al., 2007). The confluence of North Atlantic and Arctic oceans delivers a strong and relatively evenly distributed noise field, therefore making Iceland an ideal place for an ambient noise study. We initially attempt to confirm previous results of Gudmundson et al. (2007) using conventional surface wave tomography derived from Rayleigh wave group velocity dispersion, with fast marching method as a method of choice for forward modelling (Rawlinson and Sambridge, 2005). We perform cross-correlation over several three-month time intervals of ambient noise obtained from the HOTSPOT experiment (Foulger et al., 2001) distributed across Iceland and we discuss seasonal variation observed in cross-correlograms. To extend conventional methods of imaging, trans-dimensional and hierarchical Bayesian sampling methods are used to produce a multidimensional posterior probability distribution of seismic velocity field. We use a trans-dimensional Bayesian inverse method, as it has an

  12. Respiratory triggered 4D cone-beam computed tomography: A novel method to reduce imaging dose

    PubMed Central

    Cooper, Benjamin J.; O’Brien, Ricky T.; Balik, Salim; Hugo, Geoffrey D.; Keall, Paul J.

    2013-01-01

    Purpose: A novel method called respiratory triggered 4D cone-beam computed tomography (RT 4D CBCT) is described whereby imaging dose can be reduced without degrading image quality. RT 4D CBCT utilizes a respiratory signal to trigger projections such that only a single projection is assigned to a given respiratory bin for each breathing cycle. In contrast, commercial 4D CBCT does not actively use the respiratory signal to minimize image dose. Methods: To compare RT 4D CBCT with conventional 4D CBCT, 3600 CBCT projections of a thorax phantom were gathered and reconstructed to generate a ground truth CBCT dataset. Simulation pairs of conventional 4D CBCT acquisitions and RT 4D CBCT acquisitions were developed assuming a sinusoidal respiratory signal which governs the selection of projections from the pool of 3600 original projections. The RT 4D CBCT acquisition triggers a single projection when the respiratory signal enters a desired acquisition bin; the conventional acquisition does not use a respiratory trigger and projections are acquired at a constant frequency. Acquisition parameters studied were breathing period, acquisition time, and imager frequency. The performance of RT 4D CBCT using phase based and displacement based sorting was also studied. Image quality was quantified by calculating difference images of the test dataset from the ground truth dataset. Imaging dose was calculated by counting projections. Results: Using phase based sorting RT 4D CBCT results in 47% less imaging dose on average compared to conventional 4D CBCT. Image quality differences were less than 4% at worst. Using displacement based sorting RT 4D CBCT results in 57% less imaging dose on average, than conventional 4D CBCT methods; however, image quality was 26% worse with RT 4D CBCT. Conclusions: Simulation studies have shown that RT 4D CBCT reduces imaging dose while maintaining comparable image quality for phase based 4D CBCT; image quality is degraded for displacement based RT 4D

  13. Parallel Infrastructure Modeling and Inversion Module for E4D

    SciTech Connect

    2014-10-09

    Electrical resistivity tomography ERT is a method of imaging the electrical conductivity of the subsurface. Electrical conductivity is a useful metric for understanding the subsurface because it is governed by geomechanical and geochemical properties that drive subsurface systems. ERT works by injecting current into the subsurface across a pair of electrodes, and measuring the corresponding electrical potential response across another pair of electrodes. Many such measurements are strategically taken across an array of electrodes to produce an ERT data set. These data are then processed through a computationally demanding process known as inversion to produce an image of the subsurface conductivity structure that gave rise to the measurements. Data can be inverted to provide 2D images, 3D images, or in the case of time-lapse 3D imaging, 4D images. ERT is generally not well suited for environments with buried electrically conductive infrastructure such as pipes, tanks, or well casings, because these features tend to dominate and degrade ERT images. This reduces or eliminates the utility of ERT imaging where it would otherwise be highly useful for, for example, imaging fluid migration from leaking pipes, imaging soil contamination beneath leaking subusurface tanks, and monitoring contaminant migration in locations with dense network of metal cased monitoring wells. The location and dimension of buried metallic infrastructure is often known. If so, then the effects of the infrastructure can be explicitly modeled within the ERT imaging algorithm, and thereby removed from the corresponding ERT image. However,there are a number of obstacles limiting this application. 1) Metallic infrastructure cannot be accurately modeled with standard codes because of the large contrast in conductivity between the metal and host material. 2) Modeling infrastructure in true dimension requires the computational mesh to be highly refined near the metal inclusions, which increases

  14. 4D Dynamic RNP Annual Interim Report-Year 1

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Chung, William W.; Salvano, Daniel; Klooster, Joel; Hochwarth, Joachim K.

    2010-01-01

    This Annual Interim Report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results obtained during the first year of this research effort to expand the RNP concept to 4 dimensions relative to a dynamic frame of reference. Joint Program Development Office (JPDO)Concepts of Operations for the Next Generation Air Transportation System (NextGen) considers 4 Dimension Trajectory (4DT) procedures a key enabler to Trajectory Based Operations (TBO). The JPDO defines 4DT as a precise description of an aircraft path in space and time . While NextGen assumes that this path is defined within an Earth-reference frame, many 4DT procedure implementations will require an aircraft to precisely navigate relative to a moving reference such as another aircraft to form aggregate flows or a weather cell to allow for flows to shift. Current methods of implementing routes and flight paths rely on aircraft meeting a Required Navigation Performance (RNP) specification and being equipped with a monitoring and alerting capability to annunciate when the aircraft system is unable to meet the performance specification required for the operation. Since all aircraft today operate within the NAS relative to fixed reference points, the current RNP definition is deemed satisfactory. However, it is not well understood how the current RNP construct will support NextGen 4DT procedures where aircraft operate relative to each other or to other dynamic frames of reference. The objective of this research effort is to analyze candidate 4DT procedures from both an Air Navigation Service Provider (ANSP) and aircraft perspective, to identify their specific navigational requirements, assess the shortcomings of the current RNP construct to meet these requirements, to propose an extended 4 Dimensional Dynamic RNP (4D Dynamic RNP) construct that accounts for the dynamic spatial and temporal nature of the selected 4DT procedures, and finally, to design an

  15. Analysis of nonvolcanic tremor on the San Andreas Fault near Parkfield, CA using U.S. Geological Survey Parkfield Seismic Array

    USGS Publications Warehouse

    Fletcher, Jon B.; Baker, Lawrence M.

    2010-01-01

    Reports by Nadeau and Dolenc (2005) that tremor had been detected near Cholame Valley spawned an effort to use UPSAR (U. S. Geological Survey Parkfield Seismic Array) to study characteristics of tremor. UPSAR was modified to record three channels of velocity at 40–50 sps continuously in January 2005 and ran for about 1 month, during which time we recorded numerous episodes of tremor. One tremor, on 21 January at 0728, was recorded with particularly high signal levels as well as another episode 3 days later. Both events were very emergent, had a frequency content between 2 and 8 Hz, and had numerous high-amplitude, short-duration arrivals within the tremor signal. Here using the first episode as an example, we discuss an analysis procedure, which yields azimuth and apparent velocity of the tremor at UPSAR. We then provide locations for both tremor episodes. The emphasis here is how the tremor episode evolves. Twelve stations were operating at the time of recording. Slowness of arrivals was determined using cross correlation of pairs of stations; the same method used in analyzing the main shock data from 28 September 2004. A feature of this analysis is that 20 s of the time series were used at a time to calculate correlation; the longer windows resulted in more consistent estimates of slowness, but lower peak correlations. These values of correlation (peaks of about 0.25), however, are similar to that obtained for the S wave of a microearthquake. Observed peaks in slowness were traced back to source locations assumed to lie on the San Andreas fault. Our inferred locations for the two tremor events cluster near the locations of previously observed tremor, south of the Cholame Valley. Tremor source depths are in the 14–24 km range, which is below the seismogenic brittle zone, but above the Moho. Estimates of error do not preclude locations below the Moho, however. The tremor signal is very emergent but contains packets that are several times larger than the

  16. 3D and 4D GPR for Stratigraphic and Hydrologic Characterization of Field Sites

    NASA Astrophysics Data System (ADS)

    Grasmueck, M.; Viggiano, D. A.

    2008-05-01

    In a time of almost unlimited mobility, information, and connectivity it is surprising how our knowledge of natural systems becomes fragmented as soon as we enter the ground. Excavation, drilling, and 2D geophysics are unable to capture the spatio-temporal variability inside soil and rock volumes at the 1-10m scale. The problem is the lack of efficient and high-resolution imaging for the near surface domain. We have developed a high- resolution 3D Ground Penetrating Radar (GPR) system suitable for data acquisition at field sites. To achieve sharp and repeatable subsurface imaging we have integrated GPR with a rotary laser/IR strobe system. With 40 xyz coordinate updates per second, continuously moving GPR antennae can be tracked centimeter precise. A real-time LED guidance system shows the GPR antenna operator how to follow pre-computed survey tracks. Without having to stake out hundreds of survey tracks anymore one person now can scan an area of up to 600m2 per hour with a dual GPR antenna at 1m/s with 0.1m line spacing. The coordinate and GPR data are fused in real-time providing a first look of the subsurface in horizontal map view for quality control and in-field site assessment during data acquisition. The precision of the laser positioning system enables centimeter accurate repeat surveys to image and quantify water content changes in the vadose zone. To verify quantitative results of such 4D GPR we performed a controlled pond infiltration injecting 3200L of water from a 4x4m temporary pond with a thin soil layer and 5m of unsaturated porous limestone below. A total of sixteen repeated 3D GPR surveys were acquired just before the infiltration and in the following 2 weeks. All data were recorded with 250MHz antennae on a 5x10cm grid covering an area of 18x20m. Data processing included 3D migration and extraction of time shifts between pairs of time- lapse 3D GPR surveys. From the time shifts water content changes were computed using the Topp equation. The

  17. Seismic Tomography.

    ERIC Educational Resources Information Center

    Anderson, Don L.; Dziewonski, Adam M.

    1984-01-01

    Describes how seismic tomography is used to analyze the waves produced by earthquakes. The information obtained from the procedure can then be used to map the earth's mantle in three dimensions. The resulting maps are then studied to determine such information as the convective flow that propels the crustal plates. (JN)

  18. Seismic reflection imaging of shallow oceanographic structures

    NASA Astrophysics Data System (ADS)

    PiéTé, Helen; Marié, Louis; Marsset, Bruno; Thomas, Yannick; Gutscher, Marc-André

    2013-05-01

    Multichannel seismic (MCS) reflection profiling can provide high lateral resolution images of deep ocean thermohaline fine structure. However, the shallowest layers of the water column (z < 150 m) have remained unexplored by this technique until recently. In order to explore the feasibility of shallow seismic oceanography (SO), we reprocessed and analyzed four multichannel seismic reflection sections featuring reflectors at depths between 10 and 150 m. The influence of the acquisition parameters was quantified. Seismic data processing dedicated to SO was also investigated. Conventional seismic acquisition systems were found to be ill-suited to the imaging of shallow oceanographic structures, because of a high antenna filter effect induced by large offsets and seismic trace lengths, and sources that typically cannot provide both a high level of emission and fine vertical resolution. We considered a test case, the imagery of the seasonal thermocline on the western Brittany continental shelf. New oceanographic data acquired in this area allowed simulation of the seismic acquisition. Sea trials of a specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: (i) four seismic streamers, each consisting of six traces of 1.80 m; (ii) a 1000 J SIG sparker source, providing a 400 Hz signal with a level of emission of 205 dB re 1 μPa @ 1 m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements most probably induced by internal waves.

  19. Seismic Symphonies

    NASA Astrophysics Data System (ADS)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  20. Britannia rules the seismic waves

    SciTech Connect

    Green, P.

    1984-04-01

    When a longwall mining operation penetrates an unforeseen discontinuity in the coal seam, all hell breaks loose. Productivity plummets while the shearer cuts through rock, and the high proportion of reject material overwhelms the preparation plant. And, if the discontinuity is large enough, the face may have to be abandoned. To avert such catastrophies, a technique developed in Britain for mapping the presence of discontinuities has been applied in the Meigs No. 1 mine of the Southern Ohio Coal Co. in Athens, Ohio. The technology, called in-seam seismic surveying, is similar to seismic exploration in the oil and gas industry. The principle of the in-seam survey is simple: A shock wave is sent through the coal seam. If there is a sandstone channel or a displacement fault in the seam, the sound waves will be reflected back and can be picked up by geophones. Conversely, geophones installed on the opposite side of a channel or fault will not pick up the sound waves (see box). Seismic surveys have been made for four years by Britain's National Coal Board (NCB), and were developed because practically all its production is from longwall mining, and knowing what lies ahead is critical. And with about 500 ft between longwall entries there's a large amount of unpenetrated seam to contain hidden discontinuities. Hence the interest in in-seam seismic surveys.

  1. The impact of rock and fluid uncertainties in the estimation of saturation and pressure from a 4D petro elastic inversion

    NASA Astrophysics Data System (ADS)

    Pazetti, Bruno; Davolio, Alessandra; Schiozer, Denis J.; UNICAMP

    2015-08-01

    The integration of 4D seismic (4DS) attributes and reservoir simulation is used to reduce risks in the management of petroleum fields. One possible alternative is the saturation and pressure domain. In this case, we use estimations of saturation and pressure changes from 4D seismic data as input in history matching processes to yield more reliable production predictions in simulation models. The estimation of dynamic changes from 4DS depends on the knowledge of reservoir rock and fluid properties that are uncertain in the process of estimation. This paper presents a study of the impact of rock and fluid uncertainties on the estimation of saturation and pressure changes achieved through a 4D petro-elastic inversion. The term impact means that the saturation and pressure estimation can be perturbed by the rock and fluid uncertainties. The motivation for this study comes from the necessity to estimate uncertainties in saturation and pressure variation to incorporate them in the history matching procedures, avoiding the use of deterministic values from 4DS, which may not be reliable. The study is performed using a synthetic case with known response from where it is possible to show that the errors of estimated saturation and pressure depend on the magnitude of rock and fluid uncertainties jointly with the reservoir dynamic changes. The main contribution of this paper is to show how uncertain reservoir properties can affect the reliability of pressure and saturation estimation from 4DS and how it depends on reservoir changes induced by production. This information can be used in future projects which use quantitative inversion to integrate reservoir simulation and 4D seismic data.

  2. New seismic study begins in Puerto Rico

    USGS Publications Warehouse

    Tarr, A.C.

    1974-01-01

    A new seismological project is now underway in Puerto Rico to provide information needed for accurate assessment of the island's seismic hazard. The project should also help to increase understanding of the tectonics and geologic evolution of the Caribbean region. The Puerto Rico Seismic Program is being conducted by the Geological Survey with support provided by the Puerto Rico Water Resources Authority, an agency responsible for generation and distribution of electric power throughout the Commonwealth. The Program will include the installation of a network of high quality seismograph stations to monitor seismic activity on and around Puerto Rico. These stations will be distributed across the island to record the seismicity as uniformly as possible. The detection and accurate location of small earthquakes, as well as moderate magnitude shocks, will aid in mapping active seismic zones and in compiling frequency of occurrence statistics which ultimately wil be useful in seismic risk-zoning of hte island. 

  3. Multimaterial 4D Printing with Tailorable Shape Memory Polymers.

    PubMed

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K; Fang, Nicholas X; Dunn, Martin L

    2016-08-08

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures.

  4. Multimaterial 4D Printing with Tailorable Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.

    2016-08-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures.

  5. Multimaterial 4D Printing with Tailorable Shape Memory Polymers

    PubMed Central

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.

    2016-01-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures. PMID:27499417

  6. Effortless assignment with 4D covariance sequential correlation maps.

    PubMed

    Harden, Bradley J; Mishra, Subrata H; Frueh, Dominique P

    2015-11-01

    Traditional Nuclear Magnetic Resonance (NMR) assignment procedures for proteins rely on preliminary peak-picking to identify and label NMR signals. However, such an approach has severe limitations when signals are erroneously labeled or completely neglected. The consequences are especially grave for proteins with substantial peak overlap, and mistakes can often thwart entire projects. To overcome these limitations, we previously introduced an assignment technique that bypasses traditional pick peaking altogether. Covariance Sequential Correlation Maps (COSCOMs) transform the indirect connectivity information provided by multiple 3D backbone spectra into direct (H, N) to (H, N) correlations. Here, we present an updated method that utilizes a single four-dimensional spectrum rather than a suite of three-dimensional spectra. We demonstrate the advantages of 4D-COSCOMs relative to their 3D counterparts. We introduce improvements accelerating their calculation. We discuss practical considerations affecting their quality. And finally we showcase their utility in the context of a 52 kDa cyclization domain from a non-ribosomal peptide synthetase.

  7. Multimaterial 4D Printing with Tailorable Shape Memory Polymers.

    PubMed

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K; Fang, Nicholas X; Dunn, Martin L

    2016-01-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures. PMID:27499417

  8. Effortless assignment with 4D covariance sequential correlation maps

    NASA Astrophysics Data System (ADS)

    Harden, Bradley J.; Mishra, Subrata H.; Frueh, Dominique P.

    2015-11-01

    Traditional Nuclear Magnetic Resonance (NMR) assignment procedures for proteins rely on preliminary peak-picking to identify and label NMR signals. However, such an approach has severe limitations when signals are erroneously labeled or completely neglected. The consequences are especially grave for proteins with substantial peak overlap, and mistakes can often thwart entire projects. To overcome these limitations, we previously introduced an assignment technique that bypasses traditional pick peaking altogether. Covariance Sequential Correlation Maps (COSCOMs) transform the indirect connectivity information provided by multiple 3D backbone spectra into direct (H, N) to (H, N) correlations. Here, we present an updated method that utilizes a single four-dimensional spectrum rather than a suite of three-dimensional spectra. We demonstrate the advantages of 4D-COSCOMs relative to their 3D counterparts. We introduce improvements accelerating their calculation. We discuss practical considerations affecting their quality. And finally we showcase their utility in the context of a 52 kDa cyclization domain from a non-ribosomal peptide synthetase.

  9. Automating Shallow 3D Seismic Imaging

    SciTech Connect

    Steeples, Don; Tsoflias, George

    2009-01-15

    Our efforts since 1997 have been directed toward developing ultra-shallow seismic imaging as a cost-effective method applicable to DOE facilities. This report covers the final year of grant-funded research to refine 3D shallow seismic imaging, which built on a previous 7-year grant (FG07-97ER14826) that refined and demonstrated the use of an automated method of conducting shallow seismic surveys; this represents a significant departure from conventional seismic-survey field procedures. The primary objective of this final project was to develop an automated three-dimensional (3D) shallow-seismic reflection imaging capability. This is a natural progression from our previous published work and is conceptually parallel to the innovative imaging methods used in the petroleum industry.

  10. 2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis

    PubMed Central

    Eyer, Luděk; Vain, Thomas; Pařízková, Barbora; Oklestkova, Jana; Barbez, Elke; Kozubíková, Hana; Pospíšil, Tomáš; Wierzbicka, Roksana; Kleine-Vehn, Jürgen; Fránek, Milan; Strnad, Miroslav; Robert, Stéphanie

    2016-01-01

    The herbicide 2,4-D exhibits an auxinic activity and therefore can be used as a synthetic and traceable analog to study auxin-related responses. Here we identified that not only exogenous 2,4-D but also its amide-linked metabolite 2,4-D-Glu displayed an inhibitory effect on plant growth via the TIR1/AFB auxin-mediated signaling pathway. To further investigate 2,4-D metabolite conversion, identity and activity, we have developed a novel purification procedure based on the combination of ion exchange and immuno-specific sorbents combined with a sensitive liquid chromatography-mass spectrometry method. In 2,4-D treated samples, 2,4-D-Glu and 2,4-D-Asp were detected at 100-fold lower concentrations compared to 2,4-D levels, showing that 2,4-D can be metabolized in the plant. Moreover, 2,4-D-Asp and 2,4-D-Glu were identified as reversible forms of 2,4-D homeostasis that can be converted to free 2,4-D. This work paves the way to new studies of auxin action in plant development. PMID:27434212

  11. 2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis.

    PubMed

    Eyer, Luděk; Vain, Thomas; Pařízková, Barbora; Oklestkova, Jana; Barbez, Elke; Kozubíková, Hana; Pospíšil, Tomáš; Wierzbicka, Roksana; Kleine-Vehn, Jürgen; Fránek, Milan; Strnad, Miroslav; Robert, Stéphanie; Novak, Ondrej

    2016-01-01

    The herbicide 2,4-D exhibits an auxinic activity and therefore can be used as a synthetic and traceable analog to study auxin-related responses. Here we identified that not only exogenous 2,4-D but also its amide-linked metabolite 2,4-D-Glu displayed an inhibitory effect on plant growth via the TIR1/AFB auxin-mediated signaling pathway. To further investigate 2,4-D metabolite conversion, identity and activity, we have developed a novel purification procedure based on the combination of ion exchange and immuno-specific sorbents combined with a sensitive liquid chromatography-mass spectrometry method. In 2,4-D treated samples, 2,4-D-Glu and 2,4-D-Asp were detected at 100-fold lower concentrations compared to 2,4-D levels, showing that 2,4-D can be metabolized in the plant. Moreover, 2,4-D-Asp and 2,4-D-Glu were identified as reversible forms of 2,4-D homeostasis that can be converted to free 2,4-D. This work paves the way to new studies of auxin action in plant development. PMID:27434212

  12. Digit ratio (2D:4D) and hand preference for writing in the BBC Internet Study.

    PubMed

    Manning, J T; Peters, M

    2009-09-01

    The ratio of the length of the second to the fourth digit (2D:4D) may be negatively correlated with prenatal testosterone. Hand preference has been linked with prenatal testosterone and 2D:4D. Here we show that 2D:4D is associated with hand preference for writing in a large internet sample (n>170,000) in which participants self-reported their finger lengths. We replicated a significant association between right 2D:4D and writing hand preference (low right 2D:4D associated with left hand preference) as well as a significant correlation between writing hand preference and the difference between left and right 2D:4D or Dr-l (low Dr-l associated with left hand preference). A new significant correlation between left 2D:4D and writing hand preference was also shown (high left 2D:4D associated with left hand preference). There was a clear interaction between writing hand preference and 2D:4D: The left 2D:4D was significantly larger than the right 2D:4D in male and female left-handed writers, and the right hand 2D:4D was significantly larger than the left hand 2D:4D in male and female right-handed writers.

  13. 4D ground-penetrating radar during a plot scale dye tracer experiment

    NASA Astrophysics Data System (ADS)

    Allroggen, Niklas; van Schaik, N. Loes M. B.; Tronicke, Jens

    2015-07-01

    Flow phenomena in the unsaturated zone are highly variable in time and space. Thus, it is challenging to measure and monitor such processes under field conditions. Here, we present a new setup and interpretation approach for combining a dye tracer experiment with a 4D ground-penetrating radar (GPR) survey. Therefore, we designed a rainfall experiment during which we measured three surface-based 3D GPR surveys using a pair of 500 MHz antennas. Such a survey setup requires accurate acquisition and processing techniques to extract time-lapse information supporting the interpretation of selected cross-sections photographed after excavating the site. Our results reveal patterns of traveltime changes in the measured GPR data, which are associated with soil moisture changes. As distinct horizons are present at our site, such changes can be quantified and transferred into changes in total soil moisture content. Our soil moisture estimates are similar to the amount of infiltrated water, which confirms our experimental approach and makes us confident for further developing this strategy, especially, with respect to improving the temporal and spatial resolution.

  14. Updated Colombian Seismic Hazard Map

    NASA Astrophysics Data System (ADS)

    Eraso, J.; Arcila, M.; Romero, J.; Dimate, C.; Bermúdez, M. L.; Alvarado, C.

    2013-05-01

    possible to determinate environments and scenarios where the seismic hazard is a function of distance and magnitude and also the principal seismic sources that contribute to the seismic hazard at each site (dissagregation). This project was conducted by the Servicio Geológico Colombiano (Colombian Geological Survey) and the Universidad Nacional de Colombia (National University of Colombia), with the collaboration of national and foreign experts and the National System of Prevention and Attention of Disaster (SNPAD). It is important to stand out that this new seismic hazard map was used in the updated national building code (NSR-10). A new process is ongoing in order to improve and present the Seismic Hazard Map in terms of intensity. This require new knowledge in site effects, in both local and regional scales, checking the existing and develop new acceleration to intensity relationships, in order to obtain results more understandable and useful for a wider range of users, not only in the engineering field, but also all the risk assessment and management institutions, research and general community.

  15. Seismic risk perception in Italy

    NASA Astrophysics Data System (ADS)

    Crescimbene, Massimo; La Longa, Federica; Camassi, Romano; Pino, Nicola Alessandro; Peruzza, Laura

    2014-05-01

    Risk perception is a fundamental element in the definition and the adoption of preventive counter-measures. In order to develop effective information and risk communication strategies, the perception of risks and the influencing factors should be known. This paper presents results of a survey on seismic risk perception in Italy conducted from January 2013 to present . The research design combines a psychometric and a cultural theoretic approach. More than 7,000 on-line tests have been compiled. The data collected show that in Italy seismic risk perception is strongly underestimated; 86 on 100 Italian citizens, living in the most dangerous zone (namely Zone 1), do not have a correct perception of seismic hazard. From these observations we deem that extremely urgent measures are required in Italy to reach an effective way to communicate seismic risk. Finally, the research presents a comparison between groups on seismic risk perception: a group involved in campaigns of information and education on seismic risk and a control group.

  16. 4D imaging of protein aggregation in live cells.

    PubMed

    Spokoini, Rachel; Shamir, Maya; Keness, Alma; Kaganovich, Daniel

    2013-01-01

    ubiquitinated are diverted to the IPOD, where they are actively aggregated in a protective compartment. Up until this point, the methodological paradigm of live-cell fluorescence microscopy has largely been to label proteins and track their locations in the cell at specific time-points and usually in two dimensions. As new technologies have begun to grant experimenters unprecedented access to the submicron scale in living cells, the dynamic architecture of the cytosol has come into view as a challenging new frontier for experimental characterization. We present a method for rapidly monitoring the 3D spatial distributions of multiple fluorescently labeled proteins in the yeast cytosol over time. 3D timelapse (4D imaging) is not merely a technical challenge; rather, it also facilitates a dramatic shift in the conceptual framework used to analyze cellular structure. We utilize a cytosolic folding sensor protein in live yeast to visualize distinct fates for misfolded proteins in cellular aggregation quality control, using rapid 4D fluorescent imaging. The temperature sensitive mutant of the Ubc9 protein (Ubc9(ts)) is extremely effective both as a sensor of cellular proteostasis, and a physiological model for tracking aggregation quality control. As with most ts proteins, Ubc9(ts) is fully folded and functional at permissive temperatures due to active cellular chaperones. Above 30 ° C, or when the cell faces misfolding stress, Ubc9(ts) misfolds and follows the fate of a native globular protein that has been misfolded due to mutation, heat denaturation, or oxidative damage. By fusing it to GFP or other fluorophores, it can be tracked in 3D as it forms Stress Foci, or is directed to JUNQ or IPOD. PMID:23608881

  17. GRAM 88 - 4D GLOBAL REFERENCE ATMOSPHERE MODEL-1988

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1994-01-01

    the Jacchia values. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. GRAM-88 incorporates a hydrostatic/gas law check in the 0-30 km altitude range to flag and change any bad data points. Between 5km and 30km, an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined by various empirical studies and are added to the monthly mean values. The GRAM-88 program is for batch execution on the IBM 3084. It is written in STANDARD FORTRAN 77 under the MVS/XA operating system. The IBM DISPLA graphics routines are necessary for graphical output. The program was developed in 1988.

  18. 4D measurement system for automatic location of anatomical structures

    NASA Astrophysics Data System (ADS)

    Witkowski, Marcin; Sitnik, Robert; Kujawińska, Małgorzata; Rapp, Walter; Kowalski, Marcin; Haex, Bart; Mooshake, Sven

    2006-04-01

    Orthopedics and neurosciences are fields of medicine where the analysis of objective movement parameters is extremely important for clinical diagnosis. Moreover, as there are significant differences between static and dynamic parameters, there is a strong need of analyzing the anatomical structures under functional conditions. In clinical gait analysis the benefits of kinematical methods are undoubted. In this paper we present a 4D (3D + time) measurement system capable of automatic location of selected anatomical structures by locating and tracing the structures' position and orientation in time. The presented system is designed to help a general practitioner in diagnosing selected lower limbs' dysfunctions (e.g. knee injuries) and also determine if a patient should be directed for further examination (e.g. x-ray or MRI). The measurement system components are hardware and software. For the hardware part we adapt the laser triangulation method. In this way we can evaluate functional and dynamic movements in a contact-free, non-invasive way, without the use of potentially harmful radiation. Furthermore, opposite to marker-based video-tracking systems, no preparation time is required. The software part consists of a data acquisition module, an image processing and point clouds (point cloud, set of points described by coordinates (x, y, z)) calculation module, a preliminary processing module, a feature-searching module and an external biomechanical module. The paper briefly presents the modules mentioned above with the focus on the feature-searching module. Also we present some measurement and analysis results. These include: parameters maps, landmarks trajectories in time sequence and animation of a simplified model of lower limbs.

  19. Infrared PINEM developed by diffraction in 4D UEM

    PubMed Central

    Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H.

    2016-01-01

    The development of four-dimensional ultrafast electron microscopy (4D UEM) has enabled not only observations of the ultrafast dynamics of photon–matter interactions at the atomic scale with ultrafast resolution in image, diffraction, and energy space, but photon–electron interactions in the field of nanoplasmonics and nanophotonics also have been captured by the related technique of photon-induced near-field electron microscopy (PINEM) in image and energy space. Here we report a further extension in the ongoing development of PINEM using a focused, nanometer-scale, electron beam in diffraction space for measurements of infrared-light-induced PINEM. The energy resolution in diffraction mode is unprecedented, reaching 0.63 eV under the 200-keV electron beam illumination, and separated peaks of the PINEM electron-energy spectrum induced by infrared light of wavelength 1,038 nm (photon energy 1.2 eV) have been well resolved for the first time, to our knowledge. In a comparison with excitation by green (519-nm) pulses, similar first-order PINEM peak amplitudes were obtained for optical fluence differing by a factor of more than 60 at the interface of copper metal and vacuum. Under high fluence, the nonlinear regime of IR PINEM was observed, and its spatial dependence was studied. In combination with PINEM temporal gating and low-fluence infrared excitation, the PINEM diffraction method paves the way for studies of structural dynamics in reciprocal space and energy space with high temporal resolution. PMID:26848135

  20. Fast interactive exploration of 4D MRI flow data

    NASA Astrophysics Data System (ADS)

    Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.

    2011-03-01

    1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing

  1. Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines.

    PubMed

    Li, Hua; Yezzi, Anthony

    2007-09-01

    In this paper, we propose an innovative approach to the segmentation of tubular structures. This approach combines all of the benefits of minimal path techniques such as global minimizers, fast computation, and powerful incorporation of user input, while also having the capability to represent and detect vessel surfaces directly which so far has been a feature restricted to active contour and surface techniques. The key is to represent the trajectory of a tubular structure not as a 3-D curve but to go up a dimension and represent the entire structure as a 4-D curve. Then we are able to fully exploit minimal path techniques to obtain global minimizing trajectories between two user supplied endpoints in order to reconstruct tubular structures from noisy or low contrast 3-D data without the sensitivity to local minima inherent in most active surface techniques. In contrast to standard purely spatial 3-D minimal path techniques, however, we are able to represent a full tubular surface rather than just a curve which runs through its interior. Our representation also yields a natural notion of a tube's "central curve." We demonstrate and validate the utility of this approach on magnetic resonance (MR) angiography and computed tomography (CT) images of coronary arteries. PMID:17896594

  2. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Class 4-D: Minister of religion. 1630.43 Section... CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D who is a: (a) Duly ordained minister of religion; or (b)...

  3. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Class 4-D: Minister of religion. 1630.43 Section... CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D who is a: (a) Duly ordained minister of religion; or (b)...

  4. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Class 4-D: Minister of religion. 1630.43 Section... CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D who is a: (a) Duly ordained minister of religion; or (b)...

  5. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Class 4-D: Minister of religion. 1630.43 Section... CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D who is a: (a) Duly ordained minister of religion; or (b)...

  6. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Class 4-D: Minister of religion. 1630.43 Section... CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D who is a: (a) Duly ordained minister of religion; or (b)...

  7. 40 CFR 180.142 - 2,4-D; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false 2,4-D; tolerances for residues. 180..., plant regulator, and fungicide 2,4-D, including its metabolites and degradates, in or on the commodities... 2,4-D (2,4-dichlorophenoxyacetic acid), both free and conjugated, determined as the acid, in or...

  8. Repeated Surveys and Historical Nautical Charts Support Elastic Rebound Model on Megathrust at Santa MARÍA Island, Chile, (37°S) Through One and One-Half Seismic Cycles

    NASA Astrophysics Data System (ADS)

    Wesson, R. L.; Melnick, D.; Cisternas, M.; Ely, L. L.; Moreno, M.

    2010-12-01

    Repeated bathymetric surveys, historical nautical charts, geologic observations, interviews with local residents, and modern GPS measurements all support a pattern of coseismic uplift, followed by post-seismic and inter-seismic subsidence, at Santa María Island off the coast of south-central Chile. The island is located approximately 75 km landward of the Chile trench and about 12 km above the megathrust fault. Six weeks after the February 20, 1835 Concepcion earthquake (~M 8.5), Captain Robert FitzRoy and the HMS Beagle visited the island and reported 2.4-3 m of uplift based primarily on observations of elevated, newly dead, intratidal and subtidal shellfish attached to rocks. The February 27, 2010 Maule earthquake (M 8.8) earthquake produced similar effects. Several lines of evidence suggest significant subsidence between 1835 and 2010. First, the extensive wave-cut platform at the northern end of island that FitzRoy vividly describes as being exposed and covered with dead shellfish in 1835, lay at the lower level of the island’s 2-m tidal range in January 2010. The nautical chart prepared by officers of the Beagle suggests that the platform was above high tide in 1835. An elderly resident reports that in the first half of the twentieth century part of the platform was above high tide. While some lowering of the bedrock platform could be explained by erosion, the amount of required erosion would be very rapid and extensive. GPS measurements for the interval 2004-2008 indicate that the island subsided at a rate of 10 +/- 1 mm/a as well as moving landward at a rate of 42 mm/a. On January 13 and 15, 2010, we carried out a simple echo-sounder survey in the bay off the southeastern coast of Santa María Island. The same bay, Rada Santa Maria, was surveyed by the Beagle in 1835 using a lead line and pole. The bay has a smooth and very gently sloping bottom, an average depth of about 8 m, and dimensions of about 3 x 5 km. Comparison of our measured depths with those

  9. A reconnaissance survey of southern Alaskan lakes by high-resolution reflection seismics and short sediment coring - a first step towards a calibrated lacustrine paleoseismometer at the Alaskan-Aleutian subduction zone

    NASA Astrophysics Data System (ADS)

    Strupler, M.; Moernaut, J.; Haeussler, P. J.; De Batist, M. A.; Bender, A. M.

    2012-12-01

    The Good Friday earthquake of 27 March 1964 (Mw 9.2) ruptured an 800 km-length of the Alaskan-Aleutian megathrust, producing significant changes in the landscape morphology, both in subaerial and in subaquatic environments. Lake sediments can represent excellent archives for paleoseismic studies, as traces of seismically-induced subaquatic landslides and related turbidites are protected from erosion by later sedimentation and are often embedded in background sediments that are easy to date. In order to test the archive quality of the Alaskan lakes, we conducted a reconnaissance survey on three lakes on the Kenai Peninsula (Kenai, Skilak and Tustumena lakes) and on Eklutna lake (near Anchorage). We collected seismic data with a 3.5 kHz pinger system. Dense seismic grids reveal a glacially inherited basin morphology, which is infilled by lacustrine sediments that show numerous earthquake-related features. Multiple landslide deposits and associated turbidites at several stratigraphic levels indicate they were triggered by strong earthquake shaking. The relatively large volumes of the landslide deposits might be a result of the high sedimentation rates in these periglacial lakes. Short gravity cores reveal a detailed sedimentary imprint of the 1964 earthquake in different sub-basins of the investigated lakes. The irregular lamination pattern of the cores reflects altering conditions of the climatic, biological, hydrological and seismological factors in the investigation area. In a further phase of our project, long sediment cores will be taken in these lakes. The analysis and dating of these long sedimentary records is expected to yield information on the periodicity of megathrust earthquakes in the Prince William Sound Segment of the Alaskan-Aleutian subduction zone for the last few thousand years. The results of this study will contribute to an improved earthquake-hazard assessment for the Kenai Peninsula and the more densely-populated Anchorage area.

  10. Time-dependent seismic tomography

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    2010-01-01

    Of methods for measuring temporal changes in seismic-wave speeds in the Earth, seismic tomography is among those that offer the highest spatial resolution. 3-D tomographic methods are commonly applied in this context by inverting seismic wave arrival time data sets from different epochs independently and assuming that differences in the derived structures represent real temporal variations. This assumption is dangerous because the results of independent inversions would differ even if the structure in the Earth did not change, due to observational errors and differences in the seismic ray distributions. The latter effect may be especially severe when data sets include earthquake swarms or aftershock sequences, and may produce the appearance of correlation between structural changes and seismicity when the wave speeds are actually temporally invariant. A better approach, which makes it possible to assess what changes are truly required by the data, is to invert multiple data sets simultaneously, minimizing the difference between models for different epochs as well as the rms arrival-time residuals. This problem leads, in the case of two epochs, to a system of normal equations whose order is twice as great as for a single epoch. The direct solution of this system would require twice as much memory and four times as much computational effort as would independent inversions. We present an algorithm, tomo4d, that takes advantage of the structure and sparseness of the system to obtain the solution with essentially no more effort than independent inversions require. No claim to original US government works Journal compilation ?? 2010 RAS.

  11. Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) and mixtures of 2,4-D and 2,4,5-trichlorophenoxyacetic acid by Phanerochaete chrysosporium

    SciTech Connect

    Yadav, J.S.; Reddy, C.A. )

    1993-09-01

    2,4-dichloropheonxyacetic Acid (2,4-D) is one of the most commonly used phenoxyalkanoic herbicides for selective control of weeds and for defoliation. Since these toxic chemical are manufactured and used each year in massive quantities, effective handling of their production wastes and the contaminated environment is needed. A number of bacterial general are known to degrade 2,4-D, but no naturally occuring bacterium is know to be capable of mineralizing 2,4,5-trichlorophenoxyacetic acid. Mutual inhibition of degradation has been reported when 2,4-D and 2,4,5-T are presented in a mixture to degrading bacteria. This paper investigates the ability of Pseudomonas chrysosporium to mineralize 2,4-D individually and in combination with 2,4,5-T. Results indicate that P. chrysosporium effectively mineralizes 2,4-D alone as well as in combination with 2,4,5-T. 31 refs., 4 figs., 1 tab.

  12. Assimilating lithosphere and slab history in 4-D Earth models

    NASA Astrophysics Data System (ADS)

    Bower, Dan J.; Gurnis, Michael; Flament, Nicolas

    2015-01-01

    We develop methods to incorporate paleogeographical constraints into numerical models of mantle convection. Through the solution of the convection equations, the models honor geophysical and geological data near the surface while predicting mantle flow and structure at depth and associated surface deformation. The methods consist of four constraints determined a priori from a plate history model: (1) plate velocities, (2) thermal structure of the lithosphere, (3) thermal structure of slabs in the upper mantle, and (4) velocity of slabs in the upper mantle. These constraints are implemented as temporally- and spatially-dependent conditions that are blended with the solution of the convection equations at each time step. We construct Earth-like regional models with oceanic and continental lithosphere, trench migration, oblique subduction, and asymmetric subduction to test the robustness of the methods by computing the temperature, velocity, and buoyancy flux of the lithosphere and slab. Full sphere convection models demonstrate how the methods can determine the flow associated with specific tectonic environments (e.g., back-arc basins, intraoceanic subduction zones) to address geological questions and compare with independent data, both at present-day and in the geological past (e.g., seismology, residual topography, stratigraphy). Using global models with paleogeographical constraints we demonstrate (1) subduction initiation at the Izu-Bonin-Mariana convergent margin and flat slab subduction beneath North America, (2) enhanced correlation of model slabs and fast anomalies in seismic tomography beneath North and South America, and (3) comparable amplitude of dynamic and residual topography in addition to improved spatial correlation of dynamic and residual topography lows.

  13. 4D motion animation of coronary arteries from rotational angiography

    NASA Astrophysics Data System (ADS)

    Holub, Wolfgang; Rohkohl, Christopher; Schuldhaus, Dominik; Prümmer, Marcus; Lauritsch, Günter; Hornegger, Joachim

    2011-03-01

    Time-resolved 3-D imaging of the heart is a major research topic in the medical imaging community. Recent advances in the interventional cardiac 3-D imaging from rotational angiography (C-arm CT) are now also making 4-D imaging feasible during procedures in the catheter laboratory. State-of-the-art reconstruction algorithms try to estimate the cardiac motion and utilize the motion field to enhance the reconstruction of a stable cardiac phase (diastole). The available data offers a handful of opportunities during interventional procedures, e.g. the ECG-synchronized dynamic roadmapping or the computation and analysis of functional parameters. In this paper we will demonstrate that the motion vector field (MVF) that is output by motion compensated image reconstruction algorithms is in general not directly usable for animation and motion analysis. Dependent on the algorithm different defects are investigated. A primary issue is that the MVF needs to be inverted, i.e. the wrong direction of motion is provided. A second major issue is the non-periodicity of cardiac motion. In algorithms which compute a non-periodic motion field from a single rotation the in depth motion information along viewing direction is missing, since this cannot be measured in the projections. As a result, while the MVF improves reconstruction quality, it is insufficient for motion animation and analysis. We propose an algorithm to solve both problems, i.e. inversion and missing in-depth information in a unified framework. A periodic version of the MVF is approximated. The task is formulated as a linear optimization problem where a parametric smooth motion model based on B-splines is estimated from the MVF. It is shown that the problem can be solved using a sparse QR factorization within a clinical feasible time of less than one minute. In a phantom experiment using the publicly available CAVAREV platform, the average quality of a non-periodic animation could be increased by 39% by applying the

  14. Experimenting with the GMAO 4D Data Assimilation

    NASA Technical Reports Server (NTRS)

    Todling, R.; El Akkraoui, A.; Errico, R. M.; Guo, J.; Kim, J.; Kliest, D.; Parrish, D. F.; Suarez, M.; Trayanov, A.; Tremolet, Yannick; Whitaker, J.

    2012-01-01

    The Global Modeling and Assimilation Office (GMAO) has been working to promote its prototype four-dimensional variational (4DVAR) system to a version that can be exercised at operationally desirable configurations. Beyond a general circulation model (GeM) and an analysis system, traditional 4DV AR requires availability of tangent linear (TL) and adjoint (AD) models of the corresponding GeM. The GMAO prototype 4DVAR uses the finite-volume-based GEOS GeM and the Grid-point Statistical Interpolation (GSI) system for the first two, and TL and AD models derived ITom an early version of the finite-volume hydrodynamics that is scientifically equivalent to the present GEOS nonlinear GeM but computationally rather outdated. Specifically, the TL and AD models hydrodynamics uses a simple (I-dimensional) latitudinal MPI domain decomposition, which has consequent low scalability and prevents the prototype 4DV AR ITom being used in realistic applications. In the near future, GMAO will be upgrading its operational GEOS GCM (and assimilation system) to use a cubed-sphere-based hydrodynamics. This versions of the dynamics scales to thousands of processes and has led to a decision to re-derive the TL and AD models for this more modern dynamics, thus taking advantage of a two-dimensional MPI decomposition and improved scalability properties. With the aid of the Transformation of Algorithms in FORTRAN (l'AF) automatic adjoint generation tool and some hand-coding, a version of the cubed-sphere-based TL and AD models, with a simplified vertical diffusion scheme, is now available, enabling multiple configurations of standard implementations of 4DV AR in GEOS. Concurrent to this development, collaboration with the National Centers for Environmental Prediction (NCEP) and the Earth System Research Laboratory (ESRL) has allowed GMAO to implement a hybrid-ensemble capability within the GEOS data assimilation system. Both 3Dand 4D-ensemble capabilities are presently available thus allowing

  15. A dose error evaluation study for 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  16. Predicting lower mantle heterogeneity from 4-D Earth models

    NASA Astrophysics Data System (ADS)

    Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.

    2016-04-01

    basal layer ˜ 4% denser than ambient mantle. Increasing convective vigour (Ra ≈ 5 x 108) or decreasing the density of the basal layer decreases both the accuracy and sensitivity of the predicted lower mantle structure. References: D. J. Bower, M. Gurnis, N. Flament, Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8-22 (2015). V. Lekic, S. Cottaar, A. Dziewonski, B. Romanowicz, Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68-77 (2012).

  17. 4D Visualization of Experimental Procedures in Rock Physics

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; di Bonito, C.

    2010-12-01

    Engaging students in laboratory classes in geophysics is becoming more and more difficult. This is primarily because of an ever-widening gap between the less appealing aspects that characterize these courses (e.g., lengthiness of the experimental operations, high student/instrument ratio, limited time associated with lack of previous hands-on experiences, and logistical and safety concerns) and the life style of the 21st century generations (i.e., extensive practice to high-tech tools, high-speed communications and computing, 3D graphics and HD videos). To bridge the gap and enhance the teaching strategy of laboratory courses in geophysics, we have created simulator-training tools for use in preparation for the actual experimental phase. We are using a modeling, animation, and rendering package to create (a) 3D models that accurately reproduce actual scenarios and instruments used for the measurement of rock physics properties and (b) 4D interactive animations that simulate hands-on demonstrations of the experimental procedures. We present here a prototype describing step-by-step the experimental protocol and the principles behind the measurement of rock porosity. The tool reproduces an actual helium porosimeter and makes use of interactive animations, guided text, and a narrative voice guiding the audience through the different phases of the experimental process. Our strategy is to make the most of new technologies while preserving the accuracy of classical laboratory methods and practices. These simulations are not intended to replace traditional lab work; rather they provide students with the opportunity for review and repetition. The primary goal is thus to help students familiarize themselves during their earlier curricula with lab methodologies, thus minimizing apparent hesitation and frustration in later classes. This may also increase the level of interest and involvement of undergraduate students and, in turn, enhance their keenness to pursue their

  18. Automating Shallow Seismic Imaging

    SciTech Connect

    Steeples, Don W.

    2004-12-09

    This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy-access environments, this device could

  19. Alternative Energy Sources in Seismic Methods

    NASA Astrophysics Data System (ADS)

    Tün, Muammer; Pekkan, Emrah; Mutlu, Sunay; Ecevitoğlu, Berkan

    2015-04-01

    When the suitability of a settlement area is investigated, soil-amplification, liquefaction and fault-related hazards should be defined, and the associated risks should be clarified. For this reason, soil engineering parameters and subsurface geological structure of a new settlement area should be investigated. Especially, faults covered with quaternary alluvium; thicknesses, shear-wave velocities and geometry of subsurface sediments could lead to a soil amplification during an earthquake. Likewise, changes in shear-wave velocities along the basin are also very important. Geophysical methods can be used to determine the local soil properties. In this study, use of alternative seismic energy sources when implementing seismic reflection, seismic refraction and MASW methods in the residential areas of Eskisehir/Turkey, were discussed. Our home developed seismic energy source, EAPSG (Electrically-Fired-PS-Gun), capable to shoot 2x24 magnum shotgun cartridges at once to generate P and S waves; and our home developed WD-500 (500 kg Weight Drop) seismic energy source, mounted on a truck, were developed under a scientific research project of Anadolu University. We were able to reach up to penetration depths of 1200 m for EAPSG, and 800 m for WD-500 in our seismic reflection surveys. WD-500 seismic energy source was also used to perform MASW surveys, using 24-channel, 10 m apart, 4.5 Hz vertical geophone configuration. We were able to reach 100 m of penetration depth in MASW surveys.

  20. Co-seismic displacements from differencing and sub-pixel correlation of multi-temporal LiDAR and cadastral surveys: application to the Greendale Fault, Canterbury, New Zealand

    NASA Astrophysics Data System (ADS)

    Duffy, B. G.; Van Dissen, R.; Quigley, M.; Litchfield, N. J.; McInnes, C.; Leprince, S.; Barrell, D.; Stahl, T. A.; Bilderback, E. L.

    2011-12-01

    Surface rupture on the dextral strike-slip Greendale fault during the 2010 Mw 7.1 Darfield (Canterbury), earthquake in New Zealand terminated in a releasing bend at the western end of the fault. Our first-ever co-seismic application of multi-temporal aerial LiDAR, coupled with cadastral surveying, real time kinematic GPS scarp profiling and offset mapping provides unprecedented documentation of surface displacements at the western end of the Greendale fault, particularly at the transition into the releasing bend. Cadastral trilateration data from the northern end of the releasing bend area demonstrate that the hanging wall (NE) side of the fault moved 1.5 m to the southeast while the footwall (SW) side of the fault moved 0.6 m to the southwest. This resulted in an oblique transtensional net slip of 2.5 m. At the southern end of the releasing bend, the north-side-down transtensional structure transitions into a north-side down transpressional structure. High-resolution absolute vertical motions associated with this transition, as well as relationships of drainage morphology to fault geometry, are captured by differencing of pre- and post-fault LiDAR. Vertical differencing reveals the distribution of vertical offsets, with some scarps defined that have vertical displacement gradients of only 1:1000. The geomorphology of these subtle vertical displacements reveals that the transition into the releasing bend is accommodated by a restraining stepover. Sub-pixel correlation of the pre-and post-earthquake LiDAR rasters using COSI-Corr (http://www.tectonics.caltech.edu/slip_history/spot_coseis/index.html) additionally reveal E-W shortening of approximately 0.8 m across a discontinuity that represents one side of the restraining stepover. This is consistent with the cadastral survey results. Our results demonstrate the utility of multi-temporal LiDAR for documenting both the vertical and horizontal components of co-seismic deformation.

  1. Ig-like transcript 4 as a cellular receptor for soluble complement fragment C4d.

    PubMed

    Hofer, Johannes; Forster, Florian; Isenman, David E; Wahrmann, Markus; Leitner, Judith; Hölzl, Markus A; Kovarik, Johannes J; Stockinger, Hannes; Böhmig, Georg A; Steinberger, Peter; Zlabinger, Gerhard J

    2016-04-01

    Complement regulation leads to the generation of complement split products (CSPs) such as complement component (C)4d, a marker for disease activity in autoimmune syndromes or antibody-mediated allograft rejection. However, the physiologic role of C4d has been unknown. By screening murine thymoma BW5147 cells expressing a cDNA library generated from human monocyte-derived dendritic cells with recombinant human C4d, we identified Ig-like transcript (ILT)4 and ILT5v2 as cellular receptors for C4d. Both receptors, expressed on monocytes, macrophages, and dendritic cells, also interacted with the CSPs C3d, C4b, C3b, and iC3b. However, C4d did not bind to classic complement receptors (CRs). Interaction between cell surface-resident ILT4 and soluble monomeric C4d resulted in endocytosis of C4d. Surprisingly, binding of soluble ILT4 to C4d covalently immobilized to a cellular surface following classic complement activation could not be detected. Remarkably, C4d immobilized to a solid phaseviaits intrinsic thioester conferred a dose-dependent inhibition of TNF-α and IL-6 secretion in monocytes activatedviaFc-cross-linking of up to 50% as compared to baseline. Similarly, C4d conferred an attenuation of intracellular Ca(2+)flux in monocytes activatedviaFc-cross-linking. In conclusion, ILT4 represents a scavenger-type endocytotic CR for soluble monomeric C4d, whereas attenuation of monocyte activation by physiologically oriented C4d on a surface appears to be dependent on a yet to be identified C4d receptor.-Hofer, J., Forster, F., Isenman, D. E., Wahrmann, M., Leitner, J., Hölzl, M. A., Kovarik, J. K., Stockinger, H., Böhmig, G. A., Steinberger, P., Zlabinger, G. J. Ig-like transcript 4 as a cellular receptor for soluble complement fragment C4d.

  2. Along-strike structure of the Costa Rican convergent margin from seismic a refraction/reflection survey: Evidence for underplating beneath the inner forearc

    NASA Astrophysics Data System (ADS)

    St. Clair, J.; Holbrook, W. S.; Van Avendonk, H. J. A.; Lizarralde, D.

    2016-02-01

    The convergent margin offshore Costa Rica shows evidence of subsidence due to subduction erosion along the outer forearc and relatively high rates of uplift (˜3-6 mm/yr) along the coast. Recently erupted arc lavas exhibit a low 10Be signal, suggesting that although nearly the entire package of incoming sediments enters the subduction zone, very little of that material is carried directly with the downgoing Cocos plate to the magma generating depths of the mantle wedge. One mechanism that would explain both the low 10Be and the coastal uplift is the underplating of sediments, tectonically eroded material, and seamounts beneath the inner forearc. We present results of a 320 km long, trench-parallel seismic reflection and refraction study of the Costa Rican forearc. The primary observations are (1) margin perpendicular faulting of the basement, (2) thickening of the Cocos plate to the northwest, and (3) two weak bands of reflections in the multichannel seismic (MCS) reflection image with travel times similar to the top of the subducting Cocos plate. The modeled depths to these reflections are consistent with an ˜40 km long, 1-3 km thick region of underplated material ˜15 km beneath some of the highest observed coastal uplift rates in Costa Rica.

  3. Targeted disruption of the heat shock protein 20–phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy

    PubMed Central

    Martin, Tamara P.; Hortigon-Vinagre, Maria P.; Findlay, Jane E.; Elliott, Christina; Currie, Susan; Baillie, George S.

    2014-01-01

    Phosphorylated heat shock protein 20 (HSP20) is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20–phosphodiesterase 4D (PDE4D) complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20–PDE4D interaction leads to attenuation of pathological cardiac remodelling. PMID:25426411

  4. SEMA4D compromises blood-brain barrier, activates microglia, and inhibits remyelination in neurodegenerative disease.

    PubMed

    Smith, Ernest S; Jonason, Alan; Reilly, Christine; Veeraraghavan, Janaki; Fisher, Terrence; Doherty, Michael; Klimatcheva, Ekaterina; Mallow, Crystal; Cornelius, Chad; Leonard, John E; Marchi, Nicola; Janigro, Damir; Argaw, Azeb Tadesse; Pham, Trinh; Seils, Jennifer; Bussler, Holm; Torno, Sebold; Kirk, Renee; Howell, Alan; Evans, Elizabeth E; Paris, Mark; Bowers, William J; John, Gareth; Zauderer, Maurice

    2015-01-01

    Multiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by immune cell infiltration of CNS, blood-brain barrier (BBB) breakdown, localized myelin destruction, and progressive neuronal degeneration. There exists a significant need to identify novel therapeutic targets and strategies that effectively and safely disrupt and even reverse disease pathophysiology. Signaling cascades initiated by semaphorin 4D (SEMA4D) induce glial activation, neuronal process collapse, inhibit migration and differentiation of oligodendrocyte precursor cells (OPCs), and disrupt endothelial tight junctions forming the BBB. To target SEMA4D, we generated a monoclonal antibody that recognizes mouse, rat, monkey and human SEMA4D with high affinity and blocks interaction between SEMA4D and its cognate receptors. In vitro, anti-SEMA4D reverses the inhibitory effects of recombinant SEMA4D on OPC survival and differentiation. In vivo, anti-SEMA4D significantly attenuates experimental autoimmune encephalomyelitis in multiple rodent models by preserving BBB integrity and axonal myelination and can be shown to promote migration of OPC to the site of lesions and improve myelin status following chemically-induced demyelination. Our study underscores SEMA4D as a key factor in CNS disease and supports the further development of antibody-based inhibition of SEMA4D as a novel therapeutic strategy for MS and other neurologic diseases with evidence of demyelination and/or compromise to the neurovascular unit. PMID:25461192

  5. The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana.

    PubMed

    Szumlanski, Amy L; Nielsen, Erik

    2009-02-01

    During reproduction in flowering plants, pollen grains form a tube that grows in a polarized fashion through the female tissues to eventually fertilize the egg cell. These highly polarized pollen tubes have a rapid rate of growth that is supported by a tip-focused delivery of membrane and cell wall components. To gain a better understanding of how this growth is regulated, we investigated the function RABA4D, a member of the Arabidopsis thaliana RabA4 subfamily of Rab GTPase proteins. Here, we show that RABA4D was expressed in a pollen-specific manner and that enhanced yellow fluorescent protein (EYFP)-RabA4d-labeled membrane compartments localized to the tips of growing pollen tubes. Mutant pollen in which the RABA4D gene was disrupted displayed bulged pollen tubes with a reduced rate of growth in vitro and displayed altered deposition of some cell wall components. Expression of EYFP-RabA4d restored wild-type phenotypes to the raba4d mutant pollen tubes, while expression of EYFP-RabA4b did not rescue the raba4d phenotype. In vivo, disruption of RABA4D resulted in a male-specific transmission defect with mutant raba4d pollen tubes displaying aberrant growth in the ovary and reduced guidance at the micropyle. We propose that RabA4d plays an important role in the regulation of pollen tube tip growth.

  6. SEMA4D compromises blood-brain barrier, activates microglia, and inhibits remyelination in neurodegenerative disease.

    PubMed

    Smith, Ernest S; Jonason, Alan; Reilly, Christine; Veeraraghavan, Janaki; Fisher, Terrence; Doherty, Michael; Klimatcheva, Ekaterina; Mallow, Crystal; Cornelius, Chad; Leonard, John E; Marchi, Nicola; Janigro, Damir; Argaw, Azeb Tadesse; Pham, Trinh; Seils, Jennifer; Bussler, Holm; Torno, Sebold; Kirk, Renee; Howell, Alan; Evans, Elizabeth E; Paris, Mark; Bowers, William J; John, Gareth; Zauderer, Maurice

    2015-01-01

    Multiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by immune cell infiltration of CNS, blood-brain barrier (BBB) breakdown, localized myelin destruction, and progressive neuronal degeneration. There exists a significant need to identify novel therapeutic targets and strategies that effectively and safely disrupt and even reverse disease pathophysiology. Signaling cascades initiated by semaphorin 4D (SEMA4D) induce glial activation, neuronal process collapse, inhibit migration and differentiation of oligodendrocyte precursor cells (OPCs), and disrupt endothelial tight junctions forming the BBB. To target SEMA4D, we generated a monoclonal antibody that recognizes mouse, rat, monkey and human SEMA4D with high affinity and blocks interaction between SEMA4D and its cognate receptors. In vitro, anti-SEMA4D reverses the inhibitory effects of recombinant SEMA4D on OPC survival and differentiation. In vivo, anti-SEMA4D significantly attenuates experimental autoimmune encephalomyelitis in multiple rodent models by preserving BBB integrity and axonal myelination and can be shown to promote migration of OPC to the site of lesions and improve myelin status following chemically-induced demyelination. Our study underscores SEMA4D as a key factor in CNS disease and supports the further development of antibody-based inhibition of SEMA4D as a novel therapeutic strategy for MS and other neurologic diseases with evidence of demyelination and/or compromise to the neurovascular unit.

  7. High-resolution seismic reflection surveys and modeling across an area of high damage from the 1994 Northridge earthquake, Sherman Oaks, California

    USGS Publications Warehouse

    Stephenson, William J.; Williams, Robert A.; Odum, Jack K.; Worley, David M.

    2000-01-01

    Approximately 3.6 km of P-wave seismic-reflection data were acquired along two orthogonal profiles in Sherman Oaks, California to determine whether shallow (less than 1-km depth) geologic structures contributed to the dramatic localized damage resulting from the 1994 Northridge earthquake. Both lines, one along Matilija Avenue and one along Milbank Street, crossed areas of both high and low damage. We believe these data reveal a geologic structure in the upper 600 m that contributed to the increased earthquake ground shaking in the high-damage areas south of and along the Los Angeles River. Of interest in these data is a reflection interpreted to be from bedrock that can be traced to the north along the Matilija Avenue profile. This reflecting interface, dipping northward at 15°–22°, may be an important impedance boundary because it is the lower boundary of a wedge of overlying low-velocity sediments. The wedge thins and terminates in the area where we interpret down-warped reflections as evidence of a shallow subbasin. The low-velocity subbasin sediments (Vs of 200 m/sec Vp of 500 m/sec) may be up to 150 m thick beneath the channelized Los Angeles River. The area across the subbasin experienced greater earthquake damage from possible geometric focusing effects. Three-dimensional basin effects may be responsible for the variable damage pattern, but from these seismic profiles it is not possible to determine the regional structural trends. Two-dimensional elastic and SH-mode finite-difference modeling of the imaged structural geometry along Matilija Avenue suggests that a peak horizontal-velocity amplification factor of two-and-over can be explained in the high-damage area above the shallow subbasin and sediment wedge. Amplification factors up to 5 were previously observed in aftershock data, at frequencies of 2 to 6 Hz. Amplification in the elastic simulation at the Santa Monica Mountains range-front on the southern end of the Matilija profile, with the

  8. Historical seismicity

    USGS Publications Warehouse

    Dengler, L.

    1992-01-01

    The North Coast region of California in the vicinity of Cape Mendocino is one of the state's most seismically active areas, accounting for 25 percent of seismic energy release in California during the last 50 years. the region is located in a geologically dynamic are surrounding the Mendocino triple junction where three of the Earth's tectonic plates join together ( see preceding article by Sam Clarke). In the historic past the North Coast has been affected by earthquakes occurring on the San Andreas fault system to the south, the Mendocino fault to the southwest, and intraplate earthquakes within both the Gorda and North American plates. More than sixty of these earthquakes have caused damage since the mid-1800's. Recent studies indicate that California's North Coast is also at risk with respect to very large earthquakes (magnitude >8) originating along the Cascadia subduction zone. Although the subduction zone has not generated great earthquakes in historic time, paleoseismic evidence suggests that such earthquakes have been generated by the subduction zone in the recent prehistoric past. 

  9. Geometric validation of self-gating k-space-sorted 4D-MRI vs 4D-CT using a respiratory motion phantom

    SciTech Connect

    Yue, Yong Yang, Wensha; McKenzie, Elizabeth; Tuli, Richard; Wallace, Robert; Fraass, Benedick; Fan, Zhaoyang; Pang, Jianing; Deng, Zixin; Li, Debiao

    2015-10-15

    Purpose: MRI is increasingly being used for radiotherapy planning, simulation, and in-treatment-room motion monitoring. To provide more detailed temporal and spatial MR data for these tasks, we have recently developed a novel self-gated (SG) MRI technique with advantage of k-space phase sorting, high isotropic spatial resolution, and high temporal resolution. The current work describes the validation of this 4D-MRI technique using a MRI- and CT-compatible respiratory motion phantom and comparison to 4D-CT. Methods: The 4D-MRI sequence is based on a spoiled gradient echo-based 3D projection reconstruction sequence with self-gating for 4D-MRI at 3 T. Respiratory phase is resolved by using SG k-space lines as the motion surrogate. 4D-MRI images are reconstructed into ten temporal bins with spatial resolution 1.56 × 1.56 × 1.56 mm{sup 3}. A MRI-CT compatible phantom was designed to validate the performance of the 4D-MRI sequence and 4D-CT imaging. A spherical target (diameter 23 mm, volume 6.37 ml) filled with high-concentration gadolinium (Gd) gel is embedded into a plastic box (35 × 40 × 63 mm{sup 3}) and stabilized with low-concentration Gd gel. The phantom, driven by an air pump, is able to produce human-type breathing patterns between 4 and 30 respiratory cycles/min. 4D-CT of the phantom has been acquired in cine mode, and reconstructed into ten phases with slice thickness 1.25 mm. The 4D images sets were imported into a treatment planning software for target contouring. The geometrical accuracy of the 4D MRI and CT images has been quantified using target volume, flattening, and eccentricity. The target motion was measured by tracking the centroids of the spheres in each individual phase. Motion ground-truth was obtained from input signals and real-time video recordings. Results: The dynamic phantom has been operated in four respiratory rate (RR) settings, 6, 10, 15, and 20/min, and was scanned with 4D-MRI and 4D-CT. 4D-CT images have target

  10. The Southern Kansas Seismic Network

    NASA Astrophysics Data System (ADS)

    Terra, F. M.

    2015-12-01

    Historically aseismic Harper and Sumner counties in Southern Kansas experienced a dramatic increase in seismicity beginning in early 2014, coincident with the development of new oil production in the Mississippi Lime Play. In order to better understand the potential relationships between seismicity and oil development, the USGS installed a real-time telemetered seismic network in cooperation with the Kansas Geological Survey, the Kansas Corporation Commission, the Kansas Department of Health and Environment, Harper County, and the Oklahoma Geological Survey. The network began operation in March 2014 with an initial deployment of 5 NetQuakes accelerometers and by July 2014 had expanded to include 10 broadband sites. The network currently has 14 stations, all with accelerometers and 12 with broadband seismometers. The network has interstation spacing of 15 - 25 km and typical azimuthal gap of 80 for well-located events. Data are continuously streamed to IRIS at 200 samples per second from most sites. Earthquake locations are augmented with additional stations from the USGS National Network, Oklahoma Geological Survey Seismic Network, Kansas Seismic Monitoring Network and the Enid Oklahoma Network. Since the spring of 2014 over 7500 earthquakes have been identified with data from this network, 1400 of which have been manually timed and cataloged. Focal depths for earthquakes typically range between 2 and 7 km. The catalog is available at earthquake.usgs.gov/earthquakes/search/ under network code 'Ismpkansas'. The network recorded the largest known earthquake in Harper County, Mw 4.3, on October 2, 2014 and in Sumner County, Mw 4.9, on November 12, 2014. Recorded ground motions at the epicenter of the October earthquake were 0.70 g (PGA) and 12 cm/s (PGV). These high ground motion values agree with near-source recordings made by other USGS temporary deployments in the U. S. midcontinent, indicating a significant shaking hazard from such shallow, moderate

  11. The role of semaphorin 4D in tumor development and angiogenesis in human breast cancer

    PubMed Central

    Jiang, Hongchao; Chen, Ceshi; Sun, Qiangming; Wu, Jing; Qiu, Lijuan; Gao, Change; Liu, Weiqing; Yang, Jun; Jun, Nie; Dong, Jian

    2016-01-01

    Background Semaphorin 4D (Sema4D) is highly expressed in certain types of tumors and functions in the regulation of tumor angiogenesis and growth. However, it is still not clear regarding the roles of Sema4D in breast cancer. This study was designed to explore the effects of Sema4D on proliferation, cell cycle progression, apoptosis, invasion, migration, tumor growth, and angiogenesis in breast cancer. Materials and methods The expression level of Sema4D was investigated in MCF10A, 184A1, HCC1937, MDA-MB-468, MDA-MB-231, Hs578T, BT474, MCF-7, and T47D breast cancer cell lines by Western blotting analysis. Sema4D downregulation or overexpression was established by infection with lentiviruses-encoding Sema4D short hairpin RNA (shRNA) or Sema4D. To evaluate the effects of Sema4D on cell proliferation, cell cycle progression, apoptosis, invasion, and migration of MDA-MB-231 and MDA-MB-468 cells, methods including MTT assay, flow cytometry, wound healing assay, and transwell experiments were applied. BALB/c nude mice were injected with MDA-MB-231 cells, which were respectively infected with lentiviruses-encoding Sema4D, Sema4D shRNA, and GFP, followed by tumor angiogenesis assay. Results Sema4D was expressed at higher levels in breast cancer cell lines compared with the normal human breast epithelial cell lines, especially in MDA-MB-231 and MDA-MB-468 cells. Cell proliferation ability was remarkably inhibited in Sema4D downregulated condition, whereas the proportions of cells in the G0/G1 phase and apoptosis increased in MDA-MB-231 and MDA-MB-468 cells. In addition, the invasion and migration abilities of these cells were obviously reduced. Xenograft growth as well as angiogenesis was inhibited when infected with lentiviruses-encoding Sema4D shRNA in vivo. Conclusion Downregulation of Sema4D had notable influence on cell proliferation ability, invasion, migration, and apoptosis of both MDA-MB-231 and MDA-MB-468 cells. Furthermore, infection with lentiviruses

  12. IMRT treatment planning on 4D geometries for the era of dynamic MLC tracking.

    PubMed

    Suh, Yelin; Murray, Walter; Keall, Paul J

    2014-12-01

    The problem addressed here was to obtain optimal and deliverable dynamic multileaf collimator (MLC) leaf sequences from four-dimensional (4D) geometries for dynamic MLC tracking delivery. The envisaged scenario was where respiratory phase and position information of the target was available during treatment, from which the optimal treatment plan could be further adapted in real time. A tool for 4D treatment plan optimization was developed that integrates a commercially available treatment planning system and a general-purpose optimization system. The 4D planning method was applied to the 4D computed tomography planning scans of three lung cancer patients. The optimization variables were MLC leaf positions as a function of monitor units and respiratory phase. The objective function was the deformable dose-summed 4D treatment plan score. MLC leaf motion was constrained by the maximum leaf velocity between control points in terms of monitor units for tumor motion parallel to the leaf travel direction and between phases for tumor motion parallel to the leaf travel direction. For comparison and a starting point for the 4D optimization, three-dimensional (3D) optimization was performed on each of the phases. The output of the 4D IMRT planning process is a leaf sequence which is a function of both monitor unit and phase, which can be delivered to a patient whose breathing may vary between the imaging and treatment sessions. The 4D treatment plan score improved during 4D optimization by 34%, 4%, and 50% for Patients A, B, and C, respectively, indicating 4D optimization generated a better 4D treatment plan than the deformable sum of individually optimized phase plans. The dose-volume histograms for each phase remained similar, indicating robustness of the 4D treatment plan to respiratory variations expected during treatment delivery. In summary, 4D optimization for respiratory phase-dependent treatment planning with dynamic MLC motion tracking improved the 4D treatment plan

  13. Seismic risk perception test

    NASA Astrophysics Data System (ADS)

    Crescimbene, Massimo; La Longa, Federica; Camassi, Romano; Pino, Nicola Alessandro

    2013-04-01

    population and territory); seismic risk in general; risk information and their sources; comparison between seismic risk and other natural hazards. Informative data include: Region, Province, Municipality of residence, Data compilation, Age, Sex, Place of Birth, Nationality, Marital status, Children, Level of education, Employment. The test allows to obtain the perception score for each factor: Hazard, Exposed value, Vulnerability. These scores can be put in relation with the scientific data relating to hazard, vulnerability and the exposed value. On January 2013 started a Survey in the Po Valley and Southern Apennines. The survey will be conducted via web using institutional sites of regions, provinces, municipalities, online newspapers to local spreading, etc. Preliminary data will be discussed. Improve our understanding of the perception of seismic risk would allow us to inform more effectively and to built better educational projects to mitigate risk.

  14. 2D:4D digit ratio predicts delay of gratification in preschoolers.

    PubMed

    Da Silva, Sergio; Moreira, Bruno; Da Costa, Newton

    2014-01-01

    We replicate the Stanford marshmallow experiment with a sample of 141 preschoolers and find a correlation between lack of self-control and 2D:4D digit ratio. Children with low 2D:4D digit ratio are less likely to delay gratification. Low 2D:4D digit ratio may indicate high fetal testosterone. If this hypothesis is true, our finding means high fetal testosterone children are less likely to delay gratification.

  15. 2D:4D Digit Ratio Predicts Delay of Gratification in Preschoolers

    PubMed Central

    Da Silva, Sergio; Moreira, Bruno; Da Costa, Newton

    2014-01-01

    We replicate the Stanford marshmallow experiment with a sample of 141 preschoolers and find a correlation between lack of self-control and 2D:4D digit ratio. Children with low 2D:4D digit ratio are less likely to delay gratification. Low 2D:4D digit ratio may indicate high fetal testosterone. If this hypothesis is true, our finding means high fetal testosterone children are less likely to delay gratification. PMID:25490040

  16. 2008 United States National Seismic Hazard Maps

    USGS Publications Warehouse

    Petersen, M.D.; ,

    2008-01-01

    The U.S. Geological Survey recently updated the National Seismic Hazard Maps by incorporating new seismic, geologic, and geodetic information on earthquake rates and associated ground shaking. The 2008 versions supersede those released in 1996 and 2002. These maps are the basis for seismic design provisions of building codes, insurance rate structures, earthquake loss studies, retrofit priorities, and land-use planning. Their use in design of buildings, bridges, highways, and critical infrastructure allows structures to better withstand earthquake shaking, saving lives and reducing disruption to critical activities following a damaging event. The maps also help engineers avoid costs from over-design for unlikely levels of ground motion.

  17. Heterozygous mutations in cyclic AMP phosphodiesterase-4D (PDE4D) and protein kinase A (PKA) provide new insights into the molecular pathology of acrodysostosis.

    PubMed

    Kaname, Tadashi; Ki, Chang-Seok; Niikawa, Norio; Baillie, George S; Day, Jonathan P; Yamamura, Ken-Ichi; Ohta, Tohru; Nishimura, Gen; Mastuura, Nobuo; Kim, Ok-Hwa; Sohn, Young Bae; Kim, Hyun Woo; Cho, Sung Yoon; Ko, Ah-Ra; Lee, Jin Young; Kim, Hyun Wook; Ryu, Sung Ho; Rhee, Hwanseok; Yang, Kap-Seok; Joo, Keehyoung; Lee, Jooyoung; Kim, Chi Hwa; Cho, Kwang-Hyun; Kim, Dongsan; Yanagi, Kumiko; Naritomi, Kenji; Yoshiura, Ko-Ichiro; Kondoh, Tatsuro; Nii, Eiji; Tonoki, Hidefumi; Houslay, Miles D; Jin, Dong-Kyu

    2014-11-01

    Acrodysostosis without hormone resistance is a rare skeletal disorder characterized by brachydactyly, nasal hypoplasia, mental retardation and occasionally developmental delay. Recently, loss-of-function mutations in the gene encoding cAMP-hydrolyzing phosphodiesterase-4D (PDE4D) have been reported to cause this rare condition but the pathomechanism has not been fully elucidated. To understand the pathogenetic mechanism of PDE4D mutations, we conducted 3D modeling studies to predict changes in the binding efficacy of cAMP to the catalytic pocket in PDE4D mutants. Our results indicated diminished enzyme activity in the two mutants we analyzed (Gly673Asp and Ile678Thr; based on PDE4D4 residue numbering). Ectopic expression of PDE4D mutants in HEK293 cells demonstrated this reduction in activity, which was identified by increased cAMP levels. However, the cells from an acrodysostosis patient showed low cAMP accumulation, which resulted in a decrease in the phosphorylated cAMP Response Element-Binding Protein (pCREB)/CREB ratio. The reason for this discrepancy was due to a compensatory increase in expression levels of PDE4A and PDE4B isoforms, which accounted for the paradoxical decrease in cAMP levels in the patient cells expressing mutant isoforms with a lowered PDE4D activity. Skeletal radiographs of 10-week-old knockout (KO) rats showed that the distal part of the forelimb was shorter than in wild-type (WT) rats and that all the metacarpals and phalanges were also shorter in KO, as the name acrodysostosis implies. Like the G-protein α-stimulatory subunit and PRKAR1A, PDE4D critically regulates the cAMP signal transduction pathway and influences bone formation in a way that activity-compromising PDE4D mutations can result in skeletal dysplasia. We propose that specific inhibitory PDE4D mutations can lead to the molecular pathology of acrodysostosis without hormone resistance but that the pathological phenotype may well be dependent on an over-compensatory induction

  18. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung.

    PubMed

    Chin, E; Loewen, S K; Nichol, A; Otto, K

    2013-02-21

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  19. A sinogram warping strategy for pre-reconstruction 4D PET optimization.

    PubMed

    Gianoli, Chiara; Riboldi, Marco; Fontana, Giulia; Kurz, Christopher; Parodi, Katia; Baroni, Guido

    2016-03-01

    A novel strategy for 4D PET optimization in the sinogram domain is proposed, aiming at motion model application before image reconstruction ("sinogram warping" strategy). Compared to state-of-the-art 4D-MLEM reconstruction, the proposed strategy is able to optimize the image SNR, avoiding iterative direct and inverse warping procedures, which are typical of the 4D-MLEM algorithm. A full-count statistics sinogram of the motion-compensated 4D PET reference phase is generated by warping the sinograms corresponding to the different PET phases. This is achieved relying on a motion model expressed in the sinogram domain. The strategy was tested on the anthropomorphic 4D PET-CT NCAT phantom in comparison with the 4D-MLEM algorithm, with particular reference to robustness to PET-CT co-registrations artefacts. The MLEM reconstruction of the warped sinogram according to the proposed strategy exhibited better accuracy (up to +40.90 % with respect to the ideal value), whereas images reconstructed according to the 4D-MLEM reconstruction resulted in less noisy (down to -26.90 % with respect to the ideal value) but more blurred. The sinogram warping strategy demonstrates advantages with respect to 4D-MLEM algorithm. These advantages are paid back by introducing approximation of the deformation field, and further efforts are required to mitigate the impact of such an approximation in clinical 4D PET reconstruction.

  20. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung

    NASA Astrophysics Data System (ADS)

    Chin, E.; Loewen, S. K.; Nichol, A.; Otto, K.

    2013-02-01

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  1. Shallow seismic reflection section -- Introduction

    SciTech Connect

    Steeples, D.W.

    1998-07-01

    For those interested in shallow seismic reflection (SSR) techniques, this special issues of Geophysics is likely to serve as a useful reference for years to come. The idea for this issue grew out of discussions that took place at the Shallow Seismic Reflection Workshop at the Lawrence Berkeley Laboratory, California, in September 1996. The content of those discussions is the subject of a published report elsewhere (Steeples et al., 1997). Several workshop participants and their colleagues contributed to the papers in this issue as authors and as reviewers. The articles include case histories, novel uses of the SSR technique, state-of-the-art planning considerations for 3-D SSR surveys, and some examples of problems unique to SSR surveying.

  2. Seismic sources

    DOEpatents

    Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

    1987-04-20

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

  3. Seismic monitoring of torrential and fluvial processes

    NASA Astrophysics Data System (ADS)

    Burtin, Arnaud; Hovius, Niels; Turowski, Jens M.

    2016-04-01

    In seismology, the signal is usually analysed for earthquake data, but earthquakes represent less than 1 % of continuous recording. The remaining data are considered as seismic noise and were for a long time ignored. Over the past decades, the analysis of seismic noise has constantly increased in popularity, and this has led to the development of new approaches and applications in geophysics. The study of continuous seismic records is now open to other disciplines, like geomorphology. The motion of mass at the Earth's surface generates seismic waves that are recorded by nearby seismometers and can be used to monitor mass transfer throughout the landscape. Surface processes vary in nature, mechanism, magnitude, space and time, and this variability can be observed in the seismic signals. This contribution gives an overview of the development and current opportunities for the seismic monitoring of geomorphic processes. We first describe the common principles of seismic signal monitoring and introduce time-frequency analysis for the purpose of identification and differentiation of surface processes. Second, we present techniques to detect, locate and quantify geomorphic events. Third, we review the diverse layout of seismic arrays and highlight their advantages and limitations for specific processes, like slope or channel activity. Finally, we illustrate all these characteristics with the analysis of seismic data acquired in a small debris-flow catchment where geomorphic events show interactions and feedbacks. Further developments must aim to fully understand the richness of the continuous seismic signals, to better quantify the geomorphic activity and to improve the performance of warning systems. Seismic monitoring may ultimately allow the continuous survey of erosion and transfer of sediments in the landscape on the scales of external forcing.

  4. Seismic, side-scan survey, diving, and coring data analyzed by a Macintosh II sup TM computer and inexpensive software provide answers to a possible offshore extension of landslides at Palos Verdes Peninsula, California

    SciTech Connect

    Dill, R.F. ); Slosson, J.E. ); McEachen, D.B. )

    1990-05-01

    A Macintosh II{sup TM} computer and commercially available software were used to analyze and depict the topography, construct an isopach sediment thickness map, plot core positions, and locate the geology of an offshore area facing an active landslide on the southern side of Palos Verdes Peninsula California. Profile data from side scan sonar, 3.5 kHz, and Boomer subbottom, high-resolution seismic, diving, echo sounder traverses, and cores - all controlled with a mini Ranger II navigation system - were placed in MacGridzo{sup TM} and WingZ{sup TM} software programs. The computer-plotted data from seven sources were used to construct maps with overlays for evaluating the possibility of a shoreside landslide extending offshore. The poster session describes the offshore survey system and demonstrates the development of the computer data base, its placement into the MacGridzo{sup TM} gridding program, and transfer of gridded navigational locations to the WingZ{sup TM} data base and graphics program. Data will be manipulated to show how sea-floor features are enhanced and how isopach data were used to interpret the possibility of landslide displacement and Holocene sea level rise. The software permits rapid assessment of data using computerized overlays and a simple, inexpensive means of constructing and evaluating information in map form and the preparation of final written reports. This system could be useful in many other areas where seismic profiles, precision navigational locations, soundings, diver observations, and core provide a great volume of information that must be compared on regional plots to develop of field maps for geological evaluation and reports.

  5. Fluid injection and induced seismicity

    NASA Astrophysics Data System (ADS)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  6. U.S. Geological Survey: A synopsis of Three-dimensional Modeling

    USGS Publications Warehouse

    Jacobsen, Linda J.; Glynn, Pierre D.; Phelps, Geoff A.; Orndorff, Randall C.; Bawden, Gerald W.; Grauch, V.J.S.

    2011-01-01

    The U.S. Geological Survey (USGS) is a multidisciplinary agency that provides assessments of natural resources (geological, hydrological, biological), the disturbances that affect those resources, and the disturbances that affect the built environment, natural landscapes, and human society. Until now, USGS map products have been generated and distributed primarily as 2-D maps, occasionally providing cross sections or overlays, but rarely allowing the ability to characterize and understand 3-D systems, how they change over time (4-D), and how they interact. And yet, technological advances in monitoring natural resources and the environment, the ever-increasing diversity of information needed for holistic assessments, and the intrinsic 3-D/4-D nature of the information obtained increases our need to generate, verify, analyze, interpret, confirm, store, and distribute its scientific information and products using 3-D/4-D visualization, analysis, modeling tools, and information frameworks. Today, USGS scientists use 3-D/4-D tools to (1) visualize and interpret geological information, (2) verify the data, and (3) verify their interpretations and models. 3-D/4-D visualization can be a powerful quality control tool in the analysis of large, multidimensional data sets. USGS scientists use 3-D/4-D technology for 3-D surface (i.e., 2.5-D) visualization as well as for 3-D volumetric analyses. Examples of geological mapping in 3-D include characterization of the subsurface for resource assessments, such as aquifer characterization in the central United States, and for input into process models, such as seismic hazards in the western United States.

  7. 4-D model of the Archaean crustal evolution of the Fennoscandian Shield based on geological data

    NASA Astrophysics Data System (ADS)

    Slabunov, A.

    2012-04-01

    The Fennoscandian Shield (FS), together with the Canadian Shield (Percival, 2010), has been thoroughly studied geologically, geochronologically and geophysically and can, therefore, be used as testing grounds for developing 4-D models of the evolution of the Early Precambrian Earth's crust. A 4-D model is the result of the integrated interpretation of geological evidence. In this paper a model of crust formation in Archaean time (3.1-2.6 Ga) is presented. It was developed using: 1) isotopic geochronological data for correlating of geological events in different structures (terrains); 2) data on the compositional characteristics of complexes for assessing geodynamic settings in which they were formed; 3) geophysical (especially seismic) data to understand the deep structure of the Earth's crust and, correspondingly, the relationship of terrains. The eastern FS consists dominantly of Archean bedrock that can be divided into the Karelian, Murmansk, Belomorian, Kola, and Norrbotten provinces, each having a distinct crustal growth and subsequent reworking history (Hölttä et al., 2008). The Karelian Craton and the Kola Province fall into relatively large terrains that differ in the age and composition of their rock constituents. The FS is split up into three fragments of the Palaeoarchean (3.5-3.2 Ga) continental crust that presumably existed as one microcontinent. About 3.1 Ga ago it obviously broke up. Ca.3.05 Ga ago a new growth cycle of the continental crust began. During the 3.05-2.95 Ga period the crust was forming by subduction and subsequent accretion to the largest old Vodlozero block. Mantle-plume magmatism manifests itself in the central part of the block. The bulk of the Archaean continental crust of the FS was formed during the 2.95-2.82 Ga period. Fragments of island-arc volcanics and ophiolite-like eclogites have been encountered, for example, in the Belomorian Province. Felsic adakite- and calc-alkaline-series volcanics of this age are known to occur in

  8. 4-D noise-based seismology at volcanoes: Ongoing efforts and perspectives

    NASA Astrophysics Data System (ADS)

    Brenguier, Florent; Rivet, Diane; Obermann, Anne; Nakata, Nori; Boué, Pierre; Lecocq, Thomas; Campillo, Michel; Shapiro, Nikolai

    2016-07-01

    Monitoring magma pressure buildup at depth and transport to surface is a key point for improving volcanic eruption prediction. Seismic waves, through their velocity dependence to stress perturbations, can provide crucial information on the temporal evolution of the mechanical properties of volcanic edifices. In this article, we review past and ongoing efforts for extracting accurate information of temporal changes of seismic velocities at volcanoes continuously in time using records of ambient seismic noise. We will first introduce the general methodology for retrieving accurate seismic velocity changes from seismic noise records and discuss the origin of seismic velocity temporal changes in rocks. We will then discuss in a second part how noise-based monitoring can improve our knowledge about magmatic activity at a long (years) to a short (days) time scale taking example from Piton de la Fournaise volcano (La Réunion). We will also mention ongoing efforts for operational noise-based seismic monitoring on volcanoes. Further, we will discuss perspectives for improving the spatial localization of detected velocity changes at depth with a special focus on the use of dense seismic arrays. In the last part, we will finally explore the complex response of volcanic regions to seismic shaking with an example from Japan and show how imaging seismic velocity susceptibility allows characterizing the state of pressurized fluids in volcanic regions.

  9. USGS National Seismic Hazard Maps

    USGS Publications Warehouse

    Frankel, A.D.; Mueller, C.S.; Barnhard, T.P.; Leyendecker, E.V.; Wesson, R.L.; Harmsen, S.C.; Klein, F.W.; Perkins, D.M.; Dickman, N.C.; Hanson, S.L.; Hopper, M.G.

    2000-01-01

    The U.S. Geological Survey (USGS) recently completed new probabilistic seismic hazard maps for the United States, including Alaska and Hawaii. These hazard maps form the basis of the probabilistic component of the design maps used in the 1997 edition of the NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, prepared by the Building Seismic Safety Council arid published by FEMA. The hazard maps depict peak horizontal ground acceleration and spectral response at 0.2, 0.3, and 1.0 sec periods, with 10%, 5%, and 2% probabilities of exceedance in 50 years, corresponding to return times of about 500, 1000, and 2500 years, respectively. In this paper we outline the methodology used to construct the hazard maps. There are three basic components to the maps. First, we use spatially smoothed historic seismicity as one portion of the hazard calculation. In this model, we apply the general observation that moderate and large earthquakes tend to occur near areas of previous small or moderate events, with some notable exceptions. Second, we consider large background source zones based on broad geologic criteria to quantify hazard in areas with little or no historic seismicity, but with the potential for generating large events. Third, we include the hazard from specific fault sources. We use about 450 faults in the western United States (WUS) and derive recurrence times from either geologic slip rates or the dating of pre-historic earthquakes from trenching of faults or other paleoseismic methods. Recurrence estimates for large earthquakes in New Madrid and Charleston, South Carolina, were taken from recent paleoliquefaction studies. We used logic trees to incorporate different seismicity models, fault recurrence models, Cascadia great earthquake scenarios, and ground-motion attenuation relations. We present disaggregation plots showing the contribution to hazard at four cities from potential earthquakes with various magnitudes and

  10. Teaching Tip: Managing Software Engineering Student Teams Using Pellerin's 4-D System

    ERIC Educational Resources Information Center

    Doman, Marguerite; Besmer, Andrew; Olsen, Anne

    2015-01-01

    In this article, we discuss the use of Pellerin's Four Dimension Leadership System (4-D) as a way to manage teams in a classroom setting. Over a 5-year period, we used a modified version of the 4-D model to manage teams within a senior level Software Engineering capstone course. We found that this approach for team management in a classroom…

  11. Elite collegiate tennis athletes have lower 2D: 4D ratios than those of nonathlete controls.

    PubMed

    Hsu, Cheng-Chen; Su, Borcherng; Kan, Nai-Wen; Lai, Su-Ling; Fong, Tsorng-Harn; Chi, Chung-Pu; Chang, Ching-Chyuan; Hsu, Mei-Chich

    2015-03-01

    The ratio of the length of the second finger (index finger) to the fourth finger (ring finger) (2D:4D ratio) is a putative marker for prenatal hormones. Physiological research has suggested a low 2D:4D ratio correlates with high athletic ability. Athletes of specific sports (e.g., American football) have lower 2D:4D ratios than those of nonathletes, whereas athletes of some sports (e.g., rowing, gymnastics, and soccer) do not. This study investigated the 2D:4D ratios among collegiate tennis athletes, elite collegiate tennis athletes, and nonelite collegiate tennis athletes and compared them with nonathletes of both sexes. The participants included 43 elite collegiate tennis athletes (Level I intercollegiate athletes in Taiwan; 27 males and 16 females), 107 nonelite collegiate tennis athletes (Level II athletes; 55 males and 52 females), and 166 nonathlete college students (80 males and 86 females). The principle findings suggest that (a) regardless of sex, collegiate tennis athletes have lower 2D:4D values than those of nonathletes; (b) elite collegiate tennis athletes have lower 2D:4D values than those of nonathletes; (c) among females but not males, athletes and nonelite athletes have lower 2D:4D values than those of nonathletes; and (d) males have lower 2D:4D values than those of females. PMID:25226321

  12. Elite collegiate tennis athletes have lower 2D: 4D ratios than those of nonathlete controls.

    PubMed

    Hsu, Cheng-Chen; Su, Borcherng; Kan, Nai-Wen; Lai, Su-Ling; Fong, Tsorng-Harn; Chi, Chung-Pu; Chang, Ching-Chyuan; Hsu, Mei-Chich

    2015-03-01

    The ratio of the length of the second finger (index finger) to the fourth finger (ring finger) (2D:4D ratio) is a putative marker for prenatal hormones. Physiological research has suggested a low 2D:4D ratio correlates with high athletic ability. Athletes of specific sports (e.g., American football) have lower 2D:4D ratios than those of nonathletes, whereas athletes of some sports (e.g., rowing, gymnastics, and soccer) do not. This study investigated the 2D:4D ratios among collegiate tennis athletes, elite collegiate tennis athletes, and nonelite collegiate tennis athletes and compared them with nonathletes of both sexes. The participants included 43 elite collegiate tennis athletes (Level I intercollegiate athletes in Taiwan; 27 males and 16 females), 107 nonelite collegiate tennis athletes (Level II athletes; 55 males and 52 females), and 166 nonathlete college students (80 males and 86 females). The principle findings suggest that (a) regardless of sex, collegiate tennis athletes have lower 2D:4D values than those of nonathletes; (b) elite collegiate tennis athletes have lower 2D:4D values than those of nonathletes; (c) among females but not males, athletes and nonelite athletes have lower 2D:4D values than those of nonathletes; and (d) males have lower 2D:4D values than those of females.

  13. The Influence of Facial Characteristics on the Relation between Male 2D:4D and Dominance

    PubMed Central

    Ryckmans, Jan; Millet, Kobe; Warlop, Luk

    2015-01-01

    Although relations between 2D:4D and dominance rank in both baboons and rhesus macaques have been observed, evidence in humans is mixed. Whereas behavioral patterns in humans have been discovered that are consistent with these animal findings, the evidence for a relation between dominance and 2D:4D is weak or inconsistent. The present study provides experimental evidence that male 2D:4D is related to dominance after (fictitious) male-male interaction when the other man has a dominant, but not a submissive or neutral face. This finding provides evidence that the relationship between 2D:4D and dominance emerges in particular, predictable situations and that merely dominant facial characteristics of another person are enough to activate supposed relationships between 2D:4D and dominance. PMID:26600255

  14. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    SciTech Connect

    Wang, Jing; Gu, Xuejun

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  15. Single well seismic imaging of a gas-filled hydrofracture

    SciTech Connect

    Daley, Thomas M.; Gritto, Roland; Majer, Ernest L.

    2003-08-19

    A single well seismic survey was conducted at the Lost Hills, Ca oil field in a monitoring well as part of a CO2 injection test. The source was a piezoelectric seismic source and the sensors were a string of hydrophones hanging below the source. The survey was processed using standard CMP reflection seismology techniques. A potential reflection event was observed and interpreted as being caused by a near vertical hydrofracture. The radial distance between the survey well and the hydrofracture is estimated from Kirchoff migration using a velocity model derived from cross well seismic tomography. The hydrofracture location imaged after migration agrees with the location of an existing hydrofracture.

  16. Interpreting digit ratio (2D:4D)-behavior correlations: 2D:4D sex difference, stability, and behavioral correlates and their replicability in young children.

    PubMed

    Wong, Wang I; Hines, Melissa

    2016-02-01

    The popularity of using the ratio of the second to the fourth digit (2D:4D) to study influences of early androgen exposure on human behavior relies, in part, on a report that the ratio is sex-dimorphic and stable from age 2 years (Manning etal., 1998). However, subsequent research has rarely replicated this finding. Moreover, although 2D:4D has been correlated with many behaviors, these correlations are often inconsistent. Young children's 2D:4D-behavior correlations may be more consistent than those of older individuals, because young children have experienced fewer postnatal influences. To evaluate the usefulness of 2D:4D as a biomarker of prenatal androgen exposure in studies of 2D:4D-behavior correlations, we assessed its sex difference, temporal stability, and behavioral correlates over a 6- to 8-month period in 126, 2- to 3-year-old children, providing a rare same-sample replicability test. We found a moderate sex difference on both hands and high temporal stability. However, between-sex overlap and within-sex variability were also large. Only 3 of 24 correlations with sex-typed behaviors-scores on the Preschool Activities Inventory (PSAI), preference for a boy-typical toy, preference for a girl-typical toy, were significant and in the predicted direction, all of which involved the PSAI, partially confirming findings from another study. Correlation coefficients were larger for behaviors that showed larger sex differences. But, as in older samples, the overall pattern showed inconsistency across time, sex, and hand. Therefore, although sex-dimorphic and stable, 2D:4D-behavior correlations are no more consistent for young children than for older samples. Theoretical and methodological implications are discussed.

  17. Weight of the evidence on the human carcinogenicity of 2,4-D*

    PubMed Central

    Ibrahim, M. A.; Bond, G. G.; Burke, T. A.; Cole, P.; Dost, F. N.; Enterline, P. E.; Gough, M.; Greenberg, R. S.; Halperin, W. E.; McConnell, E.; Munro, I. C.; Swenberg, J. A.; Zahm, S. H.; Graham, J. D.

    1991-01-01

    The phenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is widely used to control the growth of weeds and broadleaf plants. We convened a panel of 13 scientists to weigh the evidence on the human carcinogenicity of 2,4-D. The panel based its findings on a review of the toxicological and epidemiological literature on 2,4-D and related phenoxy herbicides. The toxicological data do not provide a strong basis for predicting that 2,4-D is a human carcinogen. Although a cause–effect relationship is far from being established, the epidemiological evidence for an association between exposure to 2,4-D and non–Hodgkin's lymphoma is suggestive and requires further investigation. There is little evidence of an association between use of 2,4-D and soft-tissue sarcoma or Hodgkin's disease, and no evidence of an association between 2,4-D use and any other form of cancer. Scientists on the panel were asked to categorize 2,4-D as a “known,” “probable,” “possible,” or “unlikely” carcinogen or as a noncarcinogen in humans. The predominant opinion among the panel members was that the weight of the evidence indicates that it is possible that exposure to 2,4-D can cause cancer in humans, although not all of the panelists believed the possibility was equally likely: one thought the possibility was strong, leaning toward probable, and five thought the possibility was remote, leaning toward unlikely. Two panelists believed it unlikely that 2,4-D can cause cancer in humans. PMID:1820267

  18. Serum Soluble Semaphorin 4D is Associated with Left Atrial Diameter in Patients with Atrial Fibrillation

    PubMed Central

    Xiang, Li; You, Tao; Chen, Jianchang; Xu, Weiting; Jiao, Yang

    2015-01-01

    Background The aim of this study was to evaluate the serum soluble semaphorin 4D (sSema4D) in patients with atrial fibrillation and to investigate the relationship of serum sSema4D with left atrial diameter (LAD). Material/Methods We studied a total of 113 patients who were subdivided into paroxysmal and non-paroxysmal (included persistent and permanent) atrial fibrillation groups, respectively. Another 55 subjects without atrial fibrillation were enrolled as the healthy control group. Serum levels of soluble semaphorin 4D (Sema4D) were measured in all subjects using the enzyme-labeled immunosorbent assay method. We also evaluated the coagulation parameters and left atrial diameters. Results Patients with paroxysmal and non-paroxysmal atrial fibrillation had significantly higher sSema4D level compared with controls (8.50±2.19 ng/mL and 9.30±2.28 ng/mL vs. 6.56±1.27 ng/ml, P<0.05). Serum sSema4D concentrations were elevated in patients with non-paroxysmal atrial fibrillation compared to those with paroxysmal atrial fibrillation (P<0.001). The level of sSema4D was positively correlated with LAD (r=0.606, P<0.001). Multivariate logistic regression analysis revealed that serum sSema4D, LAD, male sex, heart rate, hypertension, and coronary artery disease were associated with atrial fibrillation (P<0.05). Conclusions Serum sSema4D levels are increased in patients with atrial fibrillation and are independently associated with atrial remodeling. PMID:26417899

  19. TU-C-BRD-01: Image Guided SBRT I: Multi-Modality 4D Imaging

    SciTech Connect

    Cai, J; Mageras, G; Pan, T

    2014-06-15

    Motion management is one of the critical technical challenges for radiation therapy. 4D imaging has been rapidly adopted as essential tool to assess organ motion associated with respiratory breathing. A variety of 4D imaging techniques have been developed and are currently under development based on different imaging modalities such as CT, MRI, PET, and CBCT. Each modality provides specific and complementary information about organ and tumor respiratory motion. Effective use of each different technique or combined use of different techniques can introduce a comprehensive management of tumor motion. Specifically, these techniques have afforded tremendous opportunities to better define and delineate tumor volumes, more accurately perform patient positioning, and effectively apply highly conformal therapy techniques such as IMRT and SBRT. Successful implementation requires good understanding of not only each technique, including unique features, limitations, artifacts, imaging acquisition and process, but also how to systematically apply the information obtained from different imaging modalities using proper tools such as deformable image registration. Furthermore, it is important to understand the differences in the effects of breathing variation between different imaging modalities. A comprehensive motion management strategy using multi-modality 4D imaging has shown promise in improving patient care, but at the same time faces significant challenges. This session will focuses on the current status and advances in imaging respiration-induced organ motion with different imaging modalities: 4D-CT, 4D-MRI, 4D-PET, and 4D-CBCT/DTS. Learning Objectives: Understand the need and role of multimodality 4D imaging in radiation therapy. Understand the underlying physics behind each 4D imaging technique. Recognize the advantages and limitations of each 4D imaging technique.

  20. Exploring Critical Assumptions of Petrophysical Models in Fractured Aquifers by Comparing Estimated Porosity Values Obtained from Surface Nuclear Magnetic Resonance and Shallow Seismic Refraction Surveys.

    NASA Astrophysics Data System (ADS)

    Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.

    2015-12-01

    Estimating subsurface porosity from most near-surface geophysical techniques relies on petrophysical relationships. Using petrophysical relationships are challenging because they require many assumptions and oftentimes require site-specific constants. Despite complexities and challenges, the petrophysical relationships are critical to convert the measurable physical properties into hydrologic properties such as porosity, water content and ultimately hydraulic conductivity. In this study we compare porosities derived from shallow seismic refraction (SSR) and surface nuclear magnetic resonance (SNMR) in a fractured granite aquifer in the Laramie Range, Wyoming. To estimate porosity from the SSR data we use a Bayesian inversion based on Hertz-Mindlin contact theory and Hashin- Strickman boundaries. This type of petrophysical model requires us to make assumptions about the grain structure, mineralogy and water content. Using water table measurements from a borehole we assume that all pores are fully saturated below 10 meters, thus the SNMR measurement provides an estimate of porosity. If the petrophysical model and the assumptions that are required to use it were correct and the SNMR measurements were perfect, the estimates of porosities derived from two distinct physical measurements should provide the same porosity. Interestingly, we observe a large discrepancy in the porosities derived from this unique combination of measurements. At depths of 10 to 20 meters, the area that we interpret as fractured bedrock and where the assumption of fully saturated pores holds, the SSR predicted porosities are 15 to 20 % higher than those predicted by SNMR. Previous comparisons of the Bayesian inversion have shown it does well to predict porosity within the saprolite. The large discrepancy illustrates the need to use separate petrophysical models in the weathered and fractured zones of granite aquifers. More research is needed to figure out how to combine different petrophysical

  1. Seismic sources

    DOEpatents

    Green, Michael A.; Cook, Neville G. W.; McEvilly, Thomas V.; Majer, Ernest L.; Witherspoon, Paul A.

    1992-01-01

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

  2. Preliminary Investigation of Paleochannels and Groundwater Specific Conductance using Direct-Current Resistivity and Surface-Wave Seismic Geophysical Surveys at the Standard Chlorine of Delaware, Inc., Superfund Site, Delaware City, Delaware, 2008

    USGS Publications Warehouse

    Degnan, James R.; Brayton, Michael J.

    2010-01-01

    material stiffness; clays and cemented sediments will have a higher velocity than silts, sands, and gravels (in order of increasing hydraulic conductivity). Geophysical surveys detected elevated SC associated with contamination of the surficial Columbia aquifer. Groundwater with elevated SC over ambient (by an order of magnitude) produced a decrease in measured resistivity at the SCD site. Where SC data are not available from wells, it is not known if a low resistivity value measured with DC resistivity alone results from the geologic material (clay) or elevated SC in groundwater (in sand or gravel). Seismic surface waves used as part of the MASW technique are not affected by water content or quality and are used herein to distinguish between sand and clay when SC is high. Through concurrent interpretation of MASW and DC-resistivity surveys, information was gained about water quality and lithology over large areas at the SCD site.

  3. Incorporating induced seismicity in the 2014 United States National Seismic Hazard Model: results of the 2014 workshop and sensitivity studies

    USGS Publications Warehouse

    Petersen, Mark D.; Mueller, Charles S.; Moschetti, Morgan P.; Hoover, Susan M.; Rubinstein, Justin L.; Llenos, Andrea L.; Michael, Andrew J.; Ellsworth, William L.; McGarr, Arthur F.; Holland, Austin A.; Anderson, John G.

    2015-01-01

    The U.S. Geological Survey National Seismic Hazard Model for the conterminous United States was updated in 2014 to account for new methods, input models, and data necessary for assessing the seismic ground shaking hazard from natural (tectonic) earthquakes. The U.S. Geological Survey National Seismic Hazard Model project uses probabilistic seismic hazard analysis to quantify the rate of exceedance for earthquake ground shaking (ground motion). For the 2014 National Seismic Hazard Model assessment, the seismic hazard from potentially induced earthquakes was intentionally not considered because we had not determined how to properly treat these earthquakes for the seismic hazard analysis. The phrases “potentially induced” and “induced” are used interchangeably in this report, however it is acknowledged that this classification is based on circumstantial evidence and scientific judgment. For the 2014 National Seismic Hazard Model update, the potentially induced earthquakes were removed from the NSHM’s earthquake catalog, and the documentation states that we would consider alternative models for including induced seismicity in a future version of the National Seismic Hazard Model. As part of the process of incorporating induced seismicity into the seismic hazard model, we evaluate the sensitivity of the seismic hazard from induced seismicity to five parts of the hazard model: (1) the earthquake catalog, (2) earthquake rates, (3) earthquake locations, (4) earthquake Mmax (maximum magnitude), and (5) earthquake ground motions. We describe alternative input models for each of the five parts that represent differences in scientific opinions on induced seismicity characteristics. In this report, however, we do not weight these input models to come up with a preferred final model. Instead, we present a sensitivity study showing uniform seismic hazard maps obtained by applying the alternative input models for induced seismicity. The final model will be released after

  4. Estimation of seismically detectable portion of a gas plume: CO2CRC Otway project case study

    NASA Astrophysics Data System (ADS)

    Pevzner, Roman; Caspari, Eva; Bona, Andrej; Galvin, Robert; Gurevich, Boris

    2013-04-01

    CO2CRC Otway project comprises of several experiments involving CO2/CH4 or pure CO2 gas injection into different geological formations at the Otway test site (Victoria, Australia). During the first stage of the project, which was finished in 2010, more than 64,000 t of gas were injected into the depleted gas reservoir at ~2 km depth. At the moment, preparations for the next stage of the project aiming to examine capabilities of seismic monitoring of small scale injection (up to 15,000 t) into saline formation are ongoing. Time-lapse seismic is one of the most typical methods for CO2 geosequestration monitoring. Significant experience was gained during the first stage of the project through acquisition and analysis of the 4D surface seismic and numerous time-lapse VSP surveys. In order to justify the second stage of the project and optimise parameters of the experiment, several modelling studies were conducted. In order to predict seismic signal we populate realistic geological model with elastic properties, model their changes using fluid substitution technique applied to the fluid flow simulation results and compute synthetic seismic baseline and monitor volumes. To assess detectability of the time-lapse signal caused by the injection, we assume that the time-lapse noise level will be equivalent to the level of difference between the last two Otway 3D surveys acquired in 2009 and 2010 using conventional surface technique (15,000 lbs vibroseis sources and single geophones as the receivers). In order to quantify the uncertainties in plume imaging/visualisation due to the time-lapse noise realisation we propose to use multiple noise realisations with the same F-Kx-Ky amplitude spectra as the field noise for each synthetic signal volume. Having signal detection criterion defined in the terms of signal/time- lapse noise level on a single trace we estimate visible portion of the plume as a function of this criterion. This approach also gives an opportunity to attempt to

  5. United States National Seismic Hazard Maps

    USGS Publications Warehouse

    Petersen, M.D.; ,

    2008-01-01

    The U.S. Geological Survey?s maps of earthquake shaking hazards provide information essential to creating and updating the seismic design provisions of building codes and insurance rates used in the United States. Periodic revisions of these maps incorporate the results of new research. Buildings, bridges, highways, and utilities built to meet modern seismic design provisions are better able to withstand earthquakes, not only saving lives but also enabling critical activities to continue with less disruption. These maps can also help people assess the hazard to their homes or places of work and can also inform insurance rates.

  6. Application of 3D reflection seismic methods to mineral exploration

    NASA Astrophysics Data System (ADS)

    Urosevic, Milovan

    2013-04-01

    Seismic exploration for mineral deposits is often tested by excessively complex structures, regolith heterogeneity, intrinsically low signal to noise ratio, ground relief and accessibility. In brown fields, where the majority of the seismic surveys have been conducted, existing infrastructure, old pits and tailings, heavy machinery in operation, mine drainage and other mine related activities are further challenging the application of seismic methods and furthermore increasing its cost. It is therefore not surprising that the mining industry has been reluctant to use seismic methods, particularly 3D for mineral exploration, primarily due to the high cost, but also because of variable performance, and in some cases ambiguous interpretation results. However, shallow mineral reserves are becoming depleted and exploration is moving towards deeper targets. Seismic methods will be more important for deeper investigations and may become the primary exploration tool in the near future. The big issue is if we have an appropriate seismic "strategy" for exploration of deep, complex mineral reserves. From the existing case histories worldwide we know that massive ore deposits (VMS, VHMS) constitute the best case scenario for the application of 3D seismic. Direct targeting of massive ore bodies from seismic has been documented in several case histories. Sediment hosted deposits could, in some cases, can also produce a detectable seismic signature. Other deposit types such as IOCG and skarn are much more challenging for the application of seismic methods. The complexity of these deposits requires new thinking. Several 3D surveys acquired over different deposit types will be presented and discussed.

  7. Active seismic experiment

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1972-01-01

    The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.

  8. Application of 4D resistivity image profiling to detect DNAPLs plume.

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yang, C.; Tsai, Y.

    2008-12-01

    In July 1993, the soil and groundwater of the factory of Taiwan , Miaoli was found to be contaminated by dichloroethane, chlorobenzene and other hazardous solvents. The contaminants were termed to be dense non-aqueous phase liquids (DNAPLs). The contaminated site was neglected for the following years until May 1998, the Environment Protection Agency of Miaoli ordered the company immediately take an action for treatment of the contaminated site. Excavating and exposing the contaminated soil was done at the previous waste DNAPL dumped area. In addition, more than 53 wells were drilled around the pool with a maximum depth of 12 m where a clayey layer was found. Continuous pumping the groundwater and monitoring the concentration of residual DNAPL contained in the well water samples have done in different stages of remediation. However, it is suspected that the DNAPL has existed for a long time, therefore the contaminants might dilute but remnants of a DNAPL plume that are toxic to humans still remain in the soil and migrate to deeper aquifers. A former contaminated site was investigated using the 2D, 3D and 4D resisitivity image technique, with aims of determining buried contaminant geometry. This paper emphasizes the use of resistivity image profiling (RIP) method to map the limit of this DNAPL waste disposal site where the records of operations are not variations. A significant change in resistivity values was detected between known polluted and non-polluted subsurface; a high resistivity value implies that the subsurface was contaminated by DNAPL plume. The results of the survey serve to provide insight into the sensitivity of RIP method for detecting DNAPL plumes within the shallow subsurface, and help to provide valuable information related to monitoring the possible migration path of DNAPL plume in the past. According to the formerly studies in this site, affiliation by excavates with pumps water remediation had very long time, Therefore this research was used

  9. Physical properties of the top of the subducting Philippine Sea plate beneath the SW Japan arc, derived from onshore - offshore integrated seismic survey

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Hirata, N.; Iwasaki, T.; Kodaira, S.; Kaneda, Y.

    2004-12-01

    The Nankai trough region, where the Philippine Sea Plate is subducting beneath the southwestern Japan arc, is a well-known seismogenic zone of interplate earthquakes (e.g. the 1944 Tonankai Earthquake (M=7.9) and the 1946 Nankai Earthquake (M=8.0)). A detailed crustal and upper mantle structure of the subducted Philippine Sea Plate and the overlying SW Japan arc is inevitably important to constrain the physical process of earthquake occurrence. In the summer of 1999, we conducted a highly dense onshore-offshore integrated seismic experiment in the eastern part of Shikoku Island and the adjacent Nankai trough, SW Japan. The most remarkable feature of the record sections is that extremely high amplitude reflections (bright reflections) can be recognized. This phase was interpreted as a reflected wave from the top of the subducting Philippine Sea plate at a depth of 18-30km (Kurashimo et al., 2002). Physical properties across the reflecting interface control amplitude versus offset (AVO) response. To obtain physical properties of the material between the subducting Philippine Sea plate and island arc crust, we investigated AVO response on this bright reflection. Analyzing this bright reflection, we could obtain the reflection coefficient (Rpp) as a function of the incident angle. Rpp tends to increase beyond about 50 degrees. To discuss about this characteristic, we calculated reflection coefficient for different velocity models. The single interface models (positive velocity contrast exists between the interface. negative velocity gradient exists upper side of the reflecter) can not explain the characteristic of the Rpp. Thin layer model (about 200 m) with a P-wave velocity of 4.0 km/s (a thin layer with a negative reflection coefficient at its upper boundary and a much larger, but positive reflection coefficient at its base exists) explains the characteristic of the Rpp. The P-wave velocity of the sediments shows 2.0-4.2km/s off Shikoku Island (Kodaira et al., 2002

  10. Four-dimensional (4D) PET/CT imaging of the thorax

    SciTech Connect

    Nehmeh, S.A.; Erdi, Y.E.; Pan, T.

    2004-12-01

    We have reported in our previous studies on the methodology, and feasibility of 4D-PET (Gated PET) acquisition, to reduce respiratory motion artifact in PET imaging of the thorax. In this study, we expand our investigation to address the problem of respiration motion in