Science.gov

Sample records for 4-hydroxy benzoic acid

  1. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  2. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  3. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  4. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  5. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  6. Encapsulation of 4-hydroxy-3-methoxy benzoic acid and 4-hydroxy-3,5-dimethoxy benzoic acid with native and modified cyclodextrins.

    PubMed

    Rajendiran, N; Jude Jenita, M

    2015-02-05

    Inclusion complex formation of 4-hydroxy-3-methoxybenzoic acid (HMBA) and 4-hydroxy-3,5-dimethoxybenzoic acid (HDMBA) with α-CD, β-CD, HP-α-CD and HP-β-CD were studied by absorption, steady state fluorescence, time resolved fluorescence, FT-IR, (1)H NMR and molecular modeling methods. The effect of the CDs with HMBA and HDMBA were studied in pH∼1, pH∼7 and pH∼10 buffer solutions. The study revealed that both hydroxybenzoic acids formed 1:1 complex with the four CDs. The theoretical values suggest that both guests are partially encapsulated into the CDs cavity. The hydroxy group is present in the interior part of the CD cavity and carboxyl group is present in the hydrophilic part of the CD cavity. Molecular modeling studies proved that (i) the negative Gibbs energy and enthalpy changes for the inclusion complexes indicated that the formation of these complexes were spontaneous and exothermic, (ii) hydrogen bonding interactions played a major role in the inclusion process, (iii) the dipole moment values for guests increased when they entered into the CDs cavities which is an indication of the increase of the polarity and the formation of complex and (iv) differences in binding energy and enthalpy change suggest that the β-CD formed more stable complex than α-CD.

  7. Encapsulation of 4-hydroxy-3-methoxy benzoic acid and 4-hydroxy-3,5-dimethoxy benzoic acid with native and modified cyclodextrins

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Jude Jenita, M.

    2015-02-01

    Inclusion complex formation of 4-hydroxy-3-methoxybenzoic acid (HMBA) and 4-hydroxy-3,5-dimethoxybenzoic acid (HDMBA) with α-CD, β-CD, HP-α-CD and HP-β-CD were studied by absorption, steady state fluorescence, time resolved fluorescence, FT-IR, 1H NMR and molecular modeling methods. The effect of the CDs with HMBA and HDMBA were studied in pH ∼ 1, pH ∼ 7 and pH ∼ 10 buffer solutions. The study revealed that both hydroxybenzoic acids formed 1:1 complex with the four CDs. The theoretical values suggest that both guests are partially encapsulated into the CDs cavity. The hydroxy group is present in the interior part of the CD cavity and carboxyl group is present in the hydrophilic part of the CD cavity. Molecular modeling studies proved that (i) the negative Gibbs energy and enthalpy changes for the inclusion complexes indicated that the formation of these complexes were spontaneous and exothermic, (ii) hydrogen bonding interactions played a major role in the inclusion process, (iii) the dipole moment values for guests increased when they entered into the CDs cavities which is an indication of the increase of the polarity and the formation of complex and (iv) differences in binding energy and enthalpy change suggest that the β-CD formed more stable complex than α-CD.

  8. Preparation and Absorption Spectral Property of a Multifunctional Water-Soluble Azo Compound with D-π-A Structure, 4-(4- Hydroxy-1-Naphthylazo)Benzoic Acid

    NASA Astrophysics Data System (ADS)

    Hu, L.; Lv, H.; Xie, C. G.; Chang, W. G.; Yan, Z. Q.

    2015-07-01

    A multifunctional water-soluble azo dye with the D-π-A conjugated structure, 4-(4-hydroxy-1-naphthylazo) benzoic acid ( HNBA), was designed and synthesized using 1-naphanol as the electron donator, benzoic acid as the electron acceptor, and -N=N- as the bridging group. After its structure was characterized by FTIR, 1H NMR, and element analysis, the UV-Vis absorption spectral performance of the target dye was studied in detail. The results showed that the dye, combining hydroxyl group, azo group, and carboxyl group, possessed excellent absorption spectral properties (ɛ = 1.2·104 l·mol-1·cm-1) changing with pH and solvents. In particular, in polar and protonic water, it had excellent optical response to some metal ions, i.e., Fe3+ and Pb2+, which might make it a latent colorimetric sensor for detecting heavy metal ions.

  9. Molecular structure, vibrational, UV, NMR, HOMO-LUMO, MEP, NLO, NBO analysis of 3,5 di tert butyl 4 hydroxy benzoic acid

    NASA Astrophysics Data System (ADS)

    Mathammal, R.; Sangeetha, K.; Sangeetha, M.; Mekala, R.; Gadheeja, S.

    2016-09-01

    In this study, we report a combined experimental and theoretical study on molecular structure and vibrational spectra of 3,5 di tert butyl 4 hydroxy benzoic acid. The properties of title compound have been evaluated by quantum chemical calculation (DFT) using B3LYP functional and 6-31 + G (d, p) as basis set. IR Spectra has been recorded using Fourier transform infrared spectroscopy (FT-IR) in the region 4000-400 cm-1. The vibrational assignment of the calculated normal modes has been made on the basis set. The isotropic chemical shifts computed by 13C and 1H NMR (Nuclear Magnetic Resonance) analyses also show good agreement with experimental observations. The theoretical UV-Vis spectrum of the compound are used to study the visible absorption maxima (λ max). The structure activity relationship have been interpreted by mapping electrostatic potential surface (MEP), which is valuable information for the quality control of medicines and drug receptor interactions. The Mullikan charges, HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) energy are analyzed. HOMO-LUMO energy gap and other related molecular properties are also calculated. The Natural Bond Orbital (NBO) analysis is carried out to investigate the various intra and inter molecular interactions of molecular system. The Non-linear optical properties such as dipole moment (μ), polarizability (αtot) and molecular first order hyperpolarizability (β) of the title compound are computed with B3LYP/6-31 + G (d,p) level of theory.

  10. 4-hydroxy-benzoic acid (4-diethylamino-2-hydroxy-benzylidene)hydrazide: DFT, antioxidant, spectroscopic and molecular docking studies with BSA.

    PubMed

    Sharma, Vibha; Arora, Ekta Kundra; Cardoza, Savio

    2016-05-01

    The Schiff base 4-hydroxy-benzoic acid (4-diethylamino-2-hydroxy-benzylidene) hydrazide (SL) was synthesized and characterized. Its antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging action. Being a potent antioxidant its binding ability to the transport protein bovine serum albumin (BSA) was studied using fluorescence quenching and circular dichroism (CD) studies. The binding distance has been calculated by fluorescence resonance energy transfer (FRET) to be 1.85 Å and the Stern-Volmer quenching constant has been calculated to be (3.23 ± 0.45) × 10(5)  M(-1). Quantum chemical analysis was carried out for the Schiff base using DFT with B3LYP and 6-311G** and related to the experimentally obtained results. For a deeper understanding of the mechanism of the interaction, the experimental data were complemented by protein-Schiff base docking calculations using Argus Lab.

  11. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  12. Synthesis, spectroscopic, crystal structure and DNA binding of Ru(II) complexes with 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide

    NASA Astrophysics Data System (ADS)

    Chitrapriya, Nataraj; Sathiya Kamatchi, Thangavel; Zeller, Matthias; Lee, Hyosun; Natarajan, Karuppannan

    2011-10-01

    Reactions of 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide (H 2L) with [RuHCl(CO)(EPh 3) 3] (E = P or As) were carried out and the new complexes obtained were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectroscopic techniques and single crystal X-ray diffraction studies. Complex ( 1) crystallizes in the monoclinic space group P2(1)/ c with unit cell dimensions a = 18.6236(17) Å, b = 12.8627(12) Å, c = 21.683(2) Å, α = 90.00, β = 114.626(2), γ = 90.00 V = 4721.8(8) Å, Z = 4. The crystal structure of the complex shows Ru(II) atom is six-coordinated, forming a slightly distorted octahedral geometry with two P atoms in axial positions, and three chelating donor atoms of the tridentate Schiff base ligand and one carbonyl group located in the equatorial plane. The molecular structure is stabilized by intramolecular O—H···N interactions. No intermolecular hydrogen bond was observed. The intramolecular hydrogen bond exists between the oxygen atom from salicylic acid moiety and nitrogen from the same moiety. A variety of solution studies were carried out for the determination of DNA binding mode of the complexes. The results suggest that both complexes bind to Herring sperm DNA via non intercalative mode.

  13. Synthesis, spectroscopic, crystal structure and DNA binding of Ru(II) complexes with 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide.

    PubMed

    Chitrapriya, Nataraj; Kamatchi, Thangavel Sathiya; Zeller, Matthias; Lee, Hyosun; Natarajan, Karuppannan

    2011-10-15

    Reactions of 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide (H(2)L) with [RuHCl(CO)(EPh(3))(3)] (E = P or As) were carried out and the new complexes obtained were characterized by elemental analysis, electronic, IR, (1)H NMR and (13)C NMR spectroscopic techniques and single crystal X-ray diffraction studies. Complex (1) crystallizes in the monoclinic space group P2(1)/c with unit cell dimensions a=18.6236(17) Å, b=12.8627(12) Å, c=21.683(2) Å, α=90.00, β=114.626(2), γ=90.00 V=4721.8(8) Å, Z=4. The crystal structure of the complex shows Ru(II) atom is six-coordinated, forming a slightly distorted octahedral geometry with two P atoms in axial positions, and three chelating donor atoms of the tridentate Schiff base ligand and one carbonyl group located in the equatorial plane. The molecular structure is stabilized by intramolecular O-H···N interactions. No intermolecular hydrogen bond was observed. The intramolecular hydrogen bond exists between the oxygen atom from salicylic acid moiety and nitrogen from the same moiety. A variety of solution studies were carried out for the determination of DNA binding mode of the complexes. The results suggest that both complexes bind to Herring sperm DNA via non intercalative mode.

  14. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid...

  15. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Benzoic acid. 184.1021 Section 184.1021 Food and....1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid occurs naturally are...

  16. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid...

  17. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid...

  18. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid...

  19. 4-Hydroxy cinnamic acid as mushroom preservation: Anti-tyrosinase activity kinetics and application.

    PubMed

    Hu, Yong-Hua; Chen, Qing-Xi; Cui, Yi; Gao, Huan-Juan; Xu, Lian; Yu, Xin-Yuan; Wang, Ying; Yan, Chong-Ling; Wang, Qin

    2016-05-01

    Tyrosinase is a key enzyme in post-harvest browning of fruit and vegetable. To control and inhibit its activity is the most effective method for delaying the browning and extend the shelf life. In this paper, the inhibitory kinetics of 4-hydroxy cinnamic acid on mushroom tyrosinase was investigated using the kinetics method of substrate reaction. The results showed that the inhibition of tyrosinase by 4-hydroxy cinnamic acid was a slow, reversible reaction with fractional remaining activity. The microscopic rate constants were determined for the reaction on 4-hydroxy cinnamic acid with tyrosinase. Furthermore, the molecular docking was used to simulate 4-hydroxy cinnamic acid dock with tyrosinase. The results showed that 4-hydroxy cinnamic acid interacted with the enzyme active site mainly through the hydroxy competed with the substrate hydroxy group. The cytotoxicity study of 4-hydroxy cinnamic acid indicated that it had no effects on the proliferation of normal liver cells. Moreover, the results of effects of 4-hydroxy cinnamic acid on the preservation of mushroom showed that it could delay the mushroom browning. These results provide a comprehensive underlying the inhibitory mechanisms of 4-hydroxy cinnamic acid and its delaying post-harvest browning, that is beneficial for the application of this compound.

  20. 21 CFR 573.210 - Benzoic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Benzoic acid. 573.210 Section 573.210 Food and... Listing § 573.210 Benzoic acid. The food additive, benzoic acid, may be safely used in the manufacture of... acid (CAS 65-85-0) by weight with the sum of 2-methylbiphenyl, 3-methylbiphenyl,...

  1. 21 CFR 582.3021 - Benzoic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Benzoic acid. 582.3021 Section 582.3021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Benzoic acid. (a) Product. Benzoic acid. (b) Tolerance. This substance is generally recognized as safe...

  2. 21 CFR 582.3021 - Benzoic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Benzoic acid. 582.3021 Section 582.3021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Benzoic acid. (a) Product. Benzoic acid. (b) Tolerance. This substance is generally recognized as safe...

  3. 21 CFR 582.3021 - Benzoic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Benzoic acid. 582.3021 Section 582.3021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Benzoic acid. (a) Product. Benzoic acid. (b) Tolerance. This substance is generally recognized as safe...

  4. 21 CFR 582.3021 - Benzoic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Benzoic acid. 582.3021 Section 582.3021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Benzoic acid. (a) Product. Benzoic acid. (b) Tolerance. This substance is generally recognized as safe...

  5. 21 CFR 582.3021 - Benzoic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Benzoic acid. 582.3021 Section 582.3021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Benzoic acid. (a) Product. Benzoic acid. (b) Tolerance. This substance is generally recognized as safe...

  6. Capillary Electrophoresis of Substituted Benzoic Acids

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Spence, John D.; Bushey, Michelle M.

    2005-01-01

    A series of substituted benzoic acids (SBAs) are prepared by students. The pKa shift, a result of the electron-withdrawing or electron-donating characteristics of the subsistent is examined in reference to the electrophoretic migration behavior of benzoic acid.

  7. Photodissociation dynamics of benzoic acid

    SciTech Connect

    Dyakov, Yuri A.; Bagchi, Arnab; Lee, Yuan T.; Ni, Chi-Kung

    2010-01-07

    The photodissociation of benzoic acid at 193 and 248 nm was investigated using multimass ion imaging techniques. Three dissociation channels were observed at 193 nm: (1) C{sub 6}H{sub 5}COOH{yields}C{sub 6}H{sub 5}+COOH, (2) C{sub 6}H{sub 5}COOH{yields}C{sub 6}H{sub 5}CO+OH, and (3) C{sub 6}H{sub 5}COOH{yields}C{sub 6}H{sub 6}+CO{sub 2}. Only channels, (2) and (3), were observed at 248 nm. Comparisons of the ion intensities and photofragment translational energy distributions with the potential energies obtained from ab initio calculations and the branching ratios obtained from the Rice-Ramsperger-Kassel-Marcus theory suggest that the dissociation occurs on many electronic states.

  8. 40 CFR 721.1680 - Substituted benzoic acid (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted benzoic acid (generic... Substances § 721.1680 Substituted benzoic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted benzoic acid (PMN...

  9. 40 CFR 721.1680 - Substituted benzoic acid (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted benzoic acid (generic... Substances § 721.1680 Substituted benzoic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted benzoic acid (PMN...

  10. 40 CFR 721.1680 - Substituted benzoic acid (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted benzoic acid (generic... Substances § 721.1680 Substituted benzoic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted benzoic acid (PMN...

  11. 40 CFR 721.1680 - Substituted benzoic acid (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted benzoic acid (generic... Substances § 721.1680 Substituted benzoic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted benzoic acid (PMN...

  12. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-01-19

    Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.

  13. Metabolism of 4-Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone by Retinal Pigmented Epithelial Cells.

    PubMed

    Wang, Hua; Linetsky, Mikhail; Guo, Junhong; Yu, Annabelle O; Salomon, Robert G

    2016-07-18

    4-Hydroxy-7-oxo-5-heptenic acid (HOHA)-lactone is a biologically active oxidative truncation product released (t1/2 = 30 min at 37 °C) by nonenzymatic transesterification/deacylation from docosahexaenoate lipids. We now report that HOHA-lactone readily diffuses into retinal pigmented epithelial (RPE) cells where it is metabolized. A reduced glutathione (GSH) Michael adduct of HOHA-lactone is the most prominent metabolite detected by LC-MS in both the extracellular medium and cell lysates. This molecule appeared inside of ARPE-19 cells within seconds after exposure to HOHA-lactone. The intracellular level reached a maximum concentration at 30 min and then decreased with concomitant increases in its level in the extracellular medium, thus revealing a unidirectional export of the reduced GSH-HOHA-lactone adduct from the cytosol to extracellular medium. This metabolism is likely to modulate the involvement of HOHA-lactone in the pathogenesis of human diseases. HOHA-lactone is biologically active, e.g., low concentrations (0.1-1 μM) induce secretion of vascular endothelial growth factor (VEGF) from ARPE-19 cells. HOHA-lactone is also a precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amino groups in proteins and ethanolamine phospholipids that have significant pathological and physiological relevance to age-related macular degeneration (AMD), cancer, and wound healing. Both HOHA-lactone and the derived CEP can contribute to the angiogenesis that defines the neovascular "wet" form of AMD and that promotes the growth of tumors. While GSH depletion can increase the lethality of radiotherapy, because it will impair the metabolism of HOHA-lactone, the present study suggests that GSH depletion will also increase levels of HOHA-lactone and CEP that may promote recurrence of tumor growth.

  14. 4-Hydroxy-7-oxo-5-heptenoic Acid Lactone Induces Angiogenesis through Several Different Molecular Pathways.

    PubMed

    Guo, Junhong; Linetsky, Mikhail; Yu, Annabelle O; Zhang, Liang; Howell, Scott J; Folkwein, Heather J; Wang, Hua; Salomon, Robert G

    2016-12-19

    Oxidative stress and angiogenesis have been implicated not only in normal phenomena such as tissue healing and remodeling but also in many pathological processes. However, the relationships between oxidative stress and angiogenesis still remain unclear, although oxidative stress has been convincingly demonstrated to influence the progression of angiogenesis under physiological and pathological conditions. The retina is particularly susceptible to oxidative stress because of its intensive oxygenation and high abundance of polyunsaturated fatty acyls. In particular, it has high levels of docosahexanoates, whose oxidative fragmentation produces 4-hydroxy-7-oxo-5-heptenoic acid lactone (HOHA-lactone). Previously, we found that HOHA-lactone is a major precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives, which are tightly linked to age-related macular degeneration (AMD). CEPs promote the pathological angiogenesis of late-stage AMD. We now report additional mechanisms by which HOHA-lactone promotes angiogenesis. Using cultured ARPE-19 cells, we observed that HOHA-lactone induces secretion of vascular endothelial growth factor (VEGF), which is correlated to increases in reactive oxygen species and decreases in intracellular glutathione (GSH). Wound healing and tube formation assays provided, for the first time, in vitro evidence that HOHA-lactone induces the release of VEGF from ARPE-19 cells, which promotes angiogenesis by human umbilical vein endothelial cells (HUVEC) in culture. Thus, HOHA-lactone can stimulate vascular growth through a VEGF-dependent pathway. In addition, results from MTT and wound healing assays as well as tube formation experiments showed that GSH-conjugated metabolites of HOHA-lactone stimulate HUVEC proliferation and promote angiogenesis in vitro. Previous studies demonstrated that HOHA-lactone, through its CEP derivatives, promotes angiogenesis in a novel Toll-like receptor 2-dependent manner that is independent of the VEGF receptor or VEGF

  15. 3-Acetyl-benzoic acid.

    PubMed

    Fixler, David E; Newman, Jacob M; Lalancette, Roger A; Thompson, Hugh W

    2010-06-05

    In the crystal structure of the title compound, C(9)H(8)O(3), essentially planar mol-ecules [the carboxyl group makes a dihedral angle of 4.53 (7)° with the plane of the ring, while the acid group forms a dihedral angle of 3.45 (8)° to the ring] aggregate by centrosymmetric hydrogen-bond pairing of ordered carboxyl groups. This yields dimers which have two orientations in a unit cell, creating a herringbone pattern. In addition, two close C-H⋯O inter-molecular contacts exist: one is between a methyl H atom and the ketone of a symmetry-related mol-ecule and the other involves a benzene H atom and the carboxyl group O atom of another mol-ecule. The crystal studied was a non-merohedral twin with twin law [100, 00, 0] and a domain ratio of 0.8104(14): 0.1896(14).

  16. Acetylcholinesterase inhibitory properties of some benzoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Yildiz, Melike; Kiliç, Deryanur; Ünver, Yaǧmur; Şentürk, Murat; Askin, Hakan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Acetylcholinesterase (AChE) hydrolyses the neurotransmitter acetylcholine to acetic acid and choline. AChE inhibitors are used in treatment of several neurodegeneartive disorder and Alzheimer's disease. In the present study, inhibition of AChE with some benzoic acid derivatives were investigated. 3-Chloro-benzoic acid (1), 2-hydroxy-5-sulfobenzoic acid (2), 2-(sulfooxy) benzoic acid (3), 2-hydroxybenzoic acid (4), 2,3-dimethoxybenzoic (5), and 3,4,5-trimethoxybenzoic (6) were calculated IC50 values AChE enzyme. Kinetic investigations showed that similarly to AChE inhibitors. Benzoic acid derivatives (1-6) investigated are encouraging agents which may be used as lead molecules in order to derivative novel AChE inhibitors that might be useful in medical applications.

  17. A library synthesis of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-09-06

    As a result of a hit-to-lead program using a technique of solution-phase parallel synthesis, a highly potent (2,4-dimethoxyphenyl)-[6-(3-fluorophenyl)-4-hydroxy-3-methylbenzofuran-2-yl]methanone (15b) was synthesized as an optimized derivative of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which was discovered as a screening hit from small-molecule libraries and exhibited selective cytotoxicity against a tumorigenic cell line.

  18. Molecular structures and electronic properties of isonicotinic acid (3-methoxy-4-hydroxy-benzylidene)-hydrazide: Ab initio and DFT calculation

    NASA Astrophysics Data System (ADS)

    Uǧurlu, Güventürk

    2017-02-01

    The molecular structure and conformational analysis of isonicotinic acid (3-methoxy-4-hydroxy-benzylidene)- hydrazide were investigated by Ab initio and density functional theory DFT/B3LYP levels of theory with complete relaxation in the potential energy surface using varied basis set. The four stable conformers of the studied molecule (C1, C2, C3 and C4) were computed. The computational results diagnose the most stable conformer of (3-methoxy-4-hydroxy-benzylidene)-hydrazide as the C1 form. Molecular structure, dipole moment, polarizability and first static hyperpolarizability of the four stable conformers have been calculated by using 6-311++G (d, p) basis set for both models. Besides, EHOMO (the highest occupied molecular orbital energy), ELUMO (the lowest unoccupied molecular orbital energy) and HOMO-LUMO energy gap (ΔEg) are investigated. The dipole moment for C1, C2, C3 and C4 conformers are calculated at 2.44, 7.74, 7.75 and 6.58 with DFT/B3LYP level of the theory 6-311++G (d, p) basis set and at the HF/6-311++ G (d, p) 2.60, 7.42, 7.41 and 6.36 Debye, respectively. The structural parameters of the studied molecule compared with data in the literature.

  19. Complex formation of neptunium(V) with 4-hydroxy-3-methoxybenzoic acid studied by time-resolved laser-induced fluorescence spectroscopy with ultra-short laser pulses.

    PubMed

    Vulpius, D; Geipel, G; Baraniak, L; Bernhard, G

    2006-03-01

    The complex formation of neptunium(V) with 4-hydroxy-3-methoxybenzoic acid (vanillic acid) was studied by time-resolved laser-induced fluorescence spectroscopy with ultra-short laser pulses using the fluorescence properties of 4-hydroxy-3-methoxybenzoic acid. A 2:1 complex of neptunium(V) with 4-hydroxy-3-methoxybenzoic acid was found. The stability constant of this complex was determined to be logbeta(210) = 7.33 +/- 0.10 at an ionic strength of 0.1 mol/l (NaClO(4)) and at 21 degrees C. The determination of the stability constant required an investigation of the excited-state proton transfer of 4-hydroxy-3-methoxybenzoic acid over the whole pH range. It was realized that 4-hydroxy-3-methoxybenzoic acid undergoes excited-state reactions only at pH values below 5. At pH values above 5 stability constants can be determined without kinetic calculation of the proton transfer.

  20. Alpha Cyano-4-Hydroxy-3-Methoxycinnamic Acid Inhibits Proliferation and Induces Apoptosis in Human Breast Cancer Cells

    PubMed Central

    Hamdan, Lamia; Arrar, Zoheir; Al Muataz, Yacoub; Suleiman, Lutfi; Négrier, Claude; Mulengi, Joseph Kajima; Boukerche, Habib

    2013-01-01

    This study investigated the underlying mechanism of 4-hydroxy-3-methoxycinnamic acid (ACCA), on the growth of breast cancer cells and normal immortal epithelial cells, and compared their cytotoxic effects responses. Treatment of breast cancer cells (MCF-7, T47D, and MDA-231) with ACCA resulted in dose- and time-dependent decrease of cell proliferation, viability in colony formation assay, and programmed cell death (apoptosis) with minimal effects on non-tumoral cells. The ability of ACCA to suppress growth in cancer cells not expressing or containing defects in p53 gene indicates a lack of involvement of this critical tumor suppressor element in mediating ACCA-induced growth inhibition. Induction of apoptosis correlated with an increase in Bax protein, an established inducer of programmed cell death, and the ratio of Bax to Bcl-2, an established inhibitor of apoptosis. We also documented the ability of ACCA to inhibit the migration and invasion of MDA-231 cells with ACCA in vitro. Additionally, tumor growth of MDA-231 breast cancer cells in vivo was dramatically affected with ACCA. On the basis of its selective anticancer inhibitory activity on tumor cells, ACCA may represent a promising therapeutic drug that should be further evaluated as a chemotherapeutic agent for human breast cancer. PMID:24039831

  1. Alpha cyano-4-hydroxy-3-methoxycinnamic acid inhibits proliferation and induces apoptosis in human breast cancer cells.

    PubMed

    Hamdan, Lamia; Arrar, Zoheir; Al Muataz, Yacoub; Suleiman, Lutfi; Négrier, Claude; Mulengi, Joseph Kajima; Boukerche, Habib

    2013-01-01

    This study investigated the underlying mechanism of 4-hydroxy-3-methoxycinnamic acid (ACCA), on the growth of breast cancer cells and normal immortal epithelial cells, and compared their cytotoxic effects responses. Treatment of breast cancer cells (MCF-7, T47D, and MDA-231) with ACCA resulted in dose- and time-dependent decrease of cell proliferation, viability in colony formation assay, and programmed cell death (apoptosis) with minimal effects on non-tumoral cells. The ability of ACCA to suppress growth in cancer cells not expressing or containing defects in p53 gene indicates a lack of involvement of this critical tumor suppressor element in mediating ACCA-induced growth inhibition. Induction of apoptosis correlated with an increase in Bax protein, an established inducer of programmed cell death, and the ratio of Bax to Bcl-2, an established inhibitor of apoptosis. We also documented the ability of ACCA to inhibit the migration and invasion of MDA-231 cells with ACCA in vitro. Additionally, tumor growth of MDA-231 breast cancer cells in vivo was dramatically affected with ACCA. On the basis of its selective anticancer inhibitory activity on tumor cells, ACCA may represent a promising therapeutic drug that should be further evaluated as a chemotherapeutic agent for human breast cancer.

  2. Uptake of benzoic acid and chloro-substituted benzoic acids by alcaligenes denitrificans BRI 3010 and BRI 6011

    SciTech Connect

    Miguez, C.B.; Ingram, J.M.; MacLeod, R.A.

    1995-12-01

    The mechanism of uptake of benzoic and 2,4-dichlorobenzoic acid (2,4-DCBA) by Alcaligenes denitrificans BRI 3010 and BRI 6011 and Pseudomonas sp. strain B13, three organisms capable of degrading isomers of chlorinated benzoic acids, was investigated. In all three organisms, uptake of benzoic acid was inducible. For benzoic acid uptake into BRI 3010, monophasic saturation kinetics with apparent K{sub m} and V{sub max} values of 1.4 {mu}M and 3.2 nmol/min/mg of cell dry weight, respectively, were obtained. For BRI 6011, biphasic saturation kinetics were observed, suggesting presence of two uptake systems for benzoic acid with distinct K{sub m} (0.72 and 5.3 {mu}M) and V{sub max} (3.3 and 4.6 nmol/min/mg of cell dry weight) values. BRI 3010 and BRI 6011 accumulated benzoic acid against a concentration gradient by a factor of 8 and 10, respectively. A wide range of structural analogs, at 50-fold excess concentrations, inhibited benzoic acid uptake by BRI 3010 and BRI 6011, whereas with B13, only 3-chlorobenzoic acid was an effective inhibitor. For BRI 3010 and BRI 6011, the inhibition by the structural analogs was not of a competitive nature. Uptake of benzoic acid by BRI 3010 and BRI 6011 was inhibited by KCN, by the protonophore 3,5,3`, 4`-tetrachlorosalicylanilide (TCS), and, for BRI 6011, by anaerobiosis unless nitrate was present, thus indicating that energy was required for the uptake process. Uptake of 2,4-DCBA by BRI 6011 was constitutive and saturation uptake kinetics were not observed. Uptake of 2,4-DCBA by BRI 6011 was inhibited by KCN, TCS, and anaerobiosis even if nitrate was present, but the compound was not accumulated intracellularly against a concentration gradient. Uptake of 2,4-DCBA by BRI 6011 appears to occur by passive diffusion into the cell down its concentration gradient, which is maintained by the intracellular metabolism of the compound. This process could play an important role in the degradation of xenobiotic compounds by microorganisms.

  3. Direct ortho-arylation of ortho-substituted benzoic acids: overriding Pd-catalyzed protodecarboxylation.

    PubMed

    Arroniz, Carlos; Ironmonger, Alan; Rassias, Gerry; Larrosa, Igor

    2013-02-15

    ortho-Arylation of ortho-substituted benzoic acids is a challenging process due to the tendency of the reaction products toward Pd-catalyzed protodecarboxylation. A simple method for preventing decarboxylation in sterically hindered benzoic acids is reported. The method described represents a reliable and broadly applicable entry to 2-aryl-6-substituted benzoic acids.

  4. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid,...

  5. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid,...

  6. 40 CFR 721.10380 - Benzoic acid, 3-amino-2-mercapto-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 3-amino-2-mercapto-. 721... Substances § 721.10380 Benzoic acid, 3-amino-2-mercapto-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzoic acid, 3-amino-2-mercapto- (PMN...

  7. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid,...

  8. 40 CFR 721.10380 - Benzoic acid, 3-amino-2-mercapto-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 3-amino-2-mercapto-. 721... Substances § 721.10380 Benzoic acid, 3-amino-2-mercapto-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzoic acid, 3-amino-2-mercapto- (PMN...

  9. 40 CFR 721.10380 - Benzoic acid, 3-amino-2-mercapto-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 3-amino-2-mercapto-. 721... Substances § 721.10380 Benzoic acid, 3-amino-2-mercapto-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzoic acid, 3-amino-2-mercapto- (PMN...

  10. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid,...

  11. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid,...

  12. Silver-catalysed protodecarboxylation of ortho-substituted benzoic acids.

    PubMed

    Cornella, Josep; Sanchez, Carolina; Banawa, David; Larrosa, Igor

    2009-12-14

    Catalytic amounts of Ag(I) salts in DMSO have been found to promote the protodecarboxylation of a wide variety of ortho-substituted benzoic acids under mild conditions and in excellent yields, highlighting a possible role for silver in decarboxylative cross-couplings.

  13. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    PubMed

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals.

  14. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  15. QUANTITATION OF MERCAPTURIC ACID CONJUGATES OF 4-HYDROXY-2-NONENAL AND 4-OXO-2-NONENAL METABOLITES IN A SMOKING CESSATION STUDY

    PubMed Central

    Kuiper, Heather C.; Langsdorf, Brandi L.; Miranda, Cristobal L.; Joss, Jacqueline; Jubert, Carole; Mata, John E.; Stevens, Jan F.

    2009-01-01

    The breakdown of polyunsaturated fatty acids (PUFAs) under conditions of oxidative stress results in the formation of lipid peroxidation (LPO) products. These LPO products such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) can contribute to the development of cardiovascular and neurodegenerative diseases and cancer. Conjugation with glutathione, followed by further metabolism to mercapturic acid (MA) conjugates, can mitigate the effects of these LPO products in disease development by facilitating their excretion from the body. We have developed a quantitative method to simultaneously assess levels of 4-oxo-2-nonen-1-ol (ONO)-MA, HNE-MA, and 1,4-dihydroxy-2-nonene (DHN)-MA in human urine samples utilizing isotope-dilution mass spectrometry. We are also able to detect 4-hydroxy-2-nonenoic acid (HNA)-MA, 4-hydroxy-2-nonenoic acid lactone (HNAL)-MA, and 4-oxo-2-nonenoic acid (ONA)-MA with this method. The detection of ONO-MA and ONA-MA in humans is significant because it demonstrates that HNE/ONE branching occurs in the breakdown of PUFAs and suggests that ONO may contribute to the harmful effects currently associated with HNE. We were able to show significant decreases in HNE-MA, DHN-MA, and total LPO-MA in a group of seven smokers upon smoking cessation. These data demonstrate the value of HNE and ONE metabolites as in vivo markers of oxidative stress. PMID:19819328

  16. Bioconversion of methyl ricinoleate to 4-hydroxy-decanoic acid and to gamma-decalactone by yeasts of the genus Candida.

    PubMed

    Endrizzi, A; Belin, J M

    1995-01-01

    The capacity of several strains of yeasts to do the bioconversion of methyl ricinoleate into gamma-decalactone, was studied in a medium containing this methylic ester of fatty acid as sole carbon source. Amongst the strains which are able to do this bioconversion, two types of behaviour are observed: some of the strains produce gamma-decalactone during all the incubation in bioconversion medium while others produce this aroma compound very quickly and then consume it fast too. The tested strains produce at the same time gamma-decalactone and the corresponding acid form (4-hydroxy-decanoic acid), and this, in variable proportions.

  17. A kinetic study on benzoic acid pungency and sensory attributes of benzoic acid.

    PubMed

    Otero-Losada, M E

    1999-06-01

    Aqueous solutions of benzoic acid (BA) were evaluated by two methods: (i) sensory profile: a descriptive test of sensory attributes combined with semiquantitative analysis; and (ii) pungency intensity measures as a function of time: a computerized recording using specific software. Kinetic parameters evaluated were maximal intensity (I(MAX)), total time of pungency (Ttot), rates of increase (V1) and decrease (V2), half-life (T1/2), area under curve (AUC) and time to maximal intensity (T(IMAX)). Results were analyzed by ANOVA, LSD test, iterative calculations and adjustment to equations according to mathematical models, regression analysis, principal component analysis (PCA) and clusters analysis. Pungency was the main sensory attribute of BA (3-36 mM) in the tongue and epiglottis. The seven kinetic parameters showed concentration-dependency (P < 0.001) and were described by different functions: (i) lineal: I(MAX) = 2.24 +/- 0.14C - 3.06 +/- 2.58, R2 = 0.98; T(IMAX) = 0.19 +/- 0.02C + 6.87 +/- 0.47, R2 = 0.92; V1 = 0.68 +/- 0.03C + 0.10 +/- 0.69, R2 = 0.99; AUC = 49.10 +/- 3.17C - 230.78 +/- 59.66, R2 = 0.98; (ii) potency: T1/2 = 6.62 +/- 0.61C(0.39+/-0.03), R2 = 0.97; V2 = 1.07 +/- 0.11C(0.53+/-0.04), R2 = 0.98; Ttot = 8.08 +/- 1.01C(0.43+/-0.04), R2 = 0.96. PCA revealed high correlation between (i) T(IMAX) and Ttot; (ii) T1/2 and V2; and (iii) I(MAX) and V1. Stimuli grouped across three main clusters: (i) 3 and 6 mM; (ii) 9, 12 and 18 mM; and (iii) 24 and 36 mM. Maximal pungency intensity best correlated with both concentration and persistence among kinetic parameters. Prototypical prickling of BA was observed at 12 and 18 mM.

  18. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications

    NASA Astrophysics Data System (ADS)

    Kumar, Rohitash; Kumar, Ravindra; Dixit, Ambesh

    2016-05-01

    Thermal properties of Acetamide (AM) - Benzoic acid (BA) and Benzoic acid (BA) - Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solar cooking systems.

  19. Oxidation of benzaldehydes to benzoic acid derivatives by three Desulfovibrio strains. [Desulfovibrio vulgaris; Desulfovibrio simplex; Desulfovibrio sp

    SciTech Connect

    Zellner, G.; Winter, J. ); Kneifel, H. )

    1990-07-01

    Desulfovibrio vulgaris Marburg, Desulfovibrio simplex XVI, and Desulfovibrio sp. strain MP47 used benzaldehydes such as vanillin, 3,4,5-trimethoxybenzaldehyde, protocatechualdehyde, syringaldehyde, p-anisaldehyde, p-hydroxybenzaldehyde, and 2-methoxybenzaldehyde as electron donors for sulfate reduction and carbon dioxide and/or components of yeast extract as carbon sources for cell synthesis. The aldehydes were oxidized to their corresponding benzoic acids. The three sulfate reducers oxidized up to 7 mM vanillin and up to 4 mM p-anisaldehyde. Higher concentrations of vanillin or p-anisaldehyde were toxic. In addition, pyridoxal hydrochloride and o-vanillin served as electron donors for sulfate reduction. Salicylaldehyde, pyridine-2-aldehyde, pyridine-4-aldehyde, and 4-hydroxy-3-methoxybenzylalcohol were not oxidized. No molecular hydrogen was detected in the gas phase. The oxidized aldehydes were not further degraded.

  20. [Study on THz spectra and vibrational modes of benzoic acid and sodium Benzoate].

    PubMed

    Zheng, Zhuan-Ping; Fan, Wen-Hui; Yan, Hui; Liu, Jia; Xu, Li-Min

    2013-03-01

    Terahertz time-domain spectroscopy was employed to measure the terahertz absorption spectra of benzoic acid and sodium benzoate at room temperature. The origins of the measured features of benzoic acid were summarized based on previous study. Density functional theory was used to compute and analyze the molecular structure and vibrational modes of sodium benzoate in monomer. Based on the obtained results, the authors found that the THz spectral features can be used to distinguish benzoic acid and sodium benzoate totally; the essential reason for the THz spectral difference between benzoic acid and sodium benzoate is that the electrovalent bond of sodium benzoate affects the values of covalent bond lengths and bond angles, as well as the molecular interactions and arrangement in unit cell; the measured features of benzoic acid and sodium benzoate come from the collective vibrations except the peaks located at 107 cm-1 of benzoic acid and 54 cm-1 of sodium benzoate.

  1. Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid

    SciTech Connect

    Daly, Adam M.; Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kukolich, Stephen G.; Kang, Lu

    2015-04-14

    The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0{sup +}) = 1151.8(5), B(0{sup +}) = 100.3(5), C(0{sup +}) = 87.64(3) MHz and A(0{sup −}) = 1152.2(5), B(0{sup −}) = 100.7(5), C(0{sup −}) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy.

  2. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  3. 40 CFR 721.10555 - Benzoic acid nonyl ester, branched and linear.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid nonyl ester, branched and... Specific Chemical Substances § 721.10555 Benzoic acid nonyl ester, branched and linear. (a) Chemical... acid nonyl ester, branched and linear (PMN P-06-370; CAS No. 670241-72-2) is subject to reporting...

  4. 40 CFR 721.10555 - Benzoic acid nonyl ester, branched and linear.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid nonyl ester, branched and... Specific Chemical Substances § 721.10555 Benzoic acid nonyl ester, branched and linear. (a) Chemical... acid nonyl ester, branched and linear (PMN P-06-370; CAS No. 670241-72-2) is subject to reporting...

  5. An Optical Test Strip for the Detection of Benzoic Acid in Food

    PubMed Central

    Hamzah, Hairul Hisham; Yusof, Nor Azah; Salleh, Abu Bakar; Bakar, Fatimah Abu

    2011-01-01

    Fabrication of a test strip for detection of benzoic acid was successfully implemented by immobilizing tyrosinase, phenol and 3-methyl-2-benzothiazolinone hydrazone (MBTH) onto filter paper using polystyrene as polymeric support. The sensing scheme was based on the decreasing intensity of the maroon colour of the test strip when introduced into benzoic acid solution. The test strip was characterized using optical fiber reflectance and has maximum reflectance at 375 nm. It has shown a highly reproducible measurement of benzoic acid with a calculated RSD of 0.47% (n = 10). The detection was optimized at pH 7. A linear response of the biosensor was obtained in 100 to 700 ppm of benzoic acid with a detection limit (LOD) of 73.6 ppm. At 1:1 ratio of benzoic acid to interfering substances, the main interfering substance is boric acid. The kinetic analyses show that, the inhibition of benzoic is competitive inhibitor and the inhibition constant (Ki) is 52.9 ppm. The activity of immobilized tyrosinase, phenol, and MBTH in the test strip was fairly sustained during 20 days when stored at 3 °C. The developed test strip was used for detection of benzoic acid in food samples and was observed to have comparable results to the HPLC method, hence the developed test strip can be used as an alternative to HPLC in detecting benzoic acid in food products. PMID:22164018

  6. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  7. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  8. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  9. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  10. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  11. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  12. Solid-State 17O NMR Study of Benzoic Acid Adsorption On Metal Oxide Surfaces

    SciTech Connect

    Hagaman, Edward {Ed} W; Chen, Banghao; Jiao, Jian; Parsons, Williams

    2012-01-01

    Solid-state 17O NMR spectra of 17O-labeled benzoic and anisic acids are reported and benzoic acid is used to probe the surface of metal oxides. Complexes formed when benzoic acid is dry-mixed with mesoporous silica, and nonporous titania and alumina are characterized. Chemical reactions with silica are not observed. The nature of benzoic acid on silica is a function of the water content of the oxide. The acid disperses in the pores of the silica if the silica is in equilibrium with ambient laboratory humidity. The acid displays high mobility as evidenced by a liquid-like, Lorentzian resonance. Excess benzoic acid remains as the crystalline hydrogen-bonded dimer. Benzoic acid reacts with titania and alumina surfaces in equilibrium with laboratory air to form the corresponding titanium and aluminum benzoates. In both materials the oxygen of the 17O-labeled acid is bound to the metal, showing the reaction proceeds by bond formation between oxygen deficient metal sites and the oxygen of the carboxylic acid. 27Al MAS NMR confirms this mechanism for the reaction on alumina. Dry mixing of benzoic acid with alumina rapidly quenches pentacoordinate aluminum sites, excellent evidence that these sites are confined to the surface of the alumina particles.

  13. 40 CFR 721.10202 - Benzoic acid, 4-chloro-2- [(substituted)azo]-, strontium salt (1:1) (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 4-chloro-2- -, strontium... New Uses for Specific Chemical Substances § 721.10202 Benzoic acid, 4-chloro-2- -, strontium salt (1:1... identified generically as benzoic acid, 4-chloro-2- -, strontium salt (1:1) (PMN P-08-701) is subject...

  14. 40 CFR 721.10202 - Benzoic acid, 4-chloro-2- [(substituted)azo]-, strontium salt (1:1) (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 4-chloro-2- -, strontium... New Uses for Specific Chemical Substances § 721.10202 Benzoic acid, 4-chloro-2- -, strontium salt (1:1... identified generically as benzoic acid, 4-chloro-2- -, strontium salt (1:1) (PMN P-08-701) is subject...

  15. 40 CFR 721.10202 - Benzoic acid, 4-chloro-2- [(substituted)azo]-, strontium salt (1:1) (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 4-chloro-2- -, strontium... New Uses for Specific Chemical Substances § 721.10202 Benzoic acid, 4-chloro-2- -, strontium salt (1:1... identified generically as benzoic acid, 4-chloro-2- -, strontium salt (1:1) (PMN P-08-701) is subject...

  16. 40 CFR 721.10202 - Benzoic acid, 4-chloro-2- [(substituted)azo]-, strontium salt (1:1) (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 4-chloro-2- -, strontium... New Uses for Specific Chemical Substances § 721.10202 Benzoic acid, 4-chloro-2- -, strontium salt (1:1... identified generically as benzoic acid, 4-chloro-2- -, strontium salt (1:1) (PMN P-08-701) is subject...

  17. Acutifoliside, a novel benzoic acid glycoside from Salix acutifolia.

    PubMed

    Wu, Yanqi; Dobermann, Darja; Beale, Michael H; Ward, Jane L

    2016-08-01

    Ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) profiling of a polar solvent extract of juvenile stem tissue of Salix acutifolia Willd. identified a range of phenolic metabolites. Salicortin, 1, a well-known salicinoid, was the major compound present and the study identified young stem tissue of this species as a potential source of this compound for future studies. Three further known metabolites (salicin 2, catechin 3 and tremuloidin 4) were also present. The UHPLC-MS analysis also revealed the presence of a further, less polar, unknown compound, which was isolated via HPLC peak collection. The structure was elucidated by high-resolution mass spectroscopic analysis, 1- and 2-D NMR analysis and chemical derivatisation and was shown to be a novel benzoic acid glycoside 5, which we have named as acutifoliside.

  18. Spectroscopic (FT-IR, FT-Raman) investigations and quantum chemical calculations of 4-hydroxy-2-oxo-1,2-dihydroquinoline-7-carboxylic acid.

    PubMed

    Ulahannan, Rajeev T; Panicker, C Yohannan; Varghese, Hema Tresa; Van Alsenoy, C; Musiol, Robert; Jampilek, Josef; Anto, P L

    2014-01-01

    Quinoline derivatives have good nonlinear optical properties and have been extensively studied due to their great potential application in the field of organic light emitting diodes. Quantum chemical calculations of the equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman activities of 4-hydroxy-2-oxo-1,2-dihydroquinoline-7-carboxylic acid in the ground state were reported. Potential energy distribution of normal modes of vibrations was done using GAR2PED program. The synthesis, (1)H NMR and PES scan results are also discussed. Nonlinear optical behavior of the examined molecule was investigated by the determination of first hyperpolarizability. The calculated HOMO and LUMO energies show the chemical activity of the molecule. The stability of the molecule arising from hyperconjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated geometrical parameters are in agreement with that of similar derivatives.

  19. Pd(II)-catalysed meta-C–H functionalizations of benzoic acid derivatives

    PubMed Central

    Li, Shangda; Cai, Lei; Ji, Huafang; Yang, Long; Li, Gang

    2016-01-01

    Benzoic acids are highly important structural motifs in drug molecules and natural products. Selective C–H bond functionalization of benzoic acids will provide synthetically useful tools for step-economical organic synthesis. Although direct ortho-C–H functionalizations of benzoic acids or their derivatives have been intensely studied, the ability to activate meta-C–H bond of benzoic acids or their derivatives in a general manner via transition-metal catalysis has been largely unsuccessful. Although chelation-assisted meta-C–H functionalization of electron-rich arenes was reported, chelation-assisted meta-C–H activation of electron-poor arenes such as benzoic acid derivatives remains a formidable challenge. Herein, we report a general protocol for meta-C–H olefination of benzoic acid derivatives using a nitrile-based sulfonamide template. A broad range of benzoic acid derivatives are meta-selectively olefinated using molecular oxygen as the terminal oxidant. The meta-C–H acetoxylation, product of which is further transformed at the meta-position, is also reported. PMID:26813919

  20. Benzoic acid and specific 2-oxo acids activate hepatic efflux of glutamate at OAT2.

    PubMed

    Pfennig, Till; Herrmann, Beate; Bauer, Tim; Schömig, Edgar; Gründemann, Dirk

    2013-02-01

    The liver is the principal source of glutamate in blood plasma. Recently we have discovered that efflux of glutamate from hepatocytes is catalyzed by the transporter OAT2 (human gene symbol SLC22A7). Organic anion transporter 2 (OAT2) is an integral membrane protein of the sinusoidal membrane domain; it is primarily expressed in liver and much less in kidney, both in rats and humans. Many years ago, Häussinger and coworkers have demonstrated in isolated perfused rat liver that benzoic acid or specific 2-oxo acid analogs of amino acids like e.g. 2-oxo-4-methyl-pentanoate ('2-oxo-leucine') strongly stimulate release of glutamate (up to 7-fold); '2-oxo-valine' and the corresponding amino acids were without effect. The molecular mechanism of efflux stimulation has remained unclear. In the present study, OAT2 from human and rat were heterologously expressed in 293 cells. Addition of 1 mmol/l benzoic acid to the external medium increased OAT2-specific efflux of glutamate up to 20-fold; '2-oxo-leucine' was also effective, but not '2-oxo-valine'. Similar effects were seen for efflux of radiolabeled orotic acid. Expression of OAT2 did not increase uptake of benzoic acid; thus, benzoic acid is no substrate, and trans-stimulation can be excluded. Instead, further experiments suggest that increased efflux of glutamate is caused by direct interaction of benzoic acid and specific 2-oxo acids with OAT2. We propose that stimulators bind to a distinct extracellular site and thereby accelerate relocation of the empty substrate binding site to the intracellular face. Increased glutamate efflux at OAT2 could be the main benefit of benzoate treatment in patients with urea cycle defects.

  1. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  2. Mass spectrometry-based proteomics of oxidative stress: Identification of 4-hydroxy-2-nonenal (HNE) adducts of amino acids using lysozyme and bovine serum albumin as model proteins.

    PubMed

    Aslebagh, Roshanak; Pfeffer, Bruce A; Fliesler, Steven J; Darie, Costel C

    2016-10-01

    Modification of proteins by 4-hydroxy-2-nonenal (HNE), a reactive by-product of ω6 polyunsaturated fatty acid oxidation, on specific amino acid residues is considered a biomarker for oxidative stress, as occurs in many metabolic, hereditary, and age-related diseases. HNE modification of amino acids can occur either via Michael addition or by formation of Schiff-base adducts. These modifications typically occur on cysteine (Cys), histidine (His), and/or lysine (Lys) residues, resulting in an increase of 156 Da (Michael addition) or 138 Da (Schiff-base adducts), respectively, in the mass of the residue. Here, we employed biochemical and mass spectrometry (MS) approaches to determine the MS "signatures" of HNE-modified amino acids, using lysozyme and BSA as model proteins. Using direct infusion of unmodified and HNE-modified lysozyme into an electrospray quadrupole time-of-flight mass spectrometer, we were able to detect up to seven HNE modifications per molecule of lysozyme. Using nanoLC-MS/MS, we found that, in addition to N-terminal amino acids, Cys, His, and Lys residues, HNE modification of arginine (Arg), threonine (Thr), tryptophan (Trp), and histidine (His) residues can also occur. These sensitive and specific methods can be applied to the study of oxidative stress to evaluate HNE modification of proteins in complex mixtures from cells and tissues under diseased versus normal conditions.

  3. Hydrogen-bonded co-crystal structure of benzoic acid and zwitterionic l-proline

    PubMed Central

    Cox, Jordan M.; Basso, Sanjukta; Benedict, Jason B.

    2017-01-01

    The title compound [systematic name: benzoic acid–pyrrolidin-1-ium-2-carboxyl­ate (1/1)], C7H6O2·C5H9NO2, is an example of the application of non-centrosymmetric co-crystallization for the growth of a crystal containing a typically centrosymmetric component in a chiral space group. It co-crystallizes in the space group P212121 and contains benzoic acid and l-proline in equal proportions. The crystal structure exhibits chains of l-proline zwitterions capped by benzoic acid mol­ecules which form a C(5)[R 3 3(11)] hydrogen-bonded network along [100]. The crystal structure is examined and compared to that of a similar co-crystal containing l-proline zwitterions and 4-amino­benzoic acid. PMID:28316811

  4. Salicylic acid sans aspirin in animals and man: persistence in fasting and biosynthesis from benzoic acid.

    PubMed

    Paterson, John R; Baxter, Gwendoline; Dreyer, Jacob S; Halket, John M; Flynn, Robert; Lawrence, James R

    2008-12-24

    Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A (13)C(6) benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology.

  5. X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified with 4-hydroxy-2-nonenal

    SciTech Connect

    Hellberg, Kristina; Grimsrud, Paul A.; Kruse, Andrew C.; Banaszak, Leonard J.; Ohlendorf, Douglas H.; Bernlohr, David A.

    2012-07-11

    Fatty acid binding proteins (FABP) have been characterized as facilitating the intracellular solubilization and transport of long-chain fatty acyl carboxylates via noncovalent interactions. More recent work has shown that the adipocyte FABP is also covalently modified in vivo on Cys117 with 4-hydroxy-2-nonenal (4-HNE), a bioactive aldehyde linked to oxidative stress and inflammation. To evaluate 4-HNE binding and modification, the crystal structures of adipocyte FABP covalently and noncovalently bound to 4-HNE have been solved to 1.9 {angstrom} and 2.3 {angstrom} resolution, respectively. While the 4-HNE in the noncovalently modified protein is coordinated similarly to a carboxylate of a fatty acid, the covalent form show a novel coordination through a water molecule at the polar end of the lipid. Other defining features between the two structures with 4-HNE and previously solved structures of the protein include a peptide flip between residues Ala36 and Lys37 and the rotation of the side chain of Phe57 into its closed conformation. Representing the first structure of an endogenous target protein covalently modified by 4-HNE, these results define a new class of in vivo ligands for FABPs and extend their physiological substrates to include bioactive aldehydes.

  6. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens.

    PubMed

    Yang, Zonglin; Peng, Hanyong; Lu, Xiufen; Liu, Qingqing; Huang, Rongfu; Hu, Bin; Kachanoski, Gary; Zuidhof, Martin J; Le, X Chris

    2016-07-05

    The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer.

  7. Relationships between the resistance of yeasts to acetic, propanoic and benzoic acids and to methyl paraben and pH.

    PubMed

    Warth, A D

    1989-07-01

    Minimum inhibitory concentrations of acetic, propanoic and benzoic acids and methyl paraben were determined at pH 3.50 for 22 isolates of 11 yeast species, differing in their resistance to preservatives. Growth in the presence of benzoic acid enhanced the resistance of yeasts to benzoic and the other weak acid preservatives, but not to methyl paraben. Resistance to acetic, propanoic and benzoic acids was strongly correlated, but was not closely related to resistance to methyl paraben. Minimum pH for growth was not related to resistance to the weak acids. The results suggest that growth in the presence of weak-acid preservatives involves a common resistance mechanism.

  8. Site-specific protein adducts of 4-hydroxy-2(E)-nonenal in human THP-1 monocytic cells: Protein carbonylation is diminished by ascorbic acid

    PubMed Central

    Chavez, Juan; Chung, Woon-Gye; Miranda, Cristobal L.; Singhal, Mudita; Stevens, Jan F.; Maier, Claudia S.

    2010-01-01

    The protein targets and sites of modification by 4-hydroxy-2(E)-nonenal (HNE) in human monocytic THP-1 cells after exogenous exposure to HNE were examined using a multi-pronged proteomic approach involving electrophoretic, immunoblotting and mass spectrometric methods. Immunoblot analysis using monoclonal anti-HNE antibodies showed several proteins as targets of HNE adduction. Pretreatment of THP-1 cells with ascorbic acid resulted in reduced levels of HNE-protein adducts. Biotinylation of Michael-type HNE adducts using an aldehyde-reactive hydroxylamine-functionalized probe (aldehyde-reactive probe, ARP) and subsequent enrichment facilitated the identification and site-specific assignment of the modifications by LC-MS/MS analysis. Sixteen proteins were unequivocally identified as targets of HNE adduction and eighteen sites of HNE modification at Cys and His residues were assigned. HNE exposure of THP-1 cells resulted in the modification of proteins involved in cytoskeleton organization and regulation, proteins associated with stress responses and enzymes of the glycolytic and other metabolic pathways. This study yielded the first evidence of site-specific adduction of HNE to Cys-295 in tubulin α-1B chain, Cys-351 and Cys-499 in α-actinin-4, Cys-328 in vimentin, Cys-369 in D-3-phosphoglycerate dehydrogenase and His-246 in aldolase A. PMID:20043646

  9. Analysis of the herbicidal mechanism of 4-hydroxy-3-methoxy cinnamic acid ethyl ester using iTRAQ and real-time PCR.

    PubMed

    Zhang, Mingyue; Liu, Ce; Yang, Juan; Yang, Peng; Zhang, Lihui; Dong, Jingao

    2017-02-24

    Absolute quantitation (iTRAQ) is the latest development in the new quantitative proteomics technology for high-throughput identification and quantitation of proteins. The mechanisms underlying the 4-hydroxy-3-methoxy cinnamic acid ethyl ester treatment in Arabidopsis thaliana was investigated. Deficiency-induced changes in the protein profile of A. thaliana caused by this compound were analyzed using iTRAQ and quantitative real-time PCR. A total of 2909 proteins were quantified, of which 49 and 34 proteins were upregulated and downregulated, respectively, in the experimental plants compared with the controls. Treatment results showed that numerous proteins were involved in photosystemII, energy metabolism, and cell structure formation. Based on the upregulated and downregulated proteins, high amount of AT4G21280 protein acted on the oxygen-evolving enhancer protein 3-1, while low amount of AT1G10340 protein affected the catabolic process of the photosystemII-associated light-harvesting complex II. We selected these proteins to preliminarily verify the expression of proteins using quantitative real-time PCR to provide a reliable basis for further studies after proteomics analysis. Results show that the combined use of iTRAQ and quantitative real-time PCR provides an effective method to study proteins, leading to the determination of a new herbicide mechanism.

  10. One-step electrochemical synthesis of 6-amino-4-hydroxy-2-napthalene-sulfonic acid functionalized graphene for green energy storage electrode materials

    NASA Astrophysics Data System (ADS)

    Kuila, Tapas; Khanra, Partha; Kim, Nam Hoon; Kuk Choi, Sung; Yun, Hyung Joong; Lee, Joong Hee

    2013-09-01

    A green approach for the one-step electrochemical synthesis of water dispersible graphene is reported. An alkaline solution of 6-amino-4-hydroxy-2-naphthalene-sulfonic acid (ANS) serves the role of electrolyte as well as surface modifier. High-purity graphite rods are used as electrodes which can be exfoliated under a constant electrical potential (˜20 V) to form ANS functionalized graphene (ANEG). The aqueous dispersion of ANEG obeyed Beer’s law at moderate concentrations, as evidenced from ultraviolet-visible spectroscopy analysis. X-ray diffraction analysis suggests complete exfoliation of graphite into graphene. Fourier transform infrared and x-ray photoelectron spectroscopy not only confirm the functionalization of graphene with ANS, but also suggest the formation of oxygen containing functional groups on the surface of ANEG. Raman spectra analysis indicates the presence of defects in ANEG as compared to pure graphite. Cyclic voltammetry and charge-discharge measurements of ANEG using three electrode systems show a specific capacitance of 115 F g-1 at a current density of 4 A g-1. The ANEG electrode exhibits 93% retention in specific capacitance after 1000 charge-discharge cycles, confirming its utility as a green energy storage electrode material.

  11. Study of Self Assembly Systems Formed by Malic Acid and Alkyloxy Benzoic Acids

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Vellalapalayam Nallagounder; Madhu Mohan, Mathukumalli Lakshmi Narayana

    2010-12-01

    Self assembly systems formed by malic acid and alkyloxy benzoic acids are characterized. The ferroelectric ingredient malic acid formed double hydrogen bond with p-n-alkyloxy benzoic acids. Various hydrogen bonded complexes have been synthesized with malic acid and pentyl to dodecyloxy benzoic acid, respectively. Fourier transformation infrared (FTIR) studies confirm the hydrogen bond formation. Polarizing optical microscopic (POM) studies revealed the textural information while the transition and enthalpy values are calculated from differential scanning calorimetry (DSC) studies. A phase diagram has been constructed from the POMand DSC studies. A new smectic ordering, smectic X*, has been identified which exhibits a finger print type texture. This phase has been characterized by POM, DSC, helix, and tilt angle studies. The transition from traditional cholesteric to smectic X* phase is observed to be first order. The tilt angle data in this phase has been fitted to a power law and the temperature variation of the tilt angle follows mean field theory predictions. The results of FTIR, POM, DSC, tilt angle, and helicoidal studies are discussed.

  12. Effect of benzoic acid and combination of benzoic acid with a probiotic containing Bacillus cereus var. Toyoi in weaned pig nutrition.

    PubMed

    Papatsiros, V G; Tassis, P D; Tzika, E D; Papaioannou, D S; Petridou, E; Alexopoulos, C; Kyriakis, S C

    2011-01-01

    The purpose of this study was to assess the efficacy of a probiotic containing Bacillus cereus var. Toyoi spores (Toyocerin) and benzoic acid (VevoVitall) on growth performance and diarrhoea in weaning pigs, against negative controls. The trial groups were as follows: (a) NC group (Negative Controls): No treatment (b) TOYO group: Same feed as in the controls plus Toyocerin at a dose of 1 x 10(9) Bacillus cereus var. Toyoi spores/kg feed, (c) BA group: Same feed as in the controls plus VevoVitall at a dose of 5 g/kg feed (5000 ppm benzoic acid) and (d) TOYO+BA group: Same feed as in the controls plus Toyocerin at a dose of 1 x 10(9) Bacillus cereus var. Toyoi spores and VevoVitall at a dose of 5 g/kg feed. In conclusion, the results of this study indicated that administration of Bacillus cereus var. Toyoi spores at 1 x 10(9)/kg feed or benzoic acid at a dose of 5000 ppm or the combination of 1 x 10(9) Bacillus cereus var. Toyoi spores and 5000 ppm of benzoic acid/kg feed, improved the growth performance parameters and reduced the severity of diarrhoea in weaning pigs.

  13. [Enzymatic formationof 4-hydroxy-2-oxovalerate using pyrazon-degrading bacteria (author's transl)].

    PubMed

    Blobel, F; Eberspächer, J; Lingens, F

    1976-01-01

    By treatment of 2-hydroxymuconic acid with a partially purified 4-oxalocrotonate decarboxylase 4-hydroxy-2-oxovalerate could be obtained. Both forms of 4-hydroxy-2-oxovalerate, the keto as well as the enol form could be isolated.

  14. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3,3â²-methyl-enebis...

  15. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 3,3â²-methyl-enebis...

  16. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 3,3â²-methyl-enebis...

  17. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 3,3â²-methyl-enebis...

  18. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3,3â²-methyl-enebis...

  19. A More Challenging Interpretative Nitration Experiment Employing Substituted Benzoic Acids and Acetanilides

    ERIC Educational Resources Information Center

    Treadwell, Edward M.; Lin, Tung-Yin

    2008-01-01

    An experiment is described involving the nitration of ortho or meta monosubstituted benzoic acids (XC[subscript 6]H[subscript 4]CO[subscript 2]H, X = Halogen, Me, OH, or OMe) and monochlorinated acetanilides with nitric acid to determine the regioselectivity of addition by [superscript 1]H NMR spectroscopy and molecular modeling. Students were…

  20. Structural and theoretical studies of [6-bromo-1-(4-fluorophenylmethyl)-4(1H)-quinolinon-3-yl)]-4-hydroxy-2-oxo-3-butenoïc acid as HIV-1 integrase inhibitor.

    PubMed

    Vandurm, Pierre; Cauvin, Christine; Guiguen, Allan; Georges, Benoît; Le Van, Kiet; Martinelli, Valérie; Cardona, Christelle; Mbemba, Gladys; Mouscadet, Jean-François; Hevesi, László; Van Lint, Carine; Wouters, Johan

    2009-08-15

    Ethyl [6-bromo-1-(4-fluorophenylmethyl)-4(1H)-quinolinon-3-yl]-4-hydroxy-2-oxo-3-butenoate 1 and [6-bromo-1-(4-fluorophenylmethyl)-4(1H)-quinolinon-3-yl)]-4-hydroxy-2-oxo-3-butenoïc acid 2 were synthesized as potential HIV-1 integrase inhibitors and evaluated for their enzymatic and antiviral activity, acidic compound 2 being more potent than ester compound 1. X-ray diffraction analyses and theoretical calculations show that the diketoacid chain of compound 2 is preferentially coplanar with the quinolinone ring (dihedral angle of 0-30 degrees ). Docking studies suggest binding modes in agreement with structure-activity relationships.

  1. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  2. Synthesis Characterization and Biological Activities of Coordination Compounds of 4-Hydroxy-3-nitro-2H-chromen-2-one and Its Aminoethanoic Acid and Pyrrolidine-2-carboxylic Acid Mixed Ligand Complexes

    PubMed Central

    Akinkunmi, Ezekiel; Obuotor, Efere; Olawuni, Idowu; Isabirye, David; Jordaan, Johan

    2017-01-01

    Coordination compounds of 4-hydroxy-3-nitro-2H-chromen-2-one and their mixed ligand complexes with aminoethanoic acid and pyrrolidine-2-carboxylic acid were synthesized by the reaction of Cu(II) and Zn(II) salts in molar ratio 1 : 2 for the coumarin complexes and 1 : 1 : 1 for the mixed ligand complexes, in basic media. The compounds formed were characterized using infrared, Uv-vis spectrophotometric analyses, mass spectrometry, magnetic susceptibility measurements, and EDX analyses. It was concluded that 4-hydroxy-3-nitro-2H-chromen-2-one coordinated as a monobasic ligand for all the complexes; it also coordinated via the carbonyl moiety in the case of the Cu(II) mixed ligand complexes. Similarly it was proposed that the amino acids also coordinated in a bidentate fashion via their amino nitrogen and carboxylate oxygen atoms. The synthesized compounds were screened for their antimicrobial and cytotoxic activities. The complexes exhibited marginal antimicrobial activity but good cytotoxic activity. PMID:28270743

  3. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  4. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  5. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  6. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  7. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-,...

  8. Intermolecular decarboxylative direct C-3 arylation of indoles with benzoic acids.

    PubMed

    Cornella, Josep; Lu, Pengfei; Larrosa, Igor

    2009-12-03

    A palladium catalyzed C-H activation of indoles and a silver catalyzed decarboxylative C-C activation of ortho substituted benzoic acids are synergistically combined to synthesize indoles arylated exclusively in the C-3 position. This novel decarboxylative C-H arylation methodology is compatible with electron-donating and -withdrawing substituents in both coupling partners.

  9. Correlation between chemical structure and rodent repellency of benzoic acid derivatives

    USGS Publications Warehouse

    Fearn, J.E.; DeWitt, J.B.

    1965-01-01

    Sixty-five benzoic acid derivatives were either prepared or obtained from commercial concerns, tested for rat repellency, and their indices of repellency computed. The data from these tests were considered analytically for any correlation between chemical structure and rat repellency. The results suggest a qualitative relationship which is useful in deciding probability of repellency in other compounds.

  10. Mathematical models of antisickling activities of benzoic acid derivatives on red blood cells of sicklers.

    PubMed

    Fasanmade, A A; Olaniyi, A A; Ab-Yisak, W

    1994-12-01

    A classical drug design technique based on the quantitative structure--activity relationship is applied to a series of synthetic benzoic acid derivatives. Some of the active derivatives tested include; p-toluic acid, p-dimethyl-amino benzoic acid, p-fluorobenzoic acid, p-chlorobenzoic acid, m-chlorobenzoic acid, p-bromobenzoic acid, p-nitrobenzoic acid, and p-iodobenzoic acid. The Hansch lipophilicity, pi, and the Hammett electronic parameters; sigma, were found to predict activities of the agents on the reversal of sickle-shaped deoxygenated sickle red blood cell to normal morphology. A series of equations correlating the biological activities with the structure of the tested compounds were analysed using multiple regression techniques. The most applicable of the equations was found to be; Log BR = -A sigma + B pi--C pi 2 + K Interpretation of this equation in terms of the biological action of the drugs on red blood cells was attempted. In designing a potent antisickling agent, the benzoic acid should have strong electron donating group(s) attached to the benzene ring and should be made averagely lipophilic to satisfy the relationship derived in this study.

  11. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  12. Effects of Benzoic Acid and Thymol on Growth Performance and Gut Characteristics of Weaned Piglets

    PubMed Central

    Diao, Hui; Zheng, Ping; Yu, Bing; He, Jun; Mao, Xiangbing; Yu, Jie; Chen, Daiwen

    2015-01-01

    A total of 144 weaned crossed pigs were used in a 42-d trial to explore the effects of different concentrations/combinations of benzoic acid and thymol on growth performance and gut characteristics in weaned pigs. Pigs were randomly allotted to 4 dietary treatments: i) control (C), basal diet, ii) C+1,000 mg/kg benzoic acid+100 mg/kg thymol (BT1), iii) C+1,000 mg/kg benzoic acid+200 mg/kg thymol (BT2) and, iv) C+2,000 mg/kg benzoic acid+100 mg/kg thymol (BT3). Relative to the control, pigs fed diet BT3 had lower diarrhoea score during the overall period (p<0.10) and improved feed to gain ratio between days 1 to 14 (p<0.05), which was accompanied by improved apparent total tract digestibility of ether extract, Ca and crude ash (p<0.05), and larger lipase, lactase and sucrose activities in the jejunum (p<0.05) at d 14 and d 42. Similarly, relative to the control, pigs fed diet BT3 had higher counts for Lactobacillus spp in digesta of ileum at d 14 (p<0.05), and pigs fed diets BT1, BT2, or BT3 also had higher counts of Bacillus spp in digesta of caecum at d 14 (p<0.05), and lower concentration of ammonia nitrogen in digesta of caecum at d 14 and d 42 (p<0.05). Finally, pigs fed diet BT3 had higher concentration of butyric acid in digesta of caecum at d 42 (p<0.05), and a larger villus height:crypt depth ratio in jejunum and ileum at d 14 (p<0.05) than pigs fed the control diet. In conclusion, piglets fed diet supplementation with different concentrations/combinations of benzoic acid and thymol could improve feed efficiency and diarrhoea, and improve gut microfloral composition. The combination of 2,000 mg/kg benzoic acid+100 mg/kg thymol produced better effects than other treatments in most measurements. PMID:25925060

  13. Dietary exposure estimates for the food preservatives benzoic acid and sorbic acid in the total diet in Taiwan.

    PubMed

    Ling, Min-Pei; Lien, Keng-Wen; Wu, Chiu-Hua; Ni, Shih-Pei; Huang, Hui-Ying; Hsieh, Dennis P H

    2015-02-25

    The purpose was to assess the health risk to general consumers in Taiwan associated with dietary intake of benzoic acid and sorbic acid by conducting a total diet study (TDS). The hazard index (HI) in percent acceptable daily intake (%ADI) of benzoic acid and sorbic acid for eight exposure groups classified by age were calculated. In high-intake consumers, the highest HI of benzoic acid was 54.1%ADI for males aged 1-2 years old at the 95th percentile, whereas for females, the HI was 61.7%ADI for aged over 66 years old. The highest HI of sorbic acid for male and female consumers aged 3-6 years old at the 95th percentile were 14.0%ADI and 12.2%ADI, respectively. These results indicate that the use of benzoic acid and sorbic acid as preservatives at the current level of use in the Taiwanese diet does not constitute a public health and safety concern.

  14. A convenient synthesis of anthranilic acids by Pd-catalyzed direct intermolecular ortho-C-H amidation of benzoic acids.

    PubMed

    Ng, Ka-Ho; Ng, Fo-Ning; Yu, Wing-Yiu

    2012-12-11

    An efficient method for synthesis of anthranilic acids by Pd-catalyzed ortho-C-H amidation of benzoic acids is disclosed. The amidation is proposed to proceed by carboxylate-assisted ortho-C-H palladation to form an arylpalladium(II) complex, followed by nitrene insertion to the Pd-C bond.

  15. Determination of benzoic acid in serum or plasma by gas chromatography-mass spectrometry (GC/MS).

    PubMed

    Knoblauch, Jeff M; Scott, David K; Smith, Laurie D; Garg, Uttam

    2010-01-01

    Nonketotic hyperglycinemia (NKH), a metabolic disorder due to defects in the glycine cleavage system, leads to the accumulation of toxic levels of glycine. Glycine levels in these patients may be lowered by sodium benzoate treatment. Benzoic acid binds to glycine to form hippurate, which is subsequently eliminated through the kidneys. At high concentrations, hippuric acid can crystallize in the kidneys and cause renal failure. Therefore, it is desirable to have benzoic acids concentrations within a therapeutic range. In the gas chromatography method described, the drug from the acidified serum or plasma sample is extracted using ethyl acetate. The organic phase containing drug is separated and dried under a stream of nitrogen. After trimethylsilyl derivatization, benzoic acid analysis is done on a gas chromatograph mass spectrometer. Quantitation of the drug in a sample is achieved by comparing responses of the unknown sample to the responses of the calibrators using selected ion monitoring. Benzoic acid D(5) is used as an internal standard.

  16. Distribution ratio, distribution constant and partition coefficient. Countercurrent chromatography retention of benzoic acid.

    PubMed

    Berthod, Alain; Mekaoui, Nazim

    2011-09-09

    There is some confusion in chromatography between terms such as solute distribution ratio, distribution constant and partition coefficient. These terms are very precisely defined in the field of liquid-liquid systems and liquid-liquid extraction as well as in the field of chromatography with sometimes conflicting definitions. Countercurrent chromatography (CCC) is a chromatographic technique in which the stationary phase is a support-free liquid. Since the mobile phase is also liquid, biphasic liquid systems are used. This work focuses on the exact meaning of the terms since there are consequences on experimental results. The retention volumes of solutes in CCC are linearly related to their distribution ratios. The partition coefficient that should be termed (IUPAC recommendation) distribution constant is linked to a single definite species. Using benzoic acid that can dimerize in heptane and ionize in aqueous phase and an 18 mL hydrodynamic CCC column, the role and relationships between parameters and the consequences on experimental peak position and shape are discussed. If the heptane/water distribution constant (marginally accepted to be called partition coefficient) of benzoic acid is 0.2 at 20 °C and can be tabulated in books, its CCC measured distribution ratio or distribution coefficient can change between zero (basic aqueous mobile phase) and more than 25 (acidic aqueous mobile phase and elevated concentration). Benzoic acid distribution ratio and partition coefficient coincide only when both dimerization and ionization are quenched, i.e. at very low concentration and pH 2. It is possible to quench dimerization adding butanol in the heptane/water system. However, butanol additions also affect the partition coefficient of benzoic acid greatly by increasing it.

  17. Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant.

    PubMed

    Muthuraman, G; Teng, Tjoon Tow; Leh, Cheu Peng; Norli, I

    2009-04-15

    Liquid-liquid extraction (LLE) of methylene blue (MB) from industrial wastewater using benzoic acid (extractant) in xylene has been studied at 27 degrees C. The extraction of the dye increased with increasing extractant concentration. The extraction abilities have been studied on benzoic acid concentration in the range of 0.36-5.8x10(-2) M. The distribution ratio of the dye is reasonably high (D=49.5) even in the presence of inorganic salts. Irrespective of the concentration of dye, extraction under optimal conditions was 90-99% after 15 min of phase separation. The extracted dye in the organic phase can be back extracted into sulphuric acid solution. The resultant recovered organic phase can be reused in succeeding extraction of dye with the yield ranging from 99 to 87% after 15 times reused, depending on the concentration of the initial feed solution. Experimental parameters examined were benzoic acid concentration, effect of diluent, effect of pH, effect of initial dye concentration, effect of equilibration time, various stripping agents, aqueous to organic phase ratio in extraction, organic to aqueous phase ratio in stripping and reusability of solvent.

  18. The ortho-substituent effect on the Ag-catalysed decarboxylation of benzoic acids.

    PubMed

    Grainger, Rachel; Cornella, Josep; Blakemore, David C; Larrosa, Igor; Campanera, Josep M

    2014-12-08

    A combined experimental and computational investigation on the Ag-catalysed decarboxylation of benzoic acids is reported herein. The present study demonstrates that a substituent at the ortho position exerts dual effects in the decarboxylation event. On one hand, ortho-substituted benzoic acids are inherently destabilised starting materials compared to their meta- and para-substituted counterparts. On the other hand, the presence of an ortho-electron-withdrawing group results in an additional stabilisation of the transition state. The combination of both effects results in an overall reduction of the activation energy barrier associated with the decarboxylation event. Furthermore, the Fujita-Nishioka linear free energy relationship model indicates that steric bulk of the substituent can also exert a negative effect by destabilising the transition state of decarboxylation.

  19. Screening of organic halogens and identification of chlorinated benzoic acids in carbonaceous meteorites.

    PubMed

    Schöler, Heinz F; Nkusi, Gerard; Niedan, Volker W; Müller, German; Spitthoff, Bianca

    2005-09-01

    The occurrence of halogenated organic compounds measured as a sum parameter and the evidence of chlorinated benzoic acids in four carbonaceous meteorites (Cold Bokkeveld, Murray, Murchison and Orgueil) from four independent fall events is reported. After AOX (Adsorbable organic halogen) and EOX (Extractable organic halogen) screening to quantify organically bound halogens, chlorinated organic compounds were analyzed by gas chromatography. AOX concentrations varying from 124 to 209 microg Cl/g d.w. were observed in carbonaceous meteorites. Ion chromatographic analysis of the distribution of organically bound halogens performed on the Cold Bokkeveld meteorite revealed that chlorinated and brominated organic compounds were extractable, up to 70%, whereas only trace amounts of organofluorines could be extracted. Chlorinated benzoic acids have been identified in carbonaceous meteorite extracts. Their presence and concentrations raise the question concerning the origin of halogenated, especially chlorinated, organic compounds in primitive planetary matter.

  20. Influence of benzoic acid on thermal, crystallization and mechanical properties of isotactic polypropylene under irradiation

    NASA Astrophysics Data System (ADS)

    Ahmed, Shamshad; Basfar, A. A.

    1999-05-01

    Degree of super-cooling is denoted by the temperature difference between the melting temperature of the polymer Tm, and peak crystallization temperature Tp. Upon addition of progressively increasing amounts of benzoic acid (BA) to isotactic polypropylene {(is)-PP}, the degree of super-cooling was found to decrease, which leads to considerable reduction in moulding cycle time and savings in production cost. Haze % was found to progressively decrease with the corresponding increase in the amount of benzoic acid in (is)-PP, resulting in much improved transparency of the (is)-PP-benzoic acid blends. Irradiation to an absorbed dose of 25 kGy affected the transparency of blends slightly. Thermogravimetric analysis of (is)-PP-BA blends showed that there is no adverse effect on thermal stability of the polypropylene. Also, the irradiation of (is)-PP-BA blends did not bring about any significant changes in their thermal stability. (is)-PP-BA blends demonstrated, in general, improved tensile strength when compared to pure (is)-PP. Moreover, no significant detrimental influence of irradiation was observed on the tensile strength of (is)-PP-BA blends.

  1. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology.

    PubMed

    Yu, Hyung-Seok; Lee, Na-Kyoung; Jeon, Hye-Lin; Eom, Su Jin; Yoo, Mi-Young; Lim, Sang-Dong; Paik, Hyun-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

  2. Evaluation of benzoic acid derivatives as sirtuin inhibitors.

    PubMed

    Chen, Yi-Pei; Catbagan, Chad C; Bowler, Jeannette T; Gokey, Trevor; Goodwin, Natalie D M; Guliaev, Anton B; Wu, Weiming; Amagata, Taro

    2014-01-01

    Employing a genetically modified yeast strain as a screening tool, 4-dimethylaminobenzoic acid (5) was isolated from the marine sediment-derived Streptomyces sp. CP27-53 as a weak yeast sirtuin (Sir2p) inhibitor. Using this compound as a scaffold, a series of disubstituted benzene derivatives were evaluated to elucidate the structure activity relationships for Sir2p inhibition. The results suggested that 4-alkyl or 4-alkylaminobenzoic acid is the key structure motif for Sir2p inhibitory activity. The most potent Sir2p inhibitor, 4-tert-butylbenzoic acid (20), among the tested compounds in this study turned out to be a weak but selective SIRT1 inhibitor. The calculated binding free energies between the selected compounds and the catalytic domain of SIRT1 were well correlated to their measured SIRT1 inhibitory activities.

  3. Crystal structure of 3-ethynyl­benzoic acid

    PubMed Central

    Venturini, Chiara; Ratel-Ramond, Nicolas; Gourdon, Andre

    2015-01-01

    In the title compound, C9H6O2, the carb­oxy­lic acid group is almost in the plane of the benzene ring, making a dihedral angle of 2.49 (18)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical acid–acid inversion dimers, with an R 2 2(8) ring motif. The dimers are linked by pairs of C—H⋯O hydrogen bonds forming chains, enclosing R 2 2(16) ring motifs, propagating along the c-axis direction. PMID:26594457

  4. Exposure assessment of food preservatives (sulphites, benzoic and sorbic acid) in Austria.

    PubMed

    Mischek, Daniela; Krapfenbauer-Cermak, Christine

    2012-01-01

    An exposure assessment was performed to estimate the potential intake of preservatives in the Austrian population. Food consumption data of different population groups, such as preschool children aged 3-6 years, female and male adults aged 19-65 years were used for calculation. Levels of the preservatives in food were derived from analyses conducted from January 2007 to August 2010. Dietary intakes of the preservatives were estimated and compared to the respective acceptable daily intakes (ADIs). In the average-intake scenario, assuming that consumers randomly consume food products that do or do not contain food additives, estimated dietary intakes of all studied preservatives are well below the ADI for all population groups. Sulphite exposure accounted for 34%, 84% and 89% of the ADI in preschool children, females and males, respectively. The mean estimated daily intake of benzoic acid was 32% (preschool children), 31% (males) and 36% (females) of the ADI. Sorbic acid intakes correspond to 7% of the ADI in preschool children and 6% of the ADI in adults. In the high-intake scenario assuming that consumers always consume food products that contain additives and considering a kind of brand loyalty of consumers, the ADI is exceeded for sulphites among adults (119 and 124%, respectively). Major contributors to the total intake of sulphites were wine and dried fruits for adults. Mean estimated dietary intakes of benzoic acid exceeded the ADI in all population groups, 135% in preschool children, 124% in females and 118% of the ADI in males, respectively. Dietary intakes of sorbic acid are well below the ADI, accounting for a maximum of 30% of the ADI in preschool children. The highest contributors to benzoic and sorbic acid exposure were fish and fish products mainly caused by high consumption data of this large food group, including also mayonnaise-containing fish salads. Other important sources of sorbic acid were bread, buns and toast bread and fruit and vegetable

  5. Crystal structure of 4-acetamido-benzoic acid monohydrate.

    PubMed

    Cai, Wen-Juan; Chi, Shao-Ming; Kou, Jun-Feng; Liu, Feng-Yi

    2014-11-01

    In the title compound, C9H9NO3·H2O, the plane of the acetamide group is oriented at 20.52 (8)° with respect to the benzene ring, whereas the plane of the carb-oxy-lic acid group is essentially coplanar with the benzene ring [maximum deviation = 0.033 (1) Å]. In the crystal, classical O-H⋯O and N-H⋯O hydrogen bonds and weak C-H⋯O hydrogen bonds link the organic mol-ecules and water mol-ecules of crystallization into a three-dimensional supra-molecular architecture.

  6. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid

    SciTech Connect

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng

    2014-03-15

    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H{sub 2}O{sub 2} indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions. Highlights: • 5–45 wt% HPW/MCM-48 mesoporous catalysts were prepared and characterized. • Their catalytic activities for the green synthesis of benzoic acid were investigated. • HPW/MCM-48 was approved to be an efficient catalyst. • 5 wt% HPW/MCM-48 exhibited the highest catalytic activity.

  7. Ultrafast formation of the benzoic acid triplet upon ultraviolet photolysis and its sequential photodissociation in solution

    SciTech Connect

    Yang Chunfan; Su Hongmei; Sun Xuezhong; George, Michael W.

    2012-05-28

    Time-resolved infrared (TR-IR) absorption spectroscopy in both the femtosecond and nanosecond time domain has been applied to examine the photolysis of benzoic acid in acetonitrile solution following either 267 nm or 193 nm excitation. By combining the ultrafast and nanosecond TR-IR measurements, both the excited states and the photofragments have been detected and key mechanistic insights were obtained. We show that the solvent interaction modifies the excited state relaxation pathways and thus the population dynamics, leading to different photolysis behavior in solution from that observed in the gas phase. Vibrational energy transfer to solvents dissipates excitation energy efficiently, suppressing the photodissociation and depopulating the excited S{sub 2} or S{sub 3} state molecules to the lowest T{sub 1} state with a rate of {approx}2.5 ps after a delayed onset of {approx}3.7 ps. Photolysis of benzoic acid using 267 nm excitation is dominated by the formation of the T{sub 1} excited state and no photofragments could be detected. The results from TR-IR experiments using higher energy of 193 nm indicate that photodissociation proceeds more rapidly than the vibrational energy transfer to solvents and C-C bond fission becomes the dominant relaxation pathway in these experiments as featured by the prominent observation of the COOH photofragments and negligible yield of the T{sub 1} excited state. The measured ultrafast formation of T{sub 1} excited state supports the existence of the surface intersections of S{sub 2}/S{sub 1}, S{sub 2}/T{sub 2}, and S{sub 1}/T{sub 1}/T{sub 2}, and the large T{sub 1} quantum yield of {approx}0.65 indicates the importance of the excited state depopulation to triplet manifold as the key factor affecting the photophysical and photochemical behavior of the monomeric benzoic acid.

  8. Topical use of tea tree oil reduces the dermal absorption of benzoic acid and methiocarb.

    PubMed

    Nielsen, Jesper Bo; Nielsen, Flemming

    2006-03-01

    Tea tree oil (TTO) is a complex mixture of terpene hydrocarbons. Intensive topical use of TTO in different cosmetics and investigations into its potential as an antimicrobial or anti-inflammatory agent has accentuated the need for studies on the toxicity of TTO. We have applied an experimental in vitro model using static diffusion cells with human skin to study penetration characteristics of terpinen-4-ol and the way TTO affects the barrier integrity of the skin and the percutaneous penetration of two chemicals covering a range of solubilities from 0.03 g/l (methiocarb) to 3.0 g/l (benzoic acid). Through GC-MS analysis we identified the major constituents of TTO. In our experimental set-up with full-thickness skin, only the least lipophilic ingredients of TTO penetrated the skin. Barrier integrity was evaluated through measurement of percutaneous penetration of tritiated water. Data indicate that 1% TTO does not affect barrier conditions. The Kp value for tritiated water was increased significantly at 5% TTO, which demonstrate that the barrier integrity is affected at this relatively low concentration of TTO. The barrier integrity is, however, not seriously damaged, but our data indicate an initiated and concentration-dependent effect on the barrier integrity. TTO changed the penetration characteristics for benzoic acid as well as for methiocarb. The general effect was that TTO reduced the maximal flux. For methiocarb, the lag-time was also prolonged by increasing the TTO concentration in the donor phase to 5%. Thus, TTO reduced the overall amount of benzoic acid as well as methiocarb entering the receptor chamber.

  9. Dietary exposure of secondary school students in Hong Kong to benzoic acid in prepackaged non-alcoholic beverages.

    PubMed

    Ma, Ka Ming; Chan, Cheok Man; Chung, Stephen Wai Cheung; Ho, Yuk Yin; Xiao, Ying

    2009-01-01

    This study evaluated the dietary exposure of secondary school students in Hong Kong to benzoic acid from pre-packaged non-alcoholic beverages. Exposure was estimated using local food consumption data of secondary school students obtained by a semi-quantitative food frequency questionnaire in 2000 and the benzoic acid level detected in pre-packaged beverages, including soft drink (both diet/light and regular types), fruit juice, soy milk, Chinese tea and coffee/tea) available locally in late 2006. The estimated dietary exposure to benzoic acid from pre-packaged beverages of average and high consumers (95(th) percentile) was 0.31 and 0.97 mg kg(-1) bw day(-1), respectively. These exposures accounted for 6.1 and 19.3% of the acceptable daily intake (ADI: 0-5 mg kg(-1) bw) of benzoic acid for average and high consumers, respectively. As in other countries, soft drinks contributed most to dietary exposure to benzoic acid from pre-packaged beverages in Hong Kong.

  10. A benzoic acid derivative and flavokawains from Piper species as schistosomiasis vector controls.

    PubMed

    Rapado, Ludmila N; Freitas, Giovana C; Polpo, Adriano; Rojas-Cardozo, Maritza; Rincón, Javier V; Scotti, Marcus T; Kato, Massuo J; Nakano, Eliana; Yamaguchi, Lydia F

    2014-04-23

    The search of alternative compounds to control tropical diseases such as schistosomiasis has pointed to secondary metabolites derived from natural sources. Piper species are candidates in strategies to control the transmission of schistosomiasis due to their production of molluscicidal compounds. A new benzoic acid derivative and three flavokawains from Piper diospyrifolium, P. cumanense and P. gaudichaudianum displayed significant activities against Biomphalaria glabrata snails. Additionally, "in silico" studies were performed using docking assays and Molecular Interaction Fields to evaluate the physical-chemical differences among the compounds in order to characterize the observed activities of the test compounds against Biomphalaria glabrata snails.

  11. Iridium-Catalyzed ortho-Arylation of Benzoic Acids with Arenediazonium Salts.

    PubMed

    Huang, Liangbin; Hackenberger, Dagmar; Gooßen, Lukas J

    2015-10-19

    In the presence of catalytic [{IrCp*Cl2 }2 ] and Ag2 CO3 , Li2 CO3 as the base, and acetone as the solvent, benzoic acids react with arenediazonium salts to give the corresponding diaryl-2-carboxylates under mild conditions. This C-H arylation process is generally applicable to diversely substituted substrates, ranging from extremely electron-rich to electron-poor derivatives. The carboxylate directing group is widely available and can be removed tracelessly or employed for further derivatization. Orthogonality to halide-based cross-couplings is achieved by the use of diazonium salts, which can be coupled even in the presence of iodo substituents.

  12. Discovery and characterization of [(cyclopentyl)ethyl]benzoic acid inhibitors of microsomal prostaglandin E synthase-1.

    PubMed

    Partridge, Katherine M; Antonysamy, Stephen; Bhattachar, Shobha N; Chandrasekhar, Srinivasan; Fisher, Matthew J; Fretland, Adrian; Gooding, Karen; Harvey, Anita; Hughes, Norman E; Kuklish, Steven L; Luz, John G; Manninen, Peter R; McGee, James E; Mudra, Daniel R; Navarro, Antonio; Norman, Bryan H; Quimby, Steven J; Schiffler, Matthew A; Sloan, Ashley V; Warshawsky, Alan M; Weller, Jennifer M; York, Jeremy S; Yu, Xiao-Peng

    2017-03-15

    We describe a novel class of acidic mPGES-1 inhibitors with nanomolar enzymatic and human whole blood (HWB) potency. Rational design in conjunction with structure-based design led initially to the identification of anthranilic acid 5, an mPGES-1 inhibitor with micromolar HWB potency. Structural modifications of 5 improved HWB potency by over 1000×, reduced CYP2C9 single point inhibition, and improved rat clearance, which led to the selection of [(cyclopentyl)ethyl]benzoic acid compound 16 for clinical studies. Compound 16 showed an IC80 of 24nM for inhibition of PGE2 formation in vitro in LPS-stimulated HWB. A single oral dose resulted in plasma concentrations of 16 that exceeded its HWB IC80 in both rat (5mg/kg) and dog (3mg/kg) for over twelve hours.

  13. Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco

    SciTech Connect

    Leon, J.; Yalpani, N.; Raskin, I.; Lawton, M.A. )

    1993-10-01

    Salicylic acid (SA) plays an important role in the induction of plant resistance to pathogens. An accompanying article shows that SA is synthesized via the decarboxylation of cinnamic acid to benzoic acid (BA), which is, in turn, hydroxylated to SA. Leaf extracts of tobacco catalyze the 2-hydroxylation of Ba to SA. The monooxygenase catalyzing this reaction, benzoic acid 2-hydroxylase (BA2H), required NAD(P)H or reduced methyl viologen as an electron donor. BA2H activity was detected in healthy tobacco leaf extracts (1-2 nmol h[sup [minus]1] g[sup [minus]1] fresh weight) and was significantly increased upon inoculation with tobacco mosaic virus (TMV). This increase paralleled the levels of free SA in the leaves. Induction of BA2H activity was restricted to tissue expressing a hypersensitive response at 24[degrees]C. TMV induction of BA2H activity and Sa accumulation were inhibited when inoculated tobacco plants were incubated for 4 d at 32[degrees]C and then transferred to 24[degrees]C, they showed a 15-fold increase in BA2H activity and a 65-fold increase in free SA content compared with healthy plants incubated at 24[degrees]C. Treatment of leaf tissue with the protein synthesis inhibitor cycloheximide blocked the induction of BA2H activity by TMV. The effect of TMV inoculation on BA2H could be duplicated by infiltrating leaf discs of healthy plants with BA. This response was observed even when applied levels of BA were much lower than the levels observed in vivo after virus inoculation. Feeding tobacco leaves with phenylalanine, cinnamic acid, or o-coumaric acid (putative precursors of SA) failed to trigger the induction of BA2H activity. BA2H appears to be a pathogen-inducible protein with an important regulatory role in SA accumulation during the development of induced resistance to TMV in tobacco. 33 refs., 6 figs., 3 tabs.

  14. Using a Simulated Industrial Setting for the Development of an Improved Solvent System for the Recrystallization of Benzoic Acid: A Student-Centered Project

    ERIC Educational Resources Information Center

    Hightower, Timothy R.; Heeren, Jay D.

    2006-01-01

    Recrystallization of benzoic acid is an excellent way to remove insoluble impurities. In a traditional organic laboratory experiment, insoluble impurities are removed through the recrystallization of benzoic acid utilizing water as the recrystallization solvent. It was our goal to develop a peer-led, problem-solving organic laboratory exercise…

  15. Orientation and bonding of benzoic acid, phthalic anhydride and pyromellitic dianhydride on Cu(110)

    NASA Astrophysics Data System (ADS)

    Frederick, B. G.; Ashton, M. R.; Richardson, N. V.; Jones, T. S.

    1993-07-01

    The interaction of the polyimide precursor pyromellitic dianhydride (PMDA), and the related compounds benzoic acid and phthalic anhydride, with Cu(110) has been studied by high resolution electron energy loss spectroscopy (HREELS). For benzoic acid, deprotonation of the carboxylic acid group occurs on adsorption leading to the formation of a surface benzoate species (C 6H 5COO-). Bonding to the surface occurs through a carboxylate linkage via two equivalent oxygen atoms. The HREEL spectrum is characterised by an intense dipole active band, the symmetric OCO stretching vibration, at ˜ 1420 cm -1. The plane of the carboxylate group is aligned perpendicular to the surface as is the plane of the benzene ring. A similar species is found following exposure of Cu(110) to phthalic anhydride. The carboxylate linkage results from disruption of the anhydride ring with loss of the CO character (C 6H 4COO-). In the case of the dianhydride species PMDA, only one of the anhydride units is used in bonding to the surface; the second unit points away from the surface and is characterised by the symmetric anhydride stretch at 1255 cm -1 and weak OO stretching vibrations at ˜ 1850 cm -1. In both cases, changes in the intensity of some of the bands compared with benzoic acid suggest that the carboxylate group is tilted away from the surface normal due to an interaction between one of the carbons of the aromatic ring and the copper surface. This implies that the plane of the aromatic ring is now twisted out of the plane of the carboxylate group and, although still perpendicular to the surface, the axis is tilted to allow one of the β-carbon atoms to interact with the surface. In all cases, off-specular measurements at a primary electron energy of ˜ 8 eV are dominated by the intense CH stretching vibration. Measurements of the intensity of this mode, in the surface benzoate species, as a function of incident electron energy suggest that excitation of this mode occurs via

  16. Mn (III) tetrakis (4-benzoic acid) porphyrin scavenges reactive species, reduces oxidative stress, and improves functional recovery after experimental spinal cord injury in rats: comparison with methylprednisolone

    PubMed Central

    2013-01-01

    Background Substantial experimental evidence supports that reactive species mediate secondary damage after traumatic spinal cord injury (SCI) by inducing oxidative stress. Removal of reactive species may reduce secondary damage following SCI. This study explored the effectiveness of a catalytic antioxidant - Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) - in removing reactive oxygen species (ROS), reducing oxidative stress, and improving functional recovery in vivo in a rat impact SCI model. The efficiency of MnTBAP was also compared with that of methylprednisolone – the only drug used clinically in treating acute SCI. Results In vivo measurements of time courses of ROS production by microdialysis and microcannula sampling in MnTBAP, methylprednisolone, and saline (as vehicle control)-treated SCI rats showed that both agents significantly reduced the production of hydrogen peroxide, but only MnTBAP significantly reduced superoxide elevation after SCI. In vitro experiments further demonstrated that MnTBAP scavenged both of the preceding ROS, whereas methylprednisolone had no effect on either. By counting the immuno-positive neurons in the spinal cord sections immunohistochemically stained with anti-nitrotyrosine and anti-4-hydroxy-nonenal antibodies as the markers of protein nitration and membrane lipid peroxidation, we demonstrated that MnTBAP significantly reduced the numbers of 4-hydroxy-nonenal-positive and nitrotyrosine-positive neurons in the sections at 1.55 to 2.55 mm and 1.1 to 3.1 mm, respectively, rostral to the injury epicenter compared to the vehicle-treated animals. By behavioral tests (open field and inclined plane tests), we demonstrated that at 4 hours post-SCI treatment with MnTBAP and the standard methylprednisolone regimen both significantly increased test scores compared to those produced by vehicle treatment. However, the outcomes for MnTBAP-treated rats were significantly better than those for methylprednisolone-treated animals

  17. Electronic and steric effects: how do they work in ionic liquids? The case of benzoic acid dissociation.

    PubMed

    D'Anna, Francesca; Marullo, Salvatore; Vitale, Paola; Noto, Renato

    2010-07-16

    The need to have a measure of the strength of some substituted benzoic acids in ionic liquid solution led us to use the protonation equilibrium of sodium p-nitrophenolate as a probe reaction, which was studied by means of spectrophotometric titration at 298 K. In order to evaluate the importance of electronic effect of the substituents present on the aromatic ring, both electron-withdrawing and -donor substituents were taken into account. Furthermore, to have a measure of the importance of the steric effect of the substituents both para- and ortho-substituted benzoic acids were analyzed. The probe reaction was studied in two ionic liquids differing for the ability of the cation to give hydrogen bond and pi-pi interactions, namely [bm(2)im][NTf(2)] and [bmpyrr][NTf(2)]. Data collected show that benzoic acids are less dissociated in ionic liquid than in water solution. Furthermore, the equilibrium constant values seem to be significantly affected by both the nature of ionic liquid cation and the structure of the acid. In particular, the ortho-steric effect seems to operate differently in water and in the aromatic ionic liquid, determining in this solvent medium a particular behavior for ortho-substituted benzoic acids.

  18. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    NASA Astrophysics Data System (ADS)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  19. First derivative spectrophotometric and high performance liquid chromatographic simultaneous determination of benzoic and salicylic acids in pharmaceutical preparations.

    PubMed

    Silva, B O

    2008-01-01

    Two methods are presented for the simultaneous determination of benzoic and salicylic acids in pharmaceutical preparations using first (1D) derivative spectrophotometry and high-performance liquid chromatography. Benzoic and salicylic acids were determined by measurement of first derivative amplitude at the zero crossing points 283 and 310 nm respectively. Methanolic solutions obeyed Beer's law in the concentration range of 20-60 and 10-30 microg/ml for benzoic and salicylic acids respectively. The HPLC method depends upon using a Vydac reversed-phase column at ambient temperature with a mobile phase consisting of 20:80 (ACN:H2O) at a flow rate 0.5 ml min(-1) Quantitation was achieved with UV detection of 230 nm at 0 min and 204 nm at 4 min based on peak area. For the two methods the regression line equations were derived with correlation coefficient better than 0.995. The two methods were successfully applied to the simultaneous determination of benzoic and salicylic acids in laboratory-prepared mixtures and in creams with good accuracy and precision. No significant differences were found between the results obtained both by the HPLC and derivative procedures.

  20. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...

  1. Amphipathic Benzoic Acid Derivativies: Synthesis and Binding in the Hydrophobic Tunnel of the Zinc Deacetylase LpxC

    SciTech Connect

    Shin,H.; Gennadios, H.; Whittington, D.; Christianson, D.

    2007-01-01

    The first committed step in lipid A biosynthesis is catalyzed by uridine diphosphate-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase (LpxC), a zinc-dependent deacetylase, and inhibitors of LpxC may be useful in the development of antibacterial agents targeting a broad spectrum of Gram-negative bacteria. Here, we report the design of amphipathic benzoic acid derivatives that bind in the hydrophobic tunnel in the active site of LpxC. The hydrophobic tunnel accounts for the specificity of LpxC toward substrates and substrate analogues bearing a 3-O-myristoyl substituent. Simple benzoic acid derivatives bearing an aliphatic 'tail' bind in the hydrophobic tunnel with micromolar affinity despite the lack of a glucosamine ring like that of the substrate. However, although these benzoic acid derivatives each contain a negatively charged carboxylate 'warhead' intended to coordinate to the active site zinc ion, the 2.25 {angstrom} resolution X-ray crystal structure of LpxC complexed with 3-(heptyloxy)benzoate reveals 'backward' binding in the hydrophobic tunnel, such that the benzoate moiety does not coordinate to zinc. Instead, it binds at the outer end of the hydrophobic tunnel. Interestingly, these ligands bind with affinities comparable to those measured for more complicated substrate analogue inhibitors containing glucosamine ring analogues and hydroxamate 'warheads' that coordinate to the active site zinc ion. We conclude that the intermolecular interactions in the hydrophobic tunnel dominate enzyme affinity in this series of benzoic acid derivatives.

  2. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  3. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  4. 1,3-Diferuloyl-sn-glycerol from the biocatalytic transesterification of ethyl 4-hydroxy-3-methoxy cinnamic acid (ethyl ferulate) and soybean oil.

    PubMed

    Compton, David L; Laszlo, Joseph A

    2009-06-01

    1,3-Diferuloyl-sn-glycerol is found ubiquitously throughout the plant kingdom, possessing ultraviolet adsorbing and antioxidant properties. Diferuloyl glycerol was synthesized and isolated as a byproduct in up to 5% yield from a pilot plant scale packed-bed, biocatalytic transesterification of ethyl ferulate with soybean oil or mono- and diacylglycerols from soybean oil. The yield of the diferuloyl glycerol byproduct was directly proportional to the overall water concentration of the bioreactor. The isolated diferuloyl glycerol exhibited good ultraviolet adsorbing properties, 280-360 nm with a lambda(max) 322 nm, and compared well to the efficacy of commercial sunscreen active ingredients. The antioxidant capacity of diferuloyl glycerol (0.25-2.5 mM) was determined by its ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals and was comparable to that of ferulic acid. At current pilot plant scale production capacity, 120 kg diferuloyl glycerol byproduct could be isolated per year.

  5. Contribution towards a Metabolite Profile of the Detoxification of Benzoic Acid through Glycine Conjugation: An Intervention Study

    PubMed Central

    Mason, Shayne; Mienie, Lodewyk J.; Westerhuis, Johan A.; Reinecke, Carolus J.

    2016-01-01

    Benzoic acid is widely used as a preservative in food products and is detoxified in humans through glycine conjugation. Different viewpoints prevail on the physiological significance of the glycine conjugation reaction and concerns have been raised on potential public health consequences following uncontrolled benzoic acid ingestion. We performed a metabolomics study which used commercial benzoic acid containing flavored water as vehicle for designed interventions, and report here on the controlled consumption of the benzoic acid by 21 cases across 6 time points for a total of 126 time points. Metabolomics data from urinary samples analyzed by nuclear magnetic resonance spectroscopy were generated in a time-dependent cross-over study. We used ANOVA-simultaneous component analysis (ASCA), repeated measures analysis of variance (RM-ANOVA) and unfolded principal component analysis (unfolded PCA) to supplement conventional statistical methods to uncover fully the metabolic perturbations due to the xenobiotic intervention, encapsulated in the metabolomics tensor (three-dimensional matrices having cases, spectral areas and time as axes). Identification of the biologically important metabolites by the novel combination of statistical methods proved the power of this approach for metabolomics studies having complex data structures in general. The study disclosed a high degree of inter-individual variation in detoxification of the xenobiotic and revealed metabolic information, indicating that detoxification of benzoic acid through glycine conjugation to hippuric acid does not indicate glycine depletion, but is supplemented by ample glycine regeneration. The observations lend support to the view of maintenance of glycine homeostasis during detoxification. The study indicates also that time-dependent metabolomics investigations, using designed interventions, provide a way of interpreting the variation induced by the different factors of a designed experiment–an approach

  6. Minimization of sample requirement for delta18O in benzoic acid.

    PubMed

    Hagopian, William M; Jahren, A Hope

    2010-09-15

    The measurement of the oxygen stable isotope content in organic compounds has applications in many fields, ranging from paleoclimate reconstruction to forensics. Conventional High-Temperature Conversion (HTC) techniques require >20 microg of O for a single delta(18)O measurement. Here we describe a system that converts the CO produced by HTC into CO(2) via reduction within a Ni-furnace. This CO(2) is then concentrated cryogenically, and 'focused' into the isotope ratio mass spectrometry (IRMS) source using a low-flow He carrier gas (6-8 mL/min). We report analyses of benzoic acid (C(7)H(6)O(2)) reference materials that yielded precise delta(18)O measurement down to 1.3 microg of O, suggesting that our system could be used to decrease sample requirement for delta(18)O by more than an order of magnitude.

  7. Low temperature Raman study of a liquid crystalline system 4-Decyloxy benzoic acid (4DBA)

    NASA Astrophysics Data System (ADS)

    Vikram, K.; Nandi, Rajib; Singh, Ranjan K.

    2013-08-01

    The Raman spectra of a liquid crystalline system, 4-Decyloxy benzoic acid (4DBA) have been recorded at different temperatures within the interval 300-78 K in order to identify the structural changes in crystalline state of a nematogen and to understand the molecular alignment therein. The earlier predicted dimer structure of 4DBA was optimized with DFT method and the theoretical Raman spectra of dimer as well as monomer have been calculated for comparison with the experimental spectra. The mode specific quartic coupling coefficient; Ai,ω and phonon frequency; ωi have been calculated using temperature dependent anharmonic perturbation theory. The precise band shape analysis of Raman bands at ˜807, ˜881, ˜1255, ˜1282, ˜1436, ˜1576, ˜1604, ˜2881 and ˜3081 cm-1 gives signature of temperature induced slow crystal modification. The structural changes leading to crystal modification have been discussed.

  8. On the Formation of Benzoic Acid and Higher Order Benzene Carboxylic Acids in Interstellar Model Ices grains

    NASA Astrophysics Data System (ADS)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, Andrew M.; Chakravarty, Harish K.; Kaiser, Ralf I.

    2016-11-01

    With a binary ice mixture of benzene (C6H6) and carbon dioxide (CO2) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta- and para-benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, was proposed utilizing the kinetic fitting of the coupled differential equations.

  9. Crystal and molecular structures of 3-amino-4-hydroxy benzenesulfonamide and its hydrochloride: Quantum-chemical study of their tautomerism

    NASA Astrophysics Data System (ADS)

    Kovalchukova, O. V.; Strashnova, S. B.; Romashkina, E. P.; Strashnov, P. V.; Zaitsev, B. E.; Sergienko, V. S.

    2013-03-01

    3-amino-4-hydroxy benzenesulfonamide and its hydrochloride have been isolated in the crystalline state. Their crystal and molecular structures are determined by X-ray diffraction. The equilibrium between neutral tautomeric forms of the 3-amino-4-hydroxy benzenesulfonamide molecule is studied within the approximation of density functional theory (B3LYP/aug-cc-pVDZ). The constants of acid-base equilibrium of 3-amino-4-hydroxy benzenesulfonamide are deter-mined using spectrophotometry.

  10. Crystal and molecular structures of 3-amino-4-hydroxy benzenesulfonamide and its hydrochloride: Quantum-chemical study of their tautomerism

    SciTech Connect

    Kovalchukova, O. V. Strashnova, S. B.; Romashkina, E. P.; Strashnov, P. V.; Zaitsev, B. E.; Sergienko, V. S.

    2013-03-15

    3-amino-4-hydroxy benzenesulfonamide and its hydrochloride have been isolated in the crystalline state. Their crystal and molecular structures are determined by X-ray diffraction. The equilibrium between neutral tautomeric forms of the 3-amino-4-hydroxy benzenesulfonamide molecule is studied within the approximation of density functional theory (B3LYP/aug-cc-pVDZ). The constants of acid-base equilibrium of 3-amino-4-hydroxy benzenesulfonamide are deter-mined using spectrophotometry.

  11. Synthesis of 5-nitro-2-(N-3-(4-azidophenyl)-propylamino)-benzoic acid: Photoaffinity labeling of human red blood cell ghosts with a 5-nitro-2-(3-phenylpropylamino)-benzoic acid analog

    SciTech Connect

    Branchini, B.R.; Murtiashaw, M.H.; Egan, L.A. )

    1991-04-15

    A photoaffinity analog of the potent epithelial chloride channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid has been synthesized and characterized. In the dark, this reagent, 5-nitro-2-(N-3-(4-azidophenyl)-propylamino)-benzoic acid, and the parent compound reversibly inhibited chloride efflux in human red blood cell ghosts. Irradiation of ghost membranes with 350 microM arylazide analog reduced the rate of chloride efflux to 33% of the control value. The photoinactivation process was not reversed by exhaustive washing of ghost membranes. Covalent incorporation of the photoaffinity reagent was supported by difference ultraviolet spectroscopy, which indicated the attachment of the substituted 2-amino-5-nitrobenzoic acid chromophore to ghost membranes. The novel photolabeling agent described here should be a useful structural probe for chloride channels in erythrocyte membranes and epithelial cells.

  12. Effect of temperature and concentration on benzoyl peroxide bleaching efficacy and benzoic acid levels in whey protein concentrate.

    PubMed

    Smith, T J; Gerard, P D; Drake, M A

    2015-11-01

    Much of the fluid whey produced in the United States is a by-product of Cheddar cheese manufacture and must be bleached. Benzoyl peroxide (BP) is currently 1 of only 2 legal chemical bleaching agents for fluid whey in the United States, but benzoic acid is an unavoidable by-product of BP bleaching. Benzoyl peroxide is typically a powder, but new liquid BP dispersions are available. A greater understanding of the bleaching characteristics of BP is necessary. The objective of the study was to compare norbixin destruction, residual benzoic acid, and flavor differences between liquid whey and 80% whey protein concentrates (WPC80) bleached at different temperatures with 2 different benzoyl peroxides (soluble and insoluble). Two experiments were conducted in this study. For experiment 1, 3 factors (temperature, bleach type, bleach concentration) were evaluated for norbixin destruction using a response surface model-central composite design in liquid whey. For experiment 2, norbixin concentration, residual benzoic acid, and flavor differences were explored in WPC80 from whey bleached by the 2 commercially available BP (soluble and insoluble) at 5 mg/kg. In liquid whey, soluble BP bleached more norbixin than insoluble BP, especially at lower concentrations (5 and 10 mg/kg) at both cold (4°C) and hot (50°C) temperatures. The WPC80 from liquid whey bleached with BP at 50°C had lower norbixin concentration, benzoic acid levels, cardboard flavor, and aldehyde levels than WPC80 from liquid whey bleached with BP at 4°C. Regardless of temperature, soluble BP destroyed more norbixin at lower concentrations than insoluble BP. The WPC80 from soluble-BP-bleached wheys had lower cardboard flavor and lower aldehyde levels than WPC80 from insoluble-BP-bleached whey. This study suggests that new, soluble (liquid) BP can be used at lower concentrations than insoluble BP to achieve equivalent bleaching and that less residual benzoic acid remains in WPC80 powder from liquid whey

  13. Iron Oxide Surface Chemistry: Effect of Chemical Structure on Binding in Benzoic Acid and Catechol Derivatives.

    PubMed

    Korpany, Katalin V; Majewski, Dorothy D; Chiu, Cindy T; Cross, Shoronia N; Blum, Amy Szuchmacher

    2017-03-13

    The excellent performance of functionalized iron oxide nanoparticles (IONPs) in nanomaterial and biomedical applications often relies on achieving the attachment of ligands to the iron oxide surface both in sufficient number and with proper orientation. Toward this end, we determine relationships between the ligand chemical structure and surface binding on magnetic IONPs for a series of related benzoic acid and catechol derivatives. Ligand exchange was used to introduce the model ligands, and the resultant nanoparticles were characterized using Fourier transform infrared-attenuated internal reflectance spectroscopy, transmission electron microscopy, and nanoparticle solubility behavior. An in-depth analysis of ligand electronic effects and reaction conditions reveals that the nature of ligand binding does not solely depend on the presence of functional groups known to bind to IONPs. The structure of the resultant ligand-surface complex was primarily influenced by the relative positioning of hydroxyl and carboxylic acid groups within the ligand and whether or not HCl(aq) was added to the ligand-exchange reaction. Overall, this study will help guide future ligand-design and ligand-exchange strategies toward realizing truly custom-built IONPs.

  14. Identification of 9,17-Dioxo-1,2,3,4,10,19-Hexanorandrostan-5-oic Acid, 4-Hydroxy-2-Oxohexanoic Acid, and 2-Hydroxyhexa-2,4-Dienoic Acid and Related Enzymes Involved in Testosterone Degradation in Comamonas testosteroni TA441

    PubMed Central

    Horinouchi, Masae; Hayashi, Toshiaki; Koshino, Hiroyuki; Kurita, Tomokazu; Kudo, Toshiaki

    2005-01-01

    Comamonas testosteroni TA441 utilizes testosterone via aromatization of the A ring followed by meta-cleavage of the ring. The product of the meta-cleavage reaction, 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid, is degraded by a hydrolase, TesD. We directly isolated and identified two products of TesD as 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and (2Z,4Z)-2-hydroxyhexa-2,4-dienoic acid. The latter was a pure 4Z isomer. 2-Hydroxyhexa-2,4-dienoic acid was converted by a hydratase, TesE, and the product isolated from the reaction solution was identified as 2-hydroxy-4-hex-2-enolactone, indicating the direct product of TesE to be 4-hydroxy-2-oxohexanoic acid. PMID:16151114

  15. 40 CFR 721.1550 - Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). (a) Chemical substance and significant new... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). 721.1550 Section 721.1550 Protection of...

  16. 40 CFR 721.1550 - Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). (a) Chemical substance and significant new... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). 721.1550 Section 721.1550 Protection of...

  17. 40 CFR 721.1550 - Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). (a) Chemical substance and significant new... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). 721.1550 Section 721.1550 Protection of...

  18. 40 CFR 721.1550 - Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). (a) Chemical substance and significant new... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). 721.1550 Section 721.1550 Protection of...

  19. 40 CFR 721.1550 - Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). (a) Chemical substance and significant new... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenediazonium, 4-(di-methyl-amino)-, salt with 2-hy-droxy-5-sul-fo-benzoic acid (1:1). 721.1550 Section 721.1550 Protection of...

  20. Auxin Activity of Substituted Benzoic Acids and Their Effect on Polar Auxin Transport 1

    PubMed Central

    Keitt, George W.; Baker, Robert A.

    1966-01-01

    Six dichloro-, 3 trichloro-, 2 triiodo-, and 3 heterosubstituted benzoic acids (amiben, dinoben, dicamba), and N-1-naphthylphthalamic acid have been tested for effects on growth and on polar auxin transport. Growth activity with and without kinetin was measured by effects on fresh and dry weights of 30-day cultures of fresh tobacco pith. Transport inhibition was measured by following uptake and output of IAA-2-14C through 10 mm bean epicotyl sections. The distribution of callus growth on vascularized tobacco stem segments was also observed. Avena first internode extension assays established the relative activities: dicamba > amiben > dinoben suggested by pith growth results. Growth effects of active compounds were similar with and without kinetin, except that amiben was less active with kinetin, while 2,3,6-trichlorobenzoic acid was more active with kinetin than alone. The weak auxin activity of NPA was confirmed. Transport experiments showed that NPA was the most inhibitory compound tested, followed by TIBA. Other compounds tested were at least 300 times less inhibitory to IAA transport. The best growth promoters were the least inhibitory to transport, and the most effective transport inhibitors were at best poor auxins. It is suggested that the weak auxin and auxin synergistic activity of TIBA (and perhaps 2,3-dichlorobenzoic acid) in extension growth tests arises from its inhibition of transport of endogenous or added auxin out of the sections, rather than from its intrinsic auxin activity. Chemically induced apolar callus growth on vascularized tobacco stem explants can arise from inhibition of native auxin transport, apolar growth stimulation by auxinic action of the test compound, or both. PMID:16656441

  1. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.

    PubMed

    Zhang, Haoran; Stephanopoulos, Gregory

    2016-07-01

    3-amino-benzoic acid (3AB) is an important building block molecule for production of a wide range of important compounds such as natural products with various biological activities. In the present study, we established a microbial biosynthetic system for de novo 3AB production from the simple substrate glucose. First, the active 3AB biosynthetic pathway was reconstituted in the bacterium Escherichia coli, which resulted in the production of 1.5 mg/L 3AB. In an effort to improve the production, an E. coli-E. coli co-culture system was engineered to modularize the biosynthetic pathway between an upstream strain and an downstream strain. Specifically, the upstream biosynthetic module was contained in a fixed E. coli strain, whereas a series of E. coli strains were engineered to accommodate the downstream biosynthetic module and screened for optimal production performance. The best co-culture system was found to improve 3AB production by 15 fold, compared to the mono-culture approach. Further engineering of the co-culture system resulted in biosynthesis of 48 mg/L 3AB. Our results demonstrate co-culture engineering can be a powerful new approach in the broad field of metabolic engineering.

  2. Short communication: Change of naturally occurring benzoic acid during skim milk fermentation by commercial cheese starters.

    PubMed

    Han, Noori; Park, Sun-Young; Kim, Sun-Young; Yoo, Mi-Young; Paik, Hyun-Dong; Lim, Sang-Dong

    2016-11-01

    This study sought to investigate the change of naturally occurring benzoic acid (BA) during skim milk fermentation by 4 kinds of commercial cheese starters used in domestic cheese. The culture was incubated at 3-h intervals for 24h at 30, 35, and 40°C. The BA content during fermentation by Streptococcus thermophilus STB-01 was detected after 12h at all temperatures, sharply increasing at 30°C. In Lactobacillus paracasei LC431, BA was detected after 9h at all temperatures, sharply increasing until 18h and decreasing after 18h at 30 and 35°C. In the case of R707 (consisting of Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. cremoris), BA increased from 6h to 15h and decreased after 15h at 40°C. The BA during STB-01 and CHN-11 (1:1; mixture of S. thermophilus, Lc. lactis ssp. lactis, Lc. lactis ssp. cremoris, Lc. lactis ssp. diacetylactis, Leuconostoc mesenteroides ssp. cremoris) fermentation was detected after 3h at 35 and 40°C, sharply increasing up to 12h and decreasing after 15h at 35°C, and after 6h, increasing up to 9h at 30°C. After 3h, it steadily decreased at 40°C. The highest amount of BA was found during the fermentation by R707 at 30°C; 15h with 12.46mg/kg.

  3. Metabolic Engineering of Pseudomonas putida KT2440 for the Production of para-Hydroxy Benzoic Acid

    PubMed Central

    Yu, Shiqin; Plan, Manuel R.; Winter, Gal; Krömer, Jens O.

    2016-01-01

    para-Hydroxy benzoic acid (PHBA) is the key component for preparing parabens, a common preservatives in food, drugs, and personal care products, as well as high-performance bioplastics such as liquid crystal polymers. Pseudomonas putida KT2440 was engineered to produce PHBA from glucose via the shikimate pathway intermediate chorismate. To obtain the PHBA production strain, chorismate lyase UbiC from Escherichia coli and a feedback resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase encoded by gene aroGD146N were overexpressed individually and simultaneously. In addition, genes related to product degradation (pobA) or competing for the precursor chorismate (pheA and trpE) were deleted from the genome. To further improve PHBA production, the glucose metabolism repressor hexR was knocked out in order to increase erythrose 4-phosphate and NADPH supply. The best strain achieved a maximum titer of 1.73 g L−1 and a carbon yield of 18.1% (C-mol C-mol−1) in a non-optimized fed-batch fermentation. This is to date the highest PHBA concentration produced by P. putida using a chorismate lyase. PMID:27965953

  4. Bioactivity of novel transition metal complexes of N'-[(4-methoxy)thiobenzoyl]benzoic acid hydrazide.

    PubMed

    Shrivastav, Anuraag; Tripathi, Pratibha; Srivastava, Ajay K; Singh, Nand K; Sharma, Rajendra K

    2008-03-01

    Cu(II), Fe(III), and Mn(II) complexes of a novel ligand N'-[(4-methoxy)thiobenzoyl]benzoic acid hydrazide (H(2)mtbh) have been synthesized and characterized by elemental analyses, IR, UV-vis, NMR, mass, EPR and Mössbauer spectroscopy. The results suggest a square planar structure for [Cu(Hmtbh)Cl] and [Cu(mtbh)] whereas an octahedral structure for [Mn(Hmtbh)(2)] and [Fe(Hmtbh)(mtbh)]. Mn(II) and Fe(III) complexes were found to inhibit proliferation of HT29 cells. [Mn(Hmtbh)(2)] and [Fe(Hmtbh)(mtbh)] inhibited proliferation of HT29 cells with half maximal inhibition (IC(50)) of 8.15+/-0.87 and 68.1+/-4.8 microM, respectively, whereas H(2)mtbh showed growth inhibition with IC(50) of 90.9+/-7.8 microM and were able to inhibit NMT activity in vitro. Mn(II) and Fe(III) complexes inhibited NMT activity in a dose dependent manner with IC(50) values of 20+/-2.2 and 60+/-7.2 microM, respectively, whereas ligand (H(2)mtbh) displayed IC(50) of 3.2+/-0.5 mM.

  5. Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films.

    PubMed

    Mohite, V S; Mahadik, M A; Kumbhar, S S; Hunge, Y M; Kim, J H; Moholkar, A V; Rajpure, K Y; Bhosale, C H

    2015-01-01

    Highly transparent pure and Au doped TiO2 thin films are successfully deposited by using simple chemical spray pyrolysis technique. The effect of Au doping onto the structural and physicochemical properties has been investigated. The PEC study shows that, both short circuit current (Isc) and open circuit voltage (Voc) are (Isc=1.81mA and Voc=890mV) relatively higher at 3at.% Au doping percentage. XRD study shows that the films are nanocrystalline in nature with tetragonal crystal structure. FESEM images show that the film surface covered with a smooth, uniform, compact and rice shaped nanoparticles. The Au doped thin films exhibit indirect band gap, decreases from 3.23 to 3.09eV with increase in Au doping. The chemical composition and valence states of pure and Au doped TiO2 films are studied by using X-ray photoelectron spectroscopy. The photocatalytic degradation effect is 49% higher in case 3at.% Au doped TiO2 than the pure TiO2 thin film photoelectrodes in the degradation of benzoic acid. It is revealed that Au doped TiO2 can be reused for five cycles of experiments without a requirement of post-treatment while the degradation efficiency was retained.

  6. Absolute quantification for benzoic acid in processed foods using quantitative proton nuclear magnetic resonance spectroscopy.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Sugimoto, Naoki; Akiyama, Hiroshi; Kawamura, Yoko

    2012-09-15

    The absolute quantification method of benzoic acid (BA) in processed foods using solvent extraction and quantitative proton nuclear magnetic resonance spectroscopy was developed and validated. BA levels were determined using proton signals (δ(H) 7.53 and 7.98) referenced to 2-dimethyl-2-silapentane-5-sulfonate-d(6) sodium salt (DSS-d(6)) after simple solvent extraction from processed foods. All recoveries from several kinds of processed foods, spiked at their specified maximum Japanese usage levels (0.6-2.5 g kg(-1)) and at 0.13 g kg(-1) and 0.063 g kg(-1), were greater than 80%. The limit of quantification was confirmed as 0.063 g kg(-1) in processed foods, which was sufficiently low for the purposes of monitoring BA. The accuracy of the proposed method is equivalent to the conventional method using steam-distillation extraction and high-performance liquid chromatography. The proposed method was both rapid and simple. Moreover, it provided International System of Units traceability without the need for authentic analyte standards. Therefore, the proposed method is a useful and practical tool for determining BA levels in processed foods.

  7. Modified ferrous ammonium sulfate benzoic acid xyelenol orange (MFBX) and thermoluminescent dosimeters--a comparative study.

    PubMed

    Brindha, S; Rose, J V R; Sathyan, S; Singh I, Rabi Raja; Ravindran, B Paul

    2002-06-07

    Radiation dosimetry deals with the determination of absorbed dose to the medium exposed to ionizing radiation. Chemical dosimetry depends on oxidation or reduction of chemicals by ionizing radiation. A ferrous ammonium sulfate benzoic acid xyelenol orange (FBX) dosimeter based on this principle is being used as a clinical dosimeter at present. Certain modifications were carried out in the preparation and storage of the FBX dosimeter to increase its shelf life. The resulting dosimeter was called a modified FBX (MFBX) dosimeter and has been used in our department for the past few years. An extensive study of the dose, dose rate and energy response of the dosimeter was carried out and compared with a thermoluminescent (LiF7) dosimeter. The results obtained were found to be comparable to the thermoluminescent (LiF7) dosimeter. Hence it was concluded that the MFBX dosimeter could be used for phantom dosimetry, data collection and in vivo measurements. Easier preparation and availability of the reagents are added advantages of using MFBX as a clinical dosimeter in small radiotherapy departments.

  8. Self-Assembled Structures of Benzoic Acid on Au(111) Surface

    NASA Astrophysics Data System (ADS)

    Vu, Thu-Hien; Wandlowski, Thomas

    2017-02-01

    Electrochemical scanning tunneling microscopy combined with cyclic voltammetry were employed to explore the self-assembly of benzoic acid (BA) on a Au(111) substrate surface in a 0.1-M HClO4 solution. At the negatively charged surface, BA molecules form two highly ordered physisorbed adlayers with their phenyl rings parallel to the substrate surface. High-resolution scanning tunneling microscopy images reveal the packing arrangement and internal molecular structures. The striped pattern and zigzag structure of the BA adlayers are composed of parallel rows of dimers, in which two BA molecules are bound through a pair of O-H···O hydrogen bonds. Increasing the electrode potential further to positive charge densities of Au(111) leads to the desorption of the physisorbed hydrogen-bonded networks and the formation of a chemisorbed adlayer. BA molecules change their orientation from planar to upright fashion, which is accompanied by the deprotonation of the carboxyl group. Furthermore, potential-induced formation and dissolution of BA adlayers were also investigated. Structural transitions between the various types of ordered adlayers occur according to a nucleation and growth mechanism.

  9. Adsorption of Benzoic Acid in Aqueous Solution by Bagasse Fly Ash

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2012-09-01

    This paper reports the studies on the benzoic acid (BA) onto bagasse fly ash (BFA) was studied in aqueous solution in a batch system. Physico-chemical properties including surface area, surface texture of the GAC before and after BA adsorption onto BFA were analysed using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The optimum initial pH for the adsorption of BA was found to be 5.56. The adsorbent dose was 10 g/l for BFA and the equilibrium time 8 h of reaction. Pseudo first and second order models were used to find the adsorption kinetics. It was found that intraparticle diffusion played important role in the adsorption mechanisms of BA and the adsorption kinetics followed pseudo-second order kinetic model rather than the pseudo first order kinetic model. Isotherm data were generated for BA solution having initial concentrations of BA in the range of 10-200 mg/l for the BFA dosage of 10 g/l at temperatures of 288, 303, and 318 K. The adsorption of BA onto BFA was favorably influenced by an increase in temperature. Equilibrium data were well represented by the Redlich-Peterson isotherm model. Values of the change in entropy ( ΔS 0), heat of adsorption ( ΔH 0) for adsorption of BA on BFA was found to be 120.10 and 19.61 kJ/mol respectively. The adsorption of BA onto BFA was an endothermic reaction. Desorption of BA from BFA was studied by various solvents method. Acetic acid was found to be a better eluant for desorption of BA with a maximum desorption efficiency of 55.2 %. Owing to its heating value, spent BFA can be used as a co-fuel for the production of heat in boiler furnaces.

  10. 4-Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone is a Biologically Active Precursor for the Generation of 2-(ω-Carboxyethyl)pyrrole (CEP) Derivatives of Proteins and Ethanolamine Phospholipids

    PubMed Central

    Wang, Hua; Linetsky, Mikhail; Guo, Junhong; Choi, Jaewoo; Hong, Li; Chamberlain, Amanda S.; Howell, Scott J.; Howes, Andrew M.; Salomon, Robert G.

    2015-01-01

    2-(ω-Carboxyethyl)pyrrole (CEP) derivatives of proteins were previously shown to have significant pathological and physiological relevance to age-related macular degeneration, cancer and wound healing. Previously, we showed that CEPs are generated in the reaction of ε-amino groups of protein lysyl residues with 1-palmityl-2-(4-hydroxy-7-oxo-5-heptenoyl)-sn-glycero-3-phosphatidylcholine (HOHA-PC), a lipid oxidation product uniquely generated by oxidative truncation of docosahexanenate-containing phosphatidylcholine. More recently, we found that HOHA-PC rapidly releases HOHA-lactone and 2-lyso-PC (t1/2 = 30 min at 37 °C) by non-enzymatic transesterification/deacylation. Now we report that HOHA-lactone reacts with Ac-Gly-Lys-OMe or human serum albumin to form CEP derivatives in vitro. Incubation of human red blood cell ghosts with HOHA-lactone generates CEP derivatives of membrane proteins and ethanolamine phospholipids. Quantitative analysis of the products generated in the reaction HOHA-PC with Ac-Gly-Lys-OMe showed that HOHA-PC mainly forms CEP-dipeptide that is not esterified to 2-lysophosphatidycholine. Thus, the HOHA-lactone pathway predominates over the direct reaction of HOHA-PC to produce the CEP-PC-dipeptide derivative. Myleoperoxidase/H2O2/NO2− promoted in vitro oxidation of either 1-palmityl-2-docosahexaneoyl-sn-glycero-3-phosphatidylcholine (DHA-PC) or docosahexaenoic acid (DHA) generates HOHA-lactone in yields of 0.45% and 0.78%, respectively. Lipid oxidation in human red blood cell ghosts also releases HOHA-lactone. Oxidative injury of ARPE-19 human retinal pigmented epithelial cells by exposure to H2O2 generated CEP derivatives. Treatment of ARPE-19 cells with HOHA-lactone generated CEP-modified proteins. Low (submicromolar), but not high, concentrations of HOHA-lactone promote increased vascular endothelial growth factor (VEGF) secretion by ARPE-19 cells. Therefore, HOHA-lactone not only serves as an intermediate for the generation of CEPs but

  11. Transient and steady-state kinetics of the oxidation of substituted benzoic acid hydrazides by myeloperoxidase.

    PubMed

    Burner, U; Obinger, C; Paumann, M; Furtmüller, P G; Kettle, A J

    1999-04-02

    Myeloperoxidase is the most abundant protein in neutrophils and catalyzes the production of hypochlorous acid. This potent oxidant plays a central role in microbial killing and inflammatory tissue damage. 4-Aminobenzoic acid hydrazide (ABAH) is a mechanism-based inhibitor of myeloperoxidase that is oxidized to radical intermediates that cause enzyme inactivation. We have investigated the mechanism by which benzoic acid hydrazides (BAH) are oxidized by myeloperoxidase, and we have determined the features that enable them to inactivate the enzyme. BAHs readily reduced compound I of myeloperoxidase. The rate constants for these reactions ranged from 1 to 3 x 10(6) M-1 s-1 (15 degrees C, pH 7.0) and were relatively insensitive to the substituents on the aromatic ring. Rate constants for reduction of compound II varied between 6.5 x 10(5) M-1 s-1 for ABAH and 1.3 x 10(3) M-1 s-1 for 4-nitrobenzoic acid hydrazide (15 degrees C, pH 7.0). Reduction of both compound I and compound II by BAHs adhered to the Hammett rule, and there were significant correlations with Brown-Okamoto substituent constants. This indicates that the rates of these reactions were simply determined by the ease of oxidation of the substrates and that the incipient free radical carried a positive charge. ABAH was oxidized by myeloperoxidase without added hydrogen peroxide because it underwent auto-oxidation. Although BAHs generally reacted rapidly with compound II, they should be poor peroxidase substrates because the free radicals formed during peroxidation converted myeloperoxidase to compound III. We found that the reduction of ferric myeloperoxidase by BAH radicals was strongly influenced by Hansch's hydrophobicity constants. BAHs containing more hydrophilic substituents were more effective at converting the enzyme to compound III. This implies that BAH radicals must hydrogen bond to residues in the distal heme pocket before they can reduce the ferric enzyme. Inactivation of myeloperoxidase by BAHs

  12. 2-(2-Methyl-benzo-yl)benzoic acid: catemeric hydrogen bonding in a γ-keto acid.

    PubMed

    Platosz, Natalia A; Lalancette, Roger A; Thompson, Hugh W; Newman, Jacob M; Schachter, Ari

    2013-01-01

    The crystal structure of the title compound, C15H12O3, displays catemeric aggregation involving O-H⋯O hydrogen bonds progressing from the carboxyl group of one mol-ecule to the ketone O atom of another glide-related neighbor. The mol-ecule is twisted, with the toluene 80.61 (3)° out of plane with respect to the phenyl group of the benzoic acid. The acid group makes a dihedral angle of 13.79 (14)° with the attached phenyl ring. The mol-ecules are achiral, but the space group glide planes create alternating conformational chirality in the chain units. The four hydrogen-bonding chains progress along [001] in an A-A-B-B pattern (right-to-left versus left-to-right), and are related to each other by the center of symmetry at (0.5, 0.5, 0.5) in the chosen cell. There is one close contact (2.54 Å) between a phenyl H atom and the acid carbonyl from a symmetry-related mol-ecule.

  13. Effects of Benzoic Acid and Dietary Calcium:Phosphorus Ratio on Performance and Mineral Metabolism of Weanling Pigs

    PubMed Central

    Gutzwiller, A.; Schlegel, P.; Guggisberg, D.; Stoll, P.

    2014-01-01

    In a 2×2 factorial experiment the hypotheses tested were that the metabolic acid load caused by benzoic acid (BA) added to the feed affects bone mineralization of weanling pigs, and that a wide dietary calcium (Ca) to phosphorus (P) ratio in phytase-supplemented feeds with a marginal P concentration has a positive effect on bone mineralization. The four experimental diets, which contained 0.4% P and were supplemented with 1,000 FTU phytase/kg, contained either 5 g BA/kg or no BA and either 0.77% Ca or 0.57% Ca. The 68 four-week-old Large White pigs were fed the experimental diets ad libitum for six weeks and were then slaughtered. Benzoic acid increased feed intake (p = 0.009) and growth rate (p = 0.051), but did not influence the feed conversion ratio (p>0.10). Benzoic acid decreased the pH of the urine (p = 0.031), but did not affect breaking strength and mineralization of the tibia (p>0.10). The wide Ca:P ratio decreased feed intake (p = 0.034) and growth rate (p = 0.007) and impaired feed the conversion ratio (p = 0.027), but increased the mineral concentration in the fat-free DM of the tibia (p = 0.013) without influencing its breaking strength (p>0.10). The observed positive effect of the wide Ca:P ratio on bone mineralization may be attributed, at least in part, to the impaired feed conversion ratio, i.e. to the higher feed intake and consequently to the higher mineral intake per kg BW gain. The negative impact on animal performance of the wide dietary Ca:P ratio outweighs its potentially positive effect on bone mineralization, precluding its implementation under practical feeding conditions. PMID:25049984

  14. First-principles prediction of the effects of temperature and solvent selection on the dimerization of benzoic acid.

    PubMed

    Pham, Hieu H; Taylor, Christopher D; Henson, Neil J

    2013-01-24

    We introduce a procedure of quantum chemical calculations (B3P86/6-31G**) to study carboxylic acid dimerization and its correlation with temperature and properties of the solvent. Benzoic acid is chosen as a model system for studying dimerization via hydrogen bonding. Organic solvents are simulated using the self-consistent reaction field (SCRF) method with the polarized continuum model (PCM). The cyclic dimer is the most stable structure both in gas phase and solution. Dimer mono- and dihydrates could be found in the gas phase if acid molecules are in contact with water vapor. However, the formation of these hydrated conformers is very limited and cyclic dimer is the principal conformer to coexist with monomer acid in solution. Solvation of the cyclic dimer is more favorable compared to other complexes, partially due to the diminishing of hydrogen bonding capability and annihilation of dipole moments. Solvents have a strong effect on inducing dimer dissociation and this dependence is more pronounced at low dielectric constants. By accounting for selected terms in the total free energy of solvation, the solvation entropy could be incorporated to predict the dimer behavior at elevated temperatures. The temperature dependence of benzoic acid dimerization obtained by this technique is in good agreement with available experimental measurements, in which a tendency of dimer to dissociate is observed with increased temperatures. In addition, dimer breakup is more sensitive to temperature in low dielectric environments rather than in solvents with a higher dielectric constant.

  15. Thermochemical investigations of nearly ideal binary solvents. VII: Monomer and dimer models for solubility of benzoic acid in simple binary and ternary solvents.

    PubMed

    Acree, W E; Bertrand, G L

    1981-09-01

    Solubilities are reported for benzoic acid at 25.0 degrees in binary mixtures of carbon tetrachloride with cyclohexane, n-hexane, or n-heptane and of cyclohexane with n-hexane or n-heptane and in ternary mixtures of carbon tetrachloride-cyclohexane-n-hexane and carbon tetrachloride-cyclohexane-n-heptane. Solubilities also are reported for benzoic acid in some binary solvents at 30.0 degrees and for m-toluic acid in binary mixtures of cyclohexane and n-hexane at 25.0 degrees. The results are compared to the predictions of equations developed previously for solubility in systems of purely nonspecific interactions, with the benzoic acids considered as either monomeric or dimeric molecules in solution. The dimer model gave more accurate predictions, with a maximum deviation of 4.4% between observed and predicted solubilities in all systems studied. Solubility maxima were predicted and observed for benzoic and m-toluic acids in cyclohexane-n-hexane and for benzoic acid in cyclohexane-n-heptane. The application of these solubility relationships to liquid-liquid partition coefficients is discussed.

  16. Microwave-Assisted Syntheses of Amino Acid Ester Substituted Benzoic Acid Amides: Potential Inhibitors of Human CD81-Receptor HCV-E2 Interaction

    PubMed Central

    Holzer, Marcel; Ziegler, Sigrid; Kronenberger, Bernd; Klein, Christian D; Hartmann, Rolf W

    2008-01-01

    Results from our group showed benzyl salicylate to be a moderate inhibitor of the CD81-LEL–HCV-E2 interaction. To increase the biological activity, heterocyclic substituted benzoic acids were coupled to amino acid esters via microwave assisted DCC-reaction. The prepared compounds were tested for their inhibitory potency by means of a fluorescence labeled antibody assay system using HUH7.5 cells. PMID:19662141

  17. Effects of ionic liquid as additive and the pH of the mobile phase on the retention factors of amino benzoic acids in RP-HPLC.

    PubMed

    Zheng, J; Polyakova, Y; Row, K H

    2007-01-01

    As an organic salt, ionic liquids are widely used as new solvent media. In this paper, three positional isomers, such as o-amino benzoic acid, m-amino benzoic acid, and p-amino benzoic acid are separated with four different ionic liquids as additives to the mobile phase using reversed-phase (RP) high-performance liquid chromatography (HPLC). Amino benzoic acids are biologically active substances; the p-isomer is present in a group of water-soluble vitamins and is widely known as a sunscreen agent. The ionic liquids used are 1-butyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium methylsulfate, and 1-octyl-3-methylimidazolium methylsulfate. The effects of the length of the alkyl group on the imidazolium ring and its counterion, the concentrations of the ionic liquid, and the effect of the pH of the mobile phase on the retention factor of the amino benzoic acid isomers are studied. Separation with the ionic liquid in the eluent was better than the separation without the ionic liquid. The pH mainly affected the retention and elution order of the solutes in RP-HPLC.

  18. In vitro predictions of skin absorption of caffeine, testosterone, and benzoic acid: a multi-centre comparison study.

    PubMed

    van de Sandt, J J M; van Burgsteden, J A; Cage, S; Carmichael, P L; Dick, I; Kenyon, S; Korinth, G; Larese, F; Limasset, J C; Maas, W J M; Montomoli, L; Nielsen, J B; Payan, J-P; Robinson, E; Sartorelli, P; Schaller, K H; Wilkinson, S C; Williams, F M

    2004-06-01

    To obtain better insight into the robustness of in vitro percutaneous absorption methodology, the intra- and inter-laboratory variation in this type of study was investigated in 10 European laboratories. To this purpose, the in vitro absorption of three compounds through human skin (9 laboratories) and rat skin (1 laboratory) was determined. The test materials were benzoic acid, caffeine, and testosterone, representing a range of different physico-chemical properties. All laboratories performed their studies according to a detailed protocol in which all experimental details were described and each laboratory performed at least three independent experiments for each test chemical. All laboratories assigned the absorption of benzoic acid through human skin, the highest ranking of the three compounds (overall mean flux of 16.54+/-11.87 microg/cm(2)/h). The absorption of caffeine and testosterone through human skin was similar, having overall mean maximum absorption rates of 2.24+/-1.43 microg/cm(2)/h and 1.63+/-1.94 microg/cm(2)/h, respectively. In 7 out of 9 laboratories, the maximum absorption rates of caffeine were ranked higher than testosterone. No differences were observed between the mean absorption through human skin and the one rat study for benzoic acid and testosterone. For caffeine the maximum absorption rate and the total penetration through rat skin were clearly higher than the mean value for human skin. When evaluating all data, it appeared that no consistent relation existed between the diffusion cell type and the absorption of the test compounds. Skin thickness only slightly influenced the absorption of benzoic acid and caffeine. In contrast, the maximum absorption rate of testosterone was clearly higher in the laboratories using thin, dermatomed skin membranes. Testosterone is the most lipophilic compound and showed also a higher presence in the skin membrane after 24 h than the two other compounds. The results of this study indicate that the in

  19. Determination of ambroxol hydrochloride, methylparaben and benzoic acid in pharmaceutical preparations based on sequential injection technique coupled with monolithic column.

    PubMed

    Satínský, Dalibor; Huclová, Jitka; Ferreira, Raquel L C; Montenegro, Maria Conceição B S M; Solich, Petr

    2006-02-13

    The porous monolithic columns show high performance at relatively low pressure. The coupling of short monoliths with sequential injection technique (SIA) results in a new approach to implementation of separation step to non-separation low-pressure method. In this contribution, a new separation method for simultaneous determination of ambroxol, methylparaben and benzoic acid was developed based on a novel reversed-phase sequential injection chromatography (SIC) technique with UV detection. A Chromolith SpeedROD RP-18e, 50-4.6 mm column with 10 mm precolumn and a FIAlab 3000 system with a six-port selection valve and 5 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-tetrahydrofuran-0.05M acetic acid (10:10:90, v/v/v), pH 3.75 adjusted with triethylamine, flow rate 0.48 mlmin(-1), UV-detection was at 245 nm. The analysis time was <11 min. A new SIC method was validated and compared with HPLC. The method was found to be useful for the routine analysis of the active compounds ambroxol and preservatives (methylparaben or benzoic acid) in various pharmaceutical syrups and drops.

  20. Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 7. Synthesis and Pharmacological Evaluation of 4-Quinolone-3-carboxamides and 4-Hydroxy-2-quinolone-3-carboxamides as High Affinity Cannabinoid Receptor 2 (CB2R) Ligands with Improved Aqueous Solubility.

    PubMed

    Mugnaini, Claudia; Brizzi, Antonella; Ligresti, Alessia; Allarà, Marco; Lamponi, Stefania; Vacondio, Federica; Silva, Claudia; Mor, Marco; Di Marzo, Vincenzo; Corelli, Federico

    2016-02-11

    4-Quinolone-3-carboxamide derivatives have long been recognized as potent and selective cannabinoid type-2 receptor (CB2R) ligands. With the aim to improve their physicochemical properties, basically aqueous solubility, two different approaches were followed, entailing the substitution of the alkyl chain with a basic replacement or scaffold modification to 4-hydroxy-2-quinolone structure. According to the first approach, compound 6d was obtained, showing slightly reduced receptor affinity (K(i) = 60 nM) compared to the lead compound 4 (0.8 nM) but greatly enhanced solubility (400-3400 times depending on the pH of the medium). On the other hand, shifting from 4-quinolone to 4-hydroxy-2-quinolone structure enabled the discovery of a novel class of CB2R ligands, such as 7b and 7c, characterized by K(i) < 1 nM and selectivity index [SI = K(i)(CB1R)/K(i)(CB2R)] > 1300. At pH 7.4, compound 7c resulted by 100-fold more soluble than 4.

  1. A high performance liquid chromatography system for quantification of hydroxyl radical formation by determination of dihydroxy benzoic acids.

    PubMed

    Owen, R W; Wimonwatwatee, T; Spiegelhalder, B; Bartsch, H

    1996-08-01

    The hypoxanthine/xanthine oxidase enzyme system is known to produce the superoxide ion and hydrogen peroxide during the hydroxylation of hypoxanthine via xanthine to uric acid. When chelated iron is included in this system, superoxide reduces iron (III) to iron(II) and the iron(II)-chelate further reacts with hydrogen peroxide to form the highly reactive hydroxyl radical. Because of the limitations of colourimetric and spectrophotometric techniques by which, to date, the mechanisms of hydroxyl radical formation in the hypoxanthine/xanthine oxidase system have been monitored, a high performance liquid chromatography method utilizing the ion-pair reagent tetrabutylammonium hydroxide and salicylic acid as an aromatic probe for quantification of hydroxyl radical formation was set up. In the hypoxanthine/xanthine oxidase system the major products of hydroxyl radical attack on salicylic acid were 2,5-dihydroxy benzoic acid and 2,3-dihydroxy benzoic acid in the approximate ratio of 5:1. That the hydroxyl radical is involved in the hydroxylation of salicylic acid in this system was demonstrated by the potency especially of dimethyl sulphoxide, butanol and ethanol as scavengers. Phytic acid, which is considered to be an important protective dietary constituent against colorectal cancer, inhibited hydroxylation of salicylic acid at a concentration one order of magnitude lower than the classical scavengers, but was only effective in the absence of EDTA. The method has been applied to the study of free radical generation in faeces, and preliminary results indicate that the faecal flora are able to produce reactive oxygen species in abundance.

  2. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids.

    PubMed

    Swidorski, Jacob J; Liu, Zheng; Sit, Sing-Yuen; Chen, Jie; Chen, Yan; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira B; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2016-04-15

    We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies.

  3. Rotational Spectroscopy of 4-HYDROXY-2-BUTYNENITRILE

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2015-06-01

    Recently we studied the rotational spectrum of hydroxyacetonitrile (HOCH_2CN, HAN) in order to provide a firm basis for its possible detection in the interstellar medium Different plausible pathways of the formation of HAN in the interstellar conditions were proposed; however, up to now, the searches for this molecule were unsuccessful. To continue the study of nitriles that represent an astrophysical interest we present in this talk the analysis of the rotational spectrum of 4-hydroxy-2-butynenitrile (HOCH_2CC-CN, HBN), the next molecule in the series of hydroxymethyl nitriles. Using the Lille spectrometer the spectrum of HBN was measured in the frequency range 50 -- 500 GHz. From the spectroscopic point of view HBN molecule is rather similar to HAN, because of -OH group tunnelling in gauche conformation. As it was previously observed for HAN, due to this large amplitude motion, the splittings in the rotational spectra of HBN are easily resolved making the spectral analysis more difficult. Additional difficulties arise from the near symmetric top character of HBN (κ = -0.996), and very dense spectrum because of relatively small values of rotational constants and a number of low-lying excited vibrational states. The analysis carried out in the frame of reduced axis system approach of Pickett allows to fit within experimental accuracy all the rotational transitions in the ground vibrational state. Thus, the results of the present study provide a reliable catalog of frequency predictions for HBN. The support of the Action sur Projets de l'INSU PCMI, and ANR-13-BS05-0008-02 IMOLABS is gratefully acknowledged Margulès L., Motiyenko R.A., Guillemin J.-C. 68th ISMS, 2013, TI12. Danger G. et al. Phys. Chem. Chem. Phys. 2014, 16, 3360. Pickett H.M. J. Chem. Phys. 1972, 56, 1715.

  4. Quantification of tetrabromo benzoic acid and tetrabromo phthalic acid in rats exposed to the flame retardant Uniplex FPR-45.

    PubMed

    Silva, Manori J; Hilton, Donald; Furr, Johnathan; Gray, L Earl; Preau, James L; Calafat, Antonia M; Ye, Xiaoyun

    2016-03-01

    The first withdrawal of certain polybrominated diphenyl ethers flame retardants from the US market occurred in 2004. Since then, use of brominated non-PBDE compounds such as bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) in commercial formulations has increased. Assessing human exposure to these chemicals requires identifying metabolites that can potentially serve as their biomarkers of exposure. We administered by gavage a dose of 500 mg/Kg bw of Uniplex FRP-45 (>95 % BEH-TEBP) to nine adult female Sprague-Dawley rats. Using authentic standards and mass spectrometry, we positively identified and quantified 2,3,4,5-tetrabromo benzoic acid (TBBA) and 2,3,4,5-tetrabromo phthalic acid (TBPA) in 24-h urine samples collected 1 day after dosing the rats and in serum at necropsy, 2 days post-exposure. Interestingly, TBBA and TBPA concentrations correlated well (R (2) = 0.92). The levels of TBBA, a known metabolite of EH-TBB, were much higher than the levels of TBPA both in urine and serum. Because Uniplex FRP-45 was technical grade and EH-TBB was present in the formulation, TBBA likely resulted from the metabolism of EH-TBB. Taken together, our data suggest that TBBA and TBPA may serve as biomarkers of exposure to non-PBDE brominated flame retardant mixtures. Additional research can provide useful information to better understand the composition and in vivo toxicokinetics of these commercial mixtures.

  5. Quantification of tetrabromo benzoic acid and tetrabromo phthalic acid in rats exposed to the flame retardant Uniplex FPR-45

    PubMed Central

    Hilton, Donald; Furr, Johnathan; Gray, L. Earl; Preau, James L.; Calafat, Antonia M.; Ye, Xiaoyun

    2015-01-01

    The first withdrawal of certain polybrominated diphenyl ethers flame retardants from the US market occurred in 2004. Since then, use of brominated non-PBDE compounds such as bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) in commercial formulations has increased. Assessing human exposure to these chemicals requires identifying metabolites that can potentially serve as their biomarkers of exposure. We administered by gavage a dose of 500 mg/Kg bw of Uniplex FRP-45 (>95 % BEH-TEBP) to nine adult female Sprague–Dawley rats. Using authentic standards and mass spectrometry, we positively identified and quantified 2,3,4,5-tetrabromo benzoic acid (TBBA) and 2,3,4,5-tetrabromo phthalic acid (TBPA) in 24-h urine samples collected 1 day after dosing the rats and in serum at necropsy, 2 days post-exposure. Interestingly, TBBA and TBPA concentrations correlated well (R2 = 0.92). The levels of TBBA, a known metabolite of EH-TBB, were much higher than the levels of TBPA both in urine and serum. Because Uniplex FRP-45 was technical grade and EH-TBB was present in the formulation, TBBA likely resulted from the metabolism of EH-TBB. Taken together, our data suggest that TBBA and TBPA may serve as biomarkers of exposure to non-PBDE brominated flame retardant mixtures. Additional research can provide useful information to better understand the composition and in vivo toxicokinetics of these commercial mixtures. PMID:25804200

  6. Antioxidation behavior of milkweed oil 4-hydroxy-3-methyoxycinnamate esters in phospholipid bilayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Milkweed (Asclepia syriaca) has seed oil that is rich in polyunsaturated triacylglycerides that contain olefinic groups. The olefinic groups can be chemically oxidized to form either epoxy or polyhydroxy triacylglycerides that can be esterified with trans-4-hydroxy-3-methoxoycinnamic acid, commonly...

  7. Excitonic splitting and coherent electronic energy transfer in the gas-phase benzoic acid dimer

    NASA Astrophysics Data System (ADS)

    Ottiger, Philipp; Leutwyler, Samuel

    2012-11-01

    The benzoic acid dimer, (BZA)2, is a paradigmatic symmetric hydrogen bonded dimer with two strong antiparallel hydrogen bonds. The excitonic S1/S2 state splitting and coherent electronic energy transfer within supersonically cooled (BZA)2 and its 13C-, d1 -, d2 -, and 13C/d1 - isotopomers have been investigated by mass-resolved two-color resonant two-photon ionization spectroscopy. The (BZA)2-(h - h) and (BZA)2-(d - d) dimers are C2h symmetric, hence only the S2 ← S0 transition can be observed, the S1 ← S0 transition being strictly electric-dipole forbidden. A single 12C/13C or H/D isotopic substitution reduces the symmetry of the dimer to Cs, so that the isotopic heterodimers (BZA)2 - 13C, (BZA)2 -(h - d), (BZA)2 -(h13C-d), and (BZA)2 -(h - d13C) show both S1 ← S0 and S2 ← S0 bands. The S1/S2 exciton splitting inferred is Δexc = 0.94 ± 0.1 cm-1. This is the smallest splitting observed so far for any H-bonded gas-phase dimer. Additional isotope-dependent contributions to the splittings, Δiso, arise from the change of the zero-point vibrational energy upon electronic excitation and range from Δiso = 3.3 cm-1 upon 12C/13C substitution to 14.8 cm-1 for carboxy H/D substitution. The degree of excitonic localization/delocalization can be sensitively measured via the relative intensities of the S1 ← S0 and S2 ← S0 origin bands; near-complete localization is observed even for a single 12C/13C substitution. The S1/ S2 energy gap of (BZA)2 is Δ ^{exc}_{calc} = 11 cm-1 when calculated by the approximate second-order perturbation theory (CC2) method. Upon correction for vibronic quenching, this decreases to Δ ^{exc}_{vibron}=2.1 cm-1 [P. Ottiger et al., J. Chem. Phys. 136, 174308 (2012)], 10.1063/1.4705119, in good agreement with the observed Δexc = 0.94 cm-1. The observed excitonic splittings can be converted to exciton hopping times τexc. For the (BZA)2-(h - h) homodimer τexc = 18 ps, which is nearly 40 times shorter than the double proton transfer time

  8. Excitonic splitting and coherent electronic energy transfer in the gas-phase benzoic acid dimer

    SciTech Connect

    Ottiger, Philipp; Leutwyler, Samuel

    2012-11-28

    The benzoic acid dimer, (BZA){sub 2}, is a paradigmatic symmetric hydrogen bonded dimer with two strong antiparallel hydrogen bonds. The excitonic S{sub 1}/S{sub 2} state splitting and coherent electronic energy transfer within supersonically cooled (BZA){sub 2} and its {sup 13}C-, d{sub 1}-, d{sub 2}-, and {sup 13}C/d{sub 1}- isotopomers have been investigated by mass-resolved two-color resonant two-photon ionization spectroscopy. The (BZA){sub 2}-(h-h) and (BZA){sub 2}-(d-d) dimers are C{sub 2h} symmetric, hence only the S{sub 2} Leftwards-Arrow S{sub 0} transition can be observed, the S{sub 1} Leftwards-Arrow S{sub 0} transition being strictly electric-dipole forbidden. A single {sup 12}C/{sup 13}C or H/D isotopic substitution reduces the symmetry of the dimer to C{sub s}, so that the isotopic heterodimers (BZA){sub 2}-{sup 13}C, (BZA){sub 2}-(h-d), (BZA){sub 2}-(h{sup 13}C-d), and (BZA){sub 2}-(h-d{sup 13}C) show both S{sub 1} Leftwards-Arrow S{sub 0} and S{sub 2} Leftwards-Arrow S{sub 0} bands. The S{sub 1}/S{sub 2} exciton splitting inferred is {Delta}{sub exc}= 0.94 {+-} 0.1 cm{sup -1}. This is the smallest splitting observed so far for any H-bonded gas-phase dimer. Additional isotope-dependent contributions to the splittings, {Delta}{sub iso}, arise from the change of the zero-point vibrational energy upon electronic excitation and range from {Delta}{sub iso}= 3.3 cm{sup -1} upon {sup 12}C/{sup 13}C substitution to 14.8 cm{sup -1} for carboxy H/D substitution. The degree of excitonic localization/delocalization can be sensitively measured via the relative intensities of the S{sub 1} Leftwards-Arrow S{sub 0} and S{sub 2} Leftwards-Arrow S{sub 0} origin bands; near-complete localization is observed even for a single {sup 12}C/{sup 13}C substitution. The S{sub 1}/ S{sub 2} energy gap of (BZA){sub 2} is {Delta}{sub calc}{sup exc}=11 cm{sup -1} when calculated by the approximate second-order perturbation theory (CC2) method. Upon correction for vibronic

  9. Synthesis, characterization and biocidal activity of new organotin complexes of 2-(3-oxocyclohex-1-enyl)benzoic acid.

    PubMed

    Vieira, Flaviana T; de Lima, Geraldo M; Maia, José R da S; Speziali, Nivaldo L; Ardisson, José D; Rodrigues, Leonardo; Correa, Ary; Romero, Oscar B

    2010-03-01

    The reaction of 1,3-cyclohexadione with 2-aminobenzoic acid has produced the 2-(3-oxocyclohex-1-enyl)benzoic acid (HOBz). Subsequent reactions of the ligand with organotin chlorides led to [Me(2)Sn(OBz)O](2) (1), [Bu(2)Sn(OBz)O](2) (2), [Ph(2)Sn(OBz)O](2) (3), [Me(3)Sn(OBz)] (4), [Bu(3)Sn(OBz)] (5) and [Ph(3)Sn(OBz)] (6). All complexes have been fully characterized. In addition the structure of complexes (2) and (4) have been authenticated by X-ray crystallography. The biological activity of all derivatives has been screened against Cryptococcus neoformans and Candida albicans. In addition we have performed toxicological testes employing human kidney cell. The complexes (3), (5) and (6) displayed the best values of inhibition of the fungus growing, superior to ketoconazole. Compound (5) presented promising results in view of the antifungal and cytotoxicity assays.

  10. Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus

    PubMed Central

    2012-01-01

    Background Benzoic acid is one of the most useful aromatic compounds. Despite its versatility and simple structure, benzoic acid production using microbes has not been reported previously. Streptomyces are aerobic, Gram-positive, mycelia-forming soil bacteria, and are known to produce various kinds of antibiotics composed of many aromatic residues. S. maritimus possess a complex amino acid modification pathway and can serve as a new platform microbe to produce aromatic building-block compounds. In this study, we carried out benzoate fermentation using S. maritimus. In order to enhance benzoate productivity using cellulose as the carbon source, we constructed endo-glucanase secreting S. maritimus. Results After 4 days of cultivation using glucose, cellobiose, or starch as a carbon source, the maximal level of benzoate reached 257, 337, and 460 mg/l, respectively. S. maritimus expressed β-glucosidase and high amylase-retaining activity compared to those of S. lividans and S. coelicolor. In addition, for effective benzoate production from cellulosic materials, we constructed endo-glucanase-secreting S. maritimus. This transformant efficiently degraded the phosphoric acid swollen cellulose (PASC) and then produced 125 mg/l benzoate. Conclusions Wild-type S. maritimus produce benzoate via a plant-like β-oxidation pathway and can assimilate various carbon sources for benzoate production. In order to encourage cellulose degradation and improve benzoate productivity from cellulose, we constructed endo-glucanase-secreting S. maritimus. Using this transformant, we also demonstrated the direct fermentation of benzoate from cellulose. To achieve further benzoate productivity, the L-phenylalanine availability needs to be improved in future. PMID:22545774

  11. Structure-activity relationships of new 4-hydroxy bis-coumarins as radical scavengers and chain-breaking antioxidants.

    PubMed

    Kancheva, Vessela D; Boranova, Petya V; Nechev, Jordan T; Manolov, Ilia I

    2010-09-01

    The main antioxidant properties of five new 4-hydroxy-bis-coumarins during bulk lipid autoxidation at 80 degrees C and 0.1 mM and 1.0 mM concentrations were studied and compared with 4-hydroxy-2H-chromen-2-one (1). These compounds are: 3,3'-((3,4-dihydroxy-phenyl) methylene) bis (4-hydroxy-2H-chromen-2-one) (2), 3,3'-((3,4-dimethoxyphenyl) methylene) bis (4-hydroxy-2H-chromen-2-one) (3), 3,3'-((4-hydroxy-3,5-dimethoxy-phenyl) methylene) bis(4-hydroxy-2H-chromen-2-one) (4) 3,3'-((3,4,5- trimethoxyphenyl) methylene) bis (4-hydroxy-2H-chromen-2-one) (5) 3,3'-((4-hydroxy-3-methoxy-5-nitrophenyl) methylene) bis (4-hydroxy-2H-chromen-2-one) (6), It was found that compound 2 with a catecholic structure in the aromatic nucleus showed the strongest antioxidant activity. Compound 4 showed a moderate antioxidant activity, and all the other compounds didn't show any capacity as chain-breaking antioxidants. Both 4-hydroxy-bis-coumarins (2 and 4) demonstrated also stronger radical scavenging activity towards DPPH radical by using TLC DPPH rapid test, than compound 1. The other compounds (3, 5, 6) didn't show any capacity as radical scavengers. The structure-activity relationship was discussed on the base of comparable kinetic analysis of studied 4-hydroxy-bis-coumarins with the known and standard antioxidants as alpha-tocopherol (TOH), caffeic acid (CA), sinapic acid (SA), ferulic acid (FA), and p-coumaric acid (p-CumA). In order to study the possible synergism between two phenolic antioxidants, the antioxidant efficiency and reactivity of two equimolar binary mixtures of coumarins and TOH (2+TOH and 4+TOH) and of corresponding cinnamic acid with TOH (CA+TOH and SA+TOH) were also tested and compared. The oxidation stability of the lipid substrate in presence of binary mixtures CA+TOH, SA+TOH and 2+TOH appeared to be higher than that of the individual antioxidants. However, no synergism was obtained for all tested binary mixtures.

  12. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey proteins.

    PubMed

    Listiyani, M A D; Campbell, R E; Miracle, R E; Dean, L O; Drake, M A

    2011-09-01

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations in dried whey products. No legal limit exists in the United States for BP use in whey, but international concerns exist. The objectives of this study were to determine the effect of hydrogen peroxide (HP) or BP bleaching on the flavor of 34% WPC (WPC34) and to evaluate residual BA in commercial and experimental WPC bleached with and without BP. Cheddar whey was manufactured in duplicate. Pasteurized fat-separated whey was subjected to hot bleaching with either HP at 500 mg/kg, BP at 50 or 100 mg/kg, or no bleach. Whey was ultrafiltered and spray dried into WPC34. Color [L*(lightness), a* (red-green), and b* (yellow-blue)] measurements and norbixin extractions were conducted to compare bleaching efficacy. Descriptive sensory and instrumental volatile analyses were used to evaluate bleaching effects on flavor. Benzoic acid was extracted from experimental and commercial WPC34 and 80% WPC (WPC80) and quantified by HPLC. The b* value and norbixin concentration of BP-bleached WPC34 were lower than HP-bleached and control WPC34. Hydrogen peroxide-bleached WPC34 displayed higher cardboard flavor and had higher volatile lipid oxidation products than BP-bleached or control WPC34. Benzoyl peroxide-bleached WPC34 had higher BA concentrations than unbleached and HP-bleached WPC34 and BA concentrations were also higher in BP-bleached WPC80 compared with unbleached and HP-bleached WPC80, with smaller differences than those observed in WPC34. Benzoic acid extraction from permeate showed that WPC80 permeate contained more BA than did WPC34 permeate. Benzoyl peroxide is more effective in color removal of whey and results in fewer flavor side effects compared with HP and residual BA is

  13. Synthesis, spectral characterization and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 2-amino benzoic acid- and 2-hydroxy benzoic acid thiophen-2-ylmethylene hydrazide

    NASA Astrophysics Data System (ADS)

    Singh, Vinod P.; Singh, Pooja

    2013-03-01

    A series of metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) with 2-amino benzoic acid thiophen-2-ylmethylene hydrazide (Habth) and 2-hydroxy benzoic acid thiophen-2-ylmethylene hydrazide (Hhbth) have been synthesized. The complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, electronic, IR, NMR, ESR spectra and thermal studies (TGA and DTA). Molecular structure of the Habth ligand was determined by single crystal X-ray diffraction technique. Habth acts as a monobasic bidentate ligand in all its complexes bonding through a deprotonated Csbnd O- and lbond2 Cdbnd Nsbnd groups whereas, Hhbth acts as a monobasic bidentate in its Co(II) and Ni(II) complexes, bonding through a deprotonated Csbnd O- and lbond2 Cdbnd Nsbnd groups and as monobasic tridentate in Cu(II) and Zn(II) complexes bonding through lbond2 Cdbnd O, lbond2 Cdbnd Nsbnd and deprotonated (Csbnd O)- groups with the metal ion. Electronic spectra suggest a square planar geometry for Co(II), Ni(II) and Cu(II) complexes of Habth and Co(II) and Ni(II) complexes of Hhbth. However, the Cu(II) and Zn(II) complexes of Hhbth have octahedral geometry. The ESR spectra of Cu(II) complex of Hhbth in the solid state and in DMSO frozen solution show axial signals and suggest the presence of unpaired electron in d orbital of Cu(II). The Cu(II) complex of Habth in solid state shows isotropic signal, whereas, axial signal in DMSO frozen solution in the range of tetragonally distorted octahedral geometry due to interactions of DMSO molecules at axial positions. Thermal studies of some of the metal complexes show a multi-step decomposition pattern of bonded ligands in the complex.

  14. 40 CFR 180.1110 - 3-Carbamyl-2,4,5-trichloro-benzoic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1110 3-Carbamyl-2,4,5-trichloro-benzoic... is established for the residues of 3-carbamyl-2,4,5-trichlorobenzoic acid in or on all raw agricultural commodities which occur from the direct application of chlorothalonil to crops in § 180.275...

  15. Synthesis and anti-inflammatory evaluation of N-sulfonyl anthranilic acids via Ir(III)-catalyzed C-H amidation of benzoic acids.

    PubMed

    Han, Sang Hoon; Suh, Hyo Sun; Jo, Hyeim; Oh, Yongguk; Mishra, Neeraj Kumar; Han, Sangil; Kim, Hyung Sik; Jung, Young Hoon; Lee, Byung Mu; Kim, In Su

    2017-03-29

    The iridium(III)-catalyzed ortho-C-H amidation of benzoic acids with sulfonyl azides is described. These transformations allow the facile generation of N-sulfonyl anthranilic acids, which are known as crucial scaffolds found in biologically active molecules. In addition, all synthetic products were evaluated for in vitro anti-inflammatory activity against interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) with lipopolysaccharide (LPS)-induced RAW264.7 cells. Notably, compounds 4c and 4d, generated from p-OMe- and p-Br-sulfonyl azides, were found to display potent anti-inflammatory property stronger than that of well-known NSAIDs ibuprofen.

  16. Spectroscopic studies on the interaction between norfloxacin and p-amino benzoic acid: Analytical application on determination of norfloxacin

    NASA Astrophysics Data System (ADS)

    More, V. R.; Mote, U. S.; Patil, S. R.; Kolekar, G. B.

    2009-10-01

    Fluorescence (Förster) Resonance Energy Transfer (FRET) between norfloxacin (NF) and p-amino benzoic acid (PABA) has been investigated by fluorescence and UV-vis absorption spectroscopy. It was found that the quenching of fluorescence of PABA is followed by simultaneous sensitization of NF fluorescence. The hydrophobic and electrostatic interaction plays an important role to stabilize the complex. The binding constant ( K), binding site number ( n) and corresponding thermodynamic parameters like free energy change (Δ G), enthalpy change (Δ H) and entropy change (Δ S) were determined according to van't Hoff equation. Using FRET, the distance ( r) between donor (PABA) and acceptor (NF) was obtained. This method is simple, selective and relatively free of interference from co-existing substances. The method was successfully applied to the determination of norfloxacin from pharmaceutical tablets.

  17. Evaluation of the Substrate Scope of Benzoic Acid (De)carboxylases According to Chemical and Biochemical Parameters.

    PubMed

    Pesci, Lorenzo; Kara, Selin; Liese, Andreas

    2016-10-04

    The enzymatic carboxylation of phenolic compounds has been attracting increasing interest in recent years, owing to its regioselectivity and technical potential as a biocatalytic equivalent for the Kolbe-Schmitt reaction. Mechanistically the reaction was demonstrated to occur through electrophilic aromatic substitution/water elimination with bicarbonate as a cosubstrate. The effects of the substituents on the phenolic ring have not yet been elucidated in detail, but this would give detailed insight into the substrate-activity relationship and would provide predictability for the acceptance of future substrates. In this report we show how the kinetic and (apparent) thermodynamic behavior can be explained through the evaluation of linear free energy relationships based on electronic, steric, and geometric parameters and through the consideration of enzyme-ligand interactions. Moreover, the similarity between the benzoic acid decarboxylases and the amidohydrolases superfamily is investigated, and promiscuous hydrolytic activity of the decarboxylase in the context of the hydrolysis of an activated ester bond has been established.

  18. Experimental investigation of benzoic acid diffusion coefficient in γ-Al2O3 nanofluids at different temperatures

    NASA Astrophysics Data System (ADS)

    Manouchehrian Fard, Manouchehr; Beiki, Hossein

    2016-10-01

    An experimental study was performed to measure benzoic acid diffusion coefficient in water-based γ-Al2O3 nanofluids at different temperatures. Measurements were carried out at 15, 20 and 25 °C. γ-Al2O3 nanoparticles with an average diameter of 10-20 nm were added into de-ionized water as the based fluid. Nanoparticles volume fractions used in the based fluid were 0.025, 0.05, 0.1, 0.2, 0.4 and 0.8 %. Measurements showed that the diffusion coefficients was not changed with nanoparticles concentration and no enhancement was found. Dependence of diffusion coefficients on nanoparticles concentration followed the same trend in all temperatures investigated in this work. Nano stirring and nano-obstacles could be regarded as two reasons for mass diffusivity changes in nanofluids.

  19. [Radiocompetitive assay of sulfamido-3-chloro-4-benzoic acid with carbonic anhydrase as binding reagent (author's transl)].

    PubMed

    Khiat, M; Bali, J P; Guibert, M S; Chanal, J L; Marignan, R

    1978-01-16

    The control of patients treated by diuretic sulfonamides can be carried out by a radiocompetitive assay using their binding properties to carbonic anhydrase (CA). In this paper we have studied the assay of sulfamido-3-chloro-4-benzoic acid (SD3) using dialysis equilibrium as separation procedure. With (CA) 2 X 10(-6) M and 14C-SD3 0.5 X 10(-6) M (specific activity: 2 muCi/mg), can be detected 0.5 X 10(-6) M of (SD3) in the assay medium. 6.5 mg protein present in serum lower the assay sensitivity twenty times, owing to an elevated value of the affinity constant, Ka, of albumin-(SD3) complex (10(3) mol-1). On the other hand, the molecules with sulfamidobenzoic group cannot be differentiated in this procedure.

  20. Syntheses, crystal structure, Hirshfeld surfaces, fluorescence properties, and DFT analysis of benzoic acid hydrazone Schiff bases

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Sayed; Lee, Dong-Ung

    2015-06-01

    Two hydrazone Schiff base analogues, namely, (E)-N‧-(4-hydroxy-3-methoxybenzylidene)benzohydrazide (3a) and (E)-N‧-(4-methoxybenzylidene)benzohydrazide (3b), were synthesized using a mild, efficient method and characterized by 1H NMR, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. X-ray analysis of a single crystal of 3a revealed a tetragonal, space group I4(1)/a structure, with an E-configuration around the azomethine (sbnd C8dbnd N2sbnd) double bond. In this structure, the sbnd NHsbnd and sbnd OH groups act as proton donors and the >Cdbnd O and sbnd Ndbnd groups as proton acceptors, and these facilitate hydrogen bond formation in the crystal state. Plausible intermolecular interactions were studied using 3D Hirshfeld surfaces and related 2D fingerprint plots. The optimized geometry, vibrational frequencies, Mulliken charge distribution, molecular electrostatic potential (MEP) maps, frontier molecular orbitals (FMOs), and associated energies of the ground state and the first single excited state were calculated using density functional theory (DFT) and time-dependant DFT calculations using the B3LYP/6-311G method. Vibrational frequencies calculated in the gaseous phase compared with experimental values measured in the solid state and showed good agreement with each other. The chemical reactivities of 3a and 3b were predicted by mapping MEP surface over optimized geometries and comparing these with MEP map generated over crystal structures. Mulliken charge distribution analysis and MEP map of 3a and 3b revealed that N(1), O(1), O(2) and O(3) atoms could act as electron donors and coordinate with metals and that these represented the most suitable sites for electrophilic attack. In fluorescence spectra, the absorption and emission spectra of 3a and 3b were similar in different polar solvents with few exceptions. In addition, both compounds exhibited dual emission spectra in acetone due to keto-enol tautomerism induced by

  1. Syntheses, crystal structure, Hirshfeld surfaces, fluorescence properties, and DFT analysis of benzoic acid hydrazone Schiff bases.

    PubMed

    Alam, Mohammad Sayed; Lee, Dong-Ung

    2015-06-15

    Two hydrazone Schiff base analogues, namely, (E)-N'-(4-hydroxy-3-methoxybenzylidene)benzohydrazide (3a) and (E)-N'-(4-methoxybenzylidene)benzohydrazide (3b), were synthesized using a mild, efficient method and characterized by (1)H NMR, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. X-ray analysis of a single crystal of 3a revealed a tetragonal, space group I4(1)/a structure, with an E-configuration around the azomethine (C8N2) double bond. In this structure, the NH and OH groups act as proton donors and the >CO and N groups as proton acceptors, and these facilitate hydrogen bond formation in the crystal state. Plausible intermolecular interactions were studied using 3D Hirshfeld surfaces and related 2D fingerprint plots. The optimized geometry, vibrational frequencies, Mulliken charge distribution, molecular electrostatic potential (MEP) maps, frontier molecular orbitals (FMOs), and associated energies of the ground state and the first single excited state were calculated using density functional theory (DFT) and time-dependant DFT calculations using the B3LYP/6-311G method. Vibrational frequencies calculated in the gaseous phase compared with experimental values measured in the solid state and showed good agreement with each other. The chemical reactivities of 3a and 3b were predicted by mapping MEP surface over optimized geometries and comparing these with MEP map generated over crystal structures. Mulliken charge distribution analysis and MEP map of 3a and 3b revealed that N(1), O(1), O(2) and O(3) atoms could act as electron donors and coordinate with metals and that these represented the most suitable sites for electrophilic attack. In fluorescence spectra, the absorption and emission spectra of 3a and 3b were similar in different polar solvents with few exceptions. In addition, both compounds exhibited dual emission spectra in acetone due to keto-enol tautomerism induced by photoexcitation.

  2. Kinetics of proton transfer between ortho substituted benzoic acids and the carbinol base of crystal violet in toluene. Ortho effect on the reactivity of benzoic acids in apolar aprotic solvents.

    PubMed

    Sen Gupta, Susanta K; Mishra, Sangeeta

    2011-05-12

    Apolar aprotic solvents are particularly advantageous for investigating the intrinsic ortho effect free from complications of specific solvent effects. A kinetic study for toluene-phase proton transfers between ortho F, Cl, Br, I, OMe, OEt, OPh, OAc, Me, NO(2), COMe, COPh, OH, NH(2), and H benzoic acids and crystal violet carbinol base has shown the forward rate constant (log k(+1)) is the most appropriate reactivity parameter in toluene. log k(+1) (toluene) as compared to other reported reactivity parameters in benzene, toluene, or chlorobenzene has been found more sensitive to the ortho substituent effect. The regression results of the correlation of log k(+1) (toluene) of the acids (except OH and NH(2) substituted ones) according to seven ortho effect models are all very significant, and the best result is given by Fujita-Nishioka's model. The overall analysis reveals that a substituent's ortho effect pattern is a 58:24:18 ratio of its ordinary electrical, proximity electrical, and steric effects and that the proximity electrical effect is the major component to account for the peculiarity of the substituent's ortho effect. The results further favor the transmission of this effect mainly through the molecular cavity. The effect may, however, be outweighed by the steric component for bulky enough substituents, e.g., Me. The enhanced strength exhibited by salicylic acid in toluene has been quantitatively described using Pytela-Liška's σ(HB)(i) parameter. The abnormally high log k(+1) observed for anthranilic acid in toluene has been ascribed to a very extensive homoconjugation in its acid-acid anion complex induced by the acid's three hydrogen bond donors.

  3. Crystal structures of four co-crystals of (E)-1,2-di(pyridin-4-yl)ethene with 4-alk-oxy-benzoic acids: 4-meth-oxy-benzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1), 4-eth-oxy-benzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1), 4-n-propoxybenzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1) and 4-n-but-oxy-benzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1).

    PubMed

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2016-11-01

    The crystal structures of four hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1), namely, 2C8H8O3·C12H10N2, (I), 2C9H10O3·C12H10N2, (II), 2C10H12O3·C12H10N2, (III) and 2C11H14O3·C12H10N2, (IV), have been determined at 93 K. In compounds (I) and (IV), the asymmetric units are each composed of one 4-alk-oxy-benzoic acid mol-ecule and one half-mol-ecule of (E)-1,2-di(pyridin-4-yl)ethene, which lies on an inversion centre. The asymmetric unit of (II) consists of two crystallographically independent 4-eth-oxy-benzoic acid mol-ecules and one 1,2-di(pyridin-4-yl)ethene mol-ecule. Compound (III) crystallizes in a non-centrosymmetric space group (Pc) and the asymmetric unit comprises four 4-n-propoxybenzoic acid mol-ecules and two (E)-1,2-di(pyridin-4-yl)ethane mol-ecules. In each crystal, the acid and base components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. In (I), (II) and (III), inter-molecular C-H⋯O inter-actions are observed. The 2:1 units of (I) and (II) are linked via C-H⋯O hydrogen bonds, forming tape structures. In (III), the C-H⋯O hydrogen bonds, except for those formed in the units, link the two crystallographically independent 2:1 units. In (IV), no C-H⋯O inter-actions are observed, but π-π and C-H⋯π inter-actions link the units into a column structure.

  4. Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM2.5 in Pearl Delta River Region, China

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Ho, S. S. H.; Lee, S. C.; Kawamura, K.; Zou, S. C.; Cao, J. J.; Xu, H. M.

    2011-03-01

    Ground-based PM2.5 samples collected at four different sites in Pearl River Delta region (PRD) during winter and summer (from 14 December 2006 to 28 January 2007 in winter and from 4 July to 9 August 2007 in summer) were analyzed for 30 water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids and dicarbonyls, nine fatty acids, and benzoic acid. Molecular distributions of dicarboxylic acids demonstrated that oxalic acid (C2) was the most abundant species followed by phthalic acid (Ph) in PRD region. The concentrations of total dicarboxylic acids ranged from 99 to 1340 ng m-3, with an average of 438 ± 267 ng m-3 in PRD. The concentrations of total ketocarboxylic acids ranged from 0.6 to 207 ng m-3 (43 ± 48 ng m-3 on average) while the concentrations of total α-dicarbonyls, including glyoxal and methylglyoxal, ranged from 0.2 to 89 ng m-3, with an average of 11 ± 18 ng m-3 in PRD. The total quantified water-soluble compounds (TQWOC) (organic carbon) accounted for 3.4 ± 2.2% of OC and 14.3 ± 10.3% of water-soluble OC (WSOC). Hexadecanoic acid (C16:0), octadecanoic acid (C18:0) and oleic acid (C18:1) were the three most abundant fatty acids in PRD. The distributions of fatty acids were characterized by a strong even carbon number predominance with a maximum (Cmax) at hexadecanoic acid (C16:0). Ratio of C18:1 to C18:0 acts as an indicator for aerosol aging. In PRD, an average of C18:1/C18:0 ratio was 0.53 ± 0.39, suggesting an enhanced photochemical degradation of unsaturated fatty acid. Moreover, the concentrations of benzoic acid ranged from 84 to 306 ng m-3, (165 ± 48 ng m-3 on average), which can be emitted as primary pollutant from motor vehicles exhaust, or formed from photochemical degradation of aromatic hydrocarbons. Seasonal variations of the organic specie concentrations were found in the four sampling cities. Higher concentrations of TQWOC were observed in winter (598 ± 321 ng m-3) than in summer (372 ± 215 ng m-3). However

  5. A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks.

    PubMed

    van Duuren, J B J H; Brehmer, B; Mars, A E; Eggink, G; Dos Santos, V A P Martins; Sanders, J P M

    2011-06-01

    A limited life cycle assessment (LCA) was performed on a combined biological and chemical process for the production of adipic acid, which was compared to the traditional petrochemical process. The LCA comprises the biological conversion of the aromatic feedstocks benzoic acid, impure aromatics, toluene, or phenol from lignin to cis, cis-muconic acid, which is subsequently converted to adipic acid through hydrogenation. Apart from the impact of usage of petrochemical and biomass-based feedstocks, the environmental impact of the final concentration of cis, cis-muconic acid in the fermentation broth was studied using 1.85% and 4.26% cis, cis-muconic acid. The LCA focused on the cumulative energy demand (CED), cumulative exergy demand (CExD), and the CO(2) equivalent (CO(2) eq) emission, with CO(2) and N(2) O measured separately. The highest calculated reduction potential of CED and CExD were achieved using phenol, which reduced the CED by 29% and 57% with 1.85% and 4.26% cis, cis-muconic acid, respectively. A decrease in the CO(2) eq emission was especially achieved when the N(2) O emission in the combined biological and chemical process was restricted. At 4.26% cis, cis-muconic acid, the different carbon backbone feedstocks contributed to an optimized reduction of CO(2) eq emissions ranging from 14.0 to 17.4 ton CO(2) eq/ton adipic acid. The bulk of the bioprocessing energy intensity is attributed to the hydrogenation reactor, which has a high environmental impact and a direct relationship with the product concentration in the broth.

  6. Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM2.5 in Pearl Delta River Region, China

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Ho, S. S. H.; Lee, S. C.; Kawamura, K.; Zou, S. C.; Cao, J. J.; Xu, H. M.

    2010-11-01

    Ground-based PM2.5 samples collected in Pearl River Delta (PRD) region during winter and summer (from 14 December 2006 to 28 January 2007 in winter and from 4 July 2007 to 9 August 2007 in summer) were analyzed for 30 water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids and dicarbonyls, nine fatty acids, and benzoic acid. Molecular distributions of dicarboxylic acids demonstrated that oxalic acid (C2) was the most abundant species followed by phthalic acid (Ph) in PRD region. The concentrations of total dicarboxylic acids ranged from 99 to 1340 ng m-3, with an average of 438 ± 267 ng m-3 in PRD. The concentrations of total ketocarboxylic acids ranged from 0.6 to 207 ng m-3 (43 ± 48 ng m-3 on average) while the concentrations of total α-dicarbonyls, including glyoxal and methylglyoxal, ranged from 0.2 to 89 ng m-3, with an average of 11 ± 18 ng m-3 in PRD. The total quantified water-soluble organic carbon (TQWOC) accounted for 3.4 ± 2.2% of OC and 14.3 ± 10.3% of water-soluble OC (WSOC). Hexadecanoic acid (C16:0), octadecanoic acid (C18:0) and oleic acid (C18:1) are the three most abundant fatty acids in PRD. The distributions of fatty acids are characterized by a strong even carbon number predominance with a maximum (Cmax) at hexadecanoic acid (C16:0). Ratio of C18:1 to C18:0 acts as an indicator for aerosol aging. In PRD, an average of C18:1/C18:0 ratio was 0.53 ± 0.39, suggesting an enhanced photochemical degradation of unsaturated fatty acid. Seasonal variations of the pollutant concentrations were found in the four sampling cities. Higher concentrations of TQWOC were observed in winter (544 ng m-3) than in summer (318 ng m-3). However, the abundances of TQWOC in OC mass were higher in summer (1.8-12.4%, 5.4% on average) than in winter (1.1-5.7, 2.6% on average), being consistent with enhanced secondary production of dicarboxylic acids in warmer weather. Spatial variations of water-soluble dicarboxylic acids were characterized

  7. Influence of benzoic acid and phytase in low-phosphorus diets on bone characteristics in growing-finishing pigs.

    PubMed

    Bühler, K; Liesegang, A; Bucher, B; Wenk, C; Broz, J

    2010-10-01

    In 2 simultaneous experiments (Exp. 1 and Exp. 2), the effects of benzoic acid (BA) and phytase (Phy) in low-P diets on bone metabolism, bone composition, and bone stability in growing and growing-finishing pigs were examined. Experiment 1 was conducted with 16 crossbred gilts in the BW range of 25 to 66 kg of BW, whereas in Exp. 2, 32 crossbred gilts (25 to 108 kg of BW) were used. All pigs were individually housed in pens and restrictively fed 1 of 4 diets throughout the experiment. Total P content of the wheat-soybean diets was 4 g/kg (all values on an as-fed basis). The experimental diets were 1) unsupplemented control diet; 2) control diet with 0.5% BA; 3) Phy diet with 750 Phy units (FTU) of Phy/kg and no BA; and 4) PhyBA, control diet with 750 FTU of Phy/kg and 0.5% BA. Blood samples were taken at the beginning of the experiment, wk 3 (only for pigs in Exp. 1), wk 6, and before slaughter to determine P and Ca in serum and concentrations of total alkaline phosphatase, serum crosslaps (marker for bone resorption), and osteocalcin (marker for bone formation). Ash, P, and Ca contents of bones and bone stability were examined using the left metatarsal bones and tibia of the pigs after slaughter. Benzoic acid did not influence any of the blood variables (P > 0.09). The addition of Phy increased (P < or =0.03) P concentration in serum from 2.71 +/- 0.08 to 3.03 +/- 0.07 mmol/L at wk 3 and content of serum crosslaps from 0.39 +/- 0.02 to 0.45 +/- 0.02 ng/mL at wk 6 and decreased (P < 0.05) osteocalcin at wk 6 by 160 ng/mL. No long-term effect of diets on serum mineral concentrations, alkaline phosphatase, and bone markers in serum could be detected. Benzoic acid negatively affected (P < or = 0.03) Ca content in bones and distal bone mineral density, especially in the younger pigs. In the control diet with 0.5% BA and the control diet with 750 FTU of Phy/kg and 0.5% BA, the CA content in bones and distal bone mineral density were reduced by 6 and 11%, respectively

  8. Simultaneous liquid chromatographic-electrospray ionization mass spectrometric quantification of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) and its metabolites 3,4-dihydroxymethamphetamine, 4-hydroxy-3-methoxymethamphetamine and 3,4-methylenedioxyamphetamine in squirrel monkey and human plasma after acidic conjugate cleavage

    PubMed Central

    Mueller, Melanie; Peters, Frank T.; Huestis, Marilyn A.; Ricaurte, George A.; Maurer, Hans H.

    2009-01-01

    3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy) is a psychoactive drug with abuse liability and neurotoxic potential. Specimen preparation of a recently presented LC–MS assay with electrospray ionization for quantifying MDMA and its main metabolites in squirrel monkey plasma was modified to include acidic hydrolysis to obtain total 3,4-dihydroxymethamphetamine and 4-hydroxy-3-methoxymethamphetamine. Method re-validation for squirrel monkey plasma and full validation for human plasma showed selectivity for all analytes. Recoveries were ≥71.0%. Changed specimen preparation or matrix did not affect accuracy or precision. No instability was observed after repeated freezing or in processed samples. Plasma MDMA and metabolites quantification, derived pharmacokinetic and toxicokinetic data and neurotoxicity research will benefit from this validated method. PMID:19131196

  9. Theoretical investigations on the structure and properties of p-n-alkoxy benzoic acid based liquid crystals

    NASA Astrophysics Data System (ADS)

    Subhapriya, P.; Dhanapal, V.; Sadasivam, K.; Vijayanand, P. S.

    2016-05-01

    The present study focused on the structural conformations, alkoxy chain lengths and mesogenic properties of two mole of alkoxy benzoic acid(nOBA) and one mole of suberic acid (SA) hydrogen bonded (nOBASA) complexes (n=8 to 10) by density functional theory (DFT) calculations and the Fourier Transform Infrared (FT-IR) spectrum. The intermolecular hydrogen bond formation was confirmed by the optimized geometric bond lengths and bond angles obtained by computation. Using the natural bond orbital (NBO) analysis, the stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed. Results obtained shows that the charge in electron density (ED) in σ*and π* antibonding orbital and second order delocalization energies E(2) authorizes the occurrence of intermolecular charge transfer. The molecular electrostatic potential (MEP) surface map is plotted over the optimized geometry of the molecule to obtain the chemical reactivity of the molecule. From the local charge distributions, the mesomorphic behavior and the nematic phase stabilities for each of the molecule have been predicted. Finally the calculated result is applied to simulated infrared spectra of 8OBASA mesogens which shows good agreement with the observed spectra. The comparison of the theoretical results obtained with the experimental ones shows the reliability of this DFT method.

  10. Growth, thermal, dielectric and mechanical properties of L-phenylalanine-benzoic acid: A nonlinear optical single crystal

    NASA Astrophysics Data System (ADS)

    Tamilselvan, S.; Vimalan, M.; Vetha Potheher, I.; Rajasekar, S.; Jeyasekaran, R.; Antony Arockiaraj, M.; Madhavan, J.

    2013-10-01

    An efficient amino acid family nonlinear optical single crystal L-phenylalanine-benzoic acid (LPB) was conveniently grown by slow evaporation technique at room temperature. The crystal system and the lattice parameters were analyzed by single crystal X-ray diffraction studies. The grown crystal has excellent transmission in the entire visible region and its lower cut-off wavelength was found to be 248 nm. The SHG efficiency of the grown crystal was found to be 1.6 times higher than that of KDP crystal. The Laser damage threshold value of LPB has been found to be 6.5 GW/cm2. The sample was thermally stable up to 134 °C. Microhardness, dielectric and AC/DC conductivity measurements were made along (0 0 1) plane and reported for the first time. Microhardness studies revealed that the sample belongs to hard nature. Frequency dependent dielectric constant was measured for different temperatures and found maximum dielectric constant of 14 for 363 K. Photoconductivity studies of LPB divulged its negative photoconducting nature.

  11. Growth, thermal, dielectric and mechanical properties of L-phenylalanine-benzoic acid: a nonlinear optical single crystal.

    PubMed

    Tamilselvan, S; Vimalan, M; Potheher, I Vetha; Rajasekar, S; Jeyasekaran, R; Arockiaraj, M Antony; Madhavan, J

    2013-10-01

    An efficient amino acid family nonlinear optical single crystal L-phenylalanine-benzoic acid (LPB) was conveniently grown by slow evaporation technique at room temperature. The crystal system and the lattice parameters were analyzed by single crystal X-ray diffraction studies. The grown crystal has excellent transmission in the entire visible region and its lower cut-off wavelength was found to be 248 nm. The SHG efficiency of the grown crystal was found to be 1.6 times higher than that of KDP crystal. The Laser damage threshold value of LPB has been found to be 6.5 GW/cm(2). The sample was thermally stable up to 134°C. Microhardness, dielectric and AC/DC conductivity measurements were made along (001) plane and reported for the first time. Microhardness studies revealed that the sample belongs to hard nature. Frequency dependent dielectric constant was measured for different temperatures and found maximum dielectric constant of 14 for 363 K. Photoconductivity studies of LPB divulged its negative photoconducting nature.

  12. Studies on New Activities of Enantiomers of 2-(2-Hydroxypropanamido) Benzoic Acid: Antiplatelet Aggregation and Antithrombosis

    PubMed Central

    Zhang, Qili; Wang, Danlin; Zhang, Meiyan; Zhao, Yunli; Yu, Zhiguo

    2017-01-01

    R-/S-2-(2-Hydroxypropanamido) benzoic acid (R-/S-HPABA), a marine-derived anti-inflammatory drug, however, the antiplatelet and antithrombotic effects have not been investigated. In this paper, the in vitro antiplatelet activities and in vivo antithrombotic effects of R-/S-HPABA were investigated, for the first time. The effects of R-/S-HPABA on platelet aggregation induced by adenosine diphosphate (ADP), collagen (COLL) and arachidonic acid (AA) were evaluated. In addition, the in vivo bleeding time, clotting time, collagen-epinephrine induced pulmonary thrombosis and common carotid artery thrombosis were also investigated in rats. R-/S-HPABA significantly inhibited ADP, COLL and AA induced platelet aggregation in rabbit platelet rich plasma in vitro compared with control group, to a degree similar to that of aspirin. Besides, R-/S-HPABA prolonged bleeding time and clotting time as well as increased the recovery rate obviously in pulmonary thrombosis. Moreover, the level of thromboxane B2 (TXB2) was decreased while the production of 6-keto-prostaglandin F1α (6-keto-PGF1α) was increased markedly by R-/S-HPABA. Furthermore, R-/S-HPABA reduced carotid artery thrombosis weight. These results illustrated that R-/S-HPABA could be a potent antiplatelet aggregation and antithrombotic agent. PMID:28107496

  13. Analytical studies of the interaction of Tb(III)-2-{[(4-methoxy benzoyl) oxy]} methyl benzoic acid binary complex with nucleosides

    NASA Astrophysics Data System (ADS)

    Shehata, A. M. A.; Azab, H. A.; El-assy, N. B.; Anwar, Z. M.; Mostafa, H. M.

    2016-01-01

    The interaction of Tb(III)-2-{[(4-methoxy benzoyl) oxy]} methyl benzoic acid binary complex with nucleosides (adenosine, cytidine, guanosine and inosine) was investigated using UV and fluorescence methods. The reaction of Tb-complex with cytidine, guanosine and adenosine is accompanied by shift to longer wavelength in the absorption band, while there is a blue shift in the absorption band with an enhancement in the molar absorptivity upon the reaction with inosine. The fluorescence intensity of Tb(III)-2-{[(4- methoxy benzoyl) oxy]} methyl benzoic acid binary complex at λ = 545 nm (5D4 → 7F5) was decreased with the addition of the nucleoside molecule following the order: cytidine > inosine > guanosine > adenosine.

  14. Preparation and Identification of Benzoic Acids and Benzamides: An Organic "Unknown" Lab

    NASA Astrophysics Data System (ADS)

    Taber, Douglass F.; Nelson, Jade D.; Northrop, John P.

    1999-06-01

    The reaction of an unknown substituted benzene derivative (illustrated by toluene) with oxalyl chloride and aluminum chloride gives the acid chloride. Hydrolysis of the acid chloride gives the acid, and reaction of the acid with concentrated aqueous ammonia gives the benzamide.

    The equivalent weight of the acid can be determined by titration with standardized aqueous sodium hydroxide. Given this information and the melting points of the acid and the benzamide, it is possible to deduce the structure of the initial unknown.

  15. Ternary copper complexes and manganese (III) tetrakis(4-benzoic acid) porphyrin catalyze peroxynitrite-dependent nitration of aromatics.

    PubMed

    Ferrer-Sueta, G; Ruiz-Ramírez, L; Radi, R

    1997-12-01

    Peroxynitrite is a powerful oxidant formed in biological systems from the reaction of nitrogen monoxide and superoxide and is capable of nitrating phenols at neutral pH and ambient temperature. This peroxynitrite-mediated nitration is catalyzed by a number of Lewis acids, including CO2 and transition-metal ion complexes. Here we studied the effect of ternary copper-(II) complexes constituted by a 1,10-phenanthroline and an amino acid as ligands. All the complexes studied accelerate both the decomposition of peroxynitrite and its nitration of 4-hydroxyphenylacetic acid at pH > 7. The rate of these reactions depends on the copper complex concentration in a hyperbolic plus linear manner. The yield of nitrated products increases up to 2.6-fold with respect to proton-catalyzed nitration and has a dependency on the concentration of copper complexes which follows the same function as observed for the rate constants. The manganese porphyrin complex, Mn(III)tetrakis(4-benzoic acid)porphyrin [Mn(tbap)], also promoted peroxynitrite-mediated nitration with an even higher yield (4-fold increase) than the ternary copper complexes. At pH = 7.5 +/- 0.2 the catalytic behavior of the copper complexes can be linearly correlated with the pKa of the phenanthroline present as a ligand, implying that a peroxynitrite anion is coordinated to the copper ion prior to the nitration reaction. These observations may prove valuable to understand the biological effects of these transition-metal complexes (i.e., copper and manganese) that can mimic superoxide dismutase activity and, in the case of the ternary copper complexes, show antineoplastic activity.

  16. Effect of doping of calcium fluoride nanoparticles on the photoluminescence properties of europium complexes with benzoic acid derivatives as secondary ligands and 2-aminopyridine as primary ligand

    NASA Astrophysics Data System (ADS)

    Sharma, Garima; Narula, Anudeep Kumar

    2015-08-01

    The present article reports the synthesis of three Eu(III) complexes [Eu(BA)3(2-ap)] (1), [Eu(HBA)3(2-ap)] (2) and [Eu(ABA)3(2-ap)] (3) (BA = benzoic acid, HBA = 2-hydroxy benzoic acid, ABA = 2-amino benzoic acid and 2-ap = 2-aminopyridine) carried out in ethanol solution. The complexes were further doped with CaF2 nanoparticles and a change in the photoluminescence properties was observed. The compositions and structural investigation of the complexes were determined by elemental analysis and Fourier transform infrared spectroscopy (FTIR) which suggest the coordination of ligands with the central Eu(III) ion. The optical properties of the complexes were studied by Ultraviolet Visible absorption spectroscopy (UV-Vis) and photoluminescence studies (PL). The relative PL intensity was enhanced in the Eu(III) complexes doped with CaF2 nanoparticles as compared to the pure Eu(III) complexes, however the increase in intensity varied in the order of ligands ABA > HBA > BA. The photoluminescence lifetime decay curves also revealed the longer lifetime (τ) and higher quantum efficiency (η) for europium complexes with ABA ligands suggesting the efficient energy transfer and better sensitizing ability of the ligand to europium ion. The morphology of the synthesized compounds were studied by Scanning Electron Microscopy (SEM) revealing spherical morphology with agglomeration of the nanoparticles.

  17. 4-Hydroxy-2-pyrone formation by chalcone and stilbene synthase with nonphysiological substrates.

    PubMed

    Zuurbier, K W; Leser, J; Berger, T; Hofte, A J; Schröder, G; Verpoorte, R; Schröder, J

    1998-12-01

    Valerophenone synthase (VPS) is a polyketide synthase that catalyzes the formation of the phloroglucinol derivatives in the synthesis of the bitter acids in hop (Humulus lupulus). The reaction uses isovaleryl-CoA or isobutyryl-CoA, but otherwise it is identical to that of the chalcone synthase in flavonoid biosynthesis. Our study showed that chalcone synthase can perform the function of VPS, but not perfectly, because the majority of the reactions terminated after two condensation reactions (products: 4-hydroxy-2-pyrone derivatives). The same experiments with stilbene synthase yielded exclusively the 4-hydroxy-2-pyrone derivatives, not the products expected from three condensation reactions. The results are discussed in the context of the functional diversity and evolution in the family of CHS-related polyketide synthases.

  18. Synthesis and spectrophotometric studies of charge transfer complexes of p-nitroaniline with benzoic acid in different polar solvents

    NASA Astrophysics Data System (ADS)

    Singh, Neeti; Ahmad, Afaq

    2014-09-01

    The charge transfer complexes of the donor p-nitroaniline (PNA) with the π-acceptor benzoic acid (BEA) have been studied spectrophotometrically in various solvents such as acetone, ethanol, and methanol at room temperature using an absorption spectrophotometer. The outcome suggests that the formation of the CT-complex is comparatively high in less polar solvent. The stoichiometry of the CT-complex was found to be 1:1. The physical parameters of the CT-complex were evaluated by the Benesi-Hildebrand equation. The data are discussed in terms of the formation constant (KCT), molar extinction coefficient (ɛCT), Standard Gibbs free energy (ΔG0), oscillator strength (f), transition dipole moment (μEN), resonance energy (RN) and ionization potential (ID). The formation constant (KCT) of the complex was depends upon the nature of electron acceptor, donor, and polarity of solvents used. It is also observed that a charge transfer molecular complex is stabilized by hydrogen bonding. The formation of the complex has been confirmed by UV-visible, FT-IR, 1H NMR and TGA/DTA. The structure of the CT-complex is [(PNA)+ (BEA)-]. A general mechanism for its formation of the complex has also been proposed.

  19. Study of cross - relaxation and molecular dynamics in the solid 3-(trifluoromethyl) benzoic acid by solid state NMR off - resonance.

    PubMed

    Woźniak-Braszak, Aneta

    2017-02-01

    Molecular dynamics of the solid 3-(trifluoromethyl) benzoic acid containing proton (1)H and fluorine (19)F nuclei was explored by the solid-state NMR off - resonance technique. Contrary to the previous experiments the proton nuclei system I relaxed in the off - resonance effective field B→e while fluorine nuclei system S was saturated for short time in comparison to the relaxation time T1I. New cross - relaxation solid - state NMR off - resonance experiments were conducted on a homebuilt pulse spectrometer operating at the on-resonance frequency of 30.2MHz, at the off - resonance frequency varied between 30.2 and 30.6MHz for protons and at the frequency of 28.411MHz for fluorines, respectively. Based on the experimental data the dispersions of the proton off - resonance spin - lattice relaxation rate ρρ(I), the fluorine off - resonance spin - lattice relaxation rate ρρ(S) and the cross - relaxation rate σρ in the rotating frame were determined.

  20. Ligand sensitized luminescence of uranyl by benzoic acid in acetonitrile medium: a new luminescent uranyl benzoate specie.

    PubMed

    Kumar, Satendra; Maji, S; Joseph, M; Sankaran, K

    2015-03-05

    Benzoic acid (BA) is shown to sensitize and enhance the luminescence of uranyl ion in acetonitrile medium. Luminescence spectra and especially UV-Vis spectroscopy studies reveal the formation of tri benzoate complex of uranyl i.e. [UO2(C6H5COO)3](-) which is highly luminescent. In particular, three sharp bands at 431, 443, 461nm of absorption spectra provides evidence for tri benzoate specie of uranyl in acetonitrile medium. The luminescence lifetime of uranyl in this complex is 68μs which is much more compared to the lifetime of uncomplexed uranyl (20μs) in acetonitrile medium. In contrary to aqueous medium where uranyl benzoate forms 1:1 and 1:2 species, spectroscopic data reveal formation of 1:3 complex in acetonitrile medium. Addition of water to acetonitrile results in decrease of luminescence intensity of this specie and the luminescence features implode at 20% (v/v) of water content. For the first time, to the best of our knowledge, the existence of [UO2(C6H5COO)3](-) specie in acetonitrile is reported. Mechanism of luminescence enhancement is discussed.

  1. Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions.

    PubMed Central

    Monserrate, E; Häggblom, M M

    1997-01-01

    The anaerobic biodegradation of monobrominated phenols and benzoic acids by microorganisms enriched from marine and estuarine sediments was determined in the presence of different electron acceptors [i.e., Fe(III), SO4(2-), or HCO3-]. Under all conditions tested, the bromophenol isomers were utilized without a lengthy lag period whereas the bromobenzoate isomers were utilized only after a lag period of 23 to 64 days. 2-Bromophenol was debrominated to phenol, with the subsequent utilization of phenol under all three reducing conditions. Debromination of 3-bromophenol and 4-bromophenol was also observed under sulfidogenic and methanogenic conditions but not under iron-reducing conditions. In the bromobenzoate-degrading cultures, no intermediates were observed under any of the conditions tested. Debromination rates were higher under methanogenic conditions than under sulfate-reducing or iron-reducing conditions. The stoichiometric reduction of sulfate or Fe(III) and the utilization of bromophenols and phenol indicated that biodegradation was coupled to sulfate or iron reduction, respectively. The production of phenol as a transient intermediate demonstrates that reductive dehalogenation is the initial step in the biodegradation of bromophenols under iron- and sulfate-reducing conditions. PMID:9480645

  2. D-π-A dye system containing cyano-benzoic acid as anchoring group for dye-sensitized solar cells.

    PubMed

    Katono, Masataka; Bessho, Takeru; Meng, Sheng; Humphry-Baker, Robin; Rothenberger, Guido; Zakeeruddin, Shaik M; Kaxiras, Efthimios; Grätzel, Michael

    2011-12-06

    A D-π-A dye (KM-1) incorporating cyano-benzoic acid as a new acceptor/anchoring group has been synthesized for dye-sensitized solar cells (DSCs) with a high molar extinction coefficient of 66,700 M(-1) cm(-1) at 437 nm. Theoretical calculations show that the hydrogen bond between -CN and surface hydroxyl leads to the most stable configuration on the surface of TiO(2). In addition, the adsorption of the dye on TiO(2) follows a Brunauer-Emmett-Teller (BET) isotherm. Multilayer adsorption of KM-1 on TiO(2) seems to take place particularly at higher dye concentrations. DSC device using KM-1 reached a maximum incident photon-to-current conversion efficiency (IPCE) of 84%, with a solar to electric power conversion efficiency (PCE) of 3.3% at AM1.5 G illumination (100 mW cm(-2)). This new type of anchoring group paves a way to design new dyes that combine good visible light harvesting with strong binding to the metal oxide surface.

  3. New Polyketides and New Benzoic Acid Derivatives from the Marine Sponge-Associated Fungus Neosartorya quadricincta KUFA 0081

    PubMed Central

    Prompanya, Chadaporn; Dethoup, Tida; Gales, Luís; Lee, Michael; Pereira, José A. C.; Silva, Artur M. S.; Pinto, Madalena M. M.; Kijjoa, Anake

    2016-01-01

    Two new pentaketides, including a new benzofuran-1-one derivative (1) and a new isochromen-1-one (5), and seven new benzoic acid derivatives, including two new benzopyran derivatives (2a, b), a new benzoxepine derivative (3), two new chromen-4-one derivatives (4b, 7) and two new benzofuran derivatives (6a, b), were isolated, together with the previously reported 2,3-dihydro-6-hydroxy-2,2-dimethyl-4H-1-benzopyran-4-one (4a), from the culture of the marine sponge-associated fungus Neosartorya quadricincta KUFA 0081. The structures of the new compounds were established based on 1D and 2D NMR spectral analysis, and in the case of compounds 1, 2a, 4b, 5, 6a and 7, the absolute configurations of their stereogenic carbons were determined by an X-ray crystallographic analysis. None of the isolated compounds were active in the tests for antibacterial activity against Gram-positive and Gram-negative bacteria, as well as multidrug-resistant isolates from the environment (MIC > 256 μg/mL), antifungal activity against yeast (Candida albicans ATTC 10231), filamentous fungus (Aspergillus fumigatus ATTC 46645) and dermatophyte (Trichophyton rubrum FF5) (MIC > 512 µg/mL) and in vitro growth inhibitory activity against the MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A375-C5 (melanoma) cell lines (GI50 > 150 µM) by the protein binding dye SRB method. PMID:27438842

  4. Investigation into the Mode of Phosphate Activation in the 4-Hydroxy-4-Methyl-2-Oxoglutarate/4-Carboxy-4-Hydroxy-2-Oxoadipate Aldolase from Pseudomonas putida F1

    PubMed Central

    Mazurkewich, Scott; Seah, Stephen Y. K.

    2016-01-01

    The 4-hydroxy-4-methyl-2-oxoglutarate (HMG)/4-carboxy-4-hydroxy-2-oxoadipate (CHA) aldolase is the last enzyme of both the gallate and protocatechuate 4,5-cleavage pathways which links aromatic catabolism to central cellular metabolism. The enzyme is a class II, divalent metal dependent, aldolase which is activated in the presence of inorganic phosphate (Pi), increasing its turnover rate >10-fold. This phosphate activation is unique for a class II aldolase. The aldolase pyruvate methyl proton exchange rate, a probe of the general acid half reaction, was increased 300-fold in the presence of 1 mM Pi and the rate enhancement followed saturation kinetics giving rise to a KM of 397 ± 30 μM. Docking studies revealed a potential Pi binding site close to, or overlapping with, the proposed general acid water site. Putative Pi binding residues were substituted by site-directed mutagenesis which resulted in reductions of Pi activation. Significantly, the active site residue Arg-123, known to be critical for the catalytic mechanism of the enzyme, was also implicated in supporting Pi mediated activation. PMID:27741265

  5. Properties of polyethylene films with incorporated benzoic anhydride and/or ethyl and propyl esters of 4-hydroxybenzoic acid and their suitability for food packaging.

    PubMed

    Dobiás, J; Chudackova, K; Voldrich, M; Marek, M

    2000-12-01

    Benzoic anhydride and ethyl and propyl esters of 4-hydroxybenzoic acid (ETP and PRP, respectively, also termed parabens) incorporated into low density polyethylene (LDPE) film were studied with regard to migration into food and food simulants at 6 degrees C and 25 degrees C, and changes in selected properties of the film were investigated. Antimicrobials were incorporated into polymer film in concentrations of 5 g/kg and 10 g/kg. The addition of parabens into the polymer was more difficult than benzoic anhydride due to their volatility. For benzoic anhydride, 30-40% and 10-20% of the added amount was found to leach from the film into aqueous and olive oil food simulants, respectively. The migration into both water and olive oil followed a very similar course in the case of parabens. Migration levels over 90% and in the range of 70% to 80%, relative to the amount of agent in the film, were determined for ETP and PRP respectively. The incorporation of antimicrobials into the film significantly changed the functional characteristics of the packaging material, i.e. permeability of oxygen, carbon dioxide and water vapour, tensile strength, coefficient of friction, sealing strength and transparency. Shelf life tests with packaged cheese and toasted bread demonstrated the efficiency of the film containing 10 g/kg of BA against mould growth on the food surface during storage at 6 degrees C.

  6. Direct carbocyclizations of benzoic acids: catalyst-controlled synthesis of cyclic ketones and the development of tandem aHH (acyl Heck-Heck) reactions.

    PubMed

    Miles, Kelsey C; Le, Chi Chip; Stambuli, James P

    2014-09-01

    The formation of exo-methylene indanones and indenones from simple ortho-allyl benzoic acid derivatives has been developed. Selective formation of the indanone or indenone products in these reactions is controlled by choice of ancillary ligand. This new process has a low environmental footprint as the products are formed in high yields using low catalyst loadings, while the only stoichiometric chemical waste generated from the reactants in the transformation is acetic acid. The conversion of the active cyclization catalyst into the Hermman-Beller palladacycle was exploited in a one-pot tandem acyl Heck-Heck (aHH) reaction, and utilized in the synthesis of donepezil.

  7. A triclinic modification of 3,4-dihy-droxy-benzoic acid monohydrate.

    PubMed

    Ng, Seik Weng

    2011-09-01

    The unit cell of the title compound, C(7)H(6)O(4)·H(2)O, features four independent formula units; the individual carb-oxy-lic acid mol-ecules themselves are nearly planar (r.m.s. deviations = 0.0189, 0.0334, 0.0356 and 0.0441 Å). Two independent mol-ecules each form two hydrogen bonds by acid-carbonyl O-H⋯O inter-actions and the dimers are also nearly planar (r.m.s. deviations = 0.039 and 0.049 Å). The two independent dimers are aligned at 44.5 (1)°. Other O-H⋯O inter-actions involving the hy-droxy groups and water mol-ecules give rise to a three-dimensional network.

  8. A study of thin film solid phase microextraction methods for analysis of fluorinated benzoic acids in seawater.

    PubMed

    Boyacı, Ezel; Goryński, Krzysztof; Viteri, C Ricardo; Pawliszyn, Janusz

    2016-03-04

    Fluorinated benzoic acids (FBAs) are frequently used as tracers by the oil industry to characterize petroleum reservoirs. The demand for fast, reliable, robust, and sensitive approaches to separate and quantify FBAs in produced water, both in laboratory and field conditions, has not been yet fully satisfied. In this study, for the first time, thin film solid phase microextraction (TF-SPME) is proposed as a versatile sample preparation tool for the determination of FBAs in produced water by pursing two different approaches. First, an automated high throughput TF-SPME method using solvent desorption for fast and simultaneous preparation of multiple samples prior to liquid chromatographic separation and high resolution mass spectrometric detection (LC-MS) of FBAs was demonstrated for routine laboratory analysis. This method was optimized in terms of extraction phase chemistry, sample pH and ionic strength, extraction/desorption times using two representative FBAs (4-FBA and 2,3,4,5-tetra FBA). It incorporates a relatively simple sample pretreatment involving pH adjustment prior to the TF-SPME, and obtained limits of quantification (LOQ) are at the 1.0ngmL(-1) level. Second, the applicability of TF-SPME for fast mass spectrometric (MS) determination of FBAs with omission of derivatization and gas chromatographic (GC) separation was proven. This second method consists of manual extractions of analytes from seawater samples with a thermally stable TF-SPME membrane and direct thermal desorption of the extracted FBAs to a MS via a thermal desorption unit (TDU). It was demonstrated that the TF-SPME extracts and thermally releases analytes quantitatively and with good reproducibility. This approach opens up the possibility for on-site measurements with portable analyzers.

  9. 2-[(2-Acet­oxy­benzo­yl)­oxy]benzoic acid

    PubMed Central

    Solanko, Katarzyna A.; Bond, Andrew D.

    2012-01-01

    The title compound, C16H12O6, is a common impurity of ortho-acetyl­salicylic acid (aspirin). The benzene rings form a dihedral angle of 81.9 (1)° while the acetyl and carboxyl groups form dihedral angles of 74.0 (1) and 26.4 (2)°, respectively, with the benzene rings to which they are bound. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds between the carboxyl groups, forming inversion dimers. PMID:22798785

  10. Asymmetric aza-[2,3]-Wittig sigmatropic rearrangements: chiral auxiliary control and formal asymmetric synthesis of (2S, 3R, 4R)-4-hydroxy-3-methylproline and (-)-kainic acid.

    PubMed

    Anderson, James C; O'Loughlin, Julian M A; Tornos, James A

    2005-08-07

    A survey of 16 different chiral auxiliaries and a variety of strategies found that an (-)-8-phenylmenthol ester of a glycine derived migrating group can control the absolute stereochemistry of aza-[2,3]-Wittig sigmatropic rearrangements with diastereoselectivities of ca. 3 : 1 with respect to the auxiliary. In two specific examples, ca. 50% yields of enantiomerically pure products were obtained after chromatographic purification. These were synthetically manipulated with no erosion of stereochemistry into intermediates that completed formal asymmetric syntheses of (+)-HyMePro and (-)-kainic acid.

  11. Crystal structure of 2-(4-chloro-benzamido)-benzoic acid.

    PubMed

    Moreno-Fuquen, Rodolfo; Melo, Vanessa; Ellena, Javier

    2015-11-01

    In the title mol-ecule, C14H10ClNO3, the amide C=O bond is anti to the o-carb-oxy substituent in the adjacent benzene ring, a conformation that facilitates the formation of an intra-molecular amide-N-H⋯O(carbon-yl) hydrogen bond that closes an S(6) loop. The central amide segment is twisted away from the carb-oxy- and chloro-substituted benzene rings by 13.93 (17) and 15.26 (15)°, respectively. The most prominent supra-molecular inter-actions in the crystal packing are carb-oxy-lic acid-H⋯O(carbox-yl) hydrogen bonds that lead to centrosymmetric dimeric aggregates connected by eight-membered {⋯HOC=O}2 synthons.

  12. Application of CE with novel dynamic coatings and field-amplified sample injection to the sensitive determination of isomeric benzoic acids in atmospheric aerosols and vehicular emission.

    PubMed

    Dabek-Zlotorzynska, Ewa; Piechowski, Maria

    2007-10-01

    A simple and reliable CE method with direct UV detection has been developed to separate eight isomeric benzoic acids in atmospheric aerosols and vehicular emission without complex sample pretreatment. Optimal electrophoretic conditions, with migration times under 5 min, were obtained by using a 50 mM acetate buffer (pH 4.7) containing a dynamic surface coating EOTrol LN (0.005% w/v). The separations were carried out in a cathode to anode direction (-30 kV) allowing the low cathodal EOF ( approximately 1 x 10(-9) m(2)V(-1)s(-1)) to extend the effective separation by slowing the movement of the studied aromatic acids. Moreover, the sensitivity of the method at 200 nm was enhanced by using a field-amplified sample injection (FASI) with electrokinetic (EK) sample injection (-2 kV, 60 s). Prior to sample injection, a short water plug (3 s at 0.5 psi) was introduced. Under these conditions, the method was capable of detecting the analytes in deionized water with LODs (S/N = 3) as low as 0.1 microg/L for most of the studied acids. In the presence of 10 mg/L of sulphate (added to simulate a sample matrix), LODs ranged from 0.26 to 0.62 microg/L. The validation of the method has proven an excellent separation performance and accuracy for the determination of isomeric benzoic acids in the studied matrices.

  13. Nano-composite polymer gel electrolytes containing ortho-nitro benzoic acid: role of dielectric constant of solvent and fumed silica

    NASA Astrophysics Data System (ADS)

    Kumar, R.

    2015-03-01

    In this paper, nano-composite polymer gel electrolytes containing polymethylmethacrylate, dimethylacetamide, diethyl carbonate, fumed silica and ortho-nitro benzoic acid have been synthesized. Electrical conductivity, viscosity, pH and thermal behavior of these electrolytes have been studied. The effect of acid, polymer, fumed silica concentration on conductivity, pH and viscosity has been discussed. The effect of dielectric constant of solvent on conductivity behavior of composite polymer gel electrolytes has also been studied. Two maxima in conductivity behavior have been observed with fumed silica concentration for composite polymer gel electrolytes, which have been explained on the basis of double percolation threshold model. Maximum conductivity of 3.20 × 10-4 and 2.46 × 10-6 S/cm at room temperature has been observed for nano-composite polymer gel electrolytes containing 10 wt% polymethylmethacrylate in 1 M solution of o-nitro benzoic acid in dimethylacetamide and diethyl carbonate respectively. The intensity of first maximum observed in conductivity at low concentration of fumed silica has been found to decrease with the decrease in acid concentration for composite polymer gel electrolytes, while the intensity of second maximum at higher fumed silica concentration remains unaffected. The conductivity of composite gels does not show much change in the temperature range of 20-100 °C and also remains constant with time, making them suitable for use as electrolytes in various devices like fuel cells, proton batteries, electrochromic window applications etc.

  14. Synthesis of Isocoumarins from Cyclic 2-Diazo-1,3-diketones and Benzoic Acids via Rh(III)-Catalyzed C-H Activation and Esterification.

    PubMed

    Yang, Cheng; He, Xinwei; Zhang, Lanlan; Han, Guang; Zuo, Youpeng; Shang, Yongjia

    2017-02-17

    A mild and efficient Rh(III)-catalyzed C-H activation/esterification reaction for the synthesis of isocoumarins has been developed. This procedure uses readily available benzoic acids and cyclic diazo-1,3-diketones as starting materials and involves domino intermolecular C-H activation in combination with intramolecular esterification to give the corresponding isocoumarins in moderate to excellent yields. This process provides a facile approach for the construction of isocoumarins containing various functional groups that does not require any additives.

  15. 4-Hydroxy-nonenal—A Bioactive Lipid Peroxidation Product †

    PubMed Central

    Schaur, Rudolf J.; Siems, Werner; Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress. PMID:26437435

  16. Mass spectrometry of analytical derivatives. 2. "Ortho" and "Para" effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids.

    PubMed

    Todua, Nino G; Mikaia, Anzor I

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS(1) spectra of unlabeled compounds to their (2)H and (13)C labeled analogs, and analysis of collision-induced dissociation data from MS(2) spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested.

  17. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD.

    PubMed

    Aresta, Antonella; Zambonin, Carlo

    2016-03-20

    Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2 mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system.

  18. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase

    PubMed Central

    Gheibi, Nematollah; Taherkhani, Negar; Ahmadi, Abolfazl; Haghbeen, Kamahldin; Ilghari, Dariush

    2015-01-01

    Objective(s): Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. Materials and Methods: In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Results: Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki) of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Conclusion: Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50) were comparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities. PMID:25810885

  19. Crystal structures of hydrogen-bonded co-crystals as liquid crystal precursors: 4-(n-pent-yloxy)benzoic acid-(E)-1,2-bis-(pyridin-4-yl)ethene (2/1) and 4-(n-hex-yloxy)benzoic acid-(E)-1,2-bis-(pyridin-4-yl)ethene (2/1).

    PubMed

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2016-12-01

    The crystal structures of title hydrogen-bonded co-crystals, 2C12H16O3·C12H10N2, (I), and 2C13H18O3·C12H10N2, (II), have been determined at 93 K. In (I), the asymmetric unit consists of one 4-(n-pent-yloxy)benzoic acid mol-ecule and one half-mol-ecule of (E)-1,2-bis-(pyridin-4-yl)ethene, which lies about an inversion centre. The asymmetric unit of (II) comprises two crystallographically independent 4-(n-hex-yloxy)benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethene mol-ecule. In each crystal, the acid and base components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. The 2:1 units are linked via C-H⋯π and π-π inter-actions [centroid-centroid distances of 3.661 (2) and 3.909 (2) Å for (I), and 3.546 (2)-3.725 (4) Å for (II)], forming column structures. In (II), the base mol-ecule is orientationally disordered over two sets of sites approximately around the N⋯N mol-ecular axis, with an occupancy ratio of 0.647 (4):0.353 (4), and the average structure of the 2:1 unit adopts nearly pseudo-C2 symmetry. Both compounds show liquid-crystal behaviour.

  20. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.

    PubMed

    Mastronicolis, Sofia K; Berberi, Anita; Diakogiannis, Ioannis; Petrova, Evanthia; Kiaki, Irene; Baltzi, Triantafillia; Xenikakis, Polydoros

    2010-10-01

    This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.

  1. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75

    SciTech Connect

    Du Li; Zhao Yaxue; Chen, Jing; Yang Liumeng; Zheng Yongtang; Tang Yun Shen Xu Jiang Hualiang

    2008-10-10

    Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-factor for integration. Since LEDGF/p75 plays an important role in HIV integration, disruption of the LEDGF/p75 interaction with IN has provided a special interest for anti-HIV agent discovery. In this work, we reported that a benzoic acid derivative, 4-[(5-bromo-4-{l_brace}[2,4-dioxo-3-(2-oxo-2-phenylethyl) -1,3-thiazolidin-5-ylidene]methyl{r_brace}-2-ethoxyphenoxy)methyl]benzoic acid (D77) could potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution thus exhibiting antiretroviral activity. Molecular docking with site-directed mutagenesis analysis and surface plasmon resonance (SPR) binding assays has clarified possible binding mode of D77 against HIV-1 integrase. As the firstly discovered small molecular compound targeting HIV-1 integrase interaction with LEDGF/p75, D77 might supply useful structural information for further anti-HIV agent discovery.

  2. Structural, optical, thermal, photoconductivity, laser damage threshold and fluorescence analysis of an organic material: β-P-amino benzoic acid single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, SenthilKumar; Paulraj, Rajesh; Ramasamy, P.

    2016-02-01

    β-P-amino benzoic acid, an organic single crystal was grown by slow evaporation technique. Single crystal X-ray diffraction studies show that the grown crystal has β-polymorph of P-amino benzoic acid [β-PABA] form and the lattice parameters are a = 6.30 Å, b = 8.61 Å, c = 12.43 Å α = γ = 90° and β = 100.20°. FTIR analysis confirms that bands at 1588 cm-1, 1415 cm-1 are assigned to ring skeletal vibrations of title compound. The molecular structure of the grown crystal has been identified by Nuclear Magnetic Resonance spectral study. The optical absorbance spectrum from 200 to 1100 nm shows that there is an edge absorbance in UV region. Optical band gap of the crystal has been assessed from the absorbance spectrum. The thermal properties of crystals were evaluated from TG-DTA analysis, it exhibits that there is no weight loss up to 187 °C. Laser damage threshold indicates that the grown crystal has no surface damage up to 35 mJ. Photoconductivity and fluorescence spectral experiments are also carried out and the results are discussed.

  3. Formation of malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) in fish and fish oil during dynamic gastrointestinal in vitro digestion.

    PubMed

    Larsson, Karin; Harrysson, Hanna; Havenaar, Robert; Alminger, Marie; Undeland, Ingrid

    2016-02-01

    Marine lipids contain a high proportion of polyunsaturated fatty acids (PUFA), including the characteristic long chain (LC) n-3 PUFA. Upon peroxidation these lipids generate reactive products, such as malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE), which can form covalent adducts with biomolecules and thus are regarded as genotoxic and cytotoxic. PUFA peroxidation can occur both before and after ingestion. The aim of this study was to determine what levels of MDA, HHE and HNE can evolve in the gastric and intestinal lumen after ingesting meals containing fish or fish oil using a dynamic gastrointestinal (GI) model (TIM). The impact of the fish muscle matrix, lipid content, fish species, and oven baking on GI oxidation was evaluated. MDA and HHE concentrations in gastric lumen increased for all meals during digestion, with the highest level found with herring mince; ∼ 25 μM MDA and ∼ 850 nM HHE. Aldehyde concentrations reached in intestinal lumen during digestion of fish containing meals were generally lower than in gastric lumen, while isolated herring oils (bulk and emulsified) generated higher MDA and HHE values in intestinal lumen compared to gastric lumen. Based on aldehyde levels in gastric lumen, meals containing herring lipids were ranked: raw herring (17% lipid) = baked herring (4% lipid) > raw herring (4% lipid) ≫ herring oil emulsion > herring oil. Herring developed higher concentrations of MDA and HHE during gastric digestion compared to salmon, which initially contained lower levels of oxidation products. Cooked salmon generated higher MDA concentrations during digestion than raw salmon. Low levels of HNE were observed during digestion of all test meals, in accordance with the low content of n-6 PUFA in fish lipids.

  4. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM2.5 aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Huang, R.-J.; Kawamura, K.; Tachibana, E.; Lee, S. C.; Ho, S. S. H.; Zhu, T.; Tian, L.

    2014-06-01

    Thirty water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid were determined as well as organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM2.5 samples collected during the Campaign of Air Quality Research in Beijing 2007 (CAREBeijing-2007) in the urban and suburban areas of Beijing. The objective of this study is to identify the influence of traffic emissions and regional transport to the atmosphere in Beijing during summer. PM2.5 samples collected with or without traffic restriction in Beijing are selected to evaluate the effectiveness of local traffic restriction measure on air pollution reduction. The average concentrations of the total quantified bifunctional organic compounds (TQBOC), total fatty acids and benzoic acid during the entire sampling period were 1184 ± 241 ng m-3, 597 ± 159 ng m-3 and 1496 ± 511ng m-3 in PKU, and 1050 ± 303 ng m-3, 475 ± 114 ng m-3 and 1278 ± 372 ng m-3 in Yufa. Oxalic acid (C2) was found as the most abundant dicarboxylic acid at PKU and Yufa, followed by phthalic acid (Ph). A strong even carbon number predominance with the highest level at palmitic acid (C16:0), followed by stearic acid (C18:0) was found for fatty acids. According to the back trajectories modeling results, the air masses were found to originate mainly from northeast, passing over southeast or south of Beijing (heavily populated, urbanized and industrialized areas), during heavier pollution events, whereas they are mainly from north or northwest sector (mountain areas without serious anthropogenic pollution sources) during cleaner events. The data with wind only from the same sector (minimizing the difference from regional contribution) but with and without traffic restriction in Beijing were analyzed to evaluate the effectiveness of local traffic restriction measure on the reduction of local air pollution in Beijing. The results suggested that the

  5. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM2.5 aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Huang, R.-J.; Kawamura, K.; Tachibana, E.; Lee, S. C.; Ho, S. S. H.; Zhu, T.; Tian, L.

    2015-03-01

    Thirty water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid were determined as well as organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM2.5 samples collected during the Campaign of Air Quality Research in Beijing 2007 (CAREBeijing-2007) in the urban and suburban areas of Beijing. The objective of this study is to identify the influence of traffic emissions and regional transport to the atmosphere in Beijing during summer. PM2.5 samples collected with or without traffic restriction in Beijing are selected to evaluate the effectiveness of local traffic restriction measures on air pollution reduction. The average concentrations of the total quantified bifunctional organic compounds (TQBOCs), total fatty acids and benzoic acid during the entire sampling period were 1184±241, 597±159 and 1496±511 ng m-3 in Peking University (PKU), and 1050±303, 475±114 and 1278±372 ng m-3 in Yufa, Beijing. Oxalic acid (C2) was found as the most abundant dicarboxylic acid at PKU and Yufa followed by phthalic acid (Ph). A strong even carbon number predominance with the highest level at stearic acid (C18:0), followed by palmitic acid (C16:0) was found for fatty acids. According to the back trajectories modeling results, the air masses were found to originate mainly from the northeast, passing over the southeast or south of Beijing (heavily populated, urbanized and industrialized areas), during heavier pollution events, whereas they are mainly from the north or northwest sector (mountain areas without serious anthropogenic pollution sources) during less pollution events. The data with wind only from the same sector (minimizing the difference from regional contribution) but with and without traffic restriction in Beijing were analyzed to evaluate the effectiveness of local traffic restriction measures on the reduction of local air pollution in Beijing. The results suggested

  6. Two di-alkyl-ammonium salts of 2-amino-4-nitro-benzoic acid: crystal structures and Hirshfeld surface analysis.

    PubMed

    Wardell, James L; Jotani, Mukesh M; Tiekink, Edward R T

    2016-12-01

    The crystal structures of two ammonium salts of 2-amino-4-nitro-benzoic acid are described, namely di-methyl-aza-nium 2-amino-4-nitro-benzoate, C2H8N(+)·C7H5N2O4(-), (I), and di-butyl-aza-nium 2-amino-4-nitro-benzoate, C8H20N(+)·C7H5N2O4(-), (II). The asymmetric unit of (I) comprises a single cation and a single anion. In the anion, small twists are noted for the carboxyl-ate and nitro groups from the ring to which they are connected, as indicated by the dihedral angles of 11.45 (13) and 3.71 (15)°, respectively; the dihedral angle between the substituents is 7.9 (2)°. The asymmetric unit of (II) comprises two independent pairs of cations and anions. In the cations, different conformations are noted in the side chains in that three chains have an all-trans [(+)-anti-periplanar] conformation, while one has a distinctive kink resulting in a (+)-synclinal conformation. The anions, again, exhibit twists with the dihedral angles between the carboxyl-ate and nitro groups and the ring being 12.73 (6) and 4.30 (10)°, respectively, for the first anion and 8.1 (4) and 12.6 (3)°, respectively, for the second. The difference between anions in (I) and (II) is that in the anions of (II), the terminal groups are conrotatory, forming dihedral angles of 17.02 (8) and 19.0 (5)°, respectively. In each independent anion of (I) and (II), an intra-molecular amino-N-H⋯O(carboxyl-ate) hydrogen bond is formed. In the crystal of (I), anions are linked into a jagged supra-molecular chain by charge-assisted amine-N-H⋯O(carboxyl-ate) hydrogen bonds and these are connected into layers via charge-assisted ammonium-N-H⋯O(carboxyl-ate) hydrogen bonds. The resulting layers stack along the a axis, being connected by nitro-N-O⋯π(arene) and methyl-C-H⋯O(nitro) inter-actions. In the crystal of (II), the anions are connected into four-ion aggregates by charge-assisted amino-N-H⋯O(carboxyl-ate) hydrogen bonding. The formation of ammonium

  7. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application: an ex vivo study in human skin.

    PubMed

    Holmgaard, R; Benfeldt, E; Bangsgaard, N; Sorensen, J A; Brosen, K; Nielsen, F; Nielsen, J B

    2012-01-01

    Microdialysis (MD) in the skin - dermal microdialysis (DMD) - is a unique technique for sampling of topically as well as systemically administered drugs at the site of action, e.g. sampling of dermatological drug concentrations in the dermis. Debate has concerned the existence of a correlation between the depth of the sampling device - the probe - in the dermis and the amount of drug sampled following topical drug administration. This study evaluates the relation between probe depth and drug sampling using dermal DMD sampling ex vivo in human skin. We used superficial (<1 mm), intermediate (1-2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial probes: 3,335 ± 1,094 μg·h/ml (mean ± SD); intermediate probes: 2,178 ± 1,068 μg·h/ml, and deep probes: 1,159 ± 306 μg·h/ml. AUC(0-12) sampled by the superficial probes was significantly higher than that of samples from the intermediate and deeply positioned probes (p value <0.05). There was a significant inverse correlation between probe depth and AUC(0-12) sampled by the same probe (p value <0.001, r(2) value = 0.5). The mean extrapolated lag-times (±SD) for the superficial probes were 0.8 ± 0.1 h, for the intermediate probes 1.7 ± 0.5 h, and for the deep probes 2.7 ± 0.5 h, which were all significantly different from each other (p value <0.05). In conclusion, this paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis

  8. 4-Hydroxy-3-methoxycinnamate esters of milkweed oil: synthesis and characterization.

    PubMed

    Harry-O'kuru, Rogers E

    2005-11-01

    The common milkweed (Asclepias syriaca L.) is a new industrial crop. Its seed oil (TAG) is highly polyunsaturated. In the search for novel applications for milkweed seed oil, the olefinic groups in the TAG were oxidized to polyhydroxy TAG via epoxidation and subsequent epoxy ring-opening reactions. These polyhydroxy TAG exhibit unique industrially desirable emulsoid properties in water. Esterification of the secondary polyhydroxy functionalities of the TAG derivatives of the oil with trans-4-hydroxy-3-methoxycinnamic acid (ferulic acid) has resulted in the development of novel cinnamate esters of milkweed oil. These cinnamates are also obtainable via direct ring-opening of the epoxy TAG intermediate with ferulic acid. Among the interesting characteristics of the ester derivatives is their UV radiation-absorbing property.

  9. Synthesis, biological evaluation, and structure-activity relationships of 2-[2-(benzoylamino)benzoylamino]benzoic acid analogues as inhibitors of adenovirus replication.

    PubMed

    Öberg, Christopher T; Strand, Mårten; Andersson, Emma K; Edlund, Karin; Tran, Nam Phuong Nguyen; Mei, Ya-Fang; Wadell, Göran; Elofsson, Mikael

    2012-04-12

    2-[2-Benzoylamino)benzoylamino]benzoic acid (1) was previously identified as a potent and nontoxic antiadenoviral compound (Antimicrob. Agents Chemother. 2010, 54, 3871). Here, the potency of 1 was improved over three generations of compounds. We found that the ortho, ortho substituent pattern and the presence of the carboxylic acid of 1 are favorable for this class of compounds and that the direction of the amide bonds (as in 1) is obligatory. Some variability in the N-terminal moiety was tolerated, but benzamides appear to be preferred. The substituents on the middle and C-terminal rings were varied, resulting in two potent inhibitors, 35g and 35j, with EC(50) = 0.6 μM and low cell toxicity.

  10. Crystal structure of 4-(3-carb-oxy-pro-pan-amido)-2-hy-droxy-benzoic acid mono-hydrate.

    PubMed

    Tahir, Muhammad Nawaz; Ahmed, Muhammad Naeem; Butt, Arshad Farooq; Shad, Hazoor Ahmad

    2014-12-01

    In the title hydrate, C11H11NO6·H2O, the organic mol-ecule is approximately planar (r.m.s. deviation for the non-H atoms = 0.129 Å) and an intra-molecular O-H⋯O hydrogen bond closes an S(6) ring. In the crystal, the benzoic acid group participates in an O-H⋯O hydrogen bond to the water mol-ecule and accepts a similar bond from another water mol-ecule. The other -CO2H group forms a carb-oxy-lic acid inversion dimer, thereby forming an R 2 (2)(8) loop. These bonds, along with N-H⋯O and C-H⋯O inter-actions, generate a three-dimensional network.

  11. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    SciTech Connect

    Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu{sub 0.5}L]{sub n} (1), [Cu(HL){sub 2}Cl{sub 2}]{sub n} (2), [Cu(HL){sub 2}Cl{sub 2}(H{sub 2}O)] (3), [Cu(L){sub 2}(H{sub 2}O)]{sub n} (4) and [Cu(L)(phen)(HCO{sub 2})]{sub n} (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl{sup -}, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O– are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity.

  12. Lead(II) coordination polymers based on rigid-flexible 3,5-bis-oxyacetate-benzoic acid: Structural transition driven by temperature control

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Qiang; Tian, Yuan

    2017-03-01

    Three Pb(II) complexes {[Pb3(BOABA)2(H2O)]·H2O}n (1), {[Pb4(BOABA)2(μ4-O)(H2O)2]·H2O}n (2), and [Pb3(BOABA)2(H2O)]n (3) (H3BOABA=3,5-bis-oxyacetate-benzoic acid) were obtained under the same reaction systems with different temperatures. Complexes 1 and 2 are two dimensional (2D) networks based on Pb-BOABA chains and Pb4(μ4-O)(COO)6 SBUs, respectively. Complex 3 presents an interesting three dimensional (3D) framework, was obtained by increasing the reaction temperature. Structural transition of the crystallization products is largely dependent on the reaction temperature. Moreover, the fluorescence properties of complexes 1-3 have been investigated.

  13. A simple method for the determination of benzoic acid based on room temperature phosphorescence of 1-bromopyrene/γ-cyclodextrin complex in water.

    PubMed

    Wang, Jinping; Guo, Xiangfeng; Jia, Lihua

    2017-01-01

    The addition of benzoic acid (BA) to an aqueous solution of 1-bromopyrene (1-BrPy) and γ-cyclodextrin (γ-CD) was found to form a ternary 1-BrPy/γ-CD/BA inclusion complex that exhibited strong and stable room temperature phosphorescence (RTP) without deoxygenation. The effects of several different factors on the RTP emission from the inclusion complex were subsequently investigated. A good linear relationship between the RTP intensity and the concentration of BA over the range of 0-0.70mM was identified (R(2)=0.9917), and the detection limit was determined to be 0.68µm. Application of the new method was successfully proved for the detection of BA in various beverages with satisfactory results.

  14. Novel mixed ligand di-n-butyltin(IV) complexes derived from acylpyrazolones and fluorinated benzoic acids: synthesis, characterization, cytotoxicity and the induction of apoptosis in Hela cancer cells.

    PubMed

    Zhao, Bin; Shang, Xianmei; Xu, Ling; Zhang, Wendian; Xiang, Guangya

    2014-04-09

    Twenty one novel mixed ligand di-n-butyltin(IV) complexes [(n)Bu2SnAL] (A = substituted 4-acyl-5-pyrazolone, and L = fluorinated benzoic acid) were prepared by condensation of di-n-butyltin(IV) oxide with HL and HA in 1:1:1 molar ratio in refluxing methanol. All of the complexes were characterized by elemental analyses, IR, NMR ((1)H, (13)C, (119)Sn) and in four cases by X-ray diffraction. Cytotoxicity of the compounds was studied against two human cancer cell lines (KB and Hela) by means of the MTT assay compared to cisplatin, featuring IC₅₀ values in the low micromolar range. Hela cancer cell apoptosis-induced by 2 was examined by flow cytometry analysis, and preliminary results showed that 2 at concentrations of more than 1.0 μM can induce apoptosis.

  15. Genetic Analysis of Natural Variation in Antirrhinum Scent Profiles Identifies BENZOIC ACID CARBOXYMETHYL TRANSFERASE As the Major Locus Controlling Methyl Benzoate Synthesis

    PubMed Central

    Ruiz-Hernández, Victoria; Hermans, Benjamin; Weiss, Julia; Egea-Cortines, Marcos

    2017-01-01

    The Antirrhinum genus has a considerable complexity in the scent profiles produced by different species. We have analyzed the genetic differences between A. majus and A. linkianum, two species divergent in the emission of methyl benzoate, methyl cinnamate, acetophenone, and ocimene. The genetic analysis showed that all compounds segregated in a Mendelian fashion attributable to one or two loci with simple or epistatic interactions. Several lines lacked methyl benzoate, a major Volatile Organic Compound emitted by A. majus but missing in A. linkianum. Using a candidate gene approach, we found that the BENZOIC ACID CARBOXYMETHYL TRANSFERASE from A. linkianum appeared to be a null allele as we could not detect mRNA expression. The coding region did not show significant differences that could explain the loss of expression. The intron-exon boundaries was also conserved indicating that there is no alternative splicing in A. linkianum as compared to A. majus. However, it showed multiple polymorphisms in the 5′ promoter region including two insertions, one harboring an IDLE MITE transposon with additional sequences with high homology to the PLENA locus and a second one with somewhat lower homology to the regulatory region of the VENOSA locus. It also had a 778 bp deletion as compared to the A. majus BAMT promoter region. Our results show that the differences in scent emission between A. majus and A. linkianum may be traced back to single genes involved in discrete biosynthetic reactions such as benzoic acid methylation. Thus, natural variation of this complex trait maybe the result of combinations of wild type, and loss of function alleles in different genes involved in discrete VOCs biosynthesis. Furthermore, the presence of active transposable elements in the genus may account for rapid evolution and instability, raising the possibility of adaptation to local pollinators. PMID:28154577

  16. Development and validation of an HPLC-DAD method for simultaneous determination of cocaine, benzoic acid, benzoylecgonine and the main adulterants found in products based on cocaine.

    PubMed

    Floriani, Gisele; Gasparetto, João Cleverson; Pontarolo, Roberto; Gonçalves, Alan Guilherme

    2014-02-01

    Here, an HPLC-DAD method was developed and validated for simultaneous determination of cocaine, two cocaine degradation products (benzoylecgonine and benzoic acid), and the main adulterants found in products based on cocaine (caffeine, lidocaine, phenacetin, benzocaine and diltiazem). The new method was developed and validated using an XBridge C18 4.6mm×250mm, 5μm particle size column maintained at 60°C. The mobile phase consisted of a gradient of acetonitrile and ammonium formate 0.05M - pH 3.1, eluted at 1.0mL/min. The volume of injection was 10μL and the DAD detector was set at 274nm. Method validation assays demonstrated suitable sensitivity, selectivity, linearity, precision and accuracy. For selectivity assay, a MS detection system could be directly adapted to the method without the need of any change in the chromatographic conditions. The robustness study indicated that the flow rate, temperature and pH of the mobile phase are critical parameters and should not be changed considering the conditions herein determined. The new method was then successfully applied for determining cocaine, benzoylecgonine, benzoic acid, caffeine, lidocaine, phenacetin, benzocaine and diltiazem in 115 samples, seized in Brazil (2007-2012), which consisted of cocaine paste, cocaine base and salt cocaine samples. This study revealed cocaine contents that ranged from undetectable to 97.2%, with 97 samples presenting at least one of the degradation products or adulterants here evaluated. All of the studied degradation products and adulterants were observed among the seized samples, justifying the application of the method, which can be used as a screening and quantification tool in forensic analysis.

  17. Genetic Analysis of Natural Variation in Antirrhinum Scent Profiles Identifies BENZOIC ACID CARBOXYMETHYL TRANSFERASE As the Major Locus Controlling Methyl Benzoate Synthesis.

    PubMed

    Ruiz-Hernández, Victoria; Hermans, Benjamin; Weiss, Julia; Egea-Cortines, Marcos

    2017-01-01

    The Antirrhinum genus has a considerable complexity in the scent profiles produced by different species. We have analyzed the genetic differences between A. majus and A. linkianum, two species divergent in the emission of methyl benzoate, methyl cinnamate, acetophenone, and ocimene. The genetic analysis showed that all compounds segregated in a Mendelian fashion attributable to one or two loci with simple or epistatic interactions. Several lines lacked methyl benzoate, a major Volatile Organic Compound emitted by A. majus but missing in A. linkianum. Using a candidate gene approach, we found that the BENZOIC ACID CARBOXYMETHYL TRANSFERASE from A. linkianum appeared to be a null allele as we could not detect mRNA expression. The coding region did not show significant differences that could explain the loss of expression. The intron-exon boundaries was also conserved indicating that there is no alternative splicing in A. linkianum as compared to A. majus. However, it showed multiple polymorphisms in the 5' promoter region including two insertions, one harboring an IDLE MITE transposon with additional sequences with high homology to the PLENA locus and a second one with somewhat lower homology to the regulatory region of the VENOSA locus. It also had a 778 bp deletion as compared to the A. majus BAMT promoter region. Our results show that the differences in scent emission between A. majus and A. linkianum may be traced back to single genes involved in discrete biosynthetic reactions such as benzoic acid methylation. Thus, natural variation of this complex trait maybe the result of combinations of wild type, and loss of function alleles in different genes involved in discrete VOCs biosynthesis. Furthermore, the presence of active transposable elements in the genus may account for rapid evolution and instability, raising the possibility of adaptation to local pollinators.

  18. Percutaneous absorption of nicotinic acid, phenol, benzoic acid and triclopyr butoxyethyl ester through rat and human skin in vitro: further validation of an in vitro model by comparison with in vivo data.

    PubMed

    Hotchkiss, S A; Hewitt, P; Caldwell, J; Chen, W L; Rowe, R R

    1992-10-01

    The in vitro percutaneous absorption of three model compounds, nicotinic acid, phenol and benzoic acid, and the herbicide triclopyr butoxyethyl ester (triclopyr BEE) has been investigated in flow-through diffusion cells using skin from male Fischer 344 rats and humans. After the application of the four chemicals to the epidermal surface of unoccluded full-thickness rat skin, the absorption of each compound across the skin and into the receptor fluid at 72 hr reached 3.7 +/- 0.3, 5.7 +/- 0.6, 26.7 +/- 3.7 and 48.3 +/- 1.2% (mean +/- SD, n = 2-7) of the applied dose for triclopyr BEE, nicotinic acid, phenol and benzoic acid, respectively. After the application of the four chemicals to the epidermal surface of unoccluded full-thickness human skin, the absorption of each compound across the skin and into the receptor fluid at 72 hr was significantly (P < 0.05) less than through rat skin, reaching 0.7 +/- 0.1, 0.7 +/- 0.2, 18.8 +/- 1.3 and 37.8 +/- 6.9% (mean +/- SD, n = 2-7) of the applied dose for triclopyr BEE, nicotinic acid, phenol and benzoic acid, respectively. Occlusion of the skin surface with teflon caps often significantly (P < 0.05) enhanced the percutaneous absorption of the model compounds, although this effect was not uniform, varying with the compound under study and the skin (rat or human) used. When rat skin was occluded with teflon caps, the extent of absorption at 72 hr reached 8.6 +/- 0.8, 36.2 +/- 1.7 and 51.8 +/- 3.3% (mean +/- SD, n = 3-4) for nicotinic acid, phenol and benzoic acid, respectively. Corresponding values for human skin occluded with teflon caps were 3.3 +/- 1.6, 47.1 +/- 0.5 and 65.5 +/- 7.1% (mean +/- SD, n = 3-4). The experiments on the absorption of each model compound through rat and human skin were repeated and there was generally good agreement between the results from the two sets of experiments. The in vitro data reported compare favourably with data obtained by other workers using both in vitro and in vivo methodologies

  19. Strigolactone analogues and mimics derived from phthalimide, saccharine, p-tolylmalondialdehyde, benzoic and salicylic acid as scaffolds.

    PubMed

    Zwanenburg, Binne; Mwakaboko, Alinanuswe S

    2011-12-15

    A series of new strigolactone (SL) analogues is derived from simple and cheap starting materials. These SL analogues are designed using a working model. The first analogue is a modified Nijmegen-1, the second contains saccharin as substituent (bio-isosteric replacement of a carbonyl in Nijmegen-1 by a sulfonyl group) and the third one is derived from p-tolylmalondialdehyde. These new SL analogues are appreciably to highly active as germination stimulants of seeds of Striga hermonthica and Orobanche cernua. The SL analogue derived from saccharin is the most active one. A serendipitous and most rewarding finding is that the compound obtained by a direct coupling of saccharin with the chlorobutenolide exhibits a high germination activity especially towards O. cernua seeds. Two other SL mimics are obtained from benzoic and salicylic aid by a direct coupling reaction with chlorobutenolide, both of them are very active germinating agents. These SL mimics represent a new type of germination stimulants. A tentative molecular mechanism for the mode of action of these SL mimics has been proposed.

  20. Study on degradation kinetics of 2-(2-hydroxypropanamido) benzoic acid in aqueous solutions and identification of its major degradation product by UHPLC/TOF-MS/MS.

    PubMed

    Zhang, Qili; Guan, Jiao; Rong, Rong; Zhao, Yunli; Yu, Zhiguo

    2015-08-10

    A RP-HPLC method was developed and validated for the degradation kinetic study of 2-(2-hydroxypropanamido) benzoic acid (HPABA), a promising anti-inflammatory drug, which would provide a basis for further studies on HPABA. The effects of pH, temperature, buffer concentration and ionic strength on the degradation kinetics of HPABA were discussed. Experimental parameters such as degradation rate constants (k), activation energy (Ea), acid and alkali catalytic constants (k(ac), k(al)), shelf life (t1/2) and temperature coefficient (Q10) were calculated. The results indicated that degradation kinetics of HPABA followed zero-order reaction kinetics; degradation rate constants (k) of HPABA at different pH values demonstrated that HPABA was more stable in neutral and near-neutral conditions; the function of temperature on k obeyed the Arrhenius equation (r = 0.9933) and HPABA was more stable at lower temperature; with the increase of ionic strength and buffer concentration, the stability of HPABA was decreased. The major unknown degradation product of HPABA was identified by UHPLC/TOF-MS/MS with positive electrospray ionization. Results demonstrated that the hydrolysis product was the primary degradation product of HPABA and it was deduced as anthranilic acid.

  1. Ethanol Withdrawal Increases Glutathione Adducts of 4-Hydroxy-2-Hexenal but not 4-Hydroxyl-2-Nonenal in the Rat Cerebral Cortex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol withdrawal increases lipid peroxidation of the polyunsaturated fatty acid (PUFA) docosahexaenoate (DHA; 22:6; n-3) in the CNS. In order to further define the role of oxidative damage of PUFA during ethanol withdrawal, we measured levels of glutathione adducts of 4-hydroxy-2-hexenal (GSHHE) a...

  2. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    NASA Astrophysics Data System (ADS)

    Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu0.5L]n (1), [Cu(HL)2Cl2]n (2), [Cu(HL)2Cl2(H2O)] (3), [Cu(L)2(H2O)]n (4) and [Cu(L)(phen)(HCO2)]n (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl-, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units -Cu-O-Cu-O- are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated.

  3. Synthesis and antibacterial activities of 4-hydroxy-o-phenylphenol and 3,6-diallyl-4-hydroxy-o-phenylphenol against a cariogenic bacterium Streptococcus mutans OMZ 176.

    PubMed

    Bae, K H; Koo, S H; Seo, W J

    1991-03-01

    For the purpose of survey of the antibacterial activity against a cariogenic bacterium Streptococcus mutans OMZ 176 with the introduction of hydroxyl and allyl groups to o-phenylphenol (Fig. 2, 1), 4-hydroxy-o-phenylphenol (2), and 3,6-diallyl-4-hydroxy-o-phenylphenol (4) were synthesized, successively. The synthesized compounds, 2 and 4 showed more potent antibacterial activity than the starting material, 1. The hydroxyl group was supposed to the essential element for the antibacterial activity and the introduction of allyl group to phenolic ring to be another element to increase the activity.

  4. Application of ChemDraw NMR Tool: Correlation of Program-Generated (Super 13)C Chemical Shifts and pK[subscript a] Values of Para-Substituted Benzoic Acids

    ERIC Educational Resources Information Center

    Hongyi Wang

    2005-01-01

    A study uses the ChemDraw nuclear magnetic resonance spectroscopy (NMR) tool to process 15 para-substituted benzoic acids and generate (super 13)C NMR chemical shifts of C1 through C5. The data were plotted against their pK[subscript a] value and a fairly good linear fit was found for pK[subscript a] versus delta[subscript c1].

  5. Dielectric study of equimolar acetaminophen-aspirin, acetaminophen-quinidine, and benzoic acid-progesterone molecular alloys in the glass and ultraviscous states and their relevance to solubility and stability.

    PubMed

    Johari, G P; Kim, S; Shanker, Ravi M

    2010-03-01

    Equimolar mixtures of acetaminophen-aspirin, acetaminophen-quinidine, and benzoic acid-progesterone have been vitrified and dielectric properties of their glassy and ultraviscous alloys have been studied. For 20 K/min heating rate, their T(g)s are 266, 330, and 263 K, respectively. The relaxation has an asymmetric distribution of times, and the distribution parameter increases with increase in temperature. The dielectric relaxation time varies with T according to the Vogel-Fulcher-Tammann equation, log(10)(tau(0)) = A(VFT) + [B(VFT)/(T - T(0))], where A(VFT), B(VFT), and T(0) are empirical constants. The equilibrium permittivity is highest for the aspirin-acetaminophen and lowest for the benzoic acid-progesterone alloy, indicating a substantial interpharmaceutical hydrogen bonding that makes the alloy more stable against crystallization than the pure components. The benzoic acid-progesterone alloy is thermodynamically the most nonideal. It showed cold crystallization on heating, which is attributed to its relatively greater magnitude of the JG relaxation in relation to its alpha-relaxation. It is argued that the difference between the free energy of an alloy and the pure components would have an effect on the solubility. Studies of solution thermodynamics of a glassy molecular alloy may be useful for optimizing choice of components and composition to form molecular alloys and to impact drug delivery.

  6. Block of ATP-binding cassette B19 ion channel activity by 5-nitro-2-(3-phenylpropylamino)-benzoic acid impairs polar auxin transport and root gravitropism.

    PubMed

    Cho, Misuk; Henry, Elizabeth M; Lewis, Daniel R; Wu, Guosheng; Muday, Gloria K; Spalding, Edgar P

    2014-12-01

    Polar transport of the hormone auxin through tissues and organs depends on membrane proteins, including some B-subgroup members of the ATP-binding cassette (ABC) transporter family. The messenger RNA level of at least one B-subgroup ABCB gene in Arabidopsis (Arabidopsis thaliana), ABCB19, increases upon treatment with the anion channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), possibly to compensate for an inhibitory effect of the drug on ABCB19 activity. Consistent with this hypothesis, NPPB blocked ion channel activity associated with ABCB19 expressed in human embryonic kidney cells as measured by patch-clamp electrophysiology. NPPB inhibited polar auxin transport through Arabidopsis seedling roots similarly to abcb19 mutations. NPPB also inhibited shootward auxin transport, which depends on the related ABCB4 protein. NPPB substantially decreased ABCB4 and ABCB19 protein levels when cycloheximide concomitantly inhibited new protein synthesis, indicating that blockage by NPPB enhances the degradation of ABCB transporters. Impairing the principal auxin transport streams in roots with NPPB caused aberrant patterns of auxin signaling reporters in root apices. Formation of the auxin-signaling gradient across the tips of gravity-stimulated roots, and its developmental consequence (gravitropism), were inhibited by micromolar concentrations of NPPB that did not affect growth rate. These results identify ion channel activity of ABCB19 that is blocked by NPPB, a compound that can now be considered an inhibitor of polar auxin transport with a defined molecular target.

  7. Beneficial effects of Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimetic, in zymosan-induced shock

    PubMed Central

    Cuzzocrea, Salvatore; Costantino, Giuseppina; Mazzon, Emanuela; De Sarro, Angela; Caputi, Achille P

    1999-01-01

    The therapeutic efficacy of Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a novel superoxide dismutase mimetic which scavenges peroxynitrite, was investigated in rats subjected to shock induced by peritoneal injection of zymosan.Our data show that MnTBAP (given at 1, 3 and 10 mg kg−1 intraperitoneally, 1 and 6 h after zymosan injection) significantly reduce in dose dependent manner the development of peritonitis (peritoneal exudation, high nitrate/nitrite and peroxynitrite plasma levels, leukocyte infiltration and histological examination).Furthermore, our data suggest that there is a reduction in the lung, small intestine and liver myeloperoxidase (MPO) activity and lipid peroxidation activity from MnTBAP-treated rats.MnTBAP also reduced the appearance of nitrotyrosine immunoreactivity in the inflamed tissues.Furthermore, a significant reduction of suppression of mitochondrial respiration, DNA strand breakage and reduction of cellular levels of NAD+ was observed in ex vivo macrophages harvested from the peritoneal cavity of zymosan-treated rat.In vivo treatment with MnTBAP significantly reduced in a dose-dependent manner peroxynitrite formation and prevented the appearance of DNA damage, the decrease in mitochondrial respiration and the loss of cellular levels of NAD+.In conclusion our results showed that MnTBAP was effective in preventing the development of zymosan-induced shock. PMID:10578138

  8. Nonlinear optical studies on 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    NASA Astrophysics Data System (ADS)

    Matei, Andreea; Marinescu, Maria; Constantinescu, Catalin; Ion, Valentin; Mitu, Bogdana; Ionita, Iulian; Dinescu, Maria; Emandi, Ana

    2016-06-01

    We present results on a new, laboratory synthesized ferrocene-derivative, i.e. 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid. Thin films with controlled thickness are deposited by matrix-assisted pulsed laser evaporation (MAPLE), on quartz and silicon substrates, with the aim of evaluating the nonlinear optical properties for potential optoelectronic applications. Dimethyl sulfoxide was used as matrix, with 1% wt. concentration of the guest compound. The frozen target is irradiated by using a Nd:YAG laser (4ω/266 nm, 7 ns pulse duration, 10 Hz repetition rate), at low fluences ranging from 0.1 to 1 J/cm2. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to probe the surface morphology of the films. Fourier transform infrared (FTIR) and Raman spectroscopy reveal similar structure of the thin film material when compared to the starting material. The optical properties of the thin films are investigated by spectroscopic-ellipsometry (SE), and the refractive index dependence with respect to temperature is studied. The second harmonic generation (SHG) potential is assessed by using a femtosecond Ti:sapphire laser (800 nm, 60-100 fs pulse duration, 80 MHz repetition rate), at 200 mW maximum output power, revealing that the SHG signal intensity is strongly influenced by the films' thickness.

  9. Synthesis and spectroscopic characterization on 4-(2,5-di-2-thienyl-1H-pyrrol-1-yl) benzoic acid: A DFT approach.

    PubMed

    Kurt, M; Sas, E Babur; Can, M; Okur, S; Icli, S; Demic, S; Karabacak, M; Jayavarthanan, T; Sundaraganesan, N

    2016-01-05

    A complete structural and vibrational analysis of the 4-(2,5-di-2-thienyl-1H-pyrrol-1-yl) benzoic acid (TPBA), was carried out by ab initio calculations, at the density functional theory (DFT) method. Molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO) (13)C NMR and (1)H NMR chemical shift values of (TPBA), in the ground state have been calculated by using ab initio density functional theory (DFT/B3LYP) method with 6-311G(d,p) as basis set for the first time. Comparison of the observed fundamental vibrational modes of (TPBA) and calculated results by DFT/B3LYP method indicates that B3LYP level of theory giving yield good results for quantum chemical studies. Vibrational wavenumbers obtained by the DFT/B3LYP method are in good agreement with the experimental data. The study was complemented with a natural bond orbital (NBO) analysis, to evaluate the significance of hyperconjugative interactions and electrostatic effects on such molecular structure. By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals analysis and thermodynamic properties of TPBA were investigated using theoretical calculations.

  10. De novo Sequencing and Transcriptome Analysis of Pinellia ternata Identify the Candidate Genes Involved in the Biosynthesis of Benzoic Acid and Ephedrine

    PubMed Central

    Zhang, Guang-hui; Jiang, Ni-hao; Song, Wan-ling; Ma, Chun-hua; Yang, Sheng-chao; Chen, Jun-wen

    2016-01-01

    Background: The medicinal herb, Pinellia ternata, is purported to be an anti-emetic with analgesic and sedative effects. Alkaloids are the main biologically active compounds in P. ternata, especially ephedrine that is a phenylpropylamino alkaloid specifically produced by Ephedra and Catha edulis. However, how ephedrine is synthesized in plants is uncertain. Only the phenylalanine ammonia lyase (PAL) and relevant genes in this pathway have been characterized. Genomic information of P. ternata is also unavailable. Results: We analyzed the transcriptome of the tuber of P. ternata with the Illumina HiSeq™ 2000 sequencing platform. 66,813,052 high-quality reads were generated, and these reads were assembled de novo into 89,068 unigenes. Most known genes involved in benzoic acid biosynthesis were identified in the unigene dataset of P. ternata, and the expression patterns of some ephedrine biosynthesis-related genes were analyzed by reverse transcription quantitative real-time PCR (RT-qPCR). Also, 14,468 simple sequence repeats (SSRs) were identified from 12,000 unigenes. Twenty primer pairs for SSRs were randomly selected for the validation of their amplification effect. Conclusion: RNA-seq data was used for the first time to provide a comprehensive gene information on P. ternata at the transcriptional level. These data will advance molecular genetics in this valuable medicinal plant. PMID:27579029

  11. Theoretical investigation of some specific features of the electronic structure and optical properties of Benzoic Acid 2-Amino-4,6-Dimethylpyrimidine (1:1) co-crystals

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.

    2015-08-01

    Benzoic Acid 2-Amino-4,6-Dimethylpyrimidine (1:1) co-crystal have been comprehensively investigated by means of density functional theory. The electronic band structure show that the conduction band minimum (CBM) and the valence band maximum (VBM) are situated at the center of the Brillouin zone resulting in a direct band gap. Calculation were performed using the full potential linear augmented plane wave plus local orbitals (FPLAPW + lo) method in a scalar relativistic version as embodied in the WIEN 2 k code within the local density approximation (LDA), gradient approximation (PBE- GGA), Engel-Vosko generalized gradient approximation (EV- GGA) and the recently modified Becke-Johnson potential (mBJ). The calculated density of states explore that the VBM is mainly formed by N-p state while the CBM is formed by the strongly hybridized N-p and C-p states. There exists a strong hybridizations between C-s/p, H-s, N-s/p and O-s/p states above and below the Fermi level (EF). Which may led to covalent bonding between the states. To visualizes the charge transfer and the chemical bonding characters, the valence band's electronic charge density distribution were extensively investigated. The optical properties helps to get deep insight into the electronic structure therefore, details analysis to the calculated optical properties were performed. The optical properties confirm the existence of the band gap and the lossless regions.

  12. Synthesis, characterization, crystal structure and theoretical approach of Cu(II) complex with 4-{(Z)-[(2-hydroxybenzoyl)hydrazono]methyl}benzoic acid

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Liang; Liu, Zheng; Liu, Jie; Han, Guo-Cheng; Li, Yan-Hong

    2012-04-01

    The metal complex of [CuL2]·2DMF (L = 4-{(Z)-[(2-hydroxybenzoyl)hydrazono]methyl}benzoic acid, DMF = N,N-dimethylformamide) (1) had been synthesized and characterized by spectral method(IR), UV-Vis electronic absorption spectra, fluorescence spectra, elemental analysis, electrochemistry, thermal analysis (TG, DTG) and single crystal X-ray diffraction techniques. In the complex, the ligands act as univalent anion bidentate and coordination takes place in the enol tautomeric form with the enolic oxygen and azomethine nitrogen atoms. Molecular geometry from X-ray experiment of the title compound in the ground-state has been compared using the density functional method (B3LYP) and LANL2DZ basis set. DFT calculations at B3LYP/LANL2DZ level of theory prove that the electronic spectra of CuL2·2DMF is attributed to intra-complex electronic transitions as well as π-π* electronic transitions. Also, Mulliken charge analysis, natural bond orbitals (NBO), Wiberg bond index and frontier molecular orbitals (FMO) were performed at B3LYP/LANL2DZ level of theory. In addition, complex 1 exhibits strong photoluminescent emission at room temperature. The electrochemical studies reveal that redox of Cu2+/Cu+ in the complex are quasi-reversible processes. The result of TG analysis shows that the title complex was stable under 100.0 °C.

  13. Complexation of U(VI) with benzoic acid at variable temperatures (298-353 K): thermodynamics and crystal structures of U(VI)/benzoate complexes.

    PubMed

    Yang, Yanqiu; Teat, Simon J; Zhang, Zhicheng; Luo, Shunzhong; Rao, Linfeng

    2016-01-07

    Thermodynamics of the U(VI) complexation with benzoic acid (HL) was studied by spectrophotometry at varied temperatures (298-353 K) with constant ionic strength (1.05 mol kg(-1) NaClO4). Two U(VI) benzoate complexes, UO2L(+) and UO2(OH)L(aq), were identified and their formation constants determined. The formation of both complexes is endothermic and driven exclusively by entropy. Two types of U(VI)/benzoate complex crystals were synthesized from aqueous solutions at different pH and ligand/metal ratios. Their structures were determined by single-crystal X-ray diffractometry. One structure is a 1 : 3 U(VI) benzoate complex (Na[UO2(C7H5O2)3]·2H2O), each benzoate holding a bidentate coordination mode to U(VI) in the equatorial plane of UO2(2+). The other is a U(VI) hydroxobenzoate complex with unique μ3-OH bridging ([(UO2)2(C7H5O2)2(μ3-OH)2]·4H2O). In the structure, each UO2(2+) ion holds five coordination oxygens in its equatorial plane, two carboxylate oxygens from two benzoate ligands and three oxygens from three μ3-OH groups.

  14. Protective effects of hemin and tetrakis(4-benzoic acid)porphyrin on bacterial mutagenesis and mouse skin carcinogenesis induced by 7, 12-dimethylbenz[a]anthracene.

    PubMed

    Chung, W Y; Lee, J M; Lee, W Y; Surh, Y J; Park, K K

    2000-12-20

    Porphyrins which are widespread in nature can interfere with the actions of certain carcinogens and mutagens, and have also been used clinically in photodynamic therapy (PDT) of tumors. Porphyrins such as chlorophyll, chlorophyllin (CHL) and hemin are known to inactivate various mutagens by forming complexes with them. Tetrakis(4-benzoic acid)porphyrin (TBAP) has been developed as a photosensitizer for PDT and its metal complex, MnTBAP has been shown to be efficacious in a variety of in vitro and in vivo oxidative stress models of human diseases. In the present study, we have found that TBAP and hemin exert concentration-related inhibition of his(+) reversion in Salmonella typhimurium TA100 induced by 7, 12-dimethylbenz[a]anthracene (DMBA), and significantly reduced both incidence and multiplicity of skin tumors when topically applied prior to treatment of 12-O-tetradecanoylphorbol-13-acetate in female ICR mice. Covalent DNA binding of DMBA in mouse skin was also significantly inhibited by topical application of TBAP or hemin as well as CHL. These results suggest the chemopreventive potential of compounds containing a porphyrin nucleus.

  15. Aspergillus oryzae CsyB Catalyzes the Condensation of Two β-Ketoacyl-CoAs to Form 3-Acetyl-4-hydroxy-6-alkyl-α-pyrone*

    PubMed Central

    Hashimoto, Makoto; Koen, Tsukasa; Takahashi, Hiroaki; Suda, Chihiro; Kitamoto, Katsuhiko; Fujii, Isao

    2014-01-01

    The type III polyketide synthases from fungi produce a variety of secondary metabolites including pyrones, resorcinols, and resorcylic acids. We previously reported that CsyB from Aspergillus oryzae forms α-pyrone csypyrone B compounds when expressed in A. oryzae. Feeding experiments of labeled acetates indicated that a fatty acyl starter is involved in the reaction catalyzed by CsyB. Here we report the in vivo and in vitro reconstitution analysis of CsyB. When CsyB was expressed in Escherichia coli, we observed the production of 3-acetyl-4-hydroxy-α-pyrones with saturated or unsaturated straight aliphatic chains of C9–C17 in length at the 6 position. Subsequent in vitro analysis using recombinant CsyB revealed that CsyB could accept butyryl-CoA as a starter substrate and malonyl-CoA and acetoacetyl-CoA as extender substrates to form 3-acetyl-4-hydroxy-6-propyl-α-pyrone. CsyB also afforded dehydroacetic acid from two molecules of acetoacetyl-CoA. Furthermore, synthetic N-acetylcysteamine thioester of β-ketohexanoic acid was converted to 3-butanoyl-4-hydroxy-6-propyl-α-pyrone by CsyB. These results therefore confirmed that CsyB catalyzed the synthesis of β-ketoacyl-CoA from the reaction of the starter fatty acyl CoA thioesters with malonyl-CoA as the extender through decarboxylative condensation and further coupling with acetoacetyl-CoA to form 3-acetyl-4-hydroxy-6-alkyl-α-pyrone. CsyB is the first type III polyketide synthase that synthesizes 3-acetyl-4-hydroxy-6-alkyl-α-pyrone by catalyzed the coupling of two β-ketoacyl-CoAs. PMID:24895122

  16. Accumulation of hydroxyl lipids and 4-hydroxy-2-hexenal in live fish infected with fish diseases.

    PubMed

    Tanaka, Ryusuke; Shigeta, Kazuhiro; Sugiura, Yoshimasa; Hatate, Hideo; Matsushita, Teruo

    2014-04-01

    Hydroxy lipids (L-OH) and 4-hydroxy-2-hexenal (HHE) levels as well as other parameters such as lipid level, lipid class, fatty acid composition, and other aldehydes levels in the liver of diseased fish were investigated. Although significant differences in lipid level, lipid class, fatty acid composition, and other aldehyde levels were not always observed between normal and diseased fish, L-OH and HHE levels were significantly higher in the liver of the diseased fish than in that of the normal fish cultured with the same feeds under the same conditions. In the liver of puffer fish (Fugu rubripes) infected with Trichodina, L-OH and HHE levels significantly increased from 25.29±5.04 to 47.70 ± 5.27 nmol/mg lipid and from 299.79±25.25 to 1,184.40±60.27 nmol/g tissue, respectively. When the levels of HHE and other aldehydes in the liver of the normal and diseased puffer fish were plotted, a linear relationship with a high correlation coefficient was observed between HHE and propanal (r2=0.9447). Increased L-OH and HHE levels in the liver of the diseased fish and a high correlation between HHE and propanal in the liver of the normal and diseased fish were also observed in flat fish (Paralichthys olivaceus) infected with streptococcus, yellowtail (Seriola quinqueradiata) infected with jaundice, and amberjack (S. purpurascens) infected with Photobacterium damselae subsp. piscicida.

  17. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal

    PubMed Central

    Muñoz, Mario F.; Argüelles, Sandro

    2014-01-01

    Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown. PMID:24999379

  18. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.

    PubMed

    Ayala, Antonio; Muñoz, Mario F; Argüelles, Sandro

    2014-01-01

    Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.

  19. In-capillary derivatization with o-phthalaldehyde in the presence of 3-mercaptopropionic acid for the simultaneous determination of monosodium glutamate, benzoic acid, and sorbic acid in food samples via capillary electrophoresis with ultraviolet detection.

    PubMed

    Aung, Hnin-Pwint; Pyell, Ute

    2016-06-03

    For the rapid simultaneous determination of monosodium glutamate (MSG), benzoic acid (BA), and sorbic acid (SA) in canned food and other processed food samples, we developed a method that combines in-capillary derivatization with separation by capillary electrophoresis. This method employs the rapid derivatization of MSG with o-phthalaldehyde (OPA) in the presence of 3-mercaptopropionic acid (3-MPA) and enables the detection of the resulting OPA-MSG derivative and of non-derivatized BA and SA at 230nm. The composition of the background electrolyte and the parameters of derivatization and separation are as follows: 25mM borax containing 5mM OPA and 6mM 3-MPA, separation voltage 25mV, injection at 30mbar for 20s, and column temperature 25°C. Because of the high reaction rate and suitably adapted effective electrophoretic mobilities, band broadening due to the derivatization reaction at the start of the separation process is kept to a minimum. The optimized method is validated with respect to LOD, LOQ, linearity, recovery, and precision. This method can be applied to real samples such as soy, fish, oyster and sweet and sour chili sauces after application of appropriate clean-up steps. Mechanisms of zone broadening and zone focusing are discussed showing the validity of the employed theoretical approach regarding the dependence of the peak shape for OPA-MSG on the concentration of MSG in the sample.

  20. Quantitation of flavanols, proanthocyanidins, isoflavones, flavanones, dihydrochalcones, stilbenes, and benzoic Acid derivatives after identification by LC-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A general method was developed for the systematic quantitation of catechins, proanthocyanidins, isoflavones, flavanones, dihydrochalcones, stilbenes, and hydroxybenzoic acid derivatives (mainly hydrolyzable tannins) using the UV relative mole response factors (MRRF) of the reference standard from ea...

  1. Strategy for affinity maturation of an antibody with high evolvability to (4-hydroxy-3-nitrophenyl) acetyl hapten.

    PubMed

    Furukawa, Koji; Shimizu, Takeyuki; Murakami, Akikazu; Kono, Ryo; Nakagawa, Masatoshi; Sagawa, Takuma; Yamato, Ichiro; Azuma, Takachika

    2007-03-01

    In order to quantitate the contribution of amino acid replacements to an increase in affinity during affinity maturation, we measured thermodynamic parameters of the antigen-antibody interaction for a group of anti-(4-hydroxy-3-nitrophenyl) acetyl monoclonal antibodies whose differences in amino acid sequences had arisen only from somatic hypermutation. We prepared a common ancestor and hypothetical intermediate clones that might occur on the affinity maturation pathway, by employing site-directed mutagenesis. Isothermal calorimetric titration of the antigen-antibody reaction revealed that antibody evolution proceeds in two steps. The first step is driven by a decrease in enthalpy, in which two amino acid replacements in the VL region play an essential role. Further accumulation of amino acid replacements in VH and VL regions during the second step induce a progressive increase in affinity, which is driven by an increase in entropy, which has a cooperative mutational effect.

  2. Structural and Mechanistic Studies on Klebsiella pneumoniae 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2010-11-12

    The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structural isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.

  3. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal.

    PubMed

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence.

  4. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal

    PubMed Central

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A.; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence. PMID:25170083

  5. Carnosine is a quencher of 4-hydroxy-nonenal: through what mechanism of reaction?

    PubMed

    Aldini, Giancarlo; Carini, Marina; Beretta, Giangiacomo; Bradamante, Silvia; Facino, Roberto Maffei

    2002-11-15

    The aim of this study was to understand the mechanism of action through which carnosine (beta-alanyl-L-histidine) acts as a quencher of cytotoxic alpha,beta-unsaturated aldehydes, using 4-hydroxy-trans-2,3-nonenal (HNE) as a model aldehyde. In phosphate buffer solution (pH 7.4), carnosine was 10 times more active as an HNE quencher than L-histidine and N-acetyl-carnosine while beta-alanine was totally inactive; this indicates that the two constitutive amino acids act synergistically when incorporated as a dipeptide and that the beta-alanyl residue catalyzes the addition reaction of the histidine moiety to HNE. Two reaction products of carnosine were identified, in a pH-dependent equilibrium: (a) the Michael adduct, stabilized as a 5-member cyclic hemi-acetal and (b) an imine macrocyclic derivative. The adduction chemistry of carnosine to HNE thus appears to start with the formation of a reversible alpha,beta-unsaturated imine, followed by ring closure through an intra-molecular Michael addition. The biological role of carnosine as a quencher of alpha,beta-unsaturated aldehydes was verified by detecting carnosine-HNE reaction adducts in oxidized rat skeletal muscle homogenate.

  6. Comparison of the crystal structures of methyl 4-bromo-2-(meth-oxy-meth-oxy)benzoate and 4-bromo-3-(meth-oxy-meth-oxy)benzoic acid.

    PubMed

    Suchetan, P A; Suneetha, V; Naveen, S; Lokanath, N K; Krishna Murthy, P

    2016-04-01

    The title compounds, C10H11BrO4, (I), and C9H9BrO4, (II), are derivatives of bromo-hy-droxy-benzoic acids. Compound (II) crystallizes with two independent mol-ecules (A and B) in the asymmetric unit. In both (I) and (II), the O-CH2-O-CH3 side chain is not in its fully extended conformation; the O-C-O-C torsion angle is 67.3 (3) ° in (I), and -65.8 (3) and -74.1 (3)° in mol-ecules A and B, respectively, in compound (II). In the crystal of (I), mol-ecules are linked by C-H⋯O hydrogen bonds, forming C(5) chains along [010]. The chains are linked by short Br⋯O contacts [3.047 (2) Å], forming sheets parallel to the bc plane. The sheets are linked via C-H⋯π inter-actions, forming a three-dimensional architecture. In the crystal of (II), mol-ecules A and B are linked to form R 2 (2)(8) dimers via two strong O-H⋯O hydrogen bonds. These dimers are linked into ⋯A-B⋯A-B⋯A-B⋯ [C 2 (2)(15)] chains along [011] by C-H⋯O hydrogen bonds. The chains are linked by slipped parallel π-π inter-actions [inter-centroid distances = 3.6787 (18) and 3.8431 (17) Å], leading to the formation of slabs parallel to the bc plane.

  7. Peroxynitrite generated in the rat spinal cord induces oxidation and nitration of proteins: reduction by Mn (III) tetrakis (4-benzoic acid) porphyrin.

    PubMed

    Bao, Feng; DeWitt, Douglas S; Prough, Donald S; Liu, Danxia

    2003-01-15

    To determine whether peroxynitrite at the concentration and duration present after spinal cord injury induces protein oxidation and nitration in vivo, the peroxynitrite donor 3-morpholinosydnonimine (SIN-1) was administered into the gray matter of the rat spinal cord for 5 hr. The cords were removed at 6, 12, 24, and 48 hr after SIN-1 exposure, immunohistochemically stained with antibodies to dinitrophenyl (DNP) and nitrotyrosine (Ntyr), markers of protein oxidation and nitration, respectively, and the immunostained neurons were counted. The percentages of DNP-positive (P = 0.023-0.002) and Ntyr-positive (P < 0.001 for all) neurons were significantly higher in the SIN-1-exposed groups than in the ACSF controls at each time, suggesting that peroxynitrite induced intracellular oxidation and nitration of proteins. The percentages of DNP- and Ntyr-positive neurons were not significantly different over time in either SIN-1- or ACSF-exposed groups (P = 0.20-1.00). The percentage of DNP-positive neurons was 7.6 +/- 3% to 12 +/- 4.2% at 6-24 hr, and it was 14 +/- 2% to 19 +/- 2% at 6-24 hr for Ntyr-positive neurons after SIN-1-exposure, whereas both ranged over 2-3% in ACSF controls. Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP, a broad-spectrum scavenger of reactive species) significantly reduced the percentages of DNP- and Ntyr-positive neurons (P = 0.04 and 0.002, respectively) compared to a SIN-1-exposed, untreated group at 24 hr after SIN-1 exposure. There were no significant differences between MnTBAP-treated and ACSF controls (P = 0.7 for DNP and 0.2 for Ntyr). These results further demonstrate peroxynitrite-induced protein oxidation and nitration and the efficiency of MnTBAP in scavenging peroxynitrite.

  8. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    NASA Astrophysics Data System (ADS)

    Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2015-06-01

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere®). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.

  9. A co-crystal of nona-hydrated disodium(II) with mixed anions from m-chloro-benzoic acid and furosemide.

    PubMed

    London, Bianca King; Claville, Michelle O Fletcher; Babu, Sainath; Fronczek, Frank R; Uppu, Rao M

    2015-10-01

    In the title compound, [Na2(H2O)9](C7H4ClO2)(C12H10ClN2O5S) {systematic name: catena-poly[[[triaquasodium(I)]-di-μ-aqua-[triaquasodium(I)]-μ-aqua] 3-chlorobenzoate 4-chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoate]}, both the original m-chloro-benzoic acid and furosemide exist with deprotonated carboxyl-ates, and the sodium cations and water mol-ecules exist in chains with stoichiometry [Na2(OH2)9](2+) that propagate in the [-110] direction. Each of the two independent Na(+) ions is coordinated by three monodentate water mol-ecules, two double-water bridges, and one single-water bridge. There is considerable cross-linking between the [Na2(OH2)9](2+) chains and to furosemide sulfonamide and carboxyl-ate by inter-molecular O-H⋯O hydrogen bonds. All hydrogen-bond donors participate in a complex two-dimensional array parallel to the ab plane. The furosemide NH group donates an intra-molecular hydrogen bond to the carboxyl-ate group, and the furosemide NH2 group donates an intra-molecular hydrogen bond to the Cl atom and an inter-molecular one to the m-chloro-benzoate O atom. The plethora of hydrogen-bond donors on the cation/water chain leads to many large rings, up to graph set R 4 (4)(24), involving two chains and two furosemide anions. The chloro-benzoate is involved in only one R 2 (2)(8) ring, with two water mol-ecules cis-coordinated to Na. The furan O atom is not hydrogen bonded.

  10. Differentiation between stoichiometric and anticatalytic antioxidant properties of benzoic acid analogues: a structure/redox potential relationship study.

    PubMed

    Franck, Thierry; Mouithys-Mickalad, Ange; Robert, Thierry; Ghitti, Gianangelo; Deby-Dupont, Ginette; Neven, Philippe; Serteyn, Didier

    2013-11-25

    We investigated the antioxidant activities of some phenolic acid derivatives on a cell free system and on cellular and enzymatic models involved in inflammation. The stoichiometric antioxidant activities of phenolic acid derivatives were studied by measuring their capacity to scavenge the radical cation 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS(+)) and reactive oxygen species (ROS) produced by stimulated neutrophils. The anticatalytic antioxidant capacity of the molecules was evaluated on the activity of myeloperoxidase (MPO), an oxidant enzyme present in and released by the primary granules of neutrophils. The ROS produced by PMA-stimulated neutrophils were measured by lucigenin-enhanced chemiluminescence (CL) and the potential interaction of the molecules with MPO was investigated without interferences due to medium by Specific Immuno-Extraction Followed by Enzyme Detection (SIEFED). The antioxidant activities of the phenolic compounds were correlated to their redox potentials measured by differential pulse voltammetry (DPV), and discussed in relation to their molecular structure. The ability of the phenolic molecules to scavenge ABTS radicals and ROS derived from neutrophils was inversely correlated to their increased redox potential. The number of hydroxyl groups (three) and their position (catechol) were essential for their efficacy as stoichiometric antioxidants or scavengers. On MPO activity, the inhibitory capacity of the molecules was not really correlated with their redox potential. Likewise, for the inhibition of MPO activity the number of OH groups and mainly the elongation of the carboxylic group were essential, probably by facilitating the interaction with the active site or the structure of the enzyme. The redox potential measurement, combined with ABTS and CL techniques, seems to be a good technique to select stoichiometric antioxidants but not anticatalytic ones, as seen for MPO, what rather involves a direct interaction with

  11. Biosynthesis of biphenyls and benzophenones--evolution of benzoic acid-specific type III polyketide synthases in plants.

    PubMed

    Beerhues, Ludger; Liu, Benye

    2009-01-01

    Type III polyketide synthases (PKSs) generate a diverse array of secondary metabolites by varying the starter substrate, the number of condensation reactions, and the mechanism of ring closure. Among the starter substrates used, benzoyl-CoA is a rare starter molecule. Biphenyl synthase (BIS) and benzophenone synthase (BPS) catalyze the formation of identical linear tetraketide intermediates from benzoyl-CoA and three molecules of malonyl-CoA but use alternative intramolecular cyclization reactions to form 3,5-dihydroxybiphenyl and 2,4,6-trihydroxybenzophenone, respectively. In a phylogenetic tree, BIS and BPS group together closely, indicating that they arise from a relatively recent functional diversification of a common ancestral gene. The functionally diverse PKSs, which include BIS and BPS, and the ubiquitously distributed chalcone synthases (CHSs) form separate clusters, which originate from a gene duplication event prior to the speciation of the angiosperms. BIS is the key enzyme of biphenyl metabolism. Biphenyls and the related dibenzofurans are the phytoalexins of the Maloideae. This subfamily of the Rosaceae includes a number of economically important fruit trees, such as apple and pear. When incubated with ortho-hydroxybenzoyl (salicoyl)-CoA, BIS catalyzes a single decarboxylative condensation with malonyl-CoA to form 4-hydroxycoumarin. A well-known anticoagulant derivative of this enzymatic product is dicoumarol. Elicitor-treated cell cultures of Sorbus aucuparia also formed 4-hydroxycoumarin when fed with the N-acetylcysteamine thioester of salicylic acid (salicoyl-NAC). BPS is the key enzyme of benzophenone metabolism. Polyprenylated benzophenone derivatives with bridged polycyclic skeletons are widely distributed in the Clusiaceae (Guttiferae). Xanthones are regioselectively cyclized benzophenone derivatives. BPS was converted into a functional phenylpyrone synthase (PPS) by a single amino acid substitution in the initiation/elongation cavity. The

  12. Luminescence and Electronic Spectral Studies of Some Synthesized Lanthanide Complexes Using Benzoic Acid Derivative and o-Phenanthroline.

    PubMed

    Wankar, Sneha; Limaye, S N

    2015-07-01

    Lanthanide complexes of p-nitrobenzoic acid(p-NBA) and o-phenanthroline(o-phen) namely [Ln2(Phen)2(p-NBA)3(NO3)2].2H2O where, Ln = Sm(III),Tb(III),Dy(III) and [Eu2(Phen)2(p-NBA)3].4H2O were synthesized and further characterized by Elemental analysis, UV spectroscopy, IR spectroscopy, (1)HNMR spectroscopy. Luminescence measurements were performed on all compounds in ethanolic solution. These complexes have showed narrow emission indicating that the organic ligands are better energy absorber and capable of transferring energy to the Ln (III) ion. Furthermore, we reported electronic spectral studies on [Eu2 (Phen)2 (p-NBA)3].4H2O in order to calculate following parameters, viz: Oscillator strength (f), Judd-Ofelt parameters Ωλ (λ = 2,4,6) and Radiative parameters. [Eu2 (o-Phen)2 (p-NBA)3].4H2O showed the strongest emission at 613 nm corresponds to (5)D0→(7)F2 hypersensitive transition, this emission is very sensitive to the environment. However, the larger value of Ω2 supports the presence of the hypersensitive transition (5)D0→(7)F2 which strictly depends on the nature of ligand. All electronic spectral parameters were calculated systemically.

  13. Utilization of oriented crystal growth for screening of aromatic carboxylic acids cocrystallization with urea

    NASA Astrophysics Data System (ADS)

    Przybyłek, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław; Mroczyńska, Karina; Cysewski, Piotr

    2016-01-01

    The possibility of molecular complex formation in the solid state of urea with benzoic acid analogues was measured directly on the crystallite films deposited on the glass surface using powder X-ray diffractometry (PXRD). Obtained solid mixtures were also analyzed using Fourier transform infrared spectroscopy (FTIR). The simple droplet evaporation method was found to be efficient, robust, fast and cost-preserving approach for first stage cocrystal screening. Additionally, the application of orientation effect to cocrystal screening simplifies the analysis due to damping of majority of diffraction signals coming from coformers. During validation phase the proposed approach successfully reproduced both positive cases of cocrystallization (urea:salicylic acid and urea:4-hydroxy benzoic acid) as well as pairs of co-formers immiscible in the solid state (urea:benzoic acid and urea:acetylsalicylic acids). Based on validated approach new cocrystals of urea were identified in complexes with 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 3,5-dihydroxybenzoic acid. In all cases formation of multicomponent crystal phase was confirmed by the appearance of new reflexes on the diffraction patterns and FTIR absorption band shifts of O-H and N-H groups.

  14. Fluorescence enhancement of europium(III) perchlorate by benzoic acid on bis(benzylsulfinyl)methane complex and its binding characteristics with the bovine serum albumin (BSA).

    PubMed

    Zhang, Jing; Li, Wen-Xian; Ao, Bo-Yang; Feng, Shu-Yan; Xin, Xiao-Dong

    2014-01-24

    A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane L, was synthesized by a new method. Its novel ternary complex, EuL2.5⋅L'·(ClO4)2⋅5H2O, has been synthesized [using L as the first ligand, and benzoic acid L' as the second ligand], and characterized by elemental analysis, molar conductivity, coordination titration analysis, FTIR, TG-DSC, (1)H NMR and UV-vis. In order to study the effect of the second ligand on the fluorescence properties of rare-earth sulfoxide complex, a novel binary complex EuL2.5·(ClO4)3·3H2O has been synthesized. Photoluminescent measurement showed that the first ligand L could efficiently transfer the energy to Eu(3+) ions in the complex. Furthermore, the detailed luminescence analyses on the rare earth complexes indicated that the ternary Eu (III) complex manifested stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary Eu (III) materials. After introducing the second ligand L', the fluorescence emission intensities and fluorescence lifetimes of the ternary complex enhanced more obviously than the binary complex. This illustrated that the presence of both the first ligand L and the second ligand L' could sensitize fluorescence intensities of Eu (III) ions. The fluorescence spectra, fluorescence lifetime and phosphorescence spectra were also discussed. To explore the potential biological value of Eu (III) complexes, the binding interaction among Eu (III) complexes and bovine serum albumin (BSA) was studied by fluorescence spectrum. The result indicated that the reaction between Eu (III) complexes and BSA was a static quenching procedure. The binding site number, n, of 0.60 and 0.78, and binding constant, Ka, of 0.499 and 4.46 were calculated according to the double logarithm regression equation, respectively for EuL2.5⋅L'⋅(ClO4)2⋅5H2O and EuL2.5⋅(ClO4)3⋅3H2O systems.

  15. Fluorescence enhancement of europium(III) perchlorate by benzoic acid on bis(benzylsulfinyl)methane complex and its binding characteristics with the bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Li, Wen-Xian; Ao, Bo-Yang; Feng, Shu-Yan; Xin, Xiao-Dong

    2014-01-01

    A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane L, was synthesized by a new method. Its novel ternary complex, EuL2.5ṡL‧·(ClO4)2ṡ5H2O, has been synthesized [using L as the first ligand, and benzoic acid L‧ as the second ligand], and characterized by elemental analysis, molar conductivity, coordination titration analysis, FTIR, TG-DSC, 1H NMR and UV-vis. In order to study the effect of the second ligand on the fluorescence properties of rare-earth sulfoxide complex, a novel binary complex EuL2.5·(ClO4)3·3H2O has been synthesized. Photoluminescent measurement showed that the first ligand L could efficiently transfer the energy to Eu3+ ions in the complex. Furthermore, the detailed luminescence analyses on the rare earth complexes indicated that the ternary Eu (III) complex manifested stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary Eu (III) materials. After introducing the second ligand L‧, the fluorescence emission intensities and fluorescence lifetimes of the ternary complex enhanced more obviously than the binary complex. This illustrated that the presence of both the first ligand L and the second ligand L‧ could sensitize fluorescence intensities of Eu (III) ions. The fluorescence spectra, fluorescence lifetime and phosphorescence spectra were also discussed. To explore the potential biological value of Eu (III) complexes, the binding interaction among Eu (III) complexes and bovine serum albumin (BSA) was studied by fluorescence spectrum. The result indicated that the reaction between Eu (III) complexes and BSA was a static quenching procedure. The binding site number, n, of 0.60 and 0.78, and binding constant, Ka, of 0.499 and 4.46 were calculated according to the double logarithm regression equation, respectively for EuL2.5ṡL‧ṡ(ClO4)2ṡ5H2O and EuL2.5ṡ(ClO4)3ṡ3H2O systems.

  16. Molecular dynamics simulations of organic crystal dissolution: The lifetime and stability of the polymorphic forms of para-amino benzoic acid in aqueous environment

    NASA Astrophysics Data System (ADS)

    Toroz, D.; Hammond, R. B.; Roberts, K. J.; Harris, S.; Ridley, T.

    2014-09-01

    Para-amino benzoic acid (PABA) manifests crystalline solid-state properties that are typical of a class of chemical compounds with important industrial applications. Hence, it is particularly worthwhile to investigate the lifetime and stability of representative molecular-clusters of two polymorphic forms of PABA in aqueous solution using molecular dynamics simulations. Simulations of 5 ns duration in the isothermal-isobaric ensemble (constant particle number, pressure and temperature (NPT) ensemble) were performed for the two polymorphic forms at three different temperatures 0 °C, 50 °C and 100 °C. The simulations revealed that at 0 °C the representative molecular-clusters of the two polymorphic forms remain ordered while at 50 °C the molecular packing within the clusters becomes partially disordered for both polymorphic forms and at 100 °C the clusters lose long-range order rapidly and come to resemble liquid drops. Care should be taken when assessing the relative stability of polymorphic forms, as a function of temperature, from such computational experiments which explore the dissolution of nano-scale crystals. The long range order of the clusters of the α-form at 50 °C and 100 °C was, respectively, partially and completely lost after 5 ns which merits further investigation given that the α-form is the high-temperature stable polymorph. Importantly, the initial shape of clusters, as well as the number of solute molecules they contained, affected the extent to which order was lost and how rapidly the loss occurred. Given that the classical nucleation theory predicts a finite probability that clusters significantly larger than the critical size, in terms of number of molecules, may dissolve, building clusters containing a greater number of molecules could improve the simulated stability of the α polymorph at 50 °C and 100 °C. Furthermore, the simulations revealed that the selection of a suitable electrostatic potential is very important for the

  17. 1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane methanesulfonate (SC-435), an ileal apical sodium-codependent bile acid transporter inhibitor alters hepatic cholesterol metabolism and lowers plasma low-density lipoprotein-cholesterol concentrations in guinea pigs.

    PubMed

    West, Kristy L; Ramjiganesh, Tripurasundari; Roy, Suheeta; Keller, Bradley T; Fernandez, Maria Luz

    2002-10-01

    Male Hartley guinea pigs (10/group) were assigned either to a control diet (no drug treatment) or to diets containing 0.4, 2.2, or 7.3 mg/day of an ileal apical sodium-codependent bile acid transporter (ASBT) inhibitor, 1-[4-[4[(4R,5R)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2] octane methanesulfonate (SC-435). Based on food consumption, guinea pigs received 0, 0.8, 3.7, or 13.4 mg/kg/day of the ASBT inhibitor. The amount of cholesterol in the four diets was maintained at 0.17%, equivalent to 1200 mg/day in the human situation. Guinea pigs treated with 13.4 mg/kg/day SC-435 had 41% lower total cholesterol and 44% lower low-density lipoprotein (LDL)-cholesterol concentrations compared with control (P < 0.01), whereas no significant differences were observed with either of the lower doses of SC-435. Hepatic cholesterol esters were significantly reduced by 43, 56, and 70% in guinea pigs fed 0.8, 3.7, and 13.4 mg/kg/day of the ASBT inhibitor, respectively (P < 0.01). In addition, the highest dose of the inhibitor resulted in a 42% increase in the number of very low-density lipoprotein (VLDL) triacylglycerol molecules and a larger VLDL diameter compared with controls (P < 0.05). Acyl-CoA cholesterol/acyltransferase activity was 30% lower with the highest dose treatment, whereas cholesterol 7alpha-hydroxylase, the regulatory enzyme of bile acid synthesis, was 30% higher with the highest ASBT inhibitor dose (P < 0.05). Furthermore, bile acid excretion increased 2-fold with the highest dose of SC-435 compared with the control group (P < 0.05). These results suggest that the reduction in total and LDL-cholesterol concentrations by the ASBT inhibitor is a result of alterations in hepatic cholesterol metabolism due to modifications in the enterohepatic circulation of bile acids.

  18. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, D. K.; Kawamura, K.; Lazaar, M.; Kunwar, B.; Boreddy, S. K. R.

    2015-09-01

    Size-segregated aerosols (9-stages from < 0.43 to > 11.3 μm in diameter) were collected at Cape Hedo, Okinawa in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC) and major ions. In all the size-segregated aerosols, oxalic acid (C2) was found as the most abundant species followed by malonic and succinic acids whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 μm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 μm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. These results imply that water-soluble species in the marine aerosols could act as cloud condensation nuclei (CCN) to develop the cloud cover over the western North Pacific Rim. The organic species are likely produced by a combination of gas-phase photooxidation, and aerosol-phase or in-cloud processing during long-range transport. The coarse mode peaks of malonic and succinic acids were obtained in the samples with marine air masses, suggesting that they may be associated with the reaction on sea salt particles. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest their production by photooxidation of biogenic unsaturated fatty acids via heterogeneous reactions on sea salt particles.

  19. The Ethylene Ketal Protecting Group Revisited: The Synthesis of 4-Hydroxy-4, 4-Diphenyl-2-Butanone

    ERIC Educational Resources Information Center

    Baar, Marsha R.; Russell, Charles E.; Wusthoiz, Kristen L.

    2005-01-01

    An experiment to demonstrate the use of ethylene ketal as a protecting group, one that can be completed in four lab periods, is described. The hydroxy ketone like 4-hydroxy-4, 4-diphenyl-2-butanone formed during the reaction can be identified by its melting point, IR, and (super 1)H NMR.

  20. Fischer indolisation of N-(α-ketoacyl)anthranilic acids into 2-(indol-2-carboxamido)benzoic acids and 2-indolyl-3,1-benzoxazin-4-ones and their NMR study.

    PubMed

    Proisl, Karel; Kafka, Stanislav; Urankar, Damijana; Gazvoda, Martin; Kimmel, Roman; Košmrlj, Janez

    2014-12-21

    N-(α-ketoacyl)anthranilic acids reacted with phenylhydrazinium chloride in boiling acetic acid to afford 2-(indol-2-carboxamido)benzoic acids in good to excellent yields and 2-indolyl-3,1-benzoxazin-4-ones as by-products. The formation of the latter products could easily be suppressed by a hydrolytic workup. Alternatively, by increasing the reaction temperature and/or time, 2-indolyl-3,1-benzoxazin-4-ones can be obtained exclusively. Optimisations of the reaction conditions as well as the scope and the course of the transformations were investigated. The products were characterized by (1)H, (13)C and (15)N NMR spectroscopy. The corresponding resonances were assigned on the basis of the standard 1D and gradient selected 2D NMR experiments ((1)H-(1)H gs-COSY, (1)H-(13)C gs-HSQC, (1)H-(13)C gs-HMBC) with (1)H-(15)N gs-HMBC as a practical tool to determine (15)N NMR chemical shifts at the natural abundance level of (15)N isotope.

  1. Stabilization of two smallest possible diastereomeric β-hairpins in a water soluble tetrapeptide containing non-coded α-amino isobutyric acid (Aib) and m-amino benzoic acid

    NASA Astrophysics Data System (ADS)

    Dutt, Anita; Dutta, Arpita; Kar, Sudeshna; Koley, Pradyot; Drew, Michael G. B.; Pramanik, Animesh

    2009-06-01

    Single crystal X-ray diffraction study reveals that the water soluble tetrapeptide H 2N-Ile-Aib-Leu- m-ABA-CO 2H, containing non-coded Aib (α-amino isobutyric acid) and m-ABA ( meta-amino benzoic acid), crystallizes with two smallest possible diastereomeric β-hairpin molecules in the asymmetric unit. Although in both of the molecules the chiralities at Ile(1) and Leu(3) are S, a conformational reversal in the back bone chain is observed to produce the β-hairpins with β-turn conformations of type II and II'. Interestingly Aib which is known to adopt helical conformation, adopts unusual semi-extended conformation with ϕ: -49.5(5)°, ψ: 135.2(5)° in type II and ϕ: 50.6(6)°, ψ: -137.0(4)° in type II' for occupying the i + 1 position of the β-turns. The two hairpin molecules are further interlocked through intermolecular hydrogen bonds and electrostatic interactions between - CO2- and - +NH 3 groups to form dimeric supramolecular β-hairpin aggregate in the crystal state. The CD measurement and 2D NMR study of the peptide in aqueous medium support the existence of β-hairpin structure in water.

  2. Two di­alkyl­ammonium salts of 2-amino-4-nitro­benzoic acid: crystal structures and Hirshfeld surface analysis

    PubMed Central

    Wardell, James L.; Jotani, Mukesh M.; Tiekink, Edward R. T.

    2016-01-01

    The crystal structures of two ammonium salts of 2-amino-4-nitro­benzoic acid are described, namely di­methyl­aza­nium 2-amino-4-nitro­benzoate, C2H8N+·C7H5N2O4 −, (I), and di­butyl­aza­nium 2-amino-4-nitro­benzoate, C8H20N+·C7H5N2O4 −, (II). The asymmetric unit of (I) comprises a single cation and a single anion. In the anion, small twists are noted for the carboxyl­ate and nitro groups from the ring to which they are connected, as indicated by the dihedral angles of 11.45 (13) and 3.71 (15)°, respectively; the dihedral angle between the substituents is 7.9 (2)°. The asymmetric unit of (II) comprises two independent pairs of cations and anions. In the cations, different conformations are noted in the side chains in that three chains have an all-trans [(+)-anti­periplanar] conformation, while one has a distinctive kink resulting in a (+)-synclinal conformation. The anions, again, exhibit twists with the dihedral angles between the carboxyl­ate and nitro groups and the ring being 12.73 (6) and 4.30 (10)°, respectively, for the first anion and 8.1 (4) and 12.6 (3)°, respectively, for the second. The difference between anions in (I) and (II) is that in the anions of (II), the terminal groups are conrotatory, forming dihedral angles of 17.02 (8) and 19.0 (5)°, respectively. In each independent anion of (I) and (II), an intra­molecular amino-N—H⋯O(carboxyl­ate) hydrogen bond is formed. In the crystal of (I), anions are linked into a jagged supra­molecular chain by charge-assisted amine-N—H⋯O(carboxyl­ate) hydrogen bonds and these are connected into layers via charge-assisted ammonium-N—H⋯O(carboxyl­ate) hydrogen bonds. The resulting layers stack along the a axis, being connected by nitro-N—O⋯π(arene) and methyl-C—H⋯O(nitro) inter­actions. In the crystal of (II), the anions are connected into four-ion aggregates by charge-assisted amino-N—H⋯O(carboxyl­ate) hydrogen bonding. The formation of ammonium

  3. Relationship between 4-hydroxy-2-hexenal contents and commercial grade by organoleptic judgement in Japanese dried laver Porphyra spp.

    PubMed

    Tanaka, Ryusuke; Ishimaru, Mami; Hatate, Hideo; Sugiura, Yoshimasa; Matsushita, Teruo

    2016-12-01

    To evaluate the correlation between the commercial grade determined by organoleptic judgment panel and chemical substances in dried laver Porphyra spp., we analyzed the contents of free amino acids, 5'-nucleotides, total lipids, fatty acids, α-tocopherol, lipophilic pigments, and aldehydes in several grades of laver that had been classified by an organoleptic judgment panel. Compared with the lower-grade laver samples, the excellent-grade laver samples contained higher concentrations of free amino acids, 5'-nucleotides, total lipids, α-tocopherol, chlorophyll a, and β-carotene and lower concentrations of aldehydes such as 4-hydroxy-2-hexenal (HHE), propanal, butanal, and 1-hexanal, which are formed during lipid peroxidation of n-3 or n-6 polyunsaturated fatty acids. In addition, the HHE content was strongly correlated with the propanal content in the analyzed laver (r(2)=0.9123). These results showed that the commercial grade assigned by an organoleptic judgment panel was correlated with chemical substances associated with color, taste, and the prevention of lipid oxidation.

  4. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Lazaar, Manuel; Kunwar, Bhagawati; Boreddy, Suresh K. R.

    2016-04-01

    Size-segregated aerosols (nine stages from < 0.43 to > 11.3 µm in diameter) were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid, and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC), and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, and MSA-). In all the size-segregated aerosols, oxalic acid (C2) was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65-1.1 µm) whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at coarse mode (3.3-4.7 µm). Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2-C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r = 0.86-0.99), indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r = 0.82-0.95) further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r = 0.85-0.96), which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  5. Investigations on the pharmacokinetics of trofosfamide and its metabolites-first report of 4-hydroxy-trofosfamide kinetics in humans.

    PubMed

    Preiss, Rainer; Baumann, Frank; Stefanovic, Dragan; Niemeyer, Ulf; Pönisch, Wolfgang; Niederwieser, Dietger

    2004-06-01

    Trofosfamide (TRO), like cyclophosphamide (CYCLO) and ifosfamide (IFO), is a prodrug oxazaphosphorine derivative that requires hepatic biotransformation to form the cytotoxically active 4-hydroxy derivative (4-hydroxy-TRO). Individual 4-hydroxyoxazaphosphorines and 4-hydroxy-TRO itself have not been demonstrated in humans up to now. For investigation of the principal pharmacokinetics of TRO and its metabolites, six tumour patients (49-65 years of age, Karnofsky index >70%) with normal liver and renal function were given a single oral dose of 600 mg/m(2) TRO. Plasma was sampled using a bedside technique. Individual 4-hydroxyoxazaphosphorines and TRO together with further metabolites were determined by a specially developed HPLC-UV method and a HPLC-MS method, respectively. With a short apparent half-life (1.2 h) and high apparent clearance (Cl/F 4.0 l/min), TRO was very quickly eliminated from plasma and highly converted to its metabolites, mainly 4-hydroxy-TRO and IFO. In relation to the AUC values of TRO (1.0) the following molar quotients were calculated: 1.59 (4-hydroxy-TRO), 0.40 (4-hydroxy-IFO), 6.90 (IFO) and 0.74 (CYCLO). C(max) values were in the range 10-13 micromol/l for TRO, 4-hydroxy-TRO and IFO and in the range 1.5-4.0 micromol/l for CYCLO, 2- and 3-dechloroethyl-IFO and 4-hydroxy-IFO. Kinetic data indicate that 4-hydroxy-IFO is formed by both hydroxylation of TRO and exocyclic N-dechloroethylation of 4-hydroxy-TRO. 4-hydroxy-CYCLO was not detected above the quantification limit of the method. Only mild haemodepressive side effects were observed after oral administration of 600 mg/m(2) TRO. In relation to known data for IFO, TRO is much more 4-hydroxylated than IFO. The high 4-hydroxy-TRO/TRO ratio found suggests that TRO is a promising tumourstatic agent.

  6. Reprint of: Liquid chromatographic enzymatic studies with on-line Beta-secretase immobilized enzyme reactor and 4-(4-dimethylaminophenylazo) benzoic acid/5-[(2-aminoethyl) amino] naphthalene-1-sulfonic acid peptide as fluorogenic substrate.

    PubMed

    De Simone, Angela; Seidl, Claudia; Santos, Cid Aimbiré M; Andrisano, Vincenza

    2014-10-01

    High throughput screening (HTS) techniques are required for the fast hit inhibitors selection in the early discovery process. However, in Beta-secretase (BACE1) inhibitors screening campaign, the most frequently used methoxycoumarin based peptide substrate (M-2420) is not widely applicable when aromatic or heterocycle compounds of natural source show auto-fluorescence interferences. Here, in order to overcome these drawbacks, we propose the use of a highly selective 4-(4-dimethylaminophenylazo)benzoic acid/5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid (DABCYL/1,5-EDANS) based peptide substrate (Substrate IV), whose cleavage product is devoid of spectroscopic interference. HrBACE1-IMER was prepared and characterized in terms of units of immobilised hrBACE1. BACE1 catalyzed Substrate IV cleavage was on-line kinetically characterized in terms of KM and vmax, in a classical Michaelis and Menten study. The on-line kinetic constants were found consistent with those obtained with the in solution fluorescence resonance energy transfer (FRET) standard method. In order to further validate the use of Substrate IV for inhibition studies, the inhibitory potency of the well-known BACE1 peptide InhibitorIV (IC₅₀: 0.19 ± 0.02 μM) and of the natural compound Uleine (IC₅₀: 0.57 ± 0.05) were determined in the optimized on-line hrBACE1-IMER. The IC₅₀ values on the hrBACE1-IMER system were found in agreement with that obtained by the conventional methods confirming the applicability of Substrate IV for on-line BACE1 kinetic and inhibition studies.

  7. Liquid chromatographic enzymatic studies with on-line Beta-secretase immobilized enzyme reactor and 4-(4-dimethylaminophenylazo) benzoic acid/5-[(2-aminoethyl) amino] naphthalene-1-sulfonic acid peptide as fluorogenic substrate.

    PubMed

    De Simone, Angela; Seidl, Claudia; Santos, Cid Aimbiré M; Andrisano, Vincenza

    2014-03-15

    High throughput screening (HTS) techniques are required for the fast hit inhibitors selection in the early discovery process. However, in Beta-secretase (BACE1) inhibitors screening campaign, the most frequently used methoxycoumarin based peptide substrate (M-2420) is not widely applicable when aromatic or heterocycle compounds of natural source show auto-fluorescence interferences. Here, in order to overcome these drawbacks, we propose the use of a highly selective 4-(4-dimethylaminophenylazo)benzoic acid/5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid (DABCYL/1,5-EDANS) based peptide substrate (Substrate IV), whose cleavage product is devoid of spectroscopic interference. HrBACE1-IMER was prepared and characterized in terms of units of immobilised hrBACE1. BACE1 catalyzed Substrate IV cleavage was on-line kinetically characterized in terms of KM and vmax, in a classical Michaelis and Menten study. The on-line kinetic constants were found consistent with those obtained with the in solution fluorescence resonance energy transfer (FRET) standard method. In order to further validate the use of Substrate IV for inhibition studies, the inhibitory potency of the well-known BACE1 peptide InhibitorIV (IC50: 0.19±0.02μM) and of the natural compound Uleine (IC50: 0.57±0.05) were determined in the optimized on-line hrBACE1-IMER. The IC50 values on the hrBACE1-IMER system were found in agreement with that obtained by the conventional methods confirming the applicability of Substrate IV for on-line BACE1 kinetic and inhibition studies.

  8. Syntheses, structures, and properties of Co(II)/Zn(II) mixed-ligand coordination polymers based on 4-[(3,5-dinitrobenzoyl)amino]benzoic acid and 1,4-bis(1-imidazolyl) benzene

    SciTech Connect

    Yin, Fei; Chen, Jing; Liang, Yongfeng; Zou, Yang; Yinzhi, Jiang; Xie, Jingli

    2015-05-15

    Two coordination polymers [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4} (1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5} (2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been solvothermally synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD) and thermogravimetric (TG) analyses. Complexes 1 and 2 are isostructures and each displays an one-dimensional (1D) zigzag chain, which further forms a 3D supramolecular architecture with 1-D channels via inter-chain π–π interactions and hydrogen bonds. Moreover, the magnetic properties of 1 and fluorescent properties of 2 have been investigated. - Graphical abstract: Two coordination supramolecular frameworks [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4}(1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5}(2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been synthesized and characterized by X-ray single-crystal diffraction. Their thermal, magnetic and fluorescent properties have also been studied. - Highlights: • Two isomorphic Co(II)/Zn(II) complexes with the mixed-ligands have been synthesized. • Hydrogen bonds and π–π stacking interactions directed the final 3-D architecture assembly. • Both Co(II) and Zn(II) complexes show good thermal stability. • Co complex exhibits antiferromagnetic interaction. • The fluorescent property of Zn(II) complex has been investigated in the solid state.

  9. E-4-hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures.

    PubMed Central

    Montine, T. J.; Amarnath, V.; Martin, M. E.; Strittmatter, W. J.; Graham, D. G.

    1996-01-01

    Lipid peroxidation increases with age in brain and is elevated further in Alzheimer's disease. E-4-hydroxy-2-nonenal and malondialdehyde are products of lipid peroxidation that can adduct and cross-link protein. Neurofibrillary tangles, a feature of Alzheimer's disease composed mostly of tau protein, contain cross-linked and ubiquitin-conjugated protein. In P19 neuroglial cultures, E-4-hydroxy-2-nonenal was a potent cytotoxin that cross-linked cytoskeletal proteins, including tau into high molecular weight species that were conjugated with ubiquitin. Malondialdehyde formed monoadducts with cell protein but did not cross-link and was not cytotoxic. A non-crosslinking analogue of E-4-hydroxy-2-nonenal was not cytotoxic. E-4-Hydroxy-2-nonenal may contribute to neurodegeneration and neurofibrillary tangle formation in Alzheimer's disease. Images Figure 2 Figure 3 PMID:8546230

  10. Bis[(E)-4-(hydroxy-imino-meth-yl)pyridinium] oxalate.

    PubMed

    Seidel, Rüdiger W; Winter, Manuela V; Oppel, Iris M

    2007-12-06

    The formula unit of the title compound, 2C(6)H(7)N(2)O(+)·C(2)O(4) (2-), comprises two symmetry-equivalent 4-(hydroxy-imino-meth-yl)-pyridinium cations on general positions, linked through hydrogen bonding via an oxalate anion that resides on a crystallographic centre of symmetry. The crystal structure consists of infinite chains of cations and oxalate anions directed by O-H⋯O and multicentre N-H⋯O inter-molecular hydrogen-bonding inter-actions.

  11. Synthesis, structural characterization and Hirshfeld analysis studies of three novel co-crystals of trans-4-[(2-amino-3,5-dibrobenzyl) amino] cyclohexanol with hydroxyl benzoic acids

    NASA Astrophysics Data System (ADS)

    Ma, Yu-heng; Lou, Ming; Sun, Qing-yang; Ge, Shu-wang; Sun, Bai-wang

    2015-03-01

    Combination of active pharmaceutical ingredients, trans-4-[(2-amino-3,5-dibrobenzyl) amino] cyclohexanol (AMB) and some organic acids, e.g., p-hydroxybenzoic acid (PHBA), m-hydroxybenzoic acid (MHBA), and 3,4-dihydroxy benzoic acid (DHBA), yield three novel co-crystals characterized by X-ray single-crystal, Fluorescence spectroscopy and thermal analysis (DSC and TGA), which included co-crystal 1 with 2:2: 1 stoichiometry of AMB, PHBA and H2O, co-crystal 2 with 1:1 stoichiometry of AMB and MHBA, and co-crystal 3 with 1:1:1 stoichiometry of AMB, DHBA and CH3OH. Constituents of the co-crystalline phase were also investigated in terms of Hirshfeld surfaces. In the crystal lattice, a three-dimensional hydrogen-bonded network is observed, including formation of a two-dimensional molecular scaffolding motif. Hirshfeld surfaces and fingerprint plots of three co-crystals show that structures are stabilized by H⋯H, N-H⋯O, H⋯Br and C⋯H intermolecular interactions. Besides, the studies of the solubility showed that this co-crystal strategy could promote the solubility of AMB and follow the order: co-crystal 1 < co-crystal 2 < co-crystal 3.

  12. The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na.

    PubMed

    Bustamante, P; Pena, M A; Barra, J

    2000-01-20

    Sodium salts are often used in drug formulation but their partial solubility parameters are not available. Sodium alters the physical properties of the drug and the knowledge of these parameters would help to predict adhesion properties that cannot be estimated using the solubility parameters of the parent acid. This work tests the applicability of the modified extended Hansen method to determine partial solubility parameters of sodium salts of acidic drugs containing a single hydrogen bonding group (ibuprofen, sodium ibuprofen, benzoic acid and sodium benzoate). The method uses a regression analysis of the logarithm of the experimental mole fraction solubility of the drug against the partial solubility parameters of the solvents, using models with three and four parameters. The solubility of the drugs was determined in a set of solvents representative of several chemical classes, ranging from low to high solubility parameter values. The best results were obtained with the four parameter model for the acidic drugs and with the three parameter model for the sodium derivatives. The four parameter model includes both a Lewis-acid and a Lewis-base term. Since the Lewis acid properties of the sodium derivatives are blocked by sodium, the three parameter model is recommended for these kind of compounds. Comparison of the parameters obtained shows that sodium greatly changes the polar parameters whereas the dispersion parameter is not much affected. Consequently the total solubility parameters of the salts are larger than for the parent acids in good agreement with the larger hydrophilicity expected from the introduction of sodium. The results indicate that the modified extended Hansen method can be applied to determine the partial solubility parameters of acidic drugs and their sodium salts.

  13. Reaction Mechanism of Covalent Modification of Phosphatidylethanolamine Lipids by Reactive Aldehydes 4-Hydroxy-2-nonenal and 4-Oxo-2-nonenal.

    PubMed

    Vazdar, Katarina; Vojta, Danijela; Margetić, Davor; Vazdar, Mario

    2017-03-20

    4-Hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) are biologically important reactive aldehydes formed during oxidative stress in phospholipid bilayers. They are highly reactive species due to presence of several reaction centers and can react with amino acids in peptides and proteins, as well as phosphoethanolamine (PE) lipids, thus modifying their biological activity. The aim of this work is to study in a molecular detail the reactivity of HNE and ONE toward PE lipids in a simplified system containing only lipids and reactive aldehydes in dichloromethane as an inert solvent. We use a combination of quantum chemical calculations, (1)H NMR measurements, FT-IR spectroscopy, and mass spectrometry experiments and show that for both reactive aldehydes two types of chemical reactions are possible: formation of Michael adducts and Schiff bases. In the case of HNE, an initially formed Michael adduct can also undergo an additional cyclization step to a hemiacetal derivative, whereas no cyclization occurs in the case of ONE and a Michael adduct is identified. A Schiff base product initially formed when HNE is added to PE lipid can also further cyclize to a pyrrole derivative in contrast to ONE, where only a Schiff base product is isolated. The suggested reaction mechanism by quantum-chemical calculations is in a qualitative agreement with experimental yields of isolated products and is also additionally investigated by (1)H NMR measurements, FT-IR spectroscopy, and mass spectrometry experiments.

  14. Inhibition of aminoacylase 3 protects rat brain cortex neuronal cells from the toxicity of 4-hydroxy-2-nonenal mercapturate and 4-hydroxy-2-nonenal

    SciTech Connect

    Tsirulnikov, Kirill; Abuladze, Natalia; Bragin, Anatol; Faull, Kym; Cascio, Duilio; Damoiseaux, Robert; Schibler, Matthew J.; Pushkin, Alexander

    2012-09-15

    4-Hydroxy-2-nonenal (4HNE) and acrolein (ACR) are highly reactive neurotoxic products of lipid peroxidation that are implicated in the pathogenesis and progression of Alzheimer's and Parkinson's diseases. Conjugation with glutathione (GSH) initiates the 4HNE and ACR detoxification pathway, which generates the mercapturates of 4HNE and ACR that can be excreted. Prior work has shown that the efficiency of the GSH-dependent renal detoxification of haloalkene derived mercapturates is significantly decreased upon their deacetylation because of rapid transformation of the deacetylated products into toxic compounds mediated by β-lyase. The enzymes of the GSH-conjugation pathway and β-lyases are expressed in the brain, and we hypothesized that a similar toxicity mechanism may be initiated in the brain by the deacetylation of 4HNE- and ACR-mercapturate. The present study was performed to identify an enzyme(s) involved in 4HNE- and ACR-mercapturate deacetylation, characterize the brain expression of this enzyme and determine whether its inhibition decreases 4HNE and 4HNE-mercapturate neurotoxicity. We demonstrated that of two candidate deacetylases, aminoacylases 1 (AA1) and 3 (AA3), only AA3 efficiently deacetylates both 4HNE- and ACR-mercapturate. AA3 was further localized to neurons and blood vessels. Using a small molecule screen we generated high-affinity AA3 inhibitors. Two of them completely protected rat brain cortex neurons expressing AA3 from the toxicity of 4HNE-mercapturate. 4HNE-cysteine (4HNE-Cys) was also neurotoxic and its toxicity was mostly prevented by a β-lyase inhibitor, aminooxyacetate. The results suggest that the AA3 mediated deacetylation of 4HNE-mercapturate may be involved in the neurotoxicity of 4HNE.

  15. Inhibition of aminoacylase 3 protects rat brain cortex neuronal cells from the toxicity of 4-hydroxy-2-nonenal mercapturate and 4-hydroxy-2-nonenal.

    PubMed

    Tsirulnikov, Kirill; Abuladze, Natalia; Bragin, Anatol; Faull, Kym; Cascio, Duilio; Damoiseaux, Robert; Schibler, Matthew J; Pushkin, Alexander

    2012-09-15

    4-Hydroxy-2-nonenal (4HNE) and acrolein (ACR) are highly reactive neurotoxic products of lipid peroxidation that are implicated in the pathogenesis and progression of Alzheimer's and Parkinson's diseases. Conjugation with glutathione (GSH) initiates the 4HNE and ACR detoxification pathway, which generates the mercapturates of 4HNE and ACR that can be excreted. Prior work has shown that the efficiency of the GSH-dependent renal detoxification of haloalkene derived mercapturates is significantly decreased upon their deacetylation because of rapid transformation of the deacetylated products into toxic compounds mediated by β-lyase. The enzymes of the GSH-conjugation pathway and β-lyases are expressed in the brain, and we hypothesized that a similar toxicity mechanism may be initiated in the brain by the deacetylation of 4HNE- and ACR-mercapturate. The present study was performed to identify an enzyme(s) involved in 4HNE- and ACR-mercapturate deacetylation, characterize the brain expression of this enzyme and determine whether its inhibition decreases 4HNE and 4HNE-mercapturate neurotoxicity. We demonstrated that of two candidate deacetylases, aminoacylases 1 (AA1) and 3 (AA3), only AA3 efficiently deacetylates both 4HNE- and ACR-mercapturate. AA3 was further localized to neurons and blood vessels. Using a small molecule screen we generated high-affinity AA3 inhibitors. Two of them completely protected rat brain cortex neurons expressing AA3 from the toxicity of 4HNE-mercapturate. 4HNE-cysteine (4HNE-Cys) was also neurotoxic and its toxicity was mostly prevented by a β-lyase inhibitor, aminooxyacetate. The results suggest that the AA3 mediated deacetylation of 4HNE-mercapturate may be involved in the neurotoxicity of 4HNE.

  16. 4-Hydroxy-2-Nonenal-Modified Glyceraldehyde-3-Phosphate Dehydrogenase Is Degraded by Cathepsin G in Rat Neutrophils

    PubMed Central

    Tsuchiya, Yukihiro; Okada, Go; Kobayashi, Shigeki; Chikuma, Toshiyuki; Hojo, Hiroshi

    2011-01-01

    Degradation of oxidized or oxidatively modified proteins is an essential part of the antioxidant defenses of cells. 4-Hydroxy-2-nonenal, a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. It has been reported that 4-hydroxy-2-nonenal-modified proteins are degraded by the ubiquitin-proteasome pathway or, in some cases, by the lysosomal pathway. However, our previous studies using U937 cells showed that 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase is degraded by cathepsin G. In the present study, we isolated the 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase-degrading enzyme from rat neutrophils to an active protein fraction of 28 kDa. Using the specific antibody, the 28 kDa protein was identified as cathepsin G. Moreover, the degradation activity was inhibited by cathepsin G inhibitors. These results suggest that cathepsin G plays a crucial role in the degradation of 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase. PMID:21904640

  17. Catabolism of (2E)-4-hydroxy-2-nonenal via ω- and ω-1-oxidation stimulated by ketogenic diet.

    PubMed

    Jin, Zhicheng; Berthiaume, Jessica M; Li, Qingling; Henry, Fabrice; Huang, Zhong; Sadhukhan, Sushabhan; Gao, Peng; Tochtrop, Gregory P; Puchowicz, Michelle A; Zhang, Guo-Fang

    2014-11-14

    Oxidative stress triggers the peroxidation of ω-6-polyunsaturated fatty acids to reactive lipid fragments, including (2E)-4-hydroxy-2-nonenal (HNE). We previously reported two parallel catabolic pathways of HNE. In this study, we report a novel metabolite that accumulates in rat liver perfused with HNE or 4-hydroxynonanoic acid (HNA), identified as 3-(5-oxotetrahydro-2-furanyl)propanoyl-CoA. In experiments using a combination of isotopic analysis and metabolomics studies, three catabolic pathways of HNE were delineated following HNE conversion to HNA. (i) HNA is ω-hydroxylated to 4,9-dihydroxynonanoic acid, which is subsequently oxidized to 4-hydroxynonanedioic acid. This is followed by the degradation of 4-hydroxynonanedioic acid via β-oxidation originating from C-9 of HNA breaking down to 4-hydroxynonanedioyl-CoA, 4-hydroxyheptanedioyl-CoA, or its lactone, 2-hydroxyglutaryl-CoA, and 2-ketoglutaric acid entering the citric acid cycle. (ii) ω-1-hydroxylation of HNA leads to 4,8-dihydroxynonanoic acid (4,8-DHNA), which is subsequently catabolized via two parallel pathways we previously reported. In catabolic pathway A, 4,8-DHNA is catabolized to 4-phospho-8-hydroxynonanoyl-CoA, 3,8-dihydroxynonanoyl-CoA, 6-hydroxyheptanoyl-CoA, 4-hydroxypentanoyl-CoA, propionyl-CoA, and acetyl-CoA. (iii) The catabolic pathway B of 4,8-DHNA leads to 2,6-dihydroxyheptanoyl-CoA, 5-hydroxyhexanoyl-CoA, 3-hydroxybutyryl-CoA, and acetyl-CoA. Both in vivo and in vitro experiments showed that HNE can be catabolically disposed via ω- and ω-1-oxidation in rat liver and kidney, with little activity in brain and heart. Dietary experiments showed that ω- and ω-1-hydroxylation of HNA in rat liver were dramatically up-regulated by a ketogenic diet, which lowered HNE basal level. HET0016 inhibition and mRNA expression level suggested that the cytochrome P450 4A are main enzymes responsible for the NADPH-dependent ω- and ω-1-hydroxylation of HNA/HNE.

  18. Catabolism of (2E)-4-Hydroxy-2-nonenal via ω- and ω-1-Oxidation Stimulated by Ketogenic Diet*

    PubMed Central

    Jin, Zhicheng; Berthiaume, Jessica M.; Li, Qingling; Henry, Fabrice; Huang, Zhong; Sadhukhan, Sushabhan; Gao, Peng; Tochtrop, Gregory P.; Puchowicz, Michelle A.; Zhang, Guo-Fang

    2014-01-01

    Oxidative stress triggers the peroxidation of ω-6-polyunsaturated fatty acids to reactive lipid fragments, including (2E)-4-hydroxy-2-nonenal (HNE). We previously reported two parallel catabolic pathways of HNE. In this study, we report a novel metabolite that accumulates in rat liver perfused with HNE or 4-hydroxynonanoic acid (HNA), identified as 3-(5-oxotetrahydro-2-furanyl)propanoyl-CoA. In experiments using a combination of isotopic analysis and metabolomics studies, three catabolic pathways of HNE were delineated following HNE conversion to HNA. (i) HNA is ω-hydroxylated to 4,9-dihydroxynonanoic acid, which is subsequently oxidized to 4-hydroxynonanedioic acid. This is followed by the degradation of 4-hydroxynonanedioic acid via β-oxidation originating from C-9 of HNA breaking down to 4-hydroxynonanedioyl-CoA, 4-hydroxyheptanedioyl-CoA, or its lactone, 2-hydroxyglutaryl-CoA, and 2-ketoglutaric acid entering the citric acid cycle. (ii) ω-1-hydroxylation of HNA leads to 4,8-dihydroxynonanoic acid (4,8-DHNA), which is subsequently catabolized via two parallel pathways we previously reported. In catabolic pathway A, 4,8-DHNA is catabolized to 4-phospho-8-hydroxynonanoyl-CoA, 3,8-dihydroxynonanoyl-CoA, 6-hydroxyheptanoyl-CoA, 4-hydroxypentanoyl-CoA, propionyl-CoA, and acetyl-CoA. (iii) The catabolic pathway B of 4,8-DHNA leads to 2,6-dihydroxyheptanoyl-CoA, 5-hydroxyhexanoyl-CoA, 3-hydroxybutyryl-CoA, and acetyl-CoA. Both in vivo and in vitro experiments showed that HNE can be catabolically disposed via ω- and ω-1-oxidation in rat liver and kidney, with little activity in brain and heart. Dietary experiments showed that ω- and ω-1-hydroxylation of HNA in rat liver were dramatically up-regulated by a ketogenic diet, which lowered HNE basal level. HET0016 inhibition and mRNA expression level suggested that the cytochrome P450 4A are main enzymes responsible for the NADPH-dependent ω- and ω-1-hydroxylation of HNA/HNE. PMID:25274632

  19. Lipid peroxidation and 4-hydroxy-2-nonenal formation by copper ion bound to amyloid-beta peptide.

    PubMed

    Hayashi, Takaaki; Shishido, Naomi; Nakayama, Kenji; Nunomura, Akihiko; Smith, Mark A; Perry, George; Nakamura, Masao

    2007-12-01

    The lipid peroxidation product 4-hydroxy-2-nonenal (HNE) is proposed to be a toxic factor in the pathogenesis of Alzheimer disease. The primary products of lipid peroxidation are phospholipid hydroperoxides, and degraded reactive aldehydes, such as HNE, are considered secondary peroxidation products. In this study, we investigated the role of amyloid-beta peptide (A beta) in the formation of phospholipid hydroperoxides and HNE by copper ion bound to A beta. The A beta1-42-Cu2+ (1:1 molar ratio) complex showed an activity to form phospholipid hydroperoxides from a phospholipid, 1-palmitoyl-2-linoleoyl phosphatidylcholine, through Cu2+ reduction in the presence of ascorbic acid. The phospholipid hydroperoxides were considered to be a racemic mixture of 9-hydroperoxide and 13-hydroperoxide of the linoleoyl residue. When Cu2+ was bound to 2 molar equivalents of A beta(1-42) (2 A beta1-42-Cu2+), lipid peroxidation was inhibited. HNE was generated from one of the phospholipid hydroperoxides, 1-palmitoyl-2-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl) phosphatidylcholine (PLPC-OOH), by free Cu2+ in the presence of ascorbic acid through Cu2+ reduction and degradation of PLPC-OOH. HNE generation was markedly inhibited by equimolar concentrations of A beta(1-40) (92%) and A beta(1-42) (92%). However, A beta(1-42) binding 2 or 3 molar equivalents of Cu2+ (A beta1-42-2Cu2+, A beta1-42-3Cu2+) acted as a pro-oxidant to form HNE from PLPC-OOH. These findings suggest that, at moderate concentrations of copper, A beta acts primarily as an antioxidant to prevent Cu2+-catalyzed oxidation of biomolecules, but that, in the presence of excess copper, pro-oxidant complexes of A beta with Cu2+ are formed.

  20. Methods of Analysis by the U.S. Geological Survey Organic Geochemistry Research Group-Determination of Dissolved Isoxaflutole and Its Sequential Degradation Products, Diketonitrile and Benzoic Acid, in Water Using Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    USGS Publications Warehouse

    Meyer, Michael T.; Lee, Edward A.; Scribner, Elisabeth A.

    2007-01-01

    An analytical method for the determination of isoxaflutole and its sequential degradation products, diketonitrile and a benzoic acid analogue, in filtered water with varying matrices was developed by the U.S. Geological Survey Organic Geochemistry Research Group in Lawrence, Kansas. Four different water-sample matrices fortified at 0.02 and 0.10 ug/L (micrograms per liter) are extracted by vacuum manifold solid-phase extraction and analyzed by liquid chromatography/tandem mass spectrometry using electrospray ionization in negative-ion mode with multiple-reaction monitoring (MRM). Analytical conditions for mass spectrometry detection are optimized, and quantitation is carried out using the following MRM molecular-hydrogen (precursor) ion and product (p) ion transition pairs: 357.9 (precursor), 78.9 (p), and 277.6 (p) for isoxaflutole and diketonitrile, and 267.0 (precursor), 159.0 (p), and 223.1 (p) for benzoic acid. 2,4-dichlorophenoxyacetic acid-d3 is used as the internal standard, and alachlor ethanesulfonic acid-d5 is used as the surrogate standard. Compound detection limits and reporting levels are calculated using U.S. Environmental Protection Agency procedures. The mean solid-phase extraction recovery values ranged from 104 to 108 percent with relative standard deviation percentages ranging from 4.0 to 10.6 percent. The combined mean percentage concentration normalized to the theoretical spiked concentration of four water matrices analyzed eight times at 0.02 and 0.10 ug/L (seven times for the reagent-water matrix at 0.02 ug/L) ranged from approximately 75 to 101 percent with relative standard deviation percentages ranging from approximately 3 to 26 percent for isoxaflutole, diketonitrile, and benzoic acid. The method detection limit (MDL) for isoxaflutole and diketonitrile is 0.003 ug/L and 0.004 ug/L for benzoic acid. Method reporting levels (MRLs) are 0.011, 0.010, and 0.012 ug/L for isoxaflutole, diketonitrile, and benzoic acid, respectively. On the basis

  1. A neutron diffraction study of the crystal of benzoic acid from 6 to 293 K and a macroscopic-scale quantum theory of the lattice of hydrogen-bonded dimers

    NASA Astrophysics Data System (ADS)

    Fillaux, François; Cousson, Alain

    2016-11-01

    Measurements via different techniques of the crystal of benzoic acid have led to conflicting conceptions of tautomerism: statistical disorder for diffraction; semiclassical jumps for relaxometry; quantum states for vibrational spectroscopy. We argue that these conflicts follow from the prejudice that nuclear positions and eigenstates are pre-existing to measurements, what is at variance with the principle of complementarity. We propose a self-contained quantum theory. First of all, new single-crystal neutron-diffraction data accord with long-range correlation for proton-site occupancies. Then we introduce a macroscopic-scale quantum-state emerging from phonon condensation, for which nuclear positions and eigenstates are indefinite. As to quantum-measurements, an incoming wave (neutron or photon) entangled with the condensate realizes a transitory state, either in the space of static nuclear-coordinates (diffraction), or in that of the symmetry coordinates (spectroscopy and relaxometry). We derive temperature-laws for proton-site occupancies and for the relaxation rate, which compare favorably with measurements.

  2. Crystal structures of four co-crystals of (E)-1,2-di(pyridin-4-yl)ethene with 4-alk­oxy­benzoic acids: 4-meth­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1), 4-eth­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1), 4-n-propoxybenzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1) and 4-n-but­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1)

    PubMed Central

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2016-01-01

    The crystal structures of four hydrogen-bonded co-crystals of 4-alk­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1), namely, 2C8H8O3·C12H10N2, (I), 2C9H10O3·C12H10N2, (II), 2C10H12O3·C12H10N2, (III) and 2C11H14O3·C12H10N2, (IV), have been determined at 93 K. In compounds (I) and (IV), the asymmetric units are each composed of one 4-alk­oxy­benzoic acid mol­ecule and one half-mol­ecule of (E)-1,2-di(pyridin-4-yl)ethene, which lies on an inversion centre. The asymmetric unit of (II) consists of two crystallographically independent 4-eth­oxy­benzoic acid mol­ecules and one 1,2-di(pyridin-4-yl)ethene mol­ecule. Compound (III) crystallizes in a non-centrosymmetric space group (Pc) and the asymmetric unit comprises four 4-n-propoxybenzoic acid mol­ecules and two (E)-1,2-di(pyridin-4-yl)ethane mol­ecules. In each crystal, the acid and base components are linked by O—H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. In (I), (II) and (III), inter­molecular C—H⋯O inter­actions are observed. The 2:1 units of (I) and (II) are linked via C—H⋯O hydrogen bonds, forming tape structures. In (III), the C—H⋯O hydrogen bonds, except for those formed in the units, link the two crystallographically independent 2:1 units. In (IV), no C—H⋯O inter­actions are observed, but π–π and C—H⋯π inter­actions link the units into a column structure. PMID:27840733

  3. A method to produce fully characterized ubiquitin covalently modified by 4-hydroxy-nonenal, glyoxal, methylglyoxal, and malondialdehyde.

    PubMed

    Colzani, Mara; Criscuolo, Angela; Casali, Gaia; Carini, Marina; Aldini, Giancarlo

    2016-01-01

    Reactive carbonyl species (RCS) and the corresponding protein adducts (advanced glycoxidation or lipoxidation end products, i.e. AGEs and ALEs) are now widely studied from different points of view, since they can be considered as biomarkers, pathogenic factors, toxic mediators and drug targets. One of the main limits of the research in this field is the lack of standardized and fully characterized AGEs and ALEs to be used for biological, toxicological, and analytical studies. In this work, we set up a procedure to prepare and fully characterize a set of AGEs and ALEs by incubating ubiquitin - a model protein selected as target for carbonylation - with four different RCS: 4-hydroxy-trans-2-nonenal (HNE), methylglyoxal (MGO), glyoxal (GO), and malondialdehyde (MDA). After 24 h of incubation, the extent of protein carbonylation was estimated using a recently developed quantitative strategy based on high-resolution mass spectrometry. The resulting AGEs and ALEs were fully characterized by both intact protein and bottom-up analyses in terms of: stoichiometry of the total amount of modified protein, elucidation of the structure of the RCS-deriving adducts, and localization of the RCS-modified amino acids. Each RCS exhibited different reactivity toward ubiquitin, as detected by quantifying the extent of protein modification. The order of reactivity was MGO > GO > HNE > MDA. A variety of reaction products was identified and mapped on lysine, arginine, and histidine residues of the protein. In summary, a highly standardized and reproducible method to prepare fully characterized AGEs/ALEs is here presented.

  4. Iron- and 4-hydroxy-2-alkylquinoline-containing periplasmic inclusion bodies of Pseudomonas aeruginosa: A chemical analysis

    USGS Publications Warehouse

    Royt, P.W.; Honeychuck, R.V.; Pant, R.R.; Rogers, M.L.; Asher, L.V.; Lloyd, J.R.; Carlos, W.E.; Belkin, H.E.; Patwardhan, S.

    2007-01-01

    Dark aggregated particles were seen on pellets of iron-rich, mid-logarithmic phase Pseudomonas aeruginosa. Transmission electron microscopy of these cells showed inclusion bodies in periplasmic vacuoles. Aggregated particles isolated from the spent medium of these cells contained iron as indicated by atomic absorption spectroscopy and by electron paramagnetic resonance spectroscopy that revealed Fe3+. Scanning electron microscopy/energy dispersive X-ray analysis of whole cells revealed the presence of iron-containing particles beneath the surface of the cell, indicating that the isolated aggregates were the intracellular inclusion bodies. Collectively, mass spectroscopy and nuclear magnetic resonance spectroscopy of the isolated inclusion bodies revealed the presence of 3,4-dihydroxy-2-heptylquinoline which is the Pseudomonas quinolone signaling compound (PQS) and an iron chelator; 4-hydroxy-2-heptylquinoline (pseudan VII), which is an iron chelator, antibacterial compound and precursor of PQS; 4-hydroxy-2-nonylquinoline (pseudan IX) which is an iron chelator and antibacterial compound; 4-hydroxy-2-methylquinoline (pseudan I), and 4-hydroxy-2-nonylquinoline N-oxide. ?? 2006 Elsevier Inc. All rights reserved.

  5. A 2:1 co-crystal of p-nitro­benzoic acid and N,N′-bis­(pyridin-3-ylmeth­yl)ethanedi­amide: crystal structure and Hirshfeld surface analysis

    PubMed Central

    Syed, Sabrina; Halim, Siti Nadiah Abdul; Jotani, Mukesh M.; Tiekink, Edward R. T.

    2016-01-01

    The title 2:1 co-crystal, 2C7H5NO4·C14H14N4O2, in which the complete di­amide mol­ecule is generated by crystallographic inversion symmetry, features a three-mol­ecule aggregate sustained by hydroxyl-O—H⋯N(pyrid­yl) hydrogen bonds. The p-nitro­benzoic acid mol­ecule is non-planar, exhibiting twists of both the carb­oxy­lic acid and nitro groups, which form dihedral angles of 10.16 (9) and 4.24 (4)°, respectively, with the benzene ring. The di­amide mol­ecule has a conformation approximating to a Z shape, with the pyridyl rings lying to either side of the central, almost planar di­amide residue (r.m.s. deviation of the eight atoms being 0.025 Å), and forming dihedral angles of 77.22 (6)° with it. In the crystal, three-mol­ecule aggregates are linked into a linear supra­molecular ladder sustained by amide-N—H⋯O(nitro) hydrogen bonds and orientated along [10-4]. The ladders are connected into a double layer via pyridyl- and benzene-C—H⋯O(amide) inter­actions, which, in turn, are connected into a three-dimensional architecture via π–π stacking inter­actions between pyridyl and benzene rings [inter-centroid distance = 3.6947 (8) Å]. An evaluation of the Hirshfeld surfaces confirm the importance of inter­molecular inter­actions involving oxygen atoms as well as the π–π inter­actions. PMID:26870591

  6. A 2:1 co-crystal of p-nitro-benzoic acid and N,N'-bis-(pyridin-3-ylmeth-yl)ethanedi-amide: crystal structure and Hirshfeld surface analysis.

    PubMed

    Syed, Sabrina; Halim, Siti Nadiah Abdul; Jotani, Mukesh M; Tiekink, Edward R T

    2016-01-01

    The title 2:1 co-crystal, 2C7H5NO4·C14H14N4O2, in which the complete di-amide mol-ecule is generated by crystallographic inversion symmetry, features a three-mol-ecule aggregate sustained by hydroxyl-O-H⋯N(pyrid-yl) hydrogen bonds. The p-nitro-benzoic acid mol-ecule is non-planar, exhibiting twists of both the carb-oxy-lic acid and nitro groups, which form dihedral angles of 10.16 (9) and 4.24 (4)°, respectively, with the benzene ring. The di-amide mol-ecule has a conformation approximating to a Z shape, with the pyridyl rings lying to either side of the central, almost planar di-amide residue (r.m.s. deviation of the eight atoms being 0.025 Å), and forming dihedral angles of 77.22 (6)° with it. In the crystal, three-mol-ecule aggregates are linked into a linear supra-molecular ladder sustained by amide-N-H⋯O(nitro) hydrogen bonds and orientated along [10-4]. The ladders are connected into a double layer via pyridyl- and benzene-C-H⋯O(amide) inter-actions, which, in turn, are connected into a three-dimensional architecture via π-π stacking inter-actions between pyridyl and benzene rings [inter-centroid distance = 3.6947 (8) Å]. An evaluation of the Hirshfeld surfaces confirm the importance of inter-molecular inter-actions involving oxygen atoms as well as the π-π inter-actions.

  7. Modifications of proteins by 4-hydroxy-2-nonenal in the ventilatory muscles of rats.

    PubMed

    Hussain, Sabah N A; Matar, Ghassan; Barreiro, Esther; Florian, Maria; Divangahi, Maziar; Vassilakopoulos, Theodoros

    2006-05-01

    Although 4-hydroxy-2-nonenal (HNE, a product of lipid peroxidation) is a major cause of oxidative damage inside skeletal muscles, the exact proteins modified by HNE are unknown. We used two-dimensional electrophoresis, immunoblotting, and mass spectrometry to identify selective proteins targeted by HNE inside the diaphragm of rats under two conditions: severe sepsis [induced by E. coli lipopolysaccharides (LPS)] and during strenuous muscle contractions elicited by severe inspiratory resistive loading (IRL). Diaphragm HNE-protein adduct formation (detected with a polyclonal antibody) increased significantly after 1 and 3 h of LPS injection with a return to baseline values thereafter. Similarly, HNE-protein adduct formation inside the diaphragm rose significantly after 6 but not 3 h of IRL. Mass spectrometry analysis of HNE-modified proteins revealed enolase 3b, aldolase and triosephosphate isomerase 1, creatine kinase, carbonic anyhdrase III, aconitase 2, dihydrolipoamide dehydrogenase, and electron transfer flavoprotein-beta. Measurements of in vitro enolase activity in the presence of pure HNE revealed that HNE significantly attenuated enolase activity in a dose-dependent fashion, suggesting that HNE-derived modifications have inhibitory effects on enzyme activity. We conclude that lipid peroxidation products may inhibit muscle contractile performance through selective targeting of enzymes involved in glycolysis, energy production as well as CO(2) hydration.

  8. Protein targets for carbonylation by 4-hydroxy-2-nonenal in rat liver mitochondria

    PubMed Central

    Guo, Jia; Prokai-Tatrai, Katalin; Ngyuen, Vien; Rauniyar, Navin; Ughy, Bettina; Prokai, Laszlo

    2011-01-01

    Protein carbonylation has been associated with various pathophysiological processes. A representative reactive carbonyl species (RCS), 4-hydroxy-2-nonenal (HNE), has been implicated specifically as a causative factor for the initiation and/or progression of various diseases. To date, however, little is known about the proteins and their modification sites susceptible to “carbonyl stress” by this RCS, especially in the liver. Using chemoprecipitation based on a solid phase hydrazine chemistry coupled with LC-MS/MS bottom-up approach and database searching, we identified several protein-HNE adducts in isolated rat liver mitochondria upon HNE exposure. The identification of selected major protein targets, such as the ATP synthase β-subunit, was further confirmed by immunoblotting and a gel-based approach in combination with LC–MS/MS. A network was also created based on the identified protein targets that showed that the main protein interactions were associated with cell death, tumor morphology and drug metabolism, implicating the toxic nature of HNE in the liver mitoproteome. The functional consequence of carbonylation was illustrated by its detrimental impact on the activity of ATP synthase, a representative major mitochondrial protein target for HNE modifications. PMID:21801862

  9. A Review on Pharmacological Properties of Zingerone (4-(4-Hydroxy-3-methoxyphenyl)-2-butanone).

    PubMed

    Ahmad, Bilal; Rehman, Muneeb U; Amin, Insha; Arif, Ahmad; Rasool, Saiema; Bhat, Showkat Ahmad; Afzal, Insha; Hussain, Ishraq; Bilal, Sheikh; Mir, Manzoor ur Rahman

    2015-01-01

    Humans have been using natural products for medicinal use for ages. Natural products of therapeutic importance are compounds derived from plants, animals, or any microorganism. Ginger is also one of the most commonly used condiments and a natural drug in vogue. It is a traditional medicine, having some active ingredients used for the treatment of numerous diseases. During recent research on ginger, various ingredients like zingerone, shogaol, and paradol have been obtained from it. Zingerone (4-(4-hydroxy-3-methoxyphenyl)-2-butanone) is a nontoxic and inexpensive compound with varied pharmacological activities. It is the least pungent component of Zingiber officinale. Zingerone is absent in fresh ginger but cooking or heating transforms gingerol to zingerone. Zingerone closely related to vanillin from vanilla and eugenol from clove. Zingerone has potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic, and so forth properties. Besides, it displays the property of enhancing growth and immune stimulation. It behaves as appetite stimulant, anxiolytic, antithrombotic, radiation protective, and antimicrobial. Also, it inhibits the reactive nitrogen species which are important in causing Alzheimer's disease and many other disorders. This review is written to shed light on the various pharmacological properties of zingerone and its role in alleviating numerous human and animal diseases.

  10. A Review on Pharmacological Properties of Zingerone (4-(4-Hydroxy-3-methoxyphenyl)-2-butanone)

    PubMed Central

    Ahmad, Bilal; Rehman, Muneeb U.; Amin, Insha; Arif, Ahmad; Rasool, Saiema; Bhat, Showkat Ahmad; Afzal, Insha; Hussain, Ishraq; Bilal, Sheikh; Mir, Manzoor ur Rahman

    2015-01-01

    Humans have been using natural products for medicinal use for ages. Natural products of therapeutic importance are compounds derived from plants, animals, or any microorganism. Ginger is also one of the most commonly used condiments and a natural drug in vogue. It is a traditional medicine, having some active ingredients used for the treatment of numerous diseases. During recent research on ginger, various ingredients like zingerone, shogaol, and paradol have been obtained from it. Zingerone (4-(4-hydroxy-3-methoxyphenyl)-2-butanone) is a nontoxic and inexpensive compound with varied pharmacological activities. It is the least pungent component of Zingiber officinale. Zingerone is absent in fresh ginger but cooking or heating transforms gingerol to zingerone. Zingerone closely related to vanillin from vanilla and eugenol from clove. Zingerone has potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic, and so forth properties. Besides, it displays the property of enhancing growth and immune stimulation. It behaves as appetite stimulant, anxiolytic, antithrombotic, radiation protective, and antimicrobial. Also, it inhibits the reactive nitrogen species which are important in causing Alzheimer's disease and many other disorders. This review is written to shed light on the various pharmacological properties of zingerone and its role in alleviating numerous human and animal diseases. PMID:26106644

  11. Resveratrol attenuates 4-hydroxy-2-hexenal-induced oxidative stress in mouse cortical collecting duct cells

    PubMed Central

    Bae, Eun Hui; Joo, Soo Yeon; Ma, Seong Kwon; Lee, JongUn

    2016-01-01

    Resveratrol (RSV) may provide numerous protective eff ects against chronic inflammatory diseases. Due to local hypoxia and hypertonicity, the renal medulla is subject to extreme oxidative stress, and aldehyde products formed during lipid peroxidation, such as 4-hydroxy-2-hexenal (HHE), might be responsible for tubular injury. This study aimed at investigating the eff ects of RSV on renal and its signaling mechanisms. While HHE treatment resulted in decreased expression of Sirt1, AQP2, and nuclear factor erythroid 2-related factor 2 (Nrf2), mouse cortical collecting duct cells (M1) cells treated with HHE exhibited increased activation of p38 MAPK, extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and increased expression of NOX4, p47phox, Kelch ECH associating protein 1 (Keap1) and COX2. HHE treatment also induced NF-κB activation by promoting IκB-α degradation. Meanwhile, the observed increases in nuclear NF-κB, NOX4, p47phox, and COX2 expression were attenuated by treatment with Bay 117082, N-acetyl-l-cysteine (NAC), or RSV. Our findings indicate that RSV inhibits the expression of inflammatory proteins and the production of reactive oxygen species in M1 cells by inhibiting NF-κB activation. PMID:27162476

  12. 9 GHz CW-EPR molecular dynamics study of polycrystalline 1-benzyl 4-hydroxy piperidine

    NASA Astrophysics Data System (ADS)

    Krzyminiewski, R.; Pawlicka, M.; Kruczynski, Z.; Kudynska, J.; Buckmaster, H. A.

    1998-07-01

    This paper reports the results of a 9.4 GHz CW-EPR study of the molecular dynamics in a polycrystalline sample of 1-benzyl 4-hydroxy piperidine which was γ-irradiated with a 150 kGy dose at 293 K. The temperature dependence of the hyperfine splitting (HFS) and spectral line width was measured in this acceptor-bridge-donor molecular structure from 123-273 K. A model evaluation procedure was used to determine the best-fit simulation of the observed spectrum. It was concluded that the ionizing radiation generates a free radical (I) by removal of one hydrogen from the CH 2 group in the bridge connecting the benzene and piperidine rings and another free radical (II) by breaking the bond between the carbon and hydrogen atoms in the piperidine ring. The HFS parameters and the unpaired electron densities were determined. The line width for radical (I) was found to be temperature dependent with an anomaly near 190 K indicative of either a solid-solid structural phase transition or conformational changes and did not saturate at microwave cavity input power levels up to 7 mW. The HFS parameter for radical (I) was also found to be temperature dependent between 123 and 273 K with an anomalous peak near 190 K in agreement with that observed for the line width.

  13. Isoprostanes and 4-Hydroxy-2-nonenal: Markers or Mediators of Disease? Focus on Rett Syndrome as a Model of Autism Spectrum Disorder

    PubMed Central

    Signorini, Cinzia; De Felice, Claudio; Durand, Thierry; Oger, Camille; Galano, Jean-Marie; Leoncini, Silvia; Pecorelli, Alessandra; Valacchi, Giuseppe; Ciccoli, Lucia; Hayek, Joussef

    2013-01-01

    Lipid peroxidation, a process known to induce oxidative damage to key cellular components, has been implicated in several diseases. Following three decades of explorations mainly on in vitro models reproducible in the laboratories, lipid peroxidation has become increasingly relevant for the interpretation of a wide range of pathophysiological mechanisms in the clinical setting. This cumulative effort has led to the identification of several lipid peroxidation end-products meeting the needs of the in vivo evaluation. Among these different molecules, isoprostanes and 4-hydroxy-2-nonenal protein adducts appear to be particularly interesting. This review shows how specific oxidation products, deriving from polyunsaturated fatty acids precursors, are strictly related to the clinical manifestations and the natural history of Rett syndrome, a genetically determined neurodevelopmental pathology, currently classified among the autism spectrum disorders. In our experience, Rett syndrome offers a unique setting for physicians, biologists, and chemists to explore the borders of the lipid mediators concept. PMID:23844273

  14. Spectral and thermal characterization of 3-acetyl-5-azophenyl-4-hydroxy-6-methyl-pyran-2-one and its metal complexes

    NASA Astrophysics Data System (ADS)

    Seth, Susannah; Aravindakshan, K. K.

    2013-08-01

    Five chelates of 3-acetyl-5-azophenyl-4-hydroxy-6-methyl-pyran-2-one (phenylazo dehydroacetic acid) with Cr(III), Fe(III), Ni(II), Cu(II) and Zn(II) have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, electronic, 1H NMR, FAB mass, IR-spectral and thermal (TG/DTG) analytical techniques. In the present work it has been found that oxygen of the deprotonated sbnd OH group and one of the azo-nitrogens of the ligand take part in coordination. The Cr(III), Fe(III) and Ni(II) complexes were found to be having octahedral geometry and the Cu(II) and Zn(II) tetrahedral.

  15. Comparison of the crystal structures of methyl 4-bromo-2-(meth­oxy­meth­oxy)benzoate and 4-bromo-3-(meth­oxy­meth­oxy)benzoic acid

    PubMed Central

    Suchetan, P. A.; Suneetha, V.; Naveen, S.; Lokanath, N. K.; Krishna Murthy, P.

    2016-01-01

    The title compounds, C10H11BrO4, (I), and C9H9BrO4, (II), are derivatives of bromo–hy­droxy–benzoic acids. Compound (II) crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In both (I) and (II), the O—CH2—O—CH3 side chain is not in its fully extended conformation; the O—C—O—C torsion angle is 67.3 (3) ° in (I), and −65.8 (3) and −74.1 (3)° in mol­ecules A and B, respectively, in compound (II). In the crystal of (I), mol­ecules are linked by C—H⋯O hydrogen bonds, forming C(5) chains along [010]. The chains are linked by short Br⋯O contacts [3.047 (2) Å], forming sheets parallel to the bc plane. The sheets are linked via C—H⋯π inter­actions, forming a three-dimensional architecture. In the crystal of (II), mol­ecules A and B are linked to form R 2 2(8) dimers via two strong O—H⋯O hydrogen bonds. These dimers are linked into ⋯A–B⋯A–B⋯A–B⋯ [C 2 2(15)] chains along [011] by C—H⋯O hydrogen bonds. The chains are linked by slipped parallel π–π inter­actions [inter-centroid distances = 3.6787 (18) and 3.8431 (17) Å], leading to the formation of slabs parallel to the bc plane. PMID:27375868

  16. ARD-353 [4-((2R,5S)-4-(R)-(4-diethylcarbamoylphenyl)(3-hydroxyphenyl)methyl)-2,5-dimethylpiperazin-1-ylmethyl)benzoic acid], a novel nonpeptide delta receptor agonist, reduces myocardial infarct size without central effects.

    PubMed

    Watson, Michael J; Holt, Jonathon D S; O'Neill, Scott J; Wei, Ke; Pendergast, William; Gross, Garrett J; Gengo, Peter J; Chang, Kwen-Jen

    2006-01-01

    A novel delta-receptor selective compound, ARD-353 [4-((2R,5S)-4-(R)-(4-diethylcarbamoylphenyl)(3-hydroxyphenyl)methyl)-2, 5-dimethylpiperazin-1-ylmethyl)benzoic acid], was evaluated for activity on infarct size in a rat model of acute myocardial infarction. ARD-353 was characterized as having delta receptor selectivity using radioligand binding and had no apparent selectivity between delta receptor subtypes as determined by [(3)H] cyclic [D-Pen(2),D-Pen(5)]enkephalin (delta(1)) and [(3)H]Deltorphin II (delta(2)) competition binding. ARD-353 also showed selective delta receptor agonist activity in mouse-isolated vas deferens. There was no evidence of any seizure-like convulsions when ARD-353 was administered to mice either i.v. or p.o., implying minimal penetration of the blood-brain barrier. ARD-353 decreased infarct size in a left anterior descending coronary artery (LAD) occlusion model of myocardial infarction. In animals pretreated with ARD-353 (i.v.) and then subjected to 30 min of LAD occlusion followed by 90 min of reperfusion, infarct size was reduced in a dose-dependent manner compared with vehicle-treated controls. The effects of ARD-353 on infarct size were blocked by the delta(1)-opioid selective antagonist 7-benzylidenenaltrexone, indicating a significant role for the delta(1)-opioid receptor in the cardioprotective mechanism of ARD-353. ARD-353 (0.3 mg/kg i.v.) produced significant protection when administered 5 min and 12 and 48 h before ischemic insult or when given immediately after the ischemic insult (at the start of reperfusion). Given the lack of central nervous system effects and beneficial efficacy in the rat model of myocardial ischemia, it is felt that ARD-353 is the first nonpeptide delta-receptor agonist with true potential for clinical use before surgically induced ischemia or in an emergency setting.

  17. Inhibitory effects of chlorophyllin, hemin and tetrakis(4-benzoic acid)porphyrin on oxidative DNA damage and mouse skin inflammation induced by 12-O-tetradecanoylphorbol-13-acetate as a possible anti-tumor promoting mechanism.

    PubMed

    Park, Kwang Kyun; Park, Jae Hee; Jung, Youn Joo; Chung, Won Yoon

    2003-12-09

    Reactive oxygen species (ROS) from both endogenous and exogenous sources can cause oxidative DNA damage and dysregulated cell signaling, which are involved in the multistage process of carcinogenesis such as tumor initiation, promotion and progression. A number of structurally different anticarcinogenic agents inhibit inflammation and tumor promotion as they reduce ROS production and oxidative DNA damage. Evidence suggests that porphyrins can interfere with the actions of various carcinogens and mutagens by forming face-to-face complexes and their antimutagenic or antigenotoxic effects may also be attributed to their antioxidant activities. However, little is known regarding the anti-tumor promoting potential and mechanism of the porphyrin compounds. Based on our previous results on the inhibitory effects of chlorophyllin (CHL), hemin and tetrakis(4-benzoic acid)porphyrin (TBAP) against two-stage mouse skin carcinogenesis, we have investigated their anti-tumor promoting mechanisms. In the present work, CHL, hemin and TBAP reduced superoxide anion generation by 12-O-tetradecanoylphorbol-13-acetate (TPA) in differentiated HL-60 cells and the production of hydroxyl radicals by Fenton reaction. Porphyrins exert a dose-related inhibition of his(+) reversion in Salmonella typhimurium TA102 induced by tert-butylhydroperoxide (t-BOOH). DNA strand breaks by ROS derived from H(2)O(2)/Cu(II) and the formation of 8-hydroxydeoxyguanosine (8-OH-dG) in calf thymus DNA treated with H(2)O(2)/UV also were inhibited markedly by porphyrins in a concentration-dependent manner. Furthermore, CHL, hemin and TBAP decreased myeloperoxidase (MPO) activity and H(2)O(2) formation as well as epidermal ornithine decarboxylase (ODC) activity in mouse skin treated with TPA. These results demonstrate that the antioxidative properties of porphyrins are important for inhibiting TPA-induced tumor promotion.

  18. Chlorothalonil and its 4-hydroxy derivative in simple quartz sand soils: a comparison of sorption processes.

    PubMed

    Gamble, D S; Lindsay, E; Bruccoleri, A G; Langford, C H; Leyes, G A

    2001-06-01

    Quartz sandy soils from Simcoe, Ontario, Canada and North Carolina had sorption properties for chlorothalonil that were nearly the same. For labile surface sorption kinetics, the Simcoe soil gave a pseudo first-order rate constant of kS1 = (7.4 +/- 0.7) x 10(-2) days-1. At equilibrium, the labile surface sorption capacity theta c of Simcoe soil for chlorothalonil was 23.8 x 10(-6) (mol/g). The sorption properties of the 4-hydroxy derivative of chlorothalonil were different in two important respects. They were larger by an order of magnitude, and they were substantially different for the two soils. Sorption by the Simcoe soil was too fast for kinetics measurements by the on-line HPLC micro extraction method, but for the North Carolina soil kS1 = (1.15 +/- 0.01) days-1 was recorded. For the Simcoe and North Carolina soils, respectively, theta c > 200 (mumol/g) and theta c approximately 113 (mumol/g). Two conclusions can be drawn. First, the replacement of the Cl by OH on the 4 position of chlorothalonil makes the sorption effects much greater. Second, the stronger interactions are associated with a greater sensitivity to small differences in the chemical compositions of the soils. Subtle soil properties causing significant effects might include small amounts and physical structures of organic matter and metal oxides. This implies that, for predictive computer models, mechanism parameters will have to be correlated in two dimensions: chemical structure, and the composition and amounts of chemical materials in soils.

  19. Kinetics of the photolysis and OH reaction of 4-hydroxy-4-methyl-2-pentanone: Atmospheric implications

    NASA Astrophysics Data System (ADS)

    Aslan, L.; Laversin, H.; Coddeville, P.; Fittschen, C.; Roth, E.; Tomas, A.; Chakir, A.

    2017-02-01

    This study provides the first kinetic and mechanistic study of the photolysis of 4-hydroxy-4-methyl-2-pentanone (4H4M2P) and the determination of the temperature dependence of the relative rate coefficient for the reaction of OH radicals with 4H4M2P. The UV absorption spectrum of 4H4M2P was determined in the spectral range 200-360 nm. The photolysis frequency of this compound in the atmosphere was evaluated relative to actinometers and found to be J4 H 4M 2 P atm = 4.2 ×10-3h-1 , corresponding to a lifetime of about 10 days. Using 4H4M2P cross section measurements, an atmospheric effective quantum yield of 0.15 was calculated. The main primary photolysis products were acetone (121 ± 4) % and formaldehyde (20 ± 1) %. A low methanol yield of (3.0 ± 0.3) % was also determined. These results enabled us to propose a mechanistic scheme for the photolysis. Rate coefficients for the reaction of 4H4M2P with OH radicals were determined over the temperature range 298-354 K and the following Arrhenius expression was obtained: kOH+4M4H2P = (1.12 ± 0.40) × 10-12exp(461.5 ± 60/T) cm3 molecule-1 s-1. The lifetimes of 4H4M2P due to reaction with OH radicals has been estimated to ∼2.5 days and indicates that the gas-phase reaction with the OH could be the main loss process for this compound.

  20. Adsorption of Benzoic Compounds onto Stainless Steel Particles

    PubMed

    Suzuki; Shibata; Inoue

    1997-09-15

    Equilibrium experiment was conducted to investigate the factors determining the adsorption of benzoic acid (BA) and its derivatives, m- and p-hydroxy BA, onto SUS316L stainless steel particles of 8-10 &mgr;m diameter and under 100 mesh. Adsorption isotherms of these benzoic compounds were determined in the presence of 0.05 M NaCl at pH 4 and 30°C. The adsorptions of the these compounds were described well by a Langmuirian model for both adsorbents. When the maximum number of the benzoic compound adsorption sites was expressed on the basis of unit surface area (N, mol/m2), the N values were relatively constant, while the greatest value of the affinity (K, ml/&mgr;mol) was obtained for p-hydroxy BA, although its value was in the same range as that of the other two adsorbates. Diffuse-reflectance Fourier transform infrared spectra of the fine adsorbent (8-10 &mgr;m diameter) after equilibration suggest that the adsorption mainly takes place through the carboxyl group of the adsorbate-stainless steel surface interaction for all adsorbates, whereas concomitant interaction occurs in part with participation of the phenolic hydroxyl group for p-OH BA adsorbate, accounting for the difference in adsorption properties. Copyright 1997 Academic Press. Copyright 1997Academic Press

  1. A Novel Electrochemical Sensor for Probing Doxepin Created on a Glassy Carbon Electrode Modified with Poly(4-Amino- benzoic Acid)/Multi-Walled Carbon Nanotubes Composite Film

    PubMed Central

    Xu, Xiao-Li; Huang, Fei; Zhou, Guo-Liang; Zhang, Song; Kong, Ji-Lie

    2010-01-01

    A novel electrochemical sensor for sensitive detection of doxepin was prepared, which was based on a glassy carbon electrode modified with poly(4-aminobenzoic acid)/multi-walled carbon nanotubes composite film [poly(4-ABA)/MWNTs/GCE]. The sensor was characterized by scanning electron microscopy and electrochemical methods. It was observed that poly(4-ABA)/MWNTs/GCE showed excellent preconcentration function and electrocatalytic activities towards doxepin. Under the selected conditions, the anodic peak current was linear to the logarithm of doxepin concentration in the range from 1.0 × 10−9 to 1.0 × 10−6 M, and the detection limit obtained was 1.0 × 10−10 M. The poly(4-ABA)/MWNTs/GCE was successfully applied in the measurement of doxepin in commercial pharmaceutical formulations, and the analytical accuracy was confirmed by comparison with a conventional ultraviolet spectrophotometry assay. PMID:22163661

  2. The reactivity of 4-hydroxy- and 4-silyloxy-1,5-allenynes with homogeneous gold(I) catalysts.

    PubMed

    Wegener, Michael; Kirsch, Stefan F

    2015-03-20

    Two new gold(I)-catalyzed cascade reactions of 4-hydroxy- and 4-silyloxy-1,5-allenynes are disclosed, offering access to a variety of mono- and bicyclic, polyunsaturated carbonyl compounds. The diverse reactivity observed for the investigated allenyne system is controlled by the nature of the unsaturated substrate: Allenynes bearing a free hydroxyl group engage in what is likely an oxycyclization/allene-ene carbocyclization cascade, while their silylated analogues are converted through a carbocyclization/pinacol-type rearrangement process.

  3. Spectroscopic, optical, thermal, antimicrobial and density functional theory studies of 4-aminopyridinium 4-hydroxy benzoate hydrate crystal

    NASA Astrophysics Data System (ADS)

    Karthiga Devi, P.; Venkatachalam, K.; Poonkothai, M.

    2016-09-01

    The organic crystal 4-aminopyridinium 4-hydroxy benzoate hydrate was grown using slow evaporation method. Various characterization techniques such as single crystal X-ray diffraction, powder X-ray diffraction, FTIR, UV-visible-NIR spectroscopy and thermal analysis (TG-DSC) were employed to assay the structure and properties of the grown crystal. The antimicrobial evaluation of 4-aminopyridinium 4-hydroxy benzoate hydrate crystal was also performed against some bacteria and fungi. The minimum inhibitory concentration (MIC) values of 4-aminopyridinium 4-hydroxy benzoate hydrate were determined for bacterial and fungal strains. The assessment of optimized structure of the molecule and vibrational frequencies were done using DFT/B3LYP method with 6-31 G (d, p) basis set. The stability of the molecule, hyperconjugative interactions, delocalization of charges and intermolecular hydrogen bond were studied by applying natural bond orbital (NBO) analysis. TD-DFT method employing polarizable continuum model (PCM) was used to examine the electronic absorption spectrum. Evaluation of molecular electrostatic potential (MEP), Mulliken population charges and nonlinear optical (NLO) properties were also carried out. In addition, from the optimized geometry, frontier molecular orbitals analysis was executed.

  4. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells

    SciTech Connect

    Ishikado, Atsushi; Nishio, Yoshihiko; Morino, Katsutaro; Ugi, Satoshi; Kondo, Hajime; Makino, Taketoshi; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2010-11-05

    Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative and anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated

  5. Monolithic and packed particle materials for in-line pre-concentration in capillary electrophoresis for 4-hydroxy-3-methoxy-methamphetamine and terbutaline.

    PubMed

    Chaisuwan, Patcharin; Nacapricha, Duangjai; Wilairat, Prapin; Jiang, Zhengjin; William Smith, Norman

    2008-10-01

    In-line solid-phase extraction (SPE) for capillary electrophoresis (CE) was investigated using a synthesized monolith and a commercial packing material. Terbutaline (TER) and 4-hydroxy-3-methoxy-methamphetamine (HMMA) with benzyl alcohol as the electroosmotic flow marker were employed as model compounds. Two types of methacrylate-based monoliths, namely methacrylic acid-ethylene dimethacrylate and butylmethacrylate-ethylene dimethacrylate were examined. Preliminary results indicated that a non-aqueous separating medium is more suitable for these methacrylate monoliths than a purely aqueous medium (non-reproducible elution). However, coupling of the methacrylic acid-ethylene dimethacrylate with non-aqueous capillary electrophoresis could not provide good precision for the three model compounds. A packed-silica C18 SPE was also adopted by simply packing the C18 particles in situ in the separation capillary. Using an aqueous running buffer (10 mM phosphate buffer (PPB), pH 7), acceptable precision could be obtained with this type of SPE material. With a 10 min loading time and 20 min total analysis time, the pre-concentration factors were 333 and 1000 for TER and HMMA, respectively. The %RSD were less than 4.5 and 0.3 for the peak areas and migration times, respectively, for both HMMA and TER (n=20).

  6. Proline derivatives in fruits of bergamot (Citrus bergamia Risso et Poit): presence of N-methyl-L-proline and 4-hydroxy-L-prolinebetaine.

    PubMed

    Servillo, Luigi; Giovane, Alfonso; Balestrieri, Maria Luisa; Cautela, Domenico; Castaldo, Domenico

    2011-01-12

    The content of proline and various compounds deriving from its metabolism (4-hydroxy-L-proline, N-methyl-L-proline, N,N-dimethylproline, and 4-hydroxy-L-prolinebetaine) was determined in fruits and seeds of Bergamot (Citrus bergamia Risso et Poit), growing in the Calabria region (South Italy). A HPLC-ESI-tandem mass spectrometry method, which allowed rapid determination of L-proline, 4-hydroxy-L-proline, N-methyl-L-proline, N,N-dimethylproline, and 4-hydroxy-L-prolinebetaine in juice and extracts of bergamot fruit with minimum sample preparation and short analysis time (about 10 min), is presented. Proline and 4-hydroxy-L-proline levels in the samples were also determined by HPLC analysis with fluorescence detection and the results compared to those obtained with HPLC-ESI-tandem mass spectrometry. For the first time, the presence of N-methyl-L-proline and 4-hydroxy-L-prolinebetaine in the fruits of a plant of the Citrus genus is reported.

  7. A functional (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase exhibits diurnal regulation of expression in Stevia rebaudiana (Bertoni).

    PubMed

    Kumar, Hitesh; Kumar, Sanjay

    2013-09-15

    The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 ara<>ispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia.

  8. Effect of 4-hydroxy-2-nonenal on myoglobin-mediated lipid oxidation when varying histidine content and hemin affinity.

    PubMed

    Grunwald, Eric W; Tatiyaborworntham, Nantawat; Faustman, Cameron; Richards, Mark P

    2017-07-15

    The compound 4-hydroxy-2-nonenal (HNE) dissolved in water was examined to remove potential effects of using ethanol to solubilize the aldehyde such as altering protein structure or redox properties of myoglobin (Mb). HNE became covalently bound to sperm whale Mb at up to five sites based on ESI-MS analysis. Adducted Mb promoted lipid oxidation in washed muscle more effectively than non-adducted Mb. Alkylation of P88H/Q152HMb with HNE accelerated metMb formation and subsequent lipid oxidation. P88H/Q152HMb exposed to HNE enhanced lipid oxidation compared to wild-type Mb exposed to HNE. Results using H97A Mb suggested that the combination of HNE and low hemin affinity facilitated rapid decomposition of preformed lipid hydroperoxides to secondary lipid oxidation products. HNE and HHE (4-hydroxy-2-hexenal) facilitated Mb-mediated lipid oxidation similarly. The potential mechanisms by which Mb binding of α,β-unsaturated aldehydes affect Mb oxidation and the onset of lipid oxidation are discussed.

  9. 4-Hydroxy-2-nonenal induces mitochondrial dysfunction and aberrant axonal outgrowth in adult sensory neurons that mimics features of diabetic neuropathy.

    PubMed

    Akude, Eli; Zherebitskaya, Elena; Roy Chowdhury, Subir K; Girling, Kimberly; Fernyhough, Paul

    2010-01-01

    Modification of proteins by 4-hydroxy-2-nonenal (4-HNE) has been proposed to cause neurotoxicity in a number of neurodegenerative diseases, including distal axonopathy in diabetic sensory neuropathy. We tested the hypothesis that exposure of cultured adult rat sensory neurons to 4-HNE would result in the formation of amino acid adducts on mitochondrial proteins and that this process would be associated with impaired mitochondrial function and axonal regeneration. In addition, we compared 4-HNE-induced axon pathology with that exhibited by neurons isolated from diabetic rats. Cultured adult rat dorsal root ganglion (DRG) sensory neurons were incubated with varying concentrations of 4-HNE. Cell survival, axonal morphology, and level of axon outgrowth were assessed. In addition, video microscopy of live cells, western blot, and immunofluorescent staining were utilized to detect protein adduct formation by 4-HNE and to localize actively respiring mitochondria. 4-HNE induced formation of protein adducts on cytoskeletal and mitochondrial proteins, and impaired axon regeneration by approximately 50% at 3 microM while having no effect on neuronal survival. 4-HNE initiated formation of aberrant axonal structures and caused the accumulation of mitochondria in these dystrophic structures. Neurons treated with 4-HNE exhibited a distal loss of active mitochondria. Finally, the distal axonopathy and the associated aberrant axonal structures generated by 4-HNE treatment mimicked axon pathology observed in DRG sensory neurons isolated from diabetic rats and replicated aspects of neurodegeneration observed in human diabetic sensory neuropathy.

  10. Multistate/multifunctional behaviour of 4'-hydroxy-6-nitroflavylium: a write-lock/read/unlock/enable-erase/erase cycle driven by light and pH stimulation.

    PubMed

    Moncada, Margarida C; Parola, A Jorge; Lodeiro, Carlos; Pina, Fernando; Maestri, Mauro; Balzani, Vincenzo

    2004-03-19

    We have investigated the network of reactions observed for the photochromic 4'-hydroxy-6-nitroflavylium compound in aqueous solutions upon pH changes (including pH jump and stopped flow experiments) and light excitation. The changes observed in the NMR and UV/Vis spectra allowed identification of ten different forms in which this compound can be transformed depending on the experimental conditions. Equilibrium and kinetic constants have been determined. Compared with other members of the flavylium family, 4'-hydroxy-6-nitroflavylium is characterized by a large cis-->trans isomerization barrier, and a very efficient hydration reaction. These peculiar features allow writing, reading, storing and erasing photonic information on 4'-hydroxy-6-nitroflavylium by a novel cyclic process that involves the following steps: write-lock/read/unlock/enable-erase/erase.

  11. Tetra-kis(μ-4-tert-butyl-benzoato)-κO:O,O';κO,O':O';κO:O'-bis-[aqua-bis-(4-tert-butyl-benzoato-κO,O')(4-tert-butyl-benzoic acid-κO)praseodymium(III)].

    PubMed

    Dai, Jun; Pan, Rong-Kun; Yang, Juan

    2011-08-01

    The reaction of praseodymium nitrate and 4-tert-butyl-benzoic acid (tBBAH) in aqueous solution yielded the dinuclear title complex, [Pr(2)(C(11)H(13)O(2))(6)(C(11)H(14)O(2))(2)(H(2)O)(2)], which has non-crystallographic C(i) symmetry. The two Pr(III) ions are linked by two bridging and two bridging-chelating tBBA ligands, with a Pr⋯Pr separation of 4.0817 (9) Å. Each Pr(III) ion is nine-coordinated by one chelating tBBA ion, one monodentate tBBAH ligand and one water mol-ecule in a distorted tricapped trigonal-prismatic environment. The complex mol-ecules are linked into infinite chains along the c axis by inter-molecular O-H⋯O hydrogen bonds.

  12. Lanthanide complexes of 3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one

    SciTech Connect

    Sitran, S; Fregona, D. ); Faraglia, G. )

    1990-01-01

    The title ligand (H(Dh), dehydroacetic acid) reacts with lanthanide(III) acetates in anhydrous methanol to form complexes of formula (M(Dh){sub 3}(MeOH)). When hydrated lanthanide acetates are used, hydrated compounds such as (Ce(Dh){sub 3}(H{sub 2}O)) or (Eu(Dh){sub 3}(H{sub 2}O)).H{sub 2}O are obtained. The reaction of lanthanum triacetate with H(Dh) yields the mixed complex (La(Dh){sub 2}(O{sub 2}CMe)), formation of the 1:3 complex also being unfavored in the presence of a large ligand excess. The complexes have been characterized by infrared and NMR ({sup 1}H and {sup 13}C) spectroscopy and by thermogravimetric measurements.

  13. Immunochemical properties of some monoclonal IgE antibodies to 4-hydroxy-3-nitrophenylacetyl (NP).

    PubMed Central

    Bose, R; Bundesen, P G; Holford-Stevens, V; Stefura, W P; Kelly, K A; Jeffrey, J C; Rector, E S; Fischer, J; Sehon, A H; Schwenk, R J

    1984-01-01

    Several hybridoma cell lines secreting NP-specific, murine IgE antibodies were generated by fusion of P3-X20 (gamma, kappa) tumour cells with spleen cells from (BALB/c X C57B1/6)F1 (CB6F1) mice previously immunized with NP-ovalbumin. Four subclones (designated NP-epsilon-3.57, NP-epsilon-15.88, NP-epsilon-91.58 and NP-epsilon-95.31) were propagated in vivo and milligram quantities of the corresponding IgE antibodies were purified from ascitic fluid by gel filtration, ion exchange chromatography and affinity chromatography. Immunological analyses and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) indicated that NP-epsilon-15.88, NP-epsilon-91.58 and NP-epsilon-95.31 all possessed lambda 1 (or possibly lambda 3) light chains; and that NP-epsilon-3.57 possessed lambda 2 light chains; NP-epsilon-95.31 also expressed the P3-X20 derived, MOPC-21 kappa light chain. Radioallergosorbent test (RAST) titration curves, generated from the interaction of the four monoclonal IgE antibodies with NP-BSA attached to paper discs (NP-BSA-P) were found to be non-overlapping. Measurements of the relative amounts of NP-epsilon-aminocaproic acid (NP-CAP) and 4-hydro-3-iodo-5-nitrophenylacetyl-epsilon-aminocaproic acid (NIP-CAP) that were required to inhibit by 50% the binding of the 4 IgE antibodies to NP-BSA-P indicated that these antibodies were all heteroclitic, since their affinity for NIP appeared to be higher than their affinity for NP. These results, in conjunction with other findings reported in the literature, suggested that the V regions of NP-specific IgE antibodies are similar to the V regions of NP-specific IgM and IgG antibodies, produced by the same mouse strains. Finally, in vitro histamine release measurements demonstrated that two of these monoclonal IgE antibodies could mediate antigen induced histamine release from passively sensitized rat peritoneal mast cells. Images Figure 1 Figure 2 PMID:6209208

  14. Novel acidic 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor with reduced acyl glucuronide liability: the discovery of 4-[4-(2-adamantylcarbamoyl)-5-tert-butyl-pyrazol-1-yl]benzoic acid (AZD8329).

    PubMed

    Scott, James S; deSchoolmeester, Joanne; Kilgour, Elaine; Mayers, Rachel M; Packer, Martin J; Hargreaves, David; Gerhardt, Stefan; Ogg, Derek J; Rees, Amanda; Selmi, Nidhal; Stocker, Andrew; Swales, John G; Whittamore, Paul R O

    2012-11-26

    Inhibition of 11β-HSD1 is viewed as a potential target for the treatment of obesity and other elements of the metabolic syndrome. We report here the optimization of a carboxylic acid class of inhibitors from AZD4017 (1) to the development candidate AZD8329 (27). A structural change from pyridine to pyrazole together with structural optimization led to an improved technical profile in terms of both solubility and pharmacokinetics. The extent of acyl glucuronidation was reduced through structural optimization of both the carboxylic acid and amide substituents, coupled with a reduction in lipophilicity leading to an overall increase in metabolic stability.

  15. 40 CFR 721.5262 - 2,7-Naphthalenedisulfonic acid, 5-[[4-chloro-6-[substituted] amino]-1,3,5-triazin-2-yl]amino]-4...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...,7-Naphthalenedisulfonic acid, 5- amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3- -, trisodium salt...-Naphthalenedisulfonic acid, 5- amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3- -, trisodium salt (PMN P-00-0803) is...-naphthalenedisulfonic acid, 5- ethyl]amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3- -, sodium salt (1:3) (PMN......

  16. Effect of 4-Hydroxy-2-Nonenal Modification on Alpha-Synuclein Aggregation

    SciTech Connect

    Qin, Z.; Hu, D.; Han, S.; Reaney, S.H.; Monte, D.A.Di; Fink, A.L.

    2007-07-12

    Several observations have implicated oxidative stress and aggregation of the presynaptic protein alpha-synuclein in the pathogenesis of PD. alpha-Synuclein has been shown to have affinity for unsaturated fatty acids and membranes enriched in PUFAs, which are especially sensitive to oxidation under conditions of oxidative stress. One of the most important products of lipid oxidation is 4-hydroxynonenal (HNE), which has been implicated in the pathogenesis of Parkinson's disease. Consequently we investigated the effects of the interaction of HNE with alpha-synuclein. Incubation of HNE with alpha-synuclein at pH 7.4, 37oC resulted in covalent modification of the protein, with up to six HNE molecules incorporated as Michael addition products. FTIR and CD spectra indicated that HNE modification of alpha-synuclein resulted in a major conformational change involving increased beta-sheet. HNE modification of alpha-synuclein led to inhibition of fibrillation in an HNE-concentration-dependent manner. This inhibition of fibrillation was shown to be due to the formation of soluble oligomers based on SEC HPLC and AFM data. Small-angle X-ray scattering analysis indicated that the HNE-induced oligomers are compact and tightly packed. Treatment with guanidinium chloride (GuHCl) demonstrated that the HNE-induced oligomers were very stable with an extremely slow rate of dissociation. Addition of 5 uM HNE-modified oligomers to primary mesencephalic cultures caused marked neurotoxicity, since the integrity of dopaminergic and GABAergic neurons was reduced by 95% and 85%, respectively. Our observations indicate that HNE-modification of alpha-synuclein prevents fibrillation but may result in toxic oligomers which could therefore contribute to the demise of neurons subjected to oxidative damage.

  17. 4-Hydroxy-N-propyl-1,8-naphthalimide esters: New fluorescence-based assay for analysing lipase and esterase activity.

    PubMed

    Nalder, Tim D; Ashton, Trent D; Pfeffer, Frederick M; Marshall, Susan N; Barrow, Colin J

    2016-01-01

    Research using 1,8-naphthalimide derivatives has expanded rapidly in recent years owing to their cell-permeable nature, ability to target certain cellular locations and fluorescent properties. Here we describe the synthesis of three new esters of 4-hydroxy-N-propyl-1,8-naphthalimide (NAP) and the development of a simple and sensitive assay protocol to measure the activity of carboxylester hydrolases. The NAP fluorophore was esterified with short (butyrate), medium (octanoate) and long (palmitate) chain fatty acids. The esters were spectroscopically characterised and their properties investigated for their suitability as assay substrates. The esters were found to be relatively stable under the conditions of the assay and levels of spontaneous hydrolysis were negligible. Non-specific hydrolysis by proteins such as bovine serum albumin was also minimal. A simple and rapid assay methodology was developed and used to analyse a range of commercially available enzymes that included enzymes defined as lipases, esterases and phospholipases. Clear differences were observed between the enzyme classes with respect to the hydrolysis of the various chain length esters, with lipases preferentially hydrolysing the medium chain ester, whereas esterases reacted more favourably with the short ester. The assay was found to be highly sensitive with the fluorophore detectable to the low nM range. These esters provide alternate substrates from established coumarin-based fluorophores, possessing distinctly different excitation (447 nm) and emission (555 nm) optima. Absorbing at 440-450 nm also offers the flexibility of analysis by UV-visible spectrophotometry. This represents the first instance of a naphthalimide-derived compound being used to analyse these enzymes.

  18. 4-Hydroxy-2-Nonenal, a Reactive Product of Lipid Peroxidation, and Neurodegenerative Diseases: A Toxic Combination Illuminated by Redox Proteomics Studies

    PubMed Central

    Coccia, Raffaella; Butterfield, D. Allan

    2012-01-01

    Abstract Significance: Among different forms of oxidative stress, lipid peroxidation comprises the interaction of free radicals with polyunsaturated fatty acids, which in turn leads to the formation of highly reactive electrophilic aldehydes. Among these, the most abundant aldehydes are 4-hydroxy-2-nonenal (HNE) and malondialdehyde, while acrolein is the most reactive. HNE is considered a robust marker of oxidative stress and a toxic compound for several cell types. Proteins are particularly susceptible to modification caused by HNE, and adduct formation plays a critical role in multiple cellular processes. Recent Advances: With the outstanding progress of proteomics, the identification of putative biomarkers for neurodegenerative disorders has been the main focus of several studies and will continue to be a difficult task. Critical Issues: The present review focuses on the role of lipid peroxidation, particularly of HNE-induced protein modification, in neurodegenerative diseases. By comparing results obtained in different neurodegenerative diseases, it may be possible to identify both similarities and specific differences in addition to better characterize selective neurodegenerative phenomena associated with protein dysfunction. Results obtained in our laboratory and others support the common deregulation of energy metabolism and mitochondrial function in neurodegeneration. Future Directions: Research towards a better understanding of the molecular mechanisms involved in neurodegeneration together with identification of specific targets of oxidative damage is urgently required. Redox proteomics will contribute to broaden the knowledge in regard to potential biomarkers for disease diagnosis and may also provide insight into damaged metabolic networks and potential targets for modulation of disease progression. Antioxid. Redox Signal. 17, 1590–1609. PMID:22114878

  19. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer disease and other selected age-related neurodegenerative disorders.

    PubMed

    Di Domenico, Fabio; Tramutola, Antonella; Butterfield, D Allan

    2016-10-24

    Oxidative stress is involved in various and numerous pathological states including several age-related neurodegenerative diseases. Peroxidation of the membrane lipid bilayer is one of the major sources of free radical-mediated injury that directly damages neurons causing increased membrane rigidity, decreased activity of membrane-bound enzymes, impairment of membrane receptors and altered membrane permeability and eventual cell death. Moreover, the peroxidation of polyunsaturated fatty acids leads to the formation of aldehydes, which can act as toxic by-products. One of the most abundant and cytotoxic lipid -derived aldehydes is 4-hydroxy 2-nonenal (HNE). HNE toxicity is mainly due to the alterations of cell functions by the formation of covalent adducts of HNE with proteins. A key marker of lipid peroxidation, HNE-protein adducts, were found to be elevated in brain tissues and body fluids of Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis subjects and/or models of the respective age-related neurodegenerative diseases. Although only a few proteins were identified as common targets of HNE modification across all these listed disorders, a high overlap of these proteins occurs concerning the alteration of common pathways, such as glucose metabolism or mitochondrial function that are known to contribute to cognitive decline. Within this context, despite the different etiological and pathological mechanisms that lead to the onset of different neurodegenerative diseases, the formation of HNE-protein adducts might represent the shared leit-motif, which aggravates brain damage contributing to disease specific clinical presentation and decline in cognitive performance observed in each case.

  20. Quantitative Chemoproteomics for Site-Specific Analysis of Protein Alkylation by 4-Hydroxy-2-Nonenal in Cells

    PubMed Central

    2016-01-01

    Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopically tagged, photocleavable azido-biotin reagents to selectively capture and quantify the cellular targets labeled by the alkynyl analogue of HNE (aHNE). Our analyses site-specifically identified and quantified 398 aHNE protein alkylation events (386 cysteine sites and 12 histidine sites) in intact cells. This data set expands by at least an order of magnitude the number of such modification sites previously reported. Although adducts formed by Michael addition are thought to be largely irreversible, we found that most aHNE modifications are lost rapidly in situ. Moreover, aHNE adduct turnover occurs only in intact cells and loss rates are site-selective. This quantitative chemoproteomics platform provides a versatile general approach to map bioorthogonal-chemically engineered post-translational modifications and their cellular dynamics in a site-specific and unbiased manner. PMID:25654326

  1. Synthesis, structural characterization, Hirshfeld surface analysis and spectroscopic studies of cadmium (II) chloride complex with 4-hydroxy-1-methylpiperidine

    NASA Astrophysics Data System (ADS)

    Soudani, S.; Ferretti, V.; Jelsch, C.; Lefebvre, F.; Nasr, C. Ben

    2016-05-01

    The chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic characterization of the novel cadmium (II) 4-hydroxy-1-methylpiperidine complex, Cd4Cl10(C6H14NO)2·2H2O, have been reported. The atomic arrangement can be described as built up by an anionic framework, formed by edge sharing CdCl6 and CdCl5O octahedral linear chains spreading along the a-axis. These chains are interconnected by water molecules via O-H⋯Cl and O-H⋯O hydrogen bonds to form layers parallel to (011) plane. The organic cations are inserted between layers through C-H⋯Cl hydrogen bonds. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that the HC⋯Cl and HC⋯HC intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The statistical analysis of crystal contacts reveals the driving forces in the packing formation. The 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and of the IR bands.

  2. Enzymatic production of trans-4-hydroxy-L-proline by regio- and stereospecific hydroxylation of L-proline.

    PubMed

    Shibasaki, T; Mori, H; Ozaki, A

    2000-04-01

    A proline 4-hydroxylase gene, which was cloned from Dactylosporangium sp. RH1, was overexpressed in Escherichia coli W1485 on a plasmid under a tryptophan tandem promoter after the codon usage of the 5' end of the gene was optimized. The proline 4-hydroxylase activity was l600-fold higher than that in Dactylosporangium sp. RH1. trans-4-Hydroxy-L-proline(Hyp) was produced and accumulated to 41 g/L (87% yield from L-proline) in 100 h when the recombinant E. coli was cultivated in a medium containing L-proline and glucose. 2-Oxoglutarate, which is necessary for the hydroxylation of L-proline by proline 4-hydroxylase, was apparently supplied from glucose through the cellular metabolic pathway. The putA mutant of W1485, which is not able to degrade L-proline, has allowed the quantitative conversion of L-proline to Hyp. The formation of other isomers of hydroxyproline was not observed. Productivity of Hyp was almost the same in a larger-scale culture. The method of manufacturing Hyp from L-proline was established.

  3. Attenuated SAG expression exacerbates 4-hydroxy-2-nonenal-induced apoptosis and hypertrophy of H9c2 cardiomyocytes.

    PubMed

    Park, J H; Lee, J H; Park, J-W

    2015-01-01

    Oxidative stress, associated with the accumulation of reactive oxygen species (ROS), results in numerous and detrimental effects on the myocardium such as the induction of apoptotic cell death, hypertrophy, fibrosis, dysfunction, and dilatation. The product of sensitive to apoptosis gene (SAG) is a RING finger protein that has been shown to have a protective effect against apoptosis induced by oxidative stress in various cell types. The major reactive aldehydic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), is believed to be largely responsible for cytopathological effects observed during oxidative stress. In the present study, we showed that the transfection of H9c2 clonal myoblastic cells with small interfering RNA (siRNA) specific for SAG markedly attenuated SAG expression and exacerbates HNE-induced apoptosis and hypertrophy. The knockdown of SAG expression resulted in the modulation of cellular redox status, mitochondrial function, and cellular oxidative damage. Taken together, our results showed that the suppression of SAG expression by siRNA enhanced HNE-induced apoptosis and hypertrophy of cultured cardiomyocytes via the disruption of the cellular redox balance. Given the importance of the SAG protein in the regulation of the redox status of cardiomyocytes, we conclude that this protein may be a potential new target in the development of therapeutic agents for the prevention of cardiovascular diseases.

  4. Synthesis, crystal structure and theoretical studies of a Schiff base 2-[4-hydroxy benzylidene]-amino naphthalene.

    PubMed

    Arunagiri, C; Subashini, A; Saranya, M; Thomas Muthiah, P; Thanigaimani, K; Abdul Razak, I

    2015-01-25

    The molecular structure of a new Schiff base, 2-[4-hydroxy benzylidene]-amino naphthalene (HBAN) has been examined by HF and B3LYP/6-311++G(d,p) calculations. The X-ray structure was determined in order to establish the conformation of the molecule. The compound, C17H13NO, crystallizes in the orthorhombic, P212121 space group with the cell dimension, a=6.2867(2), b=10.2108(3), c=19.2950(6) Å, α=β=γ=90° and z=4. The asymmetric unit contains a molecule of a Schiff base. A strong intermolecular O-H⋯N and a weak C-H⋯O hydrogen bonds stabilized the crystal structure. The vibrational spectra of HBAN have been calculated using density functional theoretical computation and compared with the experimental. The study is extended to the HOMO-LUMO analysis to calculate the energy gap (Δ), Ionization potential (I), Electron Affinity (A), Global Hardness (η), Chemical Potential (μ) and Global Electrophilicity (w). The calculated HOMO and LUMO energy reveals that the charge transfer occurs within the molecule.

  5. Quantitative chemoproteomics for site-specific analysis of protein alkylation by 4-hydroxy-2-nonenal in cells.

    PubMed

    Yang, Jing; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C

    2015-03-03

    Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopically tagged, photocleavable azido-biotin reagents to selectively capture and quantify the cellular targets labeled by the alkynyl analogue of HNE (aHNE). Our analyses site-specifically identified and quantified 398 aHNE protein alkylation events (386 cysteine sites and 12 histidine sites) in intact cells. This data set expands by at least an order of magnitude the number of such modification sites previously reported. Although adducts formed by Michael addition are thought to be largely irreversible, we found that most aHNE modifications are lost rapidly in situ. Moreover, aHNE adduct turnover occurs only in intact cells and loss rates are site-selective. This quantitative chemoproteomics platform provides a versatile general approach to map bioorthogonal-chemically engineered post-translational modifications and their cellular dynamics in a site-specific and unbiased manner.

  6. MexEF-OprN efflux pump exports the Pseudomonas quinolone signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline).

    PubMed

    Lamarche, Martin G; Déziel, Eric

    2011-01-01

    Bacterial cells have evolved the capacity to communicate between each other via small diffusible chemical signals termed autoinducers. Pseudomonas aeruginosa is an opportunistic pathogen involved, among others, in cystic fibrosis complications. Virulence of P. aeruginosa relies on its ability to produce a number of autoinducers, including 4-hydroxy-2-alkylquinolines (HAQ). In a cell density-dependent manner, accumulated signals induce the expression of multiple targets, especially virulence factors. This phenomenon, called quorum sensing, promotes bacterial capacity to cause disease. Furthermore, P. aeruginosa possesses many multidrug efflux pumps conferring adaptive resistance to antibiotics. Activity of some of these efflux pumps also influences quorum sensing. The present study demonstrates that the MexEF-OprN efflux pump modulates quorum sensing through secretion of a signalling molecule belonging to the HAQ family. Moreover, activation of MexEF-OprN reduces virulence factor expression and swarming motility. Since MexEF-OprN can be activated in infected hosts even in the absence of antibiotic selective pressure, it could promote establishment of chronic infections in the lungs of people suffering from cystic fibrosis, thus diminishing the immune response to virulence factors. Therapeutic drugs that affect multidrug efflux pumps and HAQ-mediated quorum sensing would be valuable tools to shut down bacterial virulence.

  7. Synthesis, structural characterization, Hirshfeld surface analysis and spectroscopic studies of cadmium (II) chloride complex with 4-hydroxy-1-methylpiperidine

    SciTech Connect

    Soudani, S.; Ferretti, V.; Jelsch, C.; Lefebvre, F.; Nasr, C. Ben

    2016-05-15

    The chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic characterization of the novel cadmium (II) 4-hydroxy-1-methylpiperidine complex, Cd{sub 4}Cl{sub 10}(C{sub 6}H{sub 14}NO){sub 2}·2H{sub 2}O, have been reported. The atomic arrangement can be described as built up by an anionic framework, formed by edge sharing CdCl{sub 6} and CdCl{sub 5}O octahedral linear chains spreading along the a-axis. These chains are interconnected by water molecules via O–H⋯Cl and O–H⋯O hydrogen bonds to form layers parallel to (011) plane. The organic cations are inserted between layers through C–H⋯Cl hydrogen bonds. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that the H{sub C}⋯Cl and H{sub C}⋯H{sub C} intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The statistical analysis of crystal contacts reveals the driving forces in the packing formation. The {sup 13}C and {sup 15}N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and of the IR bands.

  8. Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal

    PubMed Central

    Flores-Bellver, M; Bonet-Ponce, L; Barcia, J M; Garcia-Verdugo, J M; Martinez-Gil, N; Saez-Atienzar, S; Sancho-Pelluz, J; Jordan, J; Galindo, M F; Romero, F J

    2014-01-01

    Retinal pigment epithelium has a crucial role in the physiology and pathophysiology of the retina due to its location and metabolism. Oxidative damage has been demonstrated as a pathogenic mechanism in several retinal diseases, and reactive oxygen species are certainly important by-products of ethanol (EtOH) metabolism. Autophagy has been shown to exert a protective effect in different cellular and animal models. Thus, in our model, EtOH treatment increases autophagy flux, in a concentration-dependent manner. Mitochondrial morphology seems to be clearly altered under EtOH exposure, leading to an apparent increase in mitochondrial fission. An increase in 2′,7′-dichlorofluorescein fluorescence and accumulation of lipid peroxidation products, such as 4-hydroxy-nonenal (4-HNE), among others were confirmed. The characterization of these structures confirmed their nature as aggresomes. Hence, autophagy seems to have a cytoprotective role in ARPE-19 cells under EtOH damage, by degrading fragmented mitochondria and 4-HNE aggresomes. Herein, we describe the central implication of autophagy in human retinal pigment epithelial cells upon oxidative stress induced by EtOH, with possible implications for other conditions and diseases. PMID:25032851

  9. Identification of a negative feedback loop in biological oxidant formation fegulated by 4-hydroxy-2-(E)-nonenal

    PubMed Central

    Gatbonton-Schwager, Tonibelle N.; Sadhukhan, Sushabhan; Zhang, Guo-Fang; Letterio, John J.; Tochtrop, Gregory P.

    2014-01-01

    4-Hydroxy-2-(E)-nonenal (4-HNE) is one of the major lipid peroxidation product formed during oxidative stress. At high concentrations, 4-HNE is cytotoxic and exerts deleterious effects that are often associated with the pathology of oxidative stress-driven disease. Alternatively, at low concentrations it functions as a signaling molecule that can activate protective pathways including the antioxidant Nrf2-Keap1 pathway. Although these biphasic signaling properties have been enumerated in many diseases and pathways, it has yet to be addressed whether 4-HNE has the capacity to modulate oxidative stress-driven lipid peroxidation. Here we report an auto-regulatory mechanism of 4-HNE via modulation of the biological oxidant nitric oxide (NO). Utilizing LPS-activated macrophages to induce biological oxidant production, we demonstrate that 4-HNE modulates NO levels via inhibition of iNOS expression. We illustrate a proposed model of control of NO formation whereby at low concentrations of 4-HNE a negative feedback loop maintains a constant level of NO production with an observed inflection at approximately 1 µM, while at higher 4-HNE concentrations positive feedback is observed. Further, we demonstrate that this negative feedback loop of NO production control is dependent on the Nrf2-Keap1 signaling pathway. Taken together, the careful regulation of NO production by 4-HNE argues for a more fundamental role of this lipid peroxidation product in normal physiology. PMID:25009777

  10. Mechanism of inhibition of mammalian tumor and other thymidylate synthases by N sup 4 -hydroxy-dCMP, N sup 4 -hydroxy-5-fluoro-dCMP, and related analogues

    SciTech Connect

    Rode, W.; Zielinski, Z.; Dzik, J.M.; Ciesla, J. ); Kulikowski, T.; Bretner, M.; Shugar, D. ); Kierdaszuk, B. )

    1990-12-01

    N{sup 4}-Hydroxy-dCMP (N{sup 4}-OH-dCMP), N{sup 4}-methoxy-dCMP (N{sup 4}-OMe-dCMP), and their 5-fluoro congeners were all slow-binding inhibitors of Ehrlich carcinoma thymidylate synthase (TS), competitive with respect to dUMP, and had differing kinetic constants describing interactions with the two TS binding sites. N{sup 4}-OH-dCMP was not a substrate and its inactivation of TS was methylenetetrahydrofolate-dependent, hence mechanism-based. K{sub i} values for N{sup 4}-OH-dCMP and its 5-fluoro analogue were in the range 10{sup {minus}7}-10{sup {minus}8} M, 2-3 orders of magnitude higher for the corresponding N{sup 4}-OMe analogues. The 5-methyl analogue of N{sup 4}-OHdCMP was 10{sup 4}-fold less potent, pointing to the anti rotamer of the imino form of exocyclic N{sup 4}-OH, relative to the ring N(3), as the active species. This is consistent with weaker slow-binding inhibition of the altered enzyme from 5-FdUrd-resistant, relative to parent, L1210 cells by both FdUMP and N{sup 4}-OH-dCMP, suggesting interaction of both N{sup 4}-OH and C(5)-F groups with the same region of the active center. Kinetic studies with purified enzyme from five sources, viz., Ehrlich carcinoma, L1210 parental, and 5-FdUrd-resistant cells, regenerating rat liver, and the tapeworm Hymenolepis diminuta, demonstrated that addition of a 5-fluoro substituent to N{sup 4}-OH-dCMP increased its affinity from 2- to 20-fold for the enzyme from different sources. With the Ehrlich and tapeworm enzymes, N{sup 4}-OH-FdCMP and FdUMP were almost equally effective inhibitors.

  11. A novel high resolution MS approach for the screening of 4-hydroxy-trans-2-nonenal sequestering agents.

    PubMed

    Colzani, Mara; Criscuolo, Angela; De Maddis, Danilo; Garzon, Davide; Yeum, Kyung-Jin; Vistoli, Giulio; Carini, Marina; Aldini, Giancarlo

    2014-03-01

    An in vitro high resolution mass spectrometry (MS) method was set-up to test the ability of compounds, mixtures and extracts to inhibit protein carbonylation induced by reactive carbonyl species (RCS). The method consists of incubating the protein target (ubiquitin) with 4-hydroxy-trans-2-nonenal (HNE) in the presence and absence of the tested compound. After 24h of incubation, the reaction is stopped and the protein is analyzed by high-resolution MS. The extent of protein carbonylation is determined by measuring the area of the +11 multicharged peak of the HNE adduct in respect to the native form. The method was validated by measuring the effect of well-known RCS sequestering agents, namely aminoguanidine, pyridoxamine, hydralazine and carnosine, yielding a good reproducibility and the possibility to be automatable. All the compounds were found to dose-dependently inhibit the protein carbonylation with the following order of potency carnosine≈hydralazine≫aminoguanidine>pyridoxamine, as determined by calculating the UC50 values, that is the concentration required to inhibit ubiquitin carbonylation by 50%. A good correlation was found with the results obtained by measuring HNE consumption using an HPLC method optimized by a mobile phase set at pH 7.4, in order to stabilize the eluted adducts. The MS approach was then applied to test the effect of two selected natural extracts on protein carbonylation, i.e. green coffee bean extract and procyanidins from Vitis vinifera. In summary, this paper reports a validated and highly reproducible MS method to test the ability of pure compounds as well as natural extracts to act as protein carbonylation inhibitors.

  12. Structural and Biochemical Studies of Human 4-hydroxy-2-oxoglutarate Aldolase: Implications for Hydroxyproline Metabolism in Primary Hyperoxaluria

    PubMed Central

    Riedel, Travis J.; Johnson, Lynnette C.; Knight, John; Hantgan, Roy R.; Holmes, Ross P.; Lowther, W. Todd

    2011-01-01

    Background 4-hydroxy-2-oxoglutarate (HOG) aldolase is a unique enzyme in the hydroxyproline degradation pathway catalyzing the cleavage of HOG to pyruvate and glyoxylate. Mutations in this enzyme are believed to be associated with the excessive production of oxalate in primary hyperoxaluria type 3 (PH3), although no experimental data is available to support this hypothesis. Moreover, the identity, oligomeric state, enzymatic activity, and crystal structure of human HOGA have not been experimentally determined. Methodology/Principal Findings In this study human HOGA (hHOGA) was identified by mass spectrometry of the mitochondrial enzyme purified from bovine kidney. hHOGA performs a retro-aldol cleavage reaction reminiscent of the trimeric 2-keto-3-deoxy-6-phosphogluconate aldolases. Sequence comparisons, however, show that HOGA is related to the tetrameric, bacterial dihydrodipicolinate synthases, but the reaction direction is reversed. The 1.97 Å resolution crystal structure of hHOGA bound to pyruvate was determined and enabled the modeling of the HOG-Schiff base intermediate and the identification of active site residues. Kinetic analyses of site-directed mutants support the importance of Lys196 as the nucleophile, Tyr168 and Ser77 as components of a proton relay, and Asn78 and Ser198 as unique residues that facilitate substrate binding. Conclusions/Significance The biochemical and structural data presented support that hHOGA utilizes a type I aldolase reaction mechanism, but employs novel residue interactions for substrate binding. A mapping of the PH3 mutations identifies potential rearrangements in either the active site or the tetrameric assembly that would likely cause a loss in activity. Altogether, these data establish a foundation to assess mutant forms of hHOGA and how their activity could be pharmacologically restored. PMID:21998747

  13. The Stringent Response Modulates 4-Hydroxy-2-Alkylquinoline Biosynthesis and Quorum-Sensing Hierarchy in Pseudomonas aeruginosa

    PubMed Central

    Schafhauser, James; Lepine, Francois; McKay, Geoffrey; Ahlgren, Heather G.; Khakimova, Malika

    2014-01-01

    As a ubiquitous environmental organism and an important human pathogen, Pseudomonas aeruginosa readily adapts and responds to a wide range of conditions and habitats. The intricate regulatory networks that link quorum sensing and other global regulators allow P. aeruginosa to coordinate its gene expression and cell signaling in response to different growth conditions and stressors. Upon nutrient transitions and starvation, as well as other environmental stresses, the stringent response is activated, mediated by the signal (p)ppGpp. P. aeruginosa produces a family of molecules called HAQ (4-hydroxy-2-alkylquinolines), some of which exhibit antibacterial and quorum-sensing signaling functions and regulate virulence genes. In this study, we report that (p)ppGpp negatively regulates HAQ biosynthesis: in a (p)ppGpp-null (ΔSR) mutant, HHQ (4-hydroxyl-2-heptylquinoline) and PQS (3,4-dihydroxy-2-heptylquinoline) levels are increased due to upregulated pqsA and pqsR expression and reduced repression by the rhl system. We also found that (p)ppGpp is required for full expression of both rhl and las AHL (acyl-homoserine lactone) quorum-sensing systems, since the ΔSR mutant has reduced rhlI, rhlR, lasI, and lasR expression, butanoyl-homoserine lactone (C4-HSL) and 3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12-HSL) levels, and rhamnolipid and elastase production. Furthermore, (p)ppGpp significantly modulates the AHL and PQS quorum-sensing hierarchy, as the las system no longer has a dominant effect on HAQ biosynthesis when the stringent response is inactivated. PMID:24509318

  14. Multigenerational effects of the anticancer drug tamoxifen and its metabolite 4-hydroxy-tamoxifen on Daphnia pulex.

    PubMed

    Borgatta, Myriam; Waridel, Patrice; Decosterd, Laurent-Arthur; Buclin, Thierry; Chèvre, Nathalie

    2016-03-01

    Tamoxifen and its metabolite 4-hydroxy-tamoxifen (4OHTam) are two potent molecules that have anticancer properties on breast cancers. Their medical use is expected to increase with the increasing global cancer rate. After consumption, patients excrete tamoxifen and the 4OHTam metabolite into wastewaters, and tamoxifen has been already detected in wastewaters and natural waters. The concentrations of 4OHTam in waters have never been reported. A single study reported 4OHTam effects on the microcrustacean Daphnia pulex. The effects of tamoxifen and 4OHTam over more than two generations are unknown in aquatic invertebrates. The main goal of this study was to assess the long-term sensitivity of the microcrustacean D. pulex over four generations, based on size, reproduction, viability and the intrinsic rate of natural increase (r). Additional experiments were carried out to observe whether the effects of tamoxifen and 4OHTam were reversible in the next generation after descendants were withdrawn from chemical stress (i.e., recovery experiment), and whether the lowest test concentration of each chemical induced toxic effects when both concentrations were combined (i.e., mixture experiments). Our results showed that tamoxifen and 4OHTam induced the adverse effects at environmentally relevant concentrations. Tamoxifen and 4OHTam impaired size, viability, reproduction and the r in four generations of treated D. pulex, but these effects were not clearly magnified over generations. Tamoxifen was more potent than 4OHTam on D. pulex. When used in a mixture, the combination of tamoxifen and 4OHTam induced effects in offspring, whereas no effects were observed when these chemicals were tested individually. In the recovery experiment, the reproduction and size were reduced in offspring withdrawn from chemical exposures. Our results suggested that tamoxifen and its metabolite may be a relevant pharmaceutical to consider in risk assessment.

  15. 40 CFR 721.5262 - 2,7-Naphthalenedisulfonic acid, 5-[[4-chloro-6-[substituted] amino]-1,3,5-triazin-2-yl]amino]-4...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...,7-Naphthalenedisulfonic acid, 5- amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3- -, trisodium salt... identified generically as 2,7-Naphthalenedisulfonic acid, 5- amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2,7-Naphthalenedisulfonic acid,...

  16. 40 CFR 721.5262 - 2,7-Naphthalenedisulfonic acid, 5-[[4-chloro-6-[substituted] amino]-1,3,5-triazin-2-yl]amino]-4...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...,7-Naphthalenedisulfonic acid, 5- amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3- -, trisodium salt... identified generically as 2,7-Naphthalenedisulfonic acid, 5- amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2,7-Naphthalenedisulfonic acid,...

  17. 40 CFR 721.5262 - 2,7-Naphthalenedisulfonic acid, 5-[[4-chloro-6-[substituted] amino]-1,3,5-triazin-2-yl]amino]-4...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...,7-Naphthalenedisulfonic acid, 5- amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3- -, trisodium salt... identified generically as 2,7-Naphthalenedisulfonic acid, 5- amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2,7-Naphthalenedisulfonic acid,...

  18. 40 CFR 721.5262 - 2,7-Naphthalenedisulfonic acid, 5-[[4-chloro-6-[substituted] amino]-1,3,5-triazin-2-yl]amino]-4...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...,7-Naphthalenedisulfonic acid, 5- amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3- -, trisodium salt... identified generically as 2,7-Naphthalenedisulfonic acid, 5- amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2,7-Naphthalenedisulfonic acid,...

  19. Antinociceptive activity of a synthetic curcuminoid analogue, 2,6-bis-(4-hydroxy-3-methoxybenzylidene)cyclohexanone, on nociception-induced models in mice.

    PubMed

    Ming-Tatt, Lee; Khalivulla, Shaik Ibrahim; Akhtar, Muhammad Nadeem; Mohamad, Azam Shah; Perimal, Enoch Kumar; Khalid, Mohamed Hanief; Akira, Ahmad; Lajis, Nordin; Israf, Daud Ahmad; Sulaiman, Mohd Roslan

    2012-03-01

    This study investigated the potential antinociceptive efficacy of a novel synthetic curcuminoid analogue, 2,6-bis-(4-hydroxy-3-methoxybenzylidene)cyclohexanone (BHMC), using chemical- and thermal-induced nociception test models in mice. BHMC (0.03, 0.1, 0.3 and 1.0 mg/kg) administered via intraperitoneal route (i.p.) produced significant dose-related inhibition in the acetic acid-induced abdominal constriction test in mice with an ID(50) of 0.15 (0.13-0.18) mg/kg. It was also demonstrated that BHMC produced significant inhibition in both neurogenic (first phase) and inflammatory phases (second phase) of the formalin-induced paw licking test with an ID(50) of 0.35 (0.27-0.46) mg/kg and 0.07 (0.06-0.08) mg/kg, respectively. Similarly, BHMC also exerted significant increase in the response latency period in the hot-plate test. Moreover, the antinociceptive effect of the BHMC in the formalin-induced paw licking test and the hot-plate test was antagonized by pre-treatment with the non-selective opioid receptor antagonist, naloxone. Together, these results indicate that the compound acts both centrally and peripherally. In addition, administration of BHMC exhibited significant inhibition of the neurogenic nociception induced by intraplantar injections of glutamate and capsaicin with ID(50) of 0.66 (0.41-1.07) mg/kg and 0.42 (0.38-0.51) mg/kg, respectively. Finally, it was also shown that BHMC-induced antinociception was devoid of toxic effects and its antinociceptive effect was associated with neither muscle relaxant nor sedative action. In conclusion, BHMC at all doses investigated did not cause any toxic and sedative effects and produced pronounced central and peripheral antinociceptive activities. The central antinociceptive activity of BHMC was possibly mediated through activation of the opioid system as well as inhibition of the glutamatergic system and TRPV1 receptors, while the peripheral antinociceptive activity was perhaps mediated through inhibition of

  20. Synthesis, Structure, and Analgesic Properties of Halogen-Substituted 4-Hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides

    PubMed Central

    Ukrainets, Igor V.; Petrushova, Lidiya A.; Shishkina, Svitlana V.; Sidorenko, Lyudmila V.; Sim, Galina; Kryvanych, Olga V.

    2016-01-01

    As potential new analgesics, the corresponding 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides have been obtained by amidation of ethyl 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate with aniline and its halogenated analogsin boiling dry xylene. The peculiarities of the mass and nuclear magnetic resonance (1Н and 13С) spectra of the synthesized compounds are discussed. Using X-ray diffraction analysis, the ability of the compounds to form stable solvates with N,N-dimethylformamide has been shown on the example of 4-bromo-substituted derivative. It should be further studied to be considered in their crystallization. According to the results of the pharmacological testing conducted on the model of the thermal tail-flick (tail immersion test) among halogen-substituted 4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxanilides, substances which are considerably superior to meloxicam and piroxicam by their analgesic activity have been found. They are of interest for further profound studies. PMID:28117318

  1. Modeling, Synthesis and Biological Evaluation of Potential Retinoid-X-Receptor (RXR) Selective Agonists: Novel Analogs of 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic Acid (Bexarotene) and (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid (CD3254)

    PubMed Central

    Jurutka, Peter W.; Kaneko, Ichiro; Yang, Joanna; Bhogal, Jaskaran S.; Swierski, Johnathon C.; Tabacaru, Christa R.; Montano, Luis A.; Huynh, Chanh C.; Jama, Rabia A.; Mahelona, Ryan D.; Sarnowski, Joseph T.; Marcus, Lisa M.; Quezada, Alexis; Lemming, Brittney; Tedesco, Maria A.; Fischer, Audra J.; Mohamed, Said A.; Ziller, Joseph W.; Ma, Ning; Gray, Geoffrey M.; van der Vaart, Arjan; Marshall, Pamela A.; Wagner, Carl E.

    2014-01-01

    Three unreported analogs of 4-[1-(3,5,5,8,8-pentamethyl-5-6-7-8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), otherwise known as bexarotene, as well as four novel analogs of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid (CD3254) are described, and evaluated for their retinoid-X-receptor (RXR)-selective agonism. Compound 1 has FDA approval as a treatment for cutaneous T-cell lymphoma (CTCL); though, treatment with 1 can elicit side-effects by disrupting other RXR-heterodimer receptor pathways. Of the 7 modeled novel compounds, all analogs stimulate RXR-regulated transcription in mammalian-2-hybrid and RXRE-mediated assays, possess comparable or elevated biological activity based on EC50 profiles, and retain similar or improved apoptotic activity in CTCL assays compared to 1. All novel compounds demonstrate selectivity for RXR and minimal crossover onto the retinoic-acid-receptor (RAR) compared to all-trans-retinoic acid, with select analogs also reducing inhibition of other RXR-dependent pathways (e.g., VDR-RXR). Our results demonstrate that further improvements in biological potency and selectivity of bexarotene can be achieved through rational drug design. PMID:24180745

  2. Synthesis, structural characterization and antimicrobial activities of diorganotin(IV) complexes with azo-imino carboxylic acid ligand: Crystal structure and topological study of a doubly phenoxide-bridged dimeric dimethyltin(IV) complex appended with free carboxylic acid groups

    NASA Astrophysics Data System (ADS)

    Roy, Manojit; Roy, Subhadip; Devi, N. Manglembi; Singh, Ch. Brajakishor; Singh, Keisham Surjit

    2016-09-01

    Diorganotin(IV) complexes appended with free carboxylic acids were synthesized by reacting diorganotin(IV) dichlorides [R2SnCl2; R = Me (1), Bu (2) and Ph (3)] with an azo-imino carboxylic acid ligand i.e. 2-{4-hydroxy-3-[(2-hydroxyphenylimino)methyl]phenylazo}benzoic acid in presence of triethylamine. The complexes were characterized by elemental analysis, IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy. The structure of 1 in solid state has been determined by X-ray crystallography. Crystal structure of 1 reveals that the compound crystallizes in monoclinic space group P21/c and is a dimeric dimethyltin(IV) complex appended with free carboxylic acid groups. In the structure of 1, the Sn(IV) atoms are hexacoordinated and have a distorted octahedral coordination geometry in which two phenoxy oxygen atoms and the azomethine nitrogen atom of the ligand coordinate to each tin atom. One of the phenoxy oxygen atom bridges the two tin centers resulting in a planar Sn2O2 core. Topological analysis is used for the description of molecular packing in 1. Tin NMR spectroscopy study indicates that the complexes have five coordinate geometry around tin atom in solution state. Since the complexes have free carboxylic acids, these compounds could be further used as potential metallo-ligands for the synthesis of other complexes. The synthesized diorganotin(IV) complexes were also screened for their antimicrobial activities and compound 2 showed effective antimicrobial activities.

  3. Supra­molecular hydrogen-bonding patterns in a 1:1 co-crystal of the N(7)—H tautomeric form of N 6-benzoyl­adenine with 4-hy­droxy­benzoic acid

    PubMed Central

    Swinton Darious, Robert; Thomas Muthiah, Packianathan

    2017-01-01

    The asymmetric unit of the title co-crystal, C12H9N5O·C7H6O3, contains one mol­ecule of N 6-benzoyl­adenine (BA) and one mol­ecule of 4-hy­droxy­benzoic acid (HBA). The N 6-benzoyl­adenine (BA) has an N(7)—H tautomeric form with nonprotonated N-1 and N-3 atoms. This tautomeric form is stabilized by a typical intra­molecular N—H⋯O hydrogen bond between the carbonyl (C=O) group and the N(7)—H hydrogen on the Hoogsteen face of the purine ring, forming a graph-set S(7) ring motif. The primary robust R 2 2(8) ring motif is formed in the Watson–Crick face via N—H⋯O and O—H⋯N hydrogen bonds (involving N1, N6—H and the carboxyl group of HBA). Weak inter­actions, such as, C—H⋯π and π–π are also observed in this crystal structure. PMID:28316815

  4. Elucidation of the biochemical basis for a clinical drug-drug interaction between atorvastatin and 5-(N-(4-((4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778875), a subtype selective agonist of the peroxisome proliferator-activated receptor alpha.

    PubMed

    Kalgutkar, Amit S; Chen, Danny; Varma, Manthena V; Feng, Bo; Terra, Steven G; Scialis, Renato J; Rotter, Charles J; Frederick, Kosea S; West, Mark A; Goosen, Theunis C; Gosset, James R; Walsky, Robert L; Francone, Omar L

    2013-11-01

    1. 5-(N-(4-((4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778875), an agonist of the peroxisome proliferator-activated receptor alpha, has been evaluated in the clinic to treat dyslipidemia and type 2 diabetes mellitus. Herein, we investigate the effect of CP-778875 on the pharmacokinetics of atorvastatin acid and its metabolites in humans. 2. The study incorporated a fixed-sequence design conducted in two groups. Group A was designed to estimate the effects of multiple doses of CP-778875 on the single dose pharmacokinetics of atorvastatin. Subjects in group A (n = 26) received atorvastatin (40 mg) on days 1 and 9 and CP-778875 (1.0 mg QD) on days 5-12. Group B was designed to examine the effects of multiple doses of atorvastatin on the single dose pharmacokinetics of CP-778875. Subjects in group B (n = 29) received CP-778875 (0.3 mg) on days 1 and 9 and atorvastatin (40 mg QD) on days 5-12. 3. Mean maximum serum concentration (Cmax) and area under the curve of atorvastatin were increased by 45% and 20%, respectively, upon co-administration with CP-778875. Statistically significant increases in the systemic exposure of ortho- and para-hydroxyatorvastatin were also observed upon concomitant dosing with CP-778875. CP-778875 pharmacokinetics, however, were not impacted upon concomitant dosing with atorvastatin. 4.  Inhibition of organic anion transporting polypeptide 1B1 by CP-778875 (IC50 = 2.14 ± 0.40 μM) could be the dominant cause of the pharmacokinetic interaction as CP-778875 did not exhibit significant inhibition of cytochrome P450 3A4/3A5, multidrug resistant protein 1 or breast cancer resistant protein, which are also involved in the hepatobiliary disposition of atorvastatin.

  5. Under the influence of the active deodorant ingredient 4-hydroxy-3-methoxybenzyl alcohol, the skin bacterium Corynebacterium jeikeium moderately responds with differential gene expression.

    PubMed

    Brune, Iris; Becker, Anke; Paarmann, Daniel; Albersmeier, Andreas; Kalinowski, Jörn; Pühler, Alfred; Tauch, Andreas

    2006-12-15

    A 70mer oligonucleotide microarray was constructed to analyze genome-wide expression profiles of Corynebacterium jeikeium, a skin bacterium that is predominantly present in the human axilla and involved in axillary odor formation. Oligonucleotides representing 100% of the predicted coding regions of the C. jeikeium K411 genome were designed and spotted in quadruplicate onto epoxy-coated glass slides. The quality of the printed microarray was demonstrated by co-hybridization with fluorescently labeled cDNA probes obtained from exponentially growing C. jeikeium cultures. Accordingly, genes detected with different intensities resulting in log(2) transformed ratios greater than 0.8 or smaller than -0.8 can be regarded as differentially expressed with a confidence level greater than 99%. In an application example, we measured global changes of gene expression during growth of C. jeikeium in the presence of different concentrations of the deodorant component 4-hydroxy-3-methoxybenzyl alcohol that is active in preventing body odor formation. Global expression profiling revealed that low concentrations of 4-hydroxy-3-methoxybenzyl alcohol (0.5 and 2.5mg/ml) had almost no detectable effect on the transcriptome of C. jeikeium. A slightly higher concentration of 4-hydroxy-3-methoxybenzyl alcohol (5mg/ml) resulted in differential expression of 95 genes, 86 of which showed an enhanced expression when compared to a control culture. Besides many genes encoding proteins that apparently participate in transcription and translation, the drug resistance determinant cmx and the predicted virulence factors sapA and sapD showed significantly enhanced expression levels. Differential expression of relevant genes was validated by real-time reverse transcription PCR assays.

  6. Liquid Crystalline Copoly(vinylether)s Containing 4(4’)-Methoxy-4’(4)-Hydroxy-Alpha-Methylstilbene Constitutional Isomers as Side Groups.

    DTIC Science & Technology

    1987-01-01

    8217’’ ’ 6.84 B AD 7.32 6 C 1 1 ! V 1 Y 6e x./ŗ/1 7.5 7.3 7.1 PP" 6.9 6.7 than 99.5% (HPLC). 4(4’ )-Methoxy-4’ (4)-hydroxy-a-methyl- stilbene (MHMS) was...4.30 (a, CHa=), 6.50 - 6.60 (d of d, -CH=), 6.71 (s, Ph- CB =), 6.89 - 7.47 (a, 8 aromatic protons). Polymerizations The copolymerization of the monomers

  7. Microporous metal organic framework [M{sub 2}(hfipbb){sub 2}(ted)] (M=Zn, Co; H{sub 2}hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine): Synthesis, structure analysis, pore characterization, small gas adsorption and CO{sub 2}/N{sub 2} separation properties

    SciTech Connect

    Xu, William W.; Pramanik, Sanhita; Zhang, Zhijuan; Emge, Thomas J.; Li, Jing

    2013-04-15

    Carbon dioxide is a greenhouse gas that is a major contributor to global warming. Developing methods that can effectively capture CO{sub 2} is the key to reduce its emission to the atmosphere. Recent research shows that microporous metal organic frameworks (MOFs) are emerging as a promising family of adsorbents that may be promising for use in adsorption based capture and separation of CO{sub 2} from power plant waste gases. In this work we report the synthesis, crystal structure analysis and pore characterization of two microporous MOF structures, [M{sub 2}(hfipbb){sub 2}(ted)] (M=Zn (1), Co (2); H{sub 2}hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine). The CO{sub 2} and N{sub 2} adsorption experiments and IAST calculations are carried out on [Zn{sub 2}(hfipbb){sub 2}(ted)] under conditions that mimic post-combustion flue gas mixtures emitted from power plants. The results show that the framework interacts with CO{sub 2} strongly, giving rise to relatively high isosteric heats of adsorption (up to 28 kJ/mol), and high adsorption selectivity for CO{sub 2} over N{sub 2}, making it promising for capturing and separating CO{sub 2} from CO{sub 2}/N{sub 2} mixtures. - Graphical abstract: Microporous [Zn{sub 2}(hfipbb){sub 2}(ted)] demonstrates high adsorption selectivity for CO{sub 2} over N{sub 2} under conditions that mimic flue gas mixtures. Highlights: ► Two new porous MOFs were synthesized and characterized by rational design. ► The small pore size leads to greatly enhanced CO{sub 2}–MOF interaction. ► High adsorption selectivity of the Zn–MOF for CO{sub 2} over N{sub 2} is achieved.

  8. Use of a novel microtitration protocol to obtain diffraction-quality crystals of 4-hydroxy-2-oxoglutarate aldolase from Bos taurus

    PubMed Central

    Huang, Amadeus; Baker, Edward; Loomes, Kerry

    2014-01-01

    The enzyme 4-hydroxy-2-oxoglutarate aldolase (HOGA) catalyses the retro-aldol degradation of 4-hydroxy-2-oxoglutarate to pyruvate and glyoxylate as part of the hydroxyproline catabolic pathway in mammals. Mutations in the coding region of the human HOGA gene are associated with primary hyperoxaluria type 3, a disease characterized by excessive oxalate production and ultimately stone deposition. Native HOGA was purified from bovine kidney using an improved and streamlined purification protocol from which two crystal forms were obtained using two different approaches. Vapour diffusion using PEG 3350 as a precipitant produced monoclinic crystals that belonged to space group C2 and diffracted to 3.5 Å resolution. By comparison, orthorhombic crystals belonging to space group I222 or I212121 and diffracting to beyond 2.25 Å resolution were obtained using a novel microtitration protocol with ammonium sulfate. The latter crystal form displayed superior diffraction quality and was suitable for structural determination by X-ray crystallography. PMID:25372828

  9. A 2:1 co-crystal of 2-methyl­benzoic acid and N,N′-bis­(pyridin-4-ylmeth­yl)ethanedi­amide: crystal structure and Hirshfeld surface analysis

    PubMed Central

    Syed, Sabrina; Jotani, Mukesh M.; Halim, Siti Nadiah Abdul; Tiekink, Edward R. T.

    2016-01-01

    The asymmetric unit of the title 2:1 co-crystal, 2C8H8O2·C14H14N4O2, comprises an acid mol­ecule in a general position and half a di­amide mol­ecule, the latter being located about a centre of inversion. In the acid, the carb­oxy­lic acid group is twisted out of the plane of the benzene ring to which it is attached [dihedral angle = 28.51 (8)°] and the carbonyl O atom and methyl group lie approximately to the same side of the mol­ecule [hy­droxy-O—C—C—C(H) torsion angle = −27.92 (17)°]. In the di­amide, the central C4N2O2 core is almost planar (r.m.s. deviation = 0.031 Å), and the pyridyl rings are perpendicular, lying to either side of the central plane [central residue/pyridyl dihedral angle = 88.60 (5)°]. In the mol­ecular packing, three-mol­ecule aggregates are formed via hy­droxy-O—H⋯N(pyrid­yl) hydrogen bonds. These are connected into a supra­molecular layer parallel to (12) via amide-N—H⋯O(carbon­yl) hydrogen bonds, as well as methyl­ene-C—H⋯O(amide) inter­actions. Significant π–π inter­actions occur between benzene/benzene, pyrid­yl/benzene and pyrid­yl/pyridyl rings within and between layers to consolidate the three-dimensional packing. PMID:27006815

  10. To tag or not to tag: A comparative evaluation of immunoaffinity-labeling and tandem mass spectrometry for the identification and localization of posttranslational protein carbonylation by 4-hydroxy-2-nonenal, an end-product of lipid peroxidation

    PubMed Central

    Guo, Jia; Prokai, Laszlo

    2011-01-01

    Posttranslational carbonylation of proteins by the covalent attachment of the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) is a biomarker of oxidative stress. Tandem mass spectrometry (MS/MS) has become an essential tool for characterization of this modification. Chemical tagging methods have been used to facilitate the immunoaffinity-based enrichment or even quantification of HNE-modified peptides and proteins. With MS/MS spectra of the untagged modified peptides considered as references, a comparative evaluation is presented focusing on the impact of affinity-tagging with four carbonyl-specific reagents (2,4-dinitrophenyl hydrazine, biotin hydrazide, biotinamidohexanoic acid hydrazide and N’-aminooxymethylcarbonylhydrazino D-biotin) on collision-induced dissociation of the tagged HNE-carbonylated peptides. Our study has shown that chemical labeling may not be carried out successfully for all the peptides and with all the reagents. The attachment of a tag usually cannot circumvent the occurrence of strong neutral losses observed with untagged species and, in addition, fragmentation of the introduced tag may also be introduced. Chemical tagging of certain peptides may, nevertheless, afford more sequence ions upon MS/MS than the untagged carbonylated peptide, especially when Michael addition of the lipid peroxidation product occurs on cysteine residues. Therefore, tagging may increase the confidence of identifications of HNE-modified peptides by database searches. PMID:21835276

  11. DNA incision evaluation, binding investigation and biocidal screening of novel metallonucleases of 1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione based Knoevenagel condensate having methionine: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Pravin, Narayanaperumal; Raman, Natarajan

    2015-02-01

    Four new metallonucleases of the composition [MLCl] (where M = Cu(II), Ni(II), Zn(II) and Co(II); L = Knoevenagel condensate Schiff base, obtained by the condensation reaction of 1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione with p-nitrobenzaldehyde and methionine amino acid) have been synthesised and characterized thoroughly by microanalytical data, magnetic susceptibility, molar conductivity, UV-Vis., IR, 1H NMR, 13C NMR and EPR spectral techniques. Their geometry is investigated and established to have square planar geometry. Electronic absorption spectroscopy, cyclic voltammetry and viscosity measurements reveal that the complexes strongly bind to calf thymus DNA via an intercalation mechanism. DNA cleavage efficiency of these complexes is explored by gel electrophoresis, and they are found to endorse the cleavage of pBR322 DNA in presence of oxidant H2O2. These results reveal that all the complexes show better nuclease activity. Moreover, the biological screening against few pathogens reveals that that the complexes have potent biocidal activity than the free ligand.

  12. Thermometric titration of acids in pyridine.

    PubMed

    Vidal, R; Mukherjee, L M

    1974-04-01

    Thermometric titration of HClO(4), HI, HNO(3), HBr, picric acid o-nitrobenzoic acid, 2,4- and 2,5-dinitrophenol, acetic acid and benzoic acid have been attempted in pyridine as solvent, using 1,3-diphenylguanidine as the base. Except in the case of 2,5-dinitrophenol, acetic acid and benzoic acid, the results are, in general, reasonably satisfactory. The approximate molar heats of neutralization have been calculated.

  13. In situ studies of the primary immune response to (4-hydroxy-3- nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations

    PubMed Central

    1991-01-01

    After primary immunization with an immunogenic conjugate of (4-hydroxy- 3-nitrophenyl)acetyl, two anatomically and phenotypically distinct populations of antibody-forming cells arise in the spleen. As early as 2 d after immunization, foci of antigen-binding B cells are observed along the periphery of the periarteriolar lymphoid sheaths. These foci expand, occupying as much as 1% of the splenic volume by day 8 of the response. Later, foci grow smaller and are virtually absent from the spleen by day 14. A second responding population, germinal center B cells, appear on day 8-10 and persist at least until day 16 post- immunization. Individual foci and germinal centers represent discrete pauciclonal populations that apparently undergo somatic evolution in the course of the primary response. We suggest that foci may represent regions of predominantly interclonal competition for antigen among unmutated B cells, while germinal centers are sites of intraclonal clonal competition between mutated sister lymphocytes. PMID:1902502

  14. Studies on the growth, structural, spectral and third-order nonlinear optical properties of Ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Silambarasan, A.; Krishna Kumar, M.; Thirunavukkarasu, A.; Mohan Kumar, R.; Umarani, P. R.

    2015-01-01

    An organic nonlinear optical bulk single crystal, Ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate (ACHBS) was successfully grown by solution growth technique. Single crystal X-ray diffraction study confirms that, the grown crystal belongs to P21/c space group. Powder X-ray diffraction and high resolution X-ray diffraction analyses revealed the crystallinity of the grown crystal. Infrared spectral analysis showed the vibrational behavior of chemical bonds and its functional groups. The thermal stability and decomposition stages of the grown crystal were studied by TG-DTA analysis. UV-Visible transmittance studies showed the transparency region and cut-off wavelength of the grown crystal. The third-order nonlinear optical susceptibility of the grown crystal was estimated by Z-scan technique using Hesbnd Ne laser source. The mechanical property of the grown crystal was studied by using Vicker's microhardness test.

  15. In Vitro Antioxidant Activity of Selected 4-Hydroxy-chromene-2-one Derivatives—SAR, QSAR and DFT Studies

    PubMed Central

    Mladenović, Milan; Mihailović, Mirjana; Bogojević, Desanka; Matić, Sanja; Nićiforović, Neda; Mihailović, Vladimir; Vuković, Nenad; Sukdolak, Slobodan; Solujić, Slavica

    2011-01-01

    The series of fifteen synthesized 4-hydroxycoumarin derivatives was subjected to antioxidant activity evaluation in vitro, through total antioxidant capacity, 1,1-diphenyl-2-picryl-hydrazyl (DPPH), hydroxyl radical, lipid peroxide scavenging and chelating activity. The highest activity was detected during the radicals scavenging, with 2b, 6b, 2c, and 4c noticed as the most active. The antioxidant activity was further quantified by the quantitative structure-activity relationships (QSAR) studies. For this purpose, the structures were optimized using Paramethric Method 6 (PM6) semi-empirical and Density Functional Theory (DFT) B3LYP methods. Bond dissociation enthalpies of coumarin 4-OH, Natural Bond Orbital (NBO) gained hybridization of the oxygen, acidity of the hydrogen atom and various molecular descriptors obtained, were correlated with biological activity, after which we designed 20 new antioxidant structures, using the most favorable structural motifs, with much improved predicted activity in vitro. PMID:21686153

  16. 4-Hydroxy-N′-[(1E)-1-(4-methylphenyl)ethylidene]benzohydrazide: Synthesis, crystal structure, and spectroscopic studies

    SciTech Connect

    Dilek, N.; Güneş, B.; Gökçe, C.; Güp, R.

    2013-12-15

    The titled compound has been synthesized by reaction of 4′-methylacetophenon with 4-hydrox-ybenzohydrazide in presence of catalytic amount of glacial acetic acid. The compound is characterized by elemental analysis, IR, {sup 1}H NMR, {sup 13}C NMR and UV-visible spectra. The crystal structure was determined by X-ray diffraction method. Both X-ray data and NMR spectra indicate that the molecule exists in a trans configuration with respect to the C=N bond. The observation of strong ν(C=O) peak in IR spectra of the aroylhydrazone compound suggests that it is in keto form in solid state. X-ray diffraction results confirm this suggestion. In the crystal structure, there are N-H...O and O-H...O hydrogen bonds and weak C-H...π interaction.

  17. Anaerobic degradation of halogenated benzoic acids by photoheterotrophic bacteria.

    PubMed

    van der Woude, B J; de Boer, M; van der Put, N M; van der Geld, F M; Prins, R A; Gottschal, J C

    1994-06-01

    From light-exposed enrichment cultures containing benzoate and a mixture of chlorobenzoates, a pure culture was obtained able to grow with 3-chlorobenzoate (3-CBA) or 3-bromobenzoate (3-BrBA) as the sole growth substrate anaerobically in the light. The thus isolated organism is a photoheterotroph, designated isolate DCP3. It is preliminarily identified as a Rhodopseudomonas palustris strain. It differs from Rhodopseudomonas palustris WS17, the only other known photoheterotroph capable of using 3-CBA for growth, in its independence of benzoate for growth with 3-CBA and in its wider substrate range: if grown on 3-CBA, it can also use 2-CBA, 4-CBA or 3,5-CBA.

  18. 3,5-Bis(benz­yloxy)benzoic acid

    PubMed Central

    Moreno-Fuquen, Rodolfo; Grande, Carlos; Advincula, Rigoberto C.; Tenorio, Juan C.; Ellena, Javier

    2012-01-01

    In the title compound, C21H18O4, the outer benzyl rings are disordered over two resolved positions in a 0.50 ratio. The O—CH2 groups form dihedral angles of 4.1 (2) and 10.9 (4)° with the central benzene ring, adopting a syn–anti conformation with respect to this ring. In the crystal, the mol­ecules are linked by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, forming chains along [010]. PMID:23284545

  19. First experimental determination of the absolute gas-phase rate coefficient for the reaction of OH with 4-hydroxy-2-butanone (4H2B) at 294 K by vapor pressure measurements of 4H2B.

    PubMed

    El Dib, Gisèle; Sleiman, Chantal; Canosa, André; Travers, Daniel; Courbe, Jonathan; Sawaya, Terufat; Mokbel, Ilham; Chakir, Abdelkhaleq

    2013-01-10

    The reaction of the OH radicals with 4-hydroxy-2-butanone was investigated in the gas phase using an absolute rate method at room temperature and over the pressure range 10-330 Torr in He and air as diluent gases. The rate coefficients were measured using pulsed laser photolysis (PLP) of H(2)O(2) to produce OH and laser induced fluorescence (LIF) to measure the OH temporal profile. An average value of (4.8 ± 1.2) × 10(-12) cm(3) molecule(-1) s(-1) was obtained. The OH quantum yield following the 266 nm pulsed laser photolysis of 4-hydroxy-2-butanone was measured for the first time and found to be about 0.3%. The investigated kinetic study required accurate measurements of the vapor pressure of 4-hydroxy-2-butanone, which was measured using a static apparatus. The vapor pressure was found to range from 0.056 to 7.11 Torr between 254 and 323 K. This work provides the first absolute rate coefficients for the reaction of 4-hydroxy-2-butanone with OH and the first experimental saturated vapor pressures of the studied compound below 311 K. The obtained results are compared to those of the literature and the effects of the experimental conditions on the reactivity are examined. The calculated tropospheric lifetime obtained in this work suggests that once emitted into the atmosphere, 4H2B may contribute to the photochemical pollution in a local or regional scale.

  20. Selective and sensitive optical chemosensor for detection of Ag(I) ions based on 2(4-hydroxy pent-3-en-2-ylideneamine) phenol in aqueous samples.

    PubMed

    Mirzaei, Mohammad; Saeed, Jaber

    2011-11-01

    A selective and sensitive chemosensor, based on the 2(4-hydroxy pent-3-en-2-ylideneamine) phenol (HPYAP) as chromophore, has been developed for colorimetric and visual detection of Ag(I) ions. HPYAP shows a considerable chromogenic behavior toward Ag(I) ions by changing the color of the solution from pale-yellow to very chromatic-yellow, which can be easily detected with the naked-eye. The chemosensor exhibited selective absorbance enhancement to Ag(I) ions in water samples over other metal ions at 438 nm, with a linear range of 0.4-500 μM (r(2)=0.999) and a limit of detection 0.07 μM of Ag(I) ions with UV-vis spectrophotometer detection. The relative standard deviation (RSD) for 100 μM Ag(I) ions was 2.05% (n=7). The proposed method was applied for the determination Ag(I) ions in water and waste water samples.

  1. Development and validation of a bioanalytical method for quantification of 2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) in rat plasma.

    PubMed

    Lee, Yu Zhao; Ming-Tatt, Lee; Lajis, Nordin Hj; Sulaiman, Mohd Roslan; Israf, Daud Ahmad; Tham, Chau Ling

    2012-12-07

    A sensitive and accurate high performance liquid chromatography with ultraviolet/visible light detection (HPLC-UV/VIS) method for the quantification of 2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) in rat plasma was developed and validated. BHMC and the internal standard, harmaline, were extracted from plasma samples by a simple liquid-liquid extraction using 95% ethyl acetate and 5% methanol. Plasma concentration of BHMC and internal standard were analyzed by reversed phase chromatography using a C₁₈ column (150 × 4.6 mm I.D., particle size 5 µm) and elution with a gradient mobile phase of water and methanol at a flow rate of 1.0 mL/min. Detection of BHMC and internal standard was done at a wavelength of 380 nm. The limit of quantification was 0.02 µg/mL. The calibration curves was linear (R² > 0.999) over the concentration range of 0.02-2.5 µg/mL. Intra- and inter-day precision were less than 2% coefficient of variation. The validated method was then applied to a pharmacokinetic study in rats by intravenous administration of BHMC at a single dose of 10 mg/kg. Pharmacokinetic parameters such as half-life, maximum plasma concentration, volume of distribution, clearance and elimination rate constant for BHMC were calculated.

  2. Assessing the genotoxic effects of two lipid peroxidation products (4-oxo-2-nonenal and 4-hydroxy-hexenal) in haemocytes and midgut cells of Drosophila melanogaster larvae.

    PubMed

    Demir, Eşref; Marcos, Ricard

    2017-03-22

    Lipid peroxidation products can induce tissue damage and are implicated in diverse pathological conditions, including aging, atherosclerosis, brain disorders, cancer, lung and various liver disorders. Since in vivo studies produce relevant information, we have selected Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to two lipid peroxidation products namely 4-oxo-2-nonenal (4-ONE) and 4-hydroxy-hexenal (4-HHE). Toxicity, intracellular reactive oxygen species production, and genotoxicity were the end-points evaluated. Haemocytes and midgut cells were the evaluated targets. Results showed that both compounds penetrate the intestine of the larvae, affecting midgut cells, and reaching haemocytes. Significant genotoxic effects, as determined by the comet assay, were observed in both selected cell targets in a concentration/time dependent manner. This study highlights the importance of D. melanogaster as a model organism in the study of the different biological effects caused by lipid peroxidation products entering via ingestion. This is the first study reporting genotoxicity data in haemocytes and midgut cells of D. melanogaster larvae for the two selected compounds.

  3. Luminescence properties of 4-hydroxy-5-phenylpyrido[3,2,1-jk]carbazol-6-one: solvatochromism and sensitivity to amine solution.

    PubMed

    Lee, Hyo-Sung; Kim, Hyun-Joon; Kang, Jun-Gill

    2011-08-01

    A detailed photophysical analysis of 4-hydroxy-5-phenylpyrido[3,2,1-jk]carbazol-6-one (HPPCO) is presented. When exposed to UV light, the compound produced deep blue to green luminescence, depending on the solvent. The luminescence peak shifts with the Gutmann donor number (DN) of the solvent and the proton substitution affects luminescence; a correlation between quantum yield and decay time indicated that proton transfer plays a key role in the observed solvatochromism. The ground-state deprotonation of HPPCO was apparently evidenced from the absorption and/or the excitation spectra in the solvents with large DN values. DFT and ZINDO calculations on the structural and optical properties have shown that deprotonation increases the contribution of oxygen atoms to the HOMO, thereby lowering the transition energy from the HOMO to the LUMO. Because the luminescence properties of HPPCO depend on proton transfer, it may be used to detect and quantitate amines in solution. The sensitivity of the luminescence to various amines was ∼10(5) M(-1) and was more effective in ethanol than in methanol.

  4. Characterization of polymorphs of a novel quinolinone derivative, TA-270 (4-hydroxy-1-methyl-3-octyloxy-7-sinapinoylamino-2(1H)-quinolinone).

    PubMed

    Kimura, N; Fukui, H; Takagaki, H; Yonemochi, E; Terada, K

    2001-10-01

    The polymorphic forms and amorphous form of TA-270 (4-hydroxy-1-methyl-3-octyloxy-7-sinapinoylamino-2(1H)-quinolinone), a newly developed antiallergenic compound, were characterized by powder X-ray diffractometry, thermal analysis, infrared spectroscopy and solid state 13C-NMR. The intrinsic dissolution rates of polymorphic forms were measured using the rotating disk method at 37 degrees C. The dissolution rates correlated well with the thermodynamic stability of each polymorphic form. These dissolution properties were clearly reflected in the oral bioavailability of TA-270 in rats. The transition behavior for each polymorph and for the amorphous form was studied under the high temperature and humidity conditions. The beta- and delta-forms were transformed into the alpha-form by heating. The amorphous form was also easily crystallized into alpha-form by heating, however it was relatively stable under humidified conditions. The internal molecular packing of each polymorph was estimated from IR and solid state NMR spectral analysis.

  5. Tritium-labeled (E,E)-2,5-bis(4'-hydroxy-3'-carboxystyryl)benzene as a probe for β-amyloid fibrils.

    PubMed

    Matveev, Sergey V; Kwiatkowski, Stefan; Sviripa, Vitaliy M; Fazio, Robert C; Watt, David S; LeVine, Harry

    2014-12-01

    Accumulation of Aβ in the brains of Alzheimer disease (AD) patients reflects an imbalance between Aβ production and clearance from their brains. Alternative cleavage of amyloid precursor protein (APP) by processing proteases generates soluble APP fragments including the neurotoxic amyloid Aβ40 and Aβ42 peptides that assemble into fibrils and form plaques. Plaque-buildup occurs over an extended time-frame, and the early detection and modulation of plaque formation are areas of active research. Radiolabeled probes for the detection of amyloid plaques and fibrils in living subjects are important for noninvasive evaluation of AD diagnosis, progression, and differentiation of AD from other neurodegenerative diseases and age-related cognitive decline. Tritium-labeled (E,E)-1-[(3)H]-2,5-bis(4'-hydroxy-3'-carbomethoxystyryl)benzene possesses an improved level of chemical stability relative to a previously reported radioiodinated analog for radiometric quantification of Aβ plaque and tau pathology in brain tissue and in vitro studies with synthetic Aβ and tau fibrils.

  6. Overexpression and Suppression of Artemisia annua 4-Hydroxy-3-Methylbut-2-enyl Diphosphate Reductase 1 Gene (AaHDR1) Differentially Regulate Artemisinin and Terpenoid Biosynthesis

    PubMed Central

    Ma, Dongming; Li, Gui; Zhu, Yue; Xie, De-Yu

    2017-01-01

    4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) catalyzes the last step of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway to synthesize isopentenyl pyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP). To date, little is known regarding effects of an increase or a decrease of a HDR expression on terpenoid and other metabolite profiles in plants. In our study, an Artemisia annua HDR cDNA (namely AaHDR1) was cloned from leaves. Expression profiling showed that it was highly expressed in leaves, roots, stems, and flowers with different levels. Green florescence protein fusion and confocal microscope analyses showed that AaHDR1 was localized in chloroplasts. The overexpression of AaHDR1 increased contents of artemisinin, arteannuin B and other sesquiterpenes, and multiple monoterpenes. By contrast, the suppression of AaHDR1 by anti-sense led to opposite results. In addition, an untargeted metabolic profiling showed that the overexpression and suppression altered non-polar metabolite profiles. In conclusion, the overexpression and suppression of AaHDR1 protein level in plastids differentially affect artemisinin and other terpenoid biosynthesis, and alter non-polar metabolite profiles of A. annua. Particularly, its overexpression leading to the increase of artemisinin production is informative to future metabolic engineering of this antimalarial medicine. PMID:28197158

  7. Studies on the growth aspects, structural and third-order nonlinear optical properties of Piperidinium 3-carboxy-4-hydroxy benzenesulfonate single crystal

    NASA Astrophysics Data System (ADS)

    Kalaiyarasi, S.; Zahid, I. MD; Devi, S. Reena; Kumar, R. Mohan

    2017-02-01

    Organic nonlinear optical material Piperidinium 3-carboxy-4-hydroxy benzenesulfonate (PBS) single crystal was successfully grown by solution growth method. Single crystal X-ray diffraction study confirms that, the grown crystal belongs to P21/n space group. The crystalline quality of PBS was ascertained by HRXRD studies. Infrared spectral analysis showed the vibrational behaviour of chemical bonds and presence of its functional groups. TG/DTA studies were used to study the thermal stability and decomposition stages of the compound. UV-visible transmittance studies showed the transparency region, cut-off wavelength and band gap of the grown crystal. Photoluminescence emission study was carried out for the grown crystal to show its electronic properties. By using Nd:YAG laser, the laser damage threshold was estimated for the grown crystal. The third-order nonlinear optical parameters of the grown crystal were estimated by Z-scan technique using He-Ne laser source. The mechanical property of the PBS crystal was studied by using Vicker's microhardness measurement.

  8. Effects of cis-4-hydroxy-L-proline, an inhibitor of Schwann cell differentiation, on the secretion of collagenous and noncollagenous proteins by Schwann cells

    SciTech Connect

    Eldridge, C.F.; Bunge, R.P.; Bunge, M.B. )

    1988-02-01

    The proline analog cis-4-hydroxy-L-proline (CHP) was previously shown to inhibit both Schwann cell (SC) differentiation and extracellular matrix (ECM) formation in cultures of rat SCs and dorsal root ganglion neurons. The authors confirmed that CHP inhibits basal lamina formation by immunofluorescence with antibodies to laminin, type IV collagen, and heparan sulfate proteoglycan. In order to test the hypothesis that CHP inhibits SC differentiation by specifically inhibiting the secretion of collagen. Cultures grown in the presence or absence of CHP were metabolically labeled with ({sup 3}H)leucine and the media were analyzed for relative amounts of (a) collagenous and noncollagenous proteins by assay with bacterial collagenase and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), or (b) triple-helical collagen by pepsin digestion followed by SDS-PAGE. The results indicate that although CHP inhibited the accumulation of secreted collagen in the culture medium and disrupted collagen triple-helix formation, it also significantly inhibited the accumulation of secreted noncollagenous proteins in the medium. They conclude that CHP does not act as a specific inhibitor of collagen secretion in this system, and thus data from these experiments cannot be used to relate SC collagen production to other aspects of SC differentiation. They discuss the evidence for and against specificity of CHP action in other systems.

  9. Altered Affinity Maturation in Primary Response to (4-hydroxy-3-nitrophenyl) Acetyl (NP) after Autologous Reconstitution of Irradiated C57BL/6 Mice

    PubMed Central

    De Trez, Carl; Van Acker, Annette; Vansanten, Georgette; Urbain, Jacques; Brait, Maryse

    2002-01-01

    Immune responses developing in irradiated environment are profoundly altered. The memory anti-arsonate response of A/J mice is dominated by a major clonotype encoded by a single gene segment combination called CRIA. In irradiated and autoreconstituted A/J mice, the level of anti-ARS antibodies upon secondary immunization is normal but devoid of CRIA antibodies. The affinity maturation process and the somatic mutation frequency are reduced. Isotype switching and development of germinal centers (GC) are delayed. The primary antibody response of C57BL/6 mice to the hapten (4-hydroxy-3-nitrophenyl) acetyl (NP)-Keyhole Limpet Hemocyanin (KLH) is dominated by antibodies encoded by a family of closely related VH genes associated with the expression of the λ1 light chain.We investigated the anti-NP primary response in irradiated and autoreconstituted C57BL/6 mice. We observed some splenic alterations as previously described in the irradiated A/J model. Germinal center reaction is delayed although the extrafollicular foci appearance is unchanged. Irradiated C57BL/6 mice are able to mount a primary anti-NP response dominated by λ1 positive antibodies but fail to produce high affinity NP-binding IgGl antibodies. Following a second antigenic challenge, irradiated mice develop enlarged GC and foci. Furthermore, higher affinity NP-binding IgG1 antibodies are detected. PMID:12885152

  10. The amino-terminal conserved domain of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase is critical for its function in oxygen-evolving photosynthetic organisms

    PubMed Central

    Hsieh, Wei-Yu; Hsieh, Ming-Hsiun

    2015-01-01

    4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), also known as isoprenoid synthesis H (IspH) or lysis-tolerant B (LytB), catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and dimethylallyl diphosphate. The structure and reaction mechanism of IspH have been actively investigated in Escherichia coli but little is known in plants. Compared with the bacterial IspH, cyanobacterial and plant HDRs all contain an extra N-terminal conserved domain (NCD) that is essential for their function. Tyr72 in the NCD and several plant-specific residues around the central active site are critical for Arabidopsis HDR function. These results suggest that the structure and reaction mechanism of HDR/IspH may be different between plants and bacteria. The E. coli IspH is an iron-sulfur protein that is sensitive to oxygen. It is possible that the cyanobacterial HDR may independently evolve from the common ancestor of prokaryotes to obtain the NCD, which may protect the enzyme from high concentration of oxygen during photosynthesis. PMID:25723575

  11. 4-Hydroxy-2-nonenal induces apoptosis by activating ERK1/2 signaling and depleting intracellular glutathione in intestinal epithelial cells

    PubMed Central

    Ji, Yun; Dai, Zhaolai; Wu, Guoyao; Wu, Zhenlong

    2016-01-01

    Excessive reactive oxygen species (ROS) induces oxidative damage to cellular constituents, ultimately leading to induction of apoptotic cell death and the pathogenesis of various diseases. The molecular mechanisms for the action of ROS in intestinal diseases remain poorly defined. Here, we reported that 4-hydroxy-2-nonenal (4-HNE) treatment led to capses-3-dependent apoptosis accompanied by increased intracellular ROS level and reduced glutathione concentration in intestinal epithelial cells. These effects of 4-HNE were markedly abolished by the antioxidant L-cysteine derivative N-acetylcysteine (NAC). Further studies demonstrated that the protective effect of NAC was associated with restoration of intracellular redox state by Nrf2-related regulation of expression of genes involved in intracellular glutathione (GSH) biosynthesis and inactivation of 4-HNE-induced phosphorylation of extracellular signal-regulated protein kinases (ERK1/2). The 4-HNE-induced ERK1/2 activation was mediated by repressing mitogen-activated protein kinase phosphatase-1 (MKP-1), a negative regulator of ERK1/2, through a proteasome-dependent degradation mechanism. Importantly, either overexpression of MKP-1 or NAC treatment blocked 4-HNE-induced MKP-1 degradation, thereby protecting cell from apoptosis. These novel findings provide new insights into a functional role of MKP-1 in oxidative stress-induced cell death by regulating ERK1/2 MAP kinase in intestinal epithelial cells. PMID:27620528

  12. Label-free proteomics assisted by affinity enrichment for elucidating the chemical reactivity of the liver mitochondrial proteome toward adduction by the lipid electrophile 4-hydroxy-2-nonenal (HNE)

    NASA Astrophysics Data System (ADS)

    Maier, Claudia

    2016-03-01

    The analysis of oxidative stress-induced post-translational modifications remains challenging due to the chemical diversity of these modifications, the possibility of the presence of positional isomers and the low stoichiometry of the modified proteins present in a cell or tissue proteome. Alcoholic liver disease (ALD) is a multifactorial disease in which mitochondrial dysfunction and oxidative stress have been identified as being critically involved in the progression of the disease from steatosis to cirrhosis. Ethanol metabolism leads to increased levels of reactive oxygen species (ROS), glutathione depletion and lipid peroxidation. Posttranslational modification of proteins by electrophilic products of lipid peroxidation has been associated with governing redox-associated signaling mechanisms, but also as contributing to protein dysfunction leading to organelle and liver injury. In particular the prototypical α,β-unsaturated aldehyde, 4-hydroxy-2-nonenal (HNE), has been extensively studied as marker of increased oxidative stress in hepatocytes. In this study, we combined a LC-MS label-free quantification method and affinity enrichment to assess the dose-dependent insult by HNE on the proteome of rat liver mitochondria. We used a carbonyl-selective probe, the ARP probe, to label HNE-protein adducts and to perform affinity capture at the protein level. Using LC-MS to obtain protein abundance estimates, a list of protein targets was obtained with increasing concentration of HNE used in the exposure studies. In parallel, we performed affinity capture at the peptide level to acquire site-specific information. Examining the concentration-dependence of the protein modifications, we observed distinct reactivity profiles for HNE-protein adduction. Pathway analysis indicated that proteins associated with metabolic processes, including amino acid, fatty acid and glyoxylate and dicarboxylate metabolism, bile acid synthesis and TCA cycle, showed enhanced reactivity to HNE

  13. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells.

    PubMed

    Wu, Pei-Shan; Yen, Jui-Hung; Kou, Mei-Chun; Wu, Ming-Jiuan

    2015-01-01

    Luteolin and apigenin are dietary flavones and exhibit a broad spectrum of biological activities including antioxidant, anti-inflammatory, anti-cancer and neuroprotective effects. The lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE) has been implicated as a causative agent in the development of neurodegenerative disorders. This study investigates the cytoprotective effects of luteolin and apigenin against 4-HNE-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Both flavones restored cell viability and repressed caspase-3 and PARP-1 activation in 4-HNE-treated cells. Luteolin also mitigated 4-HNE-mediated LC3 conversion and reactive oxygen species (ROS) production. Luteolin and apigenin up-regulated 4-HNE-mediated unfolded protein response (UPR), leading to an increase in endoplasmic reticulum chaperone GRP78 and decrease in the expression of UPR-targeted pro-apoptotic genes. They also induced the expression of Nrf2-targeted HO-1 and xCT in the absence of 4-HNE, but counteracted their expression in the presence of 4-HNE. Moreover, we found that JNK and p38 MAPK inhibitors significantly antagonized the increase in cell viability induced by luteolin and apigenin. Consistently, enhanced phosphorylation of JNK and p38 MAPK was observed in luteolin- and apigenin-treated cells. In conclusion, this result shows that luteolin and apigenin activate MAPK and Nrf2 signaling, which elicit adaptive cellular stress response pathways, restore 4-HNE-induced ER homeostasis and inhibit cytotoxicity. Luteolin exerts a stronger cytoprotective effect than apigenin possibly due to its higher MAPK, Nrf2 and UPR activation, and ROS scavenging activity.

  14. Revealing mechanisms of selective, concentration-dependent potentials of 4-hydroxy-2-nonenal to induce apoptosis in cancer cells through inactivation of membrane-associated catalase.

    PubMed

    Bauer, Georg; Zarkovic, Neven

    2015-04-01

    Tumor cells generate extracellular superoxide anions and are protected against superoxide anion-mediated intercellular apoptosis-inducing signaling by the expression of membrane-associated catalase. 4-Hydroxy-2-nonenal (4-HNE), a versatile second messenger generated during lipid peroxidation, has been shown to induce apoptosis selectively in malignant cells. The findings described in this paper reveal the strong, concentration-dependent potential of 4-HNE to specifically inactivate extracellular catalase of tumor cells both indirectly and directly and to consequently trigger apoptosis in malignant cells through superoxide anion-mediated intercellular apoptosis-inducing signaling. Namely, 4-HNE caused apoptosis selectively in NOX1-expressing tumor cells through inactivation of their membrane-associated catalase, thus reactivating subsequent intercellular signaling through the NO/peroxynitrite and HOCl pathways, followed by the mitochondrial pathway of apoptosis. Concentrations of 4-HNE of 1.2 µM and higher directly inactivated membrane-associated catalase of tumor cells, whereas at lower concentrations, 4-HNE triggered a complex amplificatory pathway based on initial singlet oxygen formation through H2O2 and peroxynitrite interaction. Singlet-oxygen-dependent activation of the FAS receptor and caspase-8 increased superoxide anion generation by NOX1 and amplification of singlet oxygen generation, which allowed singlet-oxygen-dependent inactivation of catalase. 4-HNE and singlet oxygen cooperate in complex autoamplificatory loops during this process. The finding of these novel anticancer pathways may be useful for understanding the role of 4-HNE in the control of malignant cells and for the optimization of ROS-dependent therapeutic approaches including antioxidant treatments.

  15. 4-Hydroxy-1-[2-(4-hydroxyphenoxy)ethyl]-4-(4-methylbenzyl)piperidine: a novel, potent, and selective NR1/2B NMDA receptor antagonist.

    PubMed

    Zhou, Z L; Cai, S X; Whittemore, E R; Konkoy, C S; Espitia, S A; Tran, M; Rock, D M; Coughenour, L L; Hawkinson, J E; Boxer, P A; Bigge, C F; Wise, L D; Weber, E; Woodward, R M; Keana, J F

    1999-07-29

    A structure-based search and screen of our compound library identified N-(2-phenoxyethyl)-4-benzylpiperidine (8) as a novel N-methyl-D-aspartate (NMDA) receptor antagonist that has high selectivity for the NR1/2B subunit combination (IC(50) = 0.63 microM). We report on the optimization of this lead compound in terms of potency, side effect liability, and in vivo activity. Potency was assayed by electrical recordings in Xenopus oocytes expressing cloned rat NMDA receptors. Side effect liability was assessed by measuring affinity for alpha(1)-adrenergic receptors and inhibition of neuronal K(+) channels. Central bioavailability was gauged indirectly by determining anticonvulsant activity in a mouse maximal electroshock (MES) assay. Making progressive modifications to 8, a hydroxyl substituent on the phenyl ring para to the oxyethyl tether (10a) resulted in a approximately 25-fold increase in NR1A/2B potency (IC(50) = 0.025 microM). p-Methyl substitution on the benzyl ring (10b) produced a approximately 3-fold increase in MES activity (ED(50) = 0.7 mg/kg iv). Introduction of a second hydroxyl group into the C-4 position on the piperidine ring (10e) resulted in a substantial decrease in affinity for alpha(1) receptors and reduction in inhibition of K(+) channels with only a modest decrease in NR1A/2B and MES potencies. Among the compounds described, 10e (4-hydroxy-N-[2-(4-hydroxyphenoxy)ethyl]-4-(4-methylbenzyl)piperid ine, Co 101244/PD 174494) had the optimum pharmacological profile and was selected for further biological evaluation.

  16. The anticancer drug metabolites endoxifen and 4-hydroxy-tamoxifen induce toxic effects on Daphnia pulex in a two-generation study.

    PubMed

    Borgatta, Myriam; Decosterd, Laurent-Arthur; Waridel, Patrice; Buclin, Thierry; Chèvre, Nathalie

    2015-07-01

    Although pharmaceutical metabolites are found in the aquatic environment, their toxicity on living organisms is poorly studied in general. Endoxifen and 4-hydroxy-tamoxifen (4OHTam) are two metabolites of the widely used anticancer drug tamoxifen for the prevention and treatment of breast cancers. Both metabolites have a high pharmacological potency in vertebrates, attributing prodrug characteristics to tamoxifen. Tamoxifen and its metabolites are body-excreted by patients, and the parent compound is found in sewage treatment plan effluents and natural waters. The toxicity of these potent metabolites on non-target aquatic species is unknown, which forces environmental risk assessors to predict their toxicity on aquatic species using knowledge on the parent compounds. Therefore, the aim of this study was to assess the sensitivity of two generations of the freshwater microcrustacean Daphnia pulex towards 4OHTam and endoxifen. Two chronic tests of 4OHTam and endoxifen were run in parallel and several endpoints were assessed. The results show that the metabolites 4OHTam and endoxifen induced reproductive and survival effects. For both metabolites, the sensitivity of D. pulex increased in the second generation. The intrinsic rate of natural increase (r) decreased with increasing 4OHTam and endoxifen concentrations. The No-Observed Effect Concentrations (NOECs) calculated for the reproduction of the second generation exposed to 4OHTam and endoxifen were <1.8 and 4.3 μg/L, respectively, whereas the NOECs that were calculated for the intrinsic rate of natural increase were <1.8 and 0.4 μg/L, respectively. Our study raises questions about prodrug and active metabolites in environmental toxicology assessments of pharmaceuticals. Our findings also emphasize the importance of performing long-term experiments and considering multi-endpoints instead of the standard reproduction outcome.

  17. Endogenous 4-hydroxy-2-nonenal in microalga Chlorella kessleri acts as a bioactive indicator of pollution with common herbicides and growth regulating factor of hormesis.

    PubMed

    Spoljaric, Dubravka; Cipak, Ana; Horvatic, Janja; Andrisic, Luka; Waeg, Georg; Zarkovic, Neven; Jaganjac, Morana

    2011-10-01

    Oxidative stress, i.e. excessive production of reactive oxygen species (ROS), leads to lipid peroxidation and to formation of reactive aldehydes (e.g. 4-hydroxy-2-nonenal; HNE), which act as second messengers of free radicals. It was previously shown that herbicides can induce ROS production in algal cells. In the current paper, the unicellular green microalga Chlorella kessleri was used to study the effect of two herbicides (S-metolachlor and terbuthylazine) and hydrogen peroxide (H(2)O(2)) on oxidative stress induction, HNE formation, chlorophyll content and the cell growth. Production of HNE was detected in this study for the first time in the cells of unicellular green algae using the antibody specific for the HNE-histidine adducts revealing the HNE-histidine adducts even in untreated, control C. kessleri. Exposure of algal cells to herbicides and H(2)O(2) increased the ROS production, modifying production of HNE. Namely, 4h upon treatment the levels of HNE-histidine conjugates were below controls. However, their amount increased afterwards. The increase of HNE levels in algae was followed by their increased growth rate, as was previously described for human carcinoma cells. Hence, changes in the cellular HNE content upon herbicide treatment inducing lipid oxidative stress and alterations in cellular growth rate of C. kessleri resemble adaptation of malignant cells to the HNE treatment. Therefore, as an addition to the standard toxicity tests, the evaluation of HNE-protein adducts in C. kessleri might indicate environmental pollution with lipid peroxidation-inducing herbicides. Finally, C. kessleri might be a convenient experimental model to further study cellular hormetic adaptation to oxidative stress-derived aldehydes.

  18. Structural and photophysical properties of HPPCO (4-hydroxy-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-6-one) derivatives

    NASA Astrophysics Data System (ADS)

    Jeong, Yong-Kwang; Kim, Min-Ah; Lee, Hyo-Sung; Kim, Jong-Moon; Lee, Sung Woo; Kang, Jun-Gill

    2015-01-01

    Proton-substitution effects of 4-hydroxy-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-6-one (HPPCO) on structural and photophysical properties were presented. HPPCO crystallized in the orthorhombic space group Pbca with an intermolecular hydrogen bonding between OH and oxygen atom of the carbonyl. The proton-substituted derivatives, 6-oxo-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-4-yl acetate (OPPCA) and 6-oxo-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-4-yl benzoate (OPPCB), crystallized in the monoclinic P21/c space group. For OPPCA and OPPCB, a weak interaction between carbonyl oxygen atom in the substituted group and carbon atom in the fused ring was responsible for three-dimensional arrangements. In addition, 6-oxo-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-4-yl furan-2-carboxylate (OPPCF), and 6-oxo-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-4-yl naphthoate (OPPCN) were also synthesized. HPPCO and the four derivatives excited by ultraviolet (UV) light produced blue emission. Proton substitution of the OH group significantly increased the radiative transitions and moderately decreased the non-radiative transitions. Consequently the luminescence quantum yields of the derivatives enhanced more than 4.6-fold, no matter what the groups were substituted. Structural and optical properties were further determined using density functional theory (DFT) and ZINDO calculations. The planar structure of the pyridocarbazole-fused ring resulted in π → π* electronic transitions within the main frame, with an additional transition from the n(O) of carbonyl to the π* of the main frame. The three excited states that arose from these transitions were responsible for the blue luminescence.

  19. Structural and photophysical properties of HPPCO (4-hydroxy-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-6-one) derivatives.

    PubMed

    Jeong, Yong-Kwang; Kim, Min-Ah; Lee, Hyo-Sung; Kim, Jong-Moon; Lee, Sung Woo; Kang, Jun-Gill

    2015-01-05

    Proton-substitution effects of 4-hydroxy-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-6-one (HPPCO) on structural and photophysical properties were presented. HPPCO crystallized in the orthorhombic space group Pbca with an intermolecular hydrogen bonding between OH and oxygen atom of the carbonyl. The proton-substituted derivatives, 6-oxo-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-4-yl acetate (OPPCA) and 6-oxo-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-4-yl benzoate (OPPCB), crystallized in the monoclinic P2₁/c space group. For OPPCA and OPPCB, a weak interaction between carbonyl oxygen atom in the substituted group and carbon atom in the fused ring was responsible for three-dimensional arrangements. In addition, 6-oxo-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-4-yl furan-2-carboxylate (OPPCF), and 6-oxo-5-phenyl-6H-pyrido[3,2,1-jk]carbazol-4-yl naphthoate (OPPCN) were also synthesized. HPPCO and the four derivatives excited by ultraviolet (UV) light produced blue emission. Proton substitution of the OH group significantly increased the radiative transitions and moderately decreased the non-radiative transitions. Consequently the luminescence quantum yields of the derivatives enhanced more than 4.6-fold, no matter what the groups were substituted. Structural and optical properties were further determined using density functional theory (DFT) and ZINDO calculations. The planar structure of the pyridocarbazole-fused ring resulted in π→π(*) electronic transitions within the main frame, with an additional transition from the n(O) of carbonyl to the π(*) of the main frame. The three excited states that arose from these transitions were responsible for the blue luminescence.

  20. Increase in Mrp1 expression and 4-hydroxy-2-nonenal adduction in heart tissue of Adriamycin-treated C57BL/6 mice.

    PubMed

    Jungsuwadee, Paiboon; Cole, Marsha P; Sultana, Rukhsana; Joshi, Gurujaj; Tangpong, Jitbanjong; Butterfield, D Allan; St Clair, Daret K; Vore, Mary

    2006-11-01

    Multidrug resistance-associated protein 1 (MRP1) mediates the ATP-dependent efflux of endobiotics and xenobiotics, including estradiol 17-(beta-d-glucuronide), leukotriene C(4), and the reduced glutathione conjugate of 4-hydroxy-2-nonenal (HNE), a highly reactive product of lipid peroxidation. Adriamycin is an effective cancer chemotherapeutic drug whose use is limited by cardiotoxicity. Adriamycin induces oxidative stress and production of HNE in cardiac tissue, which may contribute to cardiomyopathy. We investigated the role of Mrp1 in Adriamycin-induced oxidative stress in cardiac tissue. Mice were treated with Adriamycin (20 mg/kg, i.p.), and heart homogenate and sarcolemma membranes were assayed for Mrp1 expression and ATP-dependent transport activity. Expression of Mrp1 was increased at 6 and 24 hours after Adriamycin treatment compared with saline treatment. HNE-adducted proteins were significantly increased (P < 0.001) in the homogenates at 6 hours after Adriamycin treatment and accumulated further with time; HNE adduction of a 190-kDa protein was evident 3 days after Adriamycin treatment. Mrp1 was localized predominately in sarcolemma as shown by confocal and Western blot analysis. Sarcolemma membrane vesicles transported leukotriene C(4) with a K(m) and V(max) of 51.8 nmol/L and 94.1 pmol/min/mg, respectively, and MK571 (10 micromol/L) inhibited the transport activity by 65%. Exposure of HEK(Mrp1) membranes to HNE (10 micromol/L) significantly decreased the V(max) for estradiol 17-(beta-d-glucuronide) transport by 50%. These results show that expression of Mrp1 in the mouse heart is localized predominantly in sarcolemma. Adriamycin treatment increased Mrp1 expression and HNE adduction of Mrp1. Cardiac Mrp1 may play a role in protecting the heart from Adriamycin-induced cardiomyopathy by effluxing HNE conjugates.

  1. An asymmetric antibody repertoire is shaped between plasmablasts and plasma cells after secondary immunization with (4-hydroxy-3-nitrophenyl)acetyl chicken γ-globulin.

    PubMed

    Tashiro, Yasuyuki; Murakami, Akikazu; Goizuka, Ryo; Shimizu, Takeyuki; Kishimoto, Hidehiro; Azuma, Takachika

    2015-12-01

    Studies on the structural basis of antibody affinity maturation have been carried out by measuring the affinity of secreted antibodies, and information on structures has often been obtained from nucleotide sequences of BCRs of memory B cells. We considered it important to establish whether the repertoire of secreted antibodies from plasma cells is really in accord with that of BCRs on memory B cells at the same time points post-immunization. We isolated plasma cells secreting antibodies specific to (4-hydroxy-3-nitrophenyl)acetyl (NP) hapten by affinity matrix technology using biotin-anti-CD138 and streptavidin-NP-allophycocyanin, to which anti-NP antibodies secreted by autologous plasma cells bound preferentially. We found that plasmablasts occupied >90% of the antibody-secreting cell compartment in the primary response and that they secreted antibodies whose VH regions were encoded by V186.2(+)Tyr95(+) sequences, which provided an increase in the medium level of affinity by somatic hypermutation (SHM) of heavy chains at position 33. After secondary immunization, a further increase in antibody affinity was observed, which was explained by the appearance of a number of plasma cells secreting V186.2(+)Gly95(+) antibodies that acquired high affinity by multiple SHMs as well as plasmablasts secreting V186.2(+)Tyr95(+) antibodies. However, we did not detect any plasmablasts secreting V186.2(+)Gly95(+) antibodies, showing that plasmablasts and plasma cells have a different antibody repertoire, i.e. their respective repertoires are asymmetric. On the basis of these findings, we discussed the relationship between the BCR affinity of memory B cells and plasmablasts as well as plasma cells as pertaining to their ontogeny.

  2. Synthesis of Polysubstituted Benzoic Esters from 1,2-Dihydropyridines and Its Application to the Synthesis of Fluorenones.

    PubMed

    Tejedor, David; Prieto-Ramírez, Mary Cruz; Ingold, Mariana; Chicón, Margot; García-Tellado, Fernando

    2016-06-03

    A convenient, instrumentally simple, and efficient methodology to transform 1,2-dihydropyridines into benzoic esters is described. The generated multisubstituted benzoic esters feature different topologies spanning from simple aromatic rings to fused benzocycloalkane systems. As an extension of this methodology, these benzoic esters are efficiently transformed into an array of fluorenone frameworks featuring interesting and novel topological patterns.

  3. The Effective Synthesis of N-(Arylalkyl)-1-R-4-hydroxy-2,2-dioxo- 1H-2λ6,1-benzothiazine-3-carboxamides as Promising Analgesics of a New Chemical Class

    PubMed Central

    Ukrainets, Igor V.; Petrushova, Lidiya A.; Dzyubenko, Sergiy P.; Sim, Galina; Grinevich, Lina A.

    2015-01-01

    A new, effective preparative method has been proposed and the synthesis of a series of N-(arylalkyl)-1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-car-boxamides has been carried out. It has been shown that amidation of alkyl 1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates with arylalkyl-amines in boiling xylene proceeds with good yield and purity to the corresponding N-(arylalkyl)-amides. However, the presence of water in the reaction mixture has been shown to cause the formation of specific impurities: N-(arylalkyl)-1-R-2,2-dioxo-1H-2λ6,1-benzothiazin-4-amines. According to the results of the pharmacological studies, powerful analgesics have been found among the substances synthesized. PMID:26839838

  4. Oxidative stress-induced posttranslational modifications of alpha-synuclein: specific modification of alpha-synuclein by 4-hydroxy-2-nonenal increases dopaminergic toxicity.

    PubMed

    Xiang, Wei; Schlachetzki, Johannes C M; Helling, Stefan; Bussmann, Julia C; Berlinghof, Marvin; Schäffer, Tilman E; Marcus, Katrin; Winkler, Jürgen; Klucken, Jochen; Becker, Cord-Michael

    2013-05-01

    Aggregation and neurotoxicity of misfolded alpha-synuclein (αSyn) are crucial mechanisms for progressive dopaminergic neurodegeneration associated with Parkinson's disease (PD). Posttranslational modifications (PTMs) of αSyn caused by oxidative stress, including modification by 4-hydroxy-2-nonenal (HNE-αSyn), nitration (n-αSyn), and oxidation (o-αSyn), have been implicated to promote oligomerization of αSyn. However, it is yet unclear if these PTMs lead to different types of oligomeric intermediates. Moreover, little is known about which PTM-derived αSyn species exerts toxicity to dopaminergic cells. In this study, we directly compared aggregation characteristics of HNE-αSyn, n-αSyn, and o-αSyn. Generally, all of them promoted αSyn oligomerization. Particularly, HNE-αSyn and n-αSyn were more prone to forming oligomers than unmodified αSyn. Moreover, these PTMs prevented the formation of amyloid-like fibrils, although HNE-αSyn and o-αSyn were able to generate protofibrillar structures. The cellular effects associated with distinct PTMs were studied by exposing modified αSyn to dopaminergic Lund human mesencephalic (LUHMES) neurons. The cellular toxicity of HNE-αSyn was significantly higher than other PTM species. Furthermore, we tested the toxicity of HNE-αSyn in dopaminergic LUHMES cells and other cell types with low tyrosine hydroxylase (TH) expression, and additionally analyzed the loss of TH-immunoreactive cells in HNE-αSyn-treated LUHMES cells. We observed a selective toxicity of HNE-αSyn to neurons with higher TH expression. Further mechanistic studies showed that HNE-modification apparently increased the interaction of extracellular αSyn with neurons. Moreover, exposure of differentiated LUHMES cells to HNE-αSyn triggered the production of intracellular reactive oxygen species, preceding neuronal cell death. Antioxidant treatment effectively protected cells from the damage triggered by HNE-αSyn. Our findings suggest a specific

  5. Cell bioenergetics in Leghorn male hepatoma cells and immortalized chicken liver cells in response to 4-hydroxy 2-nonenal-induced oxidative stress.

    PubMed

    Piekarski, A L; Kong, B-W; Lassiter, K; Hargis, B M; Bottje, W G

    2014-11-01

    The major objectives of this study were to compare cell bioenergetics in 2 avian liver cell lines under control conditions and in response to oxidative stress imposed by 4-hydroxy 2-nonenal (4-HNE). Cells in this study were from a chemically immortalized Leghorn male hepatoma (LMH) cell line and a spontaneously immortalized chicken liver (CELi) cell line. Oxygen consumption rate (OCR) was monitored in specialized microtiter plates using an XF24 Flux Analyzer (Seahorse Bioscience, Billerica, MA). Cell bioenergetics was assessed by sequential additions of oligomycin, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and antimycin-A that enables the determination of a) OCR linked to adenosine triphosphate (ATP) synthase activity, b) mitochondrial oxygen reserve capacity, c) proton leak, and d) nonmitochondrial cytochrome c oxidase activity. Under control (unchallenged) conditions, LMH cells exhibited higher basal OCR and higher OCR attributed to each of the bioenergetic components listed above compared with CELi cells. When expressed as a percentage of maximal OCR (following uncoupling with FCCP), LMH cells exhibited higher OCR due to ATP synthase and proton leak activity, but lower mitochondrial oxygen reserve capacity compared with CELi cells; there were no differences in OCR associated with nonmitochondrial cytochrome c oxidase activity. Whereas the LMH cells exhibited robust ATP synthase activity up to 50 μM 4-HNE, CELi cells exhibited a progressive decline in ATP synthase activity with 10, 20, and 30 μM 4-HNE. The CELi cells exhibited higher mitochondrial oxygen reserve capacity compared with LMH cells with 0 and 20 μM 4-HNE but not with 30 μM 4-HNE. Both cell lines exhibited inducible proton leak in response to increasing levels of 4-HNE that was evident with 30 μM 4-HNE for CELi cells and with 40 and 50 μM 4-HNE in LMH cells. The results of these studies demonstrate fundamental differences in cell bioenergetics in 2 avian liver-derived cell lines

  6. Crystal structures of the co-crystalline adduct 5-(4-bromo­phen­yl)-1,3,4-thia­diazol-2-amine–4-nitro­benzoic acid (1/1) and the salt 2-amino-5-(4-bromo­phen­yl)-1,3,4-thia­diazol-3-ium 2-carb­oxy-4,6-di­nitro­phenolate

    PubMed Central

    Smith, Graham; Lynch, Daniel E.

    2014-01-01

    The structures of the 1:1 co-crystalline adduct C8H6BrN3S·C7H5NO4, (I), and the salt C8H7BrN3S+·C7H3N2O7 −, (II), obtained from the inter­action of 5-(4-bromo­phen­yl)-1,3,4-thia­diazol-2-amine with 4-nitro­benzoic acid and 3,5-di­nitro­salicylic acid, respectively, have been determined. The primary inter-species association in both (I) and (II) is through duplex R 2 2(8) (N—H⋯O/O—H⋯O) or (N—H⋯O/N—H⋯O) hydrogen bonds, respectively, giving heterodimers. In (II), these are close to planar [the dihedral angles between the thia­diazole ring and the two phenyl rings are 2.1 (3) (intra) and 9.8 (2)° (inter)], while in (I) these angles are 22.11 (15) and 26.08 (18)°, respectively. In the crystal of (I), the heterodimers are extended into a chain along b through an amine N—H⋯Nthia­diazole hydrogen bond but in (II), a centrosymmetric cyclic hetero­tetra­mer structure is generated through N—H⋯O hydrogen bonds to phenol and nitro O-atom acceptors and features, together with the primary R 2 2(8) inter­action, conjoined R 4 6(12), R 2 1(6) and S(6) ring motifs. Also present in (I) are π–π inter­actions between thia­diazole rings [minimum ring-centroid separation = 3.4624 (16) Å], as well as short Br⋯Onitro inter­actions in both (I) and (II) [3.296 (3) and 3.104 (3) Å, respectively]. PMID:25484726

  7. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco

    SciTech Connect

    Yalpani, N.; Leon, J.; Lawton, M.A.; Raskin, I. )

    1993-10-01

    Salicylic acid (SA) is a likely endogenous regulator of localized and systemic disease resistance in plants. During the hypersensitive response of Nicotiana tabacum L. cv Xanthi-nc to tobacco mosaic virus (TMV), SA levels rise dramatically. We studied Sa biosynthesis in healthy and TMV-inoculated tobacco by monitoring the levels of SA and its likely precursors in extracts of leaves and cell suspensions. In TMV-inoculated leaves, stimulation of Sa accumulation is accompanied by a corresponding increase in the levels of benzoic acid. [sup 14]C-Tracer studies with cell suspensions and mock- or TMV-inoculated leaves indicate that the label moves from trans-cinnamic acid to SA via benzoic acid. In healthy and TMV-inoculated tobacco leaves, benzoic acid induced SA accumulation. o-Coumaric acid, which was previously reported as a possible precursor of SA in other species, did not increase SA levels in tobacco. In healthy tobacco tissue, the specific activity of newly formed SA was equal to that of the supplied [[sup 14]C] benzoic acid, whereas in TMV-inoculated leaves some isotope dilution was observed, presumably because of the increase in the pool of endogenous benzoic acid. We observed accumulation of pathogenesis-related-1 proteins and increased resistance to TMV in benzoic acid but no in 0-coumaric acid-treated tobacco leaves. This is consistent with benzoic acid being the immediate precursor of SA. We conclude that in healthy and virus-inoculated tobacco, SA is formed from cinnamic acid via benzoic acid. 27 refs., 7 figs., 1 tab.

  8. Biosynthesis and metabolism of salicylic acid.

    PubMed Central

    Lee, H I; León, J; Raskin, I

    1995-01-01

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-beta-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. PMID:11607533

  9. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  10. Determination of 4-hydroxy-3-methoxymethamphetamine as a metabolite of methamphetamine in rats and human liver microsomes using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry.

    PubMed

    Kuwayama, Kenji; Tsujikawa, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Iwata, Yuko T; Inoue, Hiroyuki

    2009-06-01

    The aim of this study was to determine whether methamphetamine (MA) is metabolized to 4-hydroxy-3-methoxymethamphetamine (HMMA), which is known as the main metabolite of 3,4-methylenedioxymethamphetamine (MDMA). After MA was intravenously administered to rats, the plasma, urine, and bile were collected periodically. HMMA together with MA and its main metabolites, amphetamine and 4-hydroxymethamphetamine, were detected in the rat plasma, urine, and bile by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. In addition, HMMA was produced when MA was incubated with human liver microsomes. HMMA may be produced as a metabolite of MA when humans have consumed MA, although the amount of HMMA would be small compared with that of MA, amphetamine, or 4-hydroxymethamphetamine. The results of the present study will be helpful in determining the type of drug used.

  11. Synthesis and characterization of tritium labeled N-((R)-1-((S)-4-(4-chlorophenyl)-4-hydroxy-3,3-dimethylpiperidin-1-yl)-3-methyl-1-oxobutan-2-yl)-3-sulfamoylbenzamide.

    PubMed

    Hong, Yang; Hynes, John; Tian, Yuan; Balasubramanian, Balu; Bonacorsi, Samuel

    2015-08-01

    N-((R)-1-((S)-4-(4-chlorophenyl)-4-hydroxy-3,3-dimethylpiperidin-1-yl)-3-methyl-1-oxobutan-2-yl)-3-sulfamoylbenzamide is a potent C-C chemokine receptor 1 (CCR1) antagonist. The compound, possessing benzamide functionality, successfully underwent tritium/hydrogen (T/H) exchange with an organoiridium catalyst (Crabtree's catalyst). The labeling pattern in the product was studied with liquid chromatography-mass spectrometry, time-of-flight mass spectrometry, and (3) H-NMR. Overall, multiple labeled species were identified. In addition to the anticipated incorporation of tritium in the benzamide moiety, tritium labeling was observed in the valine portion of the molecule including substitution at its chiral carbon. Using authentic standards, liquid chromatography analysis of the labeled compound showed complete retention of stereochemical configuration.

  12. Spectroscopic, computational and electrochemical studies on the formation of the copper complex of 1-amino-4-hydroxy-9,10-anthraquinone and effect of it on superoxide formation by NADH dehydrogenase.

    PubMed

    Roy, Sanjay; Mondal, Palash; Sengupta, Partha Sarathi; Dhak, Debasis; Santra, Ramesh Chandra; Das, Saurabh; Guin, Partha Sarathi

    2015-03-28

    A 1 : 2 copper(II) complex of 1-amino-4-hydroxy-9,10-anthraquinone (QH) having the molecular formula CuQ2 was prepared and characterized by elemental analysis, NMR, FTIR, UV-vis and mass spectroscopy. The powder diffraction of the solid complex, magnetic susceptibility and ESR spectra were also recorded. The presence of the planar anthraquinone moiety in the complex makes it extremely difficult to obtain a single crystal suitable for X-ray diffraction studies. To overcome this problem, density functional theory (DFT) was used to evaluate an optimized structure of CuQ2. In the optimized structure, it was found that there is a tilt of the two planar aromatic anthraquinone rings of the complex with respect to each other in the two planes containing the O-Cu(II)-O plane. The present study is an important addition to the understanding of the structural aspects of metal-anthracyclines because there are only a few reports on the actual structures of metal-anthracyclines. The theoretical vibrational spectrum of the complex was assigned with the help of vibrational energy distribution analysis (VEDA) using potential energy distribution (PED) and compared with experimental results. Being important in producing the biochemical action of this class of molecules, the electrochemical behavior of the complex was studied in aqueous and non-aqueous solvents to find certain electrochemical parameters. In aqueous media, reduction involves a kinetic effect during electron transfer at an electrode surface, which was characterized very carefully using cyclic voltammetry. Electrochemical studies showed a significant modification in the electrochemical properties of 1-amino-4-hydroxy-9,10-anthraquinone (QH) when bound to Cu(II) in the complex compared to those observed for free QH. This suggests that the copper complex might be a good choice as a biologically active molecule, which was reflected in the lack of stimulated superoxide generation by the complex.

  13. 1-Hydroxy­ethyl-2-methyl-5-nitro­imidazolium 3-carb­oxy-4-hydroxy­benzene­sulfonate

    PubMed Central

    Yang, Bo

    2008-01-01

    Cocrystallization of 1-hydroxy­ethyl-2-methyl-5-nitroimidazole (metronidazole) and 5-sulfosalicylic acid (5-H2SSA) from methanol solution yields the title salt, C6H10N3O3 +·C7H5O6S−. In the crystal structure, the ions are linked by a combination of inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional framework. The hydroxyl group of the cation is disordered over two sites in a 0.860 (4):0.140 (4) ratio. PMID:21202961

  14. One-pot synthesis of novel (2R,4S)-N-aryl-4-hydroxy-1-(2,2,2-trifluoroacetyl) pyrrolidine-2-carboxamides via [Formula: see text]-NPs and [Formula: see text] catalysts and investigation of their biological activities.

    PubMed

    Darehkordi, Ali; Ramezani, Mahin

    2017-02-11

    A new class of (2R,4S)-N-aryl-4-hydroxy-1-(2,2,2-trifluoroacetyl)pyrrolidine-2-carboxamide compounds was synthesized by a facile one-pot reaction of trans-4-hydroxy proline and trifluoroacetimidoyl chlorides in the presence of [Formula: see text]-nanoparticles as a catalyst and sodium bicarbonate as a base. Synthesized compounds showed cytotoxicity with [Formula: see text] values of 15.3-70.3 [Formula: see text] against K562 (Homo sapiens, human) cells. The results of the study provide a valuable method for one-pot synthesis of trans-4-hydroxy proline-based N-(2,2,2-trifluoroacetylated) compounds. Also, these compounds show significant pharmaceutical activities as antibacterial and antifungal reagents.

  15. Investigation of the formation of benzoyl peroxide, benzoic anhydride, and other potential aerosol products from gas-phase reactions of benzoylperoxy radicals

    NASA Astrophysics Data System (ADS)

    Strollo, Christen M.; Ziemann, Paul J.

    2016-04-01

    The secondary organic aerosol (SOA) products of the reaction of benzaldehyde with Cl atoms and with OH radicals in air in the absence of NOx were investigated in an environmental chamber in order to better understand the possible role of organic peroxy radical self-reactions in SOA formation. SOA products and authentic standards were analyzed using mass spectrometry and liquid chromatography, and results show that the yields of benzoyl peroxide (C6H5C(O)OO(O)CC6H5) and benzoic anhydride (C6H5C(O)O(O)CC6H5), two potential products from the gas-phase self-reaction of benzoylperoxy radicals (C6H5C(O)OO·), were less than 0.1%. This is in contrast to results of recent studies that have shown that the gas-phase self-reactions of β-nitrooxyperoxy radicals formed from reactions of isoprene with NO3 radicals form dialkyl peroxides that contribute significantly to gas-phase and SOA products. Such reactions have also been proposed to explain the gas-phase formation of extremely low volatility dimers from autooxidation of terpenes. The results obtained here indicate that, at least for benzoylperoxy radicals, the self-reactions form only benzoyloxy radicals. Analyses of SOA composition and volatility were inconclusive, but it appears that the SOA may consist primarily of oligomers formed through heterogeneous/multiphase reactions possibly involving some combination of phenol, benzaldehyde, benzoic acid, and peroxybenzoic acid.

  16. Influence of coffee intake on urinary hippuric acid concentration.

    PubMed

    Ogawa, Masanori; Suzuki, Yoshihiro; Endo, Yoko; Kawamoto, Toshihiro; Kayama, Fujio

    2011-01-01

    Intake of foods and drinks containing benzoic acid influences the urinary hippuric acid (HA) concentration, which is used to monitor toluene exposure in Japan. Therefore, it is necessary to control the intake of benzoic acid before urine collection. Recently, some reports have suggested that components of coffee, such as chlorogenic, caffeic, and quinic acids are metabolized to HA. In this study, we evaluated the influence of coffee intake on the urinary HA concentration in toluene-nonexposed workers who had controlled their benzoic acid intake, and investigated which components of coffee influenced the urinary HA concentration. We collected urine from 15 healthy men who did not handle toluene during working hours, after they had consumed coffee, and we measured their urinary HA concentrations; the benzoic acid intake was controlled in these participants during the study period. The levels of chlorogenic, caffeic, and quinic acids in coffee were analyzed by LC-MS/MS. Urinary HA concentration increased significantly with increasing coffee consumption. Spectrophotometric LC-MS/MS analysis of coffee indicated that it contained chlorogenic and quinic acids at relatively high concentrations but did not contain benzoic acid. Our findings suggest that toluene exposure in coffee-consuming workers may be overestimated.

  17. Synthesis of 4-((1E, 6E)-7-(4-hydroxy-3-methoxyphenyl)-3, 5-dioxohepta-1, 6-dienyl)-2-methoxyphenyl 4-fluorobenzoate, a novel monoester derivative of curcumin, its experimental and theoretical (DFT) studies

    NASA Astrophysics Data System (ADS)

    Srivastava, Sangeeta; Gupta, Preeti; Amandeep; Singh, Ranvijay Pratap

    2016-04-01

    Curcumin (1), isolated as a major component from the chloroform extract of Curcuma longa was converted to its ester derivative 4-((1E, 6E)-7-(4-hydroxy-3-methoxyphenyl)-3,5-dioxohepta-1,6-dienyl)-2-methoxyphenyl 4-fluorobenzoate (2). The compound has been characterized with the help of 1H, 13C NMR, UV, IR and mass spectrometry. The molecular geometry of synthesized compound was calculated in ground state by Density functional theory (DFT/B3LYP) using 6-31G (d,p) basis set. 1H and 13C NMR chemical shifts were calculated in ground state by using Gauge-Including Atomic Orbital (GIAO) approach and these values were correlated with experimental observations. The electronic properties such as HOMO and LUMO energies were calculated using time dependent Density Functional Theory (TD-DFT). Stability of the molecule as a result of hyper conjugative interactions and electron delocalization were analysed using Natural bond orbital (NBO) analysis. Intramolecular interactions were analysed by AIM (Atom in molecule) approach. Global reactivity descriptors were calculated to study the reactive site within molecule. The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compounds. Molecular electrostatic potential (MEP) analysis has also been carried out.

  18. Characterization, molecular modeling and antimicrobial activity of metal complexes of tridentate Schiff base derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione and 2-aminophenol

    NASA Astrophysics Data System (ADS)

    Adly, Omima M. I.

    Metal complexes of Ni(II), Co(II), Cd(II), VO(IV) and UO2(VI) as well as several Cu(II) salts, including Cl,NO3-,AcO,ClO4- and SO4-2 with a tridentate O2N donor Schiff base ligand (H2L), synthesized by condensation of 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione with 2-aminophenol, were prepared and characterized on the basis of elemental analyses, spectral, magnetic, molar conductance and thermal gravimetric analysis. Square planar, tetrahedral and octahedral geometries have been assigned to the prepared complexes. Molecular parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data, and the changes of bond lengths are linearly correlated with IR data. The antimicrobial activities of the synthesized compounds were tested in vitro against the sensitive organisms Staphylococcus aureus as Gram positive bacteria, Proteus vulgaris as Gram negative bacteria and Candida albicans as fungus strain, and the results are discussed.

  19. Generation of Adducts of 4-Hydroxy-2-nonenal with Heat Shock 60 kDa Protein 1 in Human Promyelocytic HL-60 and Monocytic THP-1 Cell Lines

    PubMed Central

    Daga, Martina; Cetrangolo, Giovanni Paolo; Ciamporcero, Eric Stefano; Petrella, Claudia; Graf, Maria; Uchida, Koji; Mamone, Gianfranco; Ferranti, Pasquale; Ames, Paul R. J.

    2015-01-01

    Heat shock 60 kDa protein 1 (HSP60) is a chaperone and stress response protein responsible for protein folding and delivery of endogenous peptides to antigen-presenting cells and also a target of autoimmunity implicated in the pathogenesis of atherosclerosis. By two-dimensional electrophoresis and mass spectrometry, we found that exposure of human promyelocytic HL-60 cells to a nontoxic concentration (10 μM) of 4-hydroxy-2-nonenal (HNE) yielded a HSP60 modified with HNE. We also detected adducts of HNE with putative uncharacterized protein CXorf49, the product of an open reading frame identified in various cell and tissue proteomes. Moreover, exposure of human monocytic THP-1 cells differentiated with phorbol 12-myristate 13-acetate to 10 μM HNE, and to light density lipoprotein modified with HNE (HNE-LDL) or by copper-catalyzed oxidation (oxLDL), but not to native LDL, stimulated the formation of HNE adducts with HSP60, as detected by immunoprecipitation and western blot, well over basal levels. The identification of HNE-HSP60 adducts outlines a framework of mutually reinforcing interactions between endothelial cell stressors, like oxLDL and HSP60, whose possible outcomes, such as the amplification of endothelial dysfunction, the spreading of lipoxidative damage to other proteins, such as CXorf49, the activation of antigen-presenting cells, and the breaking of tolerance to HSP60 are discussed. PMID:26078803

  20. 4-Hydroxy-2,3-Dimethyl-2-Nonen-4-Olide Has an Inhibitory Effect on Pro-Inflammatory Cytokine Production in CpG-Stimulated Bone Marrow-Derived Dendritic Cells

    PubMed Central

    Manzoor, Zahid; Koo, Jung-Eun; Ali, Irshad; Kim, Jung-Eun; Byeon, Sang-Hee; Yoo, Eun-Sook; Kang, Hee-Kyoung; Hyun, Jin-Won; Lee, Nam-Ho; Koh, Young-Sang

    2016-01-01

    This study was intended to assess the anti-inflammatory properties of 4-hydroxy-2,3-dimethyl-2-nonen-4-olide (Comp) isolated from Ulva pertusa Kjellman on production of pro-inflammatory cytokines. Comp revealed remarkable inhibitory effects on production of pro-inflammatory cytokines in bone marrow-derived dendritic cells (BMDCs). Comp pre-treatment in the CpG DNA-stimulated BMDCs exhibited strong inhibition of interleukin (IL)-12 p40 and IL-6 production with IC50 values ranging from 7.57 ± 0.2 to 10.83 ± 0.3, respectively. It revealed an inhibitory effect on the phosphorylation of ERK1/2, JNK1/2, and p38, and on activator protein (AP)-1 reporter activity. Comp displayed noteworthy inhibitory effects on phosphorylation and degradation of IκBα, and on NF-κB reporter activity. In summary, these data propose that Comp has substantial anti-inflammatory properties and warrants further study concerning its potential use as a therapeutic agent for inflammation-associated maladies. PMID:27153074

  1. Screening of High-Level 4-Hydroxy-2 (or 5)-Ethyl-5 (or 2)-Methyl-3(2H)-Furanone-Producing Strains from a Collection of Gene Deletion Mutants of Saccharomyces cerevisiae

    PubMed Central

    Watanabe, Jun; Akao, Takeshi; Watanabe, Daisuke; Mogi, Yoshinobu; Shimoi, Hitoshi

    2014-01-01

    4-Hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-3(2H)-furanone (HEMF) is an important flavor compound that contributes to the sensory properties of many natural products, particularly soy sauce and soybean paste. The compound exhibits a caramel-like aroma and several important physiological activities, such as strong antioxidant activity. HEMF is produced by yeast species in soy sauce manufacturing; however, the enzymes involved in HEMF production remain unknown, hindering efforts to breed yeasts with high-level HEMF production. In this study, we identified high-level HEMF-producing mutants among a Saccharomyces cerevisiae gene deletion mutant collection. Fourteen deletion mutants were screened as high-level HEMF-producing mutants, and the ADH1 gene deletion mutant (adh1Δ) exhibited the maximum HEMF production capacity. Further investigations of the adh1Δ mutant implied that acetaldehyde accumulation contributes to HEMF production, agreeing with previous findings. Therefore, acetaldehyde might be a precursor for HEMF. The ADH1 gene deletion mutant of Zygosaccharomyces rouxii, which is the dominant strain of yeast found during soy sauce fermentation, also produces HEMF effectively, suggesting that acetaldehyde accumulation might be a benchmark for breeding industrial yeasts with excellent HEMF production abilities. PMID:25362059

  2. Spectrophotometric, conductometric and thermal studies of Co(II), Ni(II) and Cu(II) complexes with 2-(2-hydroxynaphthylazo)-4-hydroxy-6-methyl-1,3-pyrimidine

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; Mansour, Ikhlas A.; El-Sayed, Yousif S. Y.

    2007-10-01

    The electronic absorption spectra of 2-(2-hydroxynaphthylazo)-4-hydroxy-6-methyl-1,3-pyrimidine in pure organic solvents of different polarities and in buffer solutions of varying pH are studied. The important bands in the IR and the main signals in the 1H NMR spectra are assigned. The observed UV-vis absorption bands are assigned to the corresponding electronic transitions. The molecular stoichiometry, stability constant, absorption maximum, molar absorptivity and Sandell's sensitivity of the complexes are calculated. Obeyence to Beer's law and Ringbom optimum concentration ranges are also determined. The ability of using the titled azodye as metalochromic indicator in complexometric titrations was also studied. The effect of Co(II), Ni(II) and Cu(II) ions on the fluorescence of the azodye is also considered. The solid Cu(II) complexes of the titled azodye have been prepared and characterized by elemental, IR, UV-vis spectra as well as by conductometric and magnetic measurements. The data suggest square planar geometry for 1:1 and 1:2 (M:L) complexes. The thermal behaviour of the complexes has been studied. The kinetic parameters ( n, E, A, Δ H, Δ S and Δ G) of the thermal decomposition steps are computed using Coats-Redfern equations.

  3. Isolation, structure determination, synthesis, and sensory activity of N-phenylpropenoyl-L-amino acids from cocoa (Theobroma cacao).

    PubMed

    Stark, Timo; Hofmann, Thomas

    2005-06-29

    Application of chromatographic separation and taste dilution analyses recently revealed besides procyanidins a series of N-phenylpropenoyl amino acids as the key contributors to the astringent taste of nonfermented cocoa beans as well as roasted cocoa nibs. Because these amides have as yet not been reported as key taste compounds, this paper presents the isolation, structure determination, and sensory activity of these amino acid amides. Besides the previously reported (-)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-3-hydroxy-L-tyrosine (clovamide), (-)-N-[4'-hydroxy-(E)-cinnamoyl]-L-tyrosine (deoxyclovamide), and (-)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-tyrosine, seven additional amides, namely, (+)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-aspartic acid, (+)-N-[4'-hydroxy-(E)-cinnamoyl]-L-aspartic acid, (-)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-glutamic acid, (-)-N-[4'-hydroxy-(E)-cinnamoyl]-L-glutamic acid, (-)-N-[4'-hydroxy-(E)-cinnamoyl]-3-hydroxy-L-tyrosine, (+)-N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]-L-aspartic acid, and (+)-N-[(E)-cinnamoyl]-L-aspartic acid, were identified for the first time in cocoa products by means of LC-MS/MS, 1D/2D-NMR, UV-vis, CD spectroscopy, and polarimetry, as well as independent enantiopure synthesis. Using the recently developed half-tongue test, human recognition thresholds for the astringent and mouth-drying oral sensation were determined to be between 26 and 220 micromol/L (water) depending on the amino acid moiety. In addition, exposure to light rapidly converted these [E]-configured N-phenylpropenoyl amino acids into the corresponding [Z]-isomers, thus indicating that analysis of these compounds in food and plant materials needs to be performed very carefully in the absence of light to prevent artifact formation.

  4. Allyl 4-hydroxy­phenyl carbonate

    PubMed Central

    Flores Ahuactzin, Víctor Hugo; López, Delia; Bernès, Sylvain

    2009-01-01

    The title mol­ecule, C10H10O4, is a functionalized carbonate used in the synthetic route to organic glasses. The central CH fragment of the allyl group is disordered over two positions, with occupancies in a 0.758 (10):0.242 (10)ratio. This disorder reflects the torsional flexibility of the oxygen–allyl group, although both disordered parts present the expected anti­clinal conformation, with O—CH2—CH=CH2 torsion angles of −111 (2) and 119.1 (4)°. The crystal structure is based on chains parallel to [010], formed by O⋯H—O hydrogen bonds involving hydroxyl and carbonyl groups as donors and acceptors, respectively. The mol­ecular packing is further stabilized by two weak C—H⋯π contacts from the benzene ring of the asymmetric unit with two benzene rings of neighboring mol­ecules. PMID:21582877

  5. The new Schiff base 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one: Experimental, DFT calculational studies and in vitro antimicrobial activity

    NASA Astrophysics Data System (ADS)

    İskeleli, Nazan Ocak; Alpaslan, Yelda Bingöl; Direkel, Şahin; Ertürk, Aliye Gediz; Süleymanoğlu, Nevin; Ustabaş, Reşat

    2015-03-01

    The synthesized Schiff base, 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (I), has been characterized by 13C NMR, 1H NMR, 2D NMR (1H-1H COSY and 13C APT), FT-IR, UV-vis and X-ray single-crystal techniques. Molecular geometry of the compound I in the ground state, vibrational frequencies and chemical shift values have been calculated by using the density functional method (DFT) with 6-311++G(d,p) basis set. The obtained results indicate that optimized geometry can well reflect the crystal structural parameters. The differences between experimental and calculated results of FT-IR and NMR have supported the existence of intermolecular (O-H⋯O type) and intramolecular (C-H⋯O type) hydrogen bonds in the crystal structure. Molecular electrostatic potential (MEP), frontier molecular orbital analysis (HOMO-LUMO) and electronic absorption spectra were carried out at B3LYP/6-311G++(d,p). HOMO-LUMO electronic transition of 3.92 eV is due to contribution of the bands the n → π∗. The antimicrobial activity of the compound I was determined against the selected 11 bacteria and 8 fungi by microdilution broth assay with Alamar Blue. In vitro studies showed that the compound I has no antifungal effect for selected fungal isolates. However, the compound I shows remarkable antibacterial effect for the bacteria; Streptococcus pneumoniae, Haemophilus influenzae and Enterococcus faecalis.

  6. Characterization of 4-hydroxy-2-nonenal-modified peptides by liquid chromatography-tandem mass spectrometry using data-dependent acquisition: neutral loss-driven MS3 versus neutral loss-driven electron capture dissociation.

    PubMed

    Rauniyar, Navin; Stevens, Stanley M; Prokai-Tatrai, Katalin; Prokai, Laszlo

    2009-01-15

    Reactive oxygen species generated during oxidative stress can lead to unfavorable cellular consequences, predominantly due to formation of 4-hydroxy-2-nonenal (HNE) during lipid peroxidation. Data-dependent and neutral loss (NL)-driven MS(3) acquisition have been reported for the identification of HNE adducts by mass spectrometry-based proteomics. However, the limitation associated with this method is the ambiguity in correct assignment of the HNE modification site when more than one candidate site is present as MS(3) is triggered on the neutral loss ion. We introduce NL-triggered electron capture dissociation tandem mass spectrometry (NL-ECD-MS/MS) for the characterization of HNE-modification sites in peptides. With this method performed using a hybrid linear ion trap-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer, ECD in the FTICR unit of the instrument is initiated on precursor ions of peptides showing the neutral loss of 156 Da corresponding to an HNE molecule in the prescan acquired via collision-induced dissociation tandem mass spectrometry in the linear ion trap. In addition to manifold advantages associated with the ECD method of backbone fragmentation, including extensive sequence fragments, ECD tends to retain the HNE group during MS/MS of the precursor ion, facilitating the correct localization of the modification site. The results also suggest that predisposition of a peptide molecular ion to lose HNE during collision-induced dissociation-based fragmentation is independent of its charge state (2+ or 3+). In addition, we have demonstrated that coupling of solid-phase enrichment of HNE-modified peptides facilitates the detection of this posttranslational modification by NL-driven strategies for low-abundance proteins that are susceptible to substoichiometric carbonylation during oxidative stress.

  7. Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2-methylphenylimino)methyl)-3-methoxyphenol

    NASA Astrophysics Data System (ADS)

    Demircioğlu, Zeynep; Kaştaş, Çiğdem Albayrak; Büyükgüngör, Orhan

    2015-07-01

    The molecular structure and spectroscopic properties of (E)-2-((4-hydroxy-2-methylphenylimino)methyl)-3-methoxyphenol, were characterized by X-ray diffraction, FT-IR and UV-Vis spectroscopy. All of theoretical calculations and optimized geometric parameters have been calculated by using density functional theory (DFT) with hybrid method B3LYP by 6-31G(d,p) basis set. The title compound of C15H15N1O3 have been analyzed according to electronic and energetics behaviors for enol-imine and keto-amine tautomers. Both these tautomers engender six-membered ring due to intramolecular hydrogen bonded interactions. Two types of intramolecular hydrogen bonds (a) strong O-H⋯N interactions in enol-imine form and (b) N-H⋯O interactions in keto-amine form are compared particularly. The theoretical vibrational frequencies have been found in good agreement with the corresponding experimental data. A study on the electronic and optical properties, absorption wavelengths, excitation energy, dipole moment, molecular electrostatic potential (MEP) and frontier molecular orbital energies are performed using DFT method. Additionally, geometry optimizations in solvent media were performed with the same level of theory by the polarizable continuum model (PCM). The effect of solvents on the tautomeric stability has been investigated. Mulliken Population Method and natural population analysis (NPA) have been studied. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The local reactivity of the molecule has been studied using the Fukui function. NLO properties related to polarizability and hyperpolarizability are also discussed.

  8. The new Schiff base 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one: experimental, DFT calculational studies and in vitro antimicrobial activity.

    PubMed

    İskeleli, Nazan Ocak; Alpaslan, Yelda Bingöl; Direkel, Şahin; Ertürk, Aliye Gediz; Süleymanoğlu, Nevin; Ustabaş, Reşat

    2015-03-15

    The synthesized Schiff base, 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (I), has been characterized by (13)C NMR, (1)H NMR, 2D NMR ((1)H-(1)H COSY and (13)C APT), FT-IR, UV-vis and X-ray single-crystal techniques. Molecular geometry of the compound I in the ground state, vibrational frequencies and chemical shift values have been calculated by using the density functional method (DFT) with 6-311++G(d,p) basis set. The obtained results indicate that optimized geometry can well reflect the crystal structural parameters. The differences between experimental and calculated results of FT-IR and NMR have supported the existence of intermolecular (O-H⋯O type) and intramolecular (C-H⋯O type) hydrogen bonds in the crystal structure. Molecular electrostatic potential (MEP), frontier molecular orbital analysis (HOMO-LUMO) and electronic absorption spectra were carried out at B3LYP/6-311G++(d,p). HOMO-LUMO electronic transition of 3.92eV is due to contribution of the bands the n→π∗. The antimicrobial activity of the compound I was determined against the selected 11 bacteria and 8 fungi by microdilution broth assay with Alamar Blue. In vitro studies showed that the compound I has no antifungal effect for selected fungal isolates. However, the compound I shows remarkable antibacterial effect for the bacteria; Streptococcus pneumoniae, Haemophilus influenzae and Enterococcus faecalis.

  9. Spectroscopic and structural studies of new mononucleating tetradentate Schiff base metal chelates derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione and 1,3-diaminopropane

    NASA Astrophysics Data System (ADS)

    Adly, Omima M. I.; Taha, Ali; Fahmy, Shery A.

    2015-08-01

    Metal complexes with the general formula Some newly transition metal complexes, [ML(H2O)x(NO3)y], x = 1-2 and y = 0-1, [M = Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Ce(III), Cd(II), Zn(II) or UO2(VI)], L= of the Schiff base (H2L) derived from the reaction of 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione with 1,3-diaminopropane have been prepared and characterized by physical, spectral and analytical data. The structure of the Schiff - base acts as dibasic tetradentate N2O2 for the complexation reaction with Cr(III), Fe(III), Co(II), Cu(II), Ni(II), Ce(III), Cd(II), and UO2(II) ions via phenolates oxygen and nitrogen of azomethine groups. Based on spectral data and magnetic moments, an octahedral geometry may be proposed for the synthesized complexes except cerium(III) complex which has pentagonal bipyramidal arrangement. The low values of the molar conductance indicate non-electrolyte nature of complexes, while 1:1 electrolyte for cerium(III)- and chromium(III)-complexes. The Coats-Redfern equation was used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition steps of some complexes. All the synthesized compounds were tested for in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria, yeast and fungus. Molecular structure of the Schiff base ligand and its complexes were optimized for the proposed structures on the basis of semiempirical PM3 method.

  10. Cumene hydroperoxide, an agent inducing lipid peroxidation, and 4-hydroxy-2,3-nonenal, a peroxidation product, cause coronary vasodilatation in perfused rat hearts by a cyclic nucleotide independent mechanism.

    PubMed

    van der Kraaij, A M; de Jonge, H R; Esterbauer, H; de Vente, J; Steinbusch, H W; Koster, J F

    1990-02-01

    STUDY OBJECTIVE - The aim of the study was to determine whether cumene hydroperoxide, a substance known to induce lipid peroxidation through free radical action, and 4-hydroxy-2,3-nonenal (4-hydroxynonenal), a major aldehyde formed during lipid peroxidation, induce coronary vasodilatation by changing cyclic nucleotide levels. DESIGN - The study involved Langendorff perfused rat hearts, using different concentrations of cumene hydroperoxide and 4-hydroxynonenal, with sodium nitroprusside for comparison. Coronary flow was measured indirectly as retrograde aortic flow, with constant perfusion pressure. Information about the precise localisation of cyclic guanosine monophosphate (cGMP) in the heart was obtained by immunocytochemistry, using a new cGMP antiserum. EXPERIMENTAL MATERIAL - Hearts were from male Wistar rats, body weight 200-250 g. MEASUREMENTS and RESULTS - Both cumene hydroperoxide and 4-hydroxynonenal caused a dose dependent and reversible increase in coronary flow comparable with sodium nitroprusside. With sodium nitroprusside there was a good correlation between extent of vasodilatation and total heart cGMP concentration. Vasodilatation induced by cumene hydroperoxide or 4-hydroxynonenal was not accompanied by increase in total heart cGMP or cAMP (cyclic adenosine monophosphate) concentration. Isoprenaline was used as a positive control for cAMP. cGMP immunostaining was found in coronary vascular smooth muscle after vasodilatation with sodium nitroprusside, but no immunostaining was found in vascular smooth muscle after vasodilatation with cumene hydroperoxide or 4-hydroxynonenal. CONCLUSIONS - Cumene hydroperoxide and 4-hydroxynonenal can provoke reversible coronary vasodilatation in isolated perfused rat hearts by a cyclic nucleotide independent mechanism.

  11. Prolonged (E)-4-Hydroxy-3-Methyl-But-2-Enyl Pyrophosphate-Driven Antimicrobial and Cytotoxic Responses of Pulmonary and Systemic Vγ2Vδ2 T Cells in Macaques1

    PubMed Central

    Ali, Zahida; Shao, Lingyun; Halliday, Lisa; Reichenberg, Armin; Hintz, Martin; Jomaa, Hassan; Chen, Zheng W.

    2010-01-01

    Although phosphoantigen-specific Vγ2Vδ2 T cells appear to play a role in antimicrobial and anticancer immunity, mucosal immune responses and effector functions of these γδ T cells during infection or phospholigand treatment remain poorly characterized. In this study, we demonstrate that the microbial phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) plus IL-2 treatment of macaques induced a prolonged major expansion of circulating Vγ2Vδ2 T cells that expressed CD8 and produced cytotoxic perforin during their peak expansion. Interestingly, HMBPP-activated Vγ2Vδ2 T cells underwent an extraordinary pulmonary accumulation, which lasted for 3–4 mo, although circulating Vγ2Vδ2 T cells had returned to baseline levels weeks prior. The Vγ2Vδ2 T cells that accumulated in the lung following HMBPP/IL-2 cotreatment displayed an effector memory phenotype, as follows: CCR5+CCR7−CD45RA−CD27+ and were able to re-recognize phosphoantigen and produce copious amounts of IFN-γ up to 15 wk after treatment. Furthermore, the capacity of massively expanded Vγ2Vδ2 T cells to produce cytokines in vivo coincided with an increase in numbers of CD4+ and CD8+ αβ T cells after HMBPP/IL-2 cotreatment as well as substantial perforin expression by CD3+Vγ2− T cells. Thus, the prolonged HMBPP-driven antimicrobial and cytotoxic responses of pulmonary and systemic Vγ2Vδ2 T cells may confer immunotherapeutics against infectious diseases and cancers. PMID:18056373

  12. Theoretical and experimental studies of two Co(II) and Ni(II) coordination complex with N,O donor 2-chloro-6-{[(4-hydroxy-3-methoxyphenyl)methylidene]amino}-4 nitrophenol ligand

    NASA Astrophysics Data System (ADS)

    Kusmariya, Brajendra S.; Tiwari, Sandeep; Tiwari, Anjali; Mishra, A. P.; Naikoo, Gowhar Ahmad; Pandit, Umar J.

    2016-07-01

    Here we report two mononuclear Co(II) and Ni(II) complexes of general formula [M(L)2(H2O)].2H2O; {M = CoII & NiII} derived from bidentate 2-chloro-6-{[(4-hydroxy-3-methoxyphenyl)methylidene]amino}-4 nitrophenol ligand (HL). These compounds were characterized by elemental analysis, spectral (FT-IR, electronic and 1H-NMR), molar conductance, thermal, PXRD, SEM and electrochemical studies. Distorted octahedral geometry was proposed around the metal center with ligand (HL). The PXRD and SEM analysis shows the crystalline nature of complexes. The broadening of diffraction peaks were explained in terms of domain size and the lattice strain according to Scherrer and Williamson-Hall method. TG of the synthesized complexes illustrates their general decomposition pattern and thermal stability. The kinetic and thermodynamic parameters viz. activation energy (E∗), pre-exponential factor (Z), entropy of activation (ΔS∗), enthalpy of activation (ΔH∗) and free energy of activation (ΔG∗) of degradation process were also evaluated using Coats-Redfern (C-R), Piloyan-Novikova (P-N) and Horowitz-Metzger (H-M) methods for both complexes assuming first order degradation. The optical band gap values of complexes were found to be in good agreement with calculated HOMO-LUMO energy gap (ΔE) and lie in semiconducting range. The cyclic voltammetric studies of synthesized compounds were carried out in order to examine their electrochemical behavior. In addition theoretical calculations by means of DFT at B3LYP level were incorporated to support the experimental findings.

  13. Physical association of the 2,6-diamino-4-hydroxy-5N-formamidopyrimidine-DNA glycosylase of Escherichia coli and an activity nicking DNA at apurinic/apyrimidinic sites.

    PubMed Central

    O'Connor, T R; Laval, J

    1989-01-01

    The 2,6-diamino-4-hydroxy-5N-formamidopyrimidine (Fapy)-DNA glycosylase of Escherichia coli, which is coded for by the fpg gene, excises purine bases with ring-opened imidazoles. In addition to the DNA glycosylase activity, we report that the Fapy-DNA glycosylase of E. coli has an associated activity, resistant to EDTA, that nicks DNA at apurinic/apyrimidinic (AP) sites. The levels of Fapy-DNA glycosylase and AP-nicking activity were parallel in crude lysates of E. coli HB101 harboring different plasmids constructed from the fpg gene. The fpg gene is different from the xth, nth, and nfo genes of E. coli, whose gene products also cleave DNA at AP sites. The Fapy-DNA glycosylase was purified to electrophoretic homogeneity. During this purification, the Fapy-DNA glycosylase copurified with an AP-nicking activity using chromatographic separations based on ion-exchange, molecular weight exclusion, and hydrophobicity. The cleavage at AP sites by the Fapy-DNA glycosylase left a 5'-phosphomonoester nucleotide at one terminus. In addition, DNA containing reduced AP sites was not nicked by the Fapy-DNA glycosylase. These data suggest that the mechanism of cleavage involved beta elimination. Therefore, this activity of the Fapy-DNA glycosylase nicking DNA at AP sites should be referred to as an AP lyase. The 3' terminus did not prime nick-translation by E. coli DNA polymerase I. However, the 3' terminus becomes a substrate for nick-translation if first allowed to react with calf intestine phosphatase or the E. coli exonuclease III. These data suggest that the repair of the Fapy lesion at least to some extent results in the formation of both 5'- and 3'-phosphomonoester nucleotides and the release of the deoxyribose. Images PMID:2664776

  14. Whole-cell bioconversion of vanillin to vanillic acid by Streptomyces viridosporus

    SciTech Connect

    Pometto, A.L. III; Crawford, D.L.

    1983-05-01

    A two-step batch fermentation-bioconversion of vanillin (4-hydroxy-3-methoxybenzaldehyde) to vanillic acid (4-hydroxy-3-methoxybenzoic acid) was developed, utilizing whole cells of Streptomyces viridosporus T7A. In the first step, cells were grown in a yeast extract-vanillin medium under conditions where cells produced an aromatic aldehyde oxidase. In the second step, vanillin was incubated with the active cells and was quantitatively oxidized to vanillic acid which accumulated in the growth medium. Vanillic acid was readily recovered from the spent medium by a combination of acid precipitation and ether extraction at greater than or equal to96% molar yield and upon recrystallization from glacial acetic acid was obtained in greater than or equal to99% purity.

  15. Crystal structures of hydrogen-bonded co-crystals as liquid crystal precursors: 4-(n-pent­yloxy)benzoic acid–(E)-1,2-bis­(pyridin-4-yl)ethene (2/1) and 4-(n-hex­yloxy)benzoic acid–(E)-1,2-bis­(pyridin-4-yl)ethene (2/1)

    PubMed Central

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2016-01-01

    The crystal structures of title hydrogen-bonded co-crystals, 2C12H16O3·C12H10N2, (I), and 2C13H18O3·C12H10N2, (II), have been determined at 93 K. In (I), the asymmetric unit consists of one 4-(n-pent­yloxy)benzoic acid mol­ecule and one half-mol­ecule of (E)-1,2-bis­(pyridin-4-yl)ethene, which lies about an inversion centre. The asymmetric unit of (II) comprises two crystallographically independent 4-(n-hex­yloxy)benzoic acid mol­ecules and one 1,2-bis­(pyridin-4-yl)ethene mol­ecule. In each crystal, the acid and base components are linked by O—H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. The 2:1 units are linked via C—H⋯π and π–π inter­actions [centroid–centroid distances of 3.661 (2) and 3.909 (2) Å for (I), and 3.546 (2)–3.725 (4) Å for (II)], forming column structures. In (II), the base mol­ecule is orientationally disordered over two sets of sites approximately around the N⋯N mol­ecular axis, with an occupancy ratio of 0.647 (4):0.353 (4), and the average structure of the 2:1 unit adopts nearly pseudo-C 2 symmetry. Both compounds show liquid-crystal behaviour. PMID:27980827

  16. Thioacidolysis Marker Compound for Ferulic Acid Incorporation into Angiosperm Lignins (and an Indicator for Cinnamoyl-coenzyme-A Reductase Deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A molecular marker compound, derived from lignin by the thioacidolysis degradative method, for structures produced when ferulic acid is incorporated into lignification in angiosperms (poplar, Arabidopsis, tobacco) has been structurally identified as 1,2,2-trithioethyl ethylguaiacol [1-(4-hydroxy-3-m...

  17. Enhanced glutathione depletion, protein adduct formation, and cytotoxicity following exposure to 4-hydroxy-2-nonenal (HNE) in cells expressing human multidrug resistance protein-1 (MRP1) together with human glutathione S-transferase-M1 (GSTM1)

    PubMed Central

    Rudd, Lisa P.; Kabler, Sandra L.; Morrow, Charles S.; Townsend, Alan J.

    2011-01-01

    4-hydroxy-2-nonenal (HNE) is one of the most reactive products of lipid peroxidation and has both cytotoxic and genotoxic effects in cells. Several enzymatic pathways have been reported to detoxify HNE, including conjugation by glutathione-S-transferases (GSTs). Removal of the resulting HNE-glutathione conjugate (HNE-SG) by an efflux transporter may required for complete detoxification. We investigated the effect of expression of GSTM1 and/or the ABC efflux transporter protein, multidrug-resistance protein-1 (MRP1), on HNE-induced cellular toxicity. Stably transfected MCF7 cell lines were used to examine the effect of GSTM1 and/or MRP1 expression on HNE-induced cytotoxicity, GSH depletion, and HNE-protein adduct formation. Co-expression in the MCF7 cell line of GSTM1 with MRP1 resulted in a 2.3-fold sensitization to HNE cytotoxicity (0.44-fold IC50 value relative to control) rather than the expected protection. Expression of either GSTM1 or MRP1 alone also resulted in slight sensitization to HNE cytotoxicity (0.79-fold and 0.71-fold decreases in IC50 values, respectively). Co-expression of GSTM1 and MRP1 strongly enhanced the formation of HNE-protein adducts relative to the non-expressing control cell line, whereas expression of either MRP1 alone or GSTM1 alone yielded similarly low levels of HNE-protein adducts to that of the control cell line. Glutathione (GSH) levels were reduced by 10–20% in either the control cell line or the MCF7/GSTM1 cell line with the same HNE exposure for 60 minutes. However, HNE induced > 80% depletion of GSH in cells expressing MRP1 alone. Co-expression of both MRP1 and GSTM1 caused slightly greater GSH depletion, consistent with the greater protein adduct formation and cytotoxicity in this cell line. Since expression of GSTM1 or MRP1 alone did not strongly sensitize cells to HNE, or result in greater HNE-protein adducts than in the control cell line, these results indicate that MRP1 and GSTM1 collaborate to enhance HNE-protein adduct

  18. Microbial production of N-acetyl cis-4-hydroxy-L-proline by coexpression of the Rhizobium L-proline cis-4-hydroxylase and the yeast N-acetyltransferase Mpr1.

    PubMed

    Bach, Thi Mai Hoa; Hara, Ryotaro; Kino, Kuniki; Ohtsu, Iwao; Yoshida, Nobuyuki; Takagi, Hiroshi

    2013-01-01

    The proline analogue cis-4-hydroxy-L-proline (CHOP), which inhibits the biosynthesis of collagen, has been clinically evaluated as an anticancer drug, but its water solubility and low molecular weight limits its therapeutic potential since it is rapidly excreted. In addition, CHOP is too toxic to be practical as an anticancer drug, due primarily to its systematic effects on noncollagen proteins. To promote CHOP's retention in blood and/or to decrease its toxicity, N-acetylation of CHOP might be a novel approach as a prodrug. The present study was designed to achieve the microbial production of N-acetyl CHOP from L-proline by coexpression of L-proline cis-4-hydroxylases converting L-proline into CHOP (SmP4H) from the Rhizobium Sinorhizobium meliloti and N-acetyltransferase converting CHOP into N-acetyl CHOP (Mpr1) from the yeast Saccharomyces cerevisiae. We constructed a coexpression plasmid harboring both the SmP4H and Mpr1 genes and introduced it into Escherichia coli BL21(DE3) or its L-proline oxidase gene-disrupted (ΔputA) strain. M9 medium containing L-proline produced more N-acetyl CHOP than LB medium containing L-proline. E. coli ΔputA cells accumulated L-proline (by approximately 2-fold) compared to that in wild-type cells, but there was no significant difference in CHOP production between wild-type and ΔputA cells. The addition of NaCl and L-ascorbate resulted in a 2-fold increase in N-acetyl CHOP production in the L-proline-containing M9 medium. The highest yield of N-acetyl CHOP was achieved at 42 h cultivation in the optimized medium. Five unknown compounds were detected in the total protein reaction, probably due to the degradation of N-acetyl CHOP. Our results suggest that weakening of the degradation or deacetylation pathway improves the productivity of N-acetyl CHOP.

  19. The lipid peroxidation product 4-hydroxy-trans-2-nonenal causes protein synthesis in cardiac myocytes via activated mTORC1-p70S6K-RPS6 signaling.

    PubMed

    Calamaras, Timothy D; Lee, Charlie; Lan, Fan; Ido, Yasuo; Siwik, Deborah A; Colucci, Wilson S

    2015-05-01

    Reactive oxygen species (ROS) are elevated in the heart in response to hemodynamic and metabolic stress and promote hypertrophic signaling. ROS also mediate the formation of lipid peroxidation-derived aldehydes that may promote myocardial hypertrophy. One lipid peroxidation by-product, 4-hydroxy-trans-2-nonenal (HNE), is a reactive aldehyde that covalently modifies proteins thereby altering their function. HNE adducts directly inhibit the activity of LKB1, a serine/threonine kinase involved in regulating cellular growth in part through its interaction with the AMP-activated protein kinase (AMPK), but whether this drives myocardial growth is unclear. We tested the hypothesis that HNE promotes myocardial protein synthesis and if this effect is associated with impaired LKB1-AMPK signaling. In adult rat ventricular cardiomyocytes, exposure to HNE (10 μM for 1h) caused HNE-LKB1 adduct formation and inhibited LKB1 activity. HNE inhibited the downstream kinase AMPK, increased hypertrophic mTOR-p70S6K-RPS6 signaling, and stimulated protein synthesis by 27.1 ± 3.5%. HNE also stimulated Erk1/2 signaling, which contributed to RPS6 activation but was not required for HNE-stimulated protein synthesis. HNE-stimulated RPS6 phosphorylation was completely blocked using the mTOR inhibitor rapamycin. To evaluate if LKB1 inhibition by itself could promote the hypertrophic signaling changes observed with HNE, LKB1 was depleted in adult rat ventricular myocytes using siRNA. LKB1 knockdown did not replicate the effect of HNE on hypertrophic signaling or affect HNE-stimulated RPS6 phosphorylation. Thus, in adult cardiac myocytes HNE stimulates protein synthesis by activation of mTORC1-p70S6K-RPS6 signaling most likely mediated by direct inhibition of AMPK. Because HNE in the myocardium is commonly increased by stimuli that cause pathologic hypertrophy, these findings suggest that therapies that prevent activation of mTORC1-p70S6K-RPS6 signaling may be of therapeutic value.

  20. Crystal structure of 4-[(E)-(2-carbamo-thio-ylhydrazinyl-idene)meth-yl]benzoic acid.

    PubMed

    Tahir, Muhammad Nawaz; Anwar-Ul-Haq, Muhammad; Choudhary, Muhammad Aziz

    2015-10-01

    The title compound, C9H9N3O2S, is close to planar with an r.m.s. deviation of 0.032 Å. An intra-molecular N-H⋯N hydrogen bond closes an S(5) ring. In the crystal, mol-ecules are connected into inversion dimers of the R 2 (2)(8) type by pairs of O-H⋯O inter-actions. The dimers are further connected by pairs of N-H⋯S inter-actions, which also complete R 2 (2)(8) ring motifs. The chains of dimers are cross-linked by N-H⋯O bonds and hence R 4 (2)(28) rings are completed. Taken together, these inter-actions lead to infinite sheets propagating in the (122) plane.

  1. Crystal structure of 4-(tri­methyl­germ­yl)benzoic acid

    PubMed Central

    Knauer, Lena; Barth, Eva R.; Golz, Christopher; Strohmann, Carsten

    2015-01-01

    The title compound, [Ge(CH3)3(C7H5O2)], was obtained as a by-product in the synthesis of the corresponding aldehyde. Two slightly different mol­ecules are present in the asymmetric unit. In both mol­ecules, the geometry of the aromatic ring plane is distorted by varying intensities. Additionally, the Ge atoms deviate from the mean aromatic ring planes. Whereas the distance of the Ge atom to the ring plane is only 0.101 (4) Å in the first mol­ecule, this distance is increased to 0.210 (4) Å in the second. In the crystal structure, centrosymmetric O—H⋯O hydrogen-bonded dimers are formed. The title compound is isostructural with the Si analogue [Haberecht et al. (2004 ▸). Acta Cryst. E60, o329–0330]. PMID:26090151

  2. Determination of Aspartame, Caffeine, Saccharin, and Benzoic Acid in Beverages by High Performance Liquid Chromatography.

    ERIC Educational Resources Information Center

    Delaney, Michael F.; And Others

    1985-01-01

    Describes a simple and reliable new quantitative analysis experiment using liquid chromatography for the determinaiton of caffeine, saccharin, and sodium benzoate in beverages. Background information, procedures used, and typical results obtained are provided. (JN)

  3. The guanidine and benzoic acid (1:1) complex. The polarized vibrational studies and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Drozd, M.; Dudzic, D.

    2015-03-01

    The structure of guanidinium benzoate was discovered by Silva et al. On the basis of these X-ray crystallographic studies the detailed DFT investigation are performed. According to this result the infrared spectrum for one theoretical molecule was calculated. On the basis of potential energy distribution (PED) analysis the clear-cut assignments of observed bands were performed. For the calculated molecule with energy minimum the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were obtained. The energy difference between HOMO and LUMO was analyzed. According to theoretical calculations the direction of dipole moments (TDM) for bands observed in infrared spectra are analyzed. Verification of theoretical TDM behaviors is performed on the basis of experimental polarized specular reflection infrared spectra. The detailed assignments of observed bands is presented. Both theoretical and experimental spectra are compared. Crucial role of three different hydrogen bonds is studied in detail. Additionally, on the basis of differential scanning calorimetric study no phase transition was found in investigated crystal in the range 100-400 K.

  4. nor-Mevaldic acid surrogates as selective antifungal agent leads against Botrytis cinerea. Enantioselective preparation of 4-hydroxy-6-(1-phenylethoxy)tetrahydro-2H-pyran-2-one.

    PubMed

    Botubol-Ares, José Manuel; Durán-Peña, María Jesús; Hernández-Galán, Rosario; Collado, Isidro G; Harwood, Laurence M; Macías-Sánchez, Antonio J

    2015-07-01

    Solvent-free desymmetrisation of meso-dialdehyde 1 with chiral 1-phenylethan-1-ol, led to preparation of 4-silyloxy-6-alkyloxytetrahydro-2H-pyran-2-one (+)-3a with a 96:4 dr Deprotected lactone (+)-19a and the related racemic lactones 16a-18a present a lactone moiety resembling the natural substrate of HMG-CoA reductase and their antifungal properties have been evaluated against the phytopathogenic fungi Botrytis cinerea and Colletotrichum gloeosporioides. These compounds were selectively active against B. cinerea, while inactive against C. gloeosporioides.

  5. Synthesis and in vitro antioxidant and antimicrobial studies of novel structured phosphatidylcholines with phenolic acids.

    PubMed

    Balakrishna, Marrapu; Kaki, Shiva Shanker; Karuna, Mallampalli S L; Sarada, Sripada; Kumar, C Ganesh; Prasad, R B N

    2017-04-15

    Novel phenoylated phosphatidylcholines were synthesized from 1,2-dipalmitoyl phosphatidylcholine/egg 1,2-diacyl phosphatidylcholine and phenolic acids such as ferulic, sinapic, vanillic and syringic acids. The structures of phenoylated phosphatidylcholines were confirmed by spectral analysis. 2-acyl-1-lyso phosphatidylcholine was synthesized from phosphatidylcholine via regioselective enzymatic hydrolysis and was reacted with hydroxyl protected phenolic acids to produce corresponding phenoylated phosphatidylcholines in 48-56% yields. Deprotection of protected phenoylated phosphatidylcholines resulted in phenoylated phosphatidylcholines in 87-94% yields. The prepared compounds were evaluated for their preliminary in vitro antimicrobial and antioxidant activities. Among the active derivatives, compound 1-(4-hydroxy-3,5-dimethoxy) cinnamoyl-2-acyl-sn-glycero-3-phosphocholine exhibited excellent antioxidant activity with EC50 value of 16.43μg/mL. Compounds 1-(4-hydroxy-3-methoxy) cinnamoyl-2-acyl-sn-glycero-3-phosphocholine and 1-(4-hydroxy-3,5-dimethoxy) cinnamoyl-2-palmitoyl-sn-glycero-3-phosphocholine exhibited good antioxidant activity with EC50 values of 36.05 and 33.35μg/mL respectively. Compound 1-(4-hydroxy-3-methoxy) cinnamoyl-2-palmitoyl-sn-glycero-3-phosphocholine exhibited good antibacterial activity against Klebsiella planticola with MIC of 15.6μg/mL and compound 1-(4-hydroxy-3-methoxy) benzoyl-2-acyl-sn-glycero-3-phosphocholine exhibited good antifungal activity against Candida albicans with MIC of 15.6μg/mL.

  6. Studies of the acidic components of the Colorado Green River formation oil shale-Mass spectrometric identification of the methyl esters of extractable acids.

    NASA Technical Reports Server (NTRS)

    Haug, P.; Schnoes, H. K.; Burlingame, A. L.

    1971-01-01

    Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.

  7. 40 CFR 721.5281 - 2-Naphthalenesulfonic acid, 3-[[4-[(2,4-dimethyl-6-sulfophenyl)azo]-2-methoxy-5-methylphenyl]azo...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2-Naphthalenesulfonic acid, 3- -2-methoxy-5-methylphenyl]azo]-4-hydroxy-7-(phenylamino)-, sodium salt, compd. With 2,2â²,2â³-nitrilotris (9CI). 721.5281 Section 721.5281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...

  8. 40 CFR 721.5281 - 2-Naphthalenesulfonic acid, 3-[[4-[(2,4-dimethyl-6-sulfophenyl)azo]-2-methoxy-5-methylphenyl]azo...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2-Naphthalenesulfonic acid, 3- -2-methoxy-5-methylphenyl]azo]-4-hydroxy-7-(phenylamino)-, sodium salt, compd. With 2,2â²,2â³-nitrilotris (9CI). 721.5281 Section 721.5281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...

  9. 40 CFR 721.5281 - 2-Naphthalenesulfonic acid, 3-[[4-[(2,4-dimethyl-6-sulfophenyl)azo]-2-methoxy-5-methylphenyl]azo...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2-Naphthalenesulfonic acid, 3- -2-methoxy-5-methylphenyl]azo]-4-hydroxy-7-(phenylamino)-, sodium salt, compd. With 2,2â²,2â³-nitrilotris (9CI). 721.5281 Section 721.5281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...

  10. 40 CFR 721.5281 - 2-Naphthalenesulfonic acid, 3-[[4-[(2,4-dimethyl-6-sulfophenyl)azo]-2-methoxy-5-methylphenyl]azo...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Naphthalenesulfonic acid, 3- -2-methoxy-5-methylphenyl]azo]-4-hydroxy-7-(phenylamino)-, sodium salt, compd. With 2,2â²,2â³-nitrilotris (9CI). 721.5281 Section 721.5281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...

  11. 40 CFR 721.5281 - 2-Naphthalenesulfonic acid, 3-[[4-[(2,4-dimethyl-6-sulfophenyl)azo]-2-methoxy-5-methylphenyl]azo...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Naphthalenesulfonic acid, 3- -2-methoxy-5-methylphenyl]azo]-4-hydroxy-7-(phenylamino)-, sodium salt, compd. With 2,2â²,2â³-nitrilotris (9CI). 721.5281 Section 721.5281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...

  12. Microbial transformations of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens.

    PubMed Central

    Huang, Z; Dostal, L; Rosazza, J P

    1993-01-01

    Saccharomyces cerevisiae (dry baker's yeast) and Pseudomonas fluorescens were used to convert trans-ferulic acid into 4-hydroxy-3-methoxystyrene in 96 and 89% yields, respectively. The metabolites were isolated by solid-phase extraction and analyzed by thin-layer chromatography and high-performance liquid chromatography. The identities of the metabolites were determined by 1H- and 13C-nuclear magnetic resonance spectroscopy and by mass spectrometry. The mechanism of the decarboxylation of ferulic acid was investigated by measuring the degree and position of deuterium incorporated into the styrene derivative from D2O by mass spectrometry and by both proton and deuterium nuclear magnetic resonance spectroscopies. Resting cells of baker's yeast reduced ferulic acid to 4-hydroxy-3-methoxyphenylpropionic acid in 54% yield when incubations were under an argon atmosphere. PMID:8395165

  13. Ligand-Accelerated ortho-C–H Alkylation of Arylcarboxylic Acids Using Alkyl Boron Reagents

    PubMed Central

    Thuy-Boun, Peter S.; Villa, Giorgio; Dang, Devin; Richardson, Paul; Su, Shun; Yu, Jin-Quan

    2013-01-01

    A protocol for the Pd(II)-catalyzed ortho-C–H alkylation of phenylacetic and benzoic acids using alkylboron reagents is disclosed. Mono-protected amino acid ligands (MPAA) were found to significantly promote reactivity. Both potassium alkyltrifluoroborates and alkylboronic acids were compatible coupling partners. The possibility of a radical alkyl transfer to Pd(II) was also investigated. PMID:24124892

  14. Characterization of glucosylceramides in leaves of the grass family (Poaceae): Pooideae has unsaturated hydroxy fatty acids.

    PubMed

    Watanabe, Masayuki; Imai, Hiroyuki

    2011-01-01

    The glucosylceramide components were characterized in the 33 species of the grass family (Poaceae). Pooideae contained 4-hydroxy-8-sphingenines [i.e., t18:1(8Z) plus t18:1(8E)] as major components, the relative levels of t18:1(8Z) being higher than those of the 8-E isomers. 2-Hydroxy arachidic acid was a major component in all species other than Pooideae, whereas Pooideae had a high content of 2-hydroxytetracosenoic acid.

  15. Uptake of triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) and dicamba (3,6-dichloro-2-methoxybenzoic acid) from the apical membranes of the human intestinal Caco-2 cells.

    PubMed

    Kimura, Osamu; Tsukagoshi, Kensuke; Hayasaka, Moriaki; Endo, Tetsuya

    2012-01-01

    We investigated whether the uptake of triclopyr (3, 5, 6-trichloro-2-pyridinyloxyacetic acid) and dicamba (3,6-dichloro-2-methoxybenzoic acid) across the apical membrane of Caco-2 cells was mediated via proton-linked monocarboxylic acid transporters (MCTs). The uptake of triclopyr from the apical membranes was fast, pH-, temperature-, and concentration dependent, required metabolic energy to proceed, and was competitively inhibited by monocarboxylic acids such as benzoic acid and ferulic acid (substrates of L-lactic acid-insensitive MCTs), but not by L-lactic acid. Thus, the uptake of triclopyr in Caco-2 cells appears to be mediated mainly via L-lactic acid-insensitive MCTs. In contrast, the uptake of dicamba (a benzoic acid derivative) was slow, and it was both pH- and temperature dependent. Coincubation with ferulic acid did not decrease the uptake of dicamba, although coincubation with benzoic acid moderately decreased it. The uptake of dicamba appears to be mediated mainly via passive diffusion, which is in contrast to the uptake of benzoic acid via MCTs. We speculate that the substituted groups in dicamba may inhibit uptake via MCTs.

  16. Pyrolysis Mechanisms of Aromatic Carboxylic Acids

    SciTech Connect

    Britt, P.F.; Eskay, T.P.; Buchanan, A.C. III

    1997-12-31

    Although decarboxylation of carboxylic acids is widely used in organic synthesis, there is limited mechanistic information on the uncatalyzed reaction pathways of aromatic carboxylic acids at 300-400 {degrees} C. The pyrolysis mechanisms of 1,2-(3,3-dicarboxyphenyl)ethane, 1,2-(4,4-dicarboxylphenyl)ethane, 1-(3-carboxyphenyl)-2-(4- biphenyl)ethane, and substituted benzoic acids have been investigated at 325-425 {degrees} C neat and diluted in an inert solvent. Decarboxylation is the dominant pyrolysis path. Arrhenius parameters, substituent effects, and deuterium isotope effects are consistent with decarboxylation by an electrophilic aromatic substitution reaction. Pyrolysis of benzoic acid in naphthalene, as a solvent, produces significant amounts of 1- and 2-phenylnaphthalenes. The mechanistic pathways for decarboxylation and arylation with be presented.

  17. Detection and identification of 4-hydroxy-2-nonenal Schiff-base adducts along with products of Michael addition using data-dependent neutral loss-driven MS3 acquisition: method evaluation through an in vitro study on cytochrome c oxidase modifications.

    PubMed

    Rauniyar, Navin; Prokai, Laszlo

    2009-11-01

    We report a data-dependent neutral-loss-driven MS(3) acquisition to enhance, in addition to abundant Michael adducts, the detection of Schiff-base adducts of proteins and 4-hydroxy-2-nonenal, a reactive end product of lipid peroxidation. In vitro modification of cytochrome c oxidase, a mitochondrial protein complex, was used as a model to evaluate the method. The technique allowed for a confident validation of modification sites and also identified a Schiff-base adduct in subunit Vb of the protein complex.

  18. A Formal Approach to Xylosmin and Flacourtosides E and F: Chemoenzymatic Total Synthesis of the Hydroxylated Cyclohexenone Carboxylic Acid Moiety of Xylosmin.

    PubMed

    Ghavre, Mukund; Froese, Jordan; Murphy, Brennan; Simionescu, Razvan; Hudlicky, Tomas

    2017-02-10

    The hydroxylated cyclohexenone carboxylic acid moiety of xylosmin was synthesized in eight steps from benzoic acid. The key steps in the synthesis involved the enzymatic dihydroxylation of benzoic acid by the whole cell fermentation with Ralstonia eutrophus B9, and Henbest epoxidation. Early attempts led to the synthesis of a C6 epimer of the methyl ester of the hydroxylated cyclohexenone carboxylic acid moiety. The absolute stereochemistry of an advanced intermediate was confirmed by X-ray crystallography. Complete characterization of the previously reported but not fully characterized hydroxylated cyclohexenone carboxylic acid is provided.

  19. Analysis of hydroxycinnamic acid degradation in Agrobacterium fabrum reveals a coenzyme A-dependent, beta-oxidative deacetylation pathway.

    PubMed

    Campillo, Tony; Renoud, Sébastien; Kerzaon, Isabelle; Vial, Ludovic; Baude, Jessica; Gaillard, Vincent; Bellvert, Floriant; Chamignon, Cécile; Comte, Gilles; Nesme, Xavier; Lavire, Céline; Hommais, Florence

    2014-06-01

    The soil- and rhizosphere-inhabiting bacterium Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to have species-specific genes involved in ferulic acid degradation. Here, we characterized, by genetic and analytical means, intermediates of degradation as feruloyl coenzyme A (feruloyl-CoA), 4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl-CoA, 4-hydroxy-3-methoxyphenyl-β-ketopropionyl-CoA, vanillic acid, and protocatechuic acid. The genes atu1416, atu1417, and atu1420 have been experimentally shown to be necessary for the degradation of ferulic acid. Moreover, the genes atu1415 and atu1421 have been experimentally demonstrated to be essential for this degradation and are proposed to encode a phenylhydroxypropionyl-CoA dehydrogenase and a 4-hydroxy-3-methoxyphenyl-β-ketopropionic acid (HMPKP)-CoA β-keto-thiolase, respectively. We thus demonstrated that the A. fabrum hydroxycinnamic degradation pathway is an original coenzyme A-dependent β-oxidative deacetylation that could also transform p-coumaric and caffeic acids. Finally, we showed that this pathway enables the metabolism of toxic compounds from plants and their use for growth, likely providing the species an ecological advantage in hydroxycinnamic-rich environments, such as plant roots or decaying plant materials.

  20. Effects of various acids and salts on growth and aflatoxin production by Aspergillus flavus NRRL 3145.

    PubMed

    Uraih, N; Chipley, J R

    1976-01-01

    The effects of sodium chloride, sodium acetate, benzoic acid, sodium benzoate, malonic acid, and sodium malonate on growth and aflatoxin production by Aspergillus flavus were investigated in synthetic media. Sodium chloride at concentrations equivalent to or greater than 12 g/100 ml inhibited growth and aflatoxin production, while at 8 g or less/100 ml, growth and aflatoxin production were stimulated. At 2 g or less/100 ml, sodium acetate also stimulated growth and aflatoxin production, but reduction occurred with 4 g or more/100 ml. Malonic acid at 10, 20, 40, and 50 mM reduced growth and aflatoxin production (over 50%) while sodium malonate at similar concentrations but different pH values had the opposite effect. Benzoic acid (pH 3.9) and sodium benzoate (pH 5.0) at 0.4 g/100 ml completely inhibited growth and aflatoxin production. Examination of the effect of initial pH indicated that the extent of inhibitory action of malonic acid and sodium acetate was a function of initial pH. The inhibitory action of benzoic acid and sodium benzoate appeared to be a function of undissociated benzoic acid molecules. Aflatoxin reduction was usually accompanied by an unidentified orange pigment, while aflatoxin stimulation was accompanied by unidentified blue and green fluorescent spots but with lower Rf values that aflatoxins B1, G1, B2, and G2 standards.

  1. Compositions, antibodies, asthma diagnosis methods, and methods for preparing antibodies

    DOEpatents

    Jin, Hongjun; Zangar, Richard C.

    2017-01-17

    Methods for preparing an antibody are provided with the method including incorporating 3-bromo-4-hydroxy-benzoic acid into a protein to form an antigen, immunizing a mammalian host with the antigen, and recovering an antibody having an affinity for the antigen from the host. Antibodies having a binding affinity for a monohalotyrosine are provided as well as composition comprising an antibody bound with monohalotyrosine. Compositions comprising a protein having a 3-bromo-4-hydroxy-benzoic acid moiety are also provided. Methods for evaluating the severity of asthma are provide with the methods including analyzing sputum of a patient using an antibody having a binding affinity for monohalotyrosine, and measuring the amount of antibody bound to protein. Methods for determining eosinophil activity in bodily fluid are also provided with the methods including exposing bodily fluid to an antibody having a binding affinity for monohalotyrosine, and measuring the amount of bound antibody to determine the eosinophil activity.

  2. Use of Fluorinated Compounds To Detect Aromatic Metabolites from m-Cresol in a Methanogenic Consortium: Evidence for a Demethylation Reaction

    PubMed Central

    Londry, Kathleen L.; Fedorak, Phillip M.

    1993-01-01

    Anaerobic sewage sludge was used to enrich a methanogenic m-cresol-degrading consortium. 6-Fluoro-3-methylphenol was synthesized and added to subcultures of the consortium with m-cresol. This caused the accumulation of 4-hydroxy-2-methylbenzoic acid. In a separate experiment, the addition of 3-fluorobenzoic acid caused the transient accumulation of 4-hydroxybenzoic acid. Inhibition with bromoethanesulfonic acid caused the accumulation of benzoic acid. Thus, the proposed degradation pathway was m-cresol → 4-hydroxy-2-methylbenzoic acid → 4-hydroxybenzoic acidbenzoic acid. The m-cresol-degrading consortium was able to convert exogenous 4-hydroxybenzoic acid and benzoic acid to methane. In addition, for each metabolite of m-cresol identified, the corresponding fluorinated metabolite was detected, giving the following sequence: 6-fluoro-3-methylphenol → 5-fluoro-4-hydroxy-2-methylbenzoic acid → 3-fluoro-4-hydroxybenzoic acid → 3-fluorobenzoic acid. The second step in each of these pathways is a novel demethylation which was rate limiting. This demethylation reaction would likely facilitate the transformation of the methyl group to methane, which is consistent with the results of a previous study that showed that the methyl carbon of m-[methyl-14C]cresol was recovered predominantly as [14C]methane (D. J. Roberts, P. M. Fedorak, and S. E. Hrudey, Can. J. Microbiol. 33:335-338, 1987). The final aromatic compound in the proposed route for m-cresol metabolism was benzoic acid, and its detection in these cultures merges the pathway for the methanogenic degradation of m-cresol with those for the anaerobic metabolism of many phenols. PMID:16348996

  3. Enzymatic synthesis of cinnamic acid derivatives.

    PubMed

    Lee, Gia-Sheu; Widjaja, Arief; Ju, Yi-Hsu

    2006-04-01

    Using Novozym 435 as catalyst, the syntheses of ethyl ferulate (EF) from ferulic acid (4-hydroxy 3-methoxy cinnamic acid) and ethanol, and octyl methoxycinnamate (OMC) from p-methoxycinnamic acid and 2-ethyl hexanol were successfully carried out in this study. A conversion of 87% was obtained within 2 days at 75 degrees C for the synthesis of EF. For the synthesis of OMC at 80 degrees C, 90% conversion can be obtained within 1 day. The use of solvent and high reaction temperature resulted in better conversion for the synthesis of cinnamic acid derivatives. Some cinnamic acid esters could also be obtained with higher conversion and shorter reaction times in comparison to other methods reported in the literature. The enzyme can be reused several times before significant activity loss was observed.

  4. Interactions between cranberries and fungi: the proposed function of organic acids in virulence suppression of fruit rot fungi.

    PubMed

    Tadych, Mariusz; Vorsa, Nicholi; Wang, Yifei; Bergen, Marshall S; Johnson-Cicalese, Jennifer; Polashock, James J; White, James F

    2015-01-01

    Cranberry fruit are a rich source of bioactive compounds that may function as constitutive or inducible barriers against rot-inducing fungi. The content and composition of these compounds change as the season progresses. Several necrotrophic fungi cause cranberry fruit rot disease complex. These fungi remain mostly asymptomatic until the fruit begins to mature in late August. Temporal fluctuations and quantitative differences in selected organic acid profiles between fruit of six cranberry genotypes during the growing season were observed. The concentration of benzoic acid in fruit increased while quinic acid decreased throughout fruit development. In general, more rot-resistant genotypes (RR) showed higher levels of benzoic acid early in fruit development and more gradual decline in quinic acid levels than that observed in the more rot-susceptible genotypes. We evaluated antifungal activities of selected cranberry constituents and found that most bioactive compounds either had no effects or stimulated growth or reactive oxygen species (ROS) secretion of four tested cranberry fruit rot fungi, while benzoic acid and quinic acid reduced growth and suppressed secretion of ROS by these fungi. We propose that variation in the levels of ROS suppressive compounds, such as benzoic and quinic acids, may influence virulence by the fruit rot fungi. Selection for crops that maintain high levels of virulence suppressive compounds could yield new disease resistant varieties. This could represent a new strategy for control of disease caused by necrotrophic pathogens that exhibit a latent or endophytic phase.

  5. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: Synthesis, characterization and thermodynamics

    NASA Astrophysics Data System (ADS)

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-01

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L1), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L2) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L4). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L3) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, 1H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1 M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent.

  6. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: synthesis, characterization and thermodynamics.

    PubMed

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-25

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L(1)), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L(2)) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L(4)). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L(3)) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, (1)H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent.

  7. Synthesis, spectral, thermal and thermodynamic studies of oxovanadium(IV) complexes of Schiff bases derived from 3,4-diaminobenzoic acid with salicylaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Mohammadi, Khosro; Niad, Mahmood; Irandoost, Amene

    2013-04-01

    Synthesis and evaluation of three new oxovanadium(IV) complexes, formed by the interaction of vanadyl acetylacetonate and the Schiff bases: 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (L1), 3,4-bis-((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (L2) and 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (L3) in methanol. The complexes have been characterized and studied by IR spectra, UV-Vis spectroscopy and thermogravimetry in order to evaluate their thermal stability and thermal decomposition. According to the results discussed from TG curves, the order of thermal stability for the complexes is VOL3 > VOL1 > VOL2. Their formation constants (Kf) were obtained by UV-Vis spectroscopic titration at 15, 25, 35 and 45 °C in methanol by SQUAD software. The trend of formation constants of the complexes as follows: VOL3 > VOL2 > VOL1.

  8. Synthesis, spectral, thermal and thermodynamic studies of oxovanadium(IV) complexes of Schiff bases derived from 3,4-diaminobenzoic acid with salicylaldehyde derivatives.

    PubMed

    Mohammadi, Khosro; Niad, Mahmood; Irandoost, Amene

    2013-04-15

    Synthesis and evaluation of three new oxovanadium(IV) complexes, formed by the interaction of vanadyl acetylacetonate and the Schiff bases: 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (L(1)), 3,4-bis-((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (L(2)) and 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (L(3)) in methanol. The complexes have been characterized and studied by IR spectra, UV-Vis spectroscopy and thermogravimetry in order to evaluate their thermal stability and thermal decomposition. According to the results discussed from TG curves, the order of thermal stability for the complexes is VOL(3)>VOL(1)>VOL(2). Their formation constants (Kf) were obtained by UV-Vis spectroscopic titration at 15, 25, 35 and 45 °C in methanol by SQUAD software. The trend of formation constants of the complexes as follows: VOL(3)>VOL(2)>VOL(1).

  9. Solution and gas-phase acidities of all-trans (all-E) retinoic acid: an experimental and computational study.

    PubMed

    Abboud, José-Luis M; Koppel, Ilmar A; Uggerud, Einar; Leito, Ivo; Koppel, Ivar; Sekiguchi, Osamu; Kaupmees, Karl; Saame, Jaan; Kütt, Karl; Mishima, Masaaki

    2015-07-27

    Retinoic acid is of fundamental biological importance. Its acidity was determined in the gas phase and in acetonitrile solution by means of mass spectrometry and UV/Vis spectrophotometry, respectively. The intrinsic acidity is slightly higher than that of benzoic acid. In solution, the situation is opposite. The experimental systems were described theoretically applying quantum chemical methods (wave function theory and density functional theory). This allowed the determination of the molecular structure of the acid and its conjugate base, both in vacuo and in solution, and for computational estimates of its acidity in both phases.

  10. Spectroscopic, thermal, antimicrobial and molecular modeling studies of mononuclear pentafunctional Schiff base metal chelates derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione

    NASA Astrophysics Data System (ADS)

    Adly, Omima M. I.; Taha, Ali; Fahmy, Shery A.

    2015-03-01

    A new pentafunctional N3O2 Schiff base, H2L ligand, and its metal chelates with Cu(II), Ni(II), Co(II), VO(IV), Zn(II), Cd(II), Ce(III), Cr(III), Fe(III) and UO2(VI) have been synthesized and characterized by elemental analysis, spectral, molar conductance, magnetic and thermal gravimetric studies. The results showed that the complexes have octahedral geometry except UO2 complex which has pentagonal bipyramidal arrangement. The TGA analyses suggest high stability for most complexes followed by thermal decomposition in different steps. The kinetic and thermodynamic parameters for decomposition steps of metal complexes thermograms have been calculated. Molecular orbital calculations were performed for the ligand and its metal complexes by means of hyperchem 7.52 program on the bases of semiempirical PM3 level and the results were correlated with the experimental data. The antimicrobial activity of the synthesized compounds were tested in vitro against some Gram-positive and Gram-negative bacteria; yeast and fungus strains and the results were discussed in terms of extended Lewis acid-base interactions.

  11. Selective deuteration of (hetero)aromatic compounds via deutero-decarboxylation of carboxylic acids.

    PubMed

    Grainger, Rachel; Nikmal, Arif; Cornella, Josep; Larrosa, Igor

    2012-04-28

    A practical, mild and highly selective protocol for the monodeuteration of a variety of arenes and heteroarenes is presented. Catalytic amounts of Ag(I) salts in DMSO/D(2)O are shown to facilitate the deutero-decarboxylation of ortho-substituted benzoic and heteroaromatic α-carboxylic acids in high yields with excellent levels of deuterium incorporation.

  12. Uptake of 4-chloro-2-methylphenoxyacetic acid (MCPA) from the apical membrane of Caco-2 cells by the monocarboxylic acid transporter

    SciTech Connect

    Kimura, Osamu; Tsukagoshi, Kensuke; Endo, Tetsuya

    2008-03-15

    The cellular uptake mechanism of 4-chloro-2-methylphenoxyacetic acid (MCPA), a phenoxyacetic acid derivative, was investigated using Caco-2 epithelial cells. The cells were incubated with 50 {mu}M MCPA at pH 6.0 and 37 deg. C, and the uptake of MCPA from the apical membranes was measured. The uptake of MCPA was significantly decreased by incubation at low temperature (4 {sup o}C) and markedly increased by lowering the extracellular pH. Pretreatment with a protonophore, carbonylcyanide-p-(trifluoromethoxy)phenylhydrazone (25 {mu}M), or metabolic inhibitors, 2,4-dinitrophenol (1 mM) and sodium azide (10 mM), significantly decreased the uptake of MCPA by 53%, 45% and 48%, respectively. Coincubation of MCPA with 10 mM L-lactic acid or {alpha}-cyano-4-hydroxycinnamate, which is a substrate or an inhibitor of the monocarboxylic acid transporters (MCTs), significantly decreased the uptake of MCPA by 31% and 20%, respectively, and coincubation with benzoic acid profoundly decreased the uptake by 68%. In contrast, coincubation with succinic acid (a dicarboxylic acid) did not affect the uptake. Kinetic analysis of initial MCPA uptake suggested that MCPA is taken up via a carrier-mediated process [K{sub m} = 1.37 {+-} 0.15 mM, V{sub max} = 115 {+-} 6 nmol (mg protein){sup -1} (3 min){sup -1}]. Lineweaver-Burk plots show that benzoic acid competitively inhibits the uptake of MCPA with a K{sub i} value of 4.68 {+-} 1.76 mM. A trans-stimulation effect on MCPA uptake was found in cells preloaded with benzoic acid. These results suggest that the uptake of MCPA from the apical membrane of Caco-2 cells is mainly mediated by common MCTs along with benzoic acid but also in part by L-lactic acid.

  13. Pilot scale mineralization of organic acids by electro-Fenton process plus sunlight exposure.

    PubMed

    Casado, Juan; Fornaguera, Jordi; Galán, Maria Isabel

    2006-07-01

    The viability of the electro-Fenton degradation of aqueous solutions of benzoic acid, 2,4-dichlorophenoxyacetic acid and oxalic acid has been studied at 20 A using a pilot flow reactor containing an anode and an oxygen diffusion cathode, both of 100 cm(2) section. Pollutants were preferentially oxidized by hydroxyl radicals formed in solution from reaction of Fe(2+) with electrogenerated H(2)O(2), allowing mineralization of benzoic acid and 2,4-D. For oxalic acid no electrochemical mineralization was observed. After electrolysis, samples of the different effluents were exposed to sunlight (Helielectro-Fenton process) and almost complete mineralization was reached after ca. 30-50 min without additional cost. Effects of parameters such as electrolysis time, pH and solar irradiation time on the process efficiencies were studied.

  14. Behavior of carboxylic acids upon complexation with beryllium compounds.

    PubMed

    Mykolayivna-Lemishko, Kateryna; Montero-Campillo, M Merced; Mó, Otilia; Yáñez, Manuel

    2014-07-31

    A significant acidity enhancement and changes on aromaticity were previously observed in squaric acid and its derivatives when beryllium bonds are present in those systems. In order to know if these changes on the chemical properties could be considered a general behavior of carboxylic acids upon complexation with beryllium compounds, complexes between a set of representative carboxylic acids RCOOH (formic acid, acetic acid, propanoic acid, benzoic acid, and oxalic acid) and beryllium compounds BeX2 (X = H, F, Cl) were studied by means of density functional theory calculations. Complexes that contain a dihydrogen bond or a OH···X interaction are the most stable in comparison with other possible BeX2 complexation patterns in which no other weak interactions are involved apart from the beryllium bond. Formic, acetic, propanoic, benzoic, and oxalic acid complexes with BeX2 are much stronger acids than their related free forms. The analysis of the topology of the electron density helps to clarify the reasons behind this acidity enhancement. Importantly, when the halogen atom is replaced by hydrogen in the beryllium compound, the dihydrogen bond complex spontaneously generates a new neutral complex [RCOO:BeH] in which a hydrogen molecule is lost. This seems to be a trend for carboxylic acids on complexing BeX2 compounds.

  15. Potential tuberculostatic agents. Topliss application on benzoic acid [(5-nitro-thiophen-2-yl)-methylene]-hydrazide series.

    PubMed

    Rando, Daniela G; Sato, Dayse N; Siqueira, Leonardo; Malvezzi, Alberto; Leite, Clarice Q F; do Amaral, Antonia T; Ferreira, Elizabeth I; Tavares, Leoberto C

    2002-03-01

    Nitroaromatic compounds such as nifuroxazide are used in many human enteropathogenic bacteria infections without causing an increase in the plasmidial antibiotic resistance of the aerobic Gram-negative intestinal Enterobacteriaceae. For these reasons, these compounds have been synthesized using the rational approach of Topliss' decision tree. Generally, this approach allows us to obtain the most active derivative from the series in a few steps. These compounds were tested against Mycobacterium tuberculosis in vitro and the most active of the series identified. A new lead for potential tuberculostatic activity has been predicted and will be used in further QSAR studies.

  16. The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid.

    PubMed

    Lee, Myungjin; Kim, Kijeong; Lee, Hangil

    2013-09-02

    The oxidation of aniline to azobenzene was conducted in the presence of either monolayer graphene (EG) or graphene-oxide-like surface, such as GOx, under ultra-high vacuum conditions maintaining a 365-nm UV light exposure to enhance the oxidation reaction. The surface-bound products were investigated using micro Raman spectroscopy, high-resolution photoemission spectroscopy, and work function measurements. The oxygen carriers present on the GOx surfaces, but not on the EG surfaces, acted as reaction reagents to facilitate the oxidation reaction from aniline to azobenzene. Increasing the aniline concentration at 300 K confirmed that the exchange ratio from the aniline to the azobenzene was enhanced, as determined by the intensity ratio between the aniline- and azobenzene-induced N 1 s core-level spectra. The work function changed dramatically as the aniline concentration increased, indicating that the aniline on the GOx surface conveyed n-type doping characteristics at a low coverage level. A higher aniline concentration increased the p-type doping character by increasing the azobenzene concentration on the GOx surface. A comparison of the oxidation reactivity of aniline molecules on the EG or GOx surfaces revealed the role of the oxygen carriers on the GOx surfaces in the context of catalytic oxidation.

  17. SOLID-LIQUID PHASE EQUILIBRIUM IN BINARY SYSTEMS OF TRIPHENYL ANTIMONY WITH BIPHENYL, NAPHTHALENE, AND BENZOIC ACID.

    DTIC Science & Technology

    PHASE STUDIES, *ORGANOMETALLIC COMPOUNDS, SEMICONDUCTORS, SOLID STATE PHYSICS, ANTIMONY COMPOUNDS, EUTECTICS , ZONE MELTING, HALIDES, BISMUTH, ARSENIC, ELECTRONS, NAPHTHALENES , PHASE DIAGRAMS, SOLIDS.

  18. Cyclopentadithiophene-benzoic acid copolymers as conductive binders for silicon nanoparticles in anode electrodes of lithium ion batteries.

    PubMed

    Wang, Kuo-Lung; Kuo, Tzu-Husan; Yao, Chun-Feng; Chang, Shu-Wei; Yang, Yu-Shuo; Huang, Hsin-Kai; Tsai, Cho-Jen; Horie, Masaki

    2017-02-02

    Cyclopentadithiophene and methyl-2,5-dibromobenzoate have been copolymerised via palladium complex catalysed direct arylation. The methyl ester group in the benzoate unit is converted to the carboxyl group via saponification. The polymers are mixed with Si nanoparticles for use as conducting binders in the fabrication of an anode electrode in lithium ion batteries. The battery with the electrode incorporating the saponified polymer shows much higher specific capacity of up to 1820 mA h g(-1) (total weight) and a higher stability compared with the battery including the polymer before the saponification.

  19. Theoretical Hammett Plot for the Gas-Phase Ionization of Benzoic Acid versus Phenol: A Computational Chemistry Lab Exercise

    ERIC Educational Resources Information Center

    Ziegler, Blake E.

    2013-01-01

    Computational chemistry undergraduate laboratory courses are now part of the chemistry curriculum at many universities. However, there remains a lack of computational chemistry exercises available to instructors. This exercise is presented for students to develop skills using computational chemistry software while supplementing their knowledge of…

  20. The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid

    PubMed Central

    2013-01-01

    The oxidation of aniline to azobenzene was conducted in the presence of either monolayer graphene (EG) or graphene-oxide-like surface, such as GOx, under ultra-high vacuum conditions maintaining a 365-nm UV light exposure to enhance the oxidation reaction. The surface-bound products were investigated using micro Raman spectroscopy, high-resolution photoemission spectroscopy, and work function measurements. The oxygen carriers present on the GOx surfaces, but not on the EG surfaces, acted as reaction reagents to facilitate the oxidation reaction from aniline to azobenzene. Increasing the aniline concentration at 300 K confirmed that the exchange ratio from the aniline to the azobenzene was enhanced, as determined by the intensity ratio between the aniline- and azobenzene-induced N 1 s core-level spectra. The work function changed dramatically as the aniline concentration increased, indicating that the aniline on the GOx surface conveyed n-type doping characteristics at a low coverage level. A higher aniline concentration increased the p-type doping character by increasing the azobenzene concentration on the GOx surface. A comparison of the oxidation reactivity of aniline molecules on the EG or GOx surfaces revealed the role of the oxygen carriers on the GOx surfaces in the context of catalytic oxidation. PMID:24229051