Science.gov

Sample records for 4-fold degenerate sites

  1. Efficient site-directed saturation mutagenesis using degenerate oligonucleotides.

    PubMed

    Steffens, David L; Williams, John G K

    2007-07-01

    We describe a reliable protocol for constructing single-site saturation mutagenesis libraries consisting of all 20 naturally occurring amino acids at a specific site within a protein. Such libraries are useful for structure-function studies and directed evolution. This protocol extends the utility of Stratagene's QuikChange Site-Directed Mutagenesis Kit, which is primarily recommended for single amino acid substitutions. Two complementary primers are synthesized, containing a degenerate mixture of the four bases at the three positions of the selected codon. These primers are added to starting plasmid template and thermal cycled to produce mutant DNA molecules, which are subsequently transformed into competent bacteria. The protocol does not require purification of mutagenic oligonucleotides or PCR products. This reduces both the cost and turnaround time in high-throughput directed evolution applications. We have utilized this protocol to generate over 200 site-saturation libraries in a DNA polymerase, with a success rate of greater than 95%. PMID:17595310

  2. On a smooth quintic 4-fold

    SciTech Connect

    Cheltsov, I A

    2000-10-31

    The birational geometry of an arbitrary smooth quintic 4-fold is studied using the properties of log pairs. As a result, a new proof of its birational rigidity is given and all birational maps of a smooth quintic 4-fold into fibrations with general fibre of Kodaira dimension zero are described. In the Addendum similar results are obtained for all smooth hypersurfaces of degree n in P{sup n} in the case of n equal to 6, 7, or 8.

  3. Degenerate target sites mediate rapid primed CRISPR adaptation.

    PubMed

    Fineran, Peter C; Gerritzen, Matthias J H; Suárez-Diez, María; Künne, Tim; Boekhorst, Jos; van Hijum, Sacha A F T; Staals, Raymond H J; Brouns, Stan J J

    2014-04-22

    Prokaryotes encode adaptive immune systems, called CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated), to provide resistance against mobile invaders, such as viruses and plasmids. Host immunity is based on incorporation of invader DNA sequences in a memory locus (CRISPR), the formation of guide RNAs from this locus, and the degradation of cognate invader DNA (protospacer). Invaders can escape type I-E CRISPR-Cas immunity in Escherichia coli K12 by making point mutations in the seed region of the protospacer or its adjacent motif (PAM), but hosts quickly restore immunity by integrating new spacers in a positive-feedback process termed "priming." Here, by using a randomized protospacer and PAM library and high-throughput plasmid loss assays, we provide a systematic analysis of the constraints of both direct interference and subsequent priming in E. coli. We have defined a high-resolution genetic map of direct interference by Cascade and Cas3, which includes five positions of the protospacer at 6-nt intervals that readily tolerate mutations. Importantly, we show that priming is an extremely robust process capable of using degenerate target regions, with up to 13 mutations throughout the PAM and protospacer region. Priming is influenced by the number of mismatches, their position, and is nucleotide dependent. Our findings imply that even outdated spacers containing many mismatches can induce a rapid primed CRISPR response against diversified or related invaders, giving microbes an advantage in the coevolutionary arms race with their invaders.

  4. A clustering property of highly-degenerate transcription factor binding sites in the mammalian genome.

    PubMed

    Zhang, Chaolin; Xuan, Zhenyu; Otto, Stefanie; Hover, John R; McCorkle, Sean R; Mandel, Gail; Zhang, Michael Q

    2006-01-01

    Transcription factor binding sites (TFBSs) are short DNA sequences interacting with transcription factors (TFs), which regulate gene expression. Due to the relatively short length of such binding sites, it is largely unclear how the specificity of protein-DNA interaction is achieved. Here, we have performed a genome-wide analysis of TFBS-like sequences for the transcriptional repressor, RE1 Silencing Transcription Factor (REST), as well as for several other representative mammalian TFs (c-myc, p53, HNF-1 and CREB). We find a nonrandom distribution of inexact sites for these TFs, referred to as highly-degenerate TFBSs, that are enriched around the cognate binding sites. Comparisons among human, mouse and rat orthologous promoters reveal that these highly-degenerate sites are conserved significantly more than expected by random chance, suggesting their positive selection during evolution. We propose that this arrangement provides a favorable genomic landscape for functional target site selection.

  5. Human cartilage endplate permeability varies with degeneration and intervertebral disc site.

    PubMed

    DeLucca, John F; Cortes, Daniel H; Jacobs, Nathan T; Vresilovic, Edward J; Duncan, Randall L; Elliott, Dawn M

    2016-02-29

    Despite the critical functions the human cartilage endplate (CEP) plays in the intervertebral disc, little is known about its structural and mechanical properties and their changes with degeneration. Quantifying these changes with degeneration is important for understanding how the CEP contributes to the function and pathology of the disc. Therefore the objectives of this study were to quantify the effect of disc degeneration on human CEP mechanical properties, determine the influence of superior and inferior disc site on mechanics and composition, and simulate the role of collagen fibers in CEP and disc mechanics using a validated finite element model. Confined compression data and biochemical composition data were used in a biphasic-swelling model to calculate compressive extrafibrillar elastic and permeability properties. Tensile properties were obtained by applying published tensile test data to an ellipsoidal fiber distribution. Results showed that with degeneration CEP permeability decreased 50-60% suggesting that transport is inhibited in the degenerate disc. CEP fibers are organized parallel to the vertebrae and nucleus pulposus and may contribute to large shear strains (0.1-0.2) and delamination failure of the CEP commonly seen in herniated disc tissue. Fiber-reinforcement also reduces CEP axial strains thereby enhancing fluid flux by a factor of 1.8. Collectively, these results suggest that the structure and mechanics of the CEP may play critical roles in the solute transport and disc mechanics. PMID:26874969

  6. MDC-Analyzer: a novel degenerate primer design tool for the construction of intelligent mutagenesis libraries with contiguous sites.

    PubMed

    Tang, Lixia; Wang, Xiong; Ru, Beibei; Sun, Hengfei; Huang, Jian; Gao, Hui

    2014-06-01

    Recent computational and bioinformatics advances have enabled the efficient creation of novel biocatalysts by reducing amino acid variability at hot spot regions. To further expand the utility of this strategy, we present here a tool called Multi-site Degenerate Codon Analyzer (MDC-Analyzer) for the automated design of intelligent mutagenesis libraries that can completely cover user-defined randomized sequences, especially when multiple contiguous and/or adjacent sites are targeted. By initially defining an objective function, the possible optimal degenerate PCR primer profiles could be automatically explored using the heuristic approach of Greedy Best-First-Search. Compared to the previously developed DC-Analyzer, MDC-Analyzer allows for the existence of a small amount of undesired sequences as a tradeoff between the number of degenerate primers and the encoded library size while still providing all the benefits of DC-Analyzer with the ability to randomize multiple contiguous sites. MDC-Analyzer was validated using a series of randomly generated mutation schemes and experimental case studies on the evolution of halohydrin dehalogenase, which proved that the MDC methodology is more efficient than other methods and is particularly well-suited to exploring the sequence space of proteins using data-driven protein engineering strategies.

  7. Arterial wall degeneration plus hemodynamic insult cause arterial wall remodeling and nascent aneurysm formation at specific sites in dogs.

    PubMed

    Zhu, Yue-Qi; Li, Ming-Hua; Yan, Lei; Tan, Hua-Qiao; Cheng, Ying-Sheng

    2014-09-01

    To determine whether arterial wall degeneration, in combination with hemodynamic insult, causes cerebral artery aneurysms in a dog model, we simulated the geometry and hemodynamics of a human artery by surgical reconstruction of both common carotid arteries in 12 dogs. The dogs were then randomly assigned to one of the following groups: hemodynamic insult + elastase insult group ( n = 6), hemodynamic insult group (n = 6), or elastase control group (n = 3), in which the straight common carotid arteries were subjected to elastase alone. Angiography and hemodynamic analysis were performed immediately and at 12 weeks after surgery; the animals were then killed for histologic evaluation. The 12 surgically reconstructed distal internal carotid arteries simulated the human artery well with respect to geometric and hemodynamic measurements, with the intended aneurysm sites exposed to higher wall shear stress and velocity, lower pressure, turbulent flow, and changes in wall shear stress gradient. Nascent aneurysms developed in 4 hemodynamic insult + elastase insult group dogs at 12 weeks; blood flow analysis demonstrated decreased wall shear stress, increased pressure, and wall shear stress gradient from the neck to the dome. Arterial wall remodeling or nascent aneurysm formation in the hemodynamic insult + elastase insult group versus the other groups was indicated by internal elastic lamina/elastic fiber disruption, muscular layer thinning, increased smooth muscle cell proliferation, macrophage infiltration, and high expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in the media. These data suggest that nascent aneurysms were caused by the combination of arterial wall degeneration and hemodynamic perturbations in this distal internal carotid artery dog model.

  8. Macular degeneration

    MedlinePlus

    ... at the center of the field of vision. Macular degeneration results from a partial breakdown of the insulating ... choroid layer of blood vessels behind the retina. Macular degeneration results in the loss of central vision only.

  9. Cerebellar Degeneration

    MedlinePlus

    ... Degeneration? Cerebellar degeneration is a process in which neurons in the cerebellum - the area of the brain ... proteins that are necessary for the survival of neurons. Associated diseases: Diseases that are specific to the ...

  10. Is the subcallosal medial prefrontal cortex a common site of atrophy in Alzheimer's disease and frontotemporal lobar degeneration?

    PubMed

    Lindberg, Olof; Westman, Eric; Karlsson, Sari; Ostberg, Per; Svensson, Leif A; Simmons, Andrew; Wahlund, Lars-Olof

    2012-01-01

    Regions affected late in neurodegenerative disease are thought to be anatomically connected to regions affected earlier. The subcallosal medial prefrontal cortex (SMPC) has connections with the dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and hippocampus (HC), which are regions that may become atrophic in frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). We hypothesized that the SMPC is a common site of frontal atrophy in the FTLD subtypes and in AD. The volume of the SMPC, DLPFC, OFC, HC, and entorhinal cortex (EC) were manually delineated for 12 subjects with frontotemporal dementia (FTD), 13 with semantic dementia (SD), 9 with progressive nonfluent aphasia (PNFA), 10 AD cases, and 13 controls. Results revealed significant volume loss in the left SMPC in FTD, SD, and PNFA, while the right SMPC was also atrophied in SD and FTD. In AD a non significant tendency of volume loss in the left SMPC was found (p = 0.08), with no volume loss on the right side. Results indicated that volume loss reflected the degree of brain connectivity. In SD and AD temporal regions displayed most atrophy. Among the frontal regions, the SMPC (which receives the strongest temporal projections) demonstrated most volume loss, the OFC (which receives less temporal projections) less volume loss, while the DLPFC (which is at multisynaptic distance from the temporal regions) demonstrated no volume loss. In PNFA, the left SMPC was atrophic, possibly reflecting progression from the left anterior insula, while FTD patients may have had SMPC atrophy at the initial stages of the disease. Atrophy of the SMPC may thus be affected by either initial temporal or initial frontal atrophy, making it a common site of frontal atrophy in the dementia subtypes investigated.

  11. Brane brick models, toric Calabi-Yau 4-folds and 2d (0,2) quivers

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong

    2016-02-01

    We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2 d (generically) {N}=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.

  12. Macular Degeneration

    MedlinePlus

    ... common early symptom. Dry AMD happens when the light-sensitive cells in the macula slowly break down. Your gradually lose your central vision. A common early symptom is that straight lines appear crooked. Regular comprehensive eye exams can detect macular degeneration before the disease ...

  13. Crystalline structures of polymeric hydrocarbon with 3,4-fold helical chains

    PubMed Central

    Lian, Chao-Sheng; Li, Han-Dong; Wang, Jian-Tao

    2015-01-01

    Molecular hydrocarbons are well-known to polymerize under pressure to form covalently bonded frameworks. Here we predict by ab initio calculations two distinct three-dimensional hydrocarbon crystalline structures composed of 3-fold and 4-fold helical CH chains in rhombohedral () and tetragonal (I41/a) symmetry, respectively. Both structures with 1:1 stoichiometry are found to be energetically more favorable than solid acetylene and cubane, and even more stable than benzene II solid at high pressure. The calculations on vibrational, electronic, and optical properties reveal that the new chiral hydrocarbons are dynamically stable with large bulk moduli around 200 GPa, and exhibit a transparent insulating behavior with indirect band gaps of 5.9 ~ 6.7 eV and anisotropic adsorption spectra. Such forms of hydrocarbon, once synthesized, would have wide applications in mechanical, optoelectronic, and biological materials. PMID:25579707

  14. Precision half-life measurement of the 4-fold forbidden β decay of V50

    NASA Astrophysics Data System (ADS)

    Dombrowski, H.; Neumaier, S.; Zuber, K.

    2011-05-01

    A sensitive search of the 4-fold forbidden nonunique decay of V50 has been performed. A total mass measuring time product of 186 kg d has been accumulated. A reliable half-life value with the highest precision so far of (2.29±0.25)×1017 years of the electron capture decay of V50 into the first excited state of Ti50 could be obtained. A photon emission line following the β decay into the first excited state of Cr50 could not be observed, resulting in a lower limit on the half-life of the β-decay branch of 1.7×1018 years. This is not in good agreement with a claimed observation of this decay branch published in 1989.

  15. Precision half-life measurement of the 4-fold forbidden {beta} decay of {sup 50}V

    SciTech Connect

    Dombrowski, H.; Neumaier, S.; Zuber, K.

    2011-05-15

    A sensitive search of the 4-fold forbidden nonunique decay of {sup 50}V has been performed. A total mass measuring time product of 186 kg d has been accumulated. A reliable half-life value with the highest precision so far of (2.29{+-}0.25)x10{sup 17} years of the electron capture decay of {sup 50}V into the first excited state of {sup 50}Ti could be obtained. A photon emission line following the {beta} decay into the first excited state of {sup 50}Cr could not be observed, resulting in a lower limit on the half-life of the {beta}-decay branch of 1.7x10{sup 18} years. This is not in good agreement with a claimed observation of this decay branch published in 1989.

  16. Synchrotron radiation circular dichroism spectroscopy study of recombinant T β4 folding

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Chin; Chu, Hsueh-Liang; Chen, Peng-Jen; Chang, Chia-Ching

    Thymosin beta 4 (T β4) is a 43-amino acid small peptide, has been demonstrated that it can promote cardiac repair, wound repair, tissue protection, and involve in the proliferation of blood cell precursor stem cells of bone marrow. Moreover, T β4 has been identified as a multifunction intrinsically disordered protein, which is lacking the stable tertiary structure. Owing to the small size and disordered character, the T β4 protein degrades rapidly and the storage condition is critical. Therefore, it is not easy to reveal its folding mechanism of native T β4. However, recombinant T β4 protein (rT β4), which fused with a 5-kDa peptide in its amino-terminal, is stable and possesses identical function of T β4. Therefore, rT β4 can be used to study its folding mechanism. By using over-critical folding process, stable folding intermediates of rT β4 can be obtained. Structure analysis of folding intermediates by synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies indicate that rT β4 is a random coli major protein and its hydrophobic region becomes compact gradually. Moreover, the rT β4 folding is a two state transition. Thermal denaturation analysis indicates that rT β4 lacks stable tertiary structure. These results indicated that rT β4, similar to T β4, is an intrinsically disordered protein. Research is supported by MOST, Taiwan. MOST 103-2112-M-009-011-MY3. Corresponding author: Chia-Ching Chang; ccchang01@faculty.nctu.edu.tw.

  17. Lipoprotein(A) with An Intact Lysine Binding Site Protects the Retina From an Age-Related Macular Degeneration Phenotype in Mice (An American Ophthalmological Society Thesis)

    PubMed Central

    Handa, James T.; Tagami, Mizuki; Ebrahimi, Katayoon; Leibundgut, Gregor; Janiak, Anna; Witztum, Joseph L.; Tsimikas, Sotirios

    2015-01-01

    Purpose: To test the hypothesis that the accumulation of oxidized phospholipids (OxPL) in the macula is toxic to the retina unless neutralized by a variety of mechanisms, including binding by lipoprotein(a) [Lp(a)], which is composed of apolipoprotein(a) [apo(a)] and apolipoprotein B-100 (apoB). Methods: Human maculas and eyes from two Lp(a) transgenic murine models were subjected to morphologic, ultrastructural, and immunohistochemical analysis. “Wild-type Lp(a)” mice, which express human apoB-100 and apo(a) that contains oxidized phospholipid, and “mutant LBS− Lp(a)” mice with a defective apo(a) lysine binding site (LBS) for oxidized phospholipid binding, were fed a chow or high-fat diet for 2 to 12 months. Oxidized phospholipid–containing lipoproteins were detected by immunoreactivity to E06, a murine monoclonal antibody binding to the phosphocholine headgroup of oxidized, but not native, phospholipids. Results: Oxidized phospholipids, apo(a), and apoB accumulate in maculas, including drusen, of age-related macular degeneration (AMD) samples and age-matched controls. Lp(a) mice fed a high-fat diet developed age-related changes. However, mutant LBS− Lp(a) mice fed a high-fat diet developed retinal pigment epithelial cell degeneration and drusen. These changes were associated with increased OxPL, decreased antioxidant defenses, increased complement, and decreased complement regulators. Conclusions: Human maculas accumulate Lp(a) and OxPL. Mutant LBS− Lp(a) mice, lacking the ability to bind E06-detectable oxidized phospholipid, develop AMD-like changes. The ability of Lp(a) to bind E06-detectable OxPL may play a protective role in AMD. PMID:26538774

  18. Macular degeneration (image)

    MedlinePlus

    Macular degeneration is a disease of the retina that affects the macula in the back of the eye. ... see fine details. There are two types of macular degeneration, dry and wet. Dry macular degeneration is more ...

  19. American Macular Degeneration Foundation

    MedlinePlus

    ... to content Contact DONATE Search for: Search Saving sight through research and education American Macular Degeneration Foundation Saving Sight Through Research and Education Menu About Macular Degeneration ...

  20. [Hepatolenticular degeneration].

    PubMed

    Zudenigo, D; Relja, M

    1990-01-01

    Hepatolenticular degeneration (Wilson's disease) is a hereditary disease in which metabolic disorder of copper leads to its accumulation in the liver, brain, cornea and kidneys with consequent pathologic changes in those organs. Hereditary mechanism of the disease is autosomal recessive with prevalence of 30-100 per 1,000,000 inhabitants. Etiology of this disease is not yet explained. There are two hypotheses. The first one is that it is the disorder of ceruloplasmine metabolism caused by insufficient synthesis of normal ceruloplasmine, or synthesis of functionally abnormal ceruloplasmine. The second one is: the block of copper biliar excretion which is the consequence of the liver lysosomes functional defect. Pathogenetic mechanism of disease is firstly long-term accumulation of copper in the liver, and later, when the liver depo is full, its releasing in circulation and accumulation in the brain, cornea, kidneys and bones, which causes adequate pathologic changes. Toxic activity of copper is the consequence of its activity on enzymes, particularly on those with -SH group. There are two basic clinical forms of the disease: liver disease or neurologic disease. Before puberty the liver damage is more frequent, while in adolescents and young adults neurologic form of the disease is usual. The liver disease is nonspecific and characterized by symptoms of cirrhosis and chronic aggressive hepatitis. The only specificity is hemolytic anemia which, in combination with previous symptoms, is important for diagnosis of the disease. Neurologic symptoms are the most frequent consequence of pathologic changes in the basal ganglia. In our patients the most frequent symptoms were tremor (63%); dysarthria, choreoathetosis and rigor (38%); ataxia and mental disorders (31%); dysphagia and dystonia (12%), diplopia, hypersalivation, nystagmus and Babinski's sign (6%). Among pathologic changes in other tissues and organs the most important is the finding of Kayser-Fleischer ring in the

  1. Macular Degeneration Partnership

    MedlinePlus

    AMD Macular Degeneration Partnership High Contrast Original + Font Size – Home About AMD Dry AMD Wet AMD Experience AMD Living with ... vision on a daily basis. AMD (Age Related Macular Degeneration) Partnership Listen AMD Month Public Service Announcement To ...

  2. A 4-fold-symmetry hexagonal ruthenium for magnetic heterostructures exhibiting enhanced perpendicular magnetic anisotropy and tunnel magnetoresistance.

    PubMed

    Wen, Zhenchao; Sukegawa, Hiroaki; Furubayashi, Takao; Koo, Jungwoo; Inomata, Koichiro; Mitani, Seiji; Hadorn, Jason Paul; Ohkubo, Tadakatsu; Hono, Kazuhiro

    2014-10-01

    A 4-fold-symmetry hexagonal Ru emerging in epitaxial MgO/Ru/Co2 FeAl/MgO heterostructures is reported, in which an approximately Ru(022¯3) growth attributes to the lattice matching between MgO, Ru, and Co2 FeAl. Perpendicular magnetic anisotropy of the Co2 FeAl/MgO interface is substantially enhanced. The magnetic tunnel junctions (MTJs) incorporating this structure give rise to the largest tunnel magnetoresistance for perpendicular MTJs using low damping Heusler alloys.

  3. Macular Degeneration: An Overview.

    ERIC Educational Resources Information Center

    Chalifoux, L. M.

    1991-01-01

    This article presents information on macular degeneration for professionals helping persons with this disease adjust to their visual loss. It covers types of macular degeneration, the etiology of the disease, and its treatment. Also considered are psychosocial problems and other difficulties that persons with age-related macular degeneration face.…

  4. Biomechanics of Disc Degeneration

    PubMed Central

    Palepu, V.; Kodigudla, M.; Goel, V. K.

    2012-01-01

    Disc degeneration and associated disorders are among the most debated topics in the orthopedic literature over the past few decades. These may be attributed to interrelated mechanical, biochemical, and environmental factors. The treatment options vary from conservative approaches to surgery, depending on the severity of degeneration and response to conservative therapies. Spinal fusion is considered to be the “gold standard” in surgical methods till date. However, the association of adjacent level degeneration has led to the evolution of motion preservation technologies like spinal arthroplasty and posterior dynamic stabilization systems. These new technologies are aimed to address pain and preserve motion while maintaining a proper load sharing among various spinal elements. This paper provides an elaborative biomechanical review of the technologies aimed to address the disc degeneration and reiterates the point that biomechanical efficacy followed by long-term clinical success will allow these nonfusion technologies as alternatives to fusion, at least in certain patient population. PMID:22745914

  5. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  6. Degenerate density perturbation theory

    NASA Astrophysics Data System (ADS)

    Palenik, Mark C.; Dunlap, Brett I.

    2016-09-01

    Fractional occupation numbers can be used in density functional theory to create a symmetric Kohn-Sham potential, resulting in orbitals with degenerate eigenvalues. We develop the corresponding perturbation theory and apply it to a system of Nd degenerate electrons in a harmonic oscillator potential. The order-by-order expansions of both the fractional occupation numbers and unitary transformations within the degenerate subspace are determined by the requirement that a differentiable map exists connecting the initial and perturbed states. Using the X α exchange-correlation (XC) functional, we find an analytic solution for the first-order density and first- through third-order energies as a function of α , with and without a self-interaction correction. The fact that the XC Hessian is not positive definite plays an important role in the behavior of the occupation numbers.

  7. Signaling mechanisms regulating Wallerian degeneration

    PubMed Central

    Freeman, Marc R.

    2014-01-01

    Summary Wallerian degeneration (WD) occurs after an axon is cut or crushed and entails the disintegration and clearance of the severed axon distal to the injury site. WD was initially thought to result from the passive wasting away of the distal axonal fragment, presumably because it lacked a nutrient supply from the cell body. The discovery of the slow Wallerian degeneration (Wlds) mutant mouse, in which distal severed axons survive intact for weeks rather than only 1–2 days, radically changed our thoughts on the autonomy of axon survival. Wlds taught us that under some conditions the axonal compartment can survive for weeks after axotomy without a cell body. The phenotypic and molecular characterization of Wlds and current models for Wlds molecular function are reviewed herein—the mechanism(s) by which WldS spares severed axons remains unresolved. However, recent studies inspired by Wlds have led to the identification of the first “axon death” signaling molecules whose endogenous activities promote axon destruction during WD. PMID:24907513

  8. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2016-08-16

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  9. Two Ultracool Degenerate Companions

    NASA Astrophysics Data System (ADS)

    Farihi, J.

    2005-07-01

    In the course of an extensive survey for low mass stellar and substellar companions to nearby white dwarfs, two extrememly cool degenerate objects have been discovered. GD 392B is one of only a few known white dwarfs with Teff⪉4000 K and exhibits collision induced absorption in the near infrared tep{far04}. GD 1400B is the second known L dwarf companion to a white dwarf and a possible brown dwarf (Farihi & Christopher 2004). Interested readers should consult the references for a complete description of these two cool objects.

  10. Cortical Basal Ganglionic Degeneration

    PubMed Central

    Scarmeas, Nikolaos; Chin, Steven S.; Marder, Karen

    2011-01-01

    In this case study, we describe the symptoms, neuropsychological testing, and brain pathology of a retired mason's assistant with cortical basal ganglionic degeneration (CBGD). CBGD is an extremely rare neurodegenerative disease that is categorized under both Parkinsonian syndromes and frontal lobe dementias. It affects men and women nearly equally, and the age of onset is usually in the sixth decade of life. CBGD is characterized by Parkinson's-like motor symptoms and by deficits of movement and cognition, indicating focal brain pathology. Neuronal cell loss is ultimately responsible for the neurological symptoms. PMID:14602941

  11. Local reactivity descriptors from degenerate frontier molecular orbitals

    NASA Astrophysics Data System (ADS)

    Martínez, Jorge

    2009-08-01

    Conceptual Density Functional Theory (DFT) has proposed a set of local descriptors to measure the reactivity on specific sites of a molecule, as an example dual descriptor has been successfully used in analyzing interesting systems to understand their local reactivity, however under the frozen orbital approximation (FOA), it is defined from non-degenerate frontier molecular orbitals (FMOs). In this work, the degeneration is taken into account to propose approximated expressions to obtain the dual descriptor, nucleophilic and electrophilic Fukui functions in closed-shell systems. The proposed expressions have been tested on molecules presenting degenerate FMOs.

  12. What Is Age-Related Macular Degeneration?

    MedlinePlus

    ... Degeneration Diagnosis: How is AMD diagnosed? Macular Degeneration Treatment: How is AMD Treated? Macular ... macular degeneration (AMD) is a deterioration or breakdown of the eye's macula. The macula is a small area in the ...

  13. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila

    PubMed Central

    Xiao, Hui; Wang, Denan; Franc, Nathalie C.; Jan, Lily Yeh; Jan, Yuh-Nung

    2014-01-01

    SUMMARY During developmental remodeling, neurites destined for pruning often degenerate on-site. Physical injury also induces degeneration of neurites distal to the injury site. Prompt clearance of degenerating neurites is important for maintaining tissue homeostasis and preventing inflammatory responses. Here we show that in both dendrite pruning and dendrite injury of Drosophila sensory neurons, epidermal cells rather than hemocytes are the primary phagocytes in clearing degenerating dendrites. Epidermal cells act via Draper-mediated recognition to facilitate dendrite degeneration and to engulf and degrade degenerating dendrites. Using multiple dendritic membrane markers to trace phagocytosis, we show that two members of the CD36 family, croquemort (crq) and debris buster (dsb), act at distinct stages of phagosome maturation for dendrite clearance. Our finding reveals the physiological importance of coordination between neurons and their surrounding epidermis, for both dendrite fragmentation and clearance. PMID:24412417

  14. Wilson's disease (hepatolenticular degeneration).

    PubMed

    Herron, B E

    1976-01-01

    Wilson's disease, or hepatolenticular degeneration, is a rare inherited disorder of copper metabolism which usually affects young people. Excess copper accumulates in the tissues, primarily in the liver, brain, and cornea. This copper deposition results in a wide range of hepatic and neurological symptoms, and may produce psychiatric illness. Hepatic involvement often occurs in childhood, while neurological deficits generally are detected at a later age. The disease is inherited in an autosomal recessive fashion. Ocular findings are of particular importance because the corneal copper deposition, forming the Kayser-Fleischer ring,is the only pathognomonic sign of the disease. The structure of the ring and the presence of copper have been well established. An anterior capsular deposition of copper in the lens results in a characteristic sunflower cataract in some of these patients. Other ocular abnormalities have been described but are much less common. The pathogenesis of the disease and the basic genetic defect remain obscure. It is clear that there is excess copper in the tissues, but the mechanism of its deposition is unknown. It is in some way associated with a failure to synthesize the serum copper protein ceruloplasmin normally. Another theory suggests that an abnormal protein with a high affinity for copper may bind the metal in the tissues. The diagnosis may be suggested by the clinical manifestations and confirmed by the presence of a Kayser-Fleischer ring. In the absence of these findings biochemical determinations are necessary. The most important of these are the serum ceruloplasmin, the urinary copper, and the hepatic copper concentration on biopsy. Treatment consists in the administration of the copper chelating agent, penicillamine, and the avoidance of a high copper intake. This usually results in marked clinical improvement if irreversible tissue damage has not occurred. Maintenance therapy for life is necessary in order to continue the negative

  15. X-linked recessive atrophic macular degeneration from RPGR mutation.

    PubMed

    Ayyagari, Radha; Demirci, F Yesim; Liu, Jiafan; Bingham, Eve L; Stringham, Heather; Kakuk, Laura E; Boehnke, Michael; Gorin, Michael B; Richards, Julia E; Sieving, Paul A

    2002-08-01

    We mapped a new X-linked recessive atrophic macular degeneration locus to Xp21.1-p11.4 and show allelic involvement of the gene RPGR, which normally causes severe peripheral retinal degeneration leading to global blindness. Ten affected males whom we examined had primarily macular atrophy causing progressive loss of visual acuity with minimal peripheral visual impairment. One additional male showed extensive macular degeneration plus peripheral loss of retinal pigment epithelium and choriocapillaries. Full-field electroretinograms (ERGs) showed normal cone and rod responses in some affected males despite advanced macular degeneration, emphasizing the dissociation of atrophic macular degeneration from generalized cone degenerations, including X-linked cone dystrophy (COD1). The RPGR gene nonsense mutation G-->T at open reading frame (ORF)15+1164 cosegregated with the disease and may create a donor splice site. Identification of an RPGR mutation in atrophic maculardegeneration expands the phenotypic range associated with this gene and provides a new tool for the dissection of the relationship between clinically different retinal pathologies.

  16. Frontotemporal lobar degeneration: current perspectives

    PubMed Central

    Riedl, Lina; Mackenzie, Ian R; Förstl, Hans; Kurz, Alexander; Diehl-Schmid, Janine

    2014-01-01

    The term frontotemporal lobar degeneration (FTLD) refers to a group of progressive brain diseases, which preferentially involve the frontal and temporal lobes. Depending on the primary site of atrophy, the clinical manifestation is dominated by behavior alterations or impairment of language. The onset of symptoms usually occurs before the age of 60 years, and the mean survival from diagnosis varies between 3 and 10 years. The prevalence is estimated at 15 per 100,000 in the population aged between 45 and 65 years, which is similar to the prevalence of Alzheimer’s disease in this age group. There are two major clinical subtypes, behavioral-variant frontotemporal dementia and primary progressive aphasia. The neuropathology underlying the clinical syndromes is also heterogeneous. A common feature is the accumulation of certain neuronal proteins. Of these, the microtubule-associated protein tau (MAPT), the transactive response DNA-binding protein, and the fused in sarcoma protein are most important. Approximately 10% to 30% of FTLD shows an autosomal dominant pattern of inheritance, with mutations in the genes for MAPT, progranulin (GRN), and in the chromosome 9 open reading frame 72 (C9orf72) accounting for more than 80% of familial cases. Although significant advances have been made in recent years regarding diagnostic criteria, clinical assessment instruments, neuropsychological tests, cerebrospinal fluid biomarkers, and brain imaging techniques, the clinical diagnosis remains a challenge. To date, there is no specific pharmacological treatment for FTLD. Some evidence has been provided for serotonin reuptake inhibitors to reduce behavioral disturbances. No large-scale or high-quality studies have been conducted to determine the efficacy of non-pharmacological treatment approaches in FTLD. In view of the limited treatment options, caregiver education and support is currently the most important component of the clinical management. PMID:24600223

  17. Mitochondrial fission augments capsaicin-induced axonal degeneration.

    PubMed

    Chiang, Hao; Ohno, Nobuhiko; Hsieh, Yu-Lin; Mahad, Don J; Kikuchi, Shin; Komuro, Hitoshi; Hsieh, Sung-Tsang; Trapp, Bruce D

    2015-01-01

    Capsaicin, an agonist of transient receptor potential vanilloid receptor 1, induces axonal degeneration of peripheral sensory nerves and is commonly used to treat painful sensory neuropathies. In this study, we investigated the role of mitochondrial dynamics in capsaicin-induced axonal degeneration. In capsaicin-treated rodent sensory axons, axonal swellings, decreased mitochondrial stationary site length and reduced mitochondrial transport preceded axonal degeneration. Increased axoplasmic Ca(2+) mediated the alterations in mitochondrial length and transport. While sustaining mitochondrial transport did not reduce axonal swellings in capsaicin-treated axons, preventing mitochondrial fission by overexpression of mutant dynamin-related protein 1 increased mitochondrial length, retained mitochondrial membrane potentials and reduced axonal loss upon capsaicin treatment. These results establish that mitochondrial stationary site size significantly affects axonal integrity and suggest that inhibition of Ca(2+)-dependent mitochondrial fission facilitates mitochondrial function and axonal survival following activation of axonal cationic channels.

  18. Iatrogenic corneal perforation in Terrien Marginal Degeneration.

    PubMed

    M R, Kursiah

    2013-04-01

    This case report is about a rare disease with unusual presentation. Failure to recognise atypical presentation may lead to error in managing the patient and cause disastrous complications. Here we highlight a case of Terrien Marginal Degeneration in both eyes with atypical presentation; namely pseudopterygium. A 22 year old man was referred to our centre for iatrogenic right eye corneal perforation after having an atypical pterygium removed at another hospital. On arrival, his vision was 1/60 in both eyes with bilateral cornea Terrien Marginal Degeneration. His right eye anterior chamber was deep with a conjunctival flap covering the perforation site which was located from the 2.30 - 3.30 clock position nasally with no aqueous leak. However after a day his right eye anterior chamber became flat and there was fast aqueous leak from the perforation site. An emergency C shaped peripheral corneal lamellar keratoplasty was performed to seal the perforation. Post operatively his right eye improved to 6/24.

  19. Testicular degeneration in Huntington disease.

    PubMed

    Van Raamsdonk, Jeremy M; Murphy, Zoe; Selva, David M; Hamidizadeh, Reza; Pearson, Jacqueline; Petersén, Asa; Björkqvist, Maria; Muir, Cameron; Mackenzie, Ian R; Hammond, Geoffrey L; Vogl, A Wayne; Hayden, Michael R; Leavitt, Blair R

    2007-06-01

    Huntington disease (HD) is an adult onset, neurodegenerative disorder that results from CAG expansion in the HD gene. Recent work has demonstrated testicular degeneration in mouse models of HD and alterations in the hypothalamic-pituitary-gonadal (HPG) axis in HD patients. Here, we show that HD patients have specific testicular pathology with reduced numbers of germ cells and abnormal seminiferous tubule morphology. In the YAC128 mouse model, testicular degeneration develops prior to 12 months of age, but at 12 months, there is no evidence for decreased testosterone levels or loss of GnRH neurons in the hypothalamus. This suggests that testicular pathology results from a direct toxic effect of mutant huntingtin in the testis and is supported by the fact that huntingtin is highly expressed in the affected cell populations in the testis. Understanding the pathogenesis of HD in the testis may reveal common critical pathways which lead to degeneration in both the brain and testis.

  20. A porous 4-fold-interpenetrated chiral framework exhibiting vapochromism, single-crystal-to-single-crystal solvent exchange, gas sorption, and a poisoning effect.

    PubMed

    Zeng, Ming-Hua; Tan, Yan-Xi; He, Yan-Ping; Yin, Zheng; Chen, Qing; Kurmoo, Mohamedally

    2013-03-01

    The synthesis and characterization of a 4-fold-interpenetrated pseudodiamond metal-organic framework (MOF), Co(II)(pybz)2·2DMF [pybz = 4-(4-pyridyl)benzoate], are reported. N,N-Dimethylformamide (DMF) of the channels can be removed to give the porous framework, and it can also be exchanged for methanol, ethanol, benzene, and cyclohexane. It is a rare example of a stable MOF based on a single octahedral building unit. The single-crystal structures of Co(II)(pybz)2·2DMF, Co(II)(pybz)2, Co(II)(pybz)2·4MeOH, and Co(II)(pybz)2·2.5EtOH have been successfully determined. In all of them, the framework is marginally modified and contains a highly distorted and strained octahedral node of cobalt with two pyridine nitrogen atoms and two chelate carboxylate groups. In air, the crystals of Co(II)(pybz)2·2DMF readily change color from claret red to light pink. Thermogravimetric analysis and Raman spectroscopy indicate a change in coordination, where the carboxylate becomes monodentate and an additional two water molecules are coordinated to each cobalt atom. In a dry solvent, this transformation does not take place. Tests show that Co(II)(pybz)2 may be a more efficient drying agent than silica gel and anhydrous CuSO4. The desolvated Co(II)(pybz)2 can absorb several gases such as CO2, N2, H2, and CH4 and also vapors of methanol, ethanol, benzene, and cyclohexane. If Co(II)(pybz)2 is exposed to air and followed by reactivation, its sorption capacity is considerably reduced, which we associate with a poisoning effect. Because of the long distance between the cobalt atoms in the structure, the magnetic properties are those of a paramagnet. PMID:23398593

  1. The crystal structure of ferritin from Chlorobium tepidum reveals a new conformation of the 4-fold channel for this protein family.

    PubMed

    Arenas-Salinas, Mauricio; Townsend, Philip D; Brito, Christian; Marquez, Valeria; Marabolli, Vanessa; Gonzalez-Nilo, Fernando; Matias, Cata; Watt, Richard K; López-Castro, Juan D; Domínguez-Vera, José; Pohl, Ehmke; Yévenes, Alejandro

    2014-11-01

    Ferritins are ubiquitous iron-storage proteins found in all kingdoms of life. They share a common architecture made of 24 subunits of five α-helices. The recombinant Chlorobium tepidum ferritin (rCtFtn) is a structurally interesting protein since sequence alignments with other ferritins show that this protein has a significantly extended C-terminus, which possesses 12 histidine residues as well as several aspartate and glutamic acid residues that are potential metal ion binding residues. We show that the macromolecular assembly of rCtFtn exhibits a cage-like hollow shell consisting of 24 monomers that are related by 4-3-2 symmetry; similar to the assembly of other ferritins. In all ferritins of known structure the short fifth α-helix adopts an acute angle with respect to the four-helix bundle. However, the crystal structure of the rCtFtn presented here shows that this helix adopts a new conformation defining a new assembly of the 4-fold channel of rCtFtn. This conformation allows the arrangement of the C-terminal region into the inner cavity of the protein shell. Furthermore, two Fe(III) ions were found in each ferroxidase center of rCtFtn, with an average FeA-FeB distance of 3 Å; corresponding to a diferric μ-oxo/hydroxo species. This is the first ferritin crystal structure with an isolated di-iron center in an iron-storage ferritin. The crystal structure of rCtFtn and the biochemical results presented here, suggests that rCtFtn presents similar biochemical properties reported for other members of this protein family albeit with distinct structural plasticity. PMID:25079050

  2. Age-Related Macular Degeneration.

    PubMed

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision.

  3. Ataxias and Cerebellar or Spinocerebellar Degeneration

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Ataxias and Cerebellar or Spinocerebellar Degeneration Information Page Synonym(s): ... Publications and Information Publicaciones en Español What are Ataxias and Cerebellar or Spinocerebellar Degeneration? Ataxia often occurs ...

  4. Potent Antiscrapie Activities of Degenerate Phosphorothioate Oligonucleotides

    PubMed Central

    Kocisko, David A.; Vaillant, Andrew; Lee, Kil Sun; Arnold, Kevin M.; Bertholet, Nadine; Race, Richard E.; Olsen, Emily A.; Juteau, Jean-Marc; Caughey, Byron

    2006-01-01

    Although transmissible spongiform encephalopathies (TSEs) are incurable, a key therapeutic approach is prevention of conversion of the normal, protease-sensitive form of prion protein (PrP-sen) to the disease-specific protease-resistant form of prion protein (PrP-res). Here degenerate phosphorothioate oligonucleotides (PS-ONs) are introduced as low-nM PrP-res conversion inhibitors with strong antiscrapie activities in vivo. Comparisons of various PS-ON analogs indicated that hydrophobicity and size were important, while base composition was only minimally influential. PS-ONs bound avidly to PrP-sen but could be displaced by sulfated glycan PrP-res inhibitors, indicating the presence of overlapping binding sites. Labeled PS-ONs also bound to PrP-sen on live cells and were internalized. This binding likely accounts for the antiscrapie activity. Prophylactic PS-ON treatments more than tripled scrapie survival periods in mice. Survival times also increased when PS-ONs were mixed with scrapie brain inoculum. With these antiscrapie activities and their much lower anticoagulant activities than that of pentosan polysulfate, degenerate PS-ONs are attractive new compounds for the treatment of TSEs. PMID:16495266

  5. Degenerating the elliptic Schlesinger system

    NASA Astrophysics Data System (ADS)

    Aminov, G. A.; Artamonov, S. B.

    2013-01-01

    We study various ways of degenerating the Schlesinger system on the elliptic curve with R marked points. We construct a limit procedure based on an infinite shift of the elliptic curve parameter and on shifts of the marked points. We show that using this procedure allows obtaining a nonautonomous Hamiltonian system describing the Toda chain with additional spin sl(N, ℂ) degrees of freedom.

  6. Solitons in Degenerate Electron-Phonon Systems

    NASA Astrophysics Data System (ADS)

    Foell, Charles; Clougherty, Dennis

    2004-03-01

    We consider a 1øplus 1-dimensional model describing the coupling between degenerate electron states under local Jahn-Teller interactions. In the adiabatic approximation, the equations of motion are shown to reduce to a set of coupled non-linear Schrödinger equations in the electron fields. We demonstrate that in the continuum limit solitary waves of the wave-daughter wave type are stable for sufficiently strong on-site Coulomb repulsion. Our results may have relevance to describing the electronic and optical properties of quasi-one-dimensional systems such as halogen-bridged mixed-valence transition-metal linear-chain complexes (MX chains) and polymeric fullerides.

  7. Light scattering of degenerate fermions

    NASA Astrophysics Data System (ADS)

    Aubin, S.; Leblanc, L. J.; Myrskog, S.; Extavour, M. H. T.; McKay, D.; Stummer, A.; Thywissen, J. H.

    2006-05-01

    We report on progress in measuring the suppression of resonant light scattering in a gas of degenerate fermions. A gas of trapped degenerate fermions is expected to exhibit narrower optical linewidths and longer excited state lifetimes than single atoms when the Fermi energy is larger than the photon recoil energy [1-3]. In this case, the number of available states into which a scattered atom can recoil is significantly reduced due to the filling of the Fermi sea. We produce a degenerate gas of 4x10^4 ultra-cold fermionic ^40K atoms by sympathetic cooling with bosonic ^87Rb in a micro-magnetic chip trap. The atoms can then be loaded into a tight dipole trap just above the surface of the chip and probed with a near resonance laser pulse. [1] Th. Busch, J. R. Anglin, J. I. Cirac, and P. Zoller, Europhys. Lett. 44, 1 (1998). [2] B. DeMarco and D. S. Jin, Phys. Rev. A 58, R4267 (1998). [3] J. Javanainen and J. Ruostekosky, Phys. Rev. A 52, 3033 (1995). Work supported by NSERC, CFI, OIT, Research Corporation, and PRO.

  8. RP cone-rod degeneration.

    PubMed Central

    Heckenlively, J R

    1987-01-01

    A group of patients with progressive retinal degeneration and visual field loss, who meet the basic definition of RP were investigated to better define the relationship of the findings on the ERG with clinical characteristics such as visual field size, presence or absence of scotomata or pseudo-altitudinal defects on visual field, amount of night blindness; and presence or absence of macular or optic nerve changes. These studies suggest that cone-rod degeneration patients of the RP type go through the following stages; early, the ERG has a definite cone-rod pattern where the rod ERG is larger than the cone ERG while both are abnormal. As the disease advances, there is more of a reduction in the scotopic ERG such that both the rod and cone ERGs become nearly equal. As the disease further progresses the ERG becomes non-recordable on single-flash technique, but there is good residual rod function and the final rod threshold remains good until the visual field is reduced, typically less than 10 degrees with the IV-4 isopter. Finally with advanced disease the patient becomes night blind and generally becomes very difficult to distinguished from patients who have advanced rod-cone degeneration. While it may seem logical to find that visual field size correlates with various ERG parameters; this has not been as consistent a finding in patients with rod-cone degeneration in the author's experience. The analysis shows several new pieces of information about visual field changes in cone-rod degeneration; enlarged blind spots are seen earlier in cases which have recordable cone-rod patterns (group I), and pseudo-altitudinal changes are more likely to occur in autosomal recessive patients. Patients with macular lesions and central scotomata had larger amplitudes than patients with normal appearing maculae and no central scotomata. Patients with temporal optic atrophy had an earlier onset of symptoms and significant correlation with both photopic a- and b-waves and bright flash

  9. Decreased Transcription Factor Binding Levels Nearby Primate Pseudogenes Suggest Regulatory Degeneration

    PubMed Central

    Douglas, Gavin M.; Wilson, Michael D.; Moses, Alan M.

    2016-01-01

    Characteristics of pseudogene degeneration at the coding level are well-known, such as a shift toward neutral rates of nonsynonymous substitutions and gain of frameshift mutations. In contrast, degeneration of pseudogene transcriptional regulation is not well understood. Here, we test two predictions of regulatory degeneration along a pseudogenized lineage: 1) Decreased transcription factor (TF) binding and 2) accelerated evolution in putative cis-regulatory regions. We find evidence for decreased TF binding levels nearby two primate pseudogenes compared with functional liver genes. However, the majority of TF-bound sequences nearby pseudogenes do not show evidence for lineage-specific accelerated rates of evolution. We conclude that decreases in TF binding level could be a marker for regulatory degeneration, while sequence degeneration in primate cis-regulatory modules may be obscured by background rates of TF binding site turnover. PMID:26882985

  10. Genetics, Pregnancy, and Aortic Degeneration.

    PubMed

    Crawford, Jeffrey D; Hsieh, Cindy M; Schenning, Ryan C; Slater, Matthew S; Landry, Gregory J; Moneta, Gregory L; Mitchell, Erica L

    2016-01-01

    We present a case of familial thoracic aortic aneurysm and dissection (FTAAD) in a pregnant female. FTAAD is an inherited, nonsyndromic aortopathy resulting from several genetic mutations critical to aortic wall integrity have been identified. One such mutation is the myosin heavy chain gene (MYH11) which is responsible for 1-2% of all FTAAD cases. This mutation results in aortic medial degeneration, loss of elastin, and reticulin fiber fragmentation predisposing to TAAD. Aortic disease is more aggressive during pregnancy as a result of increased wall stress from hyperdynamic cardiovascular changes and estrogen-induced aortic media degeneration. Our patient was a 29-year-old G2P1 woman at 26 weeks gestation presenting with abdominal and back pain. Work-up revealed a 6.4-cm ascending aortic aneurysm with a type A dissection extending into all arch vessels, aortic coarctation at the isthmus, and a separate focal type B aortic dissection with visceral involvement. Surgical management included concomitant cesarean section with delivery of a live premature infant, tubal ligation, ascending aortic replacement with reconstruction of the arch vessels, and aortic valve resuspension. The type B dissection was managed medically without complication. This is the first reported case of aortic dissection in a patient with FTAAD/MYH11 mutation and pregnancy. This case highlights that FTAAD and pregnancy cause aortic degeneration via distinct mechanisms and that hyperdynamics of pregnancy increase aortic wall stress. Management of pregnancy associated with aortopathy requires early transfer to a tertiary center, careful investigation to identify familial aortopathy, fetal monitoring, and a multidisciplinary team approach. PMID:26381327

  11. Degeneration of a Nonrecombining Chromosome

    NASA Astrophysics Data System (ADS)

    Rice, William R.

    1994-01-01

    Comparative studies suggest that sex chromosomes begin as ordinary autosomes that happen to carry a major sex determining locus. Over evolutionary time the Y chromosome is selected to stop recombining with the X chromosome, perhaps in response to accumulation of alleles beneficial to the heterogametic but harmful to the homogametic sex. Population genetic theory predicts that a nonrecombining Y chromosome should degenerate. Here this prediction is tested by application of specific selection pressures to Drosophila melanogaster populations. Results demonstrate the decay of a nonrecombining, nascent Y chromosome and the capacity for recombination to ameliorate such decay.

  12. Synthesis and RNA polymerase incorporation of the degenerate ribonucleotide analogue rPTP.

    PubMed Central

    Moriyama, K; Negishi, K; Briggs, M S; Smith, C L; Hill, F; Churcher, M J; Brown, D M; Loakes, D

    1998-01-01

    The synthesis and enzymatic incorporation into RNA of the hydrogen bond degenerate nucleoside analogue 6-(beta-d-ribofuranosyl)-3, 4-dihydro-8H-pyrimido[4,5-c]-[1,2]oxazin-7-one (P) is described. The 5'-triphosphate of this analogue is readily incorporated by T3, T7 and SP6 RNA polymerases into RNA transcripts, being best incorporated in place of UTP, but also in place of CTP. When all the uridine residues in an HIV-1 TAR RNA transcript are replaced by P the transcript has similar characteristics to the wild-type TAR RNA, as demonstrated by similar melting temperatures and CD spectra. The P-substituted TAR transcript binds to the Tat peptide ADP-1 with only 4-fold lowered efficiency compared with wild-type TAR. PMID:9547267

  13. Microsphere embolization of nerve capillaries and fiber degeneration.

    PubMed Central

    Nukada, H.; Dyck, P. J.

    1984-01-01

    Polystyrene microspheres, the size chosen to plug capillaries and precapillaries, were injected into the arterial supply of rat sciatic nerves. They produced widespread segmental occlusion of capillaries in lower limb nerves. The clinical and pathologic effect was dose-related. One million microspheres produced selective capillary occlusion but no nerve fiber degeneration; approximately 6 million microspheres also produced selective capillary occlusion and associated foot and leg weakness, sensory loss, and fiber degeneration, beginning in a central core of the distal sciatic nerve; 30 million microspheres caused both capillary and arterial occlusion and a greater neuropathologic deficit. From these observations it is inferred that 1) occlusion of isolated precapillaries and capillaries does not produce ischemic fiber degeneration; 2) occlusion of many microvessels results in central fascicular fiber degeneration, indicating that these cores are watershed regions of poor perfusion; and 3) stereotyped pathologic alterations of nerve fibers and Schwann cells are related to dose, anatomic site, and time elapsed since injection. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:6326580

  14. Mathematical glimpse on the Y chromosome degeneration

    NASA Astrophysics Data System (ADS)

    Lobo, M. P.

    2006-04-01

    The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up sqrt{2} more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.

  15. Axon degeneration: context defines distinct pathways.

    PubMed

    Geden, Matthew J; Deshmukh, Mohanish

    2016-08-01

    Axon degeneration is an essential part of development, plasticity, and injury response and has been primarily studied in mammalian models in three contexts: 1) Axotomy-induced Wallerian degeneration, 2) Apoptosis-induced axon degeneration (axon apoptosis), and 3) Axon pruning. These three contexts dictate engagement of distinct pathways for axon degeneration. Recent advances have identified the importance of SARM1, NMNATs, NAD+ depletion, and MAPK signaling in axotomy-induced Wallerian degeneration. Interestingly, apoptosis-induced axon degeneration and axon pruning have many shared mechanisms both in signaling (e.g. DLK, JNKs, GSK3α/β) and execution (e.g. Puma, Bax, caspase-9, caspase-3). However, the specific mechanisms by which caspases are activated during apoptosis versus pruning appear distinct, with apoptosis requiring Apaf-1 but not caspase-6 while pruning requires caspase-6 but not Apaf-1. PMID:27197022

  16. [Age-related macular degeneration].

    PubMed

    Garcia Layana, A

    1998-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the occidental world. Patients suffering this process have an important reduction on their quality of life being handicapped to read, to write, to recognise faces of their friends, or even to watch the television. One of the main problems of that disease is the absence of an effective treatment able to revert the process. Laser treatment is only useful in a limited number of patients, and even in these cases recurrent lesions are frequent. These facts and the progressive ageing of our society establish the ARMD as one of the biggest aim of medical investigations for the next century, and currently is focus of attention in the most industrialised countries. One of the most promising pieces of research is focused in the investigation of the risk factors associated with the age-related macular degeneration, in order to achieve a prophylactic treatment avoiding its appearance. Diet elements such as fat ingestion or reduced antioxidant intakes are being investigated as some of these factors, what open a new possibility for a prophylactic treatment. Finally, research is looking for new therapeutic modalities such as selective radiotherapy in order to improve or maintain the vision of these patients.

  17. Single-site Baseline and Short-term Outcomes of Clinical Characteristics and Life Quality Evaluation of Chinese Wet Age-related Macular Degeneration Patients in Routine Clinical Practice

    PubMed Central

    Wang, Li-Li; Liu, Wen-Jia; Liu, Hai-Yun; Xu, Xun

    2015-01-01

    Background: Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss among the older population. In China, treatment of age-related ocular diseases is becoming a priority in eye care services. This study was to investigate the clinical characteristics and quality of life of Chinese patients with wet AMD and current treatment types, to evaluate short-term gains in different treatments, and to investigate associations between visual function and vision-related quality of life (VRQoL). Methods: A prospective, observational, noninterventional study was conducted. Basic data were collected from patients with clinical diagnoses of wet AMD before clinical assessments at baseline. VRQoL was measured with the Chinese version of the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). Correlations of the NEI VFQ-25 subscale scores with best-corrected visual acuity (BCVA) and between-group differences were analyzed. Results: A total of 80 wet AMD patients were enrolled, with the mean age of 68.40 years. About one-quarter of wet AMD patients received intravitreal (IVT) ranibizumab treatment, and 67% of them were treated on a pro re nata basis. The visual acuity of patients treated with IVT ranibizumab at month 3 after treatment was significantly increased, whereas patients treated with traditional Chinese medicine achieved no significant improvement. Cronbach's α for the NEI VFQ-25 subscales ranged from 0.697 to 0.843. Eight subscale and overall composite scores were moderately correlated with the BCVA of the better-seeing eye. Significant differences in the overall NEI VFQ-25 scores and other subscales were observed between patients with BCVA in the better-seeing eye of less than 50 letters and the others. Conclusions: Patients treated with IVT ranibizumab experienced better vision improvement at short-term follow-up. The Chinese version of the NEI VFQ-25 is a valid and reliable tool for assessing the VRQoL of Chinese wet AMD

  18. Gene therapy for retinal degeneration.

    PubMed

    Reichel, M B; Ali, R R; Hunt, D M; Bhattacharya, S S

    1997-01-01

    Inherited retinal degenerations are a group of diseases leading to blindness through progressive loss of vision in many patients. Although with the cloning of more and more disease genes the knowledge on the molecular genetics of these conditions and on the apoptotic pathway as the common disease mechanism is steadily increasing, there is still no cure for those affected. In recent years, new experimental treatments have evolved through the efforts of many investigators and have been explored in animal models. The rationale of the different strategies for developing a treatment based on gene replacement or rescue of the diseased neuronal tissue with growth factors will be outlined and discussed in this paper. PMID:9323717

  19. Regularized degenerate multi-solitons

    NASA Astrophysics Data System (ADS)

    Correa, Francisco; Fring, Andreas

    2016-09-01

    We report complex PT-symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schrödinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota's direct method or on a nonlinear superposition obtained from multiple Bäcklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.

  20. Regularized degenerate multi-solitons

    NASA Astrophysics Data System (ADS)

    Correa, Francisco; Fring, Andreas

    2016-09-01

    We report complex {P}{T} -symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schrödinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota's direct method or on a nonlinear superposition obtained from multiple Bäcklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.

  1. Degenerate doping of metallic anodes

    DOEpatents

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  2. Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes

    PubMed Central

    Liu, Haitao; Tang, Jie; Du, Yunpeng; Saadane, Aicha; Tonade, Deoye; Samuels, Ivy; Veenstra, Alex; Palczewski, Krzysztof; Kern, Timothy S.

    2016-01-01

    Purpose Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin−/− and RhoP23H/P23H ) and control C57Bl/5J mice, each with and without diabetes. Methods Retinal thickness, superoxide, expression of inflammatory proteins, ERG and optokinetic responses, leukocyte cytotoxicity, and capillary degeneration were evaluated at 1 to 10 months of age using published methods. Results Retinal photoreceptor cells degenerated completely in the opsin mutants by 2 to 4 months of age, and visual function subsided correspondingly. Retinal capillary degeneration was substantial while photoreceptors were still present, but slowed after the photoreceptors degenerated. Diabetes did not further exacerbate capillary degeneration in these models of photoreceptor degeneration, but did cause capillary degeneration in wild-type animals. Photoreceptor cells, however, did not degenerate in wild-type diabetic mice, presumably because the stress responses in these cells were less than in the opsin mutants. Retinal superoxide and leukocyte damage to retinal endothelium contributed to the degeneration of retinal capillaries in diabetes, and leukocyte-mediated damage was increased in both opsin mutants during photoreceptor cell degeneration. Conclusions Photoreceptor cells affect the integrity of the retinal microvasculature. Deterioration of retinal capillaries in opsin mutants was appreciable while photoreceptor cells were present and stressed, but was less after photoreceptors degenerated. This finding proves relevant to diabetes, where persistent stress in photoreceptors likewise contributes to capillary degeneration. PMID:27548901

  3. Degenerate adiabatic perturbation theory: Foundations and applications

    NASA Astrophysics Data System (ADS)

    Rigolin, Gustavo; Ortiz, Gerardo

    2014-08-01

    We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.

  4. Degeneration of biogenic superparamagnetic magnetite.

    PubMed

    Li, Y-L; Pfiffner, S M; Dyar, M D; Vali, H; Konhauser, K; Cole, D R; Rondinone, A J; Phelps, T J

    2009-01-01

    Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 h incubation and 5-year anaerobic storage were investigated with transmission electron microscopy, Mössbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 h and 5-year crystals are 8.4164A and 8.3774A, respectively. The Mössbauer spectra indicated that the 265 h magnetite had excess Fe(II) in its crystal-chemistry (Fe(3+) (1.990)Fe(2+) (1.015)O(4)) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe(3+) (2.388)Fe(2+) (0.419)O(4)). Such crystal-chemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases (fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the anaerobic oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.

  5. Modified gravitational instability of degenerate and non-degenerate dusty plasma

    NASA Astrophysics Data System (ADS)

    Jain, Shweta; Sharma, Prerana

    2016-09-01

    The gravitational instability of strongly coupled dusty plasma (SCDP) is studied considering degenerate and non-degenerate dusty plasma situations. The SCDP system is assumed to be composed of the electrons, ions, neutrals, and strongly coupled dust grains. First, in the high density regime, due to small interparticle distance, the electrons are considered degenerate, whereas the neutrals, dust grains, and ions are treated non-degenerate. In this case, the dynamics of inertialess electrons are managed by Fermi pressure and Bohm potential, while the inertialess ions are by only thermal pressure. Second, in the non-degenerate regime, both the electrons and ions are governed by the thermal pressure. The generalized hydrodynamic model and the normal mode analysis technique are employed to examine the low frequency waves and gravitational instability in both degenerate and non-degenerate cases. The general dispersion relation is discussed for a characteristic timescale which provides two regimes of frequency, i.e., hydrodynamic regime and kinetic regime. Analytical solutions reveal that the collisions reduce the growth rate and have a strong impact on structure formation in both degenerate and non-degenerate circumstances. Numerical estimation on the basis of observed parameters for the degenerate and non-degenerate cases is presented to show the effects of dust-neutral collisions and dust effective velocity in the presence of polarization force. The values of Jeans length and Jeans mass have been estimated for degenerate white dwarfs as Jeans length L J = 1.3 × 10 5 cm and Jeans mass M J = 0.75 × 10 - 3 M⊙ and for non-degenerate laboratory plasma Jeans length L J = 6.86 × 10 16 cm and Jeans mass M J = 0.68 × 10 10 M⊙. The stability of the SCDP system is discussed using the Routh-Hurwitz criterion.

  6. Total absorption by degenerate critical coupling

    SciTech Connect

    Piper, Jessica R. Liu, Victor; Fan, Shanhui

    2014-06-23

    We consider a mirror-symmetric resonator with two ports. We show that, when excited from a single port, complete absorption can be achieved through critical coupling to degenerate resonances with opposite symmetry. Moreover, any time two resonances with opposite symmetry are degenerate in frequency and absorption is always significantly enhanced. In contrast, when two resonances with the same symmetry are nearly degenerate, there is no absorption enhancement. We numerically demonstrate these effects using a graphene monolayer on top of a photonic crystal slab, illuminated from a single side in the near-infrared.

  7. Horizon supertranslation and degenerate black hole solutions

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Ruan, Shan-Ming; Zhang, Yun-Long

    2016-09-01

    In this note we first review the degenerate vacua arising from the BMS symmetries. According to the discussion in [1] one can define BMS-analogous supertranslation and superrotation for spacetime with black hole in Gaussian null coordinates. In the leading and subleading orders of near horizon approximation, the infinitely degenerate black hole solutions are derived by considering Einstein equations with or without cosmological constant, and they are related to each other by the diffeomorphism generated by horizon supertranslation. Higher order results and degenerate Rindler horizon solutions also are given in appendices.

  8. Advances in the management of macular degeneration

    PubMed Central

    2014-01-01

    Current management of age-related macular degeneration (AMD) can be divided into two categories: first, anti-vasoendothelial growth factor (anti-VEGF) injection for wet macular degeneration; second, anti-oxidant vitamins for dry macular degeneration. New therapies are being developed for both of these diseases using novel technologies and different modes of administration. The hope is that some of these therapies will achieve significant improvement to current management and prevent future loss of vision in this devastating eye condition. PMID:24860651

  9. Neural remodeling in retinal degeneration.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  10. [Cystic degeneration of autonomous adenomas (author's transl)].

    PubMed

    Galvan, G; Pohl, G B

    1976-01-01

    Follow-up examinations in four patients with autonomous adenomas showed cystic degeneration in the autonomous adenomas 20 to 45 months after the first examination, confirmed by fine needle biopsy. Clinical improvement occurred three times with scintigraphic compensation, decompensation occurred once without clinical deterioration. In particular cases a therapeutic policy of wait and see is justified in patients with autonomous adenomas because they may remain clinically inconspicuous for a long time; on the other hand there is a possibility of a cystic degeneration.

  11. Peripheral Glia Have a Pivotal Role in the Initial Response to Axon Degeneration of Peripheral Sensory Neurons in Zebrafish

    PubMed Central

    Pope, Holly M.; Voigt, Mark M.

    2014-01-01

    Axon degeneration is a feature of many peripheral neuropathies. Understanding the organismal response to this degeneration may aid in identifying new therapeutic targets for treatment. Using a transgenic zebrafish line expressing a bacterial nitroreductase (Ntr)/mCherry fusion protein in the peripheral sensory neurons of the V, VII, IX, and X cranial nerves, we were able to induce and visualize the pathology of axon degeneration in vivo. Exposure of 4 days post fertilization Ntr larvae to the prodrug metronidazole (Met), which Ntr metabolizes into cytotoxic metabolites, resulted in dose-dependent cell death and axon degeneration. This was limited to the Ntr-expressing sensory neurons, as neighboring glia and motor axons were unaffected. Cell death was rapid, becoming apparent 3–4 hours after Met treatment, and was followed by phagocytosis of soma and axon debris by cells within the nerves and ganglia beginning at 4–5 hours of exposure. Although neutrophils appear to be activated in response to the degenerating neurons, they did not accumulate at the sites of degeneration. In contrast, macrophages were found to be attracted to the sites of the degenerating axons, where they phagocytosed debris. We demonstrated that peripheral glia are critical for both the phagocytosis and inflammatory response to degenerating neurons: mutants that lack all peripheral glia (foxD3−/−; Ntr) exhibit a much reduced reaction to axonal degeneration, resulting in a dramatic decrease in the clearance of debris, and impaired macrophage recruitment. Overall, these results show that this zebrafish model of peripheral sensory axon degeneration exhibits many aspects common to peripheral neuropathies and that peripheral glia play an important role in the initial response to this process. PMID:25058656

  12. Cell transplantation in lumbar spine disc degeneration disease

    PubMed Central

    Hohaus, C.; Ganey, T. M.; Minkus, Y.

    2008-01-01

    received cells demonstrated a significant difference as a group in the fluid content of their treated disc when compared to control. Autologous disc-derived cell transplantation is technically feasible and biologically relevant to repairing disc damage and retarding disc degeneration. Adipose tissue provides an alternative source of regenerative cells with little donor site morbidity. These regenerative cells are able to differentiate into a nucleus pulposus-like phenotype when exposed to environmental factors similar to disc, and offer the inherent advantage of availability without the need for transporting, culturing, and expanding the cells. In an effort to develop a clinical option for cell placement and assess the response of the cells to the post-surgical milieu, adipose-derived cells were collected, concentrated, and transplanted under fluoroscopic guidance directly into a surgically damaged disc using our dog model. This study provides evidence that cells harvested from adipose tissue might offer a reliable source of regenerative potential capable of bio-restitution. PMID:19005697

  13. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  14. Optic pathway degeneration in Japanese black cattle.

    PubMed

    Chiba, Shiori; Funato, Shingo; Horiuchi, Noriyuki; Matsumoto, Kotaro; Inokuma, Hisashi; Furuoka, Hidefumi; Kobayashi, Yoshiyasu

    2015-02-01

    Degeneration of the optic pathway has been reported in various animal species including cattle. We experienced a case of bilateral optic tract degeneration characterized by severe gliosis in a Japanese black cattle without any obvious visual defects. To evaluate the significance, pathological nature and pathogenesis of the lesions, we examined the optic pathway in 60 cattle (41 Japanese black, 13 Holstein and 6 crossbreed) with or without ocular abnormalities. None of these animals had optic canal stenosis. Degenerative changes with severe gliosis in the optic pathway, which includes the optic nerve, optic chiasm and optic tract, were only observed in 8 Japanese black cattle with or without ocular abnormalities. Furthermore, strong immunoreactivity of glial fibrillary acidic protein was observed in the retinal stratum opticum and ganglion cell layer in all 5 cattle in which the optic pathway lesions could be examined. As etiological research, we also examined whether the concentrations of vitamin A and vitamin B12 or bovine viral diarrhea virus (BVDV) infection was associated with optic pathway degeneration. However, our results suggested that the observed optic pathway degeneration was probably not caused by these factors. These facts indicate the presence of optic pathway degeneration characterized by severe gliosis that has never been reported in cattle without bilateral compressive lesions in the optic pathway or bilateral severe retinal atrophy. PMID:25421501

  15. Optic pathway degeneration in Japanese black cattle.

    PubMed

    Chiba, Shiori; Funato, Shingo; Horiuchi, Noriyuki; Matsumoto, Kotaro; Inokuma, Hisashi; Furuoka, Hidefumi; Kobayashi, Yoshiyasu

    2015-02-01

    Degeneration of the optic pathway has been reported in various animal species including cattle. We experienced a case of bilateral optic tract degeneration characterized by severe gliosis in a Japanese black cattle without any obvious visual defects. To evaluate the significance, pathological nature and pathogenesis of the lesions, we examined the optic pathway in 60 cattle (41 Japanese black, 13 Holstein and 6 crossbreed) with or without ocular abnormalities. None of these animals had optic canal stenosis. Degenerative changes with severe gliosis in the optic pathway, which includes the optic nerve, optic chiasm and optic tract, were only observed in 8 Japanese black cattle with or without ocular abnormalities. Furthermore, strong immunoreactivity of glial fibrillary acidic protein was observed in the retinal stratum opticum and ganglion cell layer in all 5 cattle in which the optic pathway lesions could be examined. As etiological research, we also examined whether the concentrations of vitamin A and vitamin B12 or bovine viral diarrhea virus (BVDV) infection was associated with optic pathway degeneration. However, our results suggested that the observed optic pathway degeneration was probably not caused by these factors. These facts indicate the presence of optic pathway degeneration characterized by severe gliosis that has never been reported in cattle without bilateral compressive lesions in the optic pathway or bilateral severe retinal atrophy.

  16. The cell stress machinery and retinal degeneration.

    PubMed

    Athanasiou, Dimitra; Aguilà, Monica; Bevilacqua, Dalila; Novoselov, Sergey S; Parfitt, David A; Cheetham, Michael E

    2013-06-27

    Retinal degenerations are a group of clinically and genetically heterogeneous disorders characterised by progressive loss of vision due to neurodegeneration. The retina is a highly specialised tissue with a unique architecture and maintaining homeostasis in all the different retinal cell types is crucial for healthy vision. The retina can be exposed to a variety of environmental insults and stress, including light-induced damage, oxidative stress and inherited mutations that can lead to protein misfolding. Within retinal cells there are different mechanisms to cope with disturbances in proteostasis, such as the heat shock response, the unfolded protein response and autophagy. In this review, we discuss the multiple responses of the retina to different types of stress involved in retinal degenerations, such as retinitis pigmentosa, age-related macular degeneration and glaucoma. Understanding the mechanisms that maintain and re-establish proteostasis in the retina is important for developing new therapeutic approaches to fight blindness. PMID:23684651

  17. Potential Outcome Factors in Subacute Combined Degeneration

    PubMed Central

    Vasconcelos, Olavo M; Poehm, Erika H; McCarter, Robert J; Campbell, William W; Quezado, Zenaide M N

    2006-01-01

    BACKGROUND Subacute combined degeneration is an acquired myelopathy caused by vitamin B12 deficiency. Therapy with B12 leads to improvement in most but to complete recovery in only a few patients. Prognostic indicators in subacute combined degeneration are unknown; therefore, predicting complete recovery of neurologic deficits is challenging. PURPOSE To identify potential correlates of outcome and to generate hypotheses concerning predictors of complete resolution of neurologic deficits in subacute combined degeneration. DATA SOURCE We searched EMBASE (1974 to October 2005), MEDLINE (1968 to October 2005), and references from identified reports. REPORTS SELECTION Reports of patients with subacute combined degeneration containing results of magnetic resonance imaging (MRI) and description of outcome and 1 patient treated by the authors. DATA EXTRACTION, SYNTHESIS We extracted data from 45 reports and 57 patients (36 males, 21 females; age range: 10 to 81) with a diagnosis of subacute combined degeneration, and estimated the strength of association between clinical, laboratory, and radiological factors and complete resolution of signs and symptoms. RESULTS Eight patients (14%) achieved clinical resolution and 49 (86%) improved with B12 therapy. The absence of sensory dermatomal deficit, Romberg, and Babinski signs were associated with a higher complete resolution rate. Patients with MRI lesions in ≤7 segments and age less than 50 also appear to have higher rates of complete resolution. CONCLUSIONS B12 therapy is reported to stop progression and improve neurologic deficits in most patients with subacute combined degeneration. However, complete resolution only occurs in a small percentage of patients and appears to be associated with factors suggestive of less severe disease at the time of diagnosis. PMID:16970556

  18. Phase diagram of degenerate exciton systems.

    PubMed

    Lai, C W; Zoch, J; Gossard, A C; Chemla, D S

    2004-01-23

    Degenerate exciton systems have been produced in quasi-two-dimensional confined areas in semiconductor coupled quantum well structures. We observed contractions of clouds containing tens of thousands of excitons within areas as small as (10 micron)2 near 10 kelvin. The spatial and energy distributions of optically active excitons were determined by measuring photoluminescence as a function of temperature and laser excitation and were used as thermodynamic quantities to construct the phase diagram of the exciton system, which demonstrates the existence of distinct phases. Understanding the formation mechanisms of these degenerate exciton systems can open new opportunities for the realization of Bose-Einstein condensation in the solid state.

  19. Visual system degeneration induced by blast overpressure.

    PubMed

    Petras, J M; Bauman, R A; Elsayed, N M

    1997-07-25

    The effect of blast overpressure on visual system pathology was studied in 14 male Sprague-Dawley rats weighing 360-432 g. Blast overpressure was simulated using a compressed-air driven shock tube, with the aim of studying a range of overpressures causing sublethal injury. Neither control (unexposed) rats nor rats exposed to 83 kiloPascals (kPa) overpressure showed evidence of visual system pathology. Neurological injury to brain visual pathways was observed in male rats surviving blast overpressure exposures of 104-110 kPa and 129-173 kPa. Optic nerve fiber degeneration was ipsilateral to the blast pressure wave. The optic chiasm contained small numbers of degenerated fibers. Optic tract fiber degeneration was present bilaterally, but was predominantly ipsilateral. Optic tract fiber degeneration was followed to nuclear groups at the level of the midbrain, midbrain-diencephalic junction, and the thalamus where degenerated fibers arborized among the neurons of: (i) the superior colliculus, (ii) pretectal region, and (iii) the lateral geniculate body. The superior colliculus contained fiber degeneration localized principally to two superficial layers (i) the stratum opticum (layer III) and (ii) stratum cinereum (layer II). The pretectal area contained degenerated fibers which were widespread in (i) the nucleus of the optic tract, (ii) olivary pretectal nucleus, (iii) anterior pretectal nucleus, and (iv) the posterior pretectal nucleus. Degenerated fibers in the lateral geniculate body were not universally distributed. They appeared to arborize among neurons of the dorsal and ventral nuclei: the ventral lateral geniculate nucleus (parvocellular and magnocellular parts); and the dorsal lateral geniculate nucleus. The axonopathy observed in the central visual pathways and nuclei of the rat brain are consistent with the presence of blast overpressure induced injury to the retina. The orbital cavities of the human skull contain frontally-directed eyeballs for binocular

  20. Pathogenesis of tendinopathies: inflammation or degeneration?

    PubMed Central

    Abate, Michele; Gravare-Silbernagel, Karin; Siljeholm, Carl; Di Iorio, Angelo; De Amicis, Daniele; Salini, Vincenzo; Werner, Suzanne; Paganelli, Roberto

    2009-01-01

    The intrinsic pathogenetic mechanisms of tendinopathies are largely unknown and whether inflammation or degeneration has the prominent role is still a matter of debate. Assuming that there is a continuum from physiology to pathology, overuse may be considered as the initial disease factor; in this context, microruptures of tendon fibers occur and several molecules are expressed, some of which promote the healing process, while others, including inflammatory cytokines, act as disease mediators. Neural in-growth that accompanies the neovessels explains the occurrence of pain and triggers neurogenic-mediated inflammation. It is conceivable that inflammation and degeneration are not mutually exclusive, but work together in the pathogenesis of tendinopathies. PMID:19591655

  1. Retinal Cell Degeneration in Animal Models

    PubMed Central

    Niwa, Masayuki; Aoki, Hitomi; Hirata, Akihiro; Tomita, Hiroyuki; Green, Paul G.; Hara, Akira

    2016-01-01

    The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. PMID:26784179

  2. [Degenerated papillomatosis of the bile duct].

    PubMed

    De Castro Gutiérrez, J; Armengol Carrasco, M; Oller Sales, B; Fdez-Llamazares Rodríguez, J; Julián Ibáñez, J F; Broggi Trías, M A; Salvá Lacombe, J A

    1989-07-01

    Papillomatosis of the biliary ducts is exceptional. It is defined by the presence of multiple, benign, papillary type, epithelial tumors on the choledochus and hepatic ducts, and can also effect the gallbladder and intrahepatic bile ducts. It courses with a tendency to recurrence and secondary degeneration, and its prognosis is uncertain and sometimes grave. The treatment is surgical and depends on the extension of the lesions, often being only palliative. The techniques of choice are curettage and biliodigestive derivation. A case is presented of degenerated papillomatosis treated by cephalic duodenopancreatectomy and cholecystectomy.

  3. Microscopic Observation of Pauli Blocking in Degenerate Fermionic Lattice Gases

    NASA Astrophysics Data System (ADS)

    Hilker, Timon; Omran, Ahmed; Boll, Martin; Salomon, Guillaume; Bloch, Immanuel; Gross, Christian

    2016-05-01

    Ultracold atoms in optical lattices provide a powerful platform for the controlled study of quantum many-body physics. We present here the first studies with a new generation quantum gas microscope, which allows to observe the full atom number statistics on every site. The common problem of light induced losses during imaging is avoided by an additional small scale ``pinning lattice'' used for Raman sideband cooling in the imaging process. We report the local observation of the Pauli exclusion principle in a spin-polarized degenerate gas of 6 Li fermions in an optical lattice. In the band insulating regime, we measure a tenfold suppression of particle number fluctuations per site compared to classical particles. From the remaining fluctuations we extract a local entropy as low as 0.3 kB per atom. Our work opens an exciting avenue for studying local density and even magnetic correlations in fermionic quantum matter both in and out of equilibrium.

  4. Depression in Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling…

  5. Driving and Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Owsley, Cynthia; McGwin, Gerald, Jr.

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety,…

  6. The nature of apraxia in corticobasal degeneration.

    PubMed Central

    Leiguarda, R; Lees, A J; Merello, M; Starkstein, S; Marsden, C D

    1994-01-01

    Although apraxia is one of the most frequent signs in corticobasal degeneration, the phenomenology of this disorder has not been formally examined. Hence 10 patients with corticobasal degeneration were studied with a standardised evaluation for different types of apraxia. To minimise the confounding effects of the primary motor disorder, apraxia was assessed in the least affected limb. Whereas none of the patients showed buccofacial apraxia, seven showed deficits on tests of ideomotor apraxia and movement imitation, four on tests of sequential arm movements (all of whom had ideomotor apraxia), and three on tests of ideational apraxia (all of whom had ideomotor apraxia). Ideomotor apraxia significantly correlated with deficit in both the mini mental state examination and in a task sensitive to frontal lobe dysfunction (picture arrangement). Two of the three patients with ideomotor apraxia and ideational apraxia showed severe cognitive impairments. The alien limb behaviour was present only in patients with ideomotor apraxia. In conclusion, ideomotor apraxia is the most frequent type of apraxia in corticobasal degeneration, and may be due to dysfunction of the supplementary motor area. There is a subgroup of patients with corticobasal degeneration who have a severe apraxia (ideomotor and ideational apraxia), which correlates with global cognitive impairment, and may result from additional parietal or diffuse cortical damage. PMID:8163995

  7. On abstract degenerate neutral differential equations

    NASA Astrophysics Data System (ADS)

    Hernández, Eduardo; O'Regan, Donal

    2016-10-01

    We introduce a new abstract model of functional differential equations, which we call abstract degenerate neutral differential equations, and we study the existence of strict solutions. The class of problems and the technical approach introduced in this paper allow us to generalize and extend recent results on abstract neutral differential equations. Some examples on nonlinear partial neutral differential equations are presented.

  8. Spectroscopic observations of cool degenerate star candidates

    NASA Technical Reports Server (NTRS)

    Hintzen, P.

    1986-01-01

    Spectroscopic observations are reported for 23 Luyten Half-Second degenerate star candidates and for 13 Luyten-Palomar common proper-motion pairs containing possible degenerate star components. Twenty-five degenerate stars are identified, 20 of which lack previous spectroscopy. Most of these stars are cool - Luyten color class g or later. One star, LP 77-57, shows broad continuum depressions similar to those in LHS 1126, which Liebert and Dahn attributed to pressure-shifted C2. A second degenerate star, LHS 290, exhibits apparent strong Swan bands which are blueshifted about 75 A. Further observations, including polarimetry and photometry, are required to appraise the spectroscopic peculiarities of these stars. Finally, five cool, sharp-lined DA white dwarfs have been observed to detect lines of metals and to determine line strengths. None of these DAs show signs of Mg b or the G band, and four show no evidence of Ca II K. The attempt to detect Ca MI in the fifth star, G199-71, was inconclusive.

  9. Molecular pharmacodynamics of emixustat in protection against retinal degeneration

    PubMed Central

    Zhang, Jianye; Kiser, Philip D.; Badiee, Mohsen; Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Tochtrop, Gregory P.; Palczewski, Krzysztof

    2015-01-01

    Emixustat is a visual cycle modulator that has entered clinical trials as a treatment for age-related macular degeneration (AMD). This molecule has been proposed to inhibit the visual cycle isomerase RPE65, thereby slowing regeneration of 11-cis-retinal and reducing production of retinaldehyde condensation byproducts that may be involved in AMD pathology. Previously, we reported that all-trans-retinal (atRAL) is directly cytotoxic and that certain primary amine compounds that transiently sequester atRAL via Schiff base formation ameliorate retinal degeneration. Here, we have shown that emixustat stereoselectively inhibits RPE65 by direct active site binding. However, we detected the presence of emixustat-atRAL Schiff base conjugates, indicating that emixustat also acts as a retinal scavenger, which may contribute to its therapeutic effects. Using agents that lack either RPE65 inhibitory activity or the capacity to sequester atRAL, we assessed the relative importance of these 2 modes of action in protection against retinal phototoxicity in mice. The atRAL sequestrant QEA-B-001-NH2 conferred protection against phototoxicity without inhibiting RPE65, whereas an emixustat derivative incapable of atRAL sequestration was minimally protective, despite direct inhibition of RPE65. These data indicate that atRAL sequestration is an essential mechanism underlying the protective effects of emixustat and related compounds against retinal phototoxicity. Moreover, atRAL sequestration should be considered in the design of next-generation visual cycle modulators. PMID:26075817

  10. Molecular pharmacodynamics of emixustat in protection against retinal degeneration.

    PubMed

    Zhang, Jianye; Kiser, Philip D; Badiee, Mohsen; Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Tochtrop, Gregory P; Palczewski, Krzysztof

    2015-07-01

    Emixustat is a visual cycle modulator that has entered clinical trials as a treatment for age-related macular degeneration (AMD). This molecule has been proposed to inhibit the visual cycle isomerase RPE65, thereby slowing regeneration of 11-cis-retinal and reducing production of retinaldehyde condensation byproducts that may be involved in AMD pathology. Previously, we reported that all-trans-retinal (atRAL) is directly cytotoxic and that certain primary amine compounds that transiently sequester atRAL via Schiff base formation ameliorate retinal degeneration. Here, we have shown that emixustat stereoselectively inhibits RPE65 by direct active site binding. However, we detected the presence of emixustat-atRAL Schiff base conjugates, indicating that emixustat also acts as a retinal scavenger, which may contribute to its therapeutic effects. Using agents that lack either RPE65 inhibitory activity or the capacity to sequester atRAL, we assessed the relative importance of these 2 modes of action in protection against retinal phototoxicity in mice. The atRAL sequestrant QEA-B-001-NH2 conferred protection against phototoxicity without inhibiting RPE65, whereas an emixustat derivative incapable of atRAL sequestration was minimally protective, despite direct inhibition of RPE65. These data indicate that atRAL sequestration is an essential mechanism underlying the protective effects of emixustat and related compounds against retinal phototoxicity. Moreover, atRAL sequestration should be considered in the design of next-generation visual cycle modulators.

  11. Shell nuclear explosions in degenerate dwarfs

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O. A.; Tutukov, A. V.; Chechetkin, V. M.

    1989-08-01

    Numerical gas dynamics simulations are used to study shell nuclear explosions of degenerate carbon-oxygen dwarfs with masses of 1.17, 1.36, and 1.42 solar masses. It is assumed that the calorific capacity of the burning shell matter is between 5 X 10 to the 17th and 5 X 10 to the 18th erg/g. It is shown that, at a low calorific capacity, a remnant may form if the mass of the shell is less than 90 percent of the mass of the degenerate dwarf. In the case of high calorific capacity, a remnant may form only if the mass of the shell is less than half of the dwarf's mass.

  12. NEUTRINO PROCESSES IN PARTIALLY DEGENERATE NEUTRON MATTER

    SciTech Connect

    Bacca, S.; Hally, K.; Liebendoerfer, M.; Perego, A.; Pethick, C. J.; Schwenk, A.

    2012-10-10

    We investigate neutrino processes for conditions reached in simulations of core-collapse supernovae. In regions where neutrino-matter interactions play an important role, matter is partially degenerate, and we extend earlier work that addressed the degenerate regime. We derive expressions for the spin structure factor in neutron matter, which is a key quantity required for evaluating rates of neutrino processes. We show that, for essentially all conditions encountered in the post-bounce phase of core-collapse supernovae, it is a very good approximation to calculate the spin relaxation rates in the nondegenerate limit. We calculate spin relaxation rates based on chiral effective field theory interactions and find that they are typically a factor of two smaller than those obtained using the standard one-pion-exchange interaction alone.

  13. Inflammation in age-related macular degeneration.

    PubMed

    Ozaki, Ema; Campbell, Matthew; Kiang, Anna-Sophia; Humphries, Marian; Doyle, Sarah L; Humphries, Peter

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of legal blindness in elderly individuals in the developed world, affecting 30-50 million people worldwide. AMD primarily affects the macular region of the retina that is responsible for the majority of central, color and daytime vision. The presence of drusen, extracellular protein aggregates that accumulate under the retinal pigment epithelium (RPE), is a major pathological hallmark in the early stages of the disease. The end stage 'dry' and 'wet' forms of the disease culminate in vision loss and are characterized by focal degeneration of the RPE and cone photoreceptors, and choroidal neovascularization (CNV), respectively. Being a multifactorial and genetically heterogeneous disease, the pathophysiology of AMD remains unclear, yet, there is ample evidence supporting immunological and inflammatory processes. Here, we review the recent literature implicating some of these immune processes in human AMD and in animal models. PMID:24664703

  14. Degeneration and regeneration of ganglion cell axons.

    PubMed

    Weise, J; Ankerhold, R; Bähr, M

    2000-01-15

    The retino-tectal system has been used to study developmental aspects of axon growth, synapse formation and the establishment of a precise topographic order as well as degeneration and regeneration of adult retinal ganglion cell (RGC) axons after axonal lesion. This paper reviews some novel findings that provide new insights into the mechanisms of developmental RGC axon growth, pathfinding, and target formation. It also focuses on the cellular and molecular cascades that underlie RGC degeneration following an axonal lesion and on some therapeutic strategies to enhance survival of axotomized RGCs in vivo. In addition, this review deals with problems related to the induction of regeneration after axonal lesion in the adult CNS using the retino-tectal system as model. Different therapeutic approaches to promote RGC regeneration and requirements for specific target formation of regenerating RGCs in vitro and in vivo are discussed. PMID:10649506

  15. Inflammation in intervertebral disc degeneration and regeneration

    PubMed Central

    Molinos, Maria; Almeida, Catarina R.; Caldeira, Joana; Cunha, Carla; Gonçalves, Raquel M.; Barbosa, Mário A.

    2015-01-01

    Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players. PMID:25673296

  16. Immunology of age-related macular degeneration

    PubMed Central

    Ambati, Jayakrishna; Atkinson, John P.; Gelfand, Bradley D.

    2014-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population. PMID:23702979

  17. Dichromatic Langmuir waves in degenerate quantum plasma

    SciTech Connect

    Dubinov, A. E. Kitayev, I. N.

    2015-06-15

    Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.

  18. Degenerate Bose gases with uniform loss

    NASA Astrophysics Data System (ADS)

    Grišins, Pjotrs; Rauer, Bernhard; Langen, Tim; Schmiedmayer, Jörg; Mazets, Igor E.

    2016-03-01

    We theoretically investigate a weakly interacting degenerate Bose gas coupled to an empty Markovian bath. We show that in the universal phononic limit the system evolves towards an asymptotic state where an emergent temperature is set by the quantum noise of the outcoupling process. For situations typically encountered in experiments, this mechanism leads to significant cooling. Such dissipative cooling supplements conventional evaporative cooling and dominates in settings where thermalization is highly suppressed, such as in a one-dimensional quasicondensate.

  19. [Epidemiology of age related macular degeneration].

    PubMed

    Leveziel, N; Delcourt, C; Zerbib, J; Dollfus, H; Kaplan, J; Benlian, P; Coscas, G; Souied, E H; Soubrane, G

    2009-06-01

    Age-related macular degeneration (ARMD) is a multifactorial and polygenic disease and is the main cause of vision loss in developed countries. The environmental factors of ARMD can modify prevalence and incidence of this disease. This article is a review of the main environmental factors currently recognized as at risk or protective factor for ARMD. Modification of these factors is of crucial importance because it could delay the onset of exudative or atrophic forms of the disease. PMID:19515460

  20. Sarcomatous degeneration in a nasopharyngeal angiofibroma.

    PubMed

    Donald, P J

    1979-01-01

    Malignant degeneration in a juvenile nasopharyngeal angiofibroma has been reported in the literature in only four patients. All of these persons had been previously treated for cure with gamma irradiation. The case report of a 47-year-old man with a 31-year history of nasal obstruction is presented. A recurrence excised 18 months after initial removal of an angiofibroma revealed the surprising diagnosis of fibrosarcoma.

  1. Calabi-Yau manifolds and their degenerations.

    PubMed

    Tosatti, Valentino

    2012-07-01

    Calabi-Yau manifolds are geometric objects of central importance in several branches of mathematics, including differential geometry, algebraic geometry, and mathematical physics. In this paper, we give a brief introduction to the subject aimed at a general mathematical audience and present some of our results that shed some light on the possible ways in which families of Calabi-Yau manifolds can degenerate. PMID:22257362

  2. Recombination-generation currents in degenerate semiconductors

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1978-01-01

    The classical Shockley-Read-Hall theory of free carrier recombination and generation via traps is extended to degenerate semiconductors. A concise and simple expression is found which avoids completely the concept of a Fermi level, a concept which is alien to nonequilibrium situations. Assumptions made in deriving the recombination generation current are carefully delineated and are found to be basically identical to those made in the original theory applicable to nondegenerate semiconductors.

  3. Impaired Vascular Contractility and Aortic Wall Degeneration in Fibulin-4 Deficient Mice: Effect of Angiotensin II Type 1 (AT1) Receptor Blockade

    PubMed Central

    Moltzer, Els; te Riet, Luuk; Swagemakers, Sigrid M. A.; van Heijningen, Paula M.; Vermeij, Marcel; van Veghel, Richard; Bouhuizen, Angelique M.; van Esch, Joep H. M.; Lankhorst, Stephanie; Ramnath, Natasja W. M.; de Waard, Monique C.; Duncker, Dirk J.; van der Spek, Peter J.; Rouwet, Ellen V.; Danser, A. H. Jan; Essers, Jeroen

    2011-01-01

    Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of

  4. Propagation of disturbances in degenerate quantum systems

    NASA Astrophysics Data System (ADS)

    Chancellor, Nicholas; Haas, Stephan

    2011-07-01

    Disturbances in gapless quantum many-body models are known to travel an unlimited distance throughout the system. Here, we explore this phenomenon in finite clusters with degenerate ground states. The specific model studied here is the one-dimensional J1-J2 Heisenberg Hamiltonian at and close to the Majumdar-Ghosh point. Both open and periodic boundary conditions are considered. Quenches are performed using a local magnetic field. The degenerate Majumdar-Ghosh ground state allows disturbances which carry quantum entanglement to propagate throughout the system and thus dephase the entire system within the degenerate subspace. These disturbances can also carry polarization, but not energy, as all energy is stored locally. The local evolution of the part of the system where energy is stored drives the rest of the system through long-range entanglement. We also examine approximations for the ground state of this Hamiltonian in the strong field limit and study how couplings away from the Majumdar-Ghosh point affect the propagation of disturbances. We find that even in the case of approximate degeneracy, a disturbance can be propagated throughout a finite system.

  5. Hypertrophic olivary degeneration secondary to pontine haemorrhage.

    PubMed

    Wein, Sara; Yan, Bernard; Gaillard, Frank

    2015-07-01

    We report a 58-year-old man who developed hyptertrophic olivary degeneration (HOD) after haemorrhage of a cavernous malformation in the pons. Lesions of the triangle of Guillain and Mollaret (the dentatorubro-olivary pathway) may lead to HOD, a secondary transsynaptic degeneration of the inferior olivary nucleus. HOD is considered unique because the degenerating olive initially becomes hypertrophic rather than atrophic. The primary lesion causing pathway interruption is often haemorrhage, either due to hypertension, trauma, surgery or, as in our patient, a vascular malformation such as a cavernoma. Ischaemia and demyelination can also occasionally be the inciting events. The classic clinical presentation of HOD is palatal myoclonus, although not all patients with HOD develop this symptom. The imaging features of HOD evolve through characteristic phases. The clue to the diagnosis of HOD is recognition of the distinct imaging stages and identification of a remote primary lesion in the triangle of Guillain and Mollaret. Familiarity with the classic imaging findings of this rare phenomenon is necessary in order to avoid misdiagnosis and prevent unnecessary intervention.

  6. Molecular mechanisms in the initiation phase of Wallerian degeneration.

    PubMed

    Chang, Biao; Quan, Qi; Lu, Shibi; Wang, Yu; Peng, Jiang

    2016-08-01

    Axonal degeneration is an early hallmark of nerve injury and many neurodegenerative diseases. The discovery of the Wallerian degeneration slow mutant mouse, in which axonal degeneration is delayed, revealed that Wallerian degeneration is an active progress and thereby illuminated the mechanisms underlying axonal degeneration. Nicotinamide mononucleotide adenylyltransferase 2 and sterile alpha and armadillo motif-containing protein 1 play essential roles in the maintenance of axon integrity by regulating the level of nicotinamide adenine dinucleotide, which seems to be the key molecule involved in the maintenance of axonal health. However, the function of nicotinamide mononucleotide remains debatable, and we discuss two apparently conflicting roles of nicotinamide mononucleotide in Wallerian degeneration. In this article, we focus on the roles of these molecules in the initiation phase of Wallerian degeneration to improve our understanding of the mechanisms underpinning this phenomenon. PMID:27062141

  7. [New drug therapy for retinal degeneration].

    PubMed

    Ohguro, Hiroshi

    2008-01-01

    Retinitis pigmentosa (RP) is an inherited retinal degeneration characterized by nyctalopia, ring scotoma, and bone-spicule pigmentation of the retina. So far, no effective therapy has been found for RP. As a possible molecular etiology of RP, retina-specific gene deficits are most likely involved, but little has been identified in terms of intracellular mechanisms leading to retinal photoreceptor cell death at post-translational levels. In order to find an effective therapy for RP, we must look for underlying common mechanisms that are responsible for the development of RP, instead of designing a specific therapy for each of the RP types with different causes. Therefore, in the present study, several animal models with different causes of RP were studied, including (1)Royal College of Surgeons (RCS) rats with a deficit of retinal pigment epithelium (RPE) function caused by rhodopsin mutation; (2) P23H rats, (3) S334ter rats, (4) photo stress rats, (5) retinal degeneration (rd) mice with a deficit of phosphodiesterase(PDE) function; and (6) cancer-associated retinopathy (CAR) model rats with a deficit of recoverin-dependent photoreceptor adaptation function. In each of these models, the following assessments were made in order to elucidate common pathological mechanisms among the models: (1) retinal function assessed by electroretinogram (ERG), (2) retinal morphology, (3) retinoid analysis, (4) rhodopsin regeneration, (5) rhodopsin phosphorylation and dephosphorylation, and (6) cytosolic cGMP levels. We found that unregulated photoreceptor adaptation processes caused by an imbalance of rhodopsin phosphorylation and dephosphorylation caused retinal dysfunction leading to photoreceptor cell death. As possible candidate drugs for normalizing these retinal dysfunctions and stopping further retinal degeneration, nilvadipine, a Ca channel blocker, retinoid derivatives, and anthocyanine were chosen and tested to determine their effect on the above animal models with

  8. Vector polarons in a degenerate electron system

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.; Foell, Charles A.

    2004-08-01

    We consider a one-dimensional model of an electron in a doubly (or nearly) degenerate band that interacts with elastic distortions. We show that the electron equations of motion reduce to a set of coupled nonlinear Schrödinger equations. For the case of interband electron-phonon coupling stemming from local Jahn-Teller interactions, multicomponent self-localized polaron solutions-vector polarons- are described and classified. The phase diagram for the different types of vector polarons in this model is presented. By interpreting the components of the orbital doublet as those of spin- (1)/(2) , our results can also be used to describe bound magnetic polarons.

  9. Relativistic Bernstein waves in a degenerate plasma

    SciTech Connect

    Ali, Muddasir; Hussain, Azhar; Murtaza, G.

    2011-09-15

    Bernstein mode for a relativistic degenerate electron plasma is investigated. Using relativistic Vlasov-Maxwell equations, a general expression for the conductivity tensor is derived and then employing Fermi-Dirac distribution function a generalized dispersion relation for the Bernstein mode is obtained. Two limiting cases, i.e., non-relativistic and ultra-relativistic are discussed. The dispersion relations obtained are also graphically presented for some specific values of the parameters depicting how the propagation characteristics of Bernstein waves as well as the Upper Hybrid oscillations are modified with the increase in plasma number density.

  10. Aneutronic Fusion in a Degenerate Plasma

    SciTech Connect

    S. Son; N.J. Fisch

    2004-09-03

    In a Fermi-degenerate plasma, the electronic stopping of a slow ion is smaller than that given by the classical formula, because some transitions between the electron states are forbidden. The bremsstrahlung losses are then smaller, so that the nuclear burning of an aneutronic fuel is more efficient. Consequently, there occurs a parameter regime in which self-burning is possible. Practical obstacles in this regime that must be overcome before net energy can be realized include the compression of the fuel to an ultra dense state and the creation of a hot spot.

  11. Kramers-degenerated NV+113C spin systems in diamond: analytical description

    NASA Astrophysics Data System (ADS)

    Nizovtsev, Alexander P.; Kilin, Sergei Y.; Pushkarchuk, Alexander L.; Kuten, Semen A.

    2013-02-01

    Spin systems consisted of single electronic spin S=1 of the NV center and nearby nuclear spins I=1/2 of 13C atoms disposed in diamond lattice near the center can be used as a small register of a quantum computer or as a sensor of a magnetic field. At odd number of nuclear spins eigenvalues of the spin systems at zero external magnetic field are at least twofold degenerated (Kramers degeneration) due to time reversal invariance of the spin Hamiltonian. This degeneracy is lifted only by external magnetic field regardless of the presence of any electric (crystal) field which can also lift the degeneracy thus hindering measurement of the magnetic field. Therefore, the Kramers-degenerated spin systems can be very perspective for measurement of a local magnetic field by the NV-based single-spin quantum magnetometer. Here, we are considering analytically the simplest Kramers-degenerated spin system NV+113C consisting of a single electron spin S=1 of the NV сenter coupled by hyperfine interaction with a single nuclear spin I=1/2 of 13C atom disposed in arbitrary site of diamond lattice. Simple approximate analytical expressions are obtained for eigenvalues and eigenstates of the spin system.

  12. Transneuronal Degeneration of Thalamic Nuclei following Middle Cerebral Artery Occlusion in Rats

    PubMed Central

    2016-01-01

    Objective. Postinfarction transneuronal degeneration refers to secondary neuronal death that occurs within a few days to weeks following the disruption of input or output to synapsed neurons sustaining ischemic insults. The thalamus receives its blood supply from the posterior circulation; however, infarctions of the middle cerebral arterial may cause secondary transneuronal degeneration in the thalamus. In this study, we presented the areas of ischemia and associated transneuronal degeneration following MCAo in a rat model. Materials and Methods. Eighteen 12-week-old male Sprague-Dawley rats were randomly assigned to receive middle cerebral artery occlusion surgery for 1, 7, and 14 days. Cerebral atrophy was assessed by 2,3,5-triphenyltetrazolium hydrochloride staining. Postural reflex and open field tests were performed prior to animal sacrifice to assess the effects of occlusion on behavior. Results. Myelin loss was observed at the lesion site following ischemia. Gliosis was also observed in thalamic regions 14 days following occlusion. Differential degrees of increased vascular endothelial growth factor expression were observed at each stage of infarction. Increases in myelin basic protein levels were also observed in the 14-day group. Conclusion. The present rat model of ischemia provides evidence of transneuronal degeneration within the first 14 days of occlusion. The observed changes in protein expression may be associated with self-repair mechanisms in the damaged brain. PMID:27597962

  13. Transneuronal Degeneration of Thalamic Nuclei following Middle Cerebral Artery Occlusion in Rats.

    PubMed

    Chang, Shu-Jen; Cherng, Juin-Hong; Wang, Ding-Han; Yu, Shu-Ping; Liou, Nien-Hsien; Hsu, Ming-Lun

    2016-01-01

    Objective. Postinfarction transneuronal degeneration refers to secondary neuronal death that occurs within a few days to weeks following the disruption of input or output to synapsed neurons sustaining ischemic insults. The thalamus receives its blood supply from the posterior circulation; however, infarctions of the middle cerebral arterial may cause secondary transneuronal degeneration in the thalamus. In this study, we presented the areas of ischemia and associated transneuronal degeneration following MCAo in a rat model. Materials and Methods. Eighteen 12-week-old male Sprague-Dawley rats were randomly assigned to receive middle cerebral artery occlusion surgery for 1, 7, and 14 days. Cerebral atrophy was assessed by 2,3,5-triphenyltetrazolium hydrochloride staining. Postural reflex and open field tests were performed prior to animal sacrifice to assess the effects of occlusion on behavior. Results. Myelin loss was observed at the lesion site following ischemia. Gliosis was also observed in thalamic regions 14 days following occlusion. Differential degrees of increased vascular endothelial growth factor expression were observed at each stage of infarction. Increases in myelin basic protein levels were also observed in the 14-day group. Conclusion. The present rat model of ischemia provides evidence of transneuronal degeneration within the first 14 days of occlusion. The observed changes in protein expression may be associated with self-repair mechanisms in the damaged brain. PMID:27597962

  14. Progressive retinal degeneration in ranch mink.

    PubMed

    Hadlow, W J

    1984-01-01

    Retinal degeneration was prevalent in a large group of sapphire and pastel mink (Mustela vison) kept for studies on slow viral diseases. Nearly 78% of those two to eight years old were affected. The retinopathy was equally common in both sexes but more frequent in sapphires (85%) than in pastels (63%), and it was severe more often in sapphires than in pastels. By light microscopy, the primary change appeared to be progressive degeneration of fully developed photoreceptors, beginning in their outer segments. In many mink, including some younger ones, the rods and cones and outer nuclear layer had disappeared from all but the far periphery of the fundus. The inner retinal layers were spared until late in the disease, and the pigment epithelium remained essentially unchanged. The cause of the retinopathy was not established. It may represent an abiotrophy in which the structural integrity of the photoreceptors began to wane in many mink after they reached two years of age. Apart from reducing visual acuity, the retinopathy has implications for the photoperiodic control of fur growth and reproduction in this highly light-sensitive carnivore. PMID:6710807

  15. Nodular fasciitis with degeneration and regression.

    PubMed

    Yanagisawa, Akihiro; Okada, Hideki

    2008-07-01

    Nodular fasciitis is a benign reactive proliferation that is frequently misdiagnosed as a sarcoma. This article describes a case of nodular fasciitis of 6-month duration located in the cheek, which degenerated and spontaneously regressed after biopsy. The nodule was fixed to the zygoma but was free from the overlying skin. The mass was 3.0 cm in diameter and demonstrated high signal intensity on T2-weighted magnetic resonance imaging. A small part of the lesion was biopsied. Pathological and immunohistochemical examinations identified the nodule as nodular fasciitis with myxoid histology. One month after the biopsy, the mass showed decreased signal intensity on T2-weighted images and measured 2.2 cm in size. The signal on T2-weighted images showed time-dependent decreases, and the mass continued to reduce in size throughout the follow-up period. The lesion presented as hypointense to the surrounding muscles on T2-weighted images and was 0.4 cm in size at 2 years of follow-up. This case demonstrates that nodular fasciitis with myxoid histology can change to that with fibrous appearance gradually with time, thus bringing about spontaneous regression. Degeneration may be involved in the spontaneous regression of nodular fasciitis with myxoid appearance. The mechanism of regression, unclarified at present, should be further studied. PMID:18650753

  16. Changes in ganglion cells during retinal degeneration.

    PubMed

    Saha, Susmita; Greferath, Ursula; Vessey, Kirstan A; Grayden, David B; Burkitt, Anthony N; Fletcher, Erica L

    2016-08-01

    Inherited retinal degeneration such as retinitis pigmentosa (RP) is associated with photoreceptor loss and concomitant morphological and functional changes in the inner retina. It is not known whether these changes are associated with changes in the density and distribution of synaptic inputs to retinal ganglion cells (RGCs). We quantified changes in ganglion cell density in rd1 and age-matched C57BL/6J-(wildtype, WT) mice using the immunocytochemical marker, RBPMS. Our data revealed that following complete loss of photoreceptors, (∼3months of age), there was a reduction in ganglion cell density in the peripheral retina. We next examined changes in synaptic inputs to A type ganglion cells by performing double labeling experiments in mice with the ganglion cell reporter lines, rd1-Thy1 and age-matched wildtype-Thy1. Ribbon synapses were identified by co-labelling with CtBP2 (RIBEYE) and conventional synapses with the clustering molecule, gephyrin. ON RGCs showed a significant reduction in RIBEYE-immunoreactive synapse density while OFF RGCs showed a significant reduction in the gephyrin-immmunoreactive synapse density. Distribution patterns of both synaptic markers across the dendritic trees of RGCs were unchanged. The change in synaptic inputs to RGCs was associated with a reduction in the number of immunolabeled rod bipolar and ON cone bipolar cells. These results suggest that functional changes reported in ganglion cells during retinal degeneration could be attributed to loss of synaptic inputs. PMID:27132232

  17. Progressive retinal degeneration in ranch mink.

    PubMed

    Hadlow, W J

    1984-01-01

    Retinal degeneration was prevalent in a large group of sapphire and pastel mink (Mustela vison) kept for studies on slow viral diseases. Nearly 78% of those two to eight years old were affected. The retinopathy was equally common in both sexes but more frequent in sapphires (85%) than in pastels (63%), and it was severe more often in sapphires than in pastels. By light microscopy, the primary change appeared to be progressive degeneration of fully developed photoreceptors, beginning in their outer segments. In many mink, including some younger ones, the rods and cones and outer nuclear layer had disappeared from all but the far periphery of the fundus. The inner retinal layers were spared until late in the disease, and the pigment epithelium remained essentially unchanged. The cause of the retinopathy was not established. It may represent an abiotrophy in which the structural integrity of the photoreceptors began to wane in many mink after they reached two years of age. Apart from reducing visual acuity, the retinopathy has implications for the photoperiodic control of fur growth and reproduction in this highly light-sensitive carnivore.

  18. Degenerate parametric oscillation in quantum membrane optomechanics

    NASA Astrophysics Data System (ADS)

    Benito, Mónica; Sánchez Muñoz, Carlos; Navarrete-Benlloch, Carlos

    2016-02-01

    The promise of innovative applications has triggered the development of many modern technologies capable of exploiting quantum effects. But in addition to future applications, such quantum technologies have already provided us with the possibility of accessing quantum-mechanical scenarios that seemed unreachable just a few decades ago. With this spirit, in this work we show that modern optomechanical setups are mature enough to implement one of the most elusive models in the field of open system dynamics: degenerate parametric oscillation. Introduced in the eighties and motivated by its alleged implementability in nonlinear optical resonators, it rapidly became a paradigm for the study of dissipative phase transitions whose corresponding spontaneously broken symmetry is discrete. However, it was found that the intrinsic multimode nature of optical cavities makes it impossible to experimentally study the model all the way through its phase transition. In contrast, here we show that this long-awaited model can be implemented in the motion of a mechanical object dispersively coupled to the light contained in a cavity, when the latter is properly driven with multichromatic laser light. We focus on membranes as the mechanical element, showing that the main signatures of the degenerate parametric oscillation model can be studied in state-of-the-art setups, thus opening the possibility of analyzing spontaneous symmetry breaking and enhanced metrology in one of the cleanest dissipative phase transitions. In addition, the ideas put forward in this work would allow for the dissipative preparation of squeezed mechanical states.

  19. Evolutionary scenarios for double degenerate systems

    NASA Astrophysics Data System (ADS)

    Sarna, M. J.; Marks, P. B.; Connon Smith, Robert

    1996-03-01

    We propose evolutionary scenarios in which double degenerate white dwarf systems can be produced through one or two phases of stable mass transfer. We consider Algol-type evolution as well as evolution involving first a stage of common-envelope (CE) evolution followed by a phase of stable mass transfer. We also show that the final orbital period of double white dwarf systems depends on the period after the first phase of mass transfer, and that there is critical period (the bifurcation period) above which systems evolve to orbital periods of the order of days and below which systems evolve towards very short orbital periods (a few hours). This probably corresponds to the observation that double degenerate systems have periods either of hours or of days. We also find a limit on the stability of mass transfer for systems that first go through a phase of CE evolution. We suggest that our new evolutionary scheme involving two stages of stable mass transfer and our scheme involving first CE evolution followed by stable mass transfer should be included in population synthesis models.

  20. Metabolic anatomy of paraneoplastic cerebellar degeneration

    SciTech Connect

    Anderson, N.E.; Posner, J.B.; Sidtis, J.J.; Moeller, J.R.; Strother, S.C.; Dhawan, V.; Rottenberg, D.A.

    1988-06-01

    Eleven patients with acquired cerebellar degeneration (10 of whom had paraneoplastic cerebellar degeneration (PCD)) were evaluated using neuropsychological tests and /sup 18/F-fluorodeoxyglucose/positron emission tomography to (1) quantify motor, cognitive, and metabolic abnormalities; (2) determine if characteristic alterations in the regional cerebral metabolic rate for glucose (rCMRGlc) are associated with PCD; and (3) correlate behavioral and metabolic measures of disease severity. Eighteen volunteer subjects served as normal controls. Although some PCD neuropsychological test scores were abnormal, these results could not, in general, be dissociated from the effects of dysarthria and ataxia. rCMRGlc was reduced in patients with PCD (versus normal control subjects) in all regions except the brainstem. Analysis of patient and control rCMRGlc data using a mathematical model of regional metabolic interactions revealed two metabolic pattern descriptors, SSF1 and SSF2, which distinguished patients with PCD from normal control subjects; SSF2, which described a metabolic coupling between cerebellum, cuneus, and posterior temporal, lateral frontal, and paracentral cortex, correlated with quantitative indices of cerebellar dysfunction. Our inability to document substantial intellectual impairment in 7 of 10 patients with PCD contrasts with the 50% incidence of dementia in PCD reported by previous investigators. Widespread reductions in PCD rCMRGlc may result from the loss of cerebellar efferents to thalamus and forebrain structures, a reverse cerebellar diaschisis.

  1. [Acquired polycystic degeneration of the kidneys].

    PubMed

    Kreisel-Büstgens, C; Büstgens, L; Graben, N

    1990-12-15

    Kidneys of patients with advanced renal insufficiency undergo polycystic transformation, described as acquired cystic degeneration (ACD). In 118 chronic dialysis patients clinical data were compared with sonographic findings of their 221 cirrhotic kidneys: 74 (63%) patients showed distinctly discernible renal cysts: 19 patients hat one single cyst, nine patients had two to eight cysts, 46 patients had more than eight cysts. Accordingly 39% of patients had ACD. Cystic transformation was of the same degree on both sides and in a few cases so marked that a formal discrimination to congenital cystic disease seemed impossible. Cystic degeneration was not influenced by patient's age, sex or underlying renal disease, but was dependent on the duration of both, renal disease and dialysis treatment. After eight years 71% of dialysis patients had ACD. In coincidence with cystic transformation the size of the kidneys apparently normalized and Hb-concentration rose from 8 to 10 g/dl. Complications were seen in six patients: two severe retroperitoneal bleedings and four hypernephroma were observed. The etiology of cystic transformation and its possible role as precancerosis are discussed.

  2. The non-directional pattern of axonal changes in Wallerian degeneration: a computer-aided morphometric analysis.

    PubMed Central

    Malbouisson, A M; Ghabriel, M N; Allt, G

    1984-01-01

    Wallerian degeneration was investigated to determine whether axonal changes occur progressively in a somatofugal or somatopetal direction or simultaneously along the length of the axon. Microtubule density was used as a measure of the extent of axonal degeneration and was assessed by a computer-aided analysis of electron micrographs. The left sural nerves of ten rats were crushed and 30 hours later axonal areas and axonal microtubule numbers were recorded from a large sample of axons at two sites 1 cm and 3 cm distal to the crush. The same recordings were made from the right unoperated nerve at two comparable sites. Statistical analysis of all the data provided no evidence for a somatofugal or reverse direction of degeneration. It is concluded therefore that in Wallerian degeneration axonal changes, as indicated by microtubule dissolution, occur simultaneously along the length of the axon. It is proposed that to interpret the conflicting published data on the direction of fibre degeneration, Schwann cell changes (e.g. myelin ovoid formation) and axonal changes (e.g. microtubule dissolution) should be considered independently since they have different aetiological mechanisms which may account for the differing experimental results reported. Images Fig. 1 Figs. 7-8 Figs. 9-10 PMID:6469853

  3. Mechanisms of axon degeneration: from development to disease.

    PubMed

    Saxena, Smita; Caroni, Pico

    2007-10-01

    Axon degeneration is an active, tightly controlled and versatile process of axon segment self-destruction. Although not involving cell death, it resembles apoptosis in its logics. It involves three distinct steps: induction of competence in specific neurons, triggering of degeneration at defined axon segments of competent neurons, and rapid fragmentation and removal of the segments. The mechanisms that initiate degeneration are specific to individual settings, but the final pathway of pruning is shared; it involves microtubule disassembly, axon swellings, axon fragmentation, and removal of the remnants by locally recruited phagocytes. The tight regulatory properties of axon degeneration distinguish it from passive loss phenomena, and confer significance to processes that involve it. Axon degeneration has prominent roles in development, upon lesions and in disease. In development, it couples the progressive specification of neurons and circuits to the removal of defined axon branches. Competence might involve transcriptional switches, and local triggering can involve axon guidance molecules and synaptic activity patterns. Lesion-induced Wallerian degeneration is inhibited in the presence of Wld(S) fusion protein in neurons; it involves early local, and later, distal degeneration. It has recently become clear that like in other settings, axon degeneration in disease is a rapid and specific process, which should not be confused with a variety of disease-related pathologies. Elucidating the specific mechanisms that initiate axon degeneration should open up new avenues to investigate principles of circuit assembly and plasticity, to uncover mechanisms of disease progression, and to identify ways of protecting synapses and axons in disease.

  4. Differential modulation of retinal degeneration by Ccl2 and Cx3cr1 chemokine signalling.

    PubMed

    Luhmann, Ulrich F O; Lange, Clemens A; Robbie, Scott; Munro, Peter M G; Cowing, Jill A; Armer, Hannah E J; Luong, Vy; Carvalho, Livia S; MacLaren, Robert E; Fitzke, Frederick W; Bainbridge, James W B; Ali, Robin R

    2012-01-01

    Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2(-/-)/Crb1(Rd8/RD8), Cx3cr1(-/-)/Crb1(Rd8/RD8) and CCl2(-/-)/Cx3cr1(-/-)/Crb1(Rd8/RD8) mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings

  5. Degenerate polygonal tilings in simple animal tissues

    NASA Astrophysics Data System (ADS)

    Hočevar, A.; Ziherl, P.

    2009-07-01

    The salient feature of one-cell-thick epithelia is their en face view, which reveals the polygonal cross section of the close-packed prismatic cells. The physical mechanisms that shape these tissues were hitherto explored using theories based on cell proliferation, which were either entirely topological or included certain morphogenetic forces. But mitosis itself may not be instrumental in molding the tissue. We show that the structure of simple epithelia can be explained by an equilibrium model where energy-degenerate polygons in an entropy-maximizing tiling are described by a single geometric parameter encoding their inflatedness. The two types of tilings found numerically—ordered and disordered—closely reproduce the patterns observed in Drosophila, Hydra, and Xenopus and they generalize earlier theoretical results. Free of a specific cell self-energy, cell-cell interaction, and cell division kinetics, our model provides an insight into the universality of living and inanimate two-dimensional cellular structures.

  6. Subwavelength total acoustic absorption with degenerate resonators

    NASA Astrophysics Data System (ADS)

    Yang, Min; Meng, Chong; Fu, Caixing; Li, Yong; Yang, Zhiyu; Sheng, Ping

    2015-09-01

    We report the experimental realization of perfect sound absorption by sub-wavelength monopole and dipole resonators that exhibit degenerate resonant frequencies. This is achieved through the destructive interference of two resonators' transmission responses, while the matching of their averaged impedances to that of air implies no backscattering, thereby leading to total absorption. Two examples, both using decorated membrane resonators (DMRs) as the basic units, are presented. The first is a flat panel comprising a DMR and a pair of coupled DMRs, while the second one is a ventilated short tube containing a DMR in conjunction with a sidewall DMR backed by a cavity. In both examples, near perfect absorption, up to 99.7%, has been observed with the airborne wavelength up to 1.2 m, which is at least an order of magnitude larger than the composite absorber. Excellent agreement between theory and experiment is obtained.

  7. Quantum Walk in Degenerate Spin Environments

    NASA Astrophysics Data System (ADS)

    Carlström, Johan; Prokof'ev, Nikolay; Svistunov, Boris

    2016-06-01

    We study the propagation of a hole in degenerate (paramagnetic) spin environments. This canonical problem has important connections to a number of physical systems, and is perfectly suited for experimental realization with ultracold atoms in an optical lattice. At the short-to-intermediate time scale that we can access using a stochastic-series-type numeric scheme, the propagation turns out to be distinctly nondiffusive with the probability distribution featuring minima in both space and time due to quantum interference, yet the motion is not ballistic, except at the beginning. We discuss possible scenarios for long-term evolution that could be explored with an unprecedented degree of detail in experiments with single-atom resolved imaging.

  8. [Epidemiology of age-related macular degeneration].

    PubMed

    Brandl, C; Stark, K J; Wintergerst, M; Heinemann, M; Heid, I M; Finger, R P

    2016-09-01

    Age-related macular degeneration (AMD) is the main cause of blindness in industrialized societies. Population-based epidemiological investigations generate important data on prevalence, incidence, risk factors, and future trends. This review summarizes the most important epidemiological studies on AMD with a focus on their transferability to Germany including existing evidence for the main risk factors for AMD development and progression. Future tasks, such as the standardization of grading systems and the use of recent retinal imaging technology in epidemiological studies are discussed. In Germany, epidemiological data on AMD are scarce. However, the need for epidemiological research in ophthalmology is currently being addressed by several recently started population-based studies. PMID:27541733

  9. Responses to light after retinal degeneration.

    PubMed

    Mrosovsky, N; Salmon, P A; Foster, R G; McCall, M A

    2000-01-01

    Transgenic rodless mice were given 1-h pulses of light of varying brightness at times of the night when they were normally active. The rodless mice showed decreases in locomotor activity during light pulses brighter than 2 lux; these decreases were significantly greater than those in wildtypes (ANOVA, P < 0.01). However, with very dim light, rodless mice showed no changes in activity, whereas wildtype mice actually increased their activity. It is suggested that irradiance detection could be enhanced by absence of image-forming vision. Enhanced inhibition of activity around twilight may be adaptive for mice in some circumstances and so help maintain genes for retinal degeneration in natural populations. PMID:10824261

  10. A computational model of motor neuron degeneration.

    PubMed

    Le Masson, Gwendal; Przedborski, Serge; Abbott, L F

    2014-08-20

    To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations.

  11. Mapping cerebellar degeneration in HIV/AIDS.

    PubMed

    Klunder, Andrea D; Chiang, Ming-Chang; Dutton, Rebecca A; Lee, Sharon E; Toga, Arthur W; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Thompson, Paul M

    2008-11-19

    Progressive brain atrophy in HIV/AIDS is associated with impaired psychomotor performance, perhaps partly reflecting cerebellar degeneration; yet little is known about how HIV/AIDS affects the cerebellum. We visualized the three-dimensional profile of atrophy in 19 HIV-positive patients (age: 42.9+/-8.3 years) versus 15 healthy controls (age: 38.5+/-12.0 years). We localized consistent patterns of subregional atrophy with an image analysis method that automatically deforms each patient's scan, in three dimensions, to match a reference image. Atrophy was greatest in the posterior cerebellar vermis (14.9% deficit) and correlated with depression severity (P=0.009, corrected), but not with dementia, alcohol/substance abuse, CD4+T-cell counts, or viral load. Profound cerebellar deficits in HIV/AIDS (P=0.007, corrected) were associated with depression, suggesting a surrogate disease marker for antiretroviral trials.

  12. Degenerate R-S perturbation theory

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Certain, P. R.

    1973-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.

  13. Age-related macular degeneration: current treatments

    PubMed Central

    Hubschman, Jean Pierre; Reddy, Shantan; Schwartz, Steven D

    2009-01-01

    Purpose: Although important progress has been made in understanding age-related macular degeneration (AMD), management of the disease continues to be a challenge. AMD research has led to a widening of available treatment options and improved prognostic perspectives. This essay reviews these treatment options. Design: Interpretative essay. Methods: Literature review and interpretation. Results: Current treatments to preserve vision in patients with non-exudative AMD include antioxidant vitamins and mineral supplementations. Exudative AMD is currently most often treated monthly with anti-VEGF intravitreal injections. However, investigators are beginning to experiment with combination therapy and surgical approaches in an attempt to limit the number of treatment and reduce the financial burden on the health care system. Conclusion: By better understanding the basis and pathogenesis of AMD, newer therapies will continue to be developed that target specific pathways in patients with AMD, with the hoped for outcome of better management of the disease and improved visual acuity. PMID:19668560

  14. Crystallization and collapse in relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2013-04-15

    In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (M{sub Ch} Asymptotically-Equal-To 1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

  15. Retrograde Axonal Degeneration in Parkinson Disease

    PubMed Central

    Tagliaferro, Patricia; Burke, Robert E.

    2016-01-01

    In spite of tremendous research efforts we have not yet achieved two of our principal therapeutic goals in the treatment of Parkinson’s disease (PD), to prevent its onward progression and to provide restoration of systems that have already been damaged by the time of diagnosis. There are many possible reasons for our inability to make progress. One possibility is that our efforts thus far may not have been directed towards the appropriate cellular compartments. Up until now research has been largely focused on the loss of neurons in the disease. Thus, neuroprotection approaches have been largely aimed at blocking mechanisms that lead to destruction of the neuronal cell body. Attempts to provide neurorestoration have been almost entirely focused on replacement of neurons. We herein review the evidence that the axonal component of diseased neuronal systems merit more of our attention. Evidence from imaging studies, from postmortem neurochemical studies, and from genetic animal models suggests that the axons of the dopaminergic system are involved predominantly and early in PD. Since the mechanisms of axonal destruction are distinct from those of neuron cell body degeneration, a focus on axonal neurobiology will offer new opportunities for preventing their degeneration. At present these mechanisms remain largely obscure. However, defining them is likely to offer new opportunities for neuroprotection. In relation to neurorestoration, while it has been classically believed that neurons of the adult central nervous system are incapable of new axon growth, recent evidence shows that this is not true for the dopaminergic projection. In conclusion, the neurobiology of axons is likely to offer many new approaches to protective and restorative therapeutics. PMID:27003783

  16. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Muscular inflammation, degeneration... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are found... carcass shall be condemned. (b) If muscular lesions are found to be distributed in such a manner or to...

  17. [Depression in Patients with Age-Related Macular Degeneration].

    PubMed

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index. PMID:26572116

  18. [Depression in Patients with Age-Related Macular Degeneration].

    PubMed

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index.

  19. Does lumbar facet arthrosis precede disc degeneration? A postmortem study.

    PubMed

    Eubanks, Jason David; Lee, Michael J; Cassinelli, Ezequiel; Ahn, Nicholas U

    2007-11-01

    It is believed lumbar degeneration begins in the disc, where desiccation and collapse lead to instability and compensatory facet arthrosis. We explored the contrary contention that facet degeneration precedes disc degeneration by examining 647 skeletal lumbar spines. Using facet osteophytosis as a measure of facet degeneration and vertebral rim osteophytosis as a measure of disc degeneration, we assumed bone degeneration in both locations equally reflected the progression of those in the soft tissues. We graded arthrosis Grade 0 to 4 on a continuum from no arthritis to ankylosis. The data were analyzed for different age groups to examine patterns of degeneration with age. Specimens younger than 30 years of age had a higher prevalence of facet osteophytosis compared with vertebral rim osteophotosis at L1-L2 and L2-L3. Specimens aged 30 to 39 years showed more facet osteophytosis than vertebral rim osteophytosis at L4-L5. Specimens older than 40 years, however, showed more vertebral rim osteophytosis compared with facet osteophytosis at all levels except L4-L5 and L5-S1. This skeletal study suggests facet osteophytosis appears early in the degenerative process, preceding vertebral rim osteophytosis of degenerating intervertebral discs. However, once facets begin deteriorating with age, vertebral rim osteophytosis overtakes continued facet osteophytosis. These data challenge the belief that facet osteophytosis follows vertebral rim osteophytosis; rather, it appears vertebral rim osteophytosis progresses more rapidly in later years, but facet osteophotosis occurs early, predominating in younger individuals.

  20. Retinas in a Dish Peek into Inherited Retinal Degeneration.

    PubMed

    Duong, Thu T; Vasireddy, Vidyullatha; Mills, Jason A; Bennett, Jean

    2016-06-01

    Human retinal degeneration can cause blindness, and the lack of relevant model systems has made identifying underlying mechanisms challenging. Parfitt et al. (2016) generate three-dimensional retinal tissue from patient-derived induced pluripotent stem cells to identify how CEP290 mutations cause retinal degeneration, and show an antisense approach can correct disease-associated phenotypes. PMID:27257755

  1. Depletion of PtdIns(4,5)P2 underlies retinal degeneration in Drosophila trp mutants

    PubMed Central

    Sengupta, Sukanya; Barber, Thomas R.; Xia, Hongai; Ready, Donald F.; Hardie, Roger C.

    2013-01-01

    Summary The prototypical transient receptor potential (TRP) channel is the major light-sensitive, and Ca2+-permeable channel in the microvillar photoreceptors of Drosophila. TRP channels are activated following hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] by the key effector enzyme phospholipase C (PLC). Mutants lacking TRP channels undergo light-dependent retinal degeneration, as a consequence of the reduced Ca2+ influx. It has been proposed that degeneration is caused by defects in the Ca2+-dependent visual pigment cycle, which result in accumulation of toxic phosphorylated metarhodopsin–arrestin complexes (MPP–Arr2). Here we show that two interventions, which prevent accumulation of MPP–Arr2, namely rearing under red light or eliminating the C-terminal rhodopsin phosphorylation sites, failed to rescue degeneration in trp mutants. Instead, degeneration in trp mutants reared under red light was rescued by mutation of PLC. Degeneration correlated closely with the light-induced depletion of PtdIns(4,5)P2 that occurs in trp mutants due to failure of Ca2+-dependent inhibition of PLC. Severe retinal degeneration was also induced in the dark in otherwise wild-type flies by overexpression of a bacterial PtdInsPn phosphatase (SigD) to deplete PtdIns(4,5)P2. In degenerating trp photoreceptors, phosphorylated Moesin, a PtdIns(4,5)P2-regulated membrane–cytoskeleton linker essential for normal microvillar morphology, was found to delocalize from the rhabdomere and there was extensive microvillar actin depolymerisation. The results suggest that compromised light-induced Ca2+ influx, due to loss of TRP channels, leads to PtdIns(4,5)P2 depletion, resulting in dephosphorylation of Moesin, actin depolymerisation and disintegration of photoreceptor structure. PMID:23378018

  2. Anomalous skin effects in a weakly magnetized degenerate electron plasma

    SciTech Connect

    Abbas, G. Sarfraz, M.; Shah, H. A.

    2014-09-15

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].

  3. Anomalous skin effects in a weakly magnetized degenerate electron plasma

    NASA Astrophysics Data System (ADS)

    Abbas, G.; Sarfraz, M.; Shah, H. A.

    2014-09-01

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].

  4. Analysis of nuclear factor I binding to DNA using degenerate oligonucleotides.

    PubMed Central

    Gronostajski, R M

    1986-01-01

    Nuclear factor I (NFI) binds tightly to DNA containing the consensus sequence TGG(N)6-7GCCAA. To study the role of the spacing between the TGG and GCCAA motifs, oligonucleotides homologous to the NFI binding site FIB-2 were synthesized and used for binding assays in vitro. The wild-type site (FIB-2.6) has a 6bp spacer region and binds tightly to NFI. When the size of this spacer was altered by +/- 1 or 2bp the binding to NFI was abolished. To further assess the role of the spacer and bases flanking the motifs, two oligonucleotide libraries were synthesized. Each member of these libraries had intact TGG and GCCAA motifs, but the sequence of the spacer and the 3bp next to each motif was degenerate. The library with a 6bp spacer bound to NFI to 40-50% the level of FIB-2.6. The library with a 7bp spacer bound to NFI to only 4% the level of FIB-2.6 and some of this binding was weaker than that of FIB-2.6 DNA. This novel use of degenerate DNA libraries has shown that: 1) the structural requirements for FIB sites with a 7bp spacer are more stringent than for sites with a 6bp spacer and 2) a limited number of DNA structural features can prevent the binding of NFI to sites with intact motifs and a 6bp spacer region. PMID:3786147

  5. Rpe65 as a modifier gene for inherited retinal degeneration

    PubMed Central

    Samardzija, M.; Wenzel, A.; Naash, M.; Remé, C. E.; Grimm, C.

    2009-01-01

    Light accelerates progression of retinal degeneration in many animal models of retinitis pigmentosa (RP). A sequence variant in the Rpe65 gene (Rpe65450Leu or Rpe65450Met) can act as a modulator of light-damage susceptibility in mice by influencing the kinetics of rhodopsin regeneration and thus by modulating the photon absorption. Depending on exposure duration and light intensity applied, white fluorescent light induces photoreceptor apoptosis and retinal degeneration in wild-type mice by the activation of one of two known molecular pathways. These pathways depend, respectively, on activation of the transcription factor c-Fos/AP-1 and on phototransduction activity. Here we tested Rpe65 as a genetic modifier for inherited retinal degeneration and analysed which degenerative pathway is activated in a transgenic mouse model of autosomal dominant RP. We show that retinal degeneration was reduced in mice expressing the Rpe65450Met variant and that these mice retained more visual pigment rhodopsin than did transgenic mice expressing the Rpe65450Leu variant. In addition, lack of phototransduction slowed retinal degeneration whereas ablation of c-Fos had no effect. We conclude that sequence variations in the Rpe65 gene can act as genetic modifiers in inherited retinal degeneration, presumably by regulating the daily rate of photon absorption through the modulation of rhodopsin regeneration kinetics. Increased absorption of photons and/or light sensitivity appear to accelerate retinal degeneration via an apoptotic cascade which involves phototransduction but not c-Fos. PMID:16519667

  6. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  7. Disruption in dopaminergic innervation during photoreceptor degeneration.

    PubMed

    Ivanova, Elena; Yee, Christopher W; Sagdullaev, Botir T

    2016-04-15

    Dopaminergic amacrine cells (DACs) release dopamine in response to light-driven synaptic inputs, and are critical to retinal light adaptation. Retinal degeneration (RD) compromises the light responsiveness of the retina and, subsequently, dopamine metabolism is impaired. As RD progresses, retinal neurons exhibit aberrant activity, driven by AII amacrine cells, a primary target of the retinal dopaminergic network. Surprisingly, DACs are an exception to this physiological change; DACs exhibit rhythmic activity in healthy retina, but do not burst in RD. The underlying mechanism of this divergent behavior is not known. It is also unclear whether RD leads to structural changes in DACs, impairing functional regulation of AII amacrine cells. Here we examine the anatomical details of DACs in three mouse models of human RD to determine how changes to the dopaminergic network may underlie physiological changes in RD. By using rd10, rd1, and rd1/C57 mice we were able to dissect the impacts of genetic background and the degenerative process on DAC structure in RD retina. We found that DACs density, soma size, and primary dendrite length are all significantly reduced. Using a novel adeno-associated virus-mediated technique to label AII amacrine cells in mouse retina, we observed diminished dopaminergic contacts to AII amacrine cells in RD mice. This was accompanied by changes to the components responsible for dopamine synthesis and release. Together, these data suggest that structural alterations of the retinal dopaminergic network underlie physiological changes during RD.

  8. Genetic Factors in Intervertebral Disc Degeneration

    PubMed Central

    Feng, Yi; Egan, Brian; Wang, Jinxi

    2016-01-01

    Low back pain (LBP) is a major cause of disability and imposes huge economic burdens on human society worldwide. Among many factors responsible for LBP, intervertebral disc degeneration (IDD) is the most common disorder and is a target for intervention. The etiology of IDD is complex and its mechanism is still not completely understood. Many factors such as aging, spine deformities and diseases, spine injuries, and genetic factors are involved in the pathogenesis of IDD. In this review, we will focus on the recent advances in studies on the most promising and extensively examined genetic factors associated with IDD in humans. A number of genetic defects have been correlated with structural and functional changes within the intervertebral disc (IVD), which may compromise the disc’s mechanical properties and metabolic activities. These genetic and proteomic studies have begun to shed light on the molecular basis of IDD, suggesting that genetic factors are important contributors to the onset and progression of IDD. By continuing to improve our understanding of the molecular mechanisms of IDD, specific early diagnosis and more effective treatments for this disabling disease will be possible in the future. PMID:27617275

  9. [Multiple system atrophy - synuclein and neuronal degeneration].

    PubMed

    Yoshida, Mari

    2011-11-01

    Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder that encompasses olivopontocerebellar atrophy (OPCA), striatonigral degeneration (SND) and Shy-Drager syndrome (SDS). The histopathological hallmarks are α-synuclein (AS) positive glial cytoplasmic inclusions (GCIs) in oligodendroglias. AS aggregation is also found in glial nuclear inclusions (GNIs), neuronal cytoplasmic inclusions (NCIs), neuronal nuclear inclusions (NNIs) and dystrophic neurties. Reviewing the pathological features of 102 MSA cases, OPCA-type was relatively more frequent and SND-type was less frequent in Japanese MSA cases, which suggested different phenotypic pattern of MSA might exist between races, compared to the relatively high frequency of SND-type in western countries. In early stage of MSA, NNIs, NCIs and diffuse homogenous stain of AS in neuronal nuclei and cytoplasm were observed in various vulnerable lesions including the pontine nuclei, putamen, substantia nigra, locus ceruleus, inferior olivary nucleus, intermediolateral column of thoracic cord, lower motor neurons and cortical pyramidal neurons, in additions to GCIs. These findings indicated that the primary nonfibrillar and fibrillar AS aggregation also occurred in neurons. Therefore both the direct involvement of neurons themselves and the oligodendroglia-myelin-axon mechanism may synergistically accelerate the degenerative process of MSA. PMID:22277386

  10. CERKL Knockdown Causes Retinal Degeneration in Zebrafish

    PubMed Central

    Riera, Marina; Burguera, Demian; Garcia-Fernàndez, Jordi; Gonzàlez-Duarte, Roser

    2013-01-01

    The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration. PMID:23671706

  11. Widespread cytoskeletal pathology characterizes corticobasal degeneration.

    PubMed Central

    Feany, M. B.; Dickson, D. W.

    1995-01-01

    Corticobasal degeneration (CBD) is a rare, progressive neurological disorder characterized by widespread neuronal and glial pathology. Using immunohistochemistry and laser confocal microscopy, we demonstrate that the nonamyloid cortical plaques of CBD are actually collections of abnormal tau in the distal processes of astrocytes. These glial cells express both vimentin and CD44, markers of astrocyte activation. Glial pathology also includes tau-positive cytoplasmic inclusions, here localized to Leu 7-expressing oligodendrocytes. In addition, a wide array of neuronal pathology is defined with tau-positive inclusions in multiple domains of a variety of cortical neurons. CBD thus exhibits widespread glial and neuronal cytoskeletal pathology, including a novel structure, the astrocytic plaque. CBD is a disease of generalized cytoskeletal disruption affecting several cell types and multiple domains of these cells. The further definition of CBD pathology refines the diagnosis and pathophysiological understanding of this unique disease and has important implications for other neurodegenerative diseases, like Alzheimer's disease, characterized by abnormal tau deposition. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7778678

  12. Evidence for degenerate tetraploidy in bdelloid rotifers.

    PubMed

    Mark Welch, David B; Mark Welch, Jessica L; Meselson, Matthew

    2008-04-01

    Rotifers of class Bdelloidea have evolved for millions of years apparently without sexual reproduction. We have sequenced 45- to 70-kb regions surrounding the four copies of the hsp82 gene of the bdelloid rotifer Philodina roseola, each of which is on a separate chromosome. The four regions comprise two colinear gene-rich pairs with gene content, order, and orientation conserved within each pair. Only a minority of genes are common to both pairs, also in the same orientation and order, but separated by gene-rich segments present in only one or the other pair. The pattern is consistent with degenerate tetraploidy with numerous segmental deletions, some in one pair of colinear chromosomes and some in the other. Divergence in 1,000-bp windows varies along an alignment of a colinear pair, from zero to as much as 20% in a pattern consistent with gene conversion associated with recombinational repair of DNA double-strand breaks. Although pairs of colinear chromosomes are a characteristic of sexually reproducing diploids and polyploids, a quite different explanation for their presence in bdelloids is suggested by the recent finding that bdelloid rotifers can recover and resume reproduction after suffering hundreds of radiation-induced DNA double-strand breaks per oocyte nucleus. Because bdelloid primary oocytes are in G(1) and therefore lack sister chromatids, we propose that bdelloid colinear chromosome pairs are maintained as templates for the repair of DNA double-strand breaks caused by the frequent desiccation and rehydration characteristic of bdelloid habitats.

  13. Physics of Age Related Macular Degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon

    2009-11-01

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer's disease, and Parkinson's disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. In this talk I will discuss a model of non-equilibrium cluster growth that we have developed for studying the formation and growth of lipofuscin in AMD [K.I. Mazzitello, C.M. Arizmendi, Fereydoon Family, H. E. Grossniklaus, Physical Review E (2009)]. I will also present an overview of our theoretical and computational efforts in modeling some other aspects of the physics of AMD, including CNV and the breakdown of Bruch's membrane [Ongoing collaboration with Abbas Shirinifard and James A. Glazier, Biocomplexity Institute and Department of Physics, Indiana University, Y. Jiang, Los Alamos, and Hans E. Grossniklaus, Department of Ophthalmology, Emory University].

  14. Chronic nerve root entrapment: compression and degeneration

    NASA Astrophysics Data System (ADS)

    Vanhoestenberghe, A.

    2013-02-01

    Electrode mounts are being developed to improve electrical stimulation and recording. Some are tight-fitting, or even re-shape the nervous structure they interact with, for a more selective, fascicular, access. If these are to be successfully used chronically with human nerve roots, we need to know more about the possible damage caused by the long-term entrapment and possible compression of the roots following electrode implantation. As there are, to date, no such data published, this paper presents a review of the relevant literature on alternative causes of nerve root compression, and a discussion of the degeneration mechanisms observed. A chronic compression below 40 mmHg would not compromise the functionality of the root as far as electrical stimulation and recording applications are concerned. Additionally, any temporary increase in pressure, due for example to post-operative swelling, should be limited to 20 mmHg below the patient’s mean arterial pressure, with a maximum of 100 mmHg. Connective tissue growth may cause a slower, but sustained, pressure increase. Therefore, mounts large enough to accommodate the root initially without compressing it, or compliant, elastic, mounts, that may stretch to free a larger cross-sectional area in the weeks after implantation, are recommended.

  15. Mechanisms of age-related macular degeneration

    PubMed Central

    Ambati, Jayakrishna; Fowler, Benjamin J.

    2012-01-01

    Age-related macular degeneration (AMD), a progressive condition that is untreatable in up to 90% of patients, is a leading cause of blindness in the elderly worldwide. The two forms of AMD, wet and dry, are classified based on the presence or absence of blood vessels that have disruptively invaded the retina, respectively. A detailed understanding of the molecular mechanisms underlying wet AMD has led to several robust FDA-approved therapies. In contrast, there are not any approved treatments for dry AMD. In this review, we provide insight into the critical effector pathways that mediate each form of disease. The interplay of immune and vascular systems for wet AMD, and the proliferating interest in hunting for gene variants to explain AMD pathogenesis, are placed in the context of the latest clinical and experimental data. Emerging models of dry AMD pathogenesis are presented, with a focus on DICER1 deficit and the toxic accumulation of retinal debris. A recurring theme that spans most aspects of AMD pathogenesis is defective immune modulation in the classically immune-privileged ocular haven. Interestingly, the latest advances in AMD research highlight common molecular disease pathways with other common neurodegenerations. Finally, the therapeutic potential of intervening at known mechanisms of AMD pathogenesis is discussed. PMID:22794258

  16. Statistical physics of age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, H. E.

    Age-related macular degeneration (AMD) is the leading cause of blindness beyond the age of 50 years. The most common pathogenic mechanism that leads to AMD is choroidal neovascularization (CNV). CNV is produced by accumulation of residual material caused by aging of retinal pigment epithelium cells (RPE). The RPE is a phagocytic system that is essential for renewal of photoreceptors (rods and cones). With time, incompletely degraded membrane material builds up in the form of lipofuscin. Lipofuscin is made of free-radical-damaged protein and fat, which forms not only in AMD, but also Alzheimer disease and Parkinson disease. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin in the aging RPE. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the RPE the larger ones become fixed and grow by aggregation.

  17. The genetics of frontotemporal lobar degeneration.

    PubMed

    Rademakers, Rosa; Hutton, Mike

    2007-09-01

    The clinical disorders associated with frontotemporal lobar degeneration (FTLD) are increasingly recognized as an important cause of early-onset dementia. Patients usually present with progressive changes in personality, behavior, or language, progressing to general cognitive impairment and ultimately death. In the past decade, improved clinical and histopathologic characterization uncovered extensive heterogeneity, and multiple clinical and pathologic FTLD subtypes were defined. Simultaneously, the discovery of four causal FTLD genes emphasized the genetic complexity associated with FTLD. More recently, the field of FTLD has gained increased attention as a result of two major findings. First, mutations in the progranulin gene (PGRN) were recognized as a major cause of FTLD with ubiquitin-positive and tau-negative inclusions (FTLD-U), and subsequently the TAR DNA-binding protein-43 (TDP-43) was identified as a key protein within the ubiquitinated inclusions in FTLD-U and amyotrophic lateral sclerosis (ALS). In this report, we outline the progress made in the study of the genetic etiologies and neuropathologic substrates in FTLD.

  18. Degenerate and Resonant Four-Wave Mixing in Plasmas

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Kitagawa, Y.; Lal, A.

    The status of degenerate and resonant four-wave mixing in plasmas is reviewed. For the degenerate case in a collisional plasma, the theory predicts and experiments demonstrate that the thermal-force contribution to the signal reflectivity dominates over the ponderomotive-force contribution. In the resonant case, the reflectivity can be enhanced over the degenerate level. Experiments show that collisions can lead to a narrow spectral width of the ion-acoustic resonance, but the effects of convection and laser heating can limit the enhancement of the reflectivity below the expected value.

  19. Weakly dissipative solitons in dense relativistic-degenerate plasma

    NASA Astrophysics Data System (ADS)

    Ahmad, Saeed; Ata-ur-Rahman; Khan, S. A.

    2015-07-01

    We investigate the features of weakly nonlinear waves in a collisional dense plasma consisting of ultra-relativistic degenerate electrons and non-relativistic degenerate ions. In weak dissipation limit, the dynamics of low frequency nonlinear ion (solitary) wave is described by solving a damped Korteweg-deVries equation. The analytical and numerical analysis shows the existence of weakly dissipative solitons evolving with time. The characteristics of soliton evolution with plasma number density and slow ion-neutral collision rate are discussed with some detail. The relevance of the study with degenerate plasmas in ultra-dense astrophysical objects, particularly white dwarf stars is also pointed out.

  20. Thermodynamic linkage between the S1 site, the Na+ site, and the Ca2+ site in the protease domain of human coagulation factor xa. Studies on catalytic efficiency and inhibitor binding.

    PubMed

    Underwood, M C; Zhong, D; Mathur, A; Heyduk, T; Bajaj, S P

    2000-11-24

    The serine protease domain of factor Xa (FXa) contains a sodium as well as a calcium-binding site. Here, we investigated the functional significance of these two cation-binding sites and their thermodynamic links to the S1 site. Kinetic data reveal that Na(+) binds to the substrate bound FXa with K(d) approximately 39 mm in the absence and approximately 9.5 mm in the presence of Ca(2+). Sodium-bound FXa (sodium-Xa) has approximately 18-fold increased catalytic efficiency ( approximately 4.5-fold decrease in K(m) and approximately 4-fold increase in k(cat)) in hydrolyzing S-2222 (benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide), and Ca(2+) further increases this k(cat) approximately 1.4-fold. Ca(2+) binds to the protease domain of substrate bound FXa with K(d) approximately 705 microm in the absence and approximately 175 microm in the presence of Na(+). Ca(2+) binding to the protease domain of FXa (Xa-calcium) has no effect on the K(m) but increases the k(cat) approximately 4-fold in hydrolyzing S-2222, and Na(+) further increases this k(cat) approximately 1.4-fold. In agreement with the K(m) data, sodium-Xa has approximately 5-fold increased affinity in its interaction with p-aminobenzamidine (S1 site probe) and approximately 4-fold increased rate in binding to the two-domain tissue factor pathway inhibitor; Ca(2+) (+/-Na(+)) has no effect on these interactions. Antithrombin binds to Xa-calcium with a approximately 4-fold faster rate, to sodium-Xa with a approximately 24-fold faster rate and to sodium-Xa-calcium with a approximately 28-fold faster rate. Thus, Ca(2+) and Na(+) together increase the catalytic efficiency of FXa approximately 28-fold. Na(+) enhances Ca(2+) binding, and Ca(2+) enhances Na(+) binding. Further, Na(+) enhances S1 site occupancy, and S1 site occupancy enhances Na(+) binding. Therefore, Na(+) site is thermodynamically linked to the S1 site as well as to the protease domain Ca(2+) site, whereas Ca(2+) site is only linked to the Na(+) site. The

  1. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences.

    PubMed

    Rose, T M; Schultz, E R; Henikoff, J G; Pietrokovski, S; McCallum, C M; Henikoff, S

    1998-04-01

    We describe a new primer design strategy for PCR amplification of unknown targets that are related to multiply-aligned protein sequences. Each primer consists of a short 3' degenerate core region and a longer 5' consensus clamp region. Only 3-4 highly conserved amino acid residues are necessary for design of the core, which is stabilized by the clamp during annealing to template molecules. During later rounds of amplification, the non-degenerate clamp permits stable annealing to product molecules. We demonstrate the practical utility of this hybrid primer method by detection of diverse reverse transcriptase-like genes in a human genome, and by detection of C5DNA methyltransferase homologs in various plant DNAs. In each case, amplified products were sufficiently pure to be cloned without gel fractionation. This COnsensus-DEgenerate Hybrid Oligonucleotide Primer (CODEHOP) strategy has been implemented as a computer program that is accessible over the World Wide Web (http://blocks.fhcrc.org/codehop.html) and is directly linked from the BlockMaker multiple sequence alignment site for hybrid primer prediction beginning with a set of related protein sequences.

  2. An Unusual Case of Extensive Lattice Degeneration and Retinal Detachment

    PubMed Central

    Sarma, Saurabh Kumar; Basaiawmoit, Jennifer V.

    2016-01-01

    Lattice degeneration of the retina is not infrequently encountered on a dilated retinal examination and many of them do not need any intervention. We report a case of atypical lattice degeneration variant with peripheral retinal detachment. An asymptomatic 35-year-old lady with minimal refractive error was found to have extensive lattice degeneration, peripheral retinal detachment and fibrotic changes peripherally with elevation of retinal vessels on dilated retinal examination. There were also areas of white without pressure, chorioretinal scarring and retinal breaks. All the changes were limited to beyond the equator but were found to span 360 degrees. She was treated with barrage laser all around to prevent extension of the retinal detachment posteriorly. She remained stable till her latest follow-up two years after the barrage laser. This case is reported for its rarity with a discussion of the probable differential diagnoses. To the best of our knowledge, this is the first report of such findings in lattice degeneration.

  3. Hypertrophic olivary degeneration and cerebrovascular disease: movement in a triangle.

    PubMed

    Santos, Ana Filipa; Rocha, Sofia; Varanda, Sara; Pinho, João; Rodrigues, Margarida; Ramalho Fontes, João; Soares-Fernandes, João; Ferreira, Carla

    2015-02-01

    Hypertrophic olivary degeneration is a rare kind of trans-synaptic degeneration that occurs after lesions of the dentatorubro-olivary pathway. The lesions, commonly unilateral, may result from hemorrhage due to vascular malformation, trauma, surgical intervention or hypertension, tumor, or ischemia. Bilateral cases are extremely rare. This condition is classically associated with development of palatal tremor, but clinical manifestations can include other involuntary movements. We describe 2 cases: unilateral hypertrophic olivary degeneration in a 60-year-old man with contralateral athetosis and neurologic worsening developing several years after a pontine hemorrhage and bilateral hypertrophic olivary degeneration in a 77-year-old woman with development of palatal tremor, probably secondary to pontine ischemic lesions (small vessel disease).

  4. [Progress on the degeneration mechanism of cave fishes' eyes].

    PubMed

    Gu, Xian; Ning, Tiao; Xiao, Heng

    2012-08-01

    Attempts to understand the degeneration of the eyes in cave fish has largely been explained by either various extents of gradual degeneration, ranging from partial to total loss, observed in various species or by acceleration of loss caused by dark environments. However, neither the theory of biological evolution developed by Charles Darwin nor the neutral theory of molecular evolution formulated by Kimura Motoo adequately explains these phenomena. Recent trends in utilizing multidisciplinary research, however, have yielded better results, helping reveal a more complex picture of the mechanisms of degeneration. Here, we summarize the current progress of the research via morphology and anatomy, development biology, animal behavior science and molecular genetics, and offer some perspectives on the ongoing research into the development and degeneration of eyes in cave fish.

  5. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration.

    PubMed

    Zhao, Lian; Zabel, Matthew K; Wang, Xu; Ma, Wenxin; Shah, Parth; Fariss, Robert N; Qian, Haohua; Parkhurst, Christopher N; Gan, Wen-Biao; Wong, Wai T

    2015-07-02

    Retinitis pigmentosa, caused predominantly by mutations in photoreceptor genes, currently lacks comprehensive treatment. We discover that retinal microglia contribute non-cell autonomously to rod photoreceptor degeneration by primary phagocytosis of living rods. Using rd10 mice, we found that the initiation of rod degeneration is accompanied by early infiltration of microglia, upregulation of phagocytic molecules in microglia, and presentation of "eat-me" signals on mutated rods. On live-cell imaging, infiltrating microglia interact dynamically with photoreceptors via motile processes and engage in rapid phagocytic engulfment of non-apoptotic rods. Microglial contribution to rod demise is evidenced by morphological and functional amelioration of photoreceptor degeneration following genetic ablation of retinal microglia. Molecular inhibition of microglial phagocytosis using the vitronectin receptor antagonist cRGD also improved morphological and functional parameters of degeneration. Our findings highlight primary microglial phagocytosis as a contributing mechanism underlying cell death in retinitis pigmentosa and implicate microglia as a potential cellular target for therapy.

  6. Frontotemporal Lobar Degeneration and MicroRNAs

    PubMed Central

    Piscopo, Paola; Albani, Diego; Castellano, Anna E.; Forloni, Gianluigi; Confaloni, Annamaria

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) includes a spectrum of disorders characterized by changes of personality and social behavior and, often, a gradual and progressive language dysfunction. In the last years, several efforts have been fulfilled in identifying both genetic mutations and pathological proteins associated with FTLD. The molecular bases undergoing the onset and progression of the disease remain still unknown. Recent literature prompts an involvement of RNA metabolism in FTLD, particularly microRNAs (miRNAs). Dysregulation of miRNAs in several disorders, including neurodegenerative diseases, and increasing importance of circulating miRNAs in different pathologies has suggested to implement the study of their possible application as biological markers and new therapeutic targets; moreover, miRNA-based therapy is becoming a powerful tool to deepen the function of a gene, the mechanism of a disease, and validate therapeutic targets. Regarding FTLD, different studies showed that miRNAs are playing an important role. For example, several reports have evaluated miRNA regulation of the progranulin gene suggesting that it is under their control, as described for miR-29b, miR-107, and miR-659. More recently, it has been demonstrated that TMEM106B gene, which protein is elevated in FTLD-TDP brains, is repressed by miR-132/212 cluster; this post-transcriptional mechanism increases intracellular levels of progranulin, affecting its pathways. These findings if confirmed could suggest that these microRNAs have a role as potential targets for some related-FTLD genes. In this review, we focus on the emerging roles of the miRNAs in the pathogenesis of FTLD. PMID:26903860

  7. Distinct optical properties of relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-06-15

    In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

  8. Deletion of autophagy inducer RB1CC1 results in degeneration of the retinal pigment epithelium.

    PubMed

    Yao, Jingyu; Jia, Lin; Khan, Naheed; Lin, Chengmao; Mitter, Sayak K; Boulton, Michael E; Dunaief, Joshua L; Klionsky, Daniel J; Guan, Jun-Lin; Thompson, Debra A; Zacks, David N

    2015-01-01

    Autophagy regulates cellular homeostasis and response to environmental stress. Within the retinal pigment epithelium (RPE) of the eye, the level of autophagy can change with both age and disease. The purpose of this study is to determine the relationship between reduced autophagy and age-related degeneration of the RPE. The gene encoding RB1CC1/FIP200 (RB1-inducible coiled-coil 1), a protein essential for induction of autophagy, was selectively knocked out in the RPE by crossing Best1-Cre mice with mice in which the Rb1cc1 gene was flanked with Lox-P sites (Rb1cc1(flox/flox)). Ex vivo and in vivo analyses, including western blot, immunohistochemistry, transmission electron microscopy, fundus photography, optical coherence tomography, fluorescein angiography, and electroretinography were performed to assess the structure and function of the retina as a function of age. Deletion of Rb1cc1 resulted in multiple autophagy defects within the RPE including decreased conversion of LC3-I to LC3-II, accumulation of autophagy-targeted precursors, and increased numbers of mitochondria. Age-dependent degeneration of the RPE occurred, with formation of atrophic patches, subretinal migration of activated microglial cells, subRPE deposition of inflammatory and oxidatively damaged proteins, subretinal drusenoid deposits, and occasional foci of choroidal neovascularization. There was secondary loss of photoreceptors overlying the degenerated RPE and reduction in the electroretinogram. These observations are consistent with a critical role of autophagy in the maintenance of normal homeostasis in the aging RPE, and indicate that disruption of autophagy leads to retinal phenotypes associated with age-related degeneration.

  9. Deletion of autophagy inducer RB1CC1 results in degeneration of the retinal pigment epithelium.

    PubMed

    Yao, Jingyu; Jia, Lin; Khan, Naheed; Lin, Chengmao; Mitter, Sayak K; Boulton, Michael E; Dunaief, Joshua L; Klionsky, Daniel J; Guan, Jun-Lin; Thompson, Debra A; Zacks, David N

    2015-01-01

    Autophagy regulates cellular homeostasis and response to environmental stress. Within the retinal pigment epithelium (RPE) of the eye, the level of autophagy can change with both age and disease. The purpose of this study is to determine the relationship between reduced autophagy and age-related degeneration of the RPE. The gene encoding RB1CC1/FIP200 (RB1-inducible coiled-coil 1), a protein essential for induction of autophagy, was selectively knocked out in the RPE by crossing Best1-Cre mice with mice in which the Rb1cc1 gene was flanked with Lox-P sites (Rb1cc1(flox/flox)). Ex vivo and in vivo analyses, including western blot, immunohistochemistry, transmission electron microscopy, fundus photography, optical coherence tomography, fluorescein angiography, and electroretinography were performed to assess the structure and function of the retina as a function of age. Deletion of Rb1cc1 resulted in multiple autophagy defects within the RPE including decreased conversion of LC3-I to LC3-II, accumulation of autophagy-targeted precursors, and increased numbers of mitochondria. Age-dependent degeneration of the RPE occurred, with formation of atrophic patches, subretinal migration of activated microglial cells, subRPE deposition of inflammatory and oxidatively damaged proteins, subretinal drusenoid deposits, and occasional foci of choroidal neovascularization. There was secondary loss of photoreceptors overlying the degenerated RPE and reduction in the electroretinogram. These observations are consistent with a critical role of autophagy in the maintenance of normal homeostasis in the aging RPE, and indicate that disruption of autophagy leads to retinal phenotypes associated with age-related degeneration. PMID:26075877

  10. Single-degenerate Type Ia Supernovae Are Preferentially Overluminous

    NASA Astrophysics Data System (ADS)

    Fisher, Robert; Jumper, Kevin

    2015-06-01

    Recent observational and theoretical progress has favored merging and helium-accreting sub-Chandrasekhar mass white dwarfs (WDs) in the double-degenerate and the double-detonation channels, respectively, as the most promising progenitors of normal Type Ia supernovae (SNe Ia). Thus the fate of rapidly accreting Chandrasekhar mass WDs in the single-degenerate channel remains more mysterious then ever. In this paper, we clarify the nature of ignition in Chandrasekhar-mass single-degenerate SNe Ia by analytically deriving the existence of a characteristic length scale which establishes a transition from central ignitions to buoyancy-driven ignitions. Using this criterion, combined with data from three-dimensional simulations of convection and ignition, we demonstrate that the overwhelming majority of ignition events within Chandrasekhar-mass WDs in the single-degenerate channel are buoyancy-driven, and consequently lack a vigorous deflagration phase. We thus infer that single-degenerate SNe Ia are generally expected to lead to overluminous 1991T-like SNe Ia events. We establish that the rates predicted from both the population of supersoft X-ray sources (SSSs) and binary population synthesis models of the single-degenerate channel are broadly consistent with the observed rates of overluminous SNe Ia, and suggest that the population of SSSs are the dominant stellar progenitors of SNe 1991T-like events. We further demonstrate that the single-degenerate channel contribution to the normal and failed 2002cx-like rates is not likely to exceed 1% of the total SNe Ia rate. We conclude with a range of observational tests of overluminous SNe Ia which will either support or strongly constrain the single-degenerate scenario.

  11. SINGLE-DEGENERATE TYPE Ia SUPERNOVAE ARE PREFERENTIALLY OVERLUMINOUS

    SciTech Connect

    Fisher, Robert; Jumper, Kevin

    2015-06-01

    Recent observational and theoretical progress has favored merging and helium-accreting sub-Chandrasekhar mass white dwarfs (WDs) in the double-degenerate and the double-detonation channels, respectively, as the most promising progenitors of normal Type Ia supernovae (SNe Ia). Thus the fate of rapidly accreting Chandrasekhar mass WDs in the single-degenerate channel remains more mysterious then ever. In this paper, we clarify the nature of ignition in Chandrasekhar-mass single-degenerate SNe Ia by analytically deriving the existence of a characteristic length scale which establishes a transition from central ignitions to buoyancy-driven ignitions. Using this criterion, combined with data from three-dimensional simulations of convection and ignition, we demonstrate that the overwhelming majority of ignition events within Chandrasekhar-mass WDs in the single-degenerate channel are buoyancy-driven, and consequently lack a vigorous deflagration phase. We thus infer that single-degenerate SNe Ia are generally expected to lead to overluminous 1991T-like SNe Ia events. We establish that the rates predicted from both the population of supersoft X-ray sources (SSSs) and binary population synthesis models of the single-degenerate channel are broadly consistent with the observed rates of overluminous SNe Ia, and suggest that the population of SSSs are the dominant stellar progenitors of SNe 1991T-like events. We further demonstrate that the single-degenerate channel contribution to the normal and failed 2002cx-like rates is not likely to exceed 1% of the total SNe Ia rate. We conclude with a range of observational tests of overluminous SNe Ia which will either support or strongly constrain the single-degenerate scenario.

  12. Stochastic partial differential equations with unbounded and degenerate coefficients

    NASA Astrophysics Data System (ADS)

    Zhang, Xicheng

    In this article, using DiPerna-Lions theory (DiPerna and Lions, 1989) [1], we investigate linear second order stochastic partial differential equations with unbounded and degenerate non-smooth coefficients, and obtain several conditions for existence and uniqueness. Moreover, we also prove the L-integrability and a general maximal principle for generalized solutions of SPDEs. As applications, we study nonlinear filtering problem and also obtain the existence and uniqueness of generalized solutions for a degenerate nonlinear SPDE.

  13. Prolonged Prevention of Retinal Degeneration with Retinylamine Loaded Nanoparticles

    PubMed Central

    Puntel, Anthony; Maeda, Akiko; Golczak, Marcin; Gao, Song-Qi; Yu, Guanping; Palczewski, Krzysztof; Lu, Zheng-Rong

    2015-01-01

    Retinal degeneration impairs the vision of millions in all age groups worldwide. Increasing evidence suggests that the etiology of many retinal degenerative diseases is associated with impairment in biochemical reactions involved in the visual cycle, a metabolic pathway responsible for regeneration of the visual chromophore (11-cis-retinal). Inefficient clearance of toxic retinoid metabolites, especially all-trans-retinal, is considered responsible for photoreceptor cytotoxicity. Primary amines, including retinylamine, are effective in lowing the concentration of all-trans-retinal within the retina and thus prevent retina degeneration in mouse models of human retinopathies. Here we achieved prolonged prevention of retinal degeneration by controlled delivery of retinylamine to the eye from polylactic acid nanoparticles in Abca4−/−Rdh8−/− (DKO) mice, an animal model of Stargardt disease/age-related macular degeneration. Subcutaneous administration of the nanoparticles containing retinylamine provided a constant supply of the drug to the eye for about a week and resulted in effective prolonged prevention of light-induced retinal degeneration in DKO mice. Retinylamine nanoparticles hold promise for prolonged prophylactic treatment of human retinal degenerative diseases, including Stargardt disease and age-related macular degeneration. PMID:25617130

  14. Spatially coordinated kinase signaling regulates local axon degeneration.

    PubMed

    Chen, Mark; Maloney, Janice A; Kallop, Dara Y; Atwal, Jasvinder K; Tam, Stephen J; Baer, Kristin; Kissel, Holger; Kaminker, Joshua S; Lewcock, Joseph W; Weimer, Robby M; Watts, Ryan J

    2012-09-26

    In addition to being a hallmark of neurodegenerative disease, axon degeneration is used during development of the nervous system to prune unwanted connections. In development, axon degeneration is tightly regulated both temporally and spatially. Here, we provide evidence that degeneration cues are transduced through various kinase pathways functioning in spatially distinct compartments to regulate axon degeneration. Intriguingly, glycogen synthase kinase-3 (GSK3) acts centrally, likely modulating gene expression in the cell body to regulate distally restricted axon degeneration. Through a combination of genetic and pharmacological manipulations, including the generation of an analog-sensitive kinase allele mutant mouse for GSK3β, we show that the β isoform of GSK3, not the α isoform, is essential for developmental axon pruning in vitro and in vivo. Additionally, we identify the dleu2/mir15a/16-1 cluster, previously characterized as a regulator of B-cell proliferation, and the transcription factor tbx6, as likely downstream effectors of GSK3β in axon degeneration.

  15. Electron microscopic studies of macrophages in Wallerian degeneration of rat optic nerve after intravenous injection of colloidal carbon.

    PubMed Central

    Ling, E A

    1978-01-01

    The origin of macrophages in the degenerating optic nerve of rats after eye enucleation was investigated electron microscopically following intravenous labelling of mononuclear leucoytes with colloidal carbon. In the various post-operative periods studied carbon-labelled macrophages were seen at the site of lesion. At 4 and 7 days after enucleation carbon-labelled cells were seen at the site of Wallerian degeneration of the optic nerve over 4 mm distal to the site of the lesion. In the electron microscope these cells showed a flattened nucleus bearing coarse chromatin clumps, their cytoplasm contained a prominent Golgi complex and long isolate profiles of rough endoplasmic reticulum. Clusters of carbon particles in the cytoplasms were membrane-bound. Lysosomal bodies embedded with carbon particles were also observed. In relation to the blood vessels of the optic nerve, endothelial cells and pericytes with ingested carbon were seen. Macrophages in the meninges covering the optic nerve were also labelled. The results suggest that some macrophages in the region of Wallerian degeneration in the optic nerve, as well as those at the actual site of the lesion, were transformed blood leucocytes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 PMID:649492

  16. From hidden symmetry to extra dimensions: A five-dimensional formulation of the degenerate BESS model

    SciTech Connect

    Coradeschi, Francesco; De Curtis, Stefania; Dominici, Daniele

    2010-07-01

    We consider the continuum limit of a moose model corresponding to a generalization to N sites of the degenerate BESS model. The five-dimensional formulation emerging in this limit is a realization of a RS1 type model with SU(2){sub L} x SU(2){sub R} in the bulk, broken by boundary conditions and a vacuum expectation value on the infrared brane. A low-energy effective Lagrangian is derived by means of the holographic technique and corresponding bounds on the model parameters are obtained.

  17. From hidden symmetry to extra dimensions: A five-dimensional formulation of the degenerate BESS model

    NASA Astrophysics Data System (ADS)

    Coradeschi, Francesco; de Curtis, Stefania; Dominici, Daniele

    2010-07-01

    We consider the continuum limit of a moose model corresponding to a generalization to N sites of the degenerate BESS model. The five-dimensional formulation emerging in this limit is a realization of a RS1 type model with SU(2)L⊗SU(2)R in the bulk, broken by boundary conditions and a vacuum expectation value on the infrared brane. A low-energy effective Lagrangian is derived by means of the holographic technique and corresponding bounds on the model parameters are obtained.

  18. Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration.

    PubMed

    Karan, G; Lillo, C; Yang, Z; Cameron, D J; Locke, K G; Zhao, Y; Thirumalaichary, S; Li, C; Birch, D G; Vollmer-Snarr, H R; Williams, D S; Zhang, K

    2005-03-15

    Macular degeneration is a heterogeneous group of disorders characterized by photoreceptor degeneration and atrophy of the retinal pigment epithelium (RPE) in the central retina. An autosomal dominant form of Stargardt macular degeneration (STGD) is caused by mutations in ELOVL4, which is predicted to encode an enzyme involved in the elongation of long-chain fatty acids. We generated transgenic mice expressing a mutant form of human ELOVL4 that causes STGD. In these mice, we show that accumulation by the RPE of undigested phagosomes and lipofuscin, including the fluorophore, 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetraenyl]-1-(2-hyydroxyethyl)-4-[4-methyl-6-(2,6,6,-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E-hexatrienyl]-pyridinium (A2E) is followed by RPE atrophy. Subsequently, photoreceptor degeneration occurs in the central retina in a pattern closely resembling that of human STGD and age-related macular degeneration. The ELOVL4 transgenic mice thus provide a good model for both STGD and dry age-related macular degeneration, and represent a valuable tool for studies on therapeutic intervention in these forms of blindness. PMID:15749821

  19. Degeneration of axons in spinal white matter in G93A mSOD1 mouse characterized by NFL and α-internexin immunoreactivity.

    PubMed

    King, Anna E; Blizzard, Catherine A; Southam, Katherine A; Vickers, James C; Dickson, Tracey C

    2012-07-17

    Axonal degeneration is a prominent feature of amyotrophic lateral sclerosis (ALS) both in lower motor nerves as well as descending white matter axons in the spinal cord of human patients. Although the pathology of lower motor axonal degeneration has been described in both human ALS and related transgenic animal models, few studies have examined the pathological features of descending axon degeneration, particularly in mouse models of ALS. We have examined the degeneration of white matter tracts in the G93A mutant superoxide dismutase-1 (mSOD1+) mouse spinal cord white matter from 12 weeks of age to end-stage disease. In a G93A mSOD1 mouse model where green fluorescent protein was expressed in neurons (mSOD1+/GFP+), degeneration of white matter tracts was present from the ventral to dorsolateral funiculi. This pattern of axonal pathology occurred from 16 weeks of age. However, the dorsal funiculus, the site of the major corticospinal tract in mice, showed relatively less degeneration. Immunohistochemical analysis demonstrated that the neurofilament light chain (NFL) and neuronal intermediate filament protein alpha-internexin accumulated in axon swellings in the spinal white matter. Increased levels of alpha-internexin protein, in mSOD1+ mouse spinal cord tissue, were demonstrated by Western blotting. In contrast, degenerating axons did not show obvious accumulations of neurofilament medium and heavy chain proteins (NFM and NFH). These data suggest that white matter degeneration in this mouse model of ALS is widespread and involves a specific molecular signature, particularly the accumulation of NFL and alpha-internexin proteins.

  20. Statins for age-related macular degeneration

    PubMed Central

    Gehlbach, Peter; Li, Tianjing; Hatef, Elham

    2016-01-01

    Background Age-related macular degeneration (AMD) is a progressive late onset disorder of the macula affecting central vision. Age-related macular degeneration is the leading cause of blindness in people over 65 years in industrialized countries. Recent epidemiologic, genetic, and pathological evidence has shown AMD shares a number of risk factors with atherosclerosis, leading to the hypothesis that statins may exert protective effects in AMD. Objectives The objective of this review was to examine the effectiveness of statins compared with other treatments, no treatment, or placebo in delaying the onset and progression of AMD. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2014), EMBASE (January 1980 to June 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to June 2014), PubMed (January 1946 to June 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 June 2014. Selection criteria We included randomized controlled trials (RCTs) that compared statins with other treatments, no treatment, or placebo in participants who were either susceptible to or diagnosed as having early stages of AMD. Data collection and analysis We used standard methodological procedures expected by The Cochrane Collaboration. Two authors independently evaluated the search results against the selection criteria, abstracted data, and assessed risk of bias. We did not perform meta-analysis due to heterogeneity in the interventions and outcomes among the

  1. Statins for age-related macular degeneration

    PubMed Central

    Gehlbach, Peter; Li, Tianjing; Hatef, Elham

    2016-01-01

    Background Age-related macular degeneration (AMD) is a progressive late onset disorder of the macula affecting central vision. Age-related macular degeneration is the leading cause of blindness in people over 65 years in industrialized countries. Recent epidemiologic, genetic, and pathological evidence has shown AMD shares a number of risk factors with atherosclerosis, leading to the hypothesis that statins may exert protective effects in AMD. Objectives The objective of this review was to examine the effectiveness of statins compared with other treatments, no treatment, or placebo in delaying the onset and progression of AMD. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2014), EMBASE (January 1980 to June 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to June 2014), PubMed (January 1946 to June 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 June 2014. Selection criteria We included randomized controlled trials (RCTs) that compared statins with other treatments, no treatment, or placebo in participants who were either susceptible to or diagnosed as having early stages of AMD. Data collection and analysis We used standard methodological procedures expected by The Cochrane Collaboration. Two authors independently evaluated the search results against the selection criteria, abstracted data, and assessed risk of bias. We did not perform meta-analysis due to heterogeneity in the interventions and outcomes among the

  2. Genetic Association Studies in Lumbar Disc Degeneration: A Systematic Review

    PubMed Central

    Eskola, Pasi J.; Lemmelä, Susanna; Kjaer, Per; Solovieva, Svetlana; Männikkö, Minna; Tommerup, Niels; Lind-Thomsen, Allan; Husgafvel-Pursiainen, Kirsti; Cheung, Kenneth M. C.; Chan, Danny

    2012-01-01

    Objective Low back pain is associated with lumbar disc degeneration, which is mainly due to genetic predisposition. The objective of this study was to perform a systematic review to evaluate genetic association studies in lumbar disc degeneration as defined on magnetic resonance imaging (MRI) in humans. Methods A systematic literature search was conducted in MEDLINE, MEDLINE In-Process, SCOPUS, ISI Web of Science, The Genetic Association Database and The Human Genome Epidemiology Network for information published between 1990–2011 addressing genes and lumbar disc degeneration. Two investigators independently identified studies to determine inclusion, after which they performed data extraction and analysis. The level of cumulative genetic association evidence was analyzed according to The HuGENet Working Group guidelines. Results Fifty-two studies were included for review. Forty-eight studies reported at least one positive association between a genetic marker and lumbar disc degeneration. The phenotype definition of lumbar disc degeneration was highly variable between the studies and replications were inconsistent. Most of the associations presented with a weak level of evidence. The level of evidence was moderate for ASPN (D-repeat), COL11A1 (rs1676486), GDF5 (rs143383), SKT (rs16924573), THBS2 (rs9406328) and MMP9 (rs17576). Conclusions Based on this first extensive systematic review on the topic, the credibility of reported genetic associations is mostly weak. Clear definition of lumbar disc degeneration phenotypes and large population-based cohorts are needed. An international consortium is needed to standardize genetic association studies in relation to disc degeneration. PMID:23185509

  3. Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration.

    PubMed

    O'Connell, Grace D; Guerin, Heather L; Elliott, Dawn M

    2009-11-01

    The highly organized structure and composition of the annulus fibrosus provides the tissue with mechanical behaviors that include anisotropy and nonlinearity. Mathematical models are necessary to interpret and elucidate the meaning of directly measured mechanical properties and to understand the structure-function relationships of the tissue components, namely, the fibers and extrafibrillar matrix. This study models the annulus fibrosus as a combination of strain energy functions describing the fibers, matrix, and their interactions. The objective was to quantify the behavior of both nondegenerate and degenerate annulus fibrosus tissue using uniaxial tensile experimental data. Mechanical testing was performed with samples oriented along the circumferential, axial, and radial directions. For samples oriented along the radial direction, the toe-region modulus was 2x stiffer with degeneration. However, no other differences in measured mechanical properties were observed with degeneration. The constitutive model fit well to samples oriented along the radial and circumferential directions (R(2)> or =0.97). The fibers supported the highest proportion of stress for circumferential loading at 60%. There was a 70% decrease in the matrix contribution to stress from the toe-region to the linear-region of both the nondegenerate and degenerate tissue. The shear fiber-matrix interaction (FMI) contribution increased by 80% with degeneration in the linear-region. Samples oriented along the radial and axial direction behaved similarly under uniaxial tension (modulus=0.32 MPa versus 0.37 MPa), suggesting that uniaxial testing in the axial direction is not appropriate for quantifying the mechanics of a fiber reinforcement in the annulus. In conclusion, the structurally motivated nonlinear anisotropic hyperelastic constitutive model helps to further understand the effect of microstructural changes with degeneration, suggesting that remodeling in the subcomponents (i.e., the collagen

  4. Trilayer graphene nanoribbon carrier statistics in degenerate and non degenerate limits

    NASA Astrophysics Data System (ADS)

    Rahmani, M.; Ahmadi, M. T.; Webb, J. F.; Shayesteh, N.; Mousavi, S. M.; Sadeghi, H.; Ismail, R.

    2012-11-01

    We present trilayer graphene nanoribbon carrier statistics in the degenerate and the nondegenerate limits. Within zero to 3kBT from the conduction or valence band edgers high concentrations of carriers sensitively depend on a normalized Fermi energy which is independent of temperature. The effect of different stacking orders of graphene multilayers on the electric field induced band gap is studied. The gap for trilayer graphene with the ABC stacking is much larger than the corresponding gap for the ABA trilayer. The gap for the different types of stacking is much larger as compared to the case of Bernal stacking. A non-monotonic dependence of the true energy gap in trilayer graphene on the charge density is investigated along with the electronic low-energy band structure of ABC stacked multilayer graphene. The band structure of trilayer graphene systems in the presence of a perpendicular electric field is obtained using a tight-binding approach.

  5. Notochord Cells in Intervertebral Disc Development and Degeneration

    PubMed Central

    McCann, Matthew R.; Séguin, Cheryle A.

    2016-01-01

    The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. PMID:27252900

  6. RADIOLOGICAL ANALYSIS OF EXPERIMENTAL DISC DEGENERATION IN RABBITS

    PubMed Central

    Vialle, Emiliano; Vialle, Luiz Roberto; Arruda, André de Oliveira; Riet, Ricardo Nascimento; Krieger, Antônio Bernardo de Queiroz

    2015-01-01

    Objective: To validate radiographic evaluation of a rabbit model for disc degeneration. Methods: Lumbar intervertebral discs of New Zealand rabbits were stabbed three times with a 18G needle at a limited depth of 5mm, through lateral approach. Serial radiographic images were taken on the early pre-and postoperative periods, and after four, eight and 12 weeks of the procedure, with subsequent analysis of disc height, osteophyte formation, endplate sclerosis, and presence of disc degeneration. The statistical analysis of data was validated by the Kappa coefficient, with a confidence interval (CI) of 95%. Results: A significant reduction of disc space was found on AP X-ray images after 12 postoperative weeks, with Kappa = 0.489 for CI 95% (0.25-0.72) with p < 0.001. X-ray signs of disc degeneration also presented Kappa = 0.63 for CI 95% (0.39-0.86) with p < 0.001. The remaining assessed criteria showed positive results, but with a lower Kappa value. Conclusion: The disc degeneration model using rabbits as proposed in this study was shown to be feasible, with positive X-ray correlation between pre- and postoperative images, validating the potential to induce disc degeneration in this animal model for future studies. PMID:27022512

  7. Rapid Y degeneration and dosage compensation in plant sex chromosomes

    PubMed Central

    Papadopulos, Alexander S. T.; Chester, Michael; Ridout, Kate; Filatov, Dmitry A.

    2015-01-01

    The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms. PMID:26438872

  8. Rapid Y degeneration and dosage compensation in plant sex chromosomes.

    PubMed

    Papadopulos, Alexander S T; Chester, Michael; Ridout, Kate; Filatov, Dmitry A

    2015-10-20

    The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms.

  9. Mechanisms of Distal Axonal Degeneration in Peripheral Neuropathies

    PubMed Central

    Cashman, Christopher R.; Höke, Ahmet

    2015-01-01

    Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wlds) and Sarmknockout animal models. These studies have shown axonal degeneration to occur througha programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration. PMID:25617478

  10. Mechanisms of distal axonal degeneration in peripheral neuropathies.

    PubMed

    Cashman, Christopher R; Höke, Ahmet

    2015-06-01

    Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wld(S)) and Sarm knockout animal models. These studies have shown axonal degeneration to occur through a programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration.

  11. Mechanisms of distal axonal degeneration in peripheral neuropathies.

    PubMed

    Cashman, Christopher R; Höke, Ahmet

    2015-06-01

    Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wld(S)) and Sarm knockout animal models. These studies have shown axonal degeneration to occur through a programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration. PMID:25617478

  12. Construction of "small-intelligent" focused mutagenesis libraries using well-designed combinatorial degenerate primers.

    PubMed

    Tang, Lixia; Gao, Hui; Zhu, Xuechen; Wang, Xiong; Zhou, Ming; Jiang, Rongxiang

    2012-03-01

    Site-saturation mutagenesis is a powerful tool for protein optimization due to its efficiency and simplicity. A degenerate codon NNN or NNS (K) is often used to encode the 20 standard amino acids, but this will produce redundant codons and cause uneven distribution of amino acids in the constructed library. Here we present a novel "small-intelligent" strategy to construct mutagenesis libraries that have a minimal gene library size without inherent amino acid biases, stop codons, or rare codons of Escherichia coli by coupling well-designed combinatorial degenerate primers with suitable PCR-based mutagenesis methods. The designed primer mixture contains exactly one codon per amino acid and thus allows the construction of small-intelligent mutagenesis libraries with one gene per protein. In addition, the software tool DC-Analyzer was developed to assist in primer design according to the user-defined randomization scheme for library construction. This small-intelligent strategy was successfully applied to the randomization of halohydrin dehalogenases with one or two randomized sites. With the help of DC-Analyzer, the strategy was proven to be as simple as NNS randomization and could serve as a general tool to efficiently randomize target genes at positions of interest.

  13. Molecular mechanisms of cell death in intervertebral disc degeneration (Review)

    PubMed Central

    ZHANG, FAN; ZHAO, XUELING; SHEN, HONGXING; ZHANG, CAIGUO

    2016-01-01

    Intervertebral discs (IVDs) are complex structures that consist of three parts, namely, nucleus pulposus, annulus fibrosus and cartilage endplates. With aging, IVDs gradually degenerate as a consequence of many factors, such as microenvironment changes and cell death. Human clinical trial and animal model studies have documented that cell death, particularly apoptosis and autophagy, significantly contribute to IVD degeneration. The mechanisms underlying this phenomenon include the activation of apoptotic pathways and the regulation of autophagy in response to nutrient deprivation and multiple stresses. In this review, we briefly summarize recent progress in understanding the function and regulation of apoptosis and autophagy signaling pathways. In particular, we focus on studies that reveal the functional mechanisms of these pathways in IVD degeneration. PMID:27121482

  14. Accumulation of Rhodopsin in Late Endosomes Triggers Photoreceptor Cell Degeneration

    PubMed Central

    Chinchore, Yashodhan; Mitra, Amitavo; Dolph, Patrick J.

    2009-01-01

    Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons. PMID:19214218

  15. Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.

    PubMed

    Masood, Waqas; Eliasson, Bengt; Shukla, Padma K

    2010-06-01

    A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars. PMID:20866534

  16. Frontotemporal lobar degeneration: recent progress in antemortem diagnosis.

    PubMed

    Bian, Hong; Grossman, Murray

    2007-07-01

    Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disorder characterized by changes in behaviour and language dysfunction. Two broad pathological subdivisions of FTLD are recognized in a recent classification scheme based on biochemical features: tau-positive pathology due to the accumulation of various forms of the microtubule-associated protein tau, such as FTLD with Pick bodies and corticobasal degeneration; and tau-negative pathology such as frontotemporal lobar degeneration with ubiquitin/TDP-43-immunoreactive inclusions. Etiologically based treatments aim to target the mechanisms underlying the accumulation of these abnormal proteins in these conditions. It is essential for us to develop biomarkers that support the accurate diagnosis of the specific diseases causing FTLD. These biomarkers also can be useful in assessing efficacy during treatment trials. This review summarizes the epidemiologic, clinical, neuropsychological, imaging and cerebrospinal fluid (CSF) biomarker features that can help identify these pathologically defined conditions during life.

  17. Proteoglycan-mediated axon degeneration corrects pretarget topographic sorting errors.

    PubMed

    Poulain, Fabienne E; Chien, Chi-Bin

    2013-04-10

    Proper arrangement of axonal projections into topographic maps is crucial for brain function, especially in sensory systems. An important mechanism for map formation is pretarget axon sorting, in which topographic ordering of axons appears in tracts before axons reach their target, but this process remains poorly understood. Here, we show that selective axon degeneration is used as a correction mechanism to eliminate missorted axons in the optic tract during retinotectal development in zebrafish. Retinal axons are not precisely ordered during initial pathfinding but become corrected later, with missorted axons selectively fragmenting and degenerating. We further show that heparan sulfate is required non-cell-autonomously to correct missorted axons and that restoring its synthesis at late stages in a deficient mutant is sufficient to restore topographic sorting. These findings uncover a function for developmental axon degeneration in ordering axonal projections and identify heparan sulfate as a key regulator of that process. PMID:23583107

  18. Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.

    PubMed

    Masood, Waqas; Eliasson, Bengt; Shukla, Padma K

    2010-06-01

    A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars.

  19. Lumbar intervertebral disc degeneration and related factors in Korean firefighters

    PubMed Central

    Jang, Tae-Won; Ahn, Yeon-Soon; Byun, Junsu; Lee, Jong-In; Kim, Kun-Hyung; Kim, Youngki; Song, Han-Soo; Lee, Chul-Gab; Kwon, Young-Jun; Yoon, Jin-Ha; Jeong, Kyoungsook

    2016-01-01

    Objectives The job of firefighting can cause lumbar burden and low back pain. This study aimed to identify the association between age and lumbar intervertebral disc degeneration and whether the association differs between field and administrative (non-field) firefighters. Methods Subjects were selected using a stratified random sampling method. Firefighters were stratified by geographic area, gender, age and type of job. First, 25 fire stations were randomly sampled considering regional distribution. Then firefighters were stratified by gender, age and their job and randomly selected among the strata. A questionnaire survey and MRI scans were performed, and then four radiologists used Pfirrmann classification methods to determine the grade of lumbar intervertebral disc degeneration. Results Pfirrmann grade increased with lumbar intervertebral disc level. Analysis of covariance showed that age was significantly associated with lumbar intervertebral disc degeneration (p<0.05). The value of β (parameter estimate) was positive at all lumbar intervertebral disc levels and was higher in the field group than in the administrative group at each level. In logistic regression analysis, type of job was statistically significant only with regard to the L4–5 intervertebral disc (OR 3.498, 95% CI 1.241 to 9.860). Conclusions Lumbar intervertebral disc degeneration is associated with age, and field work such as firefighting, emergency and rescue may accelerate degeneration in the L4–5 intervertebral disc. The effects of field work on lumbar intervertebral disc degeneration were not clear in discs other than at the level L4–5. PMID:27354080

  20. Extended Hellmann-Feynman theorem for degenerate eigenstates

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; George, Thomas F.

    2004-04-01

    In a previous paper, we reported a failure of the traditional Hellmann-Feynman theorem (HFT) for degenerate eigenstates. This has generated enormous interest among different groups. In four independent papers by Fernandez, by Balawender, Hola, and March, by Vatsya, and by Alon and Cederbaum, an elegant method to solve the problem was devised. The main idea is that one has to construct and diagonalize the force matrix for the degenerate case, and only the eigenforces are well defined. We believe this is an important extension to HFT. Using our previous example for an energy level of fivefold degeneracy, we find that those eigenforces correctly reflect the symmetry of the molecule.

  1. Trick for passing degenerate points in the Ashtekar formulation

    NASA Astrophysics Data System (ADS)

    Yoneda, Gen; Shinkai, Hisa-Aki; Nakamichi, Akika

    1997-08-01

    We examine one of the advantages of Ashtekar's formulation of general relativity: a tractability of degenerate points from the point of view of following the dynamics of classical spacetime. Assuming that all dynamical variables are finite, we conclude that an essential trick for such a continuous evolution is in complexifying variables. In order to restrict the complex region locally, we propose some ``reality recovering'' conditions on spacetime. Using a degenerate solution derived by a pullback technique, and integrating the dynamical equations numerically, we show that this idea works in an actual dynamical problem. We also discuss some features of these applications.

  2. FOXP2 Expression in Frontotemporal Lobar Degeneration-Tau.

    PubMed

    López-González, Irene; Palmeira, Andre; Aso, Ester; Carmona, Margarita; Fernandez, Liana; Ferrer, Isidro

    2016-09-01

    FOXP2 is altered in a variety of language disorders. We found reduced mRNA and protein expression of FOXP2 in frontal cortex area 8 in Pick's disease, and frontotemporal lobar degeneration-tau linked to P301L mutation presenting with language impairment in comparison with age-matched controls and cases with parkinsonian variant progressive supranuclear palsy. Foxp2 mRNA and protein are also reduced with disease progression in the somatosensory cortex in transgenic mice bearing the P301S mutation in MAPT when compared with wild-type littermates. Our findings support the presence of FOXP2 expression abnormalities in sporadic and familial frontotemporal degeneration tauopathies.

  3. Key emerging issues in progressive supranuclear palsy and corticobasal degeneration

    PubMed Central

    Josephs, Keith A.

    2015-01-01

    It has been approximately 50 years since neurologists were introduced to the entities progressive supranuclear palsy and corticobasal degeneration. Since the two seminal publications, there have been significant advancements in our understanding of these two neurodegenerative diseases, particularly the fact that both are associated with tau. Recent advances over the past 3 years that are notable to the field are discussed in this review that covers clinical diagnosis, pathological features, neuroimaging and CSF biomarkers, genetic associations and clinical trials related to progressive supranuclear palsy and corticobasal degeneration. PMID:25701010

  4. A case of follicular lymphoma associated with paraneoplastic cerebellar degeneration.

    PubMed

    Shimazu, Yayoi; Minakawa, Eiko N; Nishikori, Momoko; Ihara, Masafumi; Hashi, Yuichiro; Matsuyama, Hirofumi; Hishizawa, Masakatsu; Yoshida, Sonoyo; Kitano, Toshiyuki; Kondo, Tadakazu; Ishikawa, Takayuki; Takahashi, Ryosuke; Takaori-Kondo, Akifumi

    2012-01-01

    Paraneoplastic neurological disorders (PND) are neurological effects of malignancy that are recognized as immune-mediated disorders caused by aberrant expression of a tumor antigen that is normally expressed in the nervous system. We report a case of cerebellar ataxia which turned out to be paraneoplastic cerebellar degeneration, a subtype of PND that develops cerebellar symptoms, that was caused by follicular lymphoma. After chemotherapy, the patient attained sufficient improvement of cerebellar symptoms along with complete remission of lymphoma. Paraneoplastic cerebellar degeneration should be recognized as a rare complication of lymphoma as it is important to start proper treatment before the neurological symptoms become irreversible.

  5. Allogeneic Articular Chondrocyte Transplantation Down Regulates IL-8 Gene Expression in the Degenerating Rabbit Intervertebral Disc in Vivo

    PubMed Central

    Zhang, Yejia; Chee, Ana; Shi, Peng; Wang, Rui; Moss, Isaac; Chen, Er-Yun; He, Tong-Chuan; An, Howard S.

    2014-01-01

    Objective To investigate if repopulating the degenerating intervertebral disc (IVD) with articular chondrocytes (ACs) will decrease inflammation and restore disc structure. In this study, we aimed to determine if well-differentiated AC alone or transduced with adenovirus overexpressing BMP-7 gene may survive and inhibit inflammation or repair disc structure in the degenerating rabbit IVD. Design This was a biological study in a rabbit IVD-injury model in vivo. Dual cell tracking methods (IR dye-labeling and adenovirus transduction) were used to demonstrate the viability of allogeneic AC injected into degenerating rabbit IVDs. Interleukin (IL)-8 gene expression was determined via real-time PCR. Infiltrating inflammatory cells (macrophages, T-cells or neutrophils) were examined with immunohistochemistry. The IVDs were also examined by routine histology. Results ACs labeled with infrared (IR) dye were detected in the degenerating IVDs at both 2 and 8 weeks after injection. At the 2-week time point, IL-8 gene expression was comparable in IVDs injected with chondrocytes and in intact discs as control (P=0.647), while its expression in IVDs injected with saline increased 50fold (p=0.028). Transgene expression of red fluorescent protein, β-galactosidase, and BMP-7 diminished at 8 weeks post injection. IVDs injected with chondrocytes overexpressing hBMP-7 did not show lower IL-8 gene expression or improved histology. Macrophages were consistently detected by immunohistochemistry in the cartilage formation around the needle insertion sites in both the saline and chondrocyte groups, while neither T cells nor neutrophils were detected. Conclusions Allogeneic rabbit AC survived in the degenerating rabbit IVDs for at least 8 weeks. Cell treatment resulted in reduced IVD inflammation, but did not significantly improve IVD structure. PMID:25133623

  6. Sudden death while driving. Role of sinus perinodal degeneration and cardiac neural degeneration and ganglionitis.

    PubMed

    James, T N; Pearce, W N; Givhan, E G

    1980-05-01

    A young business executive was seen to slump over his steering wheel while driving, after which the automobile veered and turned over. Quickly taken unconscious to a nearby emergency room, he was pronounced dead on arrival. Because there was insufficient physical injury found to account for his death, and because atrial fibrillation had been detected for the first time on a routine physical examination 3 months previously, special examination of the cardiac conduction system was performed. A fibroma was present on the right side of the central fibrous body above the His bundle, similar to several fibromas on the mitral valve. Small foci of neuritis were present in the ventricular myocardium and the atrioventricular node. More extensive neural degeneration and ganglionitis were found near the sinus node, which also exhibited an encircling perinodal fibrosis. Ways in which these abnormalities could have caused a fatal electrical instability of the heart are discussed. Careful examination of the cardiac conduction system is warranted in other fatal automobile accidents under similar circumstances.

  7. Protective effects of hydrogen-rich saline against N-methyl-N-nitrosourea-induced photoreceptor degeneration.

    PubMed

    Chen, Tao; Tao, Ye; Yan, Weiming; Yang, Guoqing; Chen, Xuemin; Cao, Ruidan; Zhang, Lei; Xue, Junhui; Zhang, Zuoming

    2016-07-01

    The N-methyl-N-nitrosourea (MNU)-treated rat is typically used as an animal model of chemically-induced retinitis pigmentosa (RP). Reactive oxygen species (ROS) have been recognized as the crucial contributor to the retinal photoreceptor apoptosis seen in MNU-treated rats. In the present study, we explored the therapeutic effects of hydrogen-rich saline (HRS), a selective ROS scavenger, on MNU-induced photoreceptor degeneration. Intraperitoneal (IP) administration of HRS ameliorated MNU-induced photoreceptor degeneration in terms of morphology and function: Sharply decreased thickness of the retinal outer nuclear layer (ONL) and flattened photopic and scotopic electroretinogram (ERG) waveforms, typically seen in response to MNU treatment, were substantially rescued in rats cotreated with MNU and HRS (MNU + HRS). Moreover, the terminal deoxyuridine triphosphate nick-end labeling (TUNEL) assay revealed a smaller number of apoptotic photoreceptors in the MNU + HRS group compared that in the MNU group. Compared to MNU-treated rats, retinal malondialdehyde (MDA) content in MNU + HRS rats significantly decreased while superoxide dismutase (SOD) activity significantly increased. Morphological and multi-electrode array (MEA) analyses revealed more efficient preservation of the architecture and field potential waveforms in particularly the peripheral regions of the retinas within the MNU + HRS group, compared to that in the MNU group. However, this enhanced protection of structure and function in the peripheral retina is unlikely the result of site-dependent variation in the efficacy of HRS; rather, it is most likely due to reduced susceptibility of peripheral photoreceptors to MNU-induced degeneration. Inner retinal neuron function in the MNU + HRS rats was better preserved, with fewer apoptotic photoreceptors in the ONL. Collectively, these results support the rationale for future clinical evaluation of HRS as a therapeutic agent for human RP. PMID:27215478

  8. Effects of Subretinal Gene Transfer at Different Time Points in a Mouse Model of Retinal Degeneration

    PubMed Central

    Dai, Xufeng; Zhang, Hua; Han, Juanjuan; He, Ying; Zhang, Yangyang; Qi, Yan; Pang, Ji-jing

    2016-01-01

    Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is necessary for photoreceptors to generate an important lipid component of their membranes. The absence of LPCAT1 results in early and rapid rod and cone degeneration. Retinal degeneration 11 (rd11) mice carry a mutation in the Lpcat1 gene, and are an excellent model of early-onset rapid retinal degeneration (RD). To date, no reports have documented gene therapy administration in the rd11 mouse model at different ages. In this study, the AAV8 (Y733F)-smCBA-Lpcat1 vector was subretinally injected at postnatal day (P) 10, 14, 18, or 22. Four months after injection, immunohistochemistry and analysis of retinal morphology showed that treatment at P10 rescued about 82% of the wild-type retinal thickness. However, the diffusion of the vector and the resulting rescue were limited to an area around the injection site that was only 31% of the total retinal area. Injection at P14 resulted in vector diffusion that covered approximately 84% of the retina, and we found that gene therapy was more effective against RD when exposure to light was limited before and after treatment. We observed long-term preservation of electroretinogram (ERG) responses, and preservation of retinal structure, indicating that early treatment followed by limited light exposure can improve gene therapy effectiveness for the eyes of rd11 mice. Importantly, delayed treatment still partially preserved M-cones, but not S-cones, and M-cones in the rd11 retina appeared to have a longer window of opportunity for effective preservation with gene therapy. These results provide important information regarding the effects of subretinal gene therapy in the mouse model of LPCAT1-deficiency. PMID:27228218

  9. Three Ca2+ channel inhibitors in combination limit chronic secondary degeneration following neurotrauma.

    PubMed

    Savigni, Donna L; O'Hare Doig, Ryan L; Szymanski, Charis R; Bartlett, Carole A; Lozić, Ivan; Smith, Nicole M; Fitzgerald, Melinda

    2013-12-01

    Following neurotrauma, cells beyond the initial trauma site undergo secondary degeneration, with excess Ca2+ a likely trigger for loss of neurons, compact myelin and function. Treatment using inhibitors of specific Ca2+ channels has shown promise in preclinical studies, but clinical trials have been disappointing and combinatorial approaches are needed. We assessed efficacy of multiple combinations of three Ca2+ channel inhibitors at reducing secondary degeneration following partial optic nerve transection in rat. We used lomerizine to inhibit voltage gated Ca2+ channels; oxidised adenosine-triphosphate (oxATP) to inhibit purinergic P2X7 receptors and/or 2-[7-(1H-imidazol-1-yl)-6-nitro-2,3-dioxo-1,2,3,4-tetrahydro quinoxalin-1-yl]acetic acid (INQ) to inhibit Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Only the three Ca2+ channel inhibitors delivered in combination significantly preserved visual function, as assessed using the optokinetic nystagmus visual reflex, at 3 months after injury. Preservation of retinal ganglion cells was partial and is unlikely to have accounted for differential effects on function. A range of the Ca2+ channel inhibitor combinations prevented swelling of optic nerve vulnerable to secondary degeneration. Each of the treatments involving lomerizine significantly increased the proportion of axons with normal compact myelin. Nevertheless, limiting decompaction of myelin was not sufficient for preservation of function in our model. Multiple combinations of Ca2+ channel inhibitors reduced formation of atypical node/paranode complexes; outcomes were not associated with preservation of visual function. However, prevention of lengthening of the paranodal gap that was only achieved by treatment with the three Ca2+ channel inhibitors in combination was an important additional effect that likely contributed to the associated preservation of the optokinetic reflex using this combinatorial treatment strategy

  10. Oxidative damage to mitochondria at the nodes of Ranvier precedes axon degeneration in ex vivo transected axons.

    PubMed

    Bros, Helena; Millward, Jason M; Paul, Friedemann; Niesner, Raluca; Infante-Duarte, Carmen

    2014-11-01

    Oxidative stress and mitochondrial dysfunction appear to contribute to axon degeneration in numerous neurological disorders. However, how these two processes interact to cause axonal damage-and how this damage is initiated-remains unclear. In this study we used transected motor axons from murine peripheral roots to investigate whether oxidative stress alters mitochondrial dynamics in myelinated axons. We show that the nodes of Ranvier are the initial sites of mitochondrial damage induced by oxidative stress. There, mitochondria became depolarized, followed by alterations of the external morphology and disruption of the cristae, along with reduced mitochondrial transport. These mitochondrial changes expanded from the nodes of Ranvier bidirectionally towards both internodes and eventually affected the entire mitochondrial population in the axon. Supplementing axonal bioenergetics by applying nicotinamide adenine dinucleotide and methyl pyruvate, rendered the mitochondria at the nodes of Ranvier resistant to these oxidative stress-induced changes. Importantly, this inhibition of mitochondrial damage protected the axons from degeneration. In conclusion, we present a novel ex vivo approach for monitoring mitochondrial dynamics within axons, which proved suitable for detecting mitochondrial changes upon exogenous application of oxidative stress. Our results indicate that the nodes of Ranvier are the site of initial mitochondrial damage in peripheral axons, and suggest that dysregulation of axonal bioenergetics plays a critical role in oxidative stress-triggered mitochondrial alterations and subsequent axonal injury. These novel insights into the mechanisms underlying axon degeneration may have implications for neurological disorders with a degenerative component.

  11. Cesare Lombroso: an anthropologist between evolution and degeneration

    PubMed Central

    Mazzarello, Paolo

    Summary Cesare Lombroso (1835–1909) was a prominent Italian medical doctor and intellectual in the second half of the nineteenth century. He became world famous for his theory that criminality, madness and genius were all sides of the same psychobiological condition: an expression of degeneration , a sort of regression along the phylogenetic scale, and an arrest at an early stage of evolution. Degeneration affected criminals especially, in particular the “born delinquent” whose development had stopped at an early stage, making them the most “atavistic” types of human being. Lombroso also advocated the theory that genius was closely linked with madness. A man of genius was a degenerate, an example of retrograde evolution in whom madness was a form of “biological compensation” for excessive intellectual development. To confirm this theory, in August 1897, Lombroso, while attending the Twelfth International Medical Congress in Moscow, decided to meet the great Russian writer Lev Tolstoy in order to directly verify, in him, his theory of degeneration in the genius. Lombroso’s anthropological ideas fuelled a heated debate on the biological determinism of human behaviour. PMID:21729591

  12. Electron–ion relaxation time in moderately degenerate plasma

    SciTech Connect

    Vronskii, M. A. Koryakina, Yu. V.

    2015-09-15

    A formula is derived for the electron–ion relaxation time in a partially degenerate plasma with electron-ion interaction via a central field. The resulting expression in the form of an integral of the transport cross section generalizes the well-known Landau and Brysk approximations.

  13. Anisotropic uniqueness classes for a degenerate parabolic equation

    SciTech Connect

    Vil'danova, V F; Mukminov, F Kh

    2013-11-30

    Anisotropic uniqueness classes of Tacklind type are identified for a degenerate linear parabolic equation of the second order in an unbounded domain. The Cauchy problem and mixed problems with boundary conditions of the first and third type are considered. Bibliography: 18 titles.

  14. Therapeutic Approaches to Histone Reprogramming in Retinal Degeneration.

    PubMed

    Berner, Andre K; Kleinman, Mark E

    2016-01-01

    Recent data have revealed epigenetic derangements and subsequent chromatin remodeling as a potent biologic switch for chronic inflammation and cell survival which are important therapeutic targets in the pathogenesis of several retinal degenerations. Histone deacetylases (HDACs) are a major component of this system and serve as a unique control of the chromatin remodeling process. With a multitude of targeted HDAC inhibitors now available, their use in both basic science and clinical studies has widened substantially. In the field of ocular biology, there are data to suggest that HDAC inhibition may suppress neovascularization and may be a possible treatment for retinitis pigmentosa and dry age-related macular degeneration (AMD). However, the effects of these inhibitors on cell survival and chemokine expression in the chorioretinal tissues remain very unclear. Here, we review the multifaceted biology of HDAC activity and pharmacologic inhibition while offering further insight into the importance of this epigenetic pathway in retinal degenerations. Our laboratory investigations aim to open translational avenues to advance dry AMD therapeutics while exploring the role of acetylation on inflammatory gene expression in the aging and degenerating retina. PMID:26427391

  15. Inflammatory Mediators in Intervertebral Disk Degeneration and Discogenic Pain

    PubMed Central

    Wuertz, Karin; Haglund, Lisbet

    2013-01-01

    Although degeneration of the intervertebral disk has historically been described as a misbalance between anabolic and catabolic factors, the role of inflammatory mediators has long been neglected. However, past research clearly indicates that inflammatory mediators such as interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α are expressed at higher levels in “diseased” intervertebral disks. Both disk cells as well as invading macrophages can be the source of the detected cytokines. Importantly, occurrence of inflammatory mediators in the disk can worsen the progress of degeneration by inducing the expression of matrix degrading enzymes as well as by inhibiting extracellular matrix synthesis. In addition, inflammatory mediators play a crucial role in pain development during intervertebral disk herniation (i.e., sciatica) and disk degeneration (i.e., discogenic pain). This review provides information on the most relevant inflammatory mediators during different types of disk diseases and explains how these factors can induce disk degeneration and the development of discogenic and sciatic/radiculopathic pain. PMID:24436868

  16. Awareness, Knowledge, and Concern about Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Cimarolli, Verena R.; Laban-Baker, Allie; Hamilton, Wanda S.; Stuen, Cynthia

    2012-01-01

    Age-related macular degeneration (AMD)--a common eye disease causing vision loss--can be detected early through regular eye-health examinations, and measures can be taken to prevent visual decline. Getting eye examinations requires certain levels of awareness, knowledge, and concern related to AMD. However, little is known about AMD-related…

  17. The Experience of Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Wong, Elaine Y. H.; Guymer, Robyn H.; Hassell, Jennifer B.; Keeffe, Jill E.

    2004-01-01

    This qualitative article describes the impact of age-related macular degeneration (ARMD) among 15 participants: how a person makes sense of ARMD, the effect of ARMD on the person's quality of life, the psychological disturbances associated with the limitations of ARMD, and the influence of ARMD on social interactions. Such in-depth appreciation of…

  18. Parainflammation, chronic inflammation, and age-related macular degeneration.

    PubMed

    Chen, Mei; Xu, Heping

    2015-11-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration.

  19. Dystonia and Cerebellar Degeneration in the Leaner Mouse Mutant

    PubMed Central

    Raike, Robert S.; Hess, Ellen J.; Jinnah, H.A.

    2015-01-01

    Cerebellar degeneration is traditionally associated with ataxia. Yet, there are examples of both ataxia and dystonia occurring in individuals with cerebellar degeneration. There is also substantial evidence suggesting that cerebellar dysfunction alone may cause dystonia. The types of cerebellar defects that may cause ataxia, dystonia, or both have not been delineated. In the current study, we explored the relationship between cerebellar degeneration and dystonia using the leaner mouse mutant. Leaner mice have severe dystonia that is associated with dysfunctional and degenerating cerebellar Purkinje cells. Whereas the density of Purkinje cells was not significantly reduced in 4 week-old leaner mice, approximately 50% of the neurons were lost by 34 weeks of age. On the other hand, the dystonia and associated functional disability became significantly less severe during this same interval. In other words, dystonia improved as Purkinje cells were lost, suggesting that dysfunctional Purkinje cells, rather than Purkinje cell loss, contribute to the dystonia. These results provide evidence that distorted cerebellar function may cause dystonia and support the concept that different types of cerebellar defects can have different functional consequences. PMID:25791619

  20. Speech and Language Findings Associated with Paraneoplastic Cerebellar Degeneration

    ERIC Educational Resources Information Center

    Paslawski, Teresa; Duffy, Joseph R.; Vernino, Steven

    2005-01-01

    Paraneoplastic cerebellar degeneration (PCD) is an autoimmune disease that can be associated with cancer of the breast, lung, and ovary. The clinical presentation of PCD commonly includes ataxia, visual disturbances, and dysarthria. The speech disturbances associated with PCD have not been well characterized, despite general acceptance that…

  1. Spectral analysis of linear relations and degenerate operator semigroups

    SciTech Connect

    Baskakov, A G; Chernyshov, K I

    2002-12-31

    Several problems of the spectral theory of linear relations in Banach spaces are considered. Linear differential inclusions in a Banach space are studied. The construction of the phase space and solutions is carried out with the help of the spectral theory of linear relations, ergodic theorems, and degenerate operator semigroups.

  2. Degenerated human intervertebral discs contain autoantibodies against extracellular matrix proteins.

    PubMed

    Capossela, S; Schläfli, P; Bertolo, A; Janner, T; Stadler, B M; Pötzel, T; Baur, M; Stoyanov, J V

    2014-04-04

    Degeneration of intervertebral discs (IVDs) is associated with back pain and elevated levels of inflammatory cells. It has been hypothesised that discogenic pain is a direct result of vascular and neural ingrowth along annulus fissures, which may expose the avascular nucleus pulposus (NP) to the systemic circulation and induce an autoimmune reaction. In this study, we confirmed our previous observation of antibodies in human degenerated and post-traumatic IVDs cultured in vitro. We hypothesised that the presence of antibodies was due to an autoimmune reaction against specific proteins of the disc. Furthermore we identified antigens which possibly trigger an autoimmune response in degenerative disc diseases. We demonstrated that degenerated and post-traumatic IVDs contain IgG antibodies against typical extracellular proteins of the disc, particularly proteins of the NP. We identified IgGs against collagen type II and aggrecan, confirming an autoimmune reaction against the normally immune privileged NP. We also found specific IgGs against collagens types I and V, but not against collagen type III. In conclusion, this study confirmed the association between disc degeneration and autoimmunity, and may open the avenue for future studies on developing prognostic, diagnostic and therapy-monitoring markers for degenerative disc diseases.

  3. Exact null controllability of degenerate evolution equations with scalar control

    SciTech Connect

    Fedorov, Vladimir E; Shklyar, Benzion

    2012-12-31

    Necessary and sufficient conditions for the exact null controllability of a degenerate linear evolution equation with scalar control are obtained. These general results are used to examine the exact null controllability of the Dzektser equation in the theory of seepage. Bibliography: 13 titles.

  4. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration

    PubMed Central

    Zhao, Lian; Zabel, Matthew K; Wang, Xu; Ma, Wenxin; Shah, Parth; Fariss, Robert N; Qian, Haohua; Parkhurst, Christopher N; Gan, Wen-Biao; Wong, Wai T

    2015-01-01

    Retinitis pigmentosa, caused predominantly by mutations in photoreceptor genes, currently lacks comprehensive treatment. We discover that retinal microglia contribute non-cell autonomously to rod photoreceptor degeneration by primary phagocytosis of living rods. Using rd10 mice, we found that the initiation of rod degeneration is accompanied by early infiltration of microglia, upregulation of phagocytic molecules in microglia, and presentation of “eat-me” signals on mutated rods. On live-cell imaging, infiltrating microglia interact dynamically with photoreceptors via motile processes and engage in rapid phagocytic engulfment of non-apoptotic rods. Microglial contribution to rod demise is evidenced by morphological and functional amelioration of photoreceptor degeneration following genetic ablation of retinal microglia. Molecular inhibition of microglial phagocytosis using the vitronectin receptor antagonist cRGD also improved morphological and functional parameters of degeneration. Our findings highlight primary microglial phagocytosis as a contributing mechanism underlying cell death in retinitis pigmentosa and implicate microglia as a potential cellular target for therapy. PMID:26139610

  5. Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL)

    ClinicalTrials.gov

    2016-04-29

    FTLD; Progressive Supranuclear Palsy (PSP); Frontotemporal Dementia (FTD); Corticobasal Degeneration (CBD); PPA Syndrome; Behavioral Variant Frontotemporal Dementia (bvFTD); Semantic Variant Primary Progressive Aphasia (svPPA); Nonfluent Variant Primary Progressive Aphasia (nfvPPA); FTD With Amyotrophic Lateral Sclerosis (FTD/ALS); Amyotrophic Lateral Sclerosis (ALS); Oligosymptomatic PSP (oPSP); Corticobasal Syndrome (CBS)

  6. Diffuse thalamic degeneration in fatal familial insomnia. A morphometric study.

    PubMed

    Macchi, G; Rossi, G; Abbamondi, A L; Giaccone, G; Mancia, D; Tagliavini, F; Bugiani, O

    1997-10-10

    A morphometric investigation disclosed most thalamic nuclei severely degenerated in two patients with fatal familial insomnia. Associative and motor nuclei lost 90% neurons, and limbic-paralimbic, intralaminar and reticular nuclei lost 60%. These findings point to the disorganization of most thalamic circuits as a condition necessary for the sleep-wake rhythm being affected.

  7. An Unusual Case of Extensive Lattice Degeneration and Retinal Detachment

    PubMed Central

    Sarma, Saurabh Kumar; Basaiawmoit, Jennifer V.

    2016-01-01

    Lattice degeneration of the retina is not infrequently encountered on a dilated retinal examination and many of them do not need any intervention. We report a case of atypical lattice degeneration variant with peripheral retinal detachment. An asymptomatic 35-year-old lady with minimal refractive error was found to have extensive lattice degeneration, peripheral retinal detachment and fibrotic changes peripherally with elevation of retinal vessels on dilated retinal examination. There were also areas of white without pressure, chorioretinal scarring and retinal breaks. All the changes were limited to beyond the equator but were found to span 360 degrees. She was treated with barrage laser all around to prevent extension of the retinal detachment posteriorly. She remained stable till her latest follow-up two years after the barrage laser. This case is reported for its rarity with a discussion of the probable differential diagnoses. To the best of our knowledge, this is the first report of such findings in lattice degeneration. PMID:27630875

  8. Nutritional modulation of age-related macular degeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30-50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated wi...

  9. Late degeneration of transcatheter aortic valves: pathogenesis and management.

    PubMed

    Barbanti, Marco; Tamburino, Corrado

    2016-09-18

    There is a growing body of evidence demonstrating the durability of current transcatheter aortic valve implantation (TAVI) devices up to 5 years. However, it is well known that transcatheter aortic valves can degenerate in a manner similar to surgical bioprostheses. In this review we briefly discuss the modes of failure of trans-catheter aortic valves and their potential management. PMID:27640028

  10. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are found... carcass shall be condemned. (b) If muscular lesions are found to be distributed in such a manner or to be... carcasses, edible organs, and other parts of carcasses showing such muscular lesions. If the lesions...

  11. Biological treatment strategies for disc degeneration: potentials and shortcomings

    PubMed Central

    Nerlich, Andreas G.; Boos, Norbert

    2006-01-01

    Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patient. PMID:16983559

  12. Oocyte Degeneration Associated with Follicle Cells in Female Mactra chinensis (Bivalvia: Mactridae)

    PubMed Central

    Kim, Sung Han; Chung, Ee-Yung; Lee, Ki-Young

    2014-01-01

    Ultrastructural studies of oocyte degeneration in the oocyte, and the functions of follicle cells during oocyte degeneration are described to clarify the reproductive mechanism on oocyte degeneration of Mactra chinensis using cytological methods. Commonly, the follicle cells are attached to the oocyte. Follicle cells play an important role in oocyte degeneration. In particular, the functions of follicle cells during oocyte degeneration are associated with phagocytosis and the intracellular digestion of products. In this study, morphologically similar degenerated phagosomes (various lysosomes), which were observed in the degenerated oocytes, appeared in the follicle cells. After the spawning of the oocytes, the follicle cells were involved in oocyte degeneration through phagocytosis by phagolysosomes. Therefore, it can be assumed that follicle cells reabsorb phagosomes from degenerated oocytes. In this study, the presence of lipid granules, which occurred from degenerating yolk granules, gradually increased in degenerating oocytes. The function of follicle cells can accumulate reserves of lipid granules and glycogen in the cytoplasm, which can be employed by the vitellogenic oocyte. Based on observations of follicle cells attached to degenerating oocytes after spawning, the follicle cells of this species are involved in the lysosomal induction of oocyte degeneration for the reabsorption of phagosomes (phagolysosomes) in the cytoplasm for nutrient storage, as seen in other bivalves. PMID:25949203

  13. Viruses Associated with Ovarian Degeneration in Apis mellifera L. Queens

    PubMed Central

    Gauthier, Laurent; Ravallec, Marc; Tournaire, Magali; Cousserans, François; Bergoin, Max; Dainat, Benjamin; de Miranda, Joachim R.

    2011-01-01

    Queen fecundity is a critical issue for the health of honeybee (Apis mellifera L.) colonies, as she is the only reproductive female in the colony and responsible for the constant renewal of the worker bee population. Any factor affecting the queen's fecundity will stagnate colony development, increasing its susceptibility to opportunistic pathogens. We discovered a pathology affecting the ovaries, characterized by a yellow discoloration concentrated in the apex of the ovaries resulting from degenerative lesions in the follicles. In extreme cases, marked by intense discoloration, the majority of the ovarioles were affected and these cases were universally associated with egg-laying deficiencies in the queens. Microscopic examination of the degenerated follicles showed extensive paracrystal lattices of 30 nm icosahedral viral particles. A cDNA library from degenerated ovaries contained a high frequency of deformed wing virus (DWV) and Varroa destructor virus 1 (VDV-1) sequences, two common and closely related honeybee Iflaviruses. These could also be identified by in situ hybridization in various parts of the ovary. A large-scale survey for 10 distinct honeybee viruses showed that DWV and VDV-1 were by far the most prevalent honeybee viruses in queen populations, with distinctly higher prevalence in mated queens (100% and 67%, respectively for DWV and VDV-1) than in virgin queens (37% and 0%, respectively). Since very high viral titres could be recorded in the ovaries and abdomens of both functional and deficient queens, no significant correlation could be made between viral titre and ovarian degeneration or egg-laying deficiency among the wider population of queens. Although our data suggest that DWV and VDV-1 have a role in extreme cases of ovarian degeneration, infection of the ovaries by these viruses does not necessarily result in ovarian degeneration, even at high titres, and additional factors are likely to be involved in this pathology. PMID:21283547

  14. Viruses associated with ovarian degeneration in Apis mellifera L. queens.

    PubMed

    Gauthier, Laurent; Ravallec, Marc; Tournaire, Magali; Cousserans, François; Bergoin, Max; Dainat, Benjamin; de Miranda, Joachim R

    2011-01-25

    Queen fecundity is a critical issue for the health of honeybee (Apis mellifera L.) colonies, as she is the only reproductive female in the colony and responsible for the constant renewal of the worker bee population. Any factor affecting the queen's fecundity will stagnate colony development, increasing its susceptibility to opportunistic pathogens. We discovered a pathology affecting the ovaries, characterized by a yellow discoloration concentrated in the apex of the ovaries resulting from degenerative lesions in the follicles. In extreme cases, marked by intense discoloration, the majority of the ovarioles were affected and these cases were universally associated with egg-laying deficiencies in the queens. Microscopic examination of the degenerated follicles showed extensive paracrystal lattices of 30 nm icosahedral viral particles. A cDNA library from degenerated ovaries contained a high frequency of deformed wing virus (DWV) and Varroa destructor virus 1 (VDV-1) sequences, two common and closely related honeybee Iflaviruses. These could also be identified by in situ hybridization in various parts of the ovary. A large-scale survey for 10 distinct honeybee viruses showed that DWV and VDV-1 were by far the most prevalent honeybee viruses in queen populations, with distinctly higher prevalence in mated queens (100% and 67%, respectively for DWV and VDV-1) than in virgin queens (37% and 0%, respectively). Since very high viral titres could be recorded in the ovaries and abdomens of both functional and deficient queens, no significant correlation could be made between viral titre and ovarian degeneration or egg-laying deficiency among the wider population of queens. Although our data suggest that DWV and VDV-1 have a role in extreme cases of ovarian degeneration, infection of the ovaries by these viruses does not necessarily result in ovarian degeneration, even at high titres, and additional factors are likely to be involved in this pathology.

  15. Computer image analysis of toxic fatty degeneration in rat liver.

    PubMed

    Stetkiewicz, J; Zieliński, K; Stetkiewicz, I; Koktysz, R

    1989-01-01

    Fatty degeneration of the liver is one of the most frequently observed pathological changes in the experimental estimation of the toxicity of chemical compounds. The intensity of this kind of damage is most often detected by means of a generally accepted scale of points, whereas the classification is performed according to the subjective "feeling" of the pathologist. In modern pathological diagnostics, computer analysis of images is used to perform an objective estimation of the degree of damage to various organs. In order to check the usefulness of this kind of method, comparative biochemical and morphometrical studies were undertaken in trichloroethylene (TRI)-induced fatty degeneration of the liver. TRI was administered to rats intragastrically, in single doses: 1/2; 1/3; 1/4; 1/6 and 1/18 DL50. 24 hours after the administration, the animals were sacrificed. The content of triglycerides in the liver was determined according to Folch et al. (1956). Simple lipids in the histochemical samples were detected by means of staining with a lipotropic, Fat Red 7B. The area of fatty degeneration was estimated in the microscopic samples by the use of an automatic image analyser IBAS 2000 (Kontron). The morphometrical data concerning the area of fatty degeneration in the liver amplified a high degree of correlation with the content of triglycerides (r = 0.89) and the dose of TRI (r = 0.96). The degree of correlation between the biochemical data and the dose of TRI was 0.88. The morphometrical studies performed have proved to be of great use in estimating the degree of fatty degeneration in the liver. This method enables precise, quantitative measuring of this sort of liver damage in the material prepared for routine histopathological analysis. It requires, however, the application of a specialized device for quantitative image analysis.

  16. Distributions of selectively constrained sites and deleterious mutation rates in the hominid and murid genomes.

    PubMed

    Eory, Lél; Halligan, Daniel L; Keightley, Peter D

    2010-01-01

    Protein-coding sequences make up only about 1% of the mammalian genome. Much of the remaining 99% has been long assumed to be junk DNA, with little or no functional significance. Here, we show that in hominids, a group with historically low effective population sizes, all classes of noncoding DNA evolve more slowly than ancestral transposable elements and so appear to be subject to significant evolutionary constraints. Under the nearly neutral theory, we expected to see lower levels of selective constraints on most sequence types in hominids than murids, a group that is thought to have a higher effective population size. We found that this is the case for many sequence types examined, the most extreme example being 5'UTRs, for which constraint in hominids is only about one-third that of murids. Surprisingly, however, we observed higher constraints for some sequence types in hominids, notably 4-fold sites, where constraint is more than twice as high as in murids. This implies that more than about one-fifth of mutations at 4-fold sites are effectively selected against in hominids. The higher constraint at 4-fold sites in hominids suggests a more complex protein-coding gene structure than murids and indicates that methods for detecting selection on protein-coding sequences (e.g., using the d(N)/d(S) ratio), with 4-fold sites as a neutral standard, may lead to biased estimates, particularly in hominids. Our constraint estimates imply that 5.4% of nucleotide sites in the human genome are subject to effective negative selection and that there are three times as many constrained sites within noncoding sequences as within protein-coding sequences. Including coding and noncoding sites, we estimate that the genomic deleterious mutation rate U = 4.2. The mutational load predicted under a multiplicative model is therefore about 99% in hominids.

  17. Yeti--a degenerate gypsy-like LTR retrotransposon in the filamentous ascomycete Podospora anserina.

    PubMed

    Hamann, A; Feller, F; Osiewacz, H D

    2000-10-01

    In the filamentous ascomycete Podospora anserina a 6,935-bp retrotransposon, Yeti, has been identified and characterized. It is flanked by a 5-bp target site duplication and contains long terminal repeats (LTRs) 354 bp in length. The LTRs show a high degree of identity to the previously reported repetitive element repa, a sequence suggested to represent a solo-LTR element of an unknown transposon. In the investigated Podospora strains, the number of complete Yeti copies is significantly lower than the number of repa elements, with up to 25 copies. Yeti appears to be inactive: it is highly degenerate and no transcripts of the element have been detected even in Podospora cultures grown under elevated stress conditions. The amino acid sequences deduced from Yeti display significant homology, particularly in the reverse transcriptase region, to those of other fungal retrotransposons, indicating that it is a member of the gypsy family. As suggested by the unusual dinucleotide content, degeneration of Yeti appears to be the result of a molecular mechanism resembling repeat-induced point mutation in Neurospora crassa.

  18. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury.

    PubMed

    Chen, Peiwen; Piao, Xianhua; Bonaldo, Paolo

    2015-11-01

    The peripheral nervous system (PNS) has remarkable regenerative abilities after injury. Successful PNS regeneration relies on both injured axons and non-neuronal cells, including Schwann cells and immune cells. Macrophages are the most notable immune cells that play key roles in PNS injury and repair. Upon peripheral nerve injury, a large number of macrophages are accumulated at the injury sites, where they not only contribute to Wallerian degeneration, but also are educated by the local microenvironment and polarized to an anti-inflammatory phenotype (M2), thus contributing to axonal regeneration. Significant progress has been made in understanding how macrophages are educated and polarized in the injured microenvironment as well as how they contribute to axonal regeneration. Following the discussion on the main properties of macrophages and their phenotypes, in this review, we will summarize the current knowledge regarding the mechanisms of macrophage infiltration after PNS injury. Moreover, we will discuss the recent findings elucidating how macrophages are polarized to M2 phenotype in the injured PNS microenvironment, as well as the role and underlying mechanisms of macrophages in peripheral nerve injury, Wallerian degeneration and regeneration. Furthermore, we will highlight the potential application by targeting macrophages in treating peripheral nerve injury and peripheral neuropathies.

  19. Interventions for asymptomatic retinal breaks and lattice degeneration for preventing retinal detachment

    PubMed Central

    Wilkinson, Charles P

    2015-01-01

    Background Asymptomatic retinal breaks and lattice degeneration are visible lesions that are risk factors for later retinal detachment. Retinal detachments occur when fluid in the vitreous cavity passes through tears or holes in the retina and separates the retina from the underlying retinal pigment epithelium. Creation of an adhesion surrounding retinal breaks and lattice degeneration, with laser photocoagulation or cryotherapy, has been recommended as an effective means of preventing retinal detachment. This therapy is of value in the management of retinal tears associated with the symptoms of flashes and floaters and persistent vitreous traction upon the retina in the region of the retinal break, because such symptomatic retinal tears are associated with a high rate of progression to retinal detachment. Retinal tears and holes unassociated with acute symptoms and lattice degeneration are significantly less likely to be the sites of retinal breaks that are responsible for later retinal detachment. Nevertheless, treatment of these lesions frequently is recommended, in spite of the fact that the effectiveness of this therapy is unproven. Objectives The objective of this review was to assess the effectiveness and safety of techniques used to treat asymptomatic retinal breaks and lattice degeneration for the prevention of retinal detachment. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 2), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to February 2014), EMBASE (January 1980 to February 2014), PubMed (January 1948 to February 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in

  20. Investigation of intervertebral disc degeneration using multivariate FTIR spectroscopic imaging.

    PubMed

    Mader, Kerstin T; Peeters, Mirte; Detiger, Suzanne E L; Helder, Marco N; Smit, Theo H; Le Maitre, Christine L; Sammon, Chris

    2016-06-23

    Traditionally tissue samples are analysed using protein or enzyme specific stains on serial sections to build up a picture of the distribution of components contained within them. In this study we investigated the potential of multivariate curve resolution-alternating least squares (MCR-ALS) to deconvolute 2nd derivative spectra of Fourier transform infrared (FTIR) microscopic images measured in transflectance mode of goat and human paraffin embedded intervertebral disc (IVD) tissue sections, to see if this methodology can provide analogous information to that provided by immunohistochemical stains and bioassays but from a single section. MCR-ALS analysis of non-degenerate and enzymatically in vivo degenerated goat IVDs reveals five matrix components displaying distribution maps matching histological stains for collagen, elastin and proteoglycan (PG), as well as immunohistochemical stains for collagen type I and II. Interestingly, two components exhibiting characteristic spectral and distribution profiles of proteoglycans were found, and relative component/tissue maps of these components (labelled PG1 and PG2) showed distinct distributions in non-degenerate versus mildly degenerate goat samples. MCR-ALS analysis of human IVD sections resulted in comparable spectral profiles to those observed in the goat samples, highlighting the inter species transferability of the presented methodology. Multivariate FTIR image analysis of a set of 43 goat IVD sections allowed the extraction of semi-quantitative information from component/tissue gradients taken across the IVD width of collagen type I, collagen type II, PG1 and PG2. Regional component/tissue parameters were calculated and significant correlations were found between histological grades of degeneration and PG parameters (PG1: p = 0.0003, PG2: p < 0.0001); glycosaminoglycan (GAG) content and PGs (PG1: p = 0.0055, PG2: p = 0.0001); and MRI T2* measurements and PGs (PG1: p = 0.0021, PG2: p < 0.0001). Additionally

  1. TMEM184b Promotes Axon Degeneration and Neuromuscular Junction Maintenance

    PubMed Central

    Geisler, Stefanie; Pittman, Sara K.; Doan, Ryan A.; Weihl, Conrad C.; Milbrandt, Jeffrey; DiAntonio, Aaron

    2016-01-01

    Complex nervous systems achieve proper connectivity during development and must maintain these connections throughout life. The processes of axon and synaptic maintenance and axon degeneration after injury are jointly controlled by a number of proteins within neurons, including ubiquitin ligases and mitogen activated protein kinases. However, our understanding of these molecular cascades is incomplete. Here we describe the phenotype resulting from mutation of TMEM184b, a protein identified in a screen for axon degeneration mediators. TMEM184b is highly expressed in the mouse nervous system and is found in recycling endosomes in neuronal cell bodies and axons. Disruption of TMEM184b expression results in prolonged maintenance of peripheral axons following nerve injury, demonstrating a role for TMEM184b in axon degeneration. In contrast to this protective phenotype in axons, uninjured mutant mice have anatomical and functional impairments in the peripheral nervous system. Loss of TMEM184b causes swellings at neuromuscular junctions that become more numerous with age, demonstrating that TMEM184b is critical for the maintenance of synaptic architecture. These swellings contain abnormal multivesicular structures similar to those seen in patients with neurodegenerative disorders. Mutant animals also show abnormal sensory terminal morphology. TMEM184b mutant animals are deficient on the inverted screen test, illustrating a role for TMEM184b in sensory-motor function. Overall, we have identified an important function for TMEM184b in peripheral nerve terminal structure, function, and the axon degeneration pathway. SIGNIFICANCE STATEMENT Our work has identified both neuroprotective and neurodegenerative roles for a previously undescribed protein, TMEM184b. TMEM184b mutation causes delayed axon degeneration following peripheral nerve injury, indicating that it participates in the degeneration process. Simultaneously, TMEM184b mutation causes progressive structural

  2. Resistive collimation of electron beams in relativistic and degenerate plasma

    NASA Astrophysics Data System (ADS)

    Mahdavi, M.; Khodadadi Azadboni, F.

    2014-09-01

    The purpose of this research is the study of the effects of plasma state and fiber on collimating relativistic electron beam in fast ignition. In this paper, for collimating relativistic electrons produced at the laser plasma interaction, a thin fiber of aluminum, lithium or CH either in the classical, degenerate or relativistic plasma states is considered. The fast electron beam could be collimated down to radii of 10 μm, in that case, the best results are achieved when there is a sharp transition in resistance. This ensures that the correct magnetic growth rate is used for hot electrons at different energy levels. Calculations show that the resistivity of the material surrounding the CH fiber in the degenerate plasma is smaller than that for classical and relativistic plasma.

  3. Granulovacuolar degeneration in the ageing brain and in dementia.

    PubMed

    Ball, M J; Lo, P

    1977-05-01

    Quantitative morphometry with a sampling stage light microscope was performed to determine the severity of granulovacuolar degeneration of hippocampal neurones in serially sectioned temporal lobe from mentally normal subjects of different ages and from demented patients. The degree of granulovacuolar change in control brains increased slightly with increasing age; the "granulovacuolar index" of cases with Alzheimer's disease exceeded by many times that of age-matched controls. This significant difference was demonstrable whether the granulovacuolar severity was expressed as number of affected cells per volume of cortex analysed, or as the percentage involvement of total neurones counted in the hippocampus. The posterior half of each dement's hippocampus was found to be more susceptible to this augmented granulovacuolar degeneration than the anterior half, a selectivity already observed for neurofibrillary tangel formation in the same material.

  4. Quantum Degenerate Strontium in a 3D Optical Lattice

    NASA Astrophysics Data System (ADS)

    Aman, J. A.; Desalvo, B. J.; Killian, T. C.

    2014-05-01

    We present our experiments with quantum degenerate neutral strontium in a 3-D optical lattice formed with 532 nm light. Precision control and manipulation of quantum degenerate gases in optical lattices allows for the realization and investigation of tunable many-body systems. Strontium, in particular, has been studied extensively in optical lattices due to the narrow 5s21S0 --> 5 s 5 p3Pj transitions for use as an atomic clock. However, in the present work, we take advantage of these narrow transitions together with strontium's unique isotopic properties to investigate interaction regimes inaccessible to alkali atoms. Among the topics we plan to explore are formation of ultracold molecules using an optical Feshbach resonance as well as the effects of dissipation on atom dynamics. This work was supported by Rice University, Shell, the Welch Foundation (C-1579) and the National Science Foundation (PHY-1205946).

  5. Collagenosis in wallerian degeneration depends on peripheral nerve type.

    PubMed

    Eather, T F; Pollock, M

    1988-06-01

    In the mature rat we determined the extent of peripheral nerve collagenosis in response to Wallerian degeneration and examined whether or not nonfibroblastic elements such as Schwann cells were important. Collagen was estimated as the hydroxy-proline content of normal and axotomized nerve fascicles after single or double crush lesions of both myelinated and unmyelinated nerves. Crushed unmyelinated nerve produced two to four times more collagen relative to control nerve than did the sciatic nerve. The nature of the interaction between two successive crushes was different in the two nerves. These results suggest that the degree of collagen fibrillogenesis occurring in Wallerian degeneration is dependent on peripheral nerve type and that the presence of myelin is not necessary for collagen fibrillogenesis.

  6. Molecular pathology of age-related macular degeneration

    PubMed Central

    Ding, Xiaoyan; Patel, Mrinali; Chan, Chi-Chao

    2009-01-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the world. Although the etiology and pathogenesis of AMD remain largely unclear, a complex interaction of genetic and environmental factors is thought to exist. AMD pathology is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium, and Bruch’s membrane, as well as, in some cases, alterations in choroidal capillaries. Recent research on the genetic and molecular underpinnings of AMD brings to light several basic molecular pathways and pathophysiological processes that might mediate AMD risk, progression, and/or response to therapy. This review summarizes, in detail, the molecular pathological findings in both humans and animal models, including genetic variations in CFH, CX3CR1, and ARMS2/HtrA1, as well as the role of numerous molecules implicated in inflammation, apoptosis, cholesterol trafficking, angiogenesis, and oxidative stress. PMID:19026761

  7. Degenerate band edge resonances in periodic silicon ridge waveguides.

    PubMed

    Wood, Michael G; Burr, Justin R; Reano, Ronald M

    2015-06-01

    We experimentally demonstrate degenerate band edge resonances in periodic Si ridge waveguides that are compatible with carrier injection modulation for active electro-optical devices. The resonant cavities are designed using a combination of the plane-wave expansion method and the finite difference time domain technique. Measured and simulated quality factors of the first band edge resonances scale to the fifth power of the number of periods. Quality factor scaling is determined to be limited by fabrication imperfections. Compared to resonators based on a regular transmission band edge, degenerate band edge devices can achieve significantly larger quality factors in the same number of periods. Applications include compact electro-optical switches, modulators, and sensors that benefit from high-quality factors and large distributed electric fields.

  8. Chlorogenic acid and coffee prevent hypoxia-induced retinal degeneration.

    PubMed

    Jang, Holim; Ahn, Hong Ryul; Jo, Hyoung; Kim, Kyung-A; Lee, Eun Ha; Lee, Ki Won; Jung, Sang Hoon; Lee, Chang Y

    2014-01-01

    This study explored whether chlorogenic acid (CGA) and coffee have protective effects against retinal degeneration. Under hypoxic conditions, the viability of transformed retinal ganglion (RGC-5) cells was significantly reduced by treatment with the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP). However, pretreatment with CGA attenuated cell death in a concentration-dependent manner. In addition, CGA prevented the up-regulation of apoptotic proteins such as Bad and cleaved caspase-3. Similar beneficial effects of both CGA and coffee extracts were observed in mice that had undergone an optic nerve crush (ONC) procedure. CGA and coffee extract reduced cell death by preventing the down-regulation of Thy-1. Our in vitro and in vivo studies demonstrated that coffee and its major component, CGA, significantly reduce apoptosis of retinal cells induced by hypoxia and NO, and that coffee consumption may help in preventing retinal degeneration. PMID:24295042

  9. Progressive neuronal degeneration of childhood: prenatal diagnosis by MRI.

    PubMed

    de Laveaucoupet, Jocelyne; Roffi, Fabio; Audibert, François; Guis, Françoise; Lacroix, Catherine; Villeneuve, Nathalie; Landrieu, Pierre; Labrune, Philippe

    2005-04-01

    We report two cases in the same family of progressive neuronal degeneration of childhood--Alpers syndrome--with prenatal MRI findings in one case. The first infant presented at birth with severe microcephaly, then rapidly evolved to progressive encephalopathy with refractory epilepsy, leading to death at 10 months. Biochemical investigations including liver function tests were normal. CT and MRI showed severe diffuse brain atrophy. The diagnosis of progressive neuronal degeneration of childhood was made on the clinical and imaging data. The second pregnancy was marked by gradual decrease of fetal cerebral biometry and a prenatal MRI performed at 32 weeks showed diffuse cortical atrophy, as observed in the sibling. The infant died at 5 months. Neuropathological findings were consistent with Alpers syndrome. PMID:15852481

  10. Current-Drive Efficiency in a Degenerate Plasma

    SciTech Connect

    S. Son and N.J. Fisch

    2005-11-01

    a degenerate plasma, the rates of electron processes are much smaller than the classical model would predict, affecting the efficiencies of current generation by external non-inductive means, such as by electromagnetic radiation or intense ion beams. For electron-based mechanisms, the current-drive efficiency is higher than the classical prediction by more than a factor of 6 in a degenerate hydrogen plasma, mainly because the electron-electron collisions do not quickly slow down fast electrons. Moreover, electrons much faster than thermal speeds are more readily excited without exciting thermal electrons. In ion-based mechanisms of current drive, the efficiency is likewise enhanced due to the degeneracy effects, since the electron stopping power on slow ion beams is significantly reduced.

  11. Clinical diagnostic criteria and classification controversies in frontotemporal lobar degeneration

    PubMed Central

    RASCOVSKY, KATYA; GROSSMAN, MURRAY

    2014-01-01

    Frontotemporal lobar degeneration (FTLD) can manifest as a spectrum of clinical syndromes, ranging from behavioural impairment to language or motor dysfunction. Recently, revised diagnostic criteria have been proposed for the behavioural and progressive aphasia syndromes associated with frontotemporal degeneration. The present review will summarize these diagnostic guidelines and highlight some lingering controversies in the classification of FTLD clinical syndromes. We will discuss common tools and methods used to identify the insidious changes of behavioural variant frontotemporal dementia (bvFTD), the value of new, patient-based tasks of orbitofrontal function, and the issue of a benign or ‘phenocopy’ variant of bvFTD. With regard to primary progressive aphasia (PPA), we will discuss the scope of the semantic disorder in semantic-variant PPA, the nature of the speech disorder in non-fluent, agrammatic PPA, and the preliminary utility of a logopenic PPA classification. PMID:23611345

  12. Accreting neutron stars, black holes, and degenerate dwarf stars.

    PubMed

    Pines, D

    1980-02-01

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects. PMID:17749313

  13. Müller cell metabolic chaos during retinal degeneration.

    PubMed

    Pfeiffer, Rebecca L; Marc, Robert E; Kondo, Mineo; Terasaki, Hiroko; Jones, Bryan W

    2016-09-01

    Müller cells play a critical role in retinal metabolism and are among the first cells to demonstrate metabolic changes in retinal stress or disease. The timing, extent, regulation, and impacts of these changes are not yet known. We evaluated metabolic phenotypes of Müller cells in the degenerating retina. Retinas harvested from wild-type (WT) and rhodopsin Tg P347L rabbits were fixed in mixed aldehydes and resin embedded for computational molecular phenotyping (CMP). CMP facilitates small molecule fingerprinting of every cell in the retina, allowing evaluation of metabolite levels in single cells. CMP revealed signature variations in metabolite levels across Müller cells from TgP347L retina. In brief, neighboring Müller cells demonstrated variability in taurine, glutamate, glutamine, glutathione, glutamine synthetase (GS), and CRALBP. This variability showed no correlation across metabolites, implying the changes are functionally chaotic rather than simply heterogeneous. The inability of any clustering algorithm to classify Müller cell as a single class in the TgP347L retina is a formal proof of metabolic variability in the present in degenerating retina. Although retinal degeneration is certainly the trigger, Müller cell metabolic alterations are not a coherent response to the microenvironment. And while GS is believed to be the primary enzyme responsible for the conversion of glutamate to glutamine in the retina, alternative pathways appear to be unmasked in degenerating retina. Somehow, long term remodeling involves loss of Müller cell coordination and identity, which has negative implications for therapeutic interventions that target neurons alone. PMID:27142256

  14. Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas

    SciTech Connect

    Sanner, Christian; Su, Edward J.; Keshet, Aviv; Gommers, Ralf; Shin, Yong-il; Huang Wujie; Ketterle, Wolfgang

    2010-07-23

    We study density profiles of an ideal Fermi gas and observe Pauli suppression of density fluctuations (atom shot noise) for cold clouds deep in the quantum degenerate regime. Strong suppression is observed for probe volumes containing more than 10 000 atoms. Measuring the level of suppression provides sensitive thermometry at low temperatures. After this method of sensitive noise measurements has been validated with an ideal Fermi gas, it can now be applied to characterize phase transitions in strongly correlated many-body systems.

  15. Geriatric vision loss due to cataracts, macular degeneration, and glaucoma.

    PubMed

    Eichenbaum, Joseph W

    2012-01-01

    The major causes of impaired vision in the elderly population of the United States are cataracts, macular degeneration, and open-angle glaucoma. Cataracts and macular degeneration usually reduce central vision, especially reading and near activities, whereas chronic glaucoma characteristically attacks peripheral vision in a silent way, impacting balance, walking, and driving. Untreated, these visual problems lead to issues with regard to taking medications, keeping track of finances and personal information, walking, watching television, and attending the theater, and often create social isolation. Thus, visually impaired individuals enter nursing homes 3 years earlier, have twice the risk of falling, and have 4× the risk of hip fracture. Consequently, many elderly with low vision exercise greater demands on community services. With the prospect of little improvement and sustained visual loss, in the face of poor tolerance of low-vision services and not accepting magnification as the only way to read, clinical depression is common. In many instances, however, early and accurate diagnosis can result in timely treatment and can preserve quality of life. This review will look at current diagnostic and therapeutic considerations. Currently, about 20.5 million people in the United States have cataracts. The number will reach 30 million by 2020. About 1.75 million Americans currently have some form of macular degeneration, and the number is estimated to increase to 2.95 million in 2020. Approximately 2.2 million Americans have glaucoma, and by 2020 that number is estimated to be close to 3.4 million people. It is projected that by 2030 there will be 72.1 million seniors. With some overlap of the above 3 groups conservatively estimated (if you add the 2030 cataract group to the macular degeneration and glaucoma groups), then about 1 in 2 senior individuals by 2030 may have some significant ocular disease, which could account for about 50% of the healthcare budget for the

  16. Smoking and Age-Related Macular Degeneration: Review and Update

    PubMed Central

    Velilla, Sara; García-Medina, José Javier; García-Layana, Alfredo; Pons-Vázquez, Sheila; Pinazo-Durán, M. Dolores; Gómez-Ulla, Francisco; Arévalo, J. Fernando; Díaz-Llopis, Manuel; Gallego-Pinazo, Roberto

    2013-01-01

    Age-related macular degeneration (AMD) is one of the main socioeconomical health issues worldwide. AMD has a multifactorial etiology with a variety of risk factors. Smoking is the most important modifiable risk factor for AMD development and progression. The present review summarizes the epidemiological studies evaluating the association between smoking and AMD, the mechanisms through which smoking induces damage to the chorioretinal tissues, and the relevance of advising patients to quit smoking for their visual health. PMID:24368940

  17. Cartilage Degeneration and Alignment in Severe Varus Knee Osteoarthritis

    PubMed Central

    Mukai, Shogo; Yabumoto, Hiromitsu; Tarumi, Eri; Nakamura, Takashi

    2015-01-01

    Objectives The aim of this study was to examine the relationship between cartilage, ligament, and meniscus degeneration and radiographic alignment in severe varus knee osteoarthritis in order to understand the development of varus knee osteoarthritis. Design Fifty-three patients (71 knees) with primary varus knee osteoarthritis and who underwent total knee arthroplasty were selected for this study. There were 6 men and 47 women, with 40 right knees and 31 left knees studied; their mean age at operation was 73.5 years. The ligament, meniscus, degeneration of joint cartilage, and radiographic alignments were examined visually. Results The tibial plateau–tibial shaft angle was larger if the condition of the cartilage in the lateral femoral condyle was worse. The femorotibial angle and tibial plateau–tibial shaft angle were larger if the conditions of the lateral meniscus or the cartilage in the lateral tibial plateau were worse. Conclusion Based on the results of this study, progression of varus knee osteoarthritis may occur in the following manner: medial knee osteoarthritis starts in the central portion of the medial tibial plateau, and accompanied by medial meniscal extrusion and anterior cruciate ligament rupture, cartilage degeneration expands from the anterior to the posterior in the medial tibial plateau. Bone attrition occurs in the medial tibial plateau, and the femoro-tibial angle and tibial plateau–tibial shaft angle increase. Therefore, the lateral intercondylar eminence injures the cartilage of the lateral femoral condyle in the longitudinal fissure type. Thereafter, the cartilage degeneration expands in the whole of the knee joints. PMID:26425258

  18. Ignition Regime for Fusion in a Degenerate Plasma

    SciTech Connect

    Son, S.; Fisch, N.J.

    2005-12-01

    We identify relevant parameter regimes in which aneutronic fuels can undergo fusion ignition in hot-ion degenerate plasma. Because of relativistic effects and partial degeneracy, the self-sustained burning regime is considerably larger than previously calculated. Inverse bremsstrahlung plays a major role in containing the reactor energy. We solve the radiation transfer equation and obtain the contribution to the heat conductivity from inverse bremsstrahlung.

  19. Decellularized allogeneic intervertebral disc: natural biomaterials for regenerating disc degeneration

    PubMed Central

    Hu, Zhijun; Chen, Kai; Shan, Zhi; Chen, Shuai; Wang, Jiying; Mo, Jian; Ma, Jianjun; Xu, Wenbing; Qin, An; Fan, Shunwu

    2016-01-01

    Intervertebral disc degeneration is associated with back pain and disc herniation. This study established a modified protocol for intervertebral disc (IVD) decellularization and prepared its extracellular matrix (ECM). By culturing mesenchymal stem cells (MSCs)(3, 7, 14 and 21 days) and human degenerative IVD cells (7 days) in the ECM, implanting it subcutaneously in rabbit and injecting ECM microparticles into degenerative disc, the biological safety and efficacy of decellularized IVD was evaluated both in vitro and in vivo. Here, we demonstrated that cellular components can be removed completely after decellularization and maximally retain the structure and biomechanics of native IVD. We revealed that allogeneic ECM did not evoke any apparent inflammatory reaction in vivo and no cytotoxicity was found in vitro. Moreover, IVD ECM can induce differentiation of MSCs into IVD-like cells in vitro. Furthermore, allogeneic ECM microparticles are effective on the treatment of rabbit disc degeneration in vivo. In conclusion, our study developed an optimized method for IVD decellularization and we proved decellularized IVD is safe and effective for the treatment of degenerated disc diseases. PMID:26933821

  20. Inpatient Rehabilitation Performance of Patients with Paraneoplastic Cerebellar Degeneration

    PubMed Central

    Fu, Jack B.; Raj, Vishwa S.; Asher, Arash; Lee, Jay; Guo, Ying; Konzen, Benedict S.; Bruera, Eduardo

    2014-01-01

    Objective To evaluate the functional improvement of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Design Retrospective Review Setting Three tertiary referral based hospitals. Interventions Medical records were retrospectively analyzed for demographic, laboratory, medical and functional data. Main Outcome Measure Functional Independence Measure (FIM) Participants Cancer rehabilitation inpatients admitted to three different cancer centers with a diagnosis of paraneoplastic cerebellar degeneration (n=7). Results All 7 patients were white females. Median age was 62. Primary cancers included ovarian carcinoma (2), small cell lung cancer (2), uterine carcinoma (2), and invasive ductal breast carcinoma. Mean admission total FIM score was 61.0 (SD=23.97). Mean discharge total FIM score was 73.6 (SD=29.35). The mean change in total FIM score was 12.6 (p=.0018). The mean length of rehabilitation stay was 17.1 days. The mean total FIM efficiency was 0.73. 5/7 (71%) patients were discharged home. 1/7 (14%) was discharged to a nursing home. 1/7 (14%) transferred to the primary acute care service. Conclusions This is the first study to demonstrate the functional performance of a group of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Despite the poor neurologic prognosis associated with this syndrome, these patients made significant functional improvements on inpatient rehabilitation. When appropriate, inpatient rehabilitation should be considered. Further studies with larger sample sizes are needed. PMID:25051460

  1. Degeneration of the Y chromosome in evolutionary aging models

    NASA Astrophysics Data System (ADS)

    Lobo, M. P.; Onody, R. N.

    2005-06-01

    The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. And third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.

  2. Humor and laughter in patients with cerebellar degeneration.

    PubMed

    Frank, B; Propson, B; Göricke, S; Jacobi, H; Wild, B; Timmann, D

    2012-06-01

    Humor is a complex behavior which includes cognitive, affective and motor responses. Based on observations of affective changes in patients with cerebellar lesions, the cerebellum may support cerebral and brainstem areas involved in understanding and appreciation of humorous stimuli and expression of laughter. The aim of the present study was to examine if humor appreciation, perception of humorous stimuli, and the succeeding facial reaction differ between patients with cerebellar degeneration and healthy controls. Twenty-three adults with pure cerebellar degeneration were compared with 23 age-, gender-, and education-matched healthy control subjects. No significant difference in humor appreciation and perception of humorous stimuli could be found between groups using the 3 Witz-Dimensionen Test, a validated test asking for funniness and aversiveness of jokes and cartoons. Furthermore, while observing jokes, humorous cartoons, and video sketches, facial expressions of subjects were videotaped and afterwards analysed using the Facial Action Coding System. Using depression as a covariate, the number, and to a lesser degree, the duration of facial expressions during laughter were reduced in cerebellar patients compared to healthy controls. In sum, appreciation of humor appears to be largely preserved in patients with chronic cerebellar degeneration. Cerebellar circuits may contribute to the expression of laughter. Findings add to the literature that non-motor disorders in patients with chronic cerebellar disease are generally mild, but do not exclude that more marked disorders may show up in acute cerebellar disease and/or in more specific tests of humor appreciation.

  3. Electrostatic rogue-waves in relativistically degenerate plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-10-15

    In this paper, we investigate the modulational instability and the possibility of electrostatic rogue-wave propagations in a completely degenerate plasma with arbitrary degree of degeneracy, i.e., relativistically degenerate plasma, ranging from solid density to the astrophysical compact stars. The hydrodynamic approach along with the perturbation method is used to reduce the governing equations to the nonlinear Schrödinger equation from which the modulational instability, the growth rate of envelope excitations and the occurrence of rogue as well as super-rogue waves in the plasma, is evaluated. It is observed that the modulational instability in a fully degenerate plasma can be quite sensitive to the plasma number-density and the wavenumber of envelop excitations. It is further revealed that the relativistically degeneracy plasmas (R{sub 0} > 1) are almost always modulationally unstable. It is found, however, that the highly energetic sharply localized electrostatic rogue as well as super-rogue waves can exist in the astrophysical compact objects like white dwarfs and neutron star crusts. The later may provide a link to understand many physical processes in such stars and it may lead us to the origin of the random-localized intense short gamma-ray bursts, which “appear from nowhere and disappear without a trace” quite similar to oceanic rogue structures.

  4. Exact nonlinear excitations in double-degenerate plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2012-06-15

    In this work, we use the conventional hydrodynamics formalism and incorporate the Chew-Goldberger-Low double-adiabatic theory to evaluate the nonlinear electrostatic ion excitations in double-degenerate (electron spin-orbit degenerate) magnetized quantum plasmas. Based on the Sagdeev pseudopotential method, an exact general pseudopotential is calculated which leads to the allowed Mach-number range criteria for such localized density structures in an anisotropic magnetized plasma. We employ the criteria on the Mach-number range for diverse magnetized quantum plasma with different equations of state. It is remarked that various plasma fractional parameters such as the system dimensionality, ion-temperature, relativistic-degeneracy, Zeeman-energy, and plasma composition are involved in the stability of an obliquely propagating nonlinear ion-acoustic wave in a double-degenerate quantum plasma. Current study is most appropriate for nonlinear wave analysis in dense astrophysical magnetized plasma environments such as white-dwarfs and neutron-star crusts where the strong magnetic fields can be present.

  5. Quantum degenerate mixture of ytterbium and lithium atoms

    SciTech Connect

    Hansen, Anders H.; Khramov, Alexander; Dowd, William H.; Jamison, Alan O.; Ivanov, Vladyslav V.; Gupta, Subhadeep

    2011-07-15

    We have produced a quantum degenerate mixture of fermionic alkali-metal {sup 6}Li and bosonic spin-singlet {sup 174}Yb gases. This was achieved using sympathetic cooling of lithium atoms by evaporatively cooled ytterbium atoms in a far-off-resonant optical dipole trap. We observe the coexistence of Bose-condensed (T/T{sub c}{approx_equal}0.8) {sup 174}Yb with 2.3x10{sup 4} atoms and Fermi degenerate (T/T{sub F}{approx_equal}0.3) {sup 6}Li with 1.2x10{sup 4} atoms. Quasipure Bose-Einstein condensates of up to 3x10{sup 4} {sup 174}Yb atoms can be produced in single-species experiments. Our results mark a significant step toward studies of few- and many-body physics with mixtures of alkali-metal and alkaline-earth-metal-like atoms, and for the production of paramagnetic polar molecules in the quantum regime. Our methods also establish a convenient scheme for producing quantum degenerate ytterbium atoms in a 1064 nm optical dipole trap.

  6. Synapse loss and axon retraction in response to local muscle degeneration.

    PubMed

    Hegstrom, C D; Truman, J W

    1996-10-01

    During metamorphosis in the moth, Manduca sexta, the abdominal body-wall muscle DEO1 is remodeled to form the adult muscle DE5. As the larval muscle degenerates, its motoneuron loses its end plates and retracts axon branches from the degenerating muscle. Muscle degeneration is under the control of the insect hormones, the ecdysteroids. Topical application of an ecdysteroid mimic resulted in animals that produced a localized patch of pupal cuticle. Muscle fibers underlying the patch showed a gradient of degeneration. The motoneuron showed end-plate loss and axon retraction from degenerating regions of a given fiber but maintained its fine terminal branches and end plates on intact regions. The results suggest that local steroid treatments that result in local muscle degeneration bring about a loss of synaptic contacts from regions of muscle degeneration.

  7. Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy.

    PubMed

    Miller, Nimrod; Feng, Zhihua; Edens, Brittany M; Yang, Ben; Shi, Han; Sze, Christie C; Hong, Benjamin Taige; Su, Susan C; Cantu, Jorge A; Topczewski, Jacek; Crawford, Thomas O; Ko, Chien-Ping; Sumner, Charlotte J; Ma, Long; Ma, Yong-Chao

    2015-04-15

    Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35(-/-) compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration.

  8. Non-Aggregating Tau Phosphorylation by Cyclin-Dependent Kinase 5 Contributes to Motor Neuron Degeneration in Spinal Muscular Atrophy

    PubMed Central

    Miller, Nimrod; Feng, Zhihua; Edens, Brittany M.; Yang, Ben; Shi, Han; Sze, Christie C.; Hong, Benjamin Taige; Su, Susan C.; Cantu, Jorge A.; Topczewski, Jacek; Crawford, Thomas O.; Ko, Chien-Ping; Sumner, Charlotte J.; Ma, Long

    2015-01-01

    Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35−/− compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration. PMID:25878277

  9. MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine.

    PubMed

    Stolworthy, Dean K; Bowden, Anton E; Roeder, Beverly L; Robinson, Todd F; Holland, Jacob G; Christensen, S Loyd; Beatty, Amanda M; Bridgewater, Laura C; Eggett, Dennis L; Wendel, John D; Stieger-Vanegas, Susanne M; Taylor, Meredith D

    2015-12-01

    Animal models have historically provided an appropriate benchmark for understanding human pathology, treatment, and healing, but few animals are known to naturally develop intervertebral disc degeneration. The study of degenerative disc disease and its treatment would greatly benefit from a more comprehensive, and comparable animal model. Alpacas have recently been presented as a potential large animal model of intervertebral disc degeneration due to similarities in spinal posture, disc size, biomechanical flexibility, and natural disc pathology. This research further investigated alpacas by determining the prevalence of intervertebral disc degeneration among an aging alpaca population. Twenty healthy female alpacas comprised two age subgroups (5 young: 2-6 years; and 15 older: 10+ years) and were rated according to the Pfirrmann-grade for degeneration of the cervical intervertebral discs. Incidence rates of degeneration showed strong correlations with age and spinal level: younger alpacas were nearly immune to developing disc degeneration, and in older animals, disc degeneration had an increased incidence rate and severity at lower cervical levels. Advanced disc degeneration was present in at least one of the cervical intervertebral discs of 47% of the older alpacas, and it was most common at the two lowest cervical intervertebral discs. The prevalence of intervertebral disc degeneration encourages further investigation and application of the lower cervical spine of alpacas and similar camelids as a large animal model of intervertebral disc degeneration.

  10. Lack of Acid Sphingomyelinase Induces Age-Related Retinal Degeneration

    PubMed Central

    Wu, Bill X.; Fan, Jie; Boyer, Nicholas P.; Jenkins, Russell W.; Koutalos, Yiannis; Hannun, Yusuf A.; Crosson, Craig E.

    2015-01-01

    Background Mutations of acid sphingomyelinase (ASMase) cause Niemann–Pick diseases type A and B, which are fatal inherited lipid lysosomal storage diseases, characterized with visceral organ abnormalities and neurodegeneration. However, the effects of suppressing retinal ASMase expression are not understood. The goal of this study was to determine if the disruption of ASMase expression impacts the retinal structure and function in the mouse, and begin to investigate the mechanisms underlying these abnormalities. Methods Acid sphingomyelinase knockout (ASMase KO) mice were utilized to study the roles of this sphingolipid metabolizing enzyme in the retina. Electroretinogram and morphometric analysis were used to assess the retinal function and structure at various ages. Sphingolipid profile was determined by liquid chromatography-mass spectrometry. Western blots evaluated the level of the autophagy marker LC3-II. Results When compared to control animals, ASMase KO mice exhibited significant age-dependent reduction in ERG a- and b-wave amplitudes. Associated with these functional deficits, morphometric analysis revealed progressive thinning of retinal layers; however, the most prominent degeneration was observed in the photoreceptor and outer nuclear layer. Additional analyses of ASMase KO mice revealed early reduction in ERG c-wave amplitudes and increased lipofuscin accumulation in the retinal pigment epithelium (RPE). Sphingolipid analyses showed abnormal accumulation of sphingomyelin and sphingosine in ASMase KO retinas. Western blot analyses showed a higher level of the autophagosome marker LC3-II. Conclusions These studies demonstrate that ASMase is necessary for the maintenance of normal retinal structure and function. The early outer retinal dysfunction, outer segment degeneration, accumulation of lipofuscin and autophagosome markers provide evidence that disruption of lysosomal function contributes to the age-dependent retinal degeneration exhibited by

  11. Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration

    PubMed Central

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases. PMID:23115615

  12. Taurine provides neuroprotection against retinal ganglion cell degeneration.

    PubMed

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases.

  13. Striatal degeneration impairs language learning: evidence from Huntington's disease.

    PubMed

    De Diego-Balaguer, R; Couette, M; Dolbeau, G; Dürr, A; Youssov, K; Bachoud-Lévi, A-C

    2008-11-01

    Although the role of the striatum in language processing is still largely unclear, a number of recent proposals have outlined its specific contribution. Different studies report evidence converging to a picture where the striatum may be involved in those aspects of rule-application requiring non-automatized behaviour. This is the main characteristic of the earliest phases of language acquisition that require the online detection of distant dependencies and the creation of syntactic categories by means of rule learning. Learning of sequences and categorization processes in non-language domains has been known to require striatal recruitment. Thus, we hypothesized that the striatum should play a prominent role in the extraction of rules in learning a language. We studied 13 pre-symptomatic gene-carriers and 22 early stage patients of Huntington's disease (pre-HD), both characterized by a progressive degeneration of the striatum and 21 late stage patients Huntington's disease (18 stage II, two stage III and one stage IV) where cortical degeneration accompanies striatal degeneration. When presented with a simplified artificial language where words and rules could be extracted, early stage Huntington's disease patients (stage I) were impaired in the learning test, demonstrating a greater impairment in rule than word learning compared to the 20 age- and education-matched controls. Huntington's disease patients at later stages were impaired both on word and rule learning. While spared in their overall performance, gene-carriers having learned a set of abstract artificial language rules were then impaired in the transfer of those rules to similar artificial language structures. The correlation analyses among several neuropsychological tests assessing executive function showed that rule learning correlated with tests requiring working memory and attentional control, while word learning correlated with a test involving episodic memory. These learning impairments significantly

  14. Taurine provides neuroprotection against retinal ganglion cell degeneration.

    PubMed

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases. PMID:23115615

  15. Paraneoplastic cerebellar degeneration as a marker of endometrial cancer recurrence.

    PubMed

    Lie, Geoffrey; Morley, Thomas; Chowdhury, Muhammad

    2016-01-01

    An 84-year-old woman developed a cerebellar syndrome having undergone a total abdominal hysterectomy and bilateral salpingo-oophorectomy for endometrial cancer 1 year previously. She was found to be anti-Yo antibody positive and was diagnosed with paraneoplastic cerebellar degeneration (PCD). A subsequent positron emission tomography scan and lymph node biopsy identified recurrence of her endometrial cancer. This case illustrates how PCD can be an indicator of cancer recurrence, underlines the significance of PCD as a prompt to search for underlying malignancy, and highlights the difficulties PCD poses to the clinician in terms of diagnosis and management.

  16. Levetiracetam reduces myoclonus in corticobasal degeneration: report of two cases.

    PubMed

    Kovács, Tibor; Farsang, Marianna; Vitaszil, Edina; Barsi, Péter; Györke, Tamás; Szirmai, Imre; Kamondi, Anita

    2009-12-01

    Levetiracetam (LEV) has been shown to suppress myoclonus of various origins. Corticobasal degeneration (CBD), a progressive neurodegenerative disorder with Parkinsonian syndrome, is frequently accompanied by myoclonus. We investigated the effect of LEV on myoclonus in two CBD patients. LEV remarkably decreased the myoclonic activity in both patients already at 1,500 mg/day dose. This is the first report on LEV alleviating myoclonus in CBD. Our data indicate that it might be worthwhile to assess this effect in an appropriately designed study.

  17. Symmetrical infantile thalamic degeneration with focal cytoplasmic calcification.

    PubMed

    Ambler, M; O'Neil, W

    1975-10-27

    Infantile thalamic degeneration is a rare clinico-pathological entity. Restricted location of the lesion and peculiar cytopathological changes serve to distinguish this disorder from other common encephalopathies. Optical and ultrastructural studies demonstrate cytoplasmic calcopherules in previously viable cells. According to current concepts of acute cellular reactions to injury and mechanism of intracellular calcification, the cytological changes cannot be attributed to either hypoxic ischemic cell change or dystrophic calcification. By analogy to other human and pathological material, the most likely basis for nondystrophic calcopherule formation is toxic or infectious injury with local synthesis, or autophagic or phagolysosomal degradation of cellular debris of specific chemical composition favoring calcium deposition.

  18. Tissue engineering strategies to study cartilage development, degeneration and regeneration.

    PubMed

    Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh

    2015-04-01

    Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.

  19. PCR Amplicon Prediction from Multiplex Degenerate Primer and Probe Sets

    2013-08-08

    Assessing primer specificity and predicting both desired and off-target amplification products is an essential step for robust PCR assay design. Code is described to predict potential polymerase chain reaction (PCR) amplicons in a large sequence database such as NCBI nt from either singleplex or a large multiplexed set of primers, allowing degenerate primer and probe bases, with target mismatch annotates amplicons with gene information automatically downloaded from NCBI, and optionally it can predict whether theremore » are also TaqMan/Luminex probe matches within predicted amplicons.« less

  20. Degenerate nonlinear programming with a quadratic growth condition.

    SciTech Connect

    Anitescu, M.; Mathematics and Computer Science

    2000-01-01

    We show that the quadratic growth condition and the Mangasarian-Fromovitz constraint qualification (MFCQ) imply that local minima of nonlinear programs are isolated stationary points. As a result, when started sufficiently close to such points, an L1 exact penalty sequential quadratic programming algorithm will induce at least R-linear convergence of the iterates to such a local minimum. We construct an example of a degenerate nonlinear program with a unique local minimum satisfying the quadratic growth and the MFCQ but for which no positive semidefinite augmented Lagrangian exists. We present numerical results obtained using several nonlinear programming packages on this example and discuss its implications for some algorithms.

  1. Suppression of density fluctuations in a quantum degenerate Fermi gas.

    PubMed

    Sanner, Christian; Su, Edward J; Keshet, Aviv; Gommers, Ralf; Shin, Yong-Il; Huang, Wujie; Ketterle, Wolfgang

    2010-07-23

    We study density profiles of an ideal Fermi gas and observe Pauli suppression of density fluctuations (atom shot noise) for cold clouds deep in the quantum degenerate regime. Strong suppression is observed for probe volumes containing more than 10 000 atoms. Measuring the level of suppression provides sensitive thermometry at low temperatures. After this method of sensitive noise measurements has been validated with an ideal Fermi gas, it can now be applied to characterize phase transitions in strongly correlated many-body systems.

  2. [Diagnostic Criteria for Atrophic Age-related Macular Degeneration].

    PubMed

    Takahashi, Kanji; Shiraga, Fumio; Ishida, Susumu; Kamei, Motohiro; Yanagi, Yasuo; Yoshimura, Nagahisa

    2015-10-01

    Diagnostic criteria for dry age-related macular degeneration is described. Criteria include visual acuity, fundscopic findings, diagnostic image findings, exclusion criteria and classification of severity grades. Essential findings to make diagnosis as "geographic atrophy" are, 1) at least 250 μm in diameter, 2) round/oval/cluster-like or geographic in shape, 3) sharp delineation, 4) hypopigmentation or depigmentation in retinal pigment epithelium, 5) choroidal vessels are more visible than in surrounding area. Severity grades were classified as mild, medium and severe by relation of geographic atrophy to the fovea and attendant findings. PMID:26571627

  3. Coupling and degenerating modes in longitudinal-torsional step horns.

    PubMed

    Harkness, Patrick; Lucas, Margaret; Cardoni, Andrea

    2012-12-01

    Longitudinal-torsional vibration is used and proposed for a variety of ultrasonic applications including motors, welding, and rock-cutting. To obtain this behavior in an ultrasonic step horn one can either, (i) couple the longitudinal and torsional modes of the horn by incorporating a ring of diagonal slits in the thick base section or, (ii) place helical flutes in the thin stem section to degenerate the longitudinal mode into a modified behavior with a longitudinal-torsional motion. This paper compares the efficacy of these two design approaches using both numerical and experimental techniques.

  4. PCR Amplicon Prediction from Multiplex Degenerate Primer and Probe Sets

    SciTech Connect

    Gardner, S. N.

    2013-08-08

    Assessing primer specificity and predicting both desired and off-target amplification products is an essential step for robust PCR assay design. Code is described to predict potential polymerase chain reaction (PCR) amplicons in a large sequence database such as NCBI nt from either singleplex or a large multiplexed set of primers, allowing degenerate primer and probe bases, with target mismatch annotates amplicons with gene information automatically downloaded from NCBI, and optionally it can predict whether there are also TaqMan/Luminex probe matches within predicted amplicons.

  5. Hydrodynamics in a Degenerate, Strongly Attractive Fermi Gas

    NASA Technical Reports Server (NTRS)

    Thomas, John E.; Kinast, Joseph; Hemmer, Staci; Turlapov, Andrey; O'Hara, Ken; Gehm, Mike; Granade, Stephen

    2004-01-01

    In summary, we use all-optical methods with evaporative cooling near a Feshbach resonance to produce a strongly interacting degenerate Fermi gas. We observe hydrodynamic behavior in the expansion dynamics. At low temperatures, collisions may not explain the expansion dynamics. We observe hydrodynamics in the trapped gas. Our observations include collisionally-damped excitation spectra at high temperature which were not discussed above. In addition, we observe weakly damped breathing modes at low temperature. The observed temperature dependence of the damping time and hydrodynamic frequency are not consistent with collisional dynamics nor with collisionless mean field interactions. These observations constitute the first evidence for superfluid hydrodynamics in a Fermi gas.

  6. Observation of a strongly interacting degenerate Fermi gas of atoms.

    PubMed

    O'Hara, K M; Hemmer, S L; Gehm, M E; Granade, S R; Thomas, J E

    2002-12-13

    We report on the observation of a highly degenerate, strongly interacting Fermi gas of atoms. Fermionic lithium-6 atoms in an optical trap are evaporatively cooled to degeneracy using a magnetic field to induce strong, resonant interactions. Upon abruptly releasing the cloud from the trap, the gas is observed to expand rapidly in the transverse direction while remaining nearly stationary in the axial direction. We interpret the expansion dynamics in terms of collisionless superfluid and collisional hydrodynamics. For the data taken at the longest evaporation times, we find that collisional hydrodynamics does not provide a satisfactory explanation, whereas superfluidity is plausible.

  7. Expansion of a quantum degenerate boson-fermion mixture

    SciTech Connect

    Hu, Hui; Liu, Xia-Ji; Modugno, Michele

    2003-06-01

    We study the expansion of an ultracold boson-fermion mixture released from an elongated magnetic trap, by using a scaling approach. We discuss in detail the role of the boson-fermion interaction on the evolution of the radial-to-axial aspect ratio of the condensate, and show that the latter depends crucially on the relative dynamics of the condensate and degenerate Fermi gas in the radial direction, which is characterized by the ratio between the trapping frequencies for fermions and bosons. The numerical solution of the scaling equations provides a reasonable agreement with the recent experiment [G. Roati et al., Phys. Rev. Lett. 89, 150403 (2002)].

  8. Effects of Vitreomacular Adhesion on Age-Related Macular Degeneration

    PubMed Central

    Kang, Eui Chun; Koh, Hyoung Jun

    2015-01-01

    Herein, we review the association between vitreomacular adhesion (VMA) and neovascular age-related macular degeneration (AMD). Meta-analyses have shown that eyes with neovascular AMD are twice as likely to have VMA as normal eyes. VMA in neovascular AMD may induce inflammation, macular traction, decrease in oxygenation, sequestering of vascular endothelial growth factor (VEGF), and other cytokines or may directly stimulate VEGF production. VMA may also interfere with the treatment effects of anti-VEGF therapy, which is the standard treatment for neovascular AMD, and releasing VMA can improve the treatment response to anti-VEGF treatment in neovascular AMD. We also reviewed currently available methods of relieving VMA. PMID:26425354

  9. Suppression of Myoclonus in Corticobasal Degeneration by Levetiracetam

    PubMed Central

    Cho, Jae Wook; Lee, Jae Hyeok

    2014-01-01

    Myoclonus in corticobasal degeneration (CBD) has often been associated with severe and difficult to treat disabilities. Levetiracetam is a new antiepileptic agent with antimyoclonic effects. Herein, we present a 72-year-old woman with clinically probable CBD and with spontaneous rhythmic myoclonus in the right foot, which was markedly ameliorated through treatment with levetiracetam. The effect of levetiracetam was associated with the decreased amplitude of enlarged cortical somatosensory evoked potentials. This result suggests that the antimyoclonic effect of levetiracetam might be mediated through the suppression of increased cortical excitability. PMID:24926409

  10. [Glaucoma and age-related macular degeneration intricacy].

    PubMed

    Valtot, F

    2008-07-01

    Age-related macular degeneration (AMD) is the leading cause of legal blindness among the elderly in Western nations. Age is also a well-known and well-evidenced risk factor for glaucoma. With increasing longevity and the rising prevalence of older people around the world, more and more patients will have glaucoma and AMD. Clinical evaluation of these patients still poses problems for clinicians. It is very important to order the right tests at the right time to distinguish glaucomatous defects from those caused by retinal lesions, because appropriate therapy has a beneficial effect on slowing or halting damage. PMID:18957915

  11. Two-photon interferences with degenerate and nondegenerate paired photons

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Chen, J. F.; Zhang, Shanchao; Zhou, Shuyu; Kim, Yoon-Ho; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang

    2012-02-01

    We generate narrow-band frequency-tunable entangled photon pairs from spontaneous four-wave mixing in three-level cold atoms and study their two-photon quantum interference after a beam splitter. We find that the path-exchange symmetry plays a more important role in the Hong-Ou-Mandel interference than the temporal or frequency indistinguishability, and observe coalescence interference for both degenerate and nondegenerate photons. We also observe a quantum beat in the same experimental setup using either slow or fast detectors.

  12. Increase of quantum volume entropy in presence of degenerate eigenenergies

    NASA Astrophysics Data System (ADS)

    Campisi, Michele

    2016-10-01

    The entropy of a classical thermally isolated Hamiltonian system is given by the logarithm of the measure of phase space enclosed by the constant energy hyper-surface, also known as volume entropy. It has been shown that on average the latter cannot decrease if the initial state is sampled from a classical passive distribution. Quantum extension of this result has been shown, but only for systems with a non-degenerate energy spectrum. Here we further extend to the case of possible degeneracies.

  13. Degenerate Bose-Fermi mixtures of rubidium and ytterbium

    NASA Astrophysics Data System (ADS)

    Tiamsuphat, Jiraphat; Vaidya, Varun; Rolston, Steven; Porto, James

    2016-05-01

    We report the realization of a quantum degenerate mixture of bosonic 87 Rb and fermionic 171 Yb atoms in a hybrid optical dipole trap with a tunable, species-dependent trapping potential. 87 Rb is shown to be a viable refrigerant for the non-interacting 171 Yb atoms, cooling up to 2. 4 × 105 Yb atoms to a temperature of T/ TF = 0.16(2) while simultaneously forming a 87 Rb Bose-Einstein condensate of 3. 5 × 105 atoms. Furthermore we demonstrate our ability to independently tailor the potentials for each species, which paves the way for studying impurities immersed in a Bose gas.

  14. Degenerate quantum codes and the quantum Hamming bound

    SciTech Connect

    Sarvepalli, Pradeep; Klappenecker, Andreas

    2010-03-15

    The parameters of a nondegenerate quantum code must obey the Hamming bound. An important open problem in quantum coding theory is whether the parameters of a degenerate quantum code can violate this bound for nondegenerate quantum codes. In this article we show that Calderbank-Shor-Steane (CSS) codes, over a prime power alphabet q{>=}5, cannot beat the quantum Hamming bound. We prove a quantum version of the Griesmer bound for the CSS codes, which allows us to strengthen the Rains' bound that an [[n,k,d

  15. A Detailed Investigation into Near Degenerate Exponential Random Graphs

    NASA Astrophysics Data System (ADS)

    Yin, Mei

    2016-07-01

    The exponential family of random graphs has been a topic of continued research interest. Despite the relative simplicity, these models capture a variety of interesting features displayed by large-scale networks and allow us to better understand how phases transition between one another as tuning parameters vary. As the parameters cross certain lines, the model asymptotically transitions from a very sparse graph to a very dense graph, completely skipping all intermediate structures. We delve deeper into this near degenerate tendency and give an explicit characterization of the asymptotic graph structure as a function of the parameters.

  16. Age-Related Macular Degeneration: Advances in Management and Diagnosis

    PubMed Central

    Yonekawa, Yoshihiro; Miller, Joan W.; Kim, Ivana K.

    2015-01-01

    Age-related macular degeneration (AMD) is the most common cause of irreversible visual impairment in older populations in industrialized nations. AMD is a late-onset deterioration of photoreceptors and retinal pigment epithelium in the central retina caused by various environmental and genetic factors. Great strides in our understanding of AMD pathogenesis have been made in the past several decades, which have translated into revolutionary therapeutic agents in recent years. In this review, we describe the clinical and pathologic features of AMD and present an overview of current diagnosis and treatment strategies. PMID:26239130

  17. Squalamine lactate for exudative age-related macular degeneration.

    PubMed

    Connolly, Brian; Desai, Avinash; Garcia, Charles A; Thomas, Edgar; Gast, Michael J

    2006-09-01

    Squalamine lactate inhibits angiogenesis by a long-lived, intracellular mechanism of action. The drug is taken up into activated endothelial cells through caveolae, small invaginations in the cellular membrane. Subsequently, the drug binds to and "chaperones" calmodulin to an intracellular membrane compartment and blocks angiogenesis at several levels. A series of basic investigations, preclinical studies, and human clinical trials have begun to establish the proof of concept, efficacy, and safety parameters for use of squalamine lactate as a therapeutic agent for exudative age-related macular degeneration and several types of malignancies. PMID:16935213

  18. The Local Type Ia Supernova Progenitors: One Double-Degenerate, No Symbiotics

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Schaefer, B. E.

    2012-01-01

    Although the basic mechanism responsible for Type Ia supernovae appears to be well understood (thermonuclear explosion of a carbon-oxygen white dwarf that has reached the Chandrasekhar mass limit), the identity of the progenitor system(s) remains a mystery. With implications from stellar evolution to frontline cosmology, it is critical to attack this problem from every possible angle. We present results from our study of three known historical Ia supernovae in the Large Magellanic Cloud (LMC) which allow us to eliminate possible progenitor candidates for at least the local population. We used archival Hubble Space Telescope images of SNR 0509-67.5, SNR 0509-68.7, and SNR 0519-69.0 to determine the site of each explosion and then search the surrounding area for potential ex-companion stars that were left behind. The search was carried out within an error ellipse that accounts for measurement error on the geometric center of the remnant, the orbital velocity of the pre-supernova binary system, and kicks from the actual explosion. For SNR 0509-67.5, the error ellipse is empty to the HST 5σ limiting magnitude of V=26.9. Using an LMC distance modulus of 18.5, this implies that any single degenerate ex-companion must be fainter than MV=+8.4 (corresponding approximately to a K9 main sequence star), which eliminates all currently-published single-degenerate models and leads us to conclude that this system had a double-degenerate (double white dwarf) progenitor. For SNR 0509-68.7 and SNR 0519-69.0, we can eliminate the possibility of red giant and subgiant ex-companions. It has been shown that the two confident galactic Ia supernovae (Tycho's SN 1572 and SN 1006) also do not have red giant ex-companion stars. Combined with our three systems, this eliminates the symbiotic progenitor channel for all of the nearby Ia supernovae. This work was supported by the National Science Foundation (AST-1109420).

  19. [Treatment of exudative age-related macular degeneration].

    PubMed

    Yuzawa, M

    2000-12-01

    I PROPHYLACTIC TREATMENT: We followed 75 eyes contralateral to eyes with exudative age-related macular degeneration (AMD), using indocyanine green angiography (IA), for more than one year. Hyperfluorescent areas in the late phase of IA were seen in 19 eyes at the initial examination, and in 25 eyes during follow-up. Exudative AMD developed in 9 of the 25 eyes. Using timetable analysis, we estimated that 11% of these 27 eyes developed AMD within one year and 55% within three years. The hyperfluorescent areas seen on IA appeared to be latent choroidal neovascularization (CNV) under the retinal pigment epithelium. We propose that photocoagulation aimed at hyperfluorescent areas should be considered in such cases. We performed prophylactic laser photocoagulation in 21 eyes, which were then followed up for at least six months. These eyes all had 10 or more serous drusen within 1,500 microns of the fovea and did not show hyperfluorescence, suggesting latent CNV in the late phase of IA. The majority or a small fraction of the serous drusen disappeared in 48% and 18% of the 21 eyes, respectively. CNV appeared adjacent to the laser scar in one eye (5%). Judging from these results, it is important to establish a method of definitively abolishing drusen and preventing the development of CNV. II TREATMENT OF CNV: Of 229 eyes which showed occult CNV in fluorescein angiography (FA), 124 eyes (54%) showed classic CNV outside the fovea on IA. One hundred and two of the 124 eyes (45%) underwent laser photocoagulation. We evaluated indocyanine green guided laser photocoagulation of extrafoveal CNV in 139 eyes. The success rate was 81% at 3 months after laser photocoagulation. This was estimated using timetable analyses to have decreased to 78% at one year and 71% at three years. Eighty percent of successfully treated eyes showed maintained or improved visual acuity. These results did not differ significantly from those obtained with laser photocoagulation based on FA findings. When

  20. Inhibition of polyisoprenylated methylated protein methyl esterase by synthetic musks induces cell degeneration.

    PubMed

    Ayuk-Takem, Lambert; Amissah, Felix; Aguilar, Byron J; Lamango, Nazarius S

    2014-04-01

    Synthetic fragrances are persistent environmental pollutants that tend to bioaccumulate in animal tissues. They are widely used in personal care products and cleaning agents. Worldwide production of Galaxolide and Tonalide are in excess of 4500 tons annually. Because of their widespread production and use, they have been detected in surface waters and fish in the US and Europe. Consumption of contaminated water and fish from such sources leads to bioaccumulation and eventual toxicity. Since fragrances and flavors bear structural similarities to polyisoprenes, it was of interest to determine whether toxicity by Galaxolide and Tonalide may be linked with polyisoprenylated methylated protein methyl esterase (PMPMEase) inhibition. A concentration-dependent study of PMPMEase inhibition by Galaxolide and Tonalide as well as their effects on the degeneration of cultured cells were conducted. Galaxolide and Tonalide inhibited purified porcine liver PMPMEase with Ki values of 11 and 14 μM, respectively. Galaxolide and Tonalide also induced human cancer cell degeneration with EC50 values of 26 and 98 μM (neuroblastoma SH-SY5Y cells) and 58 and 14 μM (lung cancer A549 cells), respectively. The effects on cell viability correlate well with the inhibition of PMPMEase activity in the cultured cells. Molecular docking analysis revealed that the binding interactions are most likely between the fragrance molecules and hydrophobic amino acids in the active site of the enzyme. These results appear to suggest that the reported neurotoxicity of these compounds may be associated with their inhibition of PMPMEase. Exposure to fragrances may pose a significant risk to individuals predisposed to developing degenerative disorders.

  1. Structural Basis for Degenerate Recognition of Natural HIV Peptide Variants by Cytotoxic Lymphocytes

    SciTech Connect

    Martinez-Hackert,E.; Anikeeva, N.; Kalams, S.; Walker, B.; Hendrickson, W.; Sykulev, Y.

    2006-01-01

    It is well established that even small changes in amino acid side chains of antigenic peptide bound to MHC protein may completely abrogate recognition of the peptide-MHC (pMHC) complex by the T-cell receptor (TCR). Often, however, several non-conservative substitutions in the peptide antigen are accommodated and do not impair its recognition by TCR. For example, a preponderance of natural sequence variants of the HIV p17 Gag-derived peptide SLYNTVATL (SL9) are recognized by cytotoxic T lymphocytes (CTL), which implies that interactions with SL9 variants are degenerate both with respect to the class I MHC molecule and with respect to TCR. Here we study the molecular basis for this degenerate recognition of SL9 variants. We show that several SL9 variants bind comparably well to soluble HLA-A2 and to a particular soluble TCR and that these variants are active in the cognate cytotoxicity assay. Natural SL9 variation is restricted by its context in the HIV p17 matrix protein, and we have used synthetic variants to explore the wider spectrum of recognition. High-resolution crystal structures of seven selected SL9 variants bound to HLA-A2 all have remarkably similar peptide conformations and side-chain dispositions outside sites of substitution. This preservation of the peptide conformation despite epitope variations suggests a mechanism for the observed degeneracy in pMHC recognition by TCR, and may contribute to the persistence of SL9-mediated immune responses in chronically infected individuals.

  2. A structural and functional analysis of Nna1 in Purkinje cell degeneration (pcd) mice

    PubMed Central

    Wu, Hui-Yuan; Wang, Taiyu; Li, Leyi; Correia, Kristen; Morgan, James I.

    2012-01-01

    The axotomy-inducible enzyme Nna1 defines a subfamily of M14 metallocarboxypeptidases, and its mutation underlies the Purkinje cell degeneration (pcd) mouse. However, the relationship among its catalytic activity, substrate specificities, and the critical processes of neurodegeneration/axon regeneration is incompletely understood. Here we used a transgenic rescue strategy targeting expression of modified forms of Nna1 to Purkinje cells in pcd mice to determine structure-activity relationships for neuronal survival and in parallel characterized the enzymatic properties of purified recombinant Nna1. The Nna1 subfamily uniquely shares conserved substrate-determining residues with aspartoacylase that, when mutated, cause Canavan disease. Homologous mutations (D1007E and R1078E) inactivate Nna1 in vivo, as does mutation of its catalytic glutamate (E1094A), which implies that metabolism of acidic substrates is essential for neuronal survival. Consistent with reports that Nna1 is a tubulin glutamylase, recombinant Nna1—but not the catalytic mutants—removes glutamate from tubulin. Recombinant Nna1 metabolizes synthetic substrates with 2 or more C-terminal glutamate (but not aspartate) residues (Vmax for 3 glutamates is ∼7-fold higher than 2 glutamates although KM is similar). Catalysis is not ATP/GTP dependent, and mutating the ATP/GTP binding site of Nna1 has no effect in vivo. Nna1 is a monomeric enzyme essential for neuronal survival through hydrolysis of polyglutamate-containing substrates.—Wu, H.-Y., Wang, T., Li, L., Correia, K., Morgan, J. I. A structural and functional analysis of Nna1 in Purkinje cell degeneration (pcd) mice. PMID:22835831

  3. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration.

    PubMed

    Koike, Masato; Nojiri, Hidetoshi; Ozawa, Yusuke; Watanabe, Kenji; Muramatsu, Yuta; Kaneko, Haruka; Morikawa, Daichi; Kobayashi, Keiji; Saita, Yoshitomo; Sasho, Takahisa; Shirasawa, Takuji; Yokote, Koutaro; Kaneko, Kazuo; Shimizu, Takahiko

    2015-01-01

    Mechanical stress and aging are major risk factors of cartilage degeneration. Human studies have previously reported that oxidative damage increased, while SOD2 protein was reciprocally downregulated in osteoarthritic degenerated cartilage. However, it remains unclear whether mitochondrial superoxide imbalance in chondrocytes causes cartilage degeneration. We herein demonstrate that mechanical loading promoted mitochondrial superoxide generation and selective Sod2 downregulation in chondrocytes in vivo and that mitochondrial superoxide inducer also downregulated Sod2 expression in chondrocytes in vitro. A genetically manipulated model revealed that Sod2 deficiency in chondrocytes also resulted in mitochondrial superoxide overproduction and dysfunction, thus leading to cartilage degeneration. Intra-articular injection of a permeable antioxidant effectively suppressed the mechanical loading-induced mitochondrial superoxide generation and cartilage degeneration in mice. Our findings demonstrate that mitochondrial superoxide plays a pivotal role in the development and progression of osteoarthritis, and the mitochondrial superoxide balance may therefore be a promising target for the treatment of cartilage degeneration. PMID:26108578

  4. A Review of Animal Models of Intervertebral Disc Degeneration: Pathophysiology, Regeneration, and Translation to the Clinic.

    PubMed

    Daly, Chris; Ghosh, Peter; Jenkin, Graham; Oehme, David; Goldschlager, Tony

    2016-01-01

    Lower back pain is the leading cause of disability worldwide. Discogenic pain secondary to intervertebral disc degeneration is a significant cause of low back pain. Disc degeneration is a complex multifactorial process. Animal models are essential to furthering understanding of the degenerative process and testing potential therapies. The adult human lumbar intervertebral disc is characterized by the loss of notochordal cells, relatively large size, essentially avascular nature, and exposure to biomechanical stresses influenced by bipedalism. Animal models are compared with regard to the above characteristics. Numerous methods of inducing disc degeneration are reported. Broadly these can be considered under the categories of spontaneous degeneration, mechanical and structural models. The purpose of such animal models is to further our understanding and, ultimately, improve treatment of disc degeneration. The role of animal models of disc degeneration in translational research leading to clinical trials of novel cellular therapies is explored. PMID:27314030

  5. A Review of Animal Models of Intervertebral Disc Degeneration: Pathophysiology, Regeneration, and Translation to the Clinic

    PubMed Central

    Ghosh, Peter

    2016-01-01

    Lower back pain is the leading cause of disability worldwide. Discogenic pain secondary to intervertebral disc degeneration is a significant cause of low back pain. Disc degeneration is a complex multifactorial process. Animal models are essential to furthering understanding of the degenerative process and testing potential therapies. The adult human lumbar intervertebral disc is characterized by the loss of notochordal cells, relatively large size, essentially avascular nature, and exposure to biomechanical stresses influenced by bipedalism. Animal models are compared with regard to the above characteristics. Numerous methods of inducing disc degeneration are reported. Broadly these can be considered under the categories of spontaneous degeneration, mechanical and structural models. The purpose of such animal models is to further our understanding and, ultimately, improve treatment of disc degeneration. The role of animal models of disc degeneration in translational research leading to clinical trials of novel cellular therapies is explored. PMID:27314030

  6. Managing abnormal eating behaviours in frontotemporal lobar degeneration patients with topiramate.

    PubMed

    Shinagawa, Shunichiro; Tsuno, Norifumi; Nakayama, Kazuhiko

    2013-03-01

    Abnormal eating behaviours are specific to frontotemporal lobar degeneration and increase caregiver burden. Topiramate, an anticonvulsant, suppresses cravings for alcohol and other substances and is a potential treatment for binge eating. However, there are few reports on topiramate efficacy for abnormal eating behaviours in frontotemporal lobar degeneration patients. We present three Japanese frontotemporal lobar degeneration patients with abnormal eating behaviours. Topiramate was effective, especially for compulsive eating, in cases with distinct lobar atrophy, but not for all abnormal eating behaviours.

  7. The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine Lyn; Freemont, Anthony J; Hoyland, Judith Alison

    2005-01-01

    In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family. This study has shown that native disc cells from non-degenerate and degenerate discs produced the IL-1 agonists, antagonist, the active receptor, and IL-1β-converting enzyme. In addition, immunopositivity for these proteins, with the exception of IL-1Ra, increased with severity of degeneration. We have also shown that IL-1 treatment of human IVD cells resulted in increased gene expression for the matrix-degrading enzymes (MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix metalloproteinase 13), and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs)) and a decrease in the gene expression for matrix genes (aggrecan, collagen II, collagen I, and SOX6). In conclusion we have shown that IL-1 is produced in the degenerate IVD. It is synthesized by native disc cells, and treatment of human disc cells with IL-1 induces an imbalance between catabolic and anabolic events, responses that represent the changes seen during disc degeneration. Therefore, inhibiting IL-1 could be an important therapeutic target for preventing and reversing disc degeneration. PMID:15987475

  8. MUTYH promotes oxidative microglial activation and inherited retinal degeneration

    PubMed Central

    Nakatake, Shunji; Ikeda, Yasuhiro; Morioka, Noriko; Tachibana, Takashi; Fujiwara, Kohta; Yoshida, Noriko; Notomi, Shoji; Hisatomi, Toshio; Yoshida, Shigeo; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog–mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast, Mutyh deficiency in rd10 mice prevented SSB formation in microglia, which in turn suppressed microglial activation and photoreceptor cell death. Moreover, Mutyh-deficient primary microglial cells attenuated the polarization to the inflammatory and cytotoxic phenotype under oxidative stress. Thus, MUTYH-mediated BER in oxidative microglial activation may be a novel target to dampen the disease progression in RP and other neurodegenerative disorders that are associated with oxidative stress.

  9. Present and future treatment possibilities in macular degeneration

    NASA Astrophysics Data System (ADS)

    Fisher, E.; Wegner, A.; Pfeiler, T.; Mertz, M.

    2005-11-01

    Purpose: To discuss present and future treatment possibilities in different types of choroidal neovascularisation. Methods: Presented are angiographic- and OCT-findings in patients with macular degeneration of different origin. Choroidal neovascularisations, which are not likely to respond positively to established procedures like thermal laser coagulation or photodynamic therapy will be discussed. Results and conclusions: Present study-guidelines and new methods of pharmacological intervention are analysed in different patterns of macular degeneration. Conventional laser coagulation in the treatment of classic, extrafoveal CNV and photodynamic therapy of predominantly classic subfoveal CNV still represent a gold standard. There are new recommendations, loosening the tight criteria of the TAP and VIP-guidelines, which cover, for instance, wider visual acuity ranges and the treatment of juxtafoveally located choroidal neovascularisations. Positive findings in literature confirm the role of PDT in pathologic myopia and other non-AMD CNV. Studies about surgical procedures, like macula- or RPE-translocation after surgical removal or thermal laser destruction of the CNV are in progress and are expected to show promising results. Phase II/III studies will soon point out the effect of anti-VEGF agents. The application of intravitreal (triamcinolone) or peribulbar (anecortave acetat) steroids could be useful. The combination with surgical or laser techniques could bring further benefit to the patient.

  10. Ignition Conditions for Simulated Fuel Pellets in Degenerate Plasma

    NASA Astrophysics Data System (ADS)

    Mahdavi, M.; Gholami, A.

    2013-04-01

    A high-density, low-temperature plasma can be obtained during the compression phase in inertial confinement fusion. When high density and low temperature are reached in the plasma in the fast ignition approach, the plasma electrons can be degenerate. The electronic stopping of a slow ion is smaller than that given by the classical formula, because some transitions between the electron states are forbidden. In this case, bremsstrahlung emission is strongly suppressed and the ignition temperature becomes lower than that in classical plasma. The equations that predict the behavior of these plasmas are different from the classical ones, and this is the main factor in the process of decreasing the ignition temperature of the plasma. In this work, physical conditions of ignition are studied by calculating the effect of radiation loss on the ignition temperature for a simulated fuel pellet, (D/Tx/3Hey), in degenerate plasma. In fast ignition, the energy needed for obtaining high densities is minimized and the gain can be increased considerably.

  11. Dwarf spheroidal galaxies as degenerate gas of free fermions

    SciTech Connect

    Domcke, Valerie; Urbano, Alfredo E-mail: alfredo.urbano@sissa.it

    2015-01-01

    In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass m{sub f}. We assume that on galactic scales these fermions are capable of forming a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting con figuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to m{sub f}. After reviewing the basic formalism, we test this scenario against experimental data describing the velocity dispersion of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit to the data and realistic predictions for the size of DM halos providing that m{sub f}≅ 200 eV. Furthermore, we show that in this setup larger galaxies correspond to the non-degenerate limit of the gas. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance and the bound on the free-streaming length constrains the inflation model in terms of inflaton mass, its branching ratio into DM and the reheating temperature.

  12. Paraneoplastic cerebellar degeneration with anti-Yo antibodies - a review.

    PubMed

    Venkatraman, Anand; Opal, Puneet

    2016-08-01

    The ataxic syndrome associated with Anti-Yo antibody, or Purkinje cell cytoplasmic antibody type 1 (PCA1), is the most common variant of paraneoplastic cerebellar degeneration (PCD). The typical presentation involves the subacute development of pancerebellar deficits with a clinical plateau within 6 months. The vast majority of cases have been reported in women with pelvic or breast tumors. Magnetic resonance imaging of the brain is often normal in the early stages, with cerebellar atrophy seen later. The underlying mechanism is believed to be an immunological reaction to cerebellar degeneration-related protein 2 (CDR2), a protein usually found in the cerebellum that is ectopically produced by tumor cells. Although both B- and T-cell abnormalities are seen, there is debate about the relative importance of the autoantibodies and cytotoxic T lymphocytes in the neuronal loss. Cerebrospinal fluid abnormalities, primarily elevated protein, lymphocytic pleocytosis, and oligoclonal bands, are common in the early stages. The low prevalence of this condition has not allowed for large-scale randomized controlled trials. Immunotherapies, such as steroids, intravenous immune globulins, and plasma exchange, have been extensively used in managing this condition, with limited success. Although some reports indicate benefit from antitumor therapies like surgery and chemotherapy, this has not been consistently observed. The prognosis for anti-Yo PCD is almost uniformly poor, with most patients left bedridden. Further studies are required to clarify the pathophysiology and provide evidence-based treatment options. PMID:27606347

  13. Chronic Subdural Hematoma in the Aged, Trauma or Degeneration?

    PubMed Central

    2016-01-01

    Chronic subdural hematomas (CSHs) are generally regarded to be a traumatic lesion. It was regarded as a stroke in 17th century, an inflammatory disease in 19th century. From 20th century, it became a traumatic lesion. CSH frequently occur after a trauma, however, it cannot occur when there is no enough subdural space even after a severe head injury. CSH may occur without trauma, when there is sufficient subdural space. The author tried to investigate trends in the causation of CSH. By a review of literature, the author suggested a different view on the causation of CSH. CSH usually originated from either a subdural hygroma or an acute subdural hematoma. Development of CSH starts from the separation of the dural border cell (DBC) layer, which induces proliferation of DBCs with production of neomembrane. Capillaries will follow along the neomembrane. Hemorrhage would occur into the subdural fluid either by tearing of bridge veins or repeated microhemorrhage from the neomembrane. That is the mechanism of hematoma enlargement. Trauma or bleeding tendency may precipitate development of CSH, however, it cannot lead CSH, if there is no sufficient subdural space. The key determinant for development of CSH is a sufficient subdural space, in other words, brain atrophy. The most common and universal cause of brain atrophy is the aging. Modifying Virchow's description, CSH is sometimes traumatic, but most often caused by degeneration of the brain. Now, it is reasonable that degeneration of brain might play pivotal role in development of CSH in the aged persons. PMID:26885279

  14. Genetic contributors to frontotemporal lobar degeneration: beyond monogenic disease.

    PubMed

    Borroni, B; Pilotto, A; Bianchi, M; Gilberti, N; Padovani, A

    2011-10-01

    Frontotemporal Lobar Degeneration (FTLD) is a genetically and pathologically heterogeneous disorder characterized by behavioral change, executive dysfunction and language impairment associated with frontal and temporal lobe degeneration. Three major clinical subtypes have been identified so far, namely behaviour variant Frontotemporal dementia (bvFTD), Semantic Dementia (SD) and Progressive Non-Fluent Aphasia (PNFA). FTLD might also overlap with atypical parkinsonisms or motor neuron disease. Several pathogenetic mutations have been associated with specific pathological and clinical correlates. FTLD associated with either Microtuble Associated Protein Tau (MAPT) or Progranulin (PGRN) mutations is recognised as the most common form of autosomal dominant inherited disorder. However, monogenic mutations account for only about one third of all FTLD cases. Several studies have evaluated the contribution of genetic background in non-monogenic forms of FTLD, with the attempt to establish its role in increasing disease risk and in modulating clinical phenotypes. Specific MAPT and PGRN polymorphisms have been demonstrated to affect disease onset, clinical features and prognosis of FTLD, and genetic variations within other genes appear to play a role in influencing disease risk and clinical expression of FTLD. The aim of the present review is to discuss the impact and the role of genetic background in non-monogenic forms of FTLD, to highlight new potential pathogenetic and therapeutic targets.

  15. New insights into biological markers of frontotemporal lobar degeneration spectrum.

    PubMed

    Borroni, Barbara; Alberici, Antonella; Archetti, Silvana; Magnani, Enrico; Di Luca, Monica; Padovani, Alessandro

    2010-01-01

    In the last decade, there has been enormous progress in our understanding of Frontotemporal Lobar Degeneration (FTLD). Published clinicopathological series have clearly demonstrated an overlap between the clinical syndromes subsumed under the term frontotemporal dementia and the Progressive Supranuclear Palsy (PSP), and the Corticobasal Degeneration (CBD) syndrome. From a neuropathological point of view, two broad pathological subdivisions of FTLD are currently recognized: a) tau-positive pathology due to the accumulation of various forms of the microtubule-associated protein tau, that encompasses FTLD with Pick bodies, PSP and CBD, and b) tau-negative pathology, mainly characterized by ubiquitin/TDP-43-immunoreactive inclusions and in some cases due to Progranulin mutations. Several biological markers in cerebrospinal fluid and in blood have been evaluated to identify monogenic forms of FTLD and to differentiate either FTLD spectrum disorders or FTLD from other neurodegenerative disorders. The proposed biomarkers are primarily related to the mechanisms underlying the accumulation of the abnormal proteins in FTLD such as Tau, TDP-43 and Progranulin. These biomarkers may support the accurate diagnosis of the specific diseases causing FTLD, can be useful in assessing efficacy during pharmacological trials, and may help in identifying new molecular targets for treatment approaches. In this review, we summarise the most recent findings on biological markers and their usefulness in clinical practice for the diagnosis and management of FTLD.

  16. Paraneoplastic cerebellar degeneration with anti-Yo antibodies - a review.

    PubMed

    Venkatraman, Anand; Opal, Puneet

    2016-08-01

    The ataxic syndrome associated with Anti-Yo antibody, or Purkinje cell cytoplasmic antibody type 1 (PCA1), is the most common variant of paraneoplastic cerebellar degeneration (PCD). The typical presentation involves the subacute development of pancerebellar deficits with a clinical plateau within 6 months. The vast majority of cases have been reported in women with pelvic or breast tumors. Magnetic resonance imaging of the brain is often normal in the early stages, with cerebellar atrophy seen later. The underlying mechanism is believed to be an immunological reaction to cerebellar degeneration-related protein 2 (CDR2), a protein usually found in the cerebellum that is ectopically produced by tumor cells. Although both B- and T-cell abnormalities are seen, there is debate about the relative importance of the autoantibodies and cytotoxic T lymphocytes in the neuronal loss. Cerebrospinal fluid abnormalities, primarily elevated protein, lymphocytic pleocytosis, and oligoclonal bands, are common in the early stages. The low prevalence of this condition has not allowed for large-scale randomized controlled trials. Immunotherapies, such as steroids, intravenous immune globulins, and plasma exchange, have been extensively used in managing this condition, with limited success. Although some reports indicate benefit from antitumor therapies like surgery and chemotherapy, this has not been consistently observed. The prognosis for anti-Yo PCD is almost uniformly poor, with most patients left bedridden. Further studies are required to clarify the pathophysiology and provide evidence-based treatment options.

  17. Molecular Heterogeneity Within the Clinical Diagnosis of Pericentral Retinal Degeneration

    PubMed Central

    Matsui, Rodrigo; Cideciyan, Artur V.; Schwartz, Sharon B.; Sumaroka, Alexander; Roman, Alejandro J.; Swider, Malgorzata; Huang, Wei Chieh; Sheplock, Rebecca; Jacobson, Samuel G.

    2015-01-01

    Purpose To characterize in detail the phenotype and genotype of patients with pericentral retinal degeneration (PRD). Methods Patients were screened for an annular ring scotoma ranging from 3° to 40° (n = 28, ages 24–71) with kinetic perimetry. All patients had pigmentary retinopathy in the region of the dysfunction. Further studies included cross-sectional and en face imaging, static chromatic perimetry, and electroretinography. Molecular screening was performed. Results Genotypes of 14 of 28 PRD patients were identified: There were mutations in eight different genes previously associated with autosomal dominant or autosomal recessive RDs. Kinetic fields monitored in some patients over years to more than a decade could be stable or show increased extent of the scotoma. Electroretinograms were recordable but with different severities of dysfunction. Patterns of photoreceptor outer nuclear layer (ONL) loss corresponded to the distribution of visual dysfunction. Outer nuclear layer thickness topography and en face imaging indicated that the greatest disease expression was in the area of known highest rod photoreceptor density. Conclusions Molecular heterogeneity was a feature of the PRD phenotype. Many of the molecular causes were also associated with other phenotypes, such as maculopathies, typical retinitis pigmentosa (RP) and cone–rod dystrophy. The pericentral pattern of retinal degeneration is thus confirmed to be an uncommon phenotype of many different genotypes rather than a distinct disease entity. PMID:26393467

  18. Perpendicular propagating modes for weakly magnetized relativistic degenerate plasma

    SciTech Connect

    Abbas, Gohar; Bashir, M. F.; Murtaza, G.

    2012-07-15

    Using the Vlasov-Maxwell system of equations, the dispersion relations for the perpendicular propagating modes (i.e., X-mode, O-mode, and upper hybrid mode) are derived for a weakly magnetized relativistic degenerate electron plasma. By using the density (n{sub 0}=p{sub F}{sup 3}/3{pi}{sup 2} Planck-Constant-Over-Two-Pi {sup 3}) and the magnetic field values for different relativistic degenerate environments, the propagation characteristics (i.e., cutoff points, resonances, dispersions, and band widths in k-space) of these modes are examined. It is observed that the relativistic effects suppress the effect of ambient magnetic field and therefore the cutoff and resonance points shift towards the lower frequency regime resulting in enhancement of the propagation domain. The dispersion relations of these modes for the non-relativistic limit (p{sub F}{sup 2} Much-Less-Than m{sub 0}{sup 2}c{sup 2}) and the ultra-relativistic limit (p{sub F}{sup 2} Much-Greater-Than m{sub 0}{sup 2}c{sup 2}) are also presented.

  19. MUTYH promotes oxidative microglial activation and inherited retinal degeneration

    PubMed Central

    Nakatake, Shunji; Ikeda, Yasuhiro; Morioka, Noriko; Tachibana, Takashi; Fujiwara, Kohta; Yoshida, Noriko; Notomi, Shoji; Hisatomi, Toshio; Yoshida, Shigeo; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog–mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast, Mutyh deficiency in rd10 mice prevented SSB formation in microglia, which in turn suppressed microglial activation and photoreceptor cell death. Moreover, Mutyh-deficient primary microglial cells attenuated the polarization to the inflammatory and cytotoxic phenotype under oxidative stress. Thus, MUTYH-mediated BER in oxidative microglial activation may be a novel target to dampen the disease progression in RP and other neurodegenerative disorders that are associated with oxidative stress. PMID:27699246

  20. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides:

    NASA Astrophysics Data System (ADS)

    Chen, Junping; Patil, Swanand; Seal, Sudipta; McGinnis, James F.

    2006-11-01

    Photoreceptor cells are incessantly bombarded with photons of light, which, along with the cells' high rate of oxygen metabolism, continuously exposes them to elevated levels of toxic reactive oxygen intermediates (ROIs). Vacancy-engineered mixed-valence-state cerium oxide nanoparticles (nanoceria particles) scavenge ROIs. Our data show that nanoceria particles prevent increases in the intracellular concentrations of ROIs in primary cell cultures of rat retina and, in vivo, prevent loss of vision due to light-induced degeneration of photoreceptor cells. These data indicate that the nanoceria particles may be effective in inhibiting the progression of ROI-induced cell death, which is thought to be involved in macular degeneration, retinitis pigmentosa and other blinding diseases, as well as the ROI-induced death of other cell types in diabetes, Alzheimer's disease, atherosclerosis, stroke and so on. The use of nanoceria particles as a direct therapy for multiple diseases represents a novel strategy and suggests that they may represent a unique platform technology.

  1. Hypertrophic Olivary Degeneration: A Neurosurgical Point of View.

    PubMed

    Carvalho, Carlos Henrique; Kimmig, Hubert; Lopez, William Omar Contreras; Lange, Manfred; Oeckler, Reinhard

    2016-01-01

    Hypertrophic olivary degeneration (HOD) is a rare form of transsynaptic degeneration characterized by hypertrophy of the inferior olivary nucleus situated in the olivary body, part of the medulla oblongata, representing a major source of input to the cerebellum. HOD typically results from focal lesions interrupting connections from the inferior olive within the dentato-rubro-olivary pathway, a region also known as the triangle of Guillain-Mollaret (TGM) (red nucleus, inferior olivary nucleus, and contralateral dentate nucleus). Clinically, HOD presents classically as palatal tremor and can include dentatorubral tremor and/or ocular myoclonus. The pathologic changes associated with HOD feature radiologic changes with the inferior olivary nucleus appearing larger and increasing its T2-weighted signal intensity on magnetic resonance images. HOD is commonly managed with pharmacotherapy but may require surgical intervention in extreme cases. HOD has been found to develop as a consequence of any injury that disrupts the TGM pathways (e.g., pontine cavernoma).These findings highlight the critical importance of a thorough knowledge of TGM anatomy to avoid secondary HOD. We present a patient who developed HOD secondary to resection of a tectal plate cavernous malformation and review the literature with an emphasis on the current knowledge of this disorder.

  2. When degenerate stars collide: Understanding A New Explosion Phenomena

    NASA Astrophysics Data System (ADS)

    Bloom, Joshua

    2007-07-01

    Explosive events seen at extragalactic distances mark the end-state of violent and catastrophic physical processes. Most supernovae and gamma-ray bursts {GRBs}, in particular, are thought to herald the death of massive stars and the birth of solar-mass black holes. A minority fraction of GRBs, however, have been circumstantially associated with the merger of degenerate systems {such as black holes and neutron stars}. These short-duration bursts are rare and difficult to localize, with only about 2 dozen studied to any degree of detail to date. We believe that we have finally discovered, in the last few days, one of the tell-tale signatures of degenerate merger products -- a "mini-supernova" from the non-relativistic ejecta left over after merger. If true, this long-theorized phenomenon would be an entirely new sort of explosion in the universe. In several rapidly executed visits, HST, coupled with a recently approved Chandra DD proposal to search for underlying afterglow, could make a substantial contribution to our understanding of this phenomena by honing the physical parameters of the event and helping to rule out alternatives. If we are correct in our hypothesis, we have found the first clear cut observational signature in the electromagnetic spectrum of what are expected to the be the dominant sources of gravitational waves for advanced LIGO.

  3. Quasi-degenerate perturbation theory using matrix product states.

    PubMed

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-21

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  4. The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations.

    NASA Technical Reports Server (NTRS)

    Cooke, K. L.; Meyer, K. R.

    1966-01-01

    Extension of problem of singular perturbation for linear scalar constant coefficient differential- difference equation with single retardation to several retardations, noting degenerate equation solution

  5. Do Single-Degenerate Type Ia Supernovae Generally Lead to Normal Type Ia Supernovae?

    NASA Astrophysics Data System (ADS)

    Fisher, Robert

    2016-01-01

    Recent observational and theoretical progress has favored merging and helium-accreting sub-Chandrasekhar mass white dwarfs (WDs) in the double-degenerate and the double-detonation channels, respectively, as the dominant progenitors of normal Type Ia supernovae (SNe Ia). Thus the fate of rapidly-accreting Chandrasekhar mass WDs in the single-degenerate channel remains more mysterious then ever. In this talk, I will clarify the nature of ignition in Chandrasekhar-mass single-degenerate SNe Ia and demonstrate that the overwhelming majority of ignition events within Chandrasekhar-mass WDs in the single-degenerate channel are generally expected to be buoyancy-driven, and consequently lack a vigorous deflagration phase. I will show, using both analytic criteria and multidimensional numerical simulations, that the single-degenerate channel is inherently stochastic and leads to a variety of outcomes from failed SN 2002cx-like events through overluminous SN 1991T-like events. I will also demonstrate how the rates predicted from both the population of supersoft X-ray sources (SSSs) and binary population synthesis models of the single-degenerate channel can be brought into agreement with single-degenerate SNe Ia. I will further demonstrate that the single-degenerate channel contribution to the normal and failed 2002cx-like rates is not likely to exceed 1% of the total SNe Ia rate. I will conclude with a range of observational tests which will either support or strongly constrain the single-degenerate scenario.

  6. Three dimensional electrostatic solitary waves in a dense magnetoplasma with relativistically degenerate electrons

    SciTech Connect

    Ata-ur-Rahman,; Qamar, A.; Masood, W.; Eliasson, B.

    2013-09-15

    In this paper, small but finite amplitude electrostatic solitary waves in a relativistic degenerate magnetoplasma, consisting of relativistically degenerate electrons and non-degenerate cold ions, are investigated. The Zakharov-Kuznetsov equation is derived employing the reductive perturbation technique and its solitary wave solution is analyzed. It is shown that only compressive electrostatic solitary structures can propagate in such a degenerate plasma system. The effects of plasma number density, ion cyclotron frequency, and direction cosines on the profiles of ion acoustic solitary waves are investigated and discussed at length. The relevance of the present investigation vis-a-vis pulsating white dwarfs is also pointed out.

  7. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    SciTech Connect

    Khan, S. A.

    2012-01-15

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  8. Aging, vertebral density, and disc degeneration alter the tensile stress-strain characteristics of the human anterior longitudinal ligament.

    PubMed

    Neumann, P; Ekström, L A; Keller, T S; Perry, L; Hansson, T H

    1994-01-01

    The mechanical properties of the human lumbar anterior longitudinal ligament were investigated, and the influence of aging, disc degeneration, and vertebral bone density on these properties was determined. Tensile mechanical properties of the vertebra-anterior longitudinal ligament-vertebra complex were determined for 16 segments from cadavera of individuals who had been 21-79 years old (mean, 52.1 years) at the time of death. Regional strain patterns associated with three sites across the width and three sites along the length of the anterior longitudinal ligament were measured with use of a video-based motion analysis system. In the young, normal anterior longitudinal ligament, the elastic moduli of the insertion and substance regions of the ligament were similar (approximately 500 MPa). During aging (21-79 years), the elastic modulus of the substance region increased 2-fold, whereas the elastic modulus of the insertion decreased 3-fold; this resulted in an approximately 5-fold difference in elastic modulus between these regions in the older spine. The strength of the bone-ligament complex decreased approximately 2-fold (from 29 to 13 MPa) over this same age range. The outer portion of the anterior longitudinal ligament consistently had the highest peak tensile strains (11.8 +/- 2.7%) in all of the specimens examined. Preparations with nondegenerated discs and high bone density were significantly stronger (66%) and failed in the ligament substance; in contrast, segments from older individuals with degenerated discs and lower bone density failed in the ligament insertion regions.

  9. Tau physiology and pathomechanisms in frontotemporal lobar degeneration.

    PubMed

    Bodea, Liviu-Gabriel; Eckert, Anne; Ittner, Lars Matthias; Piguet, Olivier; Götz, Jürgen

    2016-08-01

    Frontotemporal lobar degeneration (FTLD) has been associated with toxic intracellular aggregates of hyperphosphorylated tau (FTLD-tau). Moreover, genetic studies identified mutations in the MAPT gene encoding tau in familial cases of the disease. In this review, we cover a range of aspects of tau function, both in the healthy and diseased brain, discussing several in vitro and in vivo models. Tau structure and function in the healthy brain is presented, accentuating its distinct compartmentalization in neurons and its role in microtubule stabilization and axonal transport. Furthermore, tau-driven pathology is discussed, introducing current concepts and the underlying experimental evidence. Different aspects of pathological tau phosphorylation, the protein's genomic and domain organization as well as its spreading in disease, together with MAPT-associated mutations and their respective models are presented. Dysfunction related to other post-transcriptional modifications and their effect on normal neuronal functions such as cell cycle, epigenetics and synapse dynamics are also discussed, providing a mechanistic explanation for the observations made in FTLD-tau cases, with the possibility for therapeutic intervention. In this review, we cover aspects of tau function, both in the healthy and diseased brain, referring to different in vitro and in vivo models. In healthy neurons, tau is compartmentalized, with higher concentrations found in the distal part of the axon. Cargo molecules are sensitive to this gradient. A disturbed tau distribution, as found in frontotemporal lobar degeneration (FTLD-tau), has severe consequences for cellular physiology: tau accumulates in the neuronal soma and dendrites, leading among others to microtubule depolymerization and impaired axonal transport. Tau forms insoluble aggregates that sequester additional molecules stalling cellular physiology. Neuronal communication is gradually lost as toxic tau accumulates in dendritic spines

  10. A novel platform for minimally invasive delivery of cellular therapy as a thin layer across the subretina for treatment of retinal degeneration

    NASA Astrophysics Data System (ADS)

    Rotenstreich, Ygal; Tzameret, Adi; Kalish, Sapir E.; Belkin, Michael; Meir, Amilia; Treves, Avraham J.; Nagler, Arnon; Sher, Ifat

    2015-03-01

    Incurable retinal degenerations affect millions worldwide. Stem cell transplantation rescued visual functions in animal models of retinal degeneration. In those studies cells were transplanted in subretinal "blebs", limited number of cells could be injected and photoreceptor rescue was restricted to areas in proximity to the injection sites. We developed a minimally-invasive surgical platform for drug and cell delivery in a thin layer across the subretina and extravascular spaces of the choroid. The novel system is comprised of a syringe with a blunt-tipped needle and an adjustable separator. Human bone marrow mesenchymal stem cells (hBM-MSCs) were transplanted in eyes of RCS rats and NZW rabbits through a longitudinal triangular scleral incision. No immunosuppressants were used. Retinal function was determined by electroretinogram analysis and retinal structure was determined by histological analysis and OCT. Transplanted cells were identified as a thin layer across the subretina and extravascular spaces of the choroid. In RCS rats, cell transplantation delayed photoreceptor degeneration across the entire retina and significantly enhanced retinal functions. No retinal detachment or choroidal hemorrhages were observed in rabbits following transplantation. This novel platform opens a new avenue for drug and cell delivery, placing the transplanted cells in close proximity to the damaged RPE and retina as a thin layer, across the subretina and thereby slowing down cell death and photoreceptor degeneration, without retinal detachment or choroidal hemorrhage. This new transplantation system may increase the therapeutic effect of other cell-based therapies and therapeutic agents. This study is expected to directly lead to phase I/II clinical trials for autologous hBM-MSCs transplantation in retinal degeneration patients.

  11. BMP-2 and BMP-2/7 Heterodimers Conjugated to a Fibrin/Hyaluronic Acid Hydrogel in a Large Animal Model of Mild Intervertebral Disc Degeneration.

    PubMed

    Peeters, Mirte; Detiger, Suzanne E L; Karfeld-Sulzer, Lindsay S; Smit, Theo H; Yayon, Avner; Weber, Franz E; Helder, Marco N

    2015-01-01

    Intervertebral disc (IVD) degeneration is etiologically associated with low back pain and is currently only treated in severe cases with spinal fusion. Regenerative medicine attempts to restore degenerated tissue by means of cells, hydrogels, and/or growth factors and can therefore be used to slow, halt, or reverse the degeneration of the IVD in a minimally invasive manner. Previously, the growth factors bone morphogenetic proteins 2 and 7 (BMP-2, -7) were shown to enhance disc regeneration, in vitro and in vivo. Since BMPs have only a short in vivo half-life, and to prevent heterotopic ossification, we evaluated the use of a slow release system for BMP-2 homodimers and BMP-2/7 heterodimers for IVD regeneration. BMP growth factors were conjugated to a fibrin/hyaluronic acid (FB/HA) hydrogel and intradiscally injected in a goat model of mild IVD degeneration to study safety and efficacy. Mild degeneration was induced in five lumbar discs of seven adult Dutch milk goats, by injections with the enzyme chondroitinase ABC. After 12 weeks, discs were treated with either FB/HA-hydrogel only or supplemented with 1 or 5 μg/mL of BMP-2 or BMP-2/7. BMPs were linked to the FB/HA hydrogels using a transglutaminase moiety, to be released through an incorporated plasmin cleavage site. After another 12 weeks, goats were sacrificed and discs were assessed using radiography, MRI T2* mapping, and biochemical and histological analyses. All animals maintained weight throughout the study and no heterotopic bone formation or other adverse effects were noted during follow-up. Radiographs showed significant disc height loss upon induction of mild degeneration. MRI T2* mapping showed strong and significant correlations with biochemistry and histology as shown before. Surprisingly, no differences could be demonstrated in any parameter between intervention groups. To our knowledge, this is the first large animal study evaluating BMPs conjugated to an FB/HA-hydrogel for the treatment of

  12. BMP-2 and BMP-2/7 Heterodimers Conjugated to a Fibrin/Hyaluronic Acid Hydrogel in a Large Animal Model of Mild Intervertebral Disc Degeneration

    PubMed Central

    Peeters, Mirte; Detiger, Suzanne E.L.; Karfeld-Sulzer, Lindsay S.; Smit, Theo H.; Yayon, Avner; Weber, Franz E.; Helder, Marco N.

    2015-01-01

    Abstract Intervertebral disc (IVD) degeneration is etiologically associated with low back pain and is currently only treated in severe cases with spinal fusion. Regenerative medicine attempts to restore degenerated tissue by means of cells, hydrogels, and/or growth factors and can therefore be used to slow, halt, or reverse the degeneration of the IVD in a minimally invasive manner. Previously, the growth factors bone morphogenetic proteins 2 and 7 (BMP-2, -7) were shown to enhance disc regeneration, in vitro and in vivo. Since BMPs have only a short in vivo half-life, and to prevent heterotopic ossification, we evaluated the use of a slow release system for BMP-2 homodimers and BMP-2/7 heterodimers for IVD regeneration. BMP growth factors were conjugated to a fibrin/hyaluronic acid (FB/HA) hydrogel and intradiscally injected in a goat model of mild IVD degeneration to study safety and efficacy. Mild degeneration was induced in five lumbar discs of seven adult Dutch milk goats, by injections with the enzyme chondroitinase ABC. After 12 weeks, discs were treated with either FB/HA-hydrogel only or supplemented with 1 or 5 μg/mL of BMP-2 or BMP-2/7. BMPs were linked to the FB/HA hydrogels using a transglutaminase moiety, to be released through an incorporated plasmin cleavage site. After another 12 weeks, goats were sacrificed and discs were assessed using radiography, MRI T2* mapping, and biochemical and histological analyses. All animals maintained weight throughout the study and no heterotopic bone formation or other adverse effects were noted during follow-up. Radiographs showed significant disc height loss upon induction of mild degeneration. MRI T2* mapping showed strong and significant correlations with biochemistry and histology as shown before. Surprisingly, no differences could be demonstrated in any parameter between intervention groups. To our knowledge, this is the first large animal study evaluating BMPs conjugated to an FB/HA-hydrogel for the

  13. Experiments with Ultracold Quantum-degenerate Fermionic Lithium Atoms

    NASA Technical Reports Server (NTRS)

    Ketterle, Wolfgang

    2003-01-01

    Experimental methods of laser and evaporative cooling, used in the production of atomic Bose-Einstein condensates have recently been extended to realize quantum degeneracy in trapped Fermi gases. Fermi gases are a new rich system to explore the implications of Pauli exclusion on scattering properties of the system, and ultimately fermionic superfluidity. We have produced a new macroscopic quantum system, in which a degenerate Li-6 Fermi gas coexists with a large and stable Na-23 BEC. This was accomplished using inter-species sympathetic cooling of fermionic 6Li in a thermal bath of bosonic Na-23. We have achieved high numbers of both fermions (less than 10(exp 5) and bosons (less than 10(exp 6), and Li-6 quantum degeneracy corresponding to one half of the Fermi temperature. This is the first time that a Fermi sea was produced with a condensate as a "refrigerator".

  14. Stepping analysis in patients with spinocerebellar degeneration and Parkinson's disease.

    PubMed

    Sasaki, O; Taguchi, K; Kikukawa, M; Ogiba, T

    1993-07-01

    POLGON (Polarized light goniometer) was used to evaluate ataxia during stepping movements in patients with spinocerebellar degeneration (SCD) and Parkinson's disease. The measurements included mean angular change of shoulders (M.A.C.S.) and its coefficient of variation (C.V.). In patients with SCD, the values of M.A.C.S. were significantly larger at 1.0 step/s than those at other stepping rhythms. This results suggests that the stepping rhythm of 1.0 step/s is useful for the detection of cerebellar ataxia. The values of C.V. correlated with the degree of advancement of SCD. In patients with Parkinson's disease, the values of M.A.C.S. tended to decrease because of the restricted elevation of the knee, while those of C.V. were increased. The results showed that the stepping test using the POLGON was useful for estimation of the characteristic disequilibrium of SCD and Parkinson's disease.

  15. Gene-Diet Interactions in Age-Related Macular Degeneration.

    PubMed

    Rowan, Sheldon; Taylor, Allen

    2016-01-01

    Age-related macular degeneration (AMD) is a prevalent blinding disease, accounting for roughly 50 % of blindness in developed nations. Very significant advances have been made in terms of discovering genetic susceptibilities to AMD as well as dietary risk factors. To date, nutritional supplementation is the only available treatment option for the dry form of the disease known to slow progression of AMD. Despite an excellent understanding of genes and nutrition in AMD, there is remarkably little known about gene-diet interactions that may identify efficacious approaches to treat individuals. This review will summarize our current understanding of gene-diet interactions in AMD with a focus on animal models and human epidemiological studies.

  16. A Revised Hemodynamic Theory of Age-Related Macular Degeneration.

    PubMed

    Gelfand, Bradley D; Ambati, Jayakrishna

    2016-08-01

    Age-related macular degeneration (AMD) afflicts one out of every 40 individuals worldwide, causing irreversible central blindness in millions. The transformation of various tissue layers within the macula in the retina has led to competing conceptual models of the molecular pathways, cell types, and tissues responsible for the onset and progression of AMD. A model that has persisted for over 6 decades is the hemodynamic, or vascular theory of AMD progression, which states that vascular dysfunction of the choroid underlies AMD pathogenesis. Here, we re-evaluate this hypothesis in light of recent advances on molecular, anatomic, and hemodynamic changes underlying choroidal dysfunction in AMD. We propose an updated, detailed model of hemodynamic dysfunction as a mechanism of AMD development and progression. PMID:27423265

  17. Radiative seesaw model with degenerate Majorana dark matter

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi; Orikasa, Yuta

    2016-06-01

    We study a three-loop-induced neutrino mass model with exotic vectorlike isospin doublet leptons which contain a dark matter candidate. Then we explore lepton flavor violations and dark matter physics in a coannihilation system. In this paper, the nearly degenerate Majorana fermion dark matter can naturally be achieved at the two-loop level, while the mass splitting can be larger than O (200 ) keV which is required from the constraint of the direct detection search with spin-independent inelastic scattering through the Z -boson portal. As a result, a monochromatic photon excess, with threshold energy greater than O (200 ) keV , is predicted in our model and could be measured through indirect detection experiments such as INTEGRAL.

  18. Anatomic correlates of stereotypies in frontotemporal lobar degeneration.

    PubMed

    Josephs, Keith A; Whitwell, Jennifer L; Jack, Clifford R

    2008-12-01

    Stereotypies are common in frontotemporal lobar degeneration (FTLD) however the anatomical correlates of stereotypies are unknown. We therefore set out to compare patterns of grey matter volume loss in FTLD subjects with and without stereotypies. Subjects with a diagnosis of FTLD that met international consensus criteria were prospectively recruited and separated into those with and without stereotypies. MRI and cognitive measures were obtained and voxel-based morphometry was used to assess the patterns of grey matter volume loss in those with and without stereotypies, compared to a group of age- and gender-matched controls. Demographic and clinical features were similar between subjects with and without stereotypies. FTLD subjects with stereotypies had greater volume loss in the striatum compared to those without stereotypies. Those without stereotypies showed a more widespread and typical pattern of cortical frontotemporal loss. Stereotypies in FTLD are therefore associated with a greater proportion of striatal to cortical volume loss than those without stereotypies.

  19. Sodium Channels, Mitochondria, and Axonal Degeneration in Peripheral Neuropathy.

    PubMed

    Persson, Anna-Karin; Hoeijmakers, Janneke G J; Estacion, Mark; Black, Joel A; Waxman, Stephen G

    2016-05-01

    Peripheral neuropathy results from damage to peripheral nerves and is often accompanied by pain in affected limbs. Treatment represents an unmet medical need and a thorough understanding of the mechanisms underlying axonal injury is needed. Longer nerve fibers tend to degenerate first (length-dependence), and patients carrying pathogenic mutations throughout life usually become symptomatic in mid- or late-life (time-dependence). The activity of voltage-gated sodium channels can contribute to axonal injury and sodium channel gain-of-function mutations have been linked to peripheral neuropathy. Recent studies have implicated sodium channel activity, mitochondrial compromise, and reverse-mode Na(+)/Ca(2+) exchange in time- and length-dependent axonal injury. Elucidation of molecular mechanisms underlying axonal injury in peripheral neuropathy may provide new therapeutic strategies for this painful and debilitating condition.

  20. Entanglement entropy of highly degenerate States and fractal dimensions.

    PubMed

    Castro-Alvaredo, Olalla A; Doyon, Benjamin

    2012-03-23

    We consider the bipartite entanglement entropy of ground states of extended quantum systems with a large degeneracy. Often, as when there is a spontaneously broken global Lie group symmetry, basis elements of the lowest-energy space form a natural geometrical structure. For instance, the spins of a spin-1/2 representation, pointing in various directions, form a sphere. We show that for subsystems with a large number m of local degrees of freedom, the entanglement entropy diverges as d/2 logm, where d is the fractal dimension of the subset of basis elements with nonzero coefficients. We interpret this result by seeing d as the (not necessarily integer) number of zero-energy Goldstone bosons describing the ground state. We suggest that this result holds quite generally for largely degenerate ground states, with potential applications to spin glasses and quenched disorder.

  1. Radiation Therapy for Neovascular Age-related Macular Degeneration

    SciTech Connect

    Kishan, Amar U.; Modjtahedi, Bobeck S.; Morse, Lawrence S.; Lee, Percy

    2013-03-01

    In the enormity of the public health burden imposed by age-related macular degeneration (ARMD), much effort has been directed toward identifying effective and efficient treatments. Currently, anti-vascular endothelial growth factor (VEGF) injections have demonstrated considerably efficacy in treating neovascular ARMD, but patients require frequent treatment to fully benefit. Here, we review the rationale and evidence for radiation therapy of ARMD. The results of early photon external beam radiation therapy are included to provide a framework for the sequential discussion of evidence for the usage of stereotactic radiation therapy, proton therapy, and brachytherapy. The evidence suggests that these 3 modern modalities can provide a dose-dependent benefit in the treatment of ARMD. Most importantly, preliminary data suggest that all 3 can be used in conjunction with anti-VEGF therapeutics, thereby reducing the frequency of anti-VEGF injections required to maintain visual acuity.

  2. Magnetohydrodynamic spin waves in degenerate electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.; Maroof, R.; Ahmad, Zulfiaqr; Qamar, A.

    2012-05-01

    Low frequency magnetosonic waves are studied in magnetized degenerate electron-positron-ion plasmas with spin effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, and spin magnetization energy, a generalized dispersion relation for oblique magnetosonic waves is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. For three different values of angle θ, the generalized dispersion relation is reduced to three different relations under the low frequency magnetohydrodynamic assumptions. It is found that the effect of quantum corrections in the presence of positron concentration significantly modifies the dispersive properties of these modes. The importance of the work relevant to compact astrophysical bodies is pointed out.

  3. Magnetohydrodynamic spin waves in degenerate electron-positron-ion plasmas

    SciTech Connect

    Mushtaq, A.; Maroof, R.; Ahmad, Zulfiaqr; Qamar, A.

    2012-05-15

    Low frequency magnetosonic waves are studied in magnetized degenerate electron-positron-ion plasmas with spin effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, and spin magnetization energy, a generalized dispersion relation for oblique magnetosonic waves is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. For three different values of angle {theta}, the generalized dispersion relation is reduced to three different relations under the low frequency magnetohydrodynamic assumptions. It is found that the effect of quantum corrections in the presence of positron concentration significantly modifies the dispersive properties of these modes. The importance of the work relevant to compact astrophysical bodies is pointed out.

  4. Targeting MAPK Signaling in Age-Related Macular Degeneration

    PubMed Central

    Kyosseva, Svetlana V.

    2016-01-01

    Age-related macular degeneration (AMD) is a major cause of irreversible blindness affecting elderly people in the world. AMD is a complex multifactorial disease associated with demographic, genetics, and environmental risk factors. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in the pathogenesis of AMD. The mitogen-activated protein kinase (MAPK) signaling pathways are activated by diverse extracellular stimuli, including growth factors, mitogens, hormones, cytokines, and different cellular stressors such as oxidative stress. They regulate cell proliferation, differentiation, survival, and apoptosis. This review addresses the novel findings from human and animal studies on the relationship of MAPK signaling with AMD. The use of specific MAPK inhibitors may represent a potential therapeutic target for the treatment of this debilitating eye disease. PMID:27385915

  5. Complement factor H polymorphism and age-related macular degeneration.

    PubMed

    Edwards, Albert O; Ritter, Robert; Abel, Kenneth J; Manning, Alisa; Panhuysen, Carolien; Farrer, Lindsay A

    2005-04-15

    Age-related macular degeneration (AMD) is a common, late-onset, and complex trait with multiple risk factors. Concentrating on a region harboring a locus for AMD on 1q25-31, the ARMD1 locus, we tested single-nucleotide polymorphisms for association with AMD in two independent case-control populations. Significant association (P = 4.95 x 10(-10)) was identified within the regulation of complement activation locus and was centered over a tyrosine-402 --> histidine-402 protein polymorphism in the gene encoding complement factor H. Possession of at least one histidine at amino acid position 402 increased the risk of AMD 2.7-fold and may account for 50% of the attributable risk of AMD.

  6. Direct intranigral injection of dopaminochrome causes degeneration of dopamine neurons.

    PubMed

    Touchette, Jillienne C; Breckenridge, Julie M; Wilken, Gerald H; Macarthur, Heather

    2016-01-26

    Parkinson's disease (PD) is characterized by progressive neurodegeneration of nigrastriatal dopaminergic neurons leading to clinical motor dysfunctions. Many animal models of PD have been developed using exogenous neurotoxins and pesticides. Evidence strongly indicates that the dopaminergic neurons of the substantia nigra pars compacta (SNpc) are highly susceptible to neurodegeneration due to a number of factors including oxidative stress and mitochondrial dysfunction. Oxidation of DA to a potential endogenous neurotoxin, dopaminochrome (DAC), may be a potential contributor to the vulnerability of the nigrostriatal tract to oxidative insult. In this study, we show that DAC causes slow and progressive degeneration of dopaminergic neurons in contrast to 1-methyl-4-phenylpyridinium (MPP(+)), which induces rapid lesions of the region. The DAC model may be more reflective of early stresses that initiate the progressive neurodegenerative process of PD, and may prove a useful model for future neurodegenerative studies. PMID:26704434

  7. Degenerate four-wave mixing in noncentrosymmetric materials

    NASA Astrophysics Data System (ADS)

    Biaggio, Ivan

    2001-12-01

    This work treats degenerate four-wave mixing (DFWM) in noncentrosymmetric materials, taking into full account the fact that the DFWM signal arises from third-order nonlinear optical effects as well as from two distinct combinations of second-order effects: second-harmonic generation plus difference frequency generation and optical rectification plus Pockels effect. Because of these second order ``cascaded'' contributions, the DFWM signal becomes dependent on details of the experimental setup that do not normally matter for centrosymmetric materials, such as the wave vectors of the interacting beams and the pulse duration. The origin, consequences, and possible applications of these effects are discussed for both the ``forward'' and the ``phase-conjugation'' DFWM configurations. All second-order contributions are described quantitatively by introducing effective third-order susceptibilities, and their value is discussed using the example of two materials: ferroelectric KNbO3 and the organic salt 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate.

  8. The genetics of age-related macular degeneration.

    PubMed

    Gorin, M B; Breitner, J C; De Jong, P T; Hageman, G S; Klaver, C C; Kuehn, M H; Seddon, J M

    1999-11-01

    Age-related macular degeneration (AMD) is increasingly recognized as a complex genetic disorder in which one or more genes contribute to an individual's susceptibility for developing the condition. Twin and family studies as well as population-based genetic epidemiologic methods have convincingly demonstrated the importance of genetics in AMD, though the extent of heritability, the number of genes involved, and the phenotypic and genetic heterogeneity of the condition remain unresolved. The extent to which other hereditary macular dystrophies such as Stargardts disease, familial radial drusen (malattia leventinese), Best's disease, and peripherin/RDS-related dystrophy are related to AMD remains unclear. Alzheimer's disease, another late onset, heterogeneous degenerative disorder of the central nervous system, offers a valuable model for identifying the issues that confront AMD genetics.

  9. Age-related macular degeneration and the complement system.

    PubMed

    Khandhadia, S; Cipriani, V; Yates, J R W; Lotery, A J

    2012-02-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. It is a complex multifactorial disease, and despite new advances in treatment, many patients still succumb to visual impairment. The complement pathway has been implicated in the pathogenesis of many diseases, and recently variants in several genes encoding complement pathway proteins have been associated with AMD. Complement proteins have been found in histological specimens of eyes with AMD. Altered levels of both intrinsic complement proteins and activated products have been found in the circulation of patients with AMD. Complement activation may be triggered by oxidative stress, resulting from retinal exposure to incoming light; indeed an inter-play between these two pathological processes seems to exist. Finally, complement inhibitors are currently being evaluated in clinical trials. This article reviews the role of the complement system in AMD, and the potential of complement inhibition in preventing the devastating blindness resulting from this disease.

  10. Progress Towards a Quantum Degenerate Mixture with Extreme Mass Imbalance

    NASA Astrophysics Data System (ADS)

    Desalvo, B. J.; Johansen, Jacob; Chin, Cheng

    2016-05-01

    We report experimental progress towards a quantum degenerate Bose-Fermi mixture of 133 Cs and 6 Li. Beyond providing the largest mass imbalance of any bi-alkali mixture, this system exhibits multiple interspecies Feshbach resonances allowing wide tuning of the interaction strength and Efimov resonances potentially inducing three-body interactions. The use of a dual-color optical dipole trap in our experiment overcomes the large differential gravitational sag due to the mass imbalance and facilitates mixing the species nano-Kelvin temperatures allowing precision studies of interspecies interactions. Turning from few-body physics to many-body, we will present our efforts to reach simultaneous quantum degeneracy as well as discuss prospects of high resolution imaging of both species.

  11. Bietti's tapetoretinal degeneration with marginal corneal dystrophy crystalline retinopathy.

    PubMed Central

    Welch, R B

    1977-01-01

    In 1937 Bietti reported a tapetoretinal degeneration with associated corneal deposits at the limbus. The hallmark of the disease was the crystalline characteristics of the retinal spots as well as those at the corneal limbus. Bagolini and Ioli-Spade in 1968 presented a 30 year follow-up on Bietti's cases and presented six additional cases. The present report delas with this entity in Orientals, a Chinese woman and a Japanese man. Corneal and conjunctival biopsy from the female patient revelaed a lipid deposition in both fibroblasts and epithelium. The term "crystalline retinopathy" has been added to the description of this entity since it defines the most characteristic feature of the syndrome. Images FIGURE 7 A FIGURE 7 B FIGURE 1 A FIGURE 1 B FIGURE 1 C FIGURE 2 A FIGURE 2 B FIGURE 2 C FIGURE 3 FIGURE 4 A FIGURE 4 B FIGURE 5 FIGURE 6 A FIGURE 6 B FIGURE 6 C FIGURE 8 PMID:306693

  12. Results of lamellar crescentic resection for pellucid marginal corneal degeneration.

    PubMed

    Cameron, J A

    1992-03-15

    Five eyes in four patients with pellucid marginal corneal degeneration were treated by lamellar crescentic resection of the thinned area inferiorly. Normal-thickness stroma was then reapposed to normal-thickness stroma with multiple interrupted 10-0 polypropylene sutures. If excessive central corneal steepening along a vertical meridian was present three months after surgery, selected sutures were cut and removed depending on the slit-lamp appearance, keratometry reading, and photokeratograph pattern. Improvement of visual acuity to 20/40 or better was obtained in four of the five eyes with a follow-up of 27 to 40 months (mean, 31.8 months). Early loosening of sutures resulted in a recurrence of corneal thinning and astigmatism in one eye. Pannus developed inferiorly in all five eyes.

  13. Lifespan maturation and degeneration of human brain white matter

    PubMed Central

    Yeatman, Jason D.; Wandell, Brian A.; Mezer, Aviv A.

    2014-01-01

    Properties of human brain tissue change across the lifespan. Here we model these changes in the living human brain by combining quantitative MRI measurements of R1 (1/T1) with diffusion MRI and tractography (N=102, ages 7–85). The amount of R1 change during development differs between white matter fascicles, but in each fascicle the rate of development and decline are mirror symmetric; the rate of R1 development as the brain approaches maturity predicts the rate of R1 degeneration in aging. Quantitative measurements of macromolecule tissue volume (MTV) confirm that R1 is an accurate index of the growth of new brain tissue. In contrast to R1, diffusion development follows an asymmetric time-course with rapid childhood changes but a slow rate of decline in old age. Together, the time-courses of R1 and diffusion changes demonstrate that multiple biological processes drive changes in white matter tissue properties over the lifespan. PMID:25230200

  14. Coexistence of Weyl fermion and massless triply degenerate nodal points

    NASA Astrophysics Data System (ADS)

    Weng, Hongming; Fang, Chen; Fang, Zhong; Dai, Xi

    2016-10-01

    By using first-principles calculations, we propose that WC-type ZrTe is a new type of topological semimetal (TSM). It has six pairs of chiral Weyl nodes in its first Brillouin zone, but it is distinguished from other existing TSMs by having an additional two paris of massless fermions with triply degenerate nodal points as proposed in the isostructural compounds TaN and NbN. The mirror symmetry, threefold rotational symmetry, and time-reversal symmetry require all of the Weyl nodes to have the same velocity vectors and locate at the same energy level. The Fermi arcs on different surfaces are shown, which may be measured by future experiments. It demonstrates that the "material universe" can support more intriguing particles simultaneously.

  15. Mediated-reality magnification for macular degeneration rehabilitation

    NASA Astrophysics Data System (ADS)

    Martin-Gonzalez, Anabel; Kotliar, Konstantin; Rios-Martinez, Jorge; Lanzl, Ines; Navab, Nassir

    2014-10-01

    Age-related macular degeneration (AMD) is a gradually progressive eye condition, which is one of the leading causes of blindness and low vision in the Western world. Prevailing optical visual aids compensate part of the lost visual function, but omitting helpful complementary information. This paper proposes an efficient magnification technique, which can be implemented on a head-mounted display, for improving vision of patients with AMD, by preserving global information of the scene. Performance of the magnification approach is evaluated by simulating central vision loss in normally sighted subjects. Visual perception was measured as a function of text reading speed and map route following speed. Statistical analysis of experimental results suggests that our magnification method improves reading speed 1.2 times and spatial orientation to find routes on a map 1.5 times compared to a conventional magnification approach, being capable to enhance peripheral vision of AMD subjects along with their life quality.

  16. Age-related macular degeneration: Evidence of a major gene

    SciTech Connect

    Bhatt, S.; Warren, C.; Yang, H.

    1994-09-01

    Age-related macular degeneration is a major cause of blindness in developing countries. It remains a very poorly understood disorder. Although environmental and genetic factors have been implicated in its pathogenesis, none have been firmly implicated. The purpose of this study was to use pedigree analysis to evaluate the possible role of a major gene as a determinant of familial aggregation. Information was collected regarding occupation, smoking, sun exposure, associated medical problems and family history. 50 probands with age-related macular degeneration (ARMD) and 39 age, race and sex-matched controls were included in the study. In the ARMD group 15/50 (30%) of probands reported a positive family history; 22 out of 222 first degree relatives over age 60 were reported to be affected. In the control groups, none of the 138 first degree relatives over age 50 had a history of ARMD. This difference is statistically significant (p = 0.0003), indicating that genetic factors may play an important role in the pathogenesis of ARMD. In the ARMD group more siblings as compared to parents (16/127 vs. 5/82) were affected. 5/50 (10%) of the ARMD probands also gave a history of a second degree relative affected with ARMD, compared to none known among the relatives of controls. Data from 50 pedigrees were analyzed by complex segregation analysis under a class A regressive logistic model using the REGD program implemented in the SAGE package. Preliminary results allow rejection of a polygenic model and suggest there is a major gene for ARMD in these families. The inheritance model most compatible with the observed familial aggregation is autosomal recessive. In conclusion, these results are suggestive of a major gene effect in the etiology of ARMD. Identification of a major gene effect is a first step to further pursue linkage analysis and to search for the gene(s) involved in the causation of ARMD.

  17. Simulating the Double-Degenerate Channel for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Jumper, Kevin; Fisher, R. T.

    2013-01-01

    Type Ia Supernovae (SNe Ia) are the thermonuclear explosions of white dwarfs, and are of fundamental importance to the study of many phenomena, including the expansion of the universe and dark energy. For many years, it was suspected that that SNe Ia occur in binary systems, but the identity of the white dwarf’s companion could not be determined. A leading hypothesis, the single-degenerate (SD) channel, suggests that the companion is either on the main sequence or a red giant, and that the white dwarf accretes matter off of its companion until it nears the Chandrasekhar limit of 1.4 solar masses, causing the white dwarf to detonate shortly thereafter. Another hypothesis, the double-degenerate (DD) channel, proposes that both stars in the system are white dwarfs and that they merge together, resulting in a central, rapidly spinning white dwarf, surrounded by a thick disk of remnant material. Precisely how this triggers a detonation remains unclear; early spherically-symmetric models by Nomoto et al. indicated that merged white dwarfs would collapse to neutron stars instead of producing supernovae. Recent observations of two supernovae discovered last year by the Palomar Transient Factory (PTF), SN 2011 fe and SN PTF11k, have provided evidence that suggests that both the SD and DD channels coexist in nature. Consequently, it is important to develop simulations that can resolve the mystery of the DD channel’s detonation mechanism. To this end, we use a smoothed-particle hydrodynamics (SPH) code, GADGET-1, to model the rotating flows characteristic of merged DD systems and study how they evolve with time.

  18. Lubricin Protects the Temporomandibular Joint Surfaces from Degeneration

    PubMed Central

    Purcell, Patricia

    2014-01-01

    The temporomandibular joint (TMJ) is a specialized synovial joint essential for the mobility and function of the mammalian jaw. The TMJ is composed of the mandibular condyle, the glenoid fossa of the temporal bone, and a fibrocartilagenous disc interposed between these bones. A fibrous capsule, lined on the luminal surface by the synovial membrane, links these bones and retains synovial fluid within the cavity. The major component of synovial fluid is lubricin, a glycoprotein encoded by the gene proteoglycan 4 (Prg4), which is synthesized by chondrocytes at the surface of the articular cartilage and by synovial lining cells. We previously showed that in the knee joint, Prg4 is crucial for maintenance of cartilage surfaces and for regulating proliferation of the intimal cells in the synovium. Consequently, the objective of this study was to determine the role of lubricin in the maintenance of the TMJ. We found that mice lacking lubricin have a normal TMJ at birth, but develop degeneration resembling TMJ osteoarthritis by 2 months, increasing in severity over time. Disease progression in Prg4−/− mice results in synovial hyperplasia, deterioration of cartilage in the condyle, disc and fossa with an increase in chondrocyte number and their redistribution in clusters with loss of superficial zone chondrocytes. All articular surfaces of the joint had a prominent layer of protein deposition. Compared to the knee joint, the osteoarthritis-like phenotype was more severe and manifested earlier in the TMJ. Taken together, the lack of lubricin in the TMJ causes osteoarthritis-like degeneration that affects the articular cartilage as well as the integrity of multiple joint tissues. Our results provide the first molecular evidence of the role of lubricin in the TMJ and suggest that Prg4−/− mice might provide a valuable new animal model for the study of the early events of TMJ osteoarthritis. PMID:25188282

  19. Lubricin protects the temporomandibular joint surfaces from degeneration.

    PubMed

    Hill, Adele; Duran, Juanita; Purcell, Patricia

    2014-01-01

    The temporomandibular joint (TMJ) is a specialized synovial joint essential for the mobility and function of the mammalian jaw. The TMJ is composed of the mandibular condyle, the glenoid fossa of the temporal bone, and a fibrocartilagenous disc interposed between these bones. A fibrous capsule, lined on the luminal surface by the synovial membrane, links these bones and retains synovial fluid within the cavity. The major component of synovial fluid is lubricin, a glycoprotein encoded by the gene proteoglycan 4 (Prg4), which is synthesized by chondrocytes at the surface of the articular cartilage and by synovial lining cells. We previously showed that in the knee joint, Prg4 is crucial for maintenance of cartilage surfaces and for regulating proliferation of the intimal cells in the synovium. Consequently, the objective of this study was to determine the role of lubricin in the maintenance of the TMJ. We found that mice lacking lubricin have a normal TMJ at birth, but develop degeneration resembling TMJ osteoarthritis by 2 months, increasing in severity over time. Disease progression in Prg4-/- mice results in synovial hyperplasia, deterioration of cartilage in the condyle, disc and fossa with an increase in chondrocyte number and their redistribution in clusters with loss of superficial zone chondrocytes. All articular surfaces of the joint had a prominent layer of protein deposition. Compared to the knee joint, the osteoarthritis-like phenotype was more severe and manifested earlier in the TMJ. Taken together, the lack of lubricin in the TMJ causes osteoarthritis-like degeneration that affects the articular cartilage as well as the integrity of multiple joint tissues. Our results provide the first molecular evidence of the role of lubricin in the TMJ and suggest that Prg4-/- mice might provide a valuable new animal model for the study of the early events of TMJ osteoarthritis.

  20. Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy

    PubMed Central

    Lee, Yun-Sil; Lehar, Adam; Sebald, Suzanne; Liu, Min; Swaggart, Kayleigh A.; Talbot, C. Conover; Pytel, Peter; Barton, Elisabeth R.; McNally, Elizabeth M.; Lee, Se-Jin

    2015-01-01

    Myostatin is a secreted signaling molecule that normally acts to limit muscle growth. As a result, there is extensive effort directed at developing drugs capable of targeting myostatin to treat patients with muscle loss. One potential concern with this therapeutic approach in patients with muscle degenerative diseases like muscular dystrophy is that inducing hypertrophy may increase stress on dystrophic fibers, thereby accelerating disease progression. To investigate this possibility, we examined the effect of blocking the myostatin pathway in dysferlin-deficient (Dysf−/−) mice, in which membrane repair is compromised, either by transgenic expression of follistatin in skeletal muscle or by systemic administration of the soluble form of the activin type IIB receptor (ACVR2B/Fc). Here, we show that myostatin inhibition by follistatin transgene expression in Dysf−/− mice results in early improvement in histopathology but ultimately exacerbates muscle degeneration; this effect was not observed in dystrophin-deficient (mdx) mice, suggesting that accelerated degeneration induced by follistatin transgene expression is specific to mice lacking dysferlin. Dysf−/− mice injected with ACVR2B/Fc showed significant increases in muscle mass and amelioration of fibrotic changes normally seen in 8-month-old Dysf−/− mice. Despite these potentially beneficial effects, ACVR2B/Fc treatment caused increases in serum CK levels in some Dysf−/− mice, indicating possible muscle damage induced by hypertrophy. These findings suggest that depending on the disease context, inducing muscle hypertrophy by myostatin blockade may have detrimental effects, which need to be weighed against the potential gains in muscle growth and decreased fibrosis. PMID:26206886

  1. Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy.

    PubMed

    Lee, Yun-Sil; Lehar, Adam; Sebald, Suzanne; Liu, Min; Swaggart, Kayleigh A; Talbot, C Conover; Pytel, Peter; Barton, Elisabeth R; McNally, Elizabeth M; Lee, Se-Jin

    2015-10-15

    Myostatin is a secreted signaling molecule that normally acts to limit muscle growth. As a result, there is extensive effort directed at developing drugs capable of targeting myostatin to treat patients with muscle loss. One potential concern with this therapeutic approach in patients with muscle degenerative diseases like muscular dystrophy is that inducing hypertrophy may increase stress on dystrophic fibers, thereby accelerating disease progression. To investigate this possibility, we examined the effect of blocking the myostatin pathway in dysferlin-deficient (Dysf(-/-)) mice, in which membrane repair is compromised, either by transgenic expression of follistatin in skeletal muscle or by systemic administration of the soluble form of the activin type IIB receptor (ACVR2B/Fc). Here, we show that myostatin inhibition by follistatin transgene expression in Dysf(-/-) mice results in early improvement in histopathology but ultimately exacerbates muscle degeneration; this effect was not observed in dystrophin-deficient (mdx) mice, suggesting that accelerated degeneration induced by follistatin transgene expression is specific to mice lacking dysferlin. Dysf(-/-) mice injected with ACVR2B/Fc showed significant increases in muscle mass and amelioration of fibrotic changes normally seen in 8-month-old Dysf(-/-) mice. Despite these potentially beneficial effects, ACVR2B/Fc treatment caused increases in serum CK levels in some Dysf(-/-) mice, indicating possible muscle damage induced by hypertrophy. These findings suggest that depending on the disease context, inducing muscle hypertrophy by myostatin blockade may have detrimental effects, which need to be weighed against the potential gains in muscle growth and decreased fibrosis.

  2. Fibroid degeneration in a postmenopausal woman presenting as an acute abdomen

    PubMed Central

    Shrestha, Rajesh; Khanal, Raju; Aryal, Madan Raj; Pathak, Ranjan; Karmacharya, Paras; Naqi, Muniba; Murukutla, Srujitha; Bhatt, Vijaya Raj; Gottesman, Aaron

    2015-01-01

    Uterine fibroid, one of the most common tumors in women, is estrogen dependent, which commonly regresses after menopause. Fibroid degeneration after menopause, therefore, is rare. Here the authors report a case of 56-year-old postmenopausal woman who presented with acute abdominal pain, low grade fever, and leukocytosis as a result of fibroid degeneration. PMID:25656665

  3. Monte Carlo Study of Degenerate Behavior of AB Diblock Copolymer/Nanoparticle under Cylindrical Confinement.

    PubMed

    Wang, Yingying; Han, Yuanyuan; Cui, Jie; Jiang, Wei; Sun, Yingchun

    2016-08-23

    Degenerate behavior (i.e., forming different self-assembled structures for a given block copolymer (BCP) under the same confinement) commonly exists in various confined systems. Understanding degenerate behavior is crucial for precise control over the structures formed by self-assembly systems under confinement. In this study, the degenerate behavior of a self-assembled AB diblock copolymer/nanoparticle (NP) mixture in a cylindrical pore is studied using Monte Carlo simulation. We find that the degenerate behavior of such a mixture depends on the introduction of the NP. Under different pore sizes, four typical degenerate structures [i.e., single helices (S-helices), double helices (D-helices), parallel cylinders, and stacked toroids] can be obtained if the NP content is zero. However, when the NP content in the mixture is increased, it is found that the number of degenerate structures decreases, that is, only blocky structures can be obtained in the case of high NP content. Moreover, the probability of forming S-helices decreases, whereas the probability of forming D-helices increases with increase in the NP content. Analysis of the interactive enthalpy densities and the chain conformation of the systems indicates that entropy plays an important role in the degenerate structure formation. This study provides some new insights into the degenerate behavior of a BCP/NP mixture under confinement, which can offer a theoretical reference for further experiments. PMID:27459708

  4. The role of autophagy in axonal degeneration of the optic nerve.

    PubMed

    Koch, Jan Christoph; Lingor, Paul

    2016-03-01

    Different pathological conditions including glaucoma, optic neuritis, hereditary optic atrophy and traumatic injury lead to a degeneration of retinal ganglion cell axons in the optic nerve. Besides this clinical relevance, several experimental models employ the optic nerve as a model system to examine general mechanisms of axonal degeneration in the central nervous system. Several experimental studies have demonstrated that an activation of autophagy is a prominent feature of axonal degeneration in the optic nerve independent of the underlying pathological condition. However, the function of autophagy in axonal degeneration remains still unclear. Inhibition of autophagy was found to attenuate axonal degeneration within the first hours after optic nerve lesion. Other studies focusing on survival of retinal ganglion cells at later postlesional time points report contradicting results, where both inhibition and induction of autophagy were beneficial for survival, depending on the model system or examination time. Therefore, a more precise understanding of the role and the kinetics of autophagy in axonal degeneration is mandatory to develop new therapies for diseases of the optic nerve. Here, we review the literature on the pathophysiological role of autophagy in axonal degeneration in the optic nerve and discuss its implications for future therapeutic approaches in diseases of the eye and the central nervous system involving axonal degeneration.

  5. A young man with intimomedial mucoid degeneration of the brachial artery.

    PubMed

    Raber, Menno H; Meerwaldt, Robbert; van Det, Rob J

    2011-03-01

    Intimomedial mucoid degeneration is a rare disorder and has been described as a distinctly different entity from Erdheim's cystic medial necrosis. Most studies show a strong predominance in African American females with hypertension. In our case report, we describe the presence of a large brachial aneurysm in a young white male with intimomedial mucoid degeneration. PMID:21215586

  6. Assessment of Functional and Behavioral Changes Sensitive to Painful Disc Degeneration

    PubMed Central

    Lai, Alon; Moon, Andrew; Purmessur, Devina; Skovrlj, Branko; Winkelstein, Beth A.; Cho, Samuel K.; Hecht, Andrew C.; Iatridis, James C.

    2015-01-01

    The development of an in vivo rodent discogenic pain model can provide insight into mechanisms for painful disc degeneration. Painful disc degeneration in rodents can be inferred by examining responses to external stimuli, observing pain-related behaviors, and measuring functional performance. This study compared the sensitivity of multiple pain and functional assessment methods to disc disruption for identifying the parameters sensitive to painful disc degeneration in rats. Disc degeneration was induced in rats by annular injury with saline injection. The severity of disc degeneration, pain sensitivity, and functional performance were compared to sham and näve control rats. Saline injection induced disc degeneration with decreased disc height and MRI signal intensity as well as more fibrous nucleus pulposus, disorganized annular lamellae and decreased proteoglycan. Rats also demonstrated increased painful behaviors including decreased hindpaw mechanical and thermal sensitivities, increased grooming, and altered gait patterns with hindpaw mechanical hyperalgesia and duration of grooming tests being most sensitive. This is the first study to compare sensitivities of different pain assessment methods in an in vivo rat model of disc degeneration. Hindpaw mechanical sensitivity and duration of grooming were the most sensitive parameters to surgically induced degenerative changes and overall results were suggestive of disc degeneration associated pain. PMID:25731955

  7. A young man with intimomedial mucoid degeneration of the brachial artery.

    PubMed

    Raber, Menno H; Meerwaldt, Robbert; van Det, Rob J

    2011-03-01

    Intimomedial mucoid degeneration is a rare disorder and has been described as a distinctly different entity from Erdheim's cystic medial necrosis. Most studies show a strong predominance in African American females with hypertension. In our case report, we describe the presence of a large brachial aneurysm in a young white male with intimomedial mucoid degeneration.

  8. 3-acetylpyridine-induced degeneration in the adult ascidian neural complex: Reactive and regenerative changes in glia and blood cells.

    PubMed

    Medina, Bianca N S P; Santos de Abreu, Isadora; Cavalcante, Leny A; Silva, Wagner A B; da Fonseca, Rodrigo N; Allodi, Silvana; de Barros, Cintia M

    2015-08-01

    Ascidians are interesting neurobiological models because of their evolutionary position as a sister-group of vertebrates and the high regenerative capacity of their central nervous system (CNS). We investigated the degeneration and regeneration of the cerebral ganglion complex of the ascidian Styela plicata following injection of the niacinamide antagonist 3-acetylpyridine (3AP), described as targeting the CNS of several vertebrates. For the analysis and establishment of a new model in ascidians, the ganglion complex was dissected and prepared for transmission electron microscopy (TEM), routine light microscopy (LM), immunohistochemistry and Western blotting, 1 or 10 days after injection of 3AP. The siphon stimulation test (SST) was used to quantify the functional response. One day after the injection of 3AP, CNS degeneration and recruitment of a non-neural cell type to the site of injury was observed by both TEM and LM. Furthermore, weaker immunohistochemical reactions for astrocytic glial fibrillary acidic protein (GFAP) and neuronal βIII-tubulin were observed. In contrast, the expression of caspase-3, a protein involved in the apoptotic pathway, and the glycoprotein CD34, a marker for hematopoietic stem cells, increased. Ten days after the injection of 3AP, the expression of markers tended toward the original condition. The SST revealed attenuation and subsequent recovery of the reflexes from 1 to 10 days after 3AP. Therefore, we have developed a new method to study ascidian neural degeneration and regeneration, and identified the decreased expression of GFAP and recruitment of blood stem cells to the damaged ganglion as reasons for the success of neuroregeneration in ascidians.

  9. The bacterial toxin CNF1 as a tool to induce retinal degeneration reminiscent of retinitis pigmentosa

    PubMed Central

    Guadagni, Viviana; Cerri, Chiara; Piano, Ilaria; Novelli, Elena; Gargini, Claudia; Fiorentini, Carla; Caleo, Matteo; Strettoi, Enrica

    2016-01-01

    Retinitis pigmentosa (RP) comprises a group of inherited pathologies characterized by progressive photoreceptor degeneration. In rodent models of RP, expression of defective genes and retinal degeneration usually manifest during the first weeks of postnatal life, making it difficult to distinguish consequences of primary genetic defects from abnormalities in retinal development. Moreover, mouse eyes are small and not always adequate to test pharmacological and surgical treatments. An inducible paradigm of retinal degeneration potentially extensible to large animals is therefore desirable. Starting from the serendipitous observation that intraocular injections of a Rho GTPase activator, the bacterial toxin Cytotoxic Necrotizing Factor 1 (CNF1), lead to retinal degeneration, we implemented an inducible model recapitulating most of the key features of Retinitis Pigmentosa. The model also unmasks an intrinsic vulnerability of photoreceptors to the mechanism of CNF1 action, indicating still unexplored molecular pathways potentially leading to the death of these cells in inherited forms of retinal degeneration. PMID:27775019

  10. Clinical Impact of Sagittal Spinopelvic Parameters on Disc Degeneration in Young Adults

    PubMed Central

    Oh, Young-Min; Eun, Jong-Pil

    2015-01-01

    Abstract The sagittal balance plays an important role in the determination of shear and compressive forces applied on the anterior (vertebral bodies and intervertebral discs) and posterior (facet joints) elements of the lumbar vertebral column. Many studies have also examined the effect of structural changes in the disc on the biomechanical characteristics of the spinal segment. Nevertheless, the relationship between sagittal balance and the degree of disc degeneration has not been extensively explored. Thus, here we investigated the relationships between various sagittal spinopelvic parameters and the degree of disc degeneration in young adults. A total of 278 young adult male patients were included in this study (age range: 18–24 years old). Multiple sagittal spinopelvic parameters, including pelvic incidence (PI), sacral slope (SS), pelvic tilt (PT), lumbar lordosis (LL), sacral inclination (SI), lumbosacral angle (LSA), and sacral table angle (STA), were measured from standing lateral lumbosacral radiographs. The degree of intervertebral disc degeneration was classified using a modified Pfirrmann scale. To assess the pain intensity of each patient, the visual analogue scale (VAS) score for low back pain (LBP) was obtained from all the patients. Finally, the relationships between these spinopelvic parameters and the degree of disc degeneration in young adults were analyzed. Also, we performed multiple logistic regression study. Out of all the spinopelvic parameters measured in this study, a low STA and a low SI were the only significant risk factors that were associated with disc degeneration in young adults. It means that patients with disc degeneration tend to have more severe sacral kyphosis and vertical sacrum. We found that patients with disc degeneration showed a lower SI and lower STA compared with patients without disc degeneration in young adults. Therefore, we suggest that the patients with disc degeneration tend to have more vertical sacrum, more

  11. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    SciTech Connect

    Kato, K.; Fukuda, H.

    1985-07-22

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with /sup 3/H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum or the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with /sup 3/H-muscimol and /sup 3/H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables.

  12. Stem Cell Therapies for Intervertebral Disc Degeneration: Immune Privilege Reinforcement by Fas/FasL Regulating Machinery.

    PubMed

    Ma, Chi-Jiao; Liu, Xu; Che, Lu; Liu, Zhi-Heng; Samartzis, Dino; Wang, Hai-Qiang

    2015-01-01

    As a main contributing factor to low back pain, intervertebral disc degeneration (IDD) is the fundamental basis for various debilitating spinal diseases. The pros and cons of current treatment modalities necessitate biological treatment strategies targeting for reversing or altering the degeneration process in terms of molecules or genes. The advances in stem cell research facilitate the studies aiming for possible clinical application of stem cell therapies for IDD. Human NP cells are versatile with cell morphology full of variety, capable of synthesizing extracellular matrix components, engulfing substances by autophagy and phagocytosis, mitochondrial vacuolization indicating dysfunction, expressing Fas and FasL as significant omens of immune privileged sites. Human discs belong to immune privilege organs with functional FasL expression, which can interact with invasive immune cells by Fas-FasL regulatory machinery. IDD is characterized by decreased expression level of FasL with dysfunctional FasL, which in turn unbalances the interaction between NP cells and immune cells. Certain modulation factors might play a role in the process, such as miR-155. Accumulating evidence indicates that Fas-FasL network expresses in a variety of stem cells. Given the expression of functional FasL and insensitive Fas in stem cells (we term as FasL privilege), transplantation of stem cells into the disc may regenerate the degenerative disc by not only differentiating into NP-like cells, increasing extracellular matrix, but also reinforce immune privilege via interaction with immune cells by Fas-FasL network.

  13. [The genetic variability of complement system in pathogenesis of age-related macular degeneration].

    PubMed

    Kubicka-Trząska, Agnieszka; Karska-Basta, Izabella; Dziedzina, Sylwia; Sanak, Marek

    2015-01-01

    Age-related macular degeneration is the leading cause of irreversible central vision impairment in people aged over 50 in developed countries. Age-related macular degeneration is a complex disease derived from environmental, immune and genetic factors. The complement pathway has been implicated in the pathogenesis of many diseases. Recently, variants in several genes, such as complement H (CFH), complement factor B (CFB), complement 2 (C2), and complement 3 (C3), encoding complement pathway proteins, have been identified as associated with age-related macular degeneration. However, the associations between these genes and age-related macular degeneration varied due to genetic variation within populations and various ethnics groups. The strongest association was found between the age-related macular degeneration and SNP Y402H rs 1061170 variant of CFH gene, which is present in 30% to 50% of age-related macular degeneration patients in Caucasian population and which is a risk factor for the development of age-related macular degeneration. Cohort studies showed that polymorphism Arg102Gly (SNP rs 2230199) of C3 protein could serve as a high-risk genetic marker for the development of age-related macular degeneration. Other rare variants of C3 (Lys155Gln, Lys65Gln, Arg735Trp, Ser1619Arg), may also be associated with a high incidence of age-related macular degeneration in some ethnic groups. A protective haplotype of variants E318D and IVS10 in the C2 gene as well as L9H and R320 in the BF were associated with age-related macular degeneration but only in Caucasians. The genetic findings in age-related macular degeneration patients stress the importance of detailed phenotyping to identify age-related macular degeneration subtypes, which may be associated with the presence of different polymorphisms and various environmental risk factors in any population. Further studies may be helpful to improve the effectiveness of prophylaxis and therapeutic options in age

  14. IUE Echelle Investigation of Two Peculiar Helium-Rich Degenerates

    NASA Astrophysics Data System (ADS)

    Sion, Edward M.

    We propose to observe two peculiar helium-rich degenerates, the hot hybrid composition DAB star, GD323 and the twin DB degenerate object, PC3146+082 in the IUE high dispersion mode, the first ever IUE echelle images of these spectroscopic types. Both objects occur just below the DO-DB temperature gap (in which no DB or cool DO stars are seen), have an energy distribution and color temperature similar to the twin DB degenerate interacting cataclysmic binary, AM CVn, and both may be related in a still unknown way, to the origin of hot single DB stars, which show the onset of non-radial g-mode pulsations near Teff = 30,OOOK (cf. Liebert, et al. 1986). Our specific scientific objectives for GD323 are: (1) to search for evidence of neutral and/or ionized metal absorption features formed in and/or above the photosphere, or as shortward-shifted wind absorption features, undetectable at low IUE resolution, as a means of establishing the role of either interstellar accretion, convective dredgeup, radiative levitation, mass loss or recent accretion in an interacting binary, in understanding the nature of this hybrid object; (3) to look for weak He II absorption as a means of resolving its temperature (its spectroscopic and calorimetric temperature fits are discrepant with 40,OOOK needed to fit H-beta); (4) to determine metal abundances from the analysis of any detected features or set stringent abundance constraints for metals, especially carbon, which is theoretically predicted to have a very small non-zero abundance based upon calculations of helium convective dredgeup of core carbon from its equilibrium diffusion tail; (5) to use IUE echelle detections to derive an upper limit rotation rate and upper limit magnetic field strength, two other factors which may be implicated in its hybrid composition (via inhibited gravitational settling); to compare its IUE echelle spectrum with those of the hottest DB stars, GD358 (which unexpectedly showed photospheric He II and C II) and

  15. Theory for magnetic linear dichroism of electronic transitions between twofold-degenerate molecular spin levels

    NASA Astrophysics Data System (ADS)

    Bominaar, Emile L.; Achim, Catalina; Peterson, Jim

    1998-07-01

    Magnetic linear dichroism (MLD) spectroscopy is a relatively new technique which previously has been almost exclusively applied to atoms. These investigations have revealed that the study of MLD, in conjunction with electronic absorption and magnetic circular dichroism (MCD) spectroscopies, provides significant additional information concerning the electronic structure of atoms. More recent measurements have indicated that MLD is also observable from transition ions in inorganic compounds and metalloproteins. While the theory for atomic MLD has been worked out in considerable detail during the last two decades, an MLD theory of practical utility for the analysis of the spectra derived from the majority of paramagnetic molecules is not available. In the present contribution, the MLD of an electric-dipole-allowed transition between twofold-degenerate molecular spin levels is analyzed, assuming nonsaturating conditions. As for atomic systems, it is found that the MLD of a single molecule is dominated by the term G0. However, this term vanishes in the powder average evaluated for a randomly oriented ensemble of molecules, leading to a drastic reduction of the MLD differential absorption for systems with spin S=1/2 compared to that observed for systems with higher ground-state spin. It is found that MLD and MCD spectroscopies on solution samples have complementary spin-state specific sensitivities which suggest that the two methods can be used to selectively probe the individual metal sites in multicenter metalloprotein assemblies.

  16. Investigating Mitochondria as a Target for Treating Age-Related Macular Degeneration

    PubMed Central

    Terluk, Marcia R.; Kapphahn, Rebecca J.; Soukup, Lauren M.; Gong, Hwee; Gallardo, Christopher; Montezuma, Sandra R.

    2015-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness among older adults in the developed world. Although the pathological mechanisms have not been definitively elucidated, evidence suggests a key role for mitochondrial (mt) dysfunction. The current study used our unique collection of human retinal samples graded for the donor's stage of AMD to address fundamental questions about mtDNA damage in the retina. To evaluate the distribution of mtDNA damage in the diseased retina, damage in the retinal pigment epithelium (RPE) and neural retina from individual donors were compared. To directly test a long-held belief that the macula is selectively damaged with AMD, RPE mtDNA damage was measured in the macula and peripheral sections from individual donors. Small segments of the entire mt genome were examined to determine whether specific regions are preferentially damaged. Our results show that mtDNA damage is limited to the RPE, equivalent mtDNA damage is found in the macular and peripheral RPE, and sites of damage are localized to regions of the mt genome that may impact mt function. These results provide a scientific basis for targeting the RPE mitochondria with therapies that protect and enhance mt function as a strategy for combating AMD. PMID:25948278

  17. Investigating mitochondria as a target for treating age-related macular degeneration.

    PubMed

    Terluk, Marcia R; Kapphahn, Rebecca J; Soukup, Lauren M; Gong, Hwee; Gallardo, Christopher; Montezuma, Sandra R; Ferrington, Deborah A

    2015-05-01

    Age-related macular degeneration (AMD) is the leading cause of blindness among older adults in the developed world. Although the pathological mechanisms have not been definitively elucidated, evidence suggests a key role for mitochondrial (mt) dysfunction. The current study used our unique collection of human retinal samples graded for the donor's stage of AMD to address fundamental questions about mtDNA damage in the retina. To evaluate the distribution of mtDNA damage in the diseased retina, damage in the retinal pigment epithelium (RPE) and neural retina from individual donors were compared. To directly test a long-held belief that the macula is selectively damaged with AMD, RPE mtDNA damage was measured in the macula and peripheral sections from individual donors. Small segments of the entire mt genome were examined to determine whether specific regions are preferentially damaged. Our results show that mtDNA damage is limited to the RPE, equivalent mtDNA damage is found in the macular and peripheral RPE, and sites of damage are localized to regions of the mt genome that may impact mt function. These results provide a scientific basis for targeting the RPE mitochondria with therapies that protect and enhance mt function as a strategy for combating AMD. PMID:25948278

  18. Degenerate Connective Polypeptide 1 (CP1) Domain from Human Mitochondrial Leucyl-tRNA Synthetase*

    PubMed Central

    Ye, Qing; Wang, Meng; Fang, Zhi-Peng; Ruan, Zhi-Rong; Ji, Quan-Quan; Zhou, Xiao-Long; Wang, En-Duo

    2015-01-01

    The connective polypeptide 1 (CP1) editing domain of leucyl-tRNA synthetase (LeuRS) from various species either harbors a conserved active site to exclude tRNA mis-charging with noncognate amino acids or is evolutionarily truncated or lost because there is no requirement for high translational fidelity. However, human mitochondrial LeuRS (hmtLeuRS) contains a full-length but degenerate CP1 domain that has mutations in some residues important for post-transfer editing. The significance of such an inactive CP1 domain and a translational accuracy mechanism with different noncognate amino acids are not completely understood. Here, we identified the essential role of the evolutionarily divergent CP1 domain in facilitating hmtLeuRS's catalytic efficiency and endowing enzyme with resistance to AN2690, a broad-spectrum drug acting on LeuRSs. In addition, the canonical core of hmtLeuRS is not stringent for noncognate norvaline (Nva) and valine (Val). hmtLeuRS has a very weak tRNA-independent pre-transfer editing activity for Nva, which is insufficient to remove mis-activated Nva. Moreover, hmtLeuRS chimeras fused with a functional CP1 domain from LeuRSs of other species, regardless of origin, showed restored post-transfer editing activity and acquired fidelity during aminoacylation. This work offers a novel perspective on the role of the CP1 domain in optimizing aminoacylation efficiency. PMID:26272616

  19. Cellular and Molecular Pathology of Age-Related Macular Degeneration: Potential Role for Proteoglycans

    PubMed Central

    Thach, Lyna; Zheng, Wenhua; Osman, Narin

    2016-01-01

    Age-related macular degeneration (AMD) is a retinal disease evident after the age of 50 that damages the macula in the centre of retina. It leads to a loss of central vision with retained peripheral vision but eventual blindness occurs in many cases. The initiation site of AMD development is Bruch's membrane (BM) where multiple changes occur including the deposition of plasma derived lipids, accumulation of extracellular debris, changes in cell morphology, and viability and the formation of drusen. AMD manifests as early and late stage; the latter involves cell proliferation and neovascularization in wet AMD. Current therapies target the later hyperproliferative and invasive wet stage whilst none target early developmental stages of AMD. In the lipid deposition disease atherosclerosis modified proteoglycans bind and retain apolipoproteins in the artery wall. Chemically modified trapped lipids are immunogenic and can initiate a chronic inflammatory process manifesting as atherosclerotic plaques and subsequent artery blockages, heart attacks, or strokes. As plasma derived lipoprotein deposits are found in BM in early AMD, it is possible that they arise by a similar process within the macula. In this review we consider aspects of the pathological processes underlying AMD with a focus on the potential role of modifications to secreted proteoglycans being a cause and therefore a target for the treatment of early AMD. PMID:27563459

  20. Burn injury induces skeletal muscle degeneration, inflammatory host response, and oxidative stress in wistar rats.

    PubMed

    da Silva, Nathalia Trasmonte; Quintana, Hananiah Tardivo; Bortolin, Jeferson André; Ribeiro, Daniel Araki; de Oliveira, Flavia

    2015-01-01

    Burn injuries (BIs) result in both local and systemic responses distant from the site of thermal injury, such as skeletal muscle. The purpose of this study was to investigate the expression of cyclooxygenase-2 (COX-2) and hydroxy-2'-deoxyguanosine (8-OHdG) as a result of inflammation and reactive oxygen species production, respectively. A total of 16 male rats were distributed into two groups: control (C) and submitted to BI. The medial part of gastrocnemius muscle formed the specimens, which were stained with hematoxylin and eosin and were evaluated. COX-2 and 8-OHdG expressions were assessed by immunohistochemistry, and cell profile area and density of muscle fibers (number of fibers per square millimeter) were evaluated by morphometric methods. The results revealed inflammatory infiltrate associated with COX-2 immunoexpression in BI-gastrocnemius muscle. Furthermore, a substantial decrease in the muscle cell profile area of BI group was noticed when compared with the control group, whereas the density of muscle fibers was higher in the BI group. 8-OHdG expression in numerous skeletal muscle nuclei was detected in the BI group. In conclusion, the BI group is able to induce skeletal muscle degeneration as a result of systemic host response closely related to reactive oxygen species production and inflammatory process.

  1. Cellular and Molecular Pathology of Age-Related Macular Degeneration: Potential Role for Proteoglycans.

    PubMed

    Al Gwairi, Othman; Thach, Lyna; Zheng, Wenhua; Osman, Narin; Little, Peter J

    2016-01-01

    Age-related macular degeneration (AMD) is a retinal disease evident after the age of 50 that damages the macula in the centre of retina. It leads to a loss of central vision with retained peripheral vision but eventual blindness occurs in many cases. The initiation site of AMD development is Bruch's membrane (BM) where multiple changes occur including the deposition of plasma derived lipids, accumulation of extracellular debris, changes in cell morphology, and viability and the formation of drusen. AMD manifests as early and late stage; the latter involves cell proliferation and neovascularization in wet AMD. Current therapies target the later hyperproliferative and invasive wet stage whilst none target early developmental stages of AMD. In the lipid deposition disease atherosclerosis modified proteoglycans bind and retain apolipoproteins in the artery wall. Chemically modified trapped lipids are immunogenic and can initiate a chronic inflammatory process manifesting as atherosclerotic plaques and subsequent artery blockages, heart attacks, or strokes. As plasma derived lipoprotein deposits are found in BM in early AMD, it is possible that they arise by a similar process within the macula. In this review we consider aspects of the pathological processes underlying AMD with a focus on the potential role of modifications to secreted proteoglycans being a cause and therefore a target for the treatment of early AMD. PMID:27563459

  2. Recent Patents on Emerging Therapeutics for the Treatment of Glaucoma, Age Related Macular Degeneration and Uveitis

    PubMed Central

    Vadlapudi, Aswani Dutt; Patel, Ashaben; Cholkar, Kishore; Mitra, Ashim K.

    2014-01-01

    Advancements in the field and rising interest among pharmaceutical researchers have led to the development of new molecules with enhanced therapeutic activity. Design of new drugs which can target a particular pathway and/or explore novel targets is of immense interest to ocular pharmacologists worldwide. Delivery of suitable pharmacologically active agents at proper dose (within the therapeutic window) to the target tissues without any toxicity to the healthy ocular tissues still remain an elusive task. Moreover, the presence of static and dynamic barriers to drug absorption including the corneal epithelium (lipophilic), corneal and scleral stroma (hydrophilic), conjunctival lymphatics, choroidal vasculature and the blood-ocular barriers also pose a significant challenge for achieving therapeutic drug concentrations at the target site. Although many agents are currently available, new compounds are being introduced for treating various ocular diseases. Deeper understanding of the etiology and complex mechanisms associated with the disease condition would aid in the development of potential therapeutic candidates. Novel small molecules as well as complex biotechnology derived macromolecules with superior efficacy, safety and tolerability are being developed. Therefore, this review article provides an overview of existing drugs, treatment options, advances in emerging therapeutics and related recent patents for the treatment of ocular disorders such as glaucoma, age related macular degeneration (AMD) and uveitis. PMID:25414810

  3. Deafness and Retinal Degeneration in A Novel USH1C Knock-In Mouse Model

    PubMed Central

    Lentz, Jennifer J.; Gordon, William C.; Farris, Hamilton E.; MacDonald, Glen H.; Cunningham, Dale E.; Robbins, Carol A.; Tempel, Bruce L.; Bazan, Nicolas G.; Rubel, Edwin W.; Oesterle, Elizabeth C.; Keats, Bronya J.

    2010-01-01

    Usher syndrome is the leading cause of combined deaf-blindness, but the molecular mechanisms underlying the auditory and visual impairment are poorly understood. Usher I is characterized by profound congenital hearing loss, vestibular dysfunction and progressive retinitis pigmentosa beginning in early adolescence. Using the c.216G>A cryptic splice site mutation in exon 3 of the USH1C gene found in Acadian Usher I patients in Louisiana, we constructed the first mouse model that develops both deafness and retinal degeneration. The same truncated mRNA transcript found in Usher 1C patients is found in the cochleae and retinas of these knock-in mice. Absent auditory-evoked brainstem responses indicated that the mutant mice are deaf at one month of age. Cochlear histology showed disorganized hair cell rows, abnormal bundles, and loss of both inner and outer hair cells in the middle turns and at the base. Retinal dysfunction as evident by an abnormal electroretinogram was seen as early as 1 month of age, with progressive loss of rod photoreceptors between 6 and 12 months of age. This knock-in mouse reproduces the dual sensory loss of human Usher I, providing a novel resource to study the disease mechanism and the development of therapies. PMID:20095043

  4. Multiple Independent Oscillatory Networks in the Degenerating Retina.

    PubMed

    Euler, Thomas; Schubert, Timm

    2015-01-01

    During neuronal degenerative diseases, microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. This can be particularly well observed in the retina, where photoreceptor degeneration triggers rewiring of connections in the retina's first synaptic layer (e.g., Strettoi et al., 2003; Haq et al., 2014), while the synaptic organization of inner retinal circuits appears to be little affected (O'Brien et al., 2014; Figures 1A,B). Remodeling of (outer) retinal circuits and diminishing light-driven activity due to the loss of functional photoreceptors lead to spontaneous activity that can be observed at different retinal levels (Figure 1C), including the retinal ganglion cells, which display rhythmic spiking activity in the degenerative retina (Margolis et al., 2008; Stasheff, 2008; Menzler and Zeck, 2011; Stasheff et al., 2011). Two networks have been suggested to drive the oscillatory activity in the degenerating retina: a network of remnant cone photoreceptors, rod bipolar cells (RBCs) and horizontal cells in the outer retina (Haq et al., 2014), and the AII amacrine cell-cone bipolar cell network in the inner retina (Borowska et al., 2011). Notably, spontaneous rhythmic activity in the inner retinal network can be triggered in the absence of synaptic remodeling in the outer retina, for example, in the healthy retina after photo-bleaching (Menzler et al., 2014). In addition, the two networks show remarkable differences in their dominant oscillation frequency range as well as in the types and numbers of involved cells (Menzler and Zeck, 2011; Haq et al., 2014). Taken together this suggests that the two networks are self-sustained and can be active independently from each other. However, it is not known if and how they modulate each other. In this mini review, we will discuss: (i) commonalities and differences between these two oscillatory networks as well as possible interaction pathways; (ii) how multiple self

  5. Mesenchymal stem cells attenuate peripheral neuronal degeneration in spinocerebellar ataxia type 1 knockin mice.

    PubMed

    Mieda, Tokue; Suto, Nana; Iizuka, Akira; Matsuura, Serina; Iizuka, Haku; Takagishi, Kenji; Nakamura, Kazuhiro; Hirai, Hirokazu

    2016-03-01

    Spinocerebellar ataxia type 1 (SCA1) is a devastating neurodegenerative disorder in which an abnormally expanded polyglutamine tract is inserted into causative ataxin-1 proteins. We have previously shown that SCA1 knockin (SCA1-KI) mice over 6 months of age exhibit a degeneration of motor neuron axons and their encasing myelin sheaths, as reported in SCA1 patients. We examined whether axon degeneration precedes myelin degeneration or vice versa in SCA1-KI mice and then attempted to mitigate motor neuron degeneration by intrathecally administering mesenchymal stem cells (MSCs). Temporal examination of the diameters of motor neuron axons and their myelin sheaths revealed a decrease in diameter of the axon but not of the myelin sheaths in SCA1-KI mice as early as 1 month of age, which suggests secondary degeneration of the myelin sheaths. We injected MSCs into the intrathecal space of SCA1-KI mice at 1 month of age, which resulted in a significant suppression of degeneration of both motor neuron axons and myelin sheaths, even 6 months after the MSC injection. Thus, MSCs effectively suppressed peripheral nervous system degeneration in SCA1-KI mice. It has not yet been clarified how clinically administered MSCs exhibit significant therapeutic effects in patients with SCA1. The morphological evidence presented in this current mouse study might explain the mechanisms that underlie the therapeutic effects of MSCs that are observed in patients with SCA1.

  6. Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration

    PubMed Central

    Chen-Plotkin, Alice S.; Martinez-Lage, Maria; Sleiman, Patrick M. A.; Hu, William; Greene, Robert; Wood, Elisabeth McCarty; Bing, Shaoxu; Grossman, Murray; Schellenberg, Gerard D.; Hatanpaa, Kimmo J.; Weiner, Myron F.; White, Charles L.; Brooks, William S.; Halliday, Glenda M.; Kril, Jillian J.; Gearing, Marla; Beach, Thomas G.; Graff-Radford, Neill R.; Dickson, Dennis W.; Rademakers, Rosa; Boeve, Bradley F.; Pickering-Brown, Stuart M.; Snowden, Julie; van Swieten, John C.; Heutink, Peter; Seelaar, Harro; Murrell, Jill R.; Ghetti, Bernardino; Spina, Salvatore; Grafman, Jordan; Kaye, Jeffrey A.; Woltjer, Randall L.; Mesulam, Marsel; Bigio, Eileen; Lladó, Albert; Miller, Bruce L.; Alzualde, Ainhoa; Moreno, Fermin; Rohrer, Jonathan D.; Mackenzie, Ian R. A.; Feldman, Howard H.; Hamilton, Ronald L.; Cruts, Marc; Engelborghs, Sebastiaan; De Deyn, Peter P.; Van Broeckhoven, Christine; Bird, Thomas D.; Cairns, Nigel J.; Goate, Allison; Frosch, Matthew P.; Riederer, Peter F.; Bogdanovic, Nenad; Lee, Virginia M. Y.; Trojanowski, John Q.; Van Deerlin, Vivianna M.

    2011-01-01

    Objective To assess the relative frequency of unique mutations and their associated characteristics in 97 individuals with mutations in progranulin (GRN), an important cause of frontotemporal lobar degeneration (FTLD). Participants and Design A 46-site International Frontotemporal Lobar Degeneration Collaboration was formed to collect cases of FTLD with TAR DNA-binding protein of 43-kDa (TDP-43)–positive inclusions (FTLD-TDP). We identified 97 individuals with FTLD-TDP with pathogenic GRN mutations (GRN+ FTLD-TDP), assessed their genetic and clinical characteristics, and compared them with 453 patients with FTLD-TDP in which GRN mutations were excluded (GRN− FTLD-TDP). No patients were known to be related. Neuropathologic characteristics were confirmed as FTLD-TDP in 79 of the 97 GRN+ FTLDTDP cases and all of the GRN− FTLD-TDP cases. Results Age at onset of FTLD was younger in patients with GRN+ FTLD-TDP vs GRN− FTLD-TDP (median, 58.0 vs 61.0 years; P<.001), as was age at death (median, 65.5 vs 69.0 years; P<.001). Concomitant motor neuron disease was much less common in GRN+ FTLDTDP vs GRN− FTLD-TDP (5.4% vs 26.3%; P<.001). Fifty different GRN mutations were observed, including 2 novel mutations: c.139delG (p.D47TfsX7) and c.378C>A (p.C126X). The 2 most common GRN mutations were c.1477C>T (p.R493X, found in 18 patients, representing 18.6% of GRN cases) and c.26C>A (p.A9D, found in 6 patients, representing 6.2% of cases). Patients with the c.1477C>T mutation shared a haplotype on chromosome 17; clinically, they resembled patients with other GRN mutations. Patients with the c.26C>A mutation appeared to have a younger age at onset of FTLD and at death and more parkinsonian features than those with other GRN mutations. Conclusion GRN+ FTLD-TDP differs in key features from GRN− FTLD-TDP. PMID:21482928

  7. Safety and Tolerability Study of AAV2-sFLT01 in Patients With Neovascular Age-Related Macular Degeneration (AMD)

    ClinicalTrials.gov

    2016-10-20

    Macular Degeneration; Age-Related Maculopathies; Age-Related Maculopathy; Maculopathies, Age-Related; Maculopathy, Age-Related; Retinal Degeneration; Retinal Neovascularization; Gene Therapy; Therapy, Gene; Eye Diseases

  8. Altered Knee Joint Mechanics in Simple Compression Associated with Early Cartilage Degeneration

    PubMed Central

    Dabiri, Y.; Li, L. P.

    2013-01-01

    The progression of osteoarthritis can be accompanied by depth-dependent changes in the properties of articular cartilage. The objective of the present study was to determine the subsequent alteration in the fluid pressurization in the human knee using a three-dimensional computer model. Only a small compression in the femur-tibia direction was applied to avoid numerical difficulties. The material model for articular cartilages and menisci included fluid, fibrillar and nonfibrillar matrices as distinct constituents. The knee model consisted of distal femur, femoral cartilage, menisci, tibial cartilage, and proximal tibia. Cartilage degeneration was modeled in the high load-bearing region of the medial condyle of the femur with reduced fibrillar and nonfibrillar elastic properties and increased hydraulic permeability. Three case studies were implemented to simulate (1) the onset of cartilage degeneration from the superficial zone, (2) the progression of cartilage degeneration to the middle zone, and (3) the progression of cartilage degeneration to the deep zone. As compared with a normal knee of the same compression, reduced fluid pressurization was observed in the degenerated knee. Furthermore, faster reduction in fluid pressure was observed with the onset of cartilage degeneration in the superficial zone and progression to the middle zone, as compared to progression to the deep zone. On the other hand, cartilage degeneration in any zone would reduce the fluid pressure in all three zones. The shear strains at the cartilage-bone interface were increased when cartilage degeneration was eventually advanced to the deep zone. The present study revealed, at the joint level, altered fluid pressurization and strains with the depth-wise cartilage degeneration. The results also indicated redistribution of stresses within the tissue and relocation of the loading between the tissue matrix and fluid pressure. These results may only be qualitatively interesting due to the small

  9. Nearly degenerate electron distributions and superluminal radiation densities

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2010-02-01

    Polylogarithmic fugacity expansions of the partition function, the caloric and thermal equations of state, and the specific heat of fermionic power-law distributions are derived in the nearly degenerate low-temperature/high-density quantum regime. The spectral functions of an ultra-relativistic electron plasma are obtained by averaging the tachyonic radiation densities of inertial electrons with Fermi power-laws, whose entropy is shown to be extensive and stable. The averaged radiation densities are put to test by performing tachyonic cascade fits to the γ-ray spectrum of the TeV blazar Markarian 421 in a low and high emission state. Estimates of the thermal electron plasma in this active galactic nucleus are extracted from the spectral fits, such as temperature, number count, and internal energy. The tachyonic cascades reproduce the quiescent as well as a burst spectrum of the blazar obtained with imaging atmospheric Cherenkov detectors. Double-logarithmic plots of the differential tachyon flux exhibit intrinsic spectral curvature, caused by the Boltzmann factor of the electron gas.

  10. Age-Related Macular Degeneration: A Scientometric Analysis

    PubMed Central

    Ramin, Shahrokh; Soheilian, Masoud; Habibi, Gholamreza; Ghazavi, Roghayeh; Gharebaghi, Reza; Heidary, Fatemeh

    2015-01-01

    Age-related macular degeneration (ARMD) is a major cause of central blindness among working aged adults across the world. Systematic research planning on any subject, including ARMD is in need of solid data regarding previous efforts in this field and to identify the gaps in the research. This study aimed to elucidate the most important trends, directions, and gap in this subject. The data extracted from the Institute for Scientific Information were used to perform a bibliometric analysis of the scientific productions (1993–2013) about ARMD. Specific parameters related to ARMD were analyzed to obtain a view of the topic’s structure, history, and document relationships. Additionally, the trends and authors in the most influential publications were analyzed. The number of articles in this field was found constantly increasing. Most highly cited articles addressed genetic epidemiology and clinical research topics in this field. During the past 3 years, there has been a trend toward biomarker research. Through performing the first scientometric survey on ARMD research, we analyzed the characteristics of papers and the trends in scientific production. We also identified some of the critical gaps in the current research efforts that would help in large-scale research strategic planning. PMID:26060829

  11. Muscle degeneration without mechanical injury in sarcoglycan deficiency.

    PubMed

    Hack, A A; Cordier, L; Shoturma, D I; Lam, M Y; Sweeney, H L; McNally, E M

    1999-09-14

    In humans, mutations in the genes encoding components of the dystrophin-glycoprotein complex cause muscular dystrophy. Specifically, primary mutations in the genes encoding alpha-, beta-, gamma-, and delta-sarcoglycan have been identified in humans with limb-girdle muscular dystrophy. Mice lacking gamma-sarcoglycan develop progressive muscular dystrophy similar to human muscular dystrophy. Without gamma-sarcoglycan, beta- and delta-sarcoglycan are unstable at the muscle membrane and alpha-sarcoglycan is severely reduced. The expression and localization of dystrophin, dystroglycan, and laminin-alpha2, a mechanical link between the actin cytoskeleton and the extracellular matrix, appears unaffected by the loss of sarcoglycan. We assessed the functional integrity of this mechanical link and found that isolated muscles lacking gamma-sarcoglycan showed normal resistance to mechanical strain induced by eccentric muscle contraction. Sarcoglycan-deficient muscles also showed normal peak isometric and tetanic force generation. Furthermore, there was no evidence for contraction-induced injury in mice lacking gamma-sarcoglycan that were subjected to an extended, rigorous exercise regimen. These data demonstrate that mechanical weakness and contraction-induced muscle injury are not required for muscle degeneration and the dystrophic process. Thus, a nonmechanical mechanism, perhaps involving some unknown signaling function, likely is responsible for muscular dystrophy where sarcoglycan is deficient.

  12. Promising new treatments for neovascular age-related macular degeneration.

    PubMed

    Michels, Stephan; Schmidt-Erfurth, Ursula; Rosenfeld, Philip J

    2006-07-01

    Angiogenesis, the growth of new blood vessels from existing blood vessels, is responsible for vision loss in a variety of ophthalmic diseases. In neovascular age-related macular degeneration (AMD), the leading cause for legal blindness in many industrialised countries, abnormal blood vessels grow in the macula and cause blindness. There are a number of factors important in the angiogenic cascade but VEGF-A has been implicated in recent years as the major factor responsible for neovascular and exudative diseases of the eye. Numerous antiangiogenic drugs are in development but anti-VEGF drugs have shown great promise in treating neovascular AMD and other ocular diseases, and many of these drugs have been adopted from oncology where antiangiogenic therapy is gaining wide acceptance. For the first time in neovascular AMD, anti-VEGF drugs have brought the hope of vision improvement to a significant proportion of patients. This review provides an overview on angiogenic mechanisms, potential antiangiogenic treatment strategies and different antiangiogenic drugs with special focus on neovascular AMD.

  13. Late degeneration in rabbit tissues after irradiation by heavy ions

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Keng, P. C.; Lee, A. C.; Su, C. M.; Bergtold, D. S.

    1980-01-01

    Results are presented for investigations of the late effects of heavy-ion irradiation on rabbit tissues which were undertaken to assess the hazards associated with the long-term exposure of humans to heavy ions in space during such activities as the construction of solar power stations or voyages to Mars. White rabbits approximately six weeks old were exposed to various doses of collimated beams of 400-MeV/n Ne ions, 570 MeV/n Ar ions and Co-60 gamma rays directed through both eyes, and the responses of the various tissues (hair follicles, skin, cornea, lens, retina, Harderian glands, bone and forebrain) were examined. Proliferating tissues are found to exhibit high damage levels in the early and late periods following irradiation, while terminally differentiating tissues repond to radiation most intensely in the late period, years after irradiation, with no intermediate recovery. The results obtained from rabbits are used to predict the occurrence of late tissue degeneration in the central nervous system, terminally differentiating systems and stem cells of humans one or more decades following exposure to radiation levels anticipated during long-duration space flights. The studies also indicate that tissues may be prematurely aged in the sense that tissue life spans may be shortened without the development of malignancies.

  14. Radiation therapy for neovascular age-related macular degeneration

    PubMed Central

    Petrarca, Robert; Jackson, Timothy L

    2011-01-01

    Antivascular endothelial growth factor (anti-VEGF) therapies represent the standard of care for most patients presenting with neovascular (wet) age-related macular degeneration (neovascular AMD). Anti-VEGF drugs require repeated injections and impose a considerable burden of care, and not all patients respond. Radiation targets the proliferating cells that cause neovascular AMD, including fibroblastic, inflammatory, and endothelial cells. Two new neovascular AMD radiation treatments are being investigated: epimacular brachytherapy and stereotactic radiosurgery. Epimacular brachytherapy uses beta radiation, delivered to the lesion via a pars plana vitrectomy. Stereotactic radiosurgery uses low voltage X-rays in overlapping beams, directed onto the lesion. Feasibility data for epimacular brachytherapy show a greatly reduced need for anti-VEGF therapy, with a mean vision gain of 8.9 ETDRS letters at 12 months. Pivotal trials are underway (MERLOT, CABERNET). Preliminary stereotactic radiosurgery data suggest a mean vision gain of 8 to 10 ETDRS letters at 12 months. A large randomized sham controlled stereotactic radiosurgery feasibility study is underway (CLH002), with pivotal trials to follow. While it is too early to conclude on the safety and efficacy of epimacular brachytherapy and stereotactic radiosurgery, preliminary results are positive, and these suggest that radiation offers a more durable therapeutic effect than intraocular injections. PMID:21311657

  15. Review of nutrient actions on age-related macular degeneration.

    PubMed

    Zampatti, Stefania; Ricci, Federico; Cusumano, Andrea; Marsella, Luigi Tonino; Novelli, Giuseppe; Giardina, Emiliano

    2014-02-01

    The actions of nutrients and related compounds on age-related macular degeneration (AMD) are explained in this review. The findings from 80 studies published since 2003 on the association between diet and supplements in AMD were reviewed. Antioxidants and other nutrients with an effect on AMD susceptibility include carotenoids (lutein and zeaxanthin, β-carotene), vitamins (vitamin A, E, C, D, B), mineral supplements (zinc, copper, selenium), dietary fatty acids [monounsaturated fatty acids, polyunsaturated fatty acids (PUFA both omega-3 PUFA and omega-6 PUFA), saturated fatty acids and cholesterol], and dietary carbohydrates. The literature revealed that many of these antioxidants and nutrients exert a protective role by functioning synergistically. Specifically, the use of dietary supplements with targeted actions can provide minimal benefits on the onset or progression of AMD; however, this does not appear to be particularly beneficial in healthy people. Furthermore, some supplements or nutrients have demonstrated discordant effects on AMD in some studies. Since intake of dietary supplements, as well as exposure to damaging environmental factors, is largely dependent on population habits (including dietary practices) and geographical localization, an overall healthy diet appears to be the best strategy in reducing the risk of developing AMD. As of now, the precise mechanism of action of certain nutrients in AMD prevention remains unclear. Thus, future studies are required to examine the effects that nutrients have on AMD and to determine which factors are most strongly correlated with reducing the risk of AMD or preventing its progression. PMID:24461310

  16. Clinical characteristics and current therapies for inherited retinal degenerations.

    PubMed

    Sahel, José-Alain; Marazova, Katia; Audo, Isabelle

    2014-10-16

    Inherited retinal degenerations (IRDs) encompass a large group of clinically and genetically heterogeneous diseases that affect approximately 1 in 3000 people (>2 million people worldwide) (Bessant DA, Ali RR, Bhattacharya SS. 2001. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 11: 307-316.). IRDs may be inherited as Mendelian traits or through mitochondrial DNA, and may affect the entire retina (e.g., rod-cone dystrophy, also known as retinitis pigmentosa, cone dystrophy, cone-rod dystrophy, choroideremia, Usher syndrome, and Bardet-Bidel syndrome) or be restricted to the macula (e.g., Stargardt disease, Best disease, and Sorsby fundus dystrophy), ultimately leading to blindness. IRDs are a major cause of severe vision loss, with profound impact on patients and society. Although IRDs remain untreatable today, significant progress toward therapeutic strategies for IRDs has marked the past two decades. This progress has been based on better understanding of the pathophysiological pathways of these diseases and on technological advances.

  17. White matter degeneration in schizophrenia: a comparative diffusion tensor analysis

    NASA Astrophysics Data System (ADS)

    Ingalhalikar, Madhura A.; Andreasen, Nancy C.; Kim, Jinsuh; Alexander, Andrew L.; Magnotta, Vincent A.

    2010-03-01

    Schizophrenia is a serious and disabling mental disorder. Diffusion tensor imaging (DTI) studies performed on schizophrenia have demonstrated white matter degeneration either due to loss of myelination or deterioration of fiber tracts although the areas where the changes occur are variable across studies. Most of the population based studies analyze the changes in schizophrenia using scalar indices computed from the diffusion tensor such as fractional anisotropy (FA) and relative anisotropy (RA). The scalar measures may not capture the complete information from the diffusion tensor. In this paper we have applied the RADTI method on a group of 9 controls and 9 patients with schizophrenia. The RADTI method converts the tensors to log-Euclidean space where a linear regression model is applied and hypothesis testing is performed between the control and patient groups. Results show that there is a significant difference in the anisotropy between patients and controls especially in the parts of forceps minor, superior corona radiata, anterior limb of internal capsule and genu of corpus callosum. To check if the tensor analysis gives a better idea of the changes in anisotropy, we compared the results with voxelwise FA analysis as well as voxelwise geodesic anisotropy (GA) analysis.

  18. Degenerate gaugino mass region and mono-boson collider signatures

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, Archana; Carpenter, Linda M.; Raby, Stuart

    2014-09-01

    In this paper we discuss search strategies at the LHC for light electroweak gauginos which are mostly wino-like, Higgsino-like or an admixture. These states are typically degenerate with decay products that are less energetic and hence difficult to detect. In addition, their production cross sections at a hadron collider are suppressed compared to colored states such as the gluinos. In order to detect these states one needs to trigger on initial-or final-state radiation. Many previous analyses have focussed on mono-jet and mono-photon triggers. In this paper we argue and show that these triggers are unlikely to succeed, due to the large background from QCD backgrounds for the mono-jet searches and the fact that the pT distribution of the mono-photons are rapidly decreasing functions of pT. We show this with both an analytic calculation of photons in the initial-state radiation and also a detailed numerical analysis. We then argue that mono-Z triggers, from Z decaying into charged leptons may well provide the best search strategy, in particular for Higgsino-like and mixed cases.

  19. Non-degenerate solutions of the universal Whitham hierarchy

    NASA Astrophysics Data System (ADS)

    Takasaki, Kanehisa; Takebe, Takashi; Teo, Lee Peng

    2010-08-01

    The notion of non-degenerate solutions for the dispersionless Toda hierarchy is generalized to the universal Whitham hierarchy of genus zero with M + 1 marked points. These solutions are characterized by a Riemann-Hilbert problem (generalized string equations) with respect to two-dimensional canonical transformations and may be thought of as a kind of general solutions of the hierarchy. The Riemann-Hilbert problem contains M arbitrary functions Ha(z0, za), a = 1, ..., M, which play the role of generating functions of two-dimensional canonical transformations. The solution of the Riemann-Hilbert problem is described by period maps on the space of (M + 1)-tuples (zα(p): α = 0, 1, ..., M) of conformal maps from M disks of the Riemann sphere and their complements to the Riemann sphere. The period maps are defined by an infinite number of contour integrals that generalize the notion of harmonic moments. The F-function (free energy) of these solutions is also shown to have a contour integral representation.

  20. Automatic age-related macular degeneration detection and staging

    NASA Astrophysics Data System (ADS)

    van Grinsven, Mark J. J. P.; Lechanteur, Yara T. E.; van de Ven, Johannes P. H.; van Ginneken, Bram; Theelen, Thomas; Sánchez, Clara I.

    2013-03-01

    Age-related macular degeneration (AMD) is a degenerative disorder of the central part of the retina, which mainly affects older people and leads to permanent loss of vision in advanced stages of the disease. AMD grading of non-advanced AMD patients allows risk assessment for the development of advanced AMD and enables timely treatment of patients, to prevent vision loss. AMD grading is currently performed manually on color fundus images, which is time consuming and expensive. In this paper, we propose a supervised classification method to distinguish patients at high risk to develop advanced AMD from low risk patients and provide an exact AMD stage determination. The method is based on the analysis of the number and size of drusen on color fundus images, as drusen are the early characteristics of AMD. An automatic drusen detection algorithm is used to detect all drusen. A weighted histogram of the detected drusen is constructed to summarize the drusen extension and size and fed into a random forest classifier in order to separate low risk from high risk patients and to allow exact AMD stage determination. Experiments showed that the proposed method achieved similar performance as human observers in distinguishing low risk from high risk AMD patients, obtaining areas under the Receiver Operating Characteristic curve of 0.929 and 0.934. A weighted kappa agreement of 0.641 and 0.622 versus two observers were obtained for AMD stage evaluation. Our method allows for quick and reliable AMD staging at low costs.

  1. [Mechanism of neuronal degeneration of multiple system atrophy].

    PubMed

    Yoshida, Mari; Sone, Mie

    2009-09-01

    Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder that encompasses olivopontocerebellar atrophy (OPCA), striatonigral degeneration (SND) and Shy-Drager syndrome (SDS). The histopathological hallmarks are alpha-synuclein (AS) positive glial cytoplasmic inclusions (GCIs) in oligodendroglias. AS aggregation is also found in glial nuclear inclusions (GNIs), neuronal cytoplasmic inclusions (NCIs), neuronal nuclear inclusions (NNIs) and dystrophic neurites. Reviewing the pathological features in 102 MSA cases revealed that the, OPCA-type was relatively more frequent and SND-type was less frequent in Japanese MSA cases. The frequency of the SND-type is relatively high in Western countries. This different in the dominant type suggests that the phenotypic patterns of MSA may vary with the race. In early stages of MSA, in addition to GCIs, NNIs, NCIs, and diffuse homogenous stain of AS in neuronal nuclei and cytoplasm were observed in various vulnerable lesions including the pontine nuclei, putamen, substantia nigra, locus ceruleus, inferior olivary nucleus, intermediolateral column of the thoracic cord, lower motor neurons, and cortical pyramidal neurons. These findings indicated that the primary nonfibrillar and fibrillar AS aggregation also occurred in neurons. Therefore, both the direct involvement of neurons themselves and the oligodendroglia-myelin-axon mechanism may synergistically accelerate the degenerative process of MSA. PMID:19803404

  2. Modifiable risk factors for age-related macular degeneration.

    PubMed

    Guymer, Robyn H; Chong, Elaine Wei-Tinn

    2006-05-01

    Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in Australia and other Western countries. As there is no cure for AMD, and treatments to stop its progression have met with limited success, there is an interest in identifying modifiable risk factors to prevent or slow disease progression. To date, smoking is the only proven modifiable risk factor for AMD. Other factors under study include (i) cardiovascular risk factors such as hypertension, body mass index, and atherosclerosis; and (ii) dietary risk factors including fat and antioxidant intake, but so far these studies have produced conflicting results. Dietary fat in relation to AMD has recently attracted media attention. Despite very limited work supporting an association between vegetable fat and AMD, widespread publicity advocating margarine as a cause of AMD and encouraging use of butter instead has caused confusion and anxiety among sufferers of AMD and the general public, as well as concern among health professionals. The antioxidant carotenoids--lutein and zeaxanthin--found in dark green or yellow vegetables exist in high concentrations in the macula and are hypothesised to play a protective role. Of nine controlled trials of supplementation with carotenoids and other antioxidants, three suggested that various combinations of antioxidants and carotenoids were protective. While a low-fat diet rich in dark green and yellow vegetables is advocated in general, any specific recommendations regarding certain fats or antioxidant supplementation and AMD are not based on consistent findings at this stage. PMID:16646746

  3. Eye Conditions in Older Adults: Age-Related Macular Degeneration.

    PubMed

    Iroku-Malize, Tochi; Kirsch, Scott

    2016-06-01

    Age-related macular degeneration (AMD) causes a progressive loss of photoreceptors in the macula. It is the most common cause of legal blindness in the United States, and some form of AMD is thought to affect more than 9 million individuals. Risk factors include older age, smoking, dyslipidemia, obesity, white race, female sex, and a family history of AMD. There are two types of advanced AMD: nonexudative (dry or geographic atrophy) and exudative (wet or neovascular). Both cause progressive central vision loss with intact peripheral vision. Nonexudative AMD accounts for 80% to 90% of all advanced cases, and more than 90% of patients with severe vision loss have exudative AMD. On ophthalmoscopic examination, early findings include drusen (ie, yellow deposits in the retina). Prominent choroidal vessels, subretinal edema, and/or hemorrhage are seen in wet AMD. Regular eye examinations, visual field testing, fluorescein angiography, and optical coherence tomography are used for diagnosis and to guide management. There is no specific therapy for dry AMD, but antioxidant supplementation may be helpful. Intravitreal injection of a vascular endothelial growth factor inhibitor is the treatment of choice for wet AMD. Optical aids and devices can help to maximize function for patients with AMD. PMID:27348529

  4. Current therapeutic developments in atrophic age-related macular degeneration.

    PubMed

    Hanus, Jakub; Zhao, Fangkun; Wang, Shusheng

    2016-01-01

    Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age-Related Eye Disease Study (AREDS) formulation, which has been demonstrated to slow down the progression of dry AMD. This review summarises recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem cell-based therapy, hold great promise, which brings great hope for this devastating blinding disease. PMID:26553922

  5. Pseudotumoral encapsulated fat necrosis with diffuse pseudomembranous degeneration.

    PubMed

    Felipo, F; Vaquero, M; del Agua, C

    2004-09-01

    An extraordinary case of encapsulated fat necrosis characterized by its large size, diffuse formation of pseudomembranes, and tendency to recur after excision is reported. A 67-year-old Caucasian woman suffering from morbid obesity was admitted for diagnosis and surgical treatment of a soft tissue mass showing a longest diameter of 14 cm and lying adjacently to the scar from previous appendicectomy. Histopathologic features were consistent with a nodular-cystic encapsulated fat necrosis with diffuse pseudomembranous transformation. Eight months after surgery, a new larger mass (longest diameter of 18 cm) sharing identical histopathologic features appeared in the same location. Encapsulated fat necrosis is a well-defined entity even though several names have been proposed for this condition, including mobile encapsulated lipoma, encapsulated necrosis, or nodular-cystic fat necrosis. Its pathogenesis seems to be related to ischemic changes secondary to previous trauma. It may occasionally show degenerative changes, including dystrophic calcifications and presence of pseudomembranes. To our knowledge, these are the first reported cases of encapsulated fat necrosis presenting as lesions of such size and showing diffuse formation of pseudomembranes; these particular features made diagnosis difficult and led to consideration of a wide range of potential diagnostic possibilities. This case expands the clinico-pathologic spectrum of membranocystic fat necrosis, including the potential ability of this subcutaneous fatty tissue abnormality to recur after surgical excision. Felipo F, Vaquero M, del Agua C. Pseudotumoral encapsulated fat necrosis with diffuse pseudomembranous degeneration.

  6. Seven New Loci Associated with Age-Related Macular Degeneration

    PubMed Central

    2013-01-01

    Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate understanding of AMD biology and help design new therapies, we executed a collaborative genomewide association study, examining >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 genomic loci associated with AMD with p<5×10−8 and enriched for genes involved in regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include 7 loci reaching p<5×10−8 for the first time, near the genes COL8A1/FILIP1L, IER3/DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9/MIR548A2, and B3GALTL. A genetic risk score combining SNPs from all loci displayed similar good ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD. PMID:23455636

  7. Repeated adjacent-segment degeneration after posterior lumbar interbody fusion.

    PubMed

    Okuda, Shinya; Oda, Takenori; Yamasaki, Ryoji; Maeno, Takafumi; Iwasaki, Motoki

    2014-05-01

    One of the most important sequelae affecting long-term results is adjacent-segment degeneration (ASD) after posterior lumbar interbody fusion (PLIF). Although several reports have described the incidence rate, there have been no reports of repeated ASD. The purpose of this report was to describe 1 case of repeated ASD after PLIF. A 62-year-old woman with L-4 degenerative spondylolisthesis underwent PLIF at L4-5. At the second operation, L3-4 PLIF was performed for L-3 degenerative spondylolisthesis 6 years after the primary operation. At the third operation, L2-3 PLIF was performed for L-2 degenerative spondylolisthesis 1.5 years after the primary operation. Vertebral collapse of L-1 was detected 1 year after the third operation, and the collapse had progressed. At the fourth operation, 3 years after the third operation, vertebral column resection of L-1 and replacement of titanium mesh cages with pedicle screw fixation between T-4 and L-5 was performed. Although the patient's symptoms resolved after each operation, the time between surgeries shortened. The sacral slope decreased gradually although each PLIF achieved local lordosis at the fused segment.

  8. The CERAD Neuropsychological Battery in Patients with Frontotemporal Lobar Degeneration

    PubMed Central

    Haanpää, Ramona M.; Suhonen, Noora-Maria; Hartikainen, Päivi; Koivisto, Anne M.; Moilanen, Virpi; Herukka, Sanna-Kaisa; Hänninen, Tuomo; Remes, Anne M.

    2015-01-01

    Background/Aims The diagnosis of frontotemporal lobar degeneration (FTLD) is based on neuropsychological examination in addition to clinical symptoms and brain imaging. There is no simple, validated, cognitive tool available in screening for FTLD. The Consortium to Establish a Registry for Alzheimer's Disease neuropsychological battery (CERAD-NB) was originally devised to identify the early cognitive changes related to Alzheimer's disease (AD). Our aim was to investigate the utility of the CERAD-NB in FTLD. Methods Patients with FTLD (n = 95) and AD (n = 90) were assessed with the CERAD-NB, Trail Making Test parts A and B and single-letter Phonemic Fluency. Results FTLD patients were more severely impaired in the Verbal Fluency subtest in the CERAD-NB and Trail Making Test part A compared to AD patients. In addition, AD patients were more impaired in memory subtests compared to FTLD patients. Conclusion The CERAD-NB may be a useful tool in screening for FTLD. Impaired performance in Verbal Fluency with moderately well-preserved Delayed Recall and Memory Tests may help in identifying patients with probable FTLD and discriminating FTLD from AD. Adding the Trail Making Test to the battery might enhance its value as a screening instrument for FTLD. PMID:25999981

  9. Age-Related Macular Degeneration: A Scientometric Analysis.

    PubMed

    Ramin, Shahrokh; Soheilian, Masoud; Habibi, Gholamreza; Ghazavi, Roghayeh; Gharebaghi, Reza; Heidary, Fatemeh

    2015-01-01

    Age-related macular degeneration (ARMD) is a major cause of central blindness among working aged adults across the world. Systematic research planning on any subject, including ARMD is in need of solid data regarding previous efforts in this field and to identify the gaps in the research. This study aimed to elucidate the most important trends, directions, and gap in this subject. The data extracted from the Institute for Scientific Information were used to perform a bibliometric analysis of the scientific productions (1993-2013) about ARMD. Specific parameters related to ARMD were analyzed to obtain a view of the topic's structure, history, and document relationships. Additionally, the trends and authors in the most influential publications were analyzed. The number of articles in this field was found constantly increasing. Most highly cited articles addressed genetic epidemiology and clinical research topics in this field. During the past 3 years, there has been a trend toward biomarker research. Through performing the first scientometric survey on ARMD research, we analyzed the characteristics of papers and the trends in scientific production. We also identified some of the critical gaps in the current research efforts that would help in large-scale research strategic planning. PMID:26060829

  10. Degenerate four-wave mixing measurement in iodine vapor

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Bo; Chen, De-Ying; Fan, Rong-Wei; Yang, Jun

    2008-12-01

    Degenerate four-wave mixing (DFWM) is a nonlinear optical process that has been developed as a detective tool for making quantitative measurements of gas dynamic properties in the various environments. This technique can be used to measure temperature and species concentration in both flames and plasma environments. The resulting coherent signal beam makes DFWM particularly attractive for luminous and harsh environments, compared to incoherent techniques, such as laser-induced fluorescence (LIF). Forward DFWM with self-stability of spilt-beam system has been demonstrated in iodine vapor. It's found that there exists no LIF because of collision quenching at atmospheric pressure and room temperature. But observed vivid DFWM spectroscopy (554-556nm) of iodine vapor at 0oC and room temperature. Furthermore, DFWM can probe non-fluorescing species. We describe a novel advanced sensor method for measuring temperature of gas flows using DFWM. This technique without suffering of severe quenching problems at atmospheric pressure is of importance to trace atom, molecular and radical in combustion diagnosis.

  11. Angiogenesis in the degeneration of the lumbar intervertebral disc

    PubMed Central

    David, Gh; Iencean, SM; Mohan, A

    2010-01-01

    The goal of the study is to show the histological and biochemical changes that indicate the angiogenesis of the intervertebral disc in lumbar intervertebral disc hernia and the existence of epidemiological correlations between these changes and the risk factors of lumbar intervertebral disc hernia, as well as the patient's quality of life (QOL). We have studied 50 patients aged between 18 and 73 years old, who have undergone lumbar intervertebral disc hernia surgery, making fibroblast growth factor and vascular endothelial growth factor level measurements, as elements in the process of appreciating the disc angiogenesis. Also, pre–surgery and post–surgery QOL has been measured, as well as the intensity of the pain syndrome. We have identified factors capable of stimulating vascular endothelial growth (VEGF, FGF–2) for the examined disc material, but histological examination did not show angiogenesis. The process of angiogenesis at the degenerated intervertebral disc level affects the patient's quality of life both pre and postoperatively, and may be a predictive factor for the post–operative results. Patients can prevent the appearance of angiogenesis type degenerative processes of the intervertebral disc by avoiding angiogenesis correlated factors (weight control, physical effort, and smoking). PMID:20968201

  12. Age-Related Macular Degeneration: A Scientometric Analysis.

    PubMed

    Ramin, Shahrokh; Soheilian, Masoud; Habibi, Gholamreza; Ghazavi, Roghayeh; Gharebaghi, Reza; Heidary, Fatemeh

    2015-01-01

    Age-related macular degeneration (ARMD) is a major cause of central blindness among working aged adults across the world. Systematic research planning on any subject, including ARMD is in need of solid data regarding previous efforts in this field and to identify the gaps in the research. This study aimed to elucidate the most important trends, directions, and gap in this subject. The data extracted from the Institute for Scientific Information were used to perform a bibliometric analysis of the scientific productions (1993-2013) about ARMD. Specific parameters related to ARMD were analyzed to obtain a view of the topic's structure, history, and document relationships. Additionally, the trends and authors in the most influential publications were analyzed. The number of articles in this field was found constantly increasing. Most highly cited articles addressed genetic epidemiology and clinical research topics in this field. During the past 3 years, there has been a trend toward biomarker research. Through performing the first scientometric survey on ARMD research, we analyzed the characteristics of papers and the trends in scientific production. We also identified some of the critical gaps in the current research efforts that would help in large-scale research strategic planning.

  13. Electronic restoration of vision in those with photoreceptor degenerations.

    PubMed

    O'Brien, Emily E; Greferath, Ursula; Vessey, Kirstan A; Jobling, Andrew I; Fletcher, Erica L

    2012-09-01

    Complete loss of vision is one of the most feared sequelae of retinal disease. Currently, there are few if any treatment options available to patients that may slow or prevent blindness in diseases caused by photoreceptor loss, such as retinitis pigmentosa and age-related macular degeneration. Electronic restoration of vision has emerged over recent years as a safe and viable option for those who have lost substantial numbers of photoreceptors and who are severely vision impaired. Indeed, there has been a dramatic increase in our understanding of what is required to restore vision using an electronic retinal prosthesis. Recent reports show that for some patients, restoration of vision to the point of reading large letters is possible. In this review, we examine the types of implants currently under investigation and the results these devices have achieved clinically. We then consider a range of engineering and biological factors that may need to be considered to improve the visual performance of newer-generation devices. With added research, it is hoped that the level of vision achieved with newer generation devices will steadily improve, resulting in enhanced quality of life for those with severe vision impairment.

  14. Nutritional Risk Factors for Age-Related Macular Degeneration

    PubMed Central

    Ersoy, Lebriz; Lechanteur, Yara T.; Hoyng, Carel B.; Kirchhof, Bernd; den Hollander, Anneke I.

    2014-01-01

    Purpose. To evaluate the role of nutritional factors, serum lipids, and lipoproteins in late age-related macular degeneration (late AMD). Methods. Intake of red meat, fruit, fish, vegetables, and alcohol, smoking status, and body mass index (BMI) were ascertained questionnaire-based in 1147 late AMD cases and 1773 controls from the European Genetic Database. Serum levels of lipids and lipoproteins were determined. The relationship between nutritional factors and late AMD was assessed using logistic regression. Based on multivariate analysis, area-under-the-curve (AUC) was calculated by receiver-operating-characteristics (ROC). Results. In a multivariate analysis, besides age and smoking, obesity (odds ratio (OR): 1.44, P = 0.014) and red meat intake (daily: OR: 2.34, P = 8.22 × 10−6; 2–6x/week: OR: 1.67, P = 7.98 × 10−5) were identified as risk factors for developing late AMD. Fruit intake showed a protective effect (daily: OR: 0.52, P = 0.005; 2–6x/week: OR: 0.58, P = 0.035). Serum lipid and lipoprotein levels showed no significant association with late AMD. ROC for nutritional factors, smoking, age, and BMI revealed an AUC of 0.781. Conclusion. Red meat intake and obesity were independently associated with increased risk for late AMD, whereas fruit intake was protective. A better understanding of nutritional risk factors is necessary for the prevention of AMD. PMID:25101280

  15. Retinal degeneration in cats fed casein. I. Taurine deficiency.

    PubMed

    Schmidt, S Y; Berson, E L; Hayes, K C

    1976-01-01

    All cats fed a taurine-free casein diet for at least 23 weeks have shown granularity with a hyper-reflective white zone in the area centralis, nondetectable electroretinograms (ERG's), and structural changes indicating photoreceptor cell degeneration. The present study has demonstrated that cats fed this casein diet have a selective decrease in plasma and retinal taurine concentrations by five weeks; taurine levels were about 4 per cent of normal in plasma, and 60 per cent of normal in retina. After 10 weeks, taurine levels were 2 to 4 per cent of normal in plasma and reached a minimum of 20 to 30 per cent of normal in the retina. These biochemical changes occurred in association with a delay in the cone ERG implicit time at five weeks and reduced cone and rod ERG amplitudes at 10 weeks. During this period, retinal DNA content (as a measure of cell viability) and fundus appearance were normal. By 23 weeks, ERG's were nondetectable, retinal DNA content was reduced, and the fundus showed typical changes in the area centralis. These studies help to establish a biological role for taurine in maintaining photoreceptor cell function and viability in the cat.

  16. Exploring age-related brain degeneration in meditation practitioners.

    PubMed

    Luders, Eileen

    2014-01-01

    A growing body of research suggests that meditation practices are associated with substantial psychological as well as physiological benefits. In searching for the biological mechanisms underlying the beneficial impact of meditation, studies have revealed practice-induced alterations of neurotransmitters, brain activity, and cognitive abilities, just to name a few. These findings not only imply a close link between meditation and brain structure, but also suggest possible modulating effects of meditation on age-related brain atrophy. Given that normal aging is associated with significant loss of brain tissue, meditation-induced growth and/or preservation might manifest as a seemingly reduced brain age in meditators (i.e., cerebral measures characteristic of younger brains). Surprisingly, there are only three published studies that have addressed the question of whether meditation diminishes age-related brain degeneration. This paper reviews these three studies with respect to the brain attributes studied, the analytical strategies applied, and the findings revealed. The review concludes with an elaborate discussion on the significance of existing studies, implications and directions for future studies, as well as the overall relevance of this field of research.

  17. Degenerate Quasicrystal of Hard Triangular Bipyramids Stabilized by Entropic Forces

    NASA Astrophysics Data System (ADS)

    Haji-Akbari, Amir; Engel, Michael; Glotzer, Sharon

    2012-02-01

    The assembly of hard polyhedra into novel ordered structures has recently received much attention. Here we focus on triangular bipyramids (TBPs)- i.e. dimers of hard tetrahedra- which pack densely in a simple triclinic crystal with two particles per unit cell [1]. This packing is referred to as the TBP crystal. We show that hard TBPs do not form this densest packing in simulation. Instead, they assemble into a different, far more complicated structure, a dodecagonal quasicrystal, which, in the level of monomers, is identical to the quasicrystal recently discovered in the hard tetrahedron system [2], but the way that tetrahedra pair into TBPs in the nearest neighbor network is random, making it the first degenerate quasicrystal reported in the literature [3]. This notion of degeneracy is in the level of decorating individual tiles and is different from the degeneracy of a quasiperiodic random tiling arising from phason flips [4]. The (3.4.3^2.4) approximant of the quasicrystal is shown to be more stable than the TBP crystal at densities below 79.7%.[4pt] [1] Chen ER, Engel M, Sharon SC, Disc. Comp. Geom. 44:253 (2010).[0pt] [2] Haji-Akbari A, Engel M, et al. Nature 462:773 (2009).[0pt] [3] Haji-Akbari A, Engel M, Glotzer SC, arXiv:1106.5561 [PRL, in press].[0pt] [4] Elser V, PRL 54: 1730 (1985)

  18. Experimental study on fulminant angitis with fibrinoid-like degeneration.

    PubMed

    Yamaguchi, H; Morisada, M

    1985-01-01

    Administration of high doses of Na2EDTA or feeding animals a low calcium diet leads to angiolytic changes of the mesenteric arteries as reported in previous papers. Slight inflammatory reactions in the arterial wall including leucocytic infiltration and exudation could be demonstrated. The reason is thought to be the lack of morphological changes of the endothelium. As far as the endothelium was concerned a lift up phenomenon of the endothelial cells and the formation of subendothelial vacuoles was observed, but no endothelial gap formation or desquamation. Administration of Na2EDTA resulted in rapid removal of calcium ions from living animals, but injurious effects on the morphology of the cells did not occur except of changes of the cellular shape, both of endothelial and smooth muscle cells. Without any morpho-functional alterations of the endothelial lining cells, severe exudation and leucocytic trapping could not be induced. The morphological changes of the vascular wall following the above procedures are said to be angiolytic and not angitic. In this experiment, dysproteinemia was provoked in Na2EDTA treated animals by repeated administration of bovine serum albumin (BSA). As a result, angitis-like lesions with severe exudation, similar to those of fibrinoid degeneration and leucocytic reaction against it, were demonstrated. These facts showed that angitis is not merely due to exogenous factors and hostal predisposition.

  19. Prevalence of age-related macular degeneration among the elderly

    PubMed Central

    Rasoulinejad, Seyed Ahmad; Zarghami, Amin; Hosseini, Seyed Reza; Rajaee, Neda; Rasoulinejad, Seyed Elahe; Mikaniki, Ebrahim

    2015-01-01

    Background: Age-related macular degeneration (AMD) is the leading cause of visual impairment and blindness in elderly population in the developing countries. Previous epidemiological studies revealed various potential modifiable risk factors for this disease. The purpose of this study was to evaluate the prevalence of AMD among elderly living in Babol, North of Iran. Methods: The study population of this cross-sectional study came from the Amirkola Health and Ageing Project (AHAP), the first comprehensive cohort study of the health of people aged 60 years and over in Amirkola, North of Iran. The prevalence of AMD was estimated and its risk was determined using logistic regression analysis (LRA) with regard to variables such as smoking, hyperlipidemia, hypertension and diabetes. Results: Five hundred and five participants with mean age of 71.55±5.9 (ranged 60-89) years entered the study. The prevalence of AMD was 17.6%. There was a significant association between AMD and smoking (P<0.001) but no association was seen with AMD and age, level of education, history of hyperlipidemia, hypertension and diabetes. Multiple LRAs revealed that smoking increased AMD by odds ratio of 5.03 (95% confidence interval 2.47-10.23 p<0.001) as compared to nonsmokers Conclusion: According to our findings, the prevalence of AMD was relatively high and smoking increased the risk of AMD in the elderly population. PMID:26644880

  20. Current Therapeutic Development for Atrophic Age-related Macular Degeneration

    PubMed Central

    Hanus, Jakub; Zhao, Fangkun; Wang, Shusheng

    2016-01-01

    Age-related macular degeneration (AMD), a degenerative disorder of the central retina, is the leading cause of irreversible blindness in the elderly. The underlying mechanism of the advanced form of dry AMD, also named geographic atrophy (GA) or atrophic AMD, remains unclear. Consequently, no cure is available for dry AMD or GA. The only prevention option currently available is the Age Related Eye Disease Study (AREDS) formulation which has been demonstrated to slow down the progression of dry AMD. This review summarizes recent advances in therapy for dry AMD and GA. Building on the new understanding of the disease and recent technological breakthroughs, numerous ongoing clinical trials have the goal of meeting the need to cure AMD. Therapeutic agents are being developed to target the key features of the disease, including inhibiting the complement pathway and other inflammatory pathways, reducing oxidative stress and protecting retinal pigment epithelial (RPE) cells, inhibiting lipofuscin and visual cycle, regenerating RPE cells from stem cells and restoring choroidal blood flow. Some of these therapeutic options, especially the stem-cell based therapy, hold great promise, which brings great hope for this devastating blinding disease. PMID:26553922

  1. Clinical characteristics and current therapies for inherited retinal degenerations.

    PubMed

    Sahel, José-Alain; Marazova, Katia; Audo, Isabelle

    2015-02-01

    Inherited retinal degenerations (IRDs) encompass a large group of clinically and genetically heterogeneous diseases that affect approximately 1 in 3000 people (>2 million people worldwide) (Bessant DA, Ali RR, Bhattacharya SS. 2001. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 11: 307-316.). IRDs may be inherited as Mendelian traits or through mitochondrial DNA, and may affect the entire retina (e.g., rod-cone dystrophy, also known as retinitis pigmentosa, cone dystrophy, cone-rod dystrophy, choroideremia, Usher syndrome, and Bardet-Bidel syndrome) or be restricted to the macula (e.g., Stargardt disease, Best disease, and Sorsby fundus dystrophy), ultimately leading to blindness. IRDs are a major cause of severe vision loss, with profound impact on patients and society. Although IRDs remain untreatable today, significant progress toward therapeutic strategies for IRDs has marked the past two decades. This progress has been based on better understanding of the pathophysiological pathways of these diseases and on technological advances. PMID:25324231

  2. SINGLE-DEGENERATE TYPE Ia SUPERNOVAE WITHOUT HYDROGEN CONTAMINATION

    SciTech Connect

    Justham, Stephen

    2011-04-01

    The lack of hydrogen in spectra of type Ia supernovae (SNe Ia) is often seen as troublesome for single-degenerate (SD) progenitor models. We argue that, since continued accretion of angular momentum can prevent explosion of the white dwarf, it may be natural for the donor stars in SD progenitors of SNe Ia to exhaust their envelopes and shrink rapidly before the explosion. This outcome seems most likely for SD SN Ia progenitors where mass transfer begins from a giant donor star and might extend to other SD systems. Not only is the amount of hydrogen left in such a system below the current detection limit, but the donor star is typically orders of magnitude smaller than its Roche lobe by the point when an SD SN Ia occurs, in which case attempts to observe collisions between SN shocks and giant donor stars seem unlikely to succeed. We consider the constraints on this model from the circumstellar structures seen in spectra of SN 2006X and suggest a novel explanation for the origin of this material.

  3. Stimulated degenerate four-wave mixing in Si nanocrystal waveguides

    NASA Astrophysics Data System (ADS)

    Manna, Santanu; Bernard, Martino; Biasi, Stefano; Ramiro Manzano, Fernando; Mancinelli, Mattia; Ghulinyan, Mher; Pucker, George; Pavesi, Lorenzo

    2016-07-01

    Parametric frequency conversion via four-wave mixing (FWM) in silicon nanocrystal (Si NC) waveguides is observed at 1550 nm. To investigate the role of Si NC, different types of waveguides containing Si NC in a SiO2 matrix were fabricated. Owing to the increase of the dipole oscillator strength mediated by the quantum confinement effect, the non-linear refractive index ({n}2) of Si NCs is found to be more than one order of magnitude larger than the one of bulk Si. Coupled differential equations for the degenerate FWM process taking into account the role of Si NC were numerically solved to model the experimental data. The modeling yields an effective {n}2 for Si NCs in SiO2 waveguides which is similar to the one of Si waveguides. We also measured a large signal to idler conversion bandwidth of ∼22 nm. The large non-linear refractive index is joined with a large two photon absorption coefficient which makes the use of Si NC in non-linear optical devices mostly suitable for mid-infrared applications.

  4. Eye Conditions in Older Adults: Age-Related Macular Degeneration.

    PubMed

    Iroku-Malize, Tochi; Kirsch, Scott

    2016-06-01

    Age-related macular degeneration (AMD) causes a progressive loss of photoreceptors in the macula. It is the most common cause of legal blindness in the United States, and some form of AMD is thought to affect more than 9 million individuals. Risk factors include older age, smoking, dyslipidemia, obesity, white race, female sex, and a family history of AMD. There are two types of advanced AMD: nonexudative (dry or geographic atrophy) and exudative (wet or neovascular). Both cause progressive central vision loss with intact peripheral vision. Nonexudative AMD accounts for 80% to 90% of all advanced cases, and more than 90% of patients with severe vision loss have exudative AMD. On ophthalmoscopic examination, early findings include drusen (ie, yellow deposits in the retina). Prominent choroidal vessels, subretinal edema, and/or hemorrhage are seen in wet AMD. Regular eye examinations, visual field testing, fluorescein angiography, and optical coherence tomography are used for diagnosis and to guide management. There is no specific therapy for dry AMD, but antioxidant supplementation may be helpful. Intravitreal injection of a vascular endothelial growth factor inhibitor is the treatment of choice for wet AMD. Optical aids and devices can help to maximize function for patients with AMD.

  5. Mechanism of Inflammation in Age-Related Macular Degeneration

    PubMed Central

    Parmeggiani, Francesco; Romano, Mario R.; Costagliola, Ciro; Semeraro, Francesco; Incorvaia, Carlo; D'Angelo, Sergio; Perri, Paolo; De Palma, Paolo; De Nadai, Katia; Sebastiani, Adolfo

    2012-01-01

    Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease. PMID:23209345

  6. Detecting superlight dark matter with Fermi-degenerate materials

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Pyle, Matt; Zhao, Yue; Zurek, Kathryn M.

    2016-08-01

    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O (keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O (meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ˜ 10-3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in order to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.

  7. Cartilaginous and ligamentous degeneration of the wrist. Anatomic study.

    PubMed

    Fortems, Y; de Smet, L; Fabry, G

    1994-01-01

    The growing precision of diagnostic techniques (MRI, arthrography, arthroscopy) and the consequent increase of the diagnosis of cartilaginous and ligamentous lesions of the wrist led us to undertake a detailed anatomical study of the carpus and to extend this study to the search for correlations between these lesions and the radio-ulnar index. Fifty one cadaveric wrists were dissected from an elderly population (mean age of 76 years). Cartilaginous lesions were found in two-thirds of radioulnar joints of the wrist with a marked predominance for the lunate bone (43%). The triangular cartilage of the fibrocartilaginous complex (TFCC) was perforated in 23 wrists (46%). We established a correlation between the radio-ulnar index and perforations of the TFCC (p < 0.05), as well as the thickness of this structure (p < 0.05). The relationship between age and rupture of intrinsic ligaments (p < 0.05), and the radio-ulnar index (p < 0.05) and age was also established. We present our figures, discuss the clinical implications, and draw the following conclusions from this study. 1) The carpus is a complex joint which is subject to age-related degeneration. 2) The large number of cartilaginous lesions observed in this study must be taken into account in the interpretation of MRI and the "over" precise results of arthroscopy. PMID:7531478

  8. Double layers and double wells in arbitrary degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2016-06-01

    Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η0, ranging from dilute classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η0 < 0 and quantum with η0 > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.

  9. Pitfalls in the diagnostic evaluation of subacute combined degeneration.

    PubMed

    Ulrich, A; Müller, D; Linnebank, M; Tarnutzer, A A

    2015-05-14

    We report a case of a 43-year-old man presenting with a 2-week history of painless ascending sensory disturbances, suspected to be suffering from acute inflammatory polyneuropathy. On clinical examination, deep tendon reflexes were preserved and muscle strength was 5/5 everywhere. Gait was ataxic with positive Romberg test. Lumbar puncture was normal and electroneurography demonstrated demyelination. With spinal cord involvement centred on the posterior tracts on MRI, differential diagnosis focused on cobalamin deficiency. Initial laboratory work up showed nearly normal holotranscobalamin (43 pmol/L, normal>50) suggesting no vitamin B12 deficiency. Surprisingly, further testing including methylmalonic acid (3732 nmol/L, normal<271) and homocysteine (48.5 µmol/L, normal<10) showed an impairment of vitamin B12-dependent metabolism leading to the diagnosis of subacute combined degeneration. Only after repeated history taking did the patient remember having taken tablets containing cobalamin for 3 days before hospitalisation. In case of B12 deficiency, holotranscobalamin can rapidly normalise during supplementation, whereas methylmalonic acid and homocysteine might help to detect B12 deficiency in patients who recently started supplementation.

  10. Promising new treatments for neovascular age-related macular degeneration.

    PubMed

    Michels, Stephan; Schmidt-Erfurth, Ursula; Rosenfeld, Philip J

    2006-07-01

    Angiogenesis, the growth of new blood vessels from existing blood vessels, is responsible for vision loss in a variety of ophthalmic diseases. In neovascular age-related macular degeneration (AMD), the leading cause for legal blindness in many industrialised countries, abnormal blood vessels grow in the macula and cause blindness. There are a number of factors important in the angiogenic cascade but VEGF-A has been implicated in recent years as the major factor responsible for neovascular and exudative diseases of the eye. Numerous antiangiogenic drugs are in development but anti-VEGF drugs have shown great promise in treating neovascular AMD and other ocular diseases, and many of these drugs have been adopted from oncology where antiangiogenic therapy is gaining wide acceptance. For the first time in neovascular AMD, anti-VEGF drugs have brought the hope of vision improvement to a significant proportion of patients. This review provides an overview on angiogenic mechanisms, potential antiangiogenic treatment strategies and different antiangiogenic drugs with special focus on neovascular AMD. PMID:16787141

  11. Age-related macular degeneration: experimental and emerging treatments

    PubMed Central

    Hubschman, Jean Pierre; Reddy, Shantan; Schwartz, Steven D

    2009-01-01

    Purpose: This essay reviews the experimental treatments and new imaging modalities that are currently being explored by investigators to help treat patients with age-related macular degeneration (AMD). Design: Interpretative essay. Methods: Literature review and interpretation. Results: Experimental treatments to preserve vision in patients with exudative AMD include blocking vascular endothelial growth factor (VEGF), binding VEGF, and modulating the VEGF receptors. Investigators are also attempting to block signal transduction with receptor tyrosine kinase inhibitors. Experimental treatments for non-exudative AMD include agents that target inflammation, oxidative stress, and implement immune-modulation. The effectiveness of these newer pharmacologic agents has the potential to grow exponentially when used in combination with new and improved imaging modalities that can help identify disease earlier and follow treatment response more precisely. Conclusion: With a better understanding, at the genetic and molecular level, of AMD and the development of superior imaging modalities, investigators are able to offer treatment options that may offer unprecedented visual gains while reducing the need for repetitive treatments. PMID:19668561

  12. Experimentally (atoxyl) induced ampullar degeneration and damage to the maculae utriculi.

    PubMed

    Anniko, M; Wersäll, J

    1977-01-01

    Atoxyl administration to guinea pigs may cause vesicular degeneration of both the secretory and the sensory regions of the cristae ampullares and macula utriculi. Some of the severely damaged secretory cells were even expelled from the surface into the endolymphatic space. The nerve chalices of type I hair cells disintegrated. The degeneration of the secretory region will thus block the endolymph circulation and the electrolyte balance is likely to collapse. Whether hair cell degeneration can best be explained on this basis (indirect atoxyl effect) or by a direct action of atoxyl on the hair cells and the nerve chalices of type I hair cells is discussed.

  13. Initial evolution of supports of solutions of quasilinear parabolic equations with degenerate absorption potential

    SciTech Connect

    Stepanova, Ekaterina V; Shishkov, Andrey E

    2013-03-31

    The propagation of supports of solutions of second-order quasilinear parabolic equations is studied; the equations are of the type of nonstationary diffusion, having semilinear absorption with an absorption potential which degenerates on the initial plane. We find sufficient conditions, which are sharp in a certain sense, on the relationship between the boundary regime and the type of degeneration of the potential to ensure the strong localization of solutions. We also establish a weak localization of solutions for an arbitrary potential which degenerates only on the initial plane. Bibliography: 12 titles.

  14. Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator.

    PubMed

    Okawachi, Yoshitomo; Yu, Mengjie; Luke, Kevin; Carvalho, Daniel O; Ramelow, Sven; Farsi, Alessandro; Lipson, Michal; Gaeta, Alexander L

    2015-11-15

    We demonstrate a degenerate parametric oscillator in a silicon nitride microresonator. We use two frequency-detuned pump waves to perform parametric four-wave mixing and operate in the normal group-velocity dispersion regime to produce signal and idler fields that are frequency degenerate. Our theoretical modeling shows that this regime enables generation of bimodal phase states, analogous to the χ(2)-based degenerate OPO. Our system offers potential for realization of CMOS-chip-based coherent optical computing and an all-optical quantum random number generator. PMID:26565851

  15. [Cortico-basal degeneration: the rare form of tau protein disease].

    PubMed

    Budrewicz, Sławomir; Koszewicz, Magdalena; Góral, Małgorzata; Słotwiński, Krzysztof; Podemski, Ryszard; Turek, Tomasz

    2003-01-01

    Cortico-basal degeneration is a rare degenerative disease connected with Tau protein pathology. Epidemiology of cortico-basal degeneration is unknown. The authors present a case of 59 years old woman with suspicion of cortico-basal degeneration. The extrapyramidal symptoms mainly on the right side with "alien limb phenomenon" and dystonia of lower limb is observed in our patient. Cortico-subcortical brain atrophy was present in MRI scans. EEG was asymmetrical. No improvement was noticed after L-Dopa. Treatment of amantidine caused the transient improvement. PMID:15098333

  16. A layered approach to raising public awareness of macular degeneration in Australia.

    PubMed

    Heraghty, Julie; Cummins, Robert

    2012-09-01

    Between 2007 and 2011, the Australian Macular Degeneration Foundation conducted a multifaceted campaign to increase public awareness of macular degeneration. Regular national polls conducted by an independent social research company have shown that awareness of macular degeneration increased from 47% to 80% in Australians aged 16 years or older and from 58% to 92% in those aged 50 years or older. The percentage of people aged 50 years or older who reported having had their macula checked in the 2 years prior to the survey increased from 33% to 70% from 2007 to 2011. Other measures, including analysis of Medicare data, have confirmed the success of the campaign.

  17. A Layered Approach to Raising Public Awareness of Macular Degeneration in Australia

    PubMed Central

    Heraghty, Julie; Cummins, Robert

    2012-01-01

    Between 2007 and 2011, the Australian Macular Degeneration Foundation conducted a multifaceted campaign to increase public awareness of macular degeneration. Regular national polls conducted by an independent social research company have shown that awareness of macular degeneration increased from 47% to 80% in Australians aged 16 years or older and from 58% to 92% in those aged 50 years or older. The percentage of people aged 50 years or older who reported having had their macula checked in the 2 years prior to the survey increased from 33% to 70% from 2007 to 2011. Other measures, including analysis of Medicare data, have confirmed the success of the campaign. PMID:22813341

  18. Inhibition of de novo ceramide biosynthesis by FTY720 protects rat retina from light-induced degeneration[S

    PubMed Central

    Chen, Hui; Tran, Julie-Thu A.; Eckerd, Annette; Huynh, Tuan-Phat; Elliott, Michael H.; Brush, Richard S.; Mandal, Nawajes A.

    2013-01-01

    Light-induced retinal degeneration (LIRD) in albino rats causes apoptotic photoreceptor cell death. Ceramide is a second messenger for apoptosis. We tested whether increases in ceramide mediate photoreceptor apoptosis in LIRD and if inhibition of ceramide synthesis protects the retina. Sprague-Dawley rats were exposed to 2,700 lux white light for 6 h, and the retinal levels of ceramide and its intermediary metabolites were measured by GC-MS or electrospray ionization tandem mass spectrometry. Enzymes of the de novo biosynthetic and sphingomyelinase pathways of ceramide generation were assayed, and gene expression was measured. The dosage and temporal effect of the ceramide synthase inhibitor FTY720 on the LIRD retina were measured by histological and functional analyses. Retinal ceramide levels increased coincident with the increase of dihydroceramide at various time points after light stress. Light stress in retina induces ceramide generation predominantly through the de novo pathway, which was prevented by systemic administration of FTY720 (10 mg/kg) leading to the protection of retinal structure and function. The neuroprotection of FTY720 was independent of its immunosuppressive action. We conclude that ceramide increase by de novo biosynthesis mediates photoreceptor apoptosis in the LIRD model and that inhibition of ceramide production protects the retina against light stress. PMID:23468130

  19. Mesenchymal stem cells regulate mechanical properties of human degenerated nucleus pulposus cells through SDF-1/CXCR4/AKT axis.

    PubMed

    Liu, Ming-Han; Bian, Bai-Shi-Jiao; Cui, Xiang; Liu, Lan-Tao; Liu, Huan; Huang, Bo; Cui, You-Hong; Bian, Xiu-Wu; Zhou, Yue

    2016-08-01

    Transplantation of mesenchymal stem cells (MSCs) into the degenerated intervertebral disc (IVD) has shown promise for decelerating or arresting IVD degeneration. Cellular mechanical properties play crucial roles in regulating cell-matrix interactions, potentially reflecting specific changes that occur based on cellular phenotype and behavior. However, the effect of co-culturing of MSCs with nucleus pulposus cells (NPCs) on the mechanical properties of NPCs remains unknown. In our study, we demonstrated that co-culture of degenerated NPCs with MSCs resulted in significantly decreased mechanical moduli (elastic modulus, relaxed modulus, and instantaneous modulus) and increased biological activity (proliferation and expression of matrix genes) in degenerated NPCs, but not normal NPCs. SDF-1, CXCR4 ligand, was highly expressed in MSCs when co-cultured with degenerated NPCs. Inhibition of SDF-1 using CXCR4 antagonist AMD3100 or knocking-down CXCR4 in degenerated NPCs abolished the MSCs-induced decrease in the mechanical moduli and increased biological activity of degenerated NPCs, suggesting a crucial role for SDF-1/CXCR4 signaling. AKT and FAK inhibition attenuated the MSCs- or SDF-1-induced decrease in the mechanical moduli of degenerated NPCs. In conclusion, it was demonstrated in vitro that MSCs regulate the mechanical properties of degenerated NPCs through SDF-1/CXCR4/AKT signaling. These findings highlight a possible mechanical mechanism for MSCs-induced modulation with degenerated NPCs, which may be applicable to MSCs-based therapy for disc degeneration.

  20. The Retromer Complex Is Required for Rhodopsin Recycling and Its Loss Leads to Photoreceptor Degeneration

    PubMed Central

    Wang, Shiuan; Tan, Kai Li; Agosto, Melina A.; Xiong, Bo; Yamamoto, Shinya; Sandoval, Hector; Jaiswal, Manish; Bayat, Vafa; Zhang, Ke; Charng, Wu-Lin; David, Gabriela; Duraine, Lita; Venkatachalam, Kartik; Wensel, Theodore G.; Bellen, Hugo J.

    2014-01-01

    Rhodopsin mistrafficking can cause photoreceptor (PR) degeneration. Upon light exposure, activated rhodopsin 1 (Rh1) in Drosophila PRs is internalized via endocytosis and degraded in lysosomes. Whether internalized Rh1 can be recycled is unknown. Here, we show that the retromer complex is expressed in PRs where it is required for recycling endocytosed Rh1 upon light stimulation. In the absence of subunits of the retromer, Rh1 is processed in the endolysosomal pathway, leading to a dramatic increase in late endosomes, lysosomes, and light-dependent PR degeneration. Reducing Rh1 endocytosis or Rh1 levels in retromer mutants alleviates PR degeneration. In addition, increasing retromer abundance suppresses degenerative phenotypes of mutations that affect the endolysosomal system. Finally, expressing human Vps26 suppresses PR degeneration in Vps26 mutant PRs. We propose that the retromer plays a conserved role in recycling rhodopsins to maintain PR function and integrity. PMID:24781186

  1. New Treatment Greatly Improves Prognosis for Patients with AMD (Age-Related Macular Degeneration)

    MedlinePlus

    ... turn JavaScript on. Feature: Age-related Macular Degeneration New Treatment Greatly Improves Prognosis for Patients with AMD ... Eye Institute Photo Courtesy of: NEI In a new study of nearly 650 people with age-related ...

  2. Nemaline rod and degeneration of Z band of muscle cell in weightlessness at spaceflight

    NASA Astrophysics Data System (ADS)

    Imuta, Miharu; Higuchi, Itsuro

    1999-06-01

    There are some studies demonstrating the skeletal muscle degeneration associated with the degeneration of Z band and appearance of nemaline rods in experimental animals of the simulation model for spaceflight but not in human heart tissues. In the present study, therefore, we investigated the pathological changes or degeneration in left auricular heart muscles obtained during operations of mitral valves replacement using both electron and light microscopies. The degeneration of Z band even in the myofibrils of comparatively little damaged cell was found. Furthermore, nemaline rods were detected in most of the heart muscle cells. These results suggest that the existence of nemaline rods is involved in the cell injury in the heart muscle of patients with heart disease without nemaline myopathy. Further study is necessary to know whether the similar pathological findings are observed not only in the skeletal muscle but also in the cardiac muscle in experimental animals of the simulation model for spaceflight or in a prolonged spaceflight.

  3. Postnatal onset of retinal degeneration by loss of embryonic Ezh2 repression of Six1

    PubMed Central

    Yan, Naihong; Cheng, Lin; Cho, Kinsang; Malik, Muhammad Taimur A.; Xiao, Lirong; Guo, Chenying; Yu, Honghua; Zhu, Ruilin; Rao, Rajesh C.; Chen, Dong Feng

    2016-01-01

    Some adult-onset disorders may be linked to dysregulated embryonic development, yet the mechanisms underlying this association remain poorly understood. Congenital retinal degenerative diseases are blinding disorders characterized by postnatal degeneration of photoreceptors, and affect nearly 2 million individuals worldwide, but ∼50% do not have a known mutation, implicating contributions of epigenetic factors. We found that embryonic deletion of the histone methyltransferase (HMT) Ezh2 from all retinal progenitors resulted in progressive photoreceptor degeneration throughout postnatal life, via derepression of fetal expression of Six1 and its targets. Forced expression of Six1 in the postnatal retina was sufficient to induce photoreceptor degeneration. Ezh2, although enriched in the embryonic retina, was not present in the mature retina; these data reveal an Ezh2-mediated feed-forward pathway that is required for maintaining photoreceptor homeostasis in the adult and suggest novel targets for retinal degeneration therapy. PMID:27677711

  4. A Quasi-Metric Approach to Multidimensional Unfolding for Reducing the Occurrence of Degenerate Solutions.

    ERIC Educational Resources Information Center

    Kim, Chulwan; Rangaswamy, Arvind; DeSarbo, Wayne S.

    1999-01-01

    Presents an approach to multidimensional unfolding that reduces the occurrence of degenerate solutions and conducts a Monte Carlo study to demonstrate the superiority of the new method to the ALSCAL and KYST nonmetric procedures for student preference data. (SLD)

  5. Effect of trapping in a degenerate plasma in the presence of a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Shah, H. A.; Iqbal, M. J.; Tsintsadze, N.; Masood, W.; Qureshi, M. N. S.

    2012-09-01

    Effect of trapping as a microscopic phenomenon in a degenerate plasma is investigated in the presence of a quantizing magnetic field. The plasma comprises degenerate electrons and non-degenerate ions. The presence of the quantizing magnetic field is discussed briefly and the effect of trapping is investigated by using the Fermi-Dirac distribution function. The linear dispersion relation for ion acoustic wave is derived in the presence of the quantizing magnetic field and its influence on the propagation characteristics of the linear ion acoustic wave is discussed. Subsequently, fully nonlinear equations for ion acoustic waves are used to obtain the Sagdeev potential and the investigation of solitary structures. The formation of solitary structures is studied both for fully and partially degenerate plasmas in the presence of a quantizing magnetic field. Both compressive and rarefactive solitons are obtained for different conditions of temperature and magnetic field.

  6. Enhanced visibility of two-mode thermal squeezed states via degenerate parametric amplification and resonance

    NASA Astrophysics Data System (ADS)

    Mahboob, I.; Okamoto, H.; Yamaguchi, H.

    2016-08-01

    Two-mode squeezed states, generated via non-degenerate parametric down-conversion, are invariably revealed via their entangled vacuum or correlated thermal fluctuations. Here, two-mode thermal squeezed states, generated in an electromechanical system, are made bright by means of degenerate parametric amplification of their constituent modes to the point where they are almost perfect, even when seeded from low intensity non-degenerate parametric down-conversion. More dramatically, activating the degenerate parametric resonances of the underlying modes yields perfect correlations which can be resolved via the coordinated switching of their phase bi-stable vibrations, without recourse to monitoring their thermal fluctuations. This ability to enhance the two-mode squeezed states and to decipher them without needing to observe their intrinsic noise is supported by both analytical and numerical modelling and it suggests that the technical constraints to making this phenomenon more widely available can be dramatically relaxed.

  7. Subacute combined degeneration of the spinal cord concomitant with gastric cancer.

    PubMed

    Hirata, Ayako; Nomoto, Nobuatsu; Konno, Shingo; Nakazora, Hiroshi; Sugimoto, Hideki; Nemoto, Hiroshi; Kurihara, Teruyuki; Wakata, Nobuo

    2006-01-01

    We report a rare case of subacute combined degeneration of the spinal cord concomitant with gastric cancer. A 67-year-old man was admitted because of posterior column symptoms, pyramidal tract sign and peripheral neuropathy with severe hyperchromic anemia. He was treated with mecobalamin 1 mg IM, after which his anemia and neurological signs recovered. He was diagnosed as having subacute combined degeneration with pernicious anemia. Subsequent stomach biopsy revealed gastric cancer, and the patient underwent gastrectomy. It is a well known association that chronic atrophic gastritis is associated with gastric cancer or subacute combined degeneration. Our findings suggest that in this case subacute combined degeneration and gastric cancer are independent of each other; rather, both resulted from chronic atrophic gastritis.

  8. VAGINAL DEGENERATION FOLLOWING IMPLANTATION OF SYNTHETIC MESH WITH INCREASED STIFFNESS

    PubMed Central

    Liang, Rui; Abramowitch, Steven; Knight, Katrina; Palcsey, Stacy; Nolfi, Alexis; Feola, Andrew; Stein, Susan; Moalli, Pamela A.

    2012-01-01

    Objective To compare the impact of the prototype prolapse mesh Gynemesh PS to that of two new generation lower stiffness meshes, UltraPro and SmartMesh, on vaginal morphology and structural composition. Design A mechanistic study employing a non-human primate (NHP) model. Setting Magee-Womens Research Institute at the University of Pittsburgh. Population Parous rhesus macaques, with similar age, weight, parity and POP-Q scores. Methods Following IACUC approval, 50 rhesus macaques were implanted with Gynemesh PS (n=12), UltraPro with its blue line perpendicular to the longitudinal axis of vagina (n=10), UltraPro with its blue line parallel to the longitudinal axis of vagina (n=8) and SmartMesh (n=8) via sacrocolpopexy following hysterectomy. Sham operated animals (n=12) served as controls. Main Outcome Measures The mesh-vagina complex (MVC) was removed after 12 weeks and analyzed for histomorphology, in situ cell apoptosis, total collagen, elastin, glycosaminoglycan content and total collagenase activity. Appropriate statistics and correlation analyses were performed accordingly. Results Relative to sham and the two lower stiffness meshes, Gynemesh PS had the greatest negative impact on vaginal histomorphology and composition. Compared to sham, implantation with Gynemesh PS caused substantial thinning of the smooth muscle layer (1557 ± 499μm vs 866 ± 210 μm, P=0.02), increased apoptosis particularly in the area of the mesh fibers (P=0.01), decreased collagen and elastin content (20% (P=0.03) and 43% (P=0.02), respectively) and increased total collagenase activity (135% (P=0.01)). GAG (glycosaminoglycan), a marker of tissue injury, was the highest with Gynemesh PS compared to sham and other meshes (P=0.01). Conclusion Mesh implantation with the stiffer mesh Gynemesh PS induced a maladaptive remodeling response consistent with vaginal degeneration. PMID:23240802

  9. Beyond words: Pragmatic inference in behavioral variant of frontotemporal degeneration

    PubMed Central

    Spotorno, Nicola; McMillan, Corey T.; Rascovsky, Katya; Irwin, David J.; Clark, Robin; Grossman, Murray

    2015-01-01

    When the message of a speaker goes beyond the literal or logical meaning of the sentences used, a pragmatic inference is required to understand the complete meaning of an utterance. Here we study one example of pragmatic inference, called scalar implicature. Such an inference is required when a weaker term “some” is used in a sentence like “Some of the students passed the exam” because the speaker presumably had a reason not to use a stronger term like “all”. We investigated the comprehension of scalar implicatures in a group of 17 non-aphasic patients with behavioral variant frontotemporal degeneration (bvFTD) in order to test the contribution of non-linguistic decision-making ability and the role of prefrontal cortex in supporting the computation of pragmatic inferences. The results of two experiments point to a deficit in producing alternative interpretations beyond a logical reading. bvFTD patients thus prefer the narrowly literal or logical interpretation of a scalar term when they must generate a possible alternative interpretation by themselves, but patients prefer a pragmatic reading when offered a choice between the logical and the pragmatic interpretation of the same sentence. An imaging analysis links bvFTD patients’ spontaneous tendency toward a narrowly logical interpretation with atrophy in ventromedial prefrontal cortex. Our findings are consistent with the pragmatic tolerance hypothesis, which proposes that difficulty generating alternative interpretations of an utterance, rather than a frank inability to compute an inference, affects the comprehension of a scalar term. PMID:26150205

  10. Hsp90 inhibition protects against inherited retinal degeneration

    PubMed Central

    Aguilà, Mònica; Bevilacqua, Dalila; McCulley, Caroline; Schwarz, Nele; Athanasiou, Dimitra; Kanuga, Naheed; Novoselov, Sergey S.; Lange, Clemens A.K.; Ali, Robin R.; Bainbridge, James W.; Gias, Carlos; Coffey, Peter J.; Garriga, Pere; Cheetham, Michael E.

    2014-01-01

    The molecular chaperone Hsp90 is important for the functional maturation of many client proteins, and inhibitors are in clinical trials for multiple indications in cancer. Hsp90 inhibition activates the heat shock response and can improve viability in a cell model of the P23H misfolding mutation in rhodopsin that causes autosomal dominant retinitis pigmentosa (adRP). Here, we show that a single low dose of the Hsp90 inhibitor HSP990 enhanced visual function and delayed photoreceptor degeneration in a P23H transgenic rat model. This was associated with the induction of heat shock protein expression and reduced rhodopsin aggregation. We then investigated the effect of Hsp90 inhibition on a different type of rod opsin mutant, R135L, which is hyperphosphorylated, binds arrestin and disrupts vesicular traffic. Hsp90 inhibition with 17-AAG reduced the intracellular accumulation of R135L and abolished arrestin binding in cells. Hsf-1−/− cells revealed that the effect of 17-AAG on P23H aggregation was dependent on HSF-1, whereas the effect on R135L was HSF-1 independent. Instead, the effect on R135L was mediated by a requirement of Hsp90 for rhodopsin kinase (GRK1) maturation and function. Importantly, Hsp90 inhibition restored R135L rod opsin localization to wild-type (WT) phenotype in vivo in rat retina. Prolonged Hsp90 inhibition with HSP990 in vivo led to a posttranslational reduction in GRK1 and phosphodiesterase (PDE6) protein levels, identifying them as Hsp90 clients. These data suggest that Hsp90 represents a potential therapeutic target for different types of rhodopsin adRP through distinct mechanisms, but also indicate that sustained Hsp90 inhibition might adversely affect visual function. PMID:24301679

  11. Cerebellar cortical degeneration in adult American Staffordshire Terriers.

    PubMed

    Olby, Natasha; Blot, Stephane; Thibaud, Jean-Laurent; Phillips, Jeff; O'Brien, Dennis P; Burr, Jeanne; Berg, Jason; Brown, Talmage; Breen, Matthew

    2004-01-01

    Adult-onset cerebellar cortical degeneration recently has been reported in American Staffordshire Terriers. We describe the clinical and histopathologic features of this disease and examine its mode of inheritance in 63 affected dogs. The age at which neurologic deficits 1st were recognized varied from 18 months to 9 years, with the majority of dogs presented to veterinarians between 4 and 6 years of age. Time from onset of clinical signs to euthanasia varied from 6 months to 6.5 years, with the majority of affected dogs surviving from 2 to 4 years. Initial neurologic findings included stumbling, truncal sway, and ataxia exacerbated by lifting the head up and negotiating stairs. Signs progressed to obvious ataxia characterized by dysmetria, nystagmus, coarse intention tremor, variable loss of menace reaction, marked truncal sway, and falling with transient opisthotonus. With continued progression, dogs became unable to walk without falling repeatedly. Cerebellar atrophy was visible on magnetic resonance images and on gross pathology. Histopathologic findings included marked loss of Purkinje neurons with thinning of the molecular and granular layers and increased cellularity of the cerebellar nuclei. The closest common ancestor of the dogs was born in the 1950s and inheritance was most consistent with an autosomal recessive mode of transmission with a prevalence estimated at 1 in 400 dogs. This inherited disease is comparable to the group of diseases known as spinocerebellar ataxias in humans. Many spinocerebellar ataxias in humans are caused by nucleotide repeats, and this genetic aberration merits investigation as a potential cause of the disease in American Staffordshire Terriers. PMID:15058771

  12. Functional Connectivity’s Degenerate View of Brain Computation

    PubMed Central

    Giron, Alain; Rudrauf, David

    2016-01-01

    Brain computation relies on effective interactions between ensembles of neurons. In neuroimaging, measures of functional connectivity (FC) aim at statistically quantifying such interactions, often to study normal or pathological cognition. Their capacity to reflect a meaningful variety of patterns as expected from neural computation in relation to cognitive processes remains debated. The relative weights of time-varying local neurophysiological dynamics versus static structural connectivity (SC) in the generation of FC as measured remains unsettled. Empirical evidence features mixed results: from little to significant FC variability and correlation with cognitive functions, within and between participants. We used a unified approach combining multivariate analysis, bootstrap and computational modeling to characterize the potential variety of patterns of FC and SC both qualitatively and quantitatively. Empirical data and simulations from generative models with different dynamical behaviors demonstrated, largely irrespective of FC metrics, that a linear subspace with dimension one or two could explain much of the variability across patterns of FC. On the contrary, the variability across BOLD time-courses could not be reduced to such a small subspace. FC appeared to strongly reflect SC and to be partly governed by a Gaussian process. The main differences between simulated and empirical data related to limitations of DWI-based SC estimation (and SC itself could then be estimated from FC). Above and beyond the limited dynamical range of the BOLD signal itself, measures of FC may offer a degenerate representation of brain interactions, with limited access to the underlying complexity. They feature an invariant common core, reflecting the channel capacity of the network as conditioned by SC, with a limited, though perhaps meaningful residual variability. PMID:27736900

  13. Multiple system atrophy: alpha-synuclein and neuronal degeneration.

    PubMed

    Yoshida, Mari

    2007-10-01

    Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder that encompasses olivopontocerebellar atrophy (OPCA), striatonigral degeneration (SND) and Shy-Drager syndrome (SDS). The histopathological hallmark is the formation of alpha-synuclein-positive glial cytoplasmic inclusions (GCIs) in oligodendroglia. alpha-synuclein aggregation is also found in glial nuclear inclusions, neuronal cytoplasmic inclusions (NCIs), neuronal nuclear inclusions (NNIs) and dystrophic neurites. We evaluated the pathological features of 102 MSA cases, and presented the pathological spectrum of MSA and initial features of alpha-synuclein accumulation. We found that 39% of the 102 cases showed equivalent SND and OPCA pathologies, 33% showed OPCA- and 22% showed SND-predominant pathology, whereas 6% showed extremely mild changes. Our pathological analysis indicated that OPCA-type was relatively more frequent and SND-type was less frequent in Japanese MSA cases, compared to the relatively high frequency of SND-type in Western countries, suggesting that different phenotypic patterns of MSA may exist between races. In the early stage, in addition to GCIs, NNIs and diffuse homogenous alpha-synuclein staining in neuronal nuclei and cytoplasm were observed in lesions in the pontine nuclei, putamen, substantia nigra, locus ceruleus, inferior olivary nucleus, intermediolateral column of thoracic spinal cord, lower motor neurons and cortical pyramidal neurons. A subgroup of MSA cases with severe temporal atrophy showed numerous NCIs, particularly in the limbic system. These findings suggest that primary non-fibrillar and fibrillar alpha-synuclein aggregation also occur in neurons. The oligo-myelin-axon-neuron complex mechanism, along with the direct involvement of neurons themselves, may synergistically accelerate the degenerative process of MSA. PMID:18018485

  14. Frontotemporal Lobar Degeneration: Defining Phenotypic Diversity Through Personalized Medicine

    PubMed Central

    Irwin, David J; Cairns, Nigel J.; Grossman, Murray; McMillan, Corey T.; Lee, Edward B.; Van Deerlin, Vivianna M.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2015-01-01

    Frontotemporal lobar degeneration (FTLD) comprises two main classes of neurodegenerative diseases characterized by neuronal/glial proteinaceous inclusions (ie. proteinopathies) including tauopathies (i.e. FTLD-Tau) and TDP-43 proteinopathies (i.e. FTLD-TDP) while other very rare forms of FTLD are known such as FTLD with FUS pathology (FTLD-FUS). This review focuses mainly on FTLD-Tau and FLTD-TDP, which may present as several clinical syndromes: a behavioral/dysexecutive syndrome (behavioral-variant frontotemporal dementia); language disorders (primary progressive aphasia variants); and motor disorders (amyotrophic lateral sclerosis, corticobasal syndrome, progressive supranuclear palsy syndrome). There is considerable heterogeneity in clinical presentations of underlying neuropathology and current clinical criteria do not reliably predict underlying proteinopathies ante-mortem. In contrast, molecular etiologies of hereditary FTLD are consistently associated with specific proteinopathies. These include MAPT mutations with FTLD-Tau and GRN, C9orf72, VCP and TARDBP with FTLD-TDP. The last decade has seen a rapid expansion in our knowledge of the molecular pathologies associated with this clinically and neuropathologically heterogeneous group of FTLD diseases. Moreover, in view of current limitations to reliably diagnose specific FTLD neuropathologies prior to autopsy, we summarize the current state of the science in FTLD biomarker research including neuroimaging, biofluid and genetic analyses. We propose that combining several of these biomarker modalities will improve diagnostic specificity in FTLD through a personalized medicine approach. The goals of these efforts are to enhance power for clinical trials focused on slowing or preventing progression of spread of tau, TDP-43 and other FTLD-associated pathologies and work towards the goal of defining clinical endophenotypes of FTD. PMID:25549971

  15. Age-Related Macular Degeneration: Genetics and Biology.

    PubMed

    Kumaramanickavel, Govindasamy

    2016-01-01

    Age-related macular degeneration (AMD), widely prevalent across the globe, is a major stakeholder among adult visual morbidity and blindness, not only in the Western world but also in Asia. Several risk factors have been identified, including critical genetic factors, which were never imagined 2 decades ago. The etiopathogenesis is emerging to demonstrate that immune and complement-related inflammation pathway members chronically exposed to environmental insults could justifiably influence disease morbidity and treatment outcomes. Approximately half a dozen physiological and biochemical cascades are disrupted in the AMD disease genesis, eventually leading to the distortion and disruption of the subretinal space, subretinal pigment epithelium, and Bruch membrane, thus setting off chaos and disorder for signs and symptoms to manifest. Approximately 3 dozen genetic factors have so far been identified, including the recent ones, through powerful genomic technologies and large robust sample sizes. The noteworthy genetic variants (common and rare) are complement factor H, complement factor H-related genes 1 to 5, C3, C9, ARMS2/HTRA1, vascular endothelial growth factor A, vascular endothelial growth factor receptor 2/KDR, and rare variants (show causal link) such as TIMP3, fibrillin, COL4A3, MMP19, and MMP9. Despite the enormous amount of scientific information generated over the years, diagnostic genetic or biomarker tests are still not available for clinicians to understand the natural course of the disease and its management in a patient. However, further research in the field should reduce this gap not only by aiding the clinician but also through the possibilities of clinical intervention with complement pathway-related inhibitors entering preclinical and clinical trials in the near future. PMID:27488064

  16. Processing emotion from abstract art in frontotemporal lobar degeneration.

    PubMed

    Cohen, Miriam H; Carton, Amelia M; Hardy, Christopher J; Golden, Hannah L; Clark, Camilla N; Fletcher, Phillip D; Jaisin, Kankamol; Marshall, Charles R; Henley, Susie M D; Rohrer, Jonathan D; Crutch, Sebastian J; Warren, Jason D

    2016-01-29

    art may signal emotions independently of a biological or social carrier: it might therefore constitute a test case for defining brain mechanisms of generic emotion decoding and the impact of disease states on those mechanisms. This is potentially of particular relevance to diseases in the frontotemporal lobar degeneration (FTLD) spectrum. These diseases are often led by emotional impairment despite retained or enhanced artistic interest in at least some patients. However, the processing of emotion from art has not been studied systematically in FTLD. Here we addressed this issue using a novel emotional valence matching task on abstract paintings in patients representing major syndromes of FTLD (behavioural variant frontotemporal dementia, n=11; sematic variant primary progressive aphasia (svPPA), n=7; nonfluent variant primary progressive aphasia (nfvPPA), n=6) relative to healthy older individuals (n=39). Performance on art emotion valence matching was compared between groups taking account of perceptual matching performance and assessed in relation to facial emotion matching using customised control tasks. Neuroanatomical correlates of art emotion processing were assessed using voxel-based morphometry of patients' brain MR images. All patient groups had a deficit of art emotion processing relative to healthy controls; there were no significant interactions between syndromic group and emotion modality. Poorer art emotion valence matching performance was associated with reduced grey matter volume in right lateral occopitotemporal cortex in proximity to regions previously implicated in the processing of dynamic visual signals. Our findings suggest that abstract art may be a useful model system for investigating mechanisms of generic emotion decoding and aesthetic processing in neurodegenerative diseases.

  17. Gene Therapy for Age-Related Macular Degeneration.

    PubMed

    Constable, Ian Jeffery; Blumenkranz, Mark Scott; Schwartz, Steven D; Barone, Sam; Lai, Chooi-May; Rakoczy, Elizabeth Piroska

    2016-01-01

    The purpose of this article was to evaluate safety and signals of efficacy of gene therapy with subretinal rAAV.sFlt-1 for wet age-related macular degeneration (wet AMD). A phase 1 dose-escalating single-center controlled unmasked human clinical trial was followed up by extension of the protocol to a phase 2A single-center trial. rAAV.sFlt-1 vector was used to deliver a naturally occurring anti-vascular endothelial growth factor agent, sFlt-1, into the subretinal space. In phase 1, step 1 randomized 3 subjects to low-dose rAAV.sFlt-1 (1 × 10 vector genomes) and 1 subject to the control arm; step 2 randomized an additional 3 subjects to treatment with high-dose rAAV.sFlt-1 (1 × 10 vector genomes) and 1 subject to the control arm. Follow-up studies demonstrated that rAAV.sFlt-1 was well tolerated with a favorable safety profile in these elderly subjects with wet AMD. Subretinal injection was highly reproducible, and no drug-related adverse events were reported. Procedure-related adverse events were mild and self-resolving. Two phakic patients developed cataract and underwent cataract surgery. Four of the 6 patients responded better than the small control group in this study and historical controls in terms of maintaining vision and a relatively dry retina with zero ranibizumab retreatments per annum. Two patients required 1 ranibizumab injection over the 52-week follow-up period. rAAV.sFlt-1 gene therapy may prove to be a potential adjunct or alternative to conventional intravitreal injection for patients with wet AMD by providing extended delivery of a naturally occurring antiangiogenic protein. PMID:27488071

  18. An intrinsic neural oscillator in the degenerating mouse retina.

    PubMed

    Borowska, Joanna; Trenholm, Stuart; Awatramani, Gautam B

    2011-03-30

    The loss of photoreceptors during retinal degeneration (RD) is known to lead to an increase in basal activity in remnant neural networks. To identify the source of activity, we combined two-photon imaging with patch-clamp techniques to examine the physiological properties of morphologically identified retinal neurons in a mouse model of RD (rd1). Analysis of activity in rd1 ganglion cells revealed sustained oscillatory (∼10 Hz) synaptic activity in ∼30% of all classes of cells. Oscillatory activity persisted after putative inputs from residual photoreceptor, rod bipolar cell, and inhibitory amacrine cell synapses were pharmacologically blocked, suggesting that presynaptic cone bipolar cells were intrinsically active. Examination of presynaptic rd1 ON and OFF bipolar cells indicated that they rested at relatively negative potentials (less than -50 mV). However, in approximately half the cone bipolar cells, low-amplitude membrane oscillation (∼5 mV, ∼10 Hz) were apparent. Such oscillations were also observed in AII amacrine cells. Oscillations in ON cone bipolar and AII amacrine cells exhibited a weak apparent voltage dependence and were resistant to blockade of synaptic receptors, suggesting that, as in wild-type retina, they form an electrically coupled network. In addition, oscillations were insensitive to blockers of voltage-gated Ca(2+) channels (0.5 mm Cd(2+) and 0.5 mm Ni(2+)), ruling out known mechanisms that underlie oscillatory behavior in bipolar cells. Together, these results indicate that an electrically coupled network of ON cone bipolar/AII amacrine cells constitutes an intrinsic oscillator in the rd1 retina that is likely to drive synaptic activity in downstream circuits.

  19. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration.

    PubMed

    De Nicola, Alejandro F; Labombarda, Florencia; Gonzalez Deniselle, Maria Claudia; Gonzalez, Susana L; Garay, Laura; Meyer, Maria; Gargiulo, Gisella; Guennoun, Rachida; Schumacher, Michael

    2009-07-01

    Studies on the neuroprotective and promyelinating effects of progesterone in the nervous system are of great interest due to their potential clinical connotations. In peripheral neuropathies, progesterone and reduced derivatives promote remyelination, axonal regeneration and the recovery of function. In traumatic brain injury (TBI), progesterone has the ability to reduce edema and inflammatory cytokines, prevent neuronal loss and improve functional outcomes. Clinical trials have shown that short-and long-term progesterone treatment induces a significant improvement in the level of disability among patients with brain injury. In experimental spinal cord injury (SCI), molecular markers of functional motoneurons become impaired, including brain-derived neurotrophic factor (BDNF) mRNA, Na,K-ATPase mRNA, microtubule-associated protein 2 and choline acetyltransferase (ChAT). SCI also produces motoneuron chromatolysis. Progesterone treatment restores the expression of these molecules while chromatolysis subsided. SCI also causes oligodendrocyte loss and demyelination. In this case, a short progesterone treatment enhances proliferation and differentiation of oligodendrocyte progenitors into mature myelin-producing cells, whereas prolonged treatment increases a transcription factor (Olig1) needed to repair injury-induced demyelination. Progesterone neuroprotection has also been shown in motoneuron neurodegeneration. In Wobbler mice spinal cord, progesterone reverses the impaired expression of BDNF, ChAT and Na,K-ATPase, prevents vacuolar motoneuron degeneration and the development of mitochondrial abnormalities, while functionally increases muscle strength and the survival of Wobbler mice. Multiple mechanisms contribute to these progesterone effects, and the role played by classical nuclear receptors, extra nuclear receptors, membrane receptors, and the reduced metabolites of progesterone in neuroprotection and myelin formation remain an exciting field worth of exploration

  20. OBSERVATIONAL CONSTRAINTS ON THE DEGENERATE MASS-RADIUS RELATION

    SciTech Connect

    Holberg, J. B.; Oswalt, T. D.; Barstow, M. A. E-mail: toswalt@fit.edu

    2012-03-15

    The white dwarf mass-radius relationship is fundamental to modern astrophysics. It is central to routine estimation of DA white dwarf masses derived from spectroscopic temperatures and gravities. It is also the basis for observational determinations of the white dwarf initial-final-mass relation. Nevertheless, definitive and detailed observational confirmations of the mass-radius relation (MRR) remain elusive owing to a lack of sufficiently accurate white dwarf masses and radii. Current best estimates of masses and radii allow only broad conclusions about the expected inverse relation between masses and radii in degenerate stars. In this paper, we examine a restricted set of 12 DA white dwarf binary systems for which accurate (1) trigonometric parallaxes, (2) spectroscopic effective temperatures and gravities, and (3) gravitational redshifts are available. We consider these three independent constraints on mass and radius in comparison with an appropriate evolved MRR for each star. For the best-determined systems it is found that the DA white dwarfs conform to evolve theoretical MRRs at the 1{sigma} to 2{sigma} level. For the white dwarf 40 Eri B (WD 0413-077) we find strong evidence for the existence of a 'thin' hydrogen envelope. For other stars improved parallaxes will be necessary before meaningful comparisons are possible. For several systems current parallaxes approach the precision required for the state-of-the-art mass and radius determinations that will be obtained routinely from the Gaia mission. It is demonstrated here how these anticipated results can be used to firmly constrain details of theoretical mass-radius determinations.

  1. Genetic risk factors and age-related macular degeneration (AMD)

    PubMed Central

    Mousavi, Maryam; Armstrong, Richard A.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make lifestyle choices that may reduce the risk of disease. Collaboration between geneticists, ophthalmologists, and optometrists suggests that genetic risk factors play a more significant role in AMD than previously thought. The most important genes are associated with immune system modulation and the complement system, e.g., complement factor H (CFH), factor B (CFB), factor C3, and serpin peptidase inhibitor (SERPING1). Genes associated with membrane transport, e.g., ATP-binding cassette protein (ABCR) and voltage-dependent calcium channel gamma 3 (CACNG3), the vascular system, e.g., fibroblast growth factor 2 (FGF2), fibulin-5, lysyl oxidase-like gene (LOXL1) and selectin-P (SELP), and with lipid metabolism, e.g., apolipoprotein E (APOE) and hepatic lipase (LIPC) have also been implicated. In addition, several other genes exhibit some statistical association with AMD, e.g., age-related maculopathy susceptibility protein 2 (ARMS2) and DNA excision repair protein gene (ERCC6) but more research is needed to establish their significance. Modifiable risk factors for AMD should be discussed with patients whose lifestyle and/or family history place them in an increased risk category. Furthermore, calculation of AMD risk using current models should be recommended as a tool for patient education. It is likely that AMD management in future will be increasingly influenced by assessment of genetic risk as such screening methods become more widely available.

  2. Processing emotion from abstract art in frontotemporal lobar degeneration

    PubMed Central

    Cohen, Miriam H.; Carton, Amelia M.; Hardy, Christopher J.; Golden, Hannah L.; Clark, Camilla N.; Fletcher, Phillip D.; Jaisin, Kankamol; Marshall, Charles R.; Henley, Susie M.D.; Rohrer, Jonathan D.; Crutch, Sebastian J.; Warren, Jason D.

    2016-01-01

    Abstract art may signal emotions independently of a biological or social carrier: it might therefore constitute a test case for defining brain mechanisms of generic emotion decoding and the impact of disease states on those mechanisms. This is potentially of particular relevance to diseases in the frontotemporal lobar degeneration (FTLD) spectrum. These diseases are often led by emotional impairment despite retained or enhanced artistic interest in at least some patients. However, the processing of emotion from art has not been studied systematically in FTLD. Here we addressed this issue using a novel emotional valence matching task on abstract paintings in patients representing major syndromes of FTLD (behavioural variant frontotemporal dementia, n=11; sematic variant primary progressive aphasia (svPPA), n=7; nonfluent variant primary progressive aphasia (nfvPPA), n=6) relative to healthy older individuals (n=39). Performance on art emotion valence matching was compared between groups taking account of perceptual matching performance and assessed in relation to facial emotion matching using customised control tasks. Neuroanatomical correlates of art emotion processing were assessed using voxel-based morphometry of patients' brain MR images. All patient groups had a deficit of art emotion processing relative to healthy controls; there were no significant interactions between syndromic group and emotion modality. Poorer art emotion valence matching performance was associated with reduced grey matter volume in right lateral occopitotemporal cortex in proximity to regions previously implicated in the processing of dynamic visual signals. Our findings suggest that abstract art may be a useful model system for investigating mechanisms of generic emotion decoding and aesthetic processing in neurodegenerative diseases. PMID:26748236

  3. Glycolysis in Patients with Age-Related Macular Degeneration

    PubMed Central

    Yokosako, Kanako; Mimura, Tatsuya; Funatsu, Hideharu; Noma, Hidetaka; Goto, Mari; Kamei, Yuko; Kondo, Aki; Matsubara, Masao

    2014-01-01

    Purpose: Retinal adenosine triphosphate is mainly produced via glycolysis, so inhibition of glycolysis may promote the onset and progression of age-related macular degeneration (AMD). When glycolysis is inhibited, pyruvate is metabolized by lactic acid fermentation instead of entering the mitochondrial tricarboxylic acid (TCA) cycle. We measured urinary pyruvate and lactate levels in patients with AMD. Methods: Eight patients with typical AMD (tAMD group) and 9 patients with polypoidal choroidal vasculopathy (PCV group) were enrolled. Urinary levels of pyruvate, lactate, α-hydroxybutyrate, and β-hydroxybutyrate were measured in all patients. Results: The mean urinary levels of pyruvate and lactate were 8.0 ± 2.8 and 7.5 ± 8.3 μg/mg creatinine (reference values: 0.5-6.6 and 0.0-1.6), respectively, with the mean increase over the reference value being 83.6 ± 51.1% and 426.5 ± 527.8%, respectively. In 12 patients (70.6%), the lactate/pyruvate ratio was above the reference range. Urinary levels of α-hydroxybutyrate and β-hydroxybutyrate were decreased by -31.9 ± 15.2% and -33.1 ± 17.5% compared with the mean reference values. There were no significant differences of any of these glycolysis metabolites between the tAMD and PCV groups. Multivariate analysis revealed that none of the variables tested, including patient background factors (age, hypertension, diabetes, hyperlipidemia, cerebrovascular disease, alcohol, smoking, visual acuity, and AMD phenotype), were significantly associated with the lactate/pyruvate ratio. Conclusion: A high lactate/pyruvate ratio is a well-known marker of mitochondrial impairment, and it indicates poor oxidative function in AMD. Our results suggest that increased lactate levels may be implicated in the pathogenesis of AMD. PMID:25191529

  4. Genome Degeneration and Adaptation in a Nascent Stage of Symbiosis

    PubMed Central

    Oakeson, Kelly F.; Gil, Rosario; Clayton, Adam L.; Dunn, Diane M.; von Niederhausern, Andrew C.; Hamil, Cindy; Aoyagi, Alex; Duval, Brett; Baca, Amanda; Silva, Francisco J.; Vallier, Agnès; Jackson, D. Grant; Latorre, Amparo; Weiss, Robert B.; Heddi, Abdelaziz; Moya, Andrés; Dale, Colin

    2014-01-01

    Symbiotic associations between animals and microbes are ubiquitous in nature, with an estimated 15% of all insect species harboring intracellular bacterial symbionts. Most bacterial symbionts share many genomic features including small genomes, nucleotide composition bias, high coding density, and a paucity of mobile DNA, consistent with long-term host association. In this study, we focus on the early stages of genome degeneration in a recently derived insect-bacterial mutualistic intracellular association. We present the complete genome sequence and annotation of Sitophilus oryzae primary endosymbiont (SOPE). We also present the finished genome sequence and annotation of strain HS, a close free-living relative of SOPE and other insect symbionts of the Sodalis-allied clade, whose gene inventory is expected to closely resemble the putative ancestor of this group. Structural, functional, and evolutionary analyses indicate that SOPE has undergone extensive adaptation toward an insect-associated lifestyle in a very short time period. The genome of SOPE is large in size when compared with many ancient bacterial symbionts; however, almost half of the protein-coding genes in SOPE are pseudogenes. There is also evidence for relaxed selection on the remaining intact protein-coding genes. Comparative analyses of the whole-genome sequence of strain HS and SOPE highlight numerous genomic rearrangements, duplications, and deletions facilitated by a recent expansion of insertions sequence elements, some of which appear to have catalyzed adaptive changes. Functional metabolic predictions suggest that SOPE has lost the ability to synthesize several essential amino acids and vitamins. Analyses of the bacterial cell envelope and genes encoding secretion systems suggest that these structures and elements have become simplified in the transition to a mutualistic association. PMID:24407854

  5. A disease-specific metabolic brain network associated with corticobasal degeneration.

    PubMed

    Niethammer, Martin; Tang, Chris C; Feigin, Andrew; Allen, Patricia J; Heinen, Lisette; Hellwig, Sabine; Amtage, Florian; Hanspal, Era; Vonsattel, Jean Paul; Poston, Kathleen L; Meyer, Philipp T; Leenders, Klaus L; Eidelberg, David

    2014-11-01

    Corticobasal degeneration is an uncommon parkinsonian variant condition that is diagnosed mainly on clinical examination. To facilitate the differential diagnosis of this disorder, we used metabolic brain imaging to characterize a specific network that can be used to discriminate corticobasal degeneration from other atypical parkinsonian syndromes. Ten non-demented patients (eight females/two males; age 73.9 ± 5.7 years) underwent metabolic brain imaging with (18)F-fluorodeoxyglucose positron emission tomography for atypical parkinsonism. These individuals were diagnosed clinically with probable corticobasal degeneration. This diagnosis was confirmed in the three subjects who additionally underwent post-mortem examination. Ten age-matched healthy subjects (five females/five males; age 71.7 ± 6.7 years) served as controls for the imaging studies. Spatial covariance analysis was applied to scan data from the combined group to identify a significant corticobasal degeneration-related metabolic pattern that discriminated (P < 0.001) the patients from the healthy control group. This pattern was characterized by bilateral, asymmetric metabolic reductions involving frontal and parietal cortex, thalamus, and caudate nucleus. These pattern-related changes were greater in magnitude in the cerebral hemisphere opposite the more clinically affected body side. The presence of this corticobasal degeneration-related metabolic topography was confirmed in two independent testing sets of patient and control scans, with elevated pattern expression (P < 0.001) in both disease groups relative to corresponding normal values. We next determined whether prospectively computed expression values for this pattern accurately discriminated corticobasal degeneration from multiple system atrophy and progressive supranuclear palsy (the two most common atypical parkinsonian syndromes) on a single case basis. Based upon this measure, corticobasal degeneration was successfully distinguished from

  6. Extrathoracic solitary fibrous tumor of the pelvic peritoneum with central malignant degeneration on CT and MRI.

    PubMed

    Vossough, Arastoo; Torigian, Drew A; Zhang, Paul J; Siegelman, Evan S; Banner, Marc P

    2005-11-01

    We describe a 61-year-old man who presented with an extrathoracic solitary fibrous tumor (SFT) of the pelvic peritoneum with central malignant degeneration as seen on computed tomography (CT), magnetic resonance imaging (MRI), and histopathology. When a central focus of heterogeneity and variable contrast enhancement are identified within a fibrous tumor of the pelvis on CT or MRI, malignant degeneration of an extrathoracic SFT, although rare, should be considered as a diagnostic possibility.

  7. Weak Solutions for the Cahn-Hilliard Equation with Degenerate Mobility

    NASA Astrophysics Data System (ADS)

    Dai, Shibin; Du, Qiang

    2016-03-01

    In this paper, we study the well-posedness of Cahn-Hilliard equations with degenerate phase-dependent diffusion mobility. We consider a popular form of the equations which has been used in phase field simulations of phase separation and microstructure evolution in binary systems. We define a notion of weak solutions for the nonlinear equation. The existence of such solutions is obtained by considering the limits of Cahn-Hilliard equations with non-degenerate mobilities.

  8. Degeneration of Trigonometric Dynamical Difference Equations for Quantum Loop Algebras to Trigonometric Casimir Equations for Yangians

    NASA Astrophysics Data System (ADS)

    Balagović, Martina

    2015-03-01

    We show that, under Drinfeld's degeneration (Proceedings of the International Congress of Mathematicians. American Mathematical Society, Providence, pp 798-820, 1987) of quantum loop algebras to Yangians, the trigonometric dynamical difference equations [Etingof and Varchenko (Adv Math 167:74-127, 2002)] for the quantum affine algebra degenerate to the trigonometric Casimir differential equations [Toledano Laredo (J Algebra 329:286-327, 2011)] for Yangians.

  9. Dyakonov-perel electron spin relaxation in a highly degenerate wurtzite semiconductor

    NASA Astrophysics Data System (ADS)

    Rudolph, J.; Buß, J. H.; Semond, F.; Hägele, D.

    2013-12-01

    The doping density dependence of the electron spin lifetime in n-type bulk GaN is investigated up to the highly degenerate regime by time-resolved Kerr-rotation spectroscopy. We find a non-monotonic doping density dependence with maximum spin lifetimes at the onset of degeneracy. The reduction of spin lifetimes in the degenerate regime shows a weak τs∝nD-2/3 density dependence, in full agreement with Dyakonov-Perel theory.

  10. Classification of Chronic Back Muscle Degeneration after Spinal Surgery and Its Relationship with Low Back Pain

    PubMed Central

    Orita, Sumihisa; Yamauchi, Kazuyo; Eguchi, Yawara; Aoki, Yasuchika; Nakamura, Junichi; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Kamoda, Hiroto; Suzuki, Miyako; Kubota, Gou; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Shiga, Yasuhiro; Abe, Koki; Fujimoto, Kazuki; Kanamoto, Hirohito; Inoue, Gen; Takahashi, Kazuhisa

    2016-01-01

    Study Design Retrospective case series. Purpose To classify back muscle degeneration using magnetic resonance imaging (MRI) and investigate its relationship with back pain after surgery. Overview of Literature Back muscle injury and degeneration often occurs after posterior lumbar surgery, and the degeneration may be a cause of back pain. However, the relationship between back muscle degeneration and back pain remains controversial. Methods A total of 84 patients (average age, 65.1 years; 38 men, 46 women) with lumbar spinal stenosis underwent posterior decompression surgery alone. MRI (1.5 tesla) was evaluated before and more than a year after surgery in all patients. Muscle on MRI was classified into three categories: low intensity in T1-weighted imaging, high intensity in T2-weighted imaging (type 1), high intensity in both T1- and T2-weighted images (type 2), and low intensity in both T1- and T2-weighted imaging (type 3). The prevalence of the types and their relationship with back pain (determined on a visual analog scale) were evaluated. Results MRI revealed muscle degeneration in all patients after surgery (type 1, 6%; type 2, 82%; and type 3, 12%). Type 2 was significantly more frequent compared with types 1 and 3 (p<0.01). Low back pain was significantly improved after surgery (p<0.01). Low back pain was not associated with any MRI type of muscle degeneration after surgery (p>0.05). Conclusions Various pathologies of back muscle degeneration after posterior lumbar surgery were revealed. Type 2 (fatty) change was most frequent, and other patients had type 3 (scar) or type 1 (inflammation or water-like) changes. According to the Modic classification of bone marrow changes, Modic type 1 change is associated with inflammation and back pain. However, no particular type of back muscle degeneration was correlated with back pain after surgery. PMID:27340532

  11. Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy.

    PubMed Central

    Maron, B. J.; Ferrans, V. J.; Roberts, W. C.

    1975-01-01

    Degenerated cardiac muscle cells were present in hypertrophied ventricular muscle obtained at operation from 12 (38%) of 32 patients with asymmetric septal hypertrophy (hypertrophic cardiomyopathy) or aortic valvular disease. Degenerated cells demonstrated a wide variety of ultrastructural alterations. Mildly altered cells were normal-sized or hypertrophied and showed focal changes, including preferential loss of thick (myosin) filaments, streaming and clumping of Z band material, and proliferation of the tubules of sarcoplasmic reticulum. Moderately and severely degenerated cells were normal-sized or atrophic and showed additional changes, including extensive myofibrillar lysis and loss of T tubules. The appearance of the most severely degenerated cells usually reflected the cytoplasmic organelle (sarcoplasmic reticulum, glycogen, or mitochondria) which underwent proliferation and filled the myofibril-free areas of these cells. Moderately and severely degenerated cells were present in areas of fibrosis, had thickened basement membranes, and had lost their intercellular connections. These observations suggest that degenerated cardiac muscle cells have poor contractile function and may be responsible for impaired cardiac performance in some patients with chronic ventricular hypertrophy. Images Fig 1 Fig 2 Fig 3 Figs 4-6 Figs 7-8 Fig 9 Fig 10 Fig 11 Figs 12-15 Fig 16 Fig 17 Figs 18-21 Figs 22-23 Fig 24 Fig 25 Fig 26 Fig 27 Figs 28-29 Fig 30 Figs 31-32 Fig 33 PMID:124533

  12. Sodium and Potassium Currents Influence Wallerian Degeneration of Injured Drosophila Axons

    PubMed Central

    Mishra, Bibhudatta; Carson, Ross; Hume, Richard I.

    2013-01-01

    Axons degenerate after injury and in neuropathies and disease via a self-destruction program whose mechanism is poorly understood. Axons that have lost connection to their cell bodies have altered electrical and synaptic activities, but whether such changes play a role in the axonal degeneration process is not clear. We have used a Drosophila model to study the Wallerian degeneration of motoneuron axons and their neuromuscular junction synapses. We found that degeneration of the distal nerve stump after a nerve crush is greatly delayed when there is increased potassium channel activity (by overexpression of two different potassium channels, Kir2.1 and dORKΔ-C) or decreased voltage-gated sodium channel activity (using mutations in the para sodium channel). Conversely, degeneration is accelerated when potassium channel activity is decreased (by expressing a dominant-negative mutation of Shaker). Despite the effect of altering voltage-gated sodium and potassium channel activity, recordings made after nerve crush demonstrated that the distal stump does not fire action potentials. Rather, a variety of lines of evidence suggest that the sodium and potassium channels manifest their effects upon degeneration through changes in the resting membrane potential, which in turn regulates the level of intracellular free calcium within the isolated distal axon. PMID:24285879

  13. The Involvement of Protease Nexin-1 (PN1) in the Pathogenesis of Intervertebral Disc (IVD) Degeneration

    PubMed Central

    Wu, Xinghuo; Liu, Wei; Duan, Zhenfeng; Gao, Yong; Li, Shuai; Wang, Kun; Song, Yu; Shao, Zengwu; Yang, Shuhua; Yang, Cao

    2016-01-01

    Protease nexin-1 (PN-1) is a serine protease inhibitor belonging to the serpin superfamily. This study was undertaken to investigate the regulatory role of PN-1 in the pathogenesis of intervertebral disk (IVD) degeneration. Expression of PN-1 was detected in human IVD tissue of varying grades. Expression of both PN-1 mRNA and protein was significantly decreased in degenerated IVD, and the expression levels of PN-1 were correlated with the grade of disc degeneration. Moreover, a decrease in PN-1 expression in primary NP cells was confirmed. On induction by IL-1β, the expression of PN-1 in NP cells was decreased at day 7, 14, and 21, as shown by western blot analysis and immunofluorescence staining. PN-1 administration decreased IL-1β-induced MMPs and ADAMTS production and the loss of Agg and Col II in NP cell cultures through the ERK1/2/NF-kB signaling pathway. The changes in PN-1 expression are involved in the pathogenesis of IVD degeneration. Our findings indicate that PN-1 administration could antagonize IL-1β-induced MMPs and ADAMTS, potentially preventing degeneration of IVD tissue. This study also revealed new insights into the regulation of PN-1 expression via the ERK1/2/NF-kB signaling pathway and the role of PN-1 in the pathogenesis of IVD degeneration. PMID:27460424

  14. Human Intervertebral Disc Internal Strain in Compression: The Effect of Disc Region, Loading Position, and Degeneration

    PubMed Central

    O’Connell, Grace D.; Vresilovic, Edward J.; Elliott, Dawn M.

    2012-01-01

    The primary function of the disc is mechanical; therefore, degenerative changes in disc mechanics and the interactions between the annulus fibrosus (AF) and nucleus pulposus (NP) in nondegenerate and degenerate discs are important to functional evaluation. The disc experiences complex loading conditions, including mechanical interactions between the pressurized NP and the surrounding fiber-reinforced AF. Our objective was to noninvasively evaluate the internal deformations of nondegenerate and degenerate human discs under axial compression with flexion, neutral, and extension positions using magnetic resonance imaging and image correlation. The side of applied bending (e.g., anterior AF in flexion) had higher tensile radial and compressive axial strains, and the opposite side of bending exhibited tensile axial strains even though the disc was loaded under axial compression. Degenerated discs exhibited higher compressive axial and tensile radial strains, which suggest that load distribution through the disc subcomponents are altered with degeneration, likely due to the depressurized NP placing more of the applied load directly on the AF. The posterior AF exhibited higher compressive axial and higher tensile radial strains than the other AF regions, and the strains were not correlated with degeneration, suggesting this region undergoes high strains throughout life, which may predispose it to failure and tears. In addition to understanding internal disc mechanics, this study provides important new data into the changes in internal strain with degeneration, data for validation of finite element models, and provides a technique and baseline data for evaluating surgical treatments. PMID:21337394

  15. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation

    PubMed Central

    Goo, Yong Sook; Park, Dae Jin; Ahn, Jung Ryul; Senok, Solomon S.

    2016-01-01

    Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties. PMID:26793063

  16. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation.

    PubMed

    Goo, Yong Sook; Park, Dae Jin; Ahn, Jung Ryul; Senok, Solomon S

    2015-01-01

    Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties.

  17. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes

    NASA Astrophysics Data System (ADS)

    Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James

    2016-04-01

    Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.

  18. Association of age-related macular degeneration and reticular macular disease with cardiovascular disease.

    PubMed

    Rastogi, Neelesh; Smith, R Theodore

    2016-01-01

    Age-related macular degeneration is the leading cause of adult blindness in the developed world. Thus, major endeavors to understand the risk factors and pathogenesis of this disease have been undertaken. Reticular macular disease is a proposed subtype of age-related macular degeneration correlating histologically with subretinal drusenoid deposits located between the retinal pigment epithelium and the inner segment ellipsoid zone. Reticular lesions are more prevalent in females and in older age groups and are associated with a higher mortality rate. Risk factors for developing age-related macular degeneration include hypertension, smoking, and angina. Several genes related to increased risk for age-related macular degeneration and reticular macular disease are also associated with cardiovascular disease. Better understanding of the clinical and genetic risk factors for age-related macular degeneration and reticular macular disease has led to the hypothesis that these eye diseases are systemic. A systemic origin may help to explain why reticular disease is diagnosed more frequently in females as males suffer cardiovascular mortality at an earlier age, before the age of diagnosis of reticular macular disease and age-related macular degeneration.

  19. [Age-related macular degeneration as a local manifestation of atherosclerosis - a novel insight into pathogenesis].

    PubMed

    Machalińska, Anna

    2013-01-01

    Age-related macular degeneration is the leading cause of irreversible visual impairment and disability among the elderly in developed countries. There is compelling evidence that atherosclerosis and age-related macular degeneration share a similar pathogenic process. The association between atherosclerosis and age-related macular degeneration has been inferred from histological, biochemical and epidemiological studies. Many published data indicate that drusen are similar in molecular composition to plaques in atherosclerosis. Furthermore, a great body of evidence has emerged over the past decade that implicates the chronic inflammatory processes in the pathogenesis and progression of both disorders. We speculate that vascular atherosclerosis and age-related macular degeneration may represent different manifestations of the same disease induced by a pathologic tissue response to the damage caused by oxidative stress and local ischemia. In this review, we characterise in detail a strong association between age-related macular degeneration and atherosclerosis development, and we postulate the hypothesis that age-related macular degeneration is a local manifestation of a systemic disease. This provides a new approach for understanding the aspects of pathogenesis and might improve the prevention and treatment of both diseases which both result from ageing of the human body.

  20. Characterization of an Early-Onset, Autosomal Recessive, Progressive Retinal Degeneration in Bengal Cats

    PubMed Central

    Ofri, Ron; Reilly, Christopher M.; Maggs, David J.; Fitzgerald, Paul G.; Shilo-Benjamini, Yael; Good, Kathryn L.; Grahn, Robert A.; Splawski, Danielle D.; Lyons, Leslie A.

    2015-01-01

    Purpose A form of retinal degeneration suspected to be hereditary was discovered in a family of Bengal cats. A breeding colony was established to characterize disease progression clinically, electrophysiologically, and morphologically, and to investigate the mode of inheritance. Methods Affected and related cats were donated by owners for breeding trials and pedigree analysis. Kittens from test and complementation breedings underwent ophthalmic and neuro-ophthalmic examinations and ERG, and globes were evaluated using light microscopy. Results Pedigree analysis, along with test and complementation breedings, indicated autosomal recessive inheritance and suggested that this disease is nonallelic to a retinal degeneration found in Persian cats. Mutation analysis confirmed the disease is not caused by CEP290 or CRX variants found predominantly in Abyssinian and Siamese cats. Ophthalmoscopic signs of retinal degeneration were noted at 9 weeks of age and became more noticeable over the next 4 months. Visual deficits were behaviorally evident by 1 year of age. Electroretinogram demonstrated reduced rod and cone function at 7 and 9 weeks of age, respectively. Rod responses were mostly extinguished at 14 weeks of age; cone responses were minimal by 26 weeks. Histologic degeneration was first observed at 8 weeks, evidenced by reduced photoreceptor numbers, then rapid deterioration of the photoreceptor layer and, subsequently, severe outer retinal degeneration. Conclusions A recessively inherited primary photoreceptor degeneration was characterized in the Bengal cat. The disease is characterized by early onset, with histologic, ophthalmoscopic, and electrophysiological signs evident by 2 months of age, and rapid progression to blindness. PMID:26258614

  1. Experimental model of intervertebral disc degeneration by needle puncture in Wistar rats

    PubMed Central

    Issy, A.C.; Castania, V.; Castania, M.; Salmon, C.E.G.; Nogueira-Barbosa, M.H.; Bel, E. Del; Defino, H.L.A.

    2013-01-01

    Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration. PMID:23532265

  2. Nucleus-acoustic shock structures in a strongly coupled self-gravitating degenerate quantum plasma

    NASA Astrophysics Data System (ADS)

    Mamun, A. A.; Amina, M.; Schlickeiser, R.

    2016-09-01

    Nucleus-acoustic (NA) shock structures (SSs) are formed in a strongly coupled self-gravitating degenerate quantum plasma (SCSGDQP) system (e.g., white dwarfs) for the first time. The reductive perturbation method has been employed to identify the basic features of small, but finite amplitude NA SSs. The SCSGDQP is assumed to be composed of strongly coupled non-degenerate heavy nuclei, weakly coupled degenerate light nuclei, and non-relativistically and ultra-relativistically degenerate electrons. It is shown for the first time that the strong correlation among heavy nuclei acts as a source of dissipation and is responsible for the formation of the NA SSs, and that the NA SSs exist with positive (negative) electrostatic (self-gravitational) potential. It also observed that the effects of ultra-relativistically degenerate electrons and of the dynamics and degenerate pressure of light nuclei significantly modify the basic features (viz., speed, amplitude, and width) of the NA SSs. The implications of our results to the astrophysical compact objects like white dwarfs are briefly discussed.

  3. Linkage of Oxidative Stress and Mitochondrial Dysfunctions to Spontaneous Culture Degeneration in Aspergillus nidulans*

    PubMed Central

    Li, Lin; Hu, Xiao; Xia, Yongliang; Xiao, Guohua; Zheng, Peng; Wang, Chengshu

    2014-01-01

    Filamentous fungi including mushrooms frequently and spontaneously degenerate during subsequent culture maintenance on artificial media, which shows the loss or reduction abilities of asexual sporulation, sexuality, fruiting, and production of secondary metabolites, thus leading to economic losses during mass production. To better understand the underlying mechanisms of fungal degeneration, the model fungus Aspergillus nidulans was employed in this study for comprehensive analyses. First, linkage of oxidative stress to culture degeneration was evident in A. nidulans. Taken together with the verifications of cell biology and biochemical data, a comparative mitochondrial proteome analysis revealed that, unlike the healthy wild type, a spontaneous fluffy sector culture of A. nidulans demonstrated the characteristics of mitochondrial dysfunctions. Relative to the wild type, the features of cytochrome c release, calcium overload and up-regulation of apoptosis inducing factors evident in sector mitochondria suggested a linkage of fungal degeneration to cell apoptosis. However, the sector culture could still be maintained for generations without the signs of growth arrest. Up-regulation of the heat shock protein chaperones, anti-apoptotic factors and DNA repair proteins in the sector could account for the compromise in cell death. The results of this study not only shed new lights on the mechanisms of spontaneous degeneration of fungal cultures but will also provide alternative biomarkers to monitor fungal culture degeneration. PMID:24345786

  4. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation.

    PubMed

    Goo, Yong Sook; Park, Dae Jin; Ahn, Jung Ryul; Senok, Solomon S

    2015-01-01

    Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties. PMID:26793063

  5. The challenges of axon survival: introduction to the special issue on axonal degeneration.

    PubMed

    Coleman, Michael P

    2013-08-01

    Early axon loss is a common feature of many neurodegenerative disorders. It renders neurons functionally inactive, or less active if axon branches are lost, in a manner that is often irreversible. In the CNS, there is no long-range axon regeneration and even peripheral nerve axons are unlikely to reinnervate their targets while the cause of the problem persists. In most disorders, axon degeneration precedes cell death so it is not simply a consequence of it, and it is now clear that axons have at least one degeneration mechanism that differs from that of the soma. It is important to understand these degeneration mechanisms and their contribution to axon loss in neurodegenerative disorders. In this way, it should become possible to prevent axon loss as well as cell death. This special edition considers the roles and mechanisms of axon degeneration in amyotrophic lateral sclerosis, Charcot-Marie-Tooth disease, hereditary spastic paraplegia, ischemic injury, traumatic brain injury, Alzheimer's disease, glaucoma, Huntington's disease and Parkinson's disease. Using examples from these and other disorders, this introduction considers some of the reasons for axon vulnerability. It also illustrates how molecular genetics and studies of Wallerian degeneration have contributed to our understanding of axon degeneration mechanisms. PMID:23769907

  6. Identification of Degenerate Nuclei and Development of a SCAR Marker for Flammulina velutipes

    PubMed Central

    Kim, Sun Young; Kim, Kyung-Hee; Im, Chak Han; Ali, Asjad; Lee, Chang Yun; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Flammulina velutipes is one of the major edible mushrooms in the world. Recently, abnormalities that have a negative impact on crop production have been reported in this mushroom. These symptoms include slow vegetative growth, a compact mycelial mat, and few or even no fruiting bodies. The morphologies and fruiting capabilities of monokaryons of wild-type and degenerate strains that arose through arthrospore formation were investigated through test crossing. Only one monokaryotic group of the degenerate strains and its hybrid strains showed abnormal phenotypes. Because the monokaryotic arthrospore has the same nucleus as the parent strain, these results indicated that only one aberrant nucleus of the two nuclei in the degenerate strain was responsible for the degeneracy. A sequence-characterized amplified region marker that is linked to the degenerate monokaryon was identified based on a polymorphic sequence that was generated using random primers. Comparative analyses revealed the presence of a degenerate-specific genomic region in a telomere, which arose via the transfer of a genomic fragment harboring a putative helicase gene. Our findings have narrowed down the potential molecular targets responsible for this phenotype for future studies and have provided a marker for the detection of degenerate strains. PMID:25221949

  7. Does lumbar spinal degeneration begin with the anterior structures? A study of the observed epidemiology in a community-based population

    PubMed Central

    2011-01-01

    Background- Prior studies that have concluded that disk degeneration uniformly precedes facet degeneration have been based on convenience samples of individuals with low back pain. We conducted a study to examine whether the view that spinal degeneration begins with the anterior spinal structures is supported by epidemiologic observations of degeneration in a community-based population. Methods- 361 participants from the Framingham Heart Study were included in this study. The prevalences of anterior vertebral structure degeneration (disk height loss) and posterior vertebral structure degeneration (facet joint osteoarthritis) were characterized by CT imaging. The cohort was divided into the structural subgroups of participants with 1) no degeneration, 2) isolated anterior degeneration (without posterior degeneration), 3) combined anterior and posterior degeneration, and 4) isolated posterior degeneration (without anterior structure degeneration). We determined the prevalence of each degeneration pattern by age group < 45, 45-54, 55-64, ≥65. In multivariate analyses we examined the association between disk height loss and the response variable of facet joint osteoarthritis, while adjusting for age, sex, BMI, and smoking. Results- As the prevalence of the no degeneration and isolated anterior degeneration patterns decreased with increasing age group, the prevalence of the combined anterior/posterior degeneration pattern increased. 22% of individuals demonstrated isolated posterior degeneration, without an increase in prevalence by age group. Isolated posterior degeneration was most common at the L5-S1 and L4-L5 spinal levels. In multivariate analyses, disk height loss was independently associated with facet joint osteoarthritis, as were increased age (years), female sex, and increased BMI (kg/m2), but not smoking. Conclusions- The observed epidemiology of lumbar spinal degeneration in the community-based population is consistent with an ordered progression beginning

  8. [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].

    PubMed

    Fischer, Tamás

    2015-11-15

    It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors

  9. [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].

    PubMed

    Fischer, Tamás

    2015-11-15

    It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors

  10. Oxidative stress, innate immunity, and age-related macular degeneration

    PubMed Central

    Shaw, Peter X.; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    2016-01-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  11. Progress on retinal image analysis for age related macular degeneration.

    PubMed

    Kanagasingam, Yogesan; Bhuiyan, Alauddin; Abràmoff, Michael D; Smith, R Theodore; Goldschmidt, Leonard; Wong, Tien Y

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in those over the age of 50 years in the developed countries. The number is expected to increase by ∼1.5 fold over the next ten years due to an increase in aging population. One of the main measures of AMD severity is the analysis of drusen, pigmentary abnormalities, geographic atrophy (GA) and choroidal neovascularization (CNV) from imaging based on color fundus photograph, optical coherence tomography (OCT) and other imaging modalities. Each of these imaging modalities has strengths and weaknesses for extracting individual AMD pathology and different imaging techniques are used in combination for capturing and/or quantification of different pathologies. Current dry AMD treatments cannot cure or reverse vision loss. However, the Age-Related Eye Disease Study (AREDS) showed that specific anti-oxidant vitamin supplementation reduces the risk of progression from intermediate stages (defined as the presence of either many medium-sized drusen or one or more large drusen) to late AMD which allows for preventative strategies in properly identified patients. Thus identification of people with early stage AMD is important to design and implement preventative strategies for late AMD, and determine their cost-effectiveness. A mass screening facility with teleophthalmology or telemedicine in combination with computer-aided analysis for large rural-based communities may identify more individuals suitable for early stage AMD prevention. In this review, we discuss different imaging modalities that are currently being considered or used for screening AMD. In addition, we look into various automated and semi-automated computer-aided grading systems and related retinal image analysis techniques for drusen, geographic atrophy and choroidal neovascularization detection and/or quantification for measurement of AMD severity using these imaging modalities. We also review the existing telemedicine studies which

  12. A twin study on age-related macular degeneration.

    PubMed Central

    Meyers, S M

    1994-01-01

    A prospective twin study on age-related macular degeneration (AMD) recruited 83 monozygotic pairs, 28 dizygotic pairs, and one triplet set from 1986 through 1993. Zygosity was determined by genetic testing of red cell markers, HLA antigens, or specific DNA loci. There were no twin pairs in which I collected data on only one twin. To decrease ascertainment bias, after 1991 the recruitment notice did not mention AMD, and I did not ask about a history of eye disease before the eye examination. Because of this, twin pairs recruited from 1986 through 1991 were statistically analyzed separately from those after January 1, 1992. From 1986 through 1991, 23 twin pairs were recruited; 11 monozygotic and 2 dizygotic pairs had nonAMD retinal changes or no retinal abnormalities, 9 monozygotic pairs with AMD were all concordant, and 1 dizygotic pair was discordant for basal laminar drusen. The concordance rate of AMD did not differ significantly between monozygotic and dizygotic twin pairs (P = .10) for 1986 through 1991. In 1992 and 1993, 88 twin pairs and one triplet set were recruited; 49 monozygotic and 19 dizygotic pairs had nonAMD retinal changes or no retinal abnormalities, 14 monozygotic pairs with AMD were all concordant, and 2 of 7 dizygotic pairs were concordant for AMD. The nonidentical triplets (1 with and 2 without AMD) were categorized as one of the discordant dizygotic pairs in the statistical evaluation. In nontwin age-matched (within 2 or 5 years of age) or age- and sex-matched sibling pairs the concordance rate of AMD ranged from 16% to 25%. The concordance rate of AMD was significantly higher in monozygotic than in dizygotic twins (P = .001) for 1992 and 1993. The concordance rate was higher for monozygotic twin pairs recruited in 1992 and 1993 than in any of the four subsets of nontwin age-method or age- and sex-matched sibling pairs (P < .0001). Overall, from 1986 through 1993, 23 of 23 monozygotic and 2 of 8 dizygotic twin pairs were concordant for AMD

  13. A scanning electron-microscopic study of the local degeneration of cilia during sexual reproduction in Paramecium.

    PubMed

    Watanabe, T

    1978-08-01

    The location and extent of local degeneration of cilia during sexual reproduction of Paramecium was studied using scanning electron microscopy to examine cells undergoing conjugation and autogamy. At some time during the mating reaction, but prior to conjugant pair formation, ciliary degeneration begins at the antero-ventral tip of cells and proceeds posteriorly along the suture. In the anterior part of the cell, degeneration occurs on both sides of the suture, but in the posterior part it is restricted to the right side of the suture. In 5 species of Paramecium examined, degeneration occurred in nearly the same region. No degeneration of cilia is observed in natural autogamy of P. tetraurelia, whereas in chemically induced autogamy of P. caudatum degeneration occurs as in ordinary conjugation. Conjugant pairs never expose any deciliated cell surface except at the postero-ventral tip. The maximum extent of ciliary degeneration is best seen in the chemically induced autogamous cells: 7 kinetics (rows of unit teritories) at the anterior-left, 4 kinetics at the anterior-right, 10 or more kinetics at the posterior-right and the right wall of the vestibule of the mouth. Before complete disappearance of the cilia, many short cilia are observed. This suggests that ciliary degeneration is due to resorption. Degeneration extends more rapidly in cells with stronger mating reactivity. The relations between mating reactivity, ciliary degeneration and nuclear activation are discussed. PMID:701405

  14. Prevalence and pattern of radiographic intervertebral disc degeneration in Vietnamese: a population-based study.

    PubMed

    Ho-Pham, Lan T; Lai, Thai Q; Mai, Linh D; Doan, Minh C; Pham, Hoa N; Nguyen, Tuan V

    2015-06-01

    Intervertebral disc degeneration (IDD) is one of the most common skeletal disorders, yet few data are available in Asian populations. We sought to assess the prevalence and pattern of radiographic IDD in a Vietnamese population. This population-based cross-sectional investigation involved 170 men and 488 women aged ≥40 years, who were randomly sampled from the Ho Chi Minh City (Vietnam). Anthropometric data, clinical history and self-reported back and neck pain were ascertained by a questionnaire. Plain radiographs (from the cervical spine, thoracic spine to the lumbar spine) were examined for the presence of disc space narrowing and/or osteophytosis using the Kellgren-Lawrence (KL) grading system. The presence of radiographic IDD was defined if the KL grade was 2 or greater in at least one disc. The prevalence of radiographic IDD was 62.4% (n = 106) in men and 54.7% (n = 267) in women. The most frequently affected site was the lumbar spine with prevalence being 50.6 and 43.2% in men and women, respectively. The prevalence of IDD increased with advancing age: 18.8% among those aged 40-49 years, and increased to 83.4% in those aged ≥60 years. Self-reported neck pain and lower back pain were found in 30 and 44% of individuals, respectively. There was no statistically significant association between self-reported neck pain and cervical spine OA. These data suggest that radiographic IDD is highly prevalent in the Vietnamese population, and that self-reported back pain is not a sensitive indicator of IDD.

  15. HTRA1 promoter variant differentiates polypoidal choroidal vasculopathy from exudative age-related macular degeneration.

    PubMed

    Ng, Tsz Kin; Liang, Xiao Ying; Lai, Timothy Y Y; Ma, Li; Tam, Pancy O S; Wang, Jian Xiong; Chen, Li Jia; Chen, Haoyu; Pang, Chi Pui

    2016-01-01

    Exudative age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV) share similar abnormal choroidal vasculature, but responses to treatments are different. In this study, we sequenced the whole HTRA1 gene and its promoter by direct sequencing in a Hong Kong Chinese PCV cohort. We identified rs11200638, c.34delCinsTCCT, c.59C>T, rs1049331 and rs2293870 significantly associated with PCV. Notably, rs2672598 was significantly associated with exudative AMD (p = 1.31 × 10(-4)) than PCV (p = 0.11). Logistic regression indicated that rs2672598 (p = 2.27 × 10(-3)) remained significant after adjusting for rs11200638 in exudative AMD. Moreover, the rs11200638-rs2672598 joint genotype AA-CC conferred higher risk to exudative AMD (43.11 folds) than PCV (3.68 folds). Promoter analysis showed that rs2672598 C-allele showed higher luciferase expression than wildtype T-allele (p = 0.026), independent of rs11200638 genotype (p = 0.621). Coherently, vitreous humor HTRA1 expression with rs2672598 CC genotype was significantly higher than that with TT genotype by 2.56 folds (p = 0.02). Furthermore, rs2672598 C-allele was predicted to alter the transcription factor binding sites, but not rs11200638 A-allele. Our results revealed that HTRA1 rs2672598 is more significantly associated with exudative AMD than PCV in ARMS2/HTRA1 region, and it is responsible for elevated HTRA1 transcriptional activity and HTRA1 protein expression. PMID:27338780

  16. Regulation of age-related macular degeneration-like pathology by complement factor H

    PubMed Central

    Toomey, Christopher B.; Kelly, Una; Saban, Daniel R.; Bowes Rickman, Catherine

    2015-01-01

    Complement factor H (CFH) is a major susceptibility gene for age-related macular degeneration (AMD); however, its impact on AMD pathobiology is unresolved. Here, the role of CFH in the development of AMD pathology in vivo was interrogated by analyzing aged Cfh+/− and Cfh−/− mice fed a high-fat, cholesterol-enriched diet. Strikingly, decreased levels of CFH led to increased sub-retinal pigmented epithelium (sub-RPE) deposit formation, specifically basal laminar deposits, following high-fat diet. Mechanistically, our data show that deposits are due to CFH competition for lipoprotein binding sites in Bruch’s membrane. Interestingly and despite sub-RPE deposit formation occurring in both Cfh+/− and Cfh−/− mice, RPE damage accompanied by loss of vision occurred only in old Cfh+/− mice. We demonstrate that such pathology is a function of excess complement activation in Cfh+/− mice versus complement deficiency in Cfh−/− animals. Due to the CFH-dependent increase in sub-RPE deposit height, we interrogated the potential of CFH as a previously unidentified regulator of Bruch’s membrane lipoprotein binding and show, using human Bruch’s membrane explants, that CFH removes endogenous human lipoproteins in aged donors. Thus, advanced age, high-fat diet, and decreased CFH induce sub-RPE deposit formation leading to complement activation, which contributes to RPE damage and visual function impairment. This new understanding of the complicated interactions of CFH in AMD-like pathology provides an improved foundation for the development of targeted therapies for AMD. PMID:25991857

  17. Noise-Induced Neural Degeneration and Therapeutic Effect of Antioxidant Drugs

    PubMed Central

    Choi, Seong Hee

    2015-01-01

    The primary site of lesion induced by noise exposure is the hair cells in the organ of Corti and the primary neural degeneration occurs in synaptic terminals of cochlear nerve fibers and spiral ganglion cells. The cellular basis of noise-induced hearing loss is oxidative stress, which refers to a severe disruption in the balance between the production of free radicals and antioxidant defense system in the cochlea by excessive production of free radicals induced by noise exposure. Oxidative stress has been identified by a variety of biomarkers to label free radical activity which include four-hydroxy-2-nonenal, nitrotyrosine, and malondialdehyde, and inducible nitric oxide synthase, cytochrome-C, and cascade-3, 8, 9. Furthermore, oxidative stress is contributing to the necrotic and apoptotic cell deaths in the cochlea. To counteract the known mechanisms of pathogenesis and oxidative stress induced by noise exposure, a variety of antioxidant drugs including oxygen-based antioxidants such as N-acetyl-L-cystein and acetyl-L-carnitine and nitrone-based antioxidants such as phenyl-N-tert-butylnitrone (PBN), disufenton sodium, 4-hydroxy PBN, and 2, 4-disulfonyl PBN have been used in our laboratory. These antioxidant drugs were effective in preventing or treating noise-induced hearing loss. In combination with other antioxidants, antioxidant drugs showed a strong synergistic effect. Furthermore, successful use of antioxidant drugs depends on the optimal timing of treatment and the duration of treatment, which are highly related to the time window of free radical formation induced by noise exposure. PMID:26771008

  18. Prevalence and pattern of radiographic intervertebral disc degeneration in Vietnamese: a population-based study.

    PubMed

    Ho-Pham, Lan T; Lai, Thai Q; Mai, Linh D; Doan, Minh C; Pham, Hoa N; Nguyen, Tuan V

    2015-06-01

    Intervertebral disc degeneration (IDD) is one of the most common skeletal disorders, yet few data are available in Asian populations. We sought to assess the prevalence and pattern of radiographic IDD in a Vietnamese population. This population-based cross-sectional investigation involved 170 men and 488 women aged ≥40 years, who were randomly sampled from the Ho Chi Minh City (Vietnam). Anthropometric data, clinical history and self-reported back and neck pain were ascertained by a questionnaire. Plain radiographs (from the cervical spine, thoracic spine to the lumbar spine) were examined for the presence of disc space narrowing and/or osteophytosis using the Kellgren-Lawrence (KL) grading system. The presence of radiographic IDD was defined if the KL grade was 2 or greater in at least one disc. The prevalence of radiographic IDD was 62.4% (n = 106) in men and 54.7% (n = 267) in women. The most frequently affected site was the lumbar spine with prevalence being 50.6 and 43.2% in men and women, respectively. The prevalence of IDD increased with advancing age: 18.8% among those aged 40-49 years, and increased to 83.4% in those aged ≥60 years. Self-reported neck pain and lower back pain were found in 30 and 44% of individuals, respectively. There was no statistically significant association between self-reported neck pain and cervical spine OA. These data suggest that radiographic IDD is highly prevalent in the Vietnamese population, and that self-reported back pain is not a sensitive indicator of IDD. PMID:25791571

  19. Premature Truncation of a Novel Protein, RD3, Exhibiting Subnuclear Localization Is Associated with Retinal Degeneration

    PubMed Central

    Friedman, James S. ; Chang, Bo ; Kannabiran, Chitra ; Chakarova, Christina ; Singh, Hardeep P. ; Jalali, Subhadra ; Hawes, Norman L. ; Branham, Kari ; Othman, Mohammad ; Filippova, Elena ; Thompson, Debra A. ; Webster, Andrew R. ; Andréasson, Sten ; Jacobson, Samuel G. ; Bhattacharya, Shomi S. ; Heckenlively, John R. ; Swaroop, Anand 

    2006-01-01

    The rd3 mouse is one of the oldest identified models of early-onset retinal degeneration. Using the positional candidate approach, we have identified a C→T substitution in a novel gene, Rd3, that encodes an evolutionarily conserved protein of 195 amino acids. The rd3 mutation results in a predicted stop codon after residue 106. This change is observed in four rd3 lines derived from the original collected mice but not in the nine wild-type mouse strains that were examined. Rd3 is preferentially expressed in the retina and exhibits increasing expression through early postnatal development. In transiently transfected COS-1 cells, the RD3-fusion protein shows subnuclear localization adjacent to promyelocytic leukemia-gene-product bodies. The truncated mutant RD3 protein is detectable in COS-1 cells but appears to get degraded rapidly. To explore potential association of the human RD3 gene at chromosome 1q32 with retinopathies, we performed a mutation screen of 881 probands from North America, India, and Europe. In addition to several alterations of uncertain significance, we identified a homozygous alteration in the invariant G nucleotide of the RD3 exon 2 donor splice site in two siblings with Leber congenital amaurosis. This mutation is predicted to result in premature truncation of the RD3 protein, segregates with the disease, and is not detected in 121 ethnically matched control individuals. We suggest that the retinopathy-associated RD3 protein is part of subnuclear protein complexes involved in diverse processes, such as transcription and splicing. PMID:17186464

  20. HTRA1 promoter variant differentiates polypoidal choroidal vasculopathy from exudative age-related macular degeneration

    PubMed Central

    Ng, Tsz Kin; Liang, Xiao Ying; Lai, Timothy Y. Y.; Ma, Li; Tam, Pancy O. S.; Wang, Jian Xiong; Chen, Li Jia; Chen, Haoyu; Pang, Chi Pui

    2016-01-01

    Exudative age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV) share similar abnormal choroidal vasculature, but responses to treatments are different. In this study, we sequenced the whole HTRA1 gene and its promoter by direct sequencing in a Hong Kong Chinese PCV cohort. We identified rs11200638, c.34delCinsTCCT, c.59C>T, rs1049331 and rs2293870 significantly associated with PCV. Notably, rs2672598 was significantly associated with exudative AMD (p = 1.31 × 10−4) than PCV (p = 0.11). Logistic regression indicated that rs2672598 (p = 2.27 × 10−3) remained significant after adjusting for rs11200638 in exudative AMD. Moreover, the rs11200638-rs2672598 joint genotype AA-CC conferred higher risk to exudative AMD (43.11 folds) than PCV (3.68 folds). Promoter analysis showed that rs2672598 C-allele showed higher luciferase expression than wildtype T-allele (p = 0.026), independent of rs11200638 genotype (p = 0.621). Coherently, vitreous humor HTRA1 expression with rs2672598 CC genotype was significantly higher than that with TT genotype by 2.56 folds (p = 0.02). Furthermore, rs2672598 C-allele was predicted to alter the transcription factor binding sites, but not rs11200638 A-allele. Our results revealed that HTRA1 rs2672598 is more significantly associated with exudative AMD than PCV in ARMS2/HTRA1 region, and it is responsible for elevated HTRA1 transcriptional activity and HTRA1 protein expression. PMID:27338780