Science.gov

Sample records for 4-hydroxylase gene impact

  1. Complex regulation of prolyl-4-hydroxylases impacts root hair expansion.

    PubMed

    Velasquez, Silvia M; Ricardi, Martiniano M; Poulsen, Christian Peter; Oikawa, Ai; Dilokpimol, Adiphol; Halim, Adnan; Mangano, Silvina; Denita Juarez, Silvina Paola; Marzol, Eliana; Salgado Salter, Juan D; Dorosz, Javier Gloazzo; Borassi, Cecilia; Möller, Svenning Rune; Buono, Rafael; Ohsawa, Yukiko; Matsuoka, Ken; Otegui, Marisa S; Scheller, Henrik V; Geshi, Naomi; Petersen, Bent Larsen; Iusem, Norberto D; Estevez, José M

    2015-05-01

    Root hairs are single cells that develop by tip growth, a process shared with pollen tubes, axons, and fungal hyphae. However, structural plant cell walls impose constraints to accomplish tip growth. In addition to polysaccharides, plant cell walls are composed of hydroxyproline-rich glycoproteins (HRGPs), which include several groups of O-glycoproteins, including extensins (EXTs). Proline hydroxylation, an early post-translational modification (PTM) of HRGPs catalyzed by prolyl 4-hydroxylases (P4Hs), defines their subsequent O-glycosylation sites. In this work, our genetic analyses prove that P4H5, and to a lesser extent P4H2 and P4H13, are pivotal for root hair tip growth. Second, we demonstrate that P4H5 has in vitro preferred specificity for EXT substrates rather than for other HRGPs. Third, by P4H promoter and protein swapping approaches, we show that P4H2 and P4H13 have interchangeable functions but cannot replace P4H5. These three P4Hs are shown to be targeted to the secretory pathway, where P4H5 forms dimers with P4H2 and P4H13. Finally, we explore the impact of deficient proline hydroxylation on the cell wall architecture. Taken together, our results support a model in which correct peptidyl-proline hydroxylation on EXTs, and possibly in other HRGPs, is required for proper cell wall self-assembly and hence root hair elongation in Arabidopsis thaliana.

  2. Overexpression of cinnamate 4-hydroxylase gene enhances biosynthesis of decursinol angelate in Angelica gigas hairy roots.

    PubMed

    Park, Nam Il; Park, Jee Hee; Park, Sang Un

    2012-02-01

    Angelica gigas is a medicinal plant that produces pyranocoumarins, including decursin (D) and decursinol angelate (DA), which have neuroprotective, anticancer, and antiandrogenic effects. In this study, the coumarin biosynthetic pathway was engineered to increase the production of DA. Specifically, a vector was constructed which contained the A. gigas phenylalanine ammonia-lyase (AgPAL) and cinnamate 4-hydroxylase (AgC4H) genes that were driven by the cauliflower mosaic virus (CaMV) 35S promoter. Transgenic hairy roots that overexpressed AgPAL or AgC4H genes were obtained by using an Agrobacterium rhizogenes-mediated transformation system. Among them, only AgC4H-transgenic hairy root lines produced more DA than control transgenic hairy root lines. The enhanced gene expression corresponded to elevated C4H activities. This study showed the importance of C4H in the production of DA in A. gigas hairy root culture.

  3. Cinnamate 4-Hydroxylase (C4H) genes from Leucaena leucocephala: a pulp yielding leguminous tree.

    PubMed

    Kumar, Santosh; Omer, Sumita; Patel, Krunal; Khan, Bashir M

    2013-02-01

    Leucaena leucocephala is a leguminous tree species accounting for one-fourth of raw material supplied to paper and pulp industry in India. Cinnamate 4-Hydroxylase (C4H, EC 1.14.13.11) is the second gene of phenylpropanoid pathway and a member of cytochrome P450 family. There is currently intense interest to alter or modify lignin content of L. leucocephala. Three highly similar C4H alleles of LlC4H1 gene were isolated and characterized. The alleles shared more than 98 % sequence identity at amino acid level to each other. Binding of partial promoter of another C4H gene LlC4H2, to varying amounts of crude nuclear proteins isolated from leaf and stem tissues of L. leucocephala formed two loose and one strong complex, respectively, suggesting that the abundance of proteins that bind with the partial C4H promoter is higher in stem tissue than in leaf tissue. Quantitative Real Time PCR study suggested that among tissues of same age, root tissues had highest level of C4H transcripts. Maximum transcript level was observed in 30 day old root tissue. Among the tissues investigated, C4H activity was highest in 60 day old root tissues. Tissue specific quantitative comparison of lignin from developing seedling stage to 1 year old tree stage indicated that Klason lignin increased in tissues with age.

  4. Cloning and characterization of the rat HIF-1 alpha prolyl-4-hydroxylase-1 gene.

    PubMed

    Cobb, Ronald R; McClary, John; Manzana, Warren; Finster, Silke; Larsen, Brent; Blasko, Eric; Pearson, Jennifer; Biancalana, Sara; Kauser, Katalin; Bringmann, Peter; Light, David R; Schirm, Sabine

    2005-08-01

    Prolyl-4-hydroxylase domain-containing enzymes (PHDs) mediate the oxygen-dependent regulation of the heterodimeric transcription factor hypoxia-inducible factor-1 (HIF-1). Under normoxic conditions, one of the subunits of HIF-1, HIF-1alpha, is hydroxylated on specific proline residues to target HIF-1alpha for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, the hydroxylation by the PHDs is attenuated by lack of the oxygen substrate, allowing HIF-1 to accumulate, translocate to the nucleus, and mediate HIF-mediated gene transcription. In several mammalian species including humans, three PHDs have been identified. We report here the cloning of a full-length rat cDNA that is highly homologous to the human and murine PHD-1 enzymes and encodes a protein that is 416 amino acids long. Both cDNA and protein are widely expressed in rat tissues and cell types. We demonstrate that purified and crude baculovirus-expressed rat PHD-1 exhibits HIF-1alpha specific prolyl hydroxylase activity with similar substrate affinities and is comparable to human PHD-1 protein.

  5. Cinnamic acid 4-hydroxylase of sorghum [Sorghum biocolor (L.) Moench] gene SbC4H1 restricts lignin synthesis in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cinnamic acid 4-hydroxylase (C4H) is the first hydroxylase enzyme of the phenylpropanoid pathway, and its content and activity affects the lignin synthesis. In this study, we isolated a C4H gene SbC4H1 from the suppression subtractive hybridization library of brown midrib (bmr) mutants of Sorghum b...

  6. No association between schizophrenia and polymorphisms within the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT)

    SciTech Connect

    Daniels, J.; Williams, J.; Asherson, P.; McGuffin, P.; Owen, M.

    1995-02-27

    It has been suggested that the cytochrome P450 mono-oxygenase, debrisoquine 4-hydroxylase, is involved in the catabolism and processing of neurotransmitters subsequent to their reuptake into target cells. It is also thought to be related to the dopamine transporter that acts to take released dopamine back up into presynaptic terminals. The present study used the association approach to test the hypothesis that mutations in the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT) confer susceptibility to schizophrenia. There were no differences in allele or genotype frequencies between patients and controls in the mutations causing the poor metaboliser phenotype in CYP2D6. In addition there was no association found between schizophrenia and a 48 bp repeat within the 3{prime} untranslated region of DAT. 18 refs., 2 tabs.

  7. Sphingolipid base modifying enzymes in sunflower (Helianthus annuus): cloning and characterization of a C4-hydroxylase gene and a new paralogous Δ8-desaturase gene.

    PubMed

    Moreno-Pérez, Antonio J; Martínez-Force, Enrique; Garcés, Rafael; Salas, Joaquín J

    2011-05-15

    Sphingolipids are components of plant cell membranes that participate in the regulation of important physiological processes. Unlike their animal counterparts, plant sphingolipids are characterized by high levels of base C4-hydroxylation. Moreover, desaturation at the Δ8 position predominates over the Δ4 desaturation typically found in animal sphingolipids. These modifications are due to the action of C4-hydroxylases and Δ8-long chain base desaturases, and they are important for complex sphingolipids finally becoming functional. The long chain bases of sunflower sphingolipids have high levels of hydroxylated and unsaturated moieties. Here, a C4-long chain base hydroxylase was functionally characterized in sunflower plant, an enzyme that could complement the sur2Δ mutation when heterologously expressed in this yeast mutant deficient in hydroxylation. This hydroxylase was ubiquitously expressed in sunflower, with the highest levels found in the developing cotyledons. In addition, we identified a new Δ8-long base chain desaturase gene that displays strong homology to a previously reported desaturase gene. This desaturase was also expressed in yeast and was able to change the long chain base composition of the transformed host. We studied the expression of this desaturase and compared it with that of the other isoform described in sunflower. The desaturase form studied in this paper displayed higher expression levels in developing seeds.

  8. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots.

    PubMed

    Cheniany, Monireh; Ganjeali, Ali

    2016-12-01

    Phenylalanine-ammonia-lyase and cinnamate-4-hydroxylase play important role in the phenylpropanoid pathway, which produces many biologically important secondary metabolites participating in normal plant development. Flavonol quercetin is the main representant of these compounds that has been identified in numerous Juglans spp. In this survey, the developmental expression patterns of PAL and C4H genes during in vitro rooting of two walnut cultivars 'Sunland' and 'Howard' was examined by RT-PCR. To understand the potential role in rooting, the changing pattern of endogenous content of quercetin was also analyzed by HPLC. The 'Sunland' with better capacity to root had more quercetin content during the "inductive phase" of rooting than 'Howard'. In each cultivar, the level of PAL transcripts showed the same behavior with the changing patterns of quercetin during root formation of microshoots. The positive correlation between the changes of quercetin and PAL-mRNA indicated that PAL gene may have an immediate effect on flavonoid pathway metabolites including quercetin. Although the behavioral change of C4H expression was similar in both cultivars during root formation (with significantly more level for 'Howard'), it was not coincide with the changes of quercerin concentrations. Our results showed that C4H function is important for the normal development, but its transcriptional regulation does not correlate with quercetin as an efficient phenolic compound for walnut rhizogenesis.

  9. Proline with or without hydroxyproline influences collagen concentration and regulates prolyl 4-hydroxylase α (I) gene expression in juvenile turbo ( Scophthalmus maximus L.)

    NASA Astrophysics Data System (ADS)

    Zhang, Kaikai; Mai, Kangsen; Xu, Wei; Zhou, Huihui; Liufu, Zhiguo; Zhang, Yanjiao; Peng, Mo; Ai, Qinghui

    2015-06-01

    This study was conducted to investigate the effect of dietary proline (Pro), and Pro and hydroxyproline (Hyp) in combination on the growth performance, total Hyp and collagen concentrations of tissues, and prolyl 4-hydroxylase α(I) (P4H α(I)) gene expression in juvenile turbot feeding high plant protein diets. A diet containing 50% crude protein and 12% crude lipid was formulated as the basal and control, on which other two protein and lipid contents identical experimental diets were formulated by supplementing the basal with either 0.75% Pro (Pro-0.75) or 0.75% Pro and 0.75% Hyp (Pro+Hyp). Four groups of fish in indoor seawater recirculating systems, 35 individuals each, were fed twice a day to apparent satiation for 10 weeks. The results showed that dietary Pro and Hyp supplementation had no significant effect on growth performance and feed utilization of juvenile turbot (P > 0.05). Total Hyp and collagen concentrations in muscle were significantly increased when dietary Pro and Hyp increased (P <0.05), and fish fed diet Pro+Hyp showed significantly higher free Hyp content in plasma than those fed other diets (P <0.05). The expression of P4H a(I) gene in liver and muscle was significantly up regulated in fish fed diet Pro-0.75 in comparison with control (P <0.05); however the gene was significantly down regulated in fish fed diet Pro+Hyp in muscle in comparison with fish fed diet Pro-0.75 (P <0.05). It can be concluded that supplement of crystal L-Pro and L-Hyp to high plant protein diets did not show positive effects on growth performance of juvenile turbot, but enhanced total collagen concentrations in muscle.

  10. Transmembrane prolyl 4-hydroxylase is a fourth prolyl 4-hydroxylase regulating EPO production and erythropoiesis.

    PubMed

    Laitala, Anu; Aro, Ellinoora; Walkinshaw, Gail; Mäki, Joni M; Rossi, Maarit; Heikkilä, Minna; Savolainen, Eeva-Riitta; Arend, Michael; Kivirikko, Kari I; Koivunen, Peppi; Myllyharju, Johanna

    2012-10-18

    An endoplasmic reticulum transmembrane prolyl 4-hydroxylase (P4H-TM) is able to hydroxylate the α subunit of the hypoxia-inducible factor (HIF) in vitro and in cultured cells, but nothing is known about its roles in mammalian erythropoiesis. We studied such roles here by administering a HIF-P4H inhibitor, FG-4497, to P4h-tm(-/-) mice. This caused larger increases in serum Epo concentration and kidney but not liver Hif-1α and Hif-2α protein and Epo mRNA levels than in wild-type mice, while the liver Hepcidin mRNA level was lower in the P4h-tm(-/-) mice than in the wild-type. Similar, but not identical, differences were also seen between FG-4497-treated Hif-p4h-2 hypomorphic (Hif-p4h-2(gt/gt)) and Hif-p4h-3(-/-) mice versus wild-type mice. FG-4497 administration increased hemoglobin and hematocrit values similarly in the P4h-tm(-/-) and wild-type mice, but caused higher increases in both values in the Hif-p4h-2(gt/gt) mice and in hematocrit value in the Hif-p4h-3(-/-) mice than in the wild-type. Hif-p4h-2(gt/gt)/P4h-tm(-/-) double gene-modified mice nevertheless had increased hemoglobin and hematocrit values without any FG-4497 administration, although no such abnormalities were seen in the Hif-p4h-2(gt/gt) or P4h-tm(-/-) mice. Our data thus indicate that P4H-TM plays a role in the regulation of EPO production, hepcidin expression, and erythropoiesis.

  11. Characterization of two carnation petal prolyl 4 hydroxylases.

    PubMed

    Vlad, Florina; Tiainen, Päivi; Owen, Carolyn; Spano, Thodhoraq; Daher, Firas Bou; Oualid, Fatiha; Senol, Namik Ozer; Vlad, Daniela; Myllyharju, Johanna; Kalaitzis, Panagiotis

    2010-10-01

    Prolyl 4-hydroxylases (P4Hs) catalyze the proline hydroxylation, a major post-translational modification, of hydroxyproline-rich glycoproteins. Two carnation petal P4H cDNAs, (Dianthus caryophyllus prolyl 4-hydroxylase) DcP4H1 and DcP4H2, were identified and characterized at the gene expression and biochemical level in order to investigate their role in flower senescence. Both mRNAs showed similar patterns of expression with stable transcript abundance during senescence progression and differential tissue-specific expression with DcP4H1 and DcP4H2 strongly expressed in ovaries and stems, respectively. Recombinant DcP4H1 and DcP4H2 proteins were produced and their catalytic properties were determined. Pyridine 2,4-dicarboxylate (PDCA) was identified as a potent inhibitor of the in vitro enzyme activity of both P4Hs and used to determine whether inhibition of proline hydroxylation in petals is involved in senescence progression of cut carnation flowers. PDCA suppressed the climacteric ethylene production indicating a strong correlation between the inhibition of DcP4H1 and DcP4H2 activity in vitro by PDCA and the suppression of climacteric ethylene production in cut carnation flowers.

  12. Expression analysis of kenaf cinnamate 4-hydroxylase (C4H) ortholog during developmental and stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to clone and analyze the expression pattern of a C4H gene encoding cinnamate 4-hydroxylase from kenaf (Hibiscus cannabinus L.). A full-length C4H ortholog was cloned using degenerate primers and the RACE (rapid amplification of cDNA ends) method. The full-length C4H ortholog...

  13. Down-regulation of p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla x E. grandis leads to improved sugar release

    DOE PAGES

    Sykes, Robert W.; Gjersing, Erica L.; Foutz, Kirk; ...

    2015-08-27

    In this study, lignocellulosic materials provide an attractive replacement for food-based crops used to produce ethanol. Understanding the interactions within the cell wall is vital to overcome the highly recalcitrant nature of biomass. One factor imparting plant cell wall recalcitrance is lignin, which can be manipulated by making changes in the lignin biosynthetic pathway. In this study, eucalyptus down-regulated in expression of cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) or p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H, EC 1.14.13.36) were evaluated for cell wall composition and reduced recalcitrance.

  14. Hypoxia-inducible Factor Prolyl 4-Hydroxylase Inhibition A TARGET FOR NEUROPROTECTION IN THE CENTRAL NERVOUS SYSTEM*

    PubMed Central

    Siddiq, Ambreena; Ayoub, Issam A.; Chavez, Juan C.; Aminova, Leila; Shah, Sapan; LaManna, Joseph C.; Patton, Stephanie M.; Connor, James R.; Cherny, Robert A.; Volitakis, Irene; Bush, Ashley I.; Langsetmo, Ingrid; Seeley, Todd; Gunzler, Volkmar; Ratan, Rajiv R.

    2008-01-01

    Hypoxia-inducible factor (HIF) prolyl 4-hydroxylases are a family of iron- and 2-oxoglutarate-dependent dioxygenases that negatively regulate the stability of several proteins that have established roles in adaptation to hypoxic or oxidative stress. These proteins include the transcriptional activators HIF-1α and HIF-2α. The ability of the inhibitors of HIF prolyl 4-hydroxylases to stabilize proteins involved in adaptation in neurons and to prevent neuronal injury remains unclear. We reported that structurally diverse low molecular weight or peptide inhibitors of the HIF prolyl 4-hydroxylases stabilize HIF-1α and up-regulate HIF-dependent target genes (e.g. enolase, p21waf1/cip1, vascular endothelial growth factor, or erythropoietin) in embryonic cortical neurons in vitro or in adult rat brains in vivo. We also showed that structurally diverse HIF prolyl 4-hydroxylase inhibitors prevent oxidative death in vitro and ischemic injury in vivo. Taken together these findings identified low molecular weight and peptide HIF prolyl 4-hydroxylase inhibitors as novel neurological therapeutics for stroke as well as other diseases associated with oxidative stress. PMID:16227210

  15. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua

    PubMed Central

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-01-01

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H. PMID:27220407

  16. Bioavailable affinity label for collagen prolyl 4-hydroxylase

    PubMed Central

    Vasta, James D.; Higgin, Joshua J.; Kersteen, Elizabeth A.

    2013-01-01

    Collagen is the most abundant protein in animals. Its prevalent 4-hydroxyproline residues contribute greatly to its conformational stability. The hydroxyl groups arise from a post-translational modification catalyzed by the non-heme iron-dependent enzyme, collagen prolyl 4-hydroxylase (P4H). Here, we report that 4-oxo-5,6-epoxyhexanoate, a mimic of the α-ketoglutarate co-substrate, inactivates human P4H. The inactivation installs a ketone functionality in P4H, providing a handle for proteomic experiments. Caenorhabditis elegans exposed to the esterified epoxy ketone displays the phenotype of a worm lacking P4H. Thus, this affinity label can be used to mediate collagen stability in an animal, as is desirable in the treatment of a variety of fibrotic diseases. PMID:23702396

  17. Inhibition of prolyl 4-hydroxylase decreases muscle fibrosis following chronic rotator cuff tear

    PubMed Central

    Gumucio, J. P.; Flood, M. D.; Bedi, A.; Kramer, H. F.; Russell, A. J.

    2017-01-01

    Objectives Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Methods Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair. Results At two weeks following repair, treatment groups showed increased muscle mass but there was a 15% decrease in force production in the 10 mg/kg group from controls, and no difference between the 0 mg/kg and the 3 mg/kg groups. There was a decrease in the expression of several gene transcripts related to matrix accumulation and fibrosis, and a 50% decrease in collagen content in both treated groups compared with controls. Additionally, the expression of inflammatory genes was reduced in the treated groups compared with controls. Finally, PHD inhibition improved the maximum stress and displacement to failure in repaired tendons. Conclusions GSK1120360A resulted in improved enthesis mechanics with variable effects on muscle function. PHD inhibition may be beneficial for connective tissue injuries in which muscle atrophy has not occurred. Cite this article: J. P. Gumucio

  18. Down-regulation of p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla x E. grandis leads to improved sugar release

    SciTech Connect

    Sykes, Robert W.; Gjersing, Erica L.; Foutz, Kirk; Rottmann, William H.; Kuhn, Sean A.; Foster, Cliff E.; Ziebell, Angela; Turner, Geoffrey B.; Decker, Stephen R.; Hinchee, Maud A. W.; Davis, Mark F.

    2015-08-27

    In this study, lignocellulosic materials provide an attractive replacement for food-based crops used to produce ethanol. Understanding the interactions within the cell wall is vital to overcome the highly recalcitrant nature of biomass. One factor imparting plant cell wall recalcitrance is lignin, which can be manipulated by making changes in the lignin biosynthetic pathway. In this study, eucalyptus down-regulated in expression of cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) or p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H, EC 1.14.13.36) were evaluated for cell wall composition and reduced recalcitrance.

  19. Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment.

    PubMed Central

    Bell-Lelong, D A; Cusumano, J C; Meyer, K; Chapple, C

    1997-01-01

    Cinnamate-4-hydroxylase (C4H) is the first Cyt P450-dependent monooxygenase of the phenylpropanoid pathway. To study the expression of this gene in Arabidopsis thaliana, a C4H cDNA clone from the Arabidopsis expressed sequence tag database was identified and used to isolate its corresponding genomic clone. The entire C4H coding sequence plus 2.9 kb of its promoter were isolated on a 5.4-kb HindIII fragment of this cosmid. Inspection of the promoter sequence revealed the presence of a number of putative regulatory motifs previously identified in the promoters of other phenylpropanoid pathway genes. The expression of C4H was analyzed by RNA blot hybridization analysis and in transgenic Arabidopsis carrying a C4H-beta-glucuronidase transcriptional fusion. C4H message accumulation was light-dependent, but was detectable even in dark-grown seedlings. Consistent with these data, C4H mRNA was accumulated to light-grown levels in etiolated det1-1 mutant seedlings. C4H is widely expressed in various Arabidopsis tissues, particularly in roots and cells undergoing lignification. The C4H-driven beta-glucuronidase expression accurately reflected the tissue-specificity and wound-inducibility of the C4H promoter indicated by RNA blot hybridization analysis. A modest increase in C4H expression was observed in the tt8 mutant of Arabidopsis. PMID:9085570

  20. miR-190 Enhances HIF-Dependent Responses to Hypoxia in Drosophila by Inhibiting the Prolyl-4-hydroxylase Fatiga

    PubMed Central

    De Lella Ezcurra, Ana Laura; Bertolin, Agustina Paola; Kim, Kevin; Gándara, Lautaro; Luschnig, Stefan; Perrimon, Norbert; Melani, Mariana; Wappner, Pablo

    2016-01-01

    Cellular and systemic responses to low oxygen levels are principally mediated by Hypoxia Inducible Factors (HIFs), a family of evolutionary conserved heterodimeric transcription factors, whose alpha- and beta-subunits belong to the bHLH-PAS family. In normoxia, HIFα is hydroxylated by specific prolyl-4-hydroxylases, targeting it for proteasomal degradation, while in hypoxia the activity of these hydroxylases decreases due to low oxygen availability, leading to HIFα accumulation and expression of HIF target genes. To identify microRNAs required for maximal HIF activity, we conducted an overexpression screen in Drosophila melanogaster, evaluating the induction of a HIF transcriptional reporter. miR-190 overexpression enhanced HIF-dependent biological responses, including terminal sprouting of the tracheal system, while in miR-190 loss of function embryos the hypoxic response was impaired. In hypoxic conditions, miR-190 expression was upregulated and required for induction of HIF target genes by directly inhibiting the HIF prolyl-4-hydroxylase Fatiga. Thus, miR-190 is a novel regulator of the hypoxia response that represses the oxygen sensor Fatiga, leading to HIFα stabilization and enhancement of hypoxic responses. PMID:27223464

  1. miR-190 Enhances HIF-Dependent Responses to Hypoxia in Drosophila by Inhibiting the Prolyl-4-hydroxylase Fatiga.

    PubMed

    De Lella Ezcurra, Ana Laura; Bertolin, Agustina Paola; Kim, Kevin; Katz, Maximiliano Javier; Gándara, Lautaro; Misra, Tvisha; Luschnig, Stefan; Perrimon, Norbert; Melani, Mariana; Wappner, Pablo

    2016-05-01

    Cellular and systemic responses to low oxygen levels are principally mediated by Hypoxia Inducible Factors (HIFs), a family of evolutionary conserved heterodimeric transcription factors, whose alpha- and beta-subunits belong to the bHLH-PAS family. In normoxia, HIFα is hydroxylated by specific prolyl-4-hydroxylases, targeting it for proteasomal degradation, while in hypoxia the activity of these hydroxylases decreases due to low oxygen availability, leading to HIFα accumulation and expression of HIF target genes. To identify microRNAs required for maximal HIF activity, we conducted an overexpression screen in Drosophila melanogaster, evaluating the induction of a HIF transcriptional reporter. miR-190 overexpression enhanced HIF-dependent biological responses, including terminal sprouting of the tracheal system, while in miR-190 loss of function embryos the hypoxic response was impaired. In hypoxic conditions, miR-190 expression was upregulated and required for induction of HIF target genes by directly inhibiting the HIF prolyl-4-hydroxylase Fatiga. Thus, miR-190 is a novel regulator of the hypoxia response that represses the oxygen sensor Fatiga, leading to HIFα stabilization and enhancement of hypoxic responses.

  2. Role of NonO-histone interaction in TNFalpha-suppressed prolyl-4-hydroxylase alpha1.

    PubMed

    Zhang, Cheng; Zhang, Ming-Xiang; Shen, Ying H; Burks, Jared K; Li, Xiao-Nan; LeMaire, Scott A; Yoshimura, Koichi; Aoki, Hiroki; Matsuzaki, Masunori; An, Feng-Shuang; Engler, David A; Matsunami, Risë K; Coselli, Joseph S; Zhang, Yun; Wang, Xing Li

    2008-08-01

    Inflammation is a key process in cardiovascular diseases. The extracellular matrix (ECM) of the vasculature is a major target of inflammatory cytokines, and TNFalpha regulates ECM metabolism by affecting collagen production. In this study, we have examined the pathways mediating TNFalpha-induced suppression of prolyl-4 hydroxylase alpha1 (P4Halpha1), the rate-limiting isoform of P4H responsible for procollagen hydroxylation, maturation, and organization. Using human aortic smooth muscle cells, we found that TNFalpha activated the MKK4-JNK1 pathway, which induced histone (H) 4 lysine 12 acetylation within the TNFalpha response element in the P4Halpha1 promoter. The acetylated-H4 then recruited a transcription factor, NonO, which, in turn, recruited HDACs and induced H3 lysine 9 deacetylation, thereby inhibiting transcription of the P4Halpha1 promoter. Furthermore, we found that TNFalpha oxidized DJ-1, which may be essential for the NonO-P4Halpha1 interaction because treatment with gene specific siRNA to knockout DJ-1 eliminated the TNFalpha-induced NonO-P4Halpha1 interaction and its suppression. Our findings may be relevant to aortic aneurysm and dissection and the stability of the fibrous cap of atherosclerotic plaque in which collagen metabolism is important in arterial remodeling. Defining this cytokine-mediated regulatory pathway may provide novel molecular targets for therapeutic intervention in preventing plaque rupture and acute coronary occlusion.

  3. Notch Downregulation and Extramedullary Erythrocytosis in Hypoxia-Inducible Factor Prolyl 4-Hydroxylase 2-Deficient Mice.

    PubMed

    Myllymäki, Mikko N M; Määttä, Jenni; Dimova, Elitsa Y; Izzi, Valerio; Väisänen, Timo; Myllyharju, Johanna; Koivunen, Peppi; Serpi, Raisa

    2017-01-15

    Erythrocytosis is driven mainly by erythropoietin, which is regulated by hypoxia-inducible factor (HIF). Mutations in HIF prolyl 4-hydroxylase 2 (HIF-P4H-2) (PHD2/EGLN1), the major downregulator of HIFα subunits, are found in familiar erythrocytosis, and large-spectrum conditional inactivation of HIF-P4H-2 in mice leads to severe erythrocytosis. Although bone marrow is the primary site for erythropoiesis, spleen remains capable of extramedullary erythropoiesis. We studied HIF-P4H-2-deficient (Hif-p4h-2(gt/gt)) mice, which show slightly induced erythropoiesis upon aging despite nonincreased erythropoietin levels, and identified spleen as the site of extramedullary erythropoiesis. Splenic hematopoietic stem cells (HSCs) of these mice exhibited increased erythroid burst-forming unit (BFU-E) growth, and the mice were protected against anemia. HIF-1α and HIF-2α were stabilized in the spleens, while the Notch ligand genes Jag1, Jag2, and Dll1 and target Hes1 became downregulated upon aging HIF-2α dependently. Inhibition of Notch signaling in wild-type spleen HSCs phenocopied the increased BFU-E growth. HIFα stabilization can thus mediate non-erythropoietin-driven splenic erythropoiesis via altered Notch signaling.

  4. A steady-state kinetic analysis of the prolyl-4-hydroxylase mechanism.

    PubMed

    Soskel, N T; Kuby, S A

    1981-01-01

    Published kinetic data by Kivirikko, et al. on the prolyl-4-hydroxylase reaction have been re-evaluated using the overall steady-state velocity equation in the forward and reverse directions for an ordered ter ter kinetic mechanism. Qualitatively, the published data for prolyl-4-hydroxylase appear to fit the predicted patterns for this kinetic mechanism. More kinetic data are needed to confirm these results and to quantitate the kinetic parameters but, tentatively, the order of substrate addition would appear to be alpha-ketoglutarate, oxygen, and peptide; and the order of product release would be hydroxylated peptide (or collagen), carbon dioxide, and succinate.

  5. Functional Characterization and Subcellular Localization of Poplar (Populus trichocarpa × Populus deltoides) Cinnamate 4-Hydroxylase1

    PubMed Central

    Ro, Dae Kyun; Mah, Nancy; Ellis, Brian E.; Douglas, Carl J.

    2001-01-01

    Cinnamic acid 4-hydroxylase (C4H), a member of the cytochrome P450 monooxygenase superfamily, plays a central role in phenylpropanoid metabolism and lignin biosynthesis and possibly anchors a phenylpropanoid enzyme complex to the endoplasmic reticulum (ER). A full-length cDNA encoding C4H was isolated from a hybrid poplar (Populus trichocarpa × P. deltoides) young leaf cDNA library. RNA-blot analysis detected C4H transcripts in all organs tested, but the gene was most highly expressed in developing xylem. C4H expression was also strongly induced by elicitor-treatment in poplar cell cultures. To verify the catalytic activity of the putative C4H cDNA, two constructs, C4H and C4H fused to the FLAG epitope (C4H::FLAG), were expressed in yeast. Immunoblot analysis showed that C4H was present in the microsomal fraction and microsomal preparations from strains expressing both enzymes efficiently converted cinnamic acid to p-coumaric acid with high specific activities. To investigate the subcellular localization of C4H in vivo, a chimeric C4H-green fluorescent protein (GFP) gene was engineered and stably expressed in Arabidopsis. Confocal laser microscopy analysis clearly showed that in Arabidopsis the C4H::GFP chimeric enzyme was localized to the ER. When expressed in yeast, the C4H::GFP fusion enzyme was also active but displayed significantly lower specific activity than either C4H or C4H::FLAG in in vitro and in vivo enzyme assays. These data definitively show that C4H is localized to the ER in planta. PMID:11351095

  6. Overexpression of cinnamate 4-hydroxylase and 4-coumaroyl CoA ligase prompted flavone accumulation in Scutellaria baicalensis hairy roots.

    PubMed

    Kim, Young Seon; Kim, Yeon Bok; Kim, YeJi; Lee, Mi Young; Park, Sang Un

    2014-06-01

    Scutellaria baicalensis Georgi, a species of the Lamiaceae family, is considered as one of the 50 fundamental herbs used in traditional Chinese medicine. In order to enhance flavone (baicalein, baicalin, and wogonin) content in S. baicalensis roots, we overexpressed a single gene of cinnamate 4-hydroxylase (C4H) and 4-coumaroyl coenzyme A ligase (4CL) using an Agrobacterium rhizogenes-mediated system. SbC4H- and Sb4CL-overexpressed hairy root lines enhanced the transcript levels of SbC4H and Sb4CL compared with those in the control and also increased flavones contents by approximately 3- and 2.5-fold, respectively. We successfully engineered the flavone biosynthesis pathway for the production of beneficial flavones in S baicalensis hairy roots. The importance of upstream gene C4H and 4CL in flavone biosynthesis and the efficiency of metabolic engineering in promoting flavone biosynthesis in S. baicalensis hairy roots have been indicated in this study.

  7. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE1[OPEN

    PubMed Central

    Van de Wouwer, Dorien; Decou, Raphaël; Audenaert, Dominique; Nguyen, Long

    2016-01-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  8. Assay of prolyl 4-hydroxylase by the chromatographic determination of [14C]succinic acid on ion-exchange minicolumns.

    PubMed Central

    Cunliffe, C J; Franklin, T J; Gaskell, R M

    1986-01-01

    An assay for prolyl 4-hydroxylase (EC 1.14.11.2) is described which measures succinic acid produced during the decarboxylation of 2-oxoglutaric acid in the presence of poly(L-Pro-Gly-L-Pro). [1-14C]Succinic acid was separated from its precursor 2-oxo[5-14C]glutaric acid by using ion-exchange minicolumns. The contamination of succinic acid by 2-oxoglutaric acid was approx. 1%, and the recovery of succinic acid was 100%. Kinetic parameters of prolyl 4-hydroxylase measured by the assay showed good agreement with published values. Our experience indicates that the measurement of prolyl 4-hydroxylase by the production of succinic acid is especially suited to investigations involving large numbers of assays. PMID:3028379

  9. Molecular Cloning, Characterization, and Expression Analysis of a Prolyl 4-Hydroxylase from the Marine Sponge Chondrosia reniformis.

    PubMed

    Pozzolini, Marina; Scarfì, Sonia; Mussino, Francesca; Ferrando, Sara; Gallus, Lorenzo; Giovine, Marco

    2015-08-01

    Prolyl 4-hydroxylase (P4H) catalyzes the hydroxylation of proline residues in collagen. P4H has two functional subunits, α and β. Here, we report the cDNA cloning, characterization, and expression analysis of the α and β subunits of the P4H derived from the marine sponge Chondrosia reniformis. The amino acid sequence of the α subunit is 533 residues long with an M r of 59.14 kDa, while the β subunit counts 526 residues with an M r of 58.75 kDa. Phylogenetic analyses showed that αP4H and βP4H are more related to the mammalian sequences than to known invertebrate P4Hs. Western blot analysis of sponge lysate protein cross-linking revealed a band of 240 kDa corresponding to an α2β2 tetramer structure. This result suggests that P4H from marine sponges shares the same quaternary structure with vertebrate homologous enzymes. Gene expression analyses showed that αP4H transcript is higher in the choanosome than in the ectosome, while the study of factors affecting its expression in sponge fragmorphs revealed that soluble silicates had no effect on the αP4H levels, whereas ascorbic acid strongly upregulated the αP4H mRNA. Finally, treatment with two different tumor necrosis factor (TNF)-alpha inhibitors determined a significant downregulation of αP4H gene expression in fragmorphs demonstrating, for the first time in Porifera, a positive involvement of TNF in sponge matrix biosynthesis. The molecular characterization of P4H genes involved in collagen hydroxylation, including the mechanisms that regulate their expression, is a key step for future recombinant sponge collagen production and may be pivotal to understand pathological mechanisms related to extracellular matrix deposition in higher organisms.

  10. Acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in hepatic microsomes from induced mice.

    PubMed

    Lewandowski, M; Chui, Y C; Levi, P; Hodgson, E

    1991-02-01

    A simple and sensitive method for the separation of 14C-labelled acetanilide, 4-hydroxyacetanilide, 3-hydroxyacetanilide and 2-hydroxyacetanilide was developed using thin-layer chromatography. This separation is the basis for the assay of acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in liver microsomes from DBA2/N male mice that had been treated with phenobarbital, 3-methylcholanthrene, isosafrole or n-butylbenzodioxole. Microsomes were incubated with [14C]acetanilide and extracted with benzene and ethyl acetate. The extract was applied to silica gel plates and developed with a hexane/isopropanol/ammonium hydroxide/water solvent system. The radiolabelled phenolic metabolites and the parent compound were detected using a Berthold Automatic TLC Linear Analyzer. Although the 4-hydroxylated metabolite was the primary product detected, this method can be used to detect other phenolic metabolites.

  11. Biphenyl 4-Hydroxylases Involved in Aucuparin Biosynthesis in Rowan and Apple Are Cytochrome P450 736A Proteins1[OPEN

    PubMed Central

    Kaufholdt, David; Broggini, Giovanni A.L.; Flachowsky, Henryk; Hänsch, Robert

    2015-01-01

    Upon pathogen attack, fruit trees such as apple (Malus spp.) and pear (Pyrus spp.) accumulate biphenyl and dibenzofuran phytoalexins, with aucuparin as a major biphenyl compound. 4-Hydroxylation of the biphenyl scaffold, formed by biphenyl synthase (BIS), is catalyzed by a cytochrome P450 (CYP). The biphenyl 4-hydroxylase (B4H) coding sequence of rowan (Sorbus aucuparia) was isolated and functionally expressed in yeast (Saccharomyces cerevisiae). SaB4H was named CYP736A107. No catalytic function of CYP736 was known previously. SaB4H exhibited absolute specificity for 3-hydroxy-5-methoxybiphenyl. In rowan cell cultures treated with elicitor from the scab fungus, transient increases in the SaB4H, SaBIS, and phenylalanine ammonia lyase transcript levels preceded phytoalexin accumulation. Transient expression of a carboxyl-terminal reporter gene construct directed SaB4H to the endoplasmic reticulum. A construct lacking the amino-terminal leader and transmembrane domain caused cytoplasmic localization. Functional B4H coding sequences were also isolated from two apple (Malus × domestica) cultivars. The MdB4Hs were named CYP736A163. When stems of cv Golden Delicious were infected with the fire blight bacterium, highest MdB4H transcript levels were observed in the transition zone. In a phylogenetic tree, the three B4Hs were closest to coniferaldehyde 5-hydroxylases involved in lignin biosynthesis, suggesting a common ancestor. Coniferaldehyde and related compounds were not converted by SaB4H. PMID:25862456

  12. Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan.

    PubMed

    Lin, Yuheng; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2014-07-18

    5-Hydroxytryptophan (5-HTP) is a drug that is clinically effective against depression, insomnia, obesity, chronic headaches, etc. It is only commercially produced by the extraction from the seeds of Griffonia simplicifolia because of a lack of synthetic methods. Here, we report the efficient microbial production of 5-HTP via combinatorial protein and metabolic engineering approaches. First, we reconstituted and screened prokaryotic phenylalanine 4-hydroxylase activity in Escherichia coli. Then, sequence- and structure-based protein engineering dramatically shifted its substrate preference, allowing for efficient conversion of tryptophan to 5-HTP. Importantly, E. coli endogenous tetrahydromonapterin (MH4) could be utilized as the coenzyme, when a foreign MH4 recycling mechanism was introduced. Whole-cell bioconversion allowed the high-level production of 5-HTP (1.1-1.2 g/L) from tryptophan in shake flasks. On this basis, metabolic engineering efforts were further made to achieve the de novo 5-HTP biosynthesis from glucose. This work not only holds great scale-up potential but also demonstrates a strategy for expanding the native metabolism of microorganisms.

  13. Immunolocalization of phenylalanine ammonia-lyase and cinnamate-4-hydroxylase in differentiating xylem of poplar.

    PubMed

    Sato, Takahiko; Takabe, Keiji; Fujita, Minoru

    2004-01-01

    Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) and cinnamate-4-hydroxylase (C4H; EC 1.14.13.11) are pivotal enzymes involved in lignification. We synthesized peptides as the epitopes according to the amino acid sequences of these enzymes, coupled them with hemocyanin, and injected them into mice. The antiserums against peptides of PAL and C4H specifically detected PAL and C4H in the crude enzymes extracted from differentiating xylem of poplar, respectively. PAL and C4H were localized in differentiating xylem of poplar. PAL labeling was mainly localized in the cytosol, and somewhat localized on the rough-endoplasmic reticulum (r-ER) and the Golgi apparatus. In contrast, C4H was mainly observed on r-ER and the Golgi apparatus. These findings suggest that conversion of phenylalanine to cinnamic acid occurs in the cytosol and the following reaction occurs near the membrane of r-ER and the Golgi apparatus. The possibility of coordinated localization of PAL and C4H is discussed.

  14. The effects of Urtica dioica L. leaf extract on aniline 4-hydroxylase in mice.

    PubMed

    Ozen, Tevfik; Korkmaz, Halil

    2009-01-01

    The effects of hydroalcoholic (80% ethanol-20% water) extract of Urtica dioica L. on microsomal aniline 4-hydroxylase (A4H) were investigated in the liver of Swiss albino mice (8- 10-weeks-old) treated with two doses (50 and 100 mg/kg body weight, given orally for 14 days ). The activities of A4H showed a significant increase in the liver at both dose levels of extract treatment. The hydroalcoholic extract of Urtica dioica induced the activities of A4H that had been increased by treatment of metal ions (Mg2+ and Ca2+) and the mixture of cofactors (NADH and NADPH). At saturated concentration of cofactor, microsomal A4H exhibited significantly even higher activities in the presence of the mixture of cofactors than NADPH and NADH. Mg2+ and Ca2+ ions acted as stimulants in vitro. The present results suggest that the hydroalcoholic extract of Urtica dioica may have modalatory effect on aniline hydroxylase at least in part and enhance the activity of A4H adding metals ions and cofactors.

  15. Prolyl-4-Hydroxylase 3 (PHD3) Expression Is Downregulated during Epithelial-to-Mesenchymal Transition

    PubMed Central

    Place, Trenton L.; Nauseef, Jones T.; Peterson, Maina K.; Henry, Michael D.; Mezhir, James J.; Domann, Frederick E.

    2013-01-01

    Prolyl-4-hydroxylation by the intracellular prolyl-4-hydroxylase enzymes (PHD1-3) serves as a master regulator of environmental oxygen sensing. The activity of these enzymes is tightly tied to tumorigenesis, as they regulate cell metabolism and angiogenesis through their control of hypoxia-inducible factor (HIF) stability. PHD3 specifically, is gaining attention for its broad function and rapidly accumulating array of non-HIF target proteins. Data from several recent studies suggest a role for PHD3 in the regulation of cell morphology and cell migration. In this study, we aimed to investigate this role by closely examining the relationship between PHD3 expression and epithelial-to-mesenchymal transition (EMT); a transcriptional program that plays a major role in controlling cell morphology and migratory capacity. Using human pancreatic ductal adenocarcinoma (PDA) cell lines and Madin-Darby Canine Kidney (MDCK) cells, we examined the correlation between several markers of EMT and PHD3 expression. We demonstrated that loss of PHD3 expression in PDA cell lines is highly correlated with a mesenchymal-like morphology and an increase in cell migratory capacity. We also found that induction of EMT in MDCK cells resulted in the specific downregulation of PHD3, whereas the expression of the other HIF-PHD enzymes was not affected. The results of this study clearly support a model by which the basal expression and hypoxic induction of PHD3 is suppressed by the EMT transcriptional program. This may be a novel mechanism by which migratory or metastasizing cells alter signaling through specific pathways that are sensitive to regulation by O2. The identification of downstream pathways that are affected by the suppression of PHD3 expression during EMT may provide important insight into the crosstalk between O2 and the migratory and metastatic potential of tumor cells. PMID:24367580

  16. Regulation of the Cinnamate 4-Hydroxylase (CYP73A1) in Jerusalem Artichoke Tubers in Response to Wounding and Chemical Treatments.

    PubMed Central

    Batard, Y.; Schalk, M.; Pierrel, M. A.; Zimmerlin, A.; Durst, F.; Werck-Reichhart, D.

    1997-01-01

    trans-Cinnamate 4-hydroxylase (C4H) is a plant-specific cytochrome (P450) that is encoded by the gene CYP73A and catalyzes the second step of the multibranched phenylpropanoid pathway. Increases in C4H activity in response to physical and chemical stresses have been well documented, but the mechanism of these increases has never been studied in detail. This paper reports on the regulatory mechanism controlling C4H activity in Jerusalem artichoke (Helianthus tuberosus) tubers in response to wounding and chemical treatments. We compared induction of C4H and other P450-catalyzed activities. C4H was moderately induced by chemicals relative to other P450s. Increases in enzyme activity, C4H protein, and transcripts were quantified and compared in tuber tissue 48 h after wounding and chemical treatments. Our data suggest that induction of the enzyme activity results primarily from gene activation. Time-course experiments were performed after wounding and aminopyrine treatment. Compared with wounded tissues, aminopyrine triggered an additional and delayed peak of transcript accumulation. The timing of the induced changes in activity, protein, and transcripts confirms that C4H induction results primarily from an increase in CYP73A1 mRNA, in both wounded and aminopyrine-treated tissues. However, posttranscriptional mechanisms might also contribute to the regulation of C4H activity. PMID:12223655

  17. Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco

    NASA Technical Reports Server (NTRS)

    Blee, K.; Choi, J. W.; O'Connell, A. P.; Jupe, S. C.; Schuch, W.; Lewis, N. G.; Bolwell, G. P.

    2001-01-01

    A number of plant species contain the class II of genes encoding the cytochrome P450, CYP73, the cognate protein of which cinnamic acid 4-hydroxylase, is the second enzyme of the phenylpropanoid pathway. In order to begin to determine possible functionality, tobacco has been transformed with a truncated French bean class II cinnamate hydroxylase (CYP73A15) in the sense and antisense orientations. Signals for C4H protein could be detected in vascular tissue from wild-type plants using heterologous probes. The transformed plants showed a normal phenotype, even though detectable C4H protein was much reduced in tissue prints. Young propagated transformants displayed a range of reduced C4H activities, as well as either reduced or no phloroglucinol-stainable lignin. However, all mature tobacco plants showed the accumulation of lignin, even though its deposition was apparently delayed. This was not due to induction of tyrosine ammonia-lyase activity, which was not detected, but instead it is presumed due to sufficient C4H residual activity. Analysis of the lignin content of the plants showed reductions of up to 30% with a slightly reduced syringyl to guaiacyl ratio as compared to wild type. This reduction level was favourable in comparison with some other targets in the lignification pathway that have been manipulated including that of class I cinnamate 4-hydroxylase. It is proposed that the class II cinnamate 4-hydroxylase might also function in lignification in a number of species including French bean and tobacco, based on these data.

  18. Expression, Purification, Crystallization And Preliminary X-Ray Studies of a Prolyl-4-Hydroxylase Protein From Bacillus Anthracis

    SciTech Connect

    Miller, M.A.; Scott, E.E.; Limburg, J.

    2009-05-26

    Collagen prolyl-4-hydroxylase (C-P4H) catalyzes the hydroxylation of specific proline residues in procollagen, which is an essential step in collagen biosynthesis. A new form of P4H from Bacillus anthracis (anthrax-P4H) that shares many characteristics with the type I C-P4H from human has recently been characterized. The structure of anthrax-P4H could provide important insight into the chemistry of C-P4Hs and into the function of this unique homodimeric P4H. X-ray diffraction data of selenomethionine-labeled anthrax-P4H recombinantly expressed in Escherichia coli have been collected to 1.4 {angstrom} resolution.

  19. Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in capsicum under drought stress.

    PubMed

    Phimchan, Paongpetch; Chanthai, Saksit; Bosland, Paul W; Techawongstien, Suchila

    2014-07-23

    Penylalanine ammonia-lyase (PAL), cinnamic-4-hydroxylase (C4H), capsaicin synthase (CS), and peroxidase (POD) are involved in the capsaicinoid biosynthesis pathway and may be altered in cultivars with different pungency levels. This study clarified the action of these enzymes under drought stress for hot Capsicum cultivars with low, medium,and high pungency levels. At the flowering stage, control plants were watered at field capacity, whereas drought-induced plants were subjected to gradual drought stress. Under drought stress, PAL, C4H, CS, and POD enzyme activities increased as compared to the non-drought-stressed plants. A novel discovery was that PAL was the critical enzyme in capsaicinoid biosynthesis under drought stress because its activities and capsaicinoid increased across the different pungency levels of hot pepper cultivars examined.

  20. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius

    PubMed Central

    Sadeghi, Mahnaz; Dehghan, Sara; Fischer, Rainer; Wenzel, Uwe; Vilcinskas, Andreas; Kavousi, Hamid Reza; Rahnamaeian, Mohammad

    2013-01-01

    Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3–6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6–24 h and 3–6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance. PMID:24309561

  1. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius.

    PubMed

    Sadeghi, Mahnaz; Dehghan, Sara; Fischer, Rainer; Wenzel, Uwe; Vilcinskas, Andreas; Kavousi, Hamid Reza; Rahnamaeian, Mohammad

    2013-11-01

    Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3-6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6-24 h and 3-6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance.

  2. Characterization of cDNAs, mRNAs, and proteins related to human liver microsomal cytochrome P-450 (S)-mephenytoin 4'-hydroxylase.

    PubMed

    Ged, C; Umbenhauer, D R; Bellew, T M; Bork, R W; Srivastava, P K; Shinriki, N; Lloyd, R S; Guengerich, F P

    1988-09-06

    mephenytoin 4'-hydroxylase activity. These results indicate that several closely related P-450 genes are all expressed in individual human livers. The MP-4/MP-8 gene products are proposed to be the ones most likely involved in mephenytoin 4'-hydroxylation, and much of the variation in catalytic activity among individuals is not a result of differences in levels of P-450MP-1 or mRNA but may be due to base differences in the structural gene(s).

  3. Comparison of aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase induction by polycyclic aromatic compounds in human and mouse cell lines.

    PubMed

    Jaiswal, A K; Nebert, D W; Eisen, H W

    1985-08-01

    The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.

  4. Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis.

    PubMed

    Achnine, Lahoucine; Blancaflor, Elison B; Rasmussen, Susanne; Dixon, Richard A

    2004-11-01

    Metabolic channeling has been proposed to occur at the entry point into plant phenylpropanoid biosynthesis. To determine whether isoforms of L-Phe ammonia-lyase (PAL), the first enzyme in the pathway, can associate with the next enzyme, the endomembrane-bound cinnamate 4-hydroxylase (C4H), to facilitate channeling, we generated transgenic tobacco (Nicotiana tabacum) plants independently expressing epitope-tagged versions of two PAL isoforms (PAL1 and PAL2) and C4H. Subcellular fractionation and protein gel blot analysis using epitope- and PAL isoform-specific antibodies indicated both microsomal and cytosolic locations of PAL1 but only cytosolic localization of PAL2. However, both PAL isoforms were microsomally localized in plants overexpressing C4H. These results, which suggest that C4H itself may organize the complex for membrane association of PAL, were confirmed using PAL-green fluorescent protein (GFP) fusions with localization by confocal microscopy. Coexpression of unlabeled PAL1 with PAL2-GFP resulted in a shift of fluorescence localization from endomembranes to cytosol in C4H overexpressing plants, whereas coexpression of unlabeled PAL2 with PAL1-GFP did not affect PAL1-GFP localization, indicating that PAL1 has a higher affinity for its membrane localization site than does PAL2. Dual-labeling immunofluorescence and fluorescence energy resonance transfer (FRET) studies confirmed colocalization of PAL and C4H. However, FRET analysis with acceptor photobleaching suggested that the colocalization was not tight.

  5. The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 Axis Regulates Pulmonary Artery Pressure in Mice

    PubMed Central

    Rajendran, Ganeshkumar; Astleford, Lindsay; Michael, Mark; Schonfeld, Michael P.; Fields, Timothy; Shay, Sheila; French, Jaketa L.; West, James; Haase, Volker H.

    2016-01-01

    Hypoxia-inducible factors 1 and 2 (HIF-1 and -2) control oxygen supply to tissues by regulating erythropoiesis, angiogenesis and vascular homeostasis. HIFs are regulated in response to oxygen availability by prolyl-4-hydroxylase domain (PHD) proteins, with PHD2 being the main oxygen sensor that controls HIF activity under normoxia. In this study, we used a genetic approach to investigate the endothelial PHD2/HIF axis in the regulation of vascular function. We found that inactivation of Phd2 in endothelial cells specifically resulted in severe pulmonary hypertension (∼118% increase in right ventricular systolic pressure) but not polycythemia and was associated with abnormal muscularization of peripheral pulmonary arteries and right ventricular hypertrophy. Concurrent inactivation of either Hif1a or Hif2a in endothelial cell-specific Phd2 mutants demonstrated that the development of pulmonary hypertension was dependent on HIF-2α but not HIF-1α. Furthermore, endothelial HIF-2α was required for the development of increased pulmonary artery pressures in a model of pulmonary hypertension induced by chronic hypoxia. We propose that these HIF-2-dependent effects are partially due to increased expression of vasoconstrictor molecule endothelin 1 and a concomitant decrease in vasodilatory apelin receptor signaling. Taken together, our data identify endothelial HIF-2 as a key transcription factor in the pathogenesis of pulmonary hypertension. PMID:26976644

  6. TNF-α Suppresses Prolyl-4-Hydroxylase α1 Expression via the ASK1–JNK–NonO Pathway

    PubMed Central

    Zhang, Cheng; Zhang, Ming-Xiang; Shen, Ying H.; Burks, Jared K.; Zhang, Yun; Wang, Jian; LeMaire, Scott A.; Yoshimura, Koichi; Aoki, Hiroki; Coselli, Joseph S.; Wang, Xing Li

    2008-01-01

    Background Inflammation is known to contribute to the pathogenesis of vascular diseases in which arterial wall extracellular matrix (ECM) homeostasis is disrupted. Tumor necrosis factor-α (TNF-α), a pivotal cytokine that regulates ECM metabolism by increasing degradation and decreasing production of arterial collagens, is associated with vulnerable plaques and aortic aneurysms. Methods and Results In the current study, we showed that, when administered in doses of 1 to 100 ng/mL, TNF-α dose-dependently downregulated the expression of prolyl-4-hydroxylase αI [P4Hα (I)]—the rate-limiting subunit for the P4H enzyme essential for procollagen hydroxylation, secretion, and deposition in primary human aortic smooth muscle cells (HASMCs). Using a progressive deletion cloning approach, we characterized the TNF-α–responsive element (TaRE) in the human P4Hα (I) promoter and found that a negative regulatory region at the position of −32 to +18bp is responsible for ≈80% of TNF-α–mediated suppression. Using oligonucleotide-based transcription factor pull-down method in which proteins were resolved in 1-D gel electrophoresis and identified using LC-MS/MS, we identified the NonO protein binds this region. When NonO expression silenced with specific siRNA, we found that 70% of the TNF-α–mediated P4Hα suppression was abolished, which appeared to be mediated by the ASK1-JNK pathway. Conclusions Our findings define a novel molecular pathway for inflammation associated extracellular matrix dysregulation, which may account for atherosclerotic plaque rupture and aortic aneurysm formation. Further understanding of this pathway may facilitate development of novel therapeutics for vascular diseases. PMID:17478756

  7. Enhancement of L-tryptophan 5-hydroxylation activity by structure-based modification of L-phenylalanine 4-hydroxylase from Chromobacterium violaceum.

    PubMed

    Kino, Kuniki; Hara, Ryotaro; Nozawa, Ai

    2009-09-01

    The objective of this study was to enhance l-tryptophan hydroxylation activity of l-phenylalanine 4-hydroxylase. It had been known that l-phenylalanine 4-hydroxylase from Chromobacterium violaceum could convert l-tryptophan to 5-hydroxy-l-tryptophan and l-phenylalanine to l-tyrosine; however, the activity for l-tryptophan was extremely low compared to l-phenylalanine activity levels. We used the information on the crystal structures of aromatic amino acid hydroxylases to generate C. violaceuml-phenylalanine 4-hydroxylase with high l-tryptophan hydroxylating activity. In silico structural modeling analysis suggested that hydrophobic and/or stacking interactions with the substrate and cofactor at L101 and W180 in C. violaceuml-phenylalanine 4-hydroxylase would increase hydroxylation activity. Based on this hypothesis, we introduced a saturation mutagenesis towards these sites followed by the evaluation of 5-hydroxy-l-tryptophan productivity using a modified Gibbs assay. Three and nine positive mutants were obtained from the L101 and W180 mutant libraries, respectively. Among the mutants, L101Y and W180F showed the highest l-tryptophan hydroxylation activity at the respective residues. Steady-state kinetic analysis revealed that k(cat) values for l-tryptophan hydroxylation were increased from 0.40 (wild-type) to 1.02 (L101Y) and 0.51 s(-1) (W180F). In addition, the double mutant (L101Y-W180F) displayed higher l-tryptophan hydroxylation activity than the wild-type and the W180F and L101Y mutants. The k(cat) value of L101Y-W180F increased to 2.08 s(-1), showing a 5.2-fold increase compared to wild-type enzyme levels.

  8. Hypoxia-inducible factor-1 (HIF-1) but not HIF-2 is essential for hypoxic induction of collagen prolyl 4-hydroxylases in primary newborn mouse epiphyseal growth plate chondrocytes.

    PubMed

    Aro, Ellinoora; Khatri, Richa; Gerard-O'Riley, Rita; Mangiavini, Laura; Myllyharju, Johanna; Schipani, Ernestina

    2012-10-26

    Hypoxia-inducible factors (HIFs) are the master regulators of hypoxia-responsive genes. They play a critical role in the survival, development, and differentiation of chondrocytes in the avascular hypoxic fetal growth plate, which is rich in extracellular matrix (ECM) and in its main component, collagens. Several genes involved in the synthesis, maintenance, and degradation of ECM are regulated by HIFs. Collagen prolyl 4-hydroxylases (C-P4Hs) are key enzymes in collagen synthesis because the resulting 4-hydroxyprolines are necessary for the stability of all collagen molecules. The vertebrate C-P4Hs are α(2)β(2) tetramers with three isoforms of the catalytic α subunit, yielding C-P4Hs of types I-III. C-P4H-I is the main form in most cells, but C-P4H-II is the major form in chondrocytes. We postulated here that post-translational modification of collagens, particularly 4-hydroxylation of proline residues, could be one of the modalities by which HIF regulates the adaptive responses of chondrocytes in fetal growth plates. To address this hypothesis, we used primary epiphyseal growth plate chondrocytes isolated from newborn mice with conditionally inactivated genes for HIF-1α, HIF-2α, or the von Hippel-Lindau protein. The data obtained showed that C-P4H α(I) and α(II) mRNA levels were increased in hypoxic chondrocytes in a manner dependent on HIF-1 but not on HIF-2. Furthermore, the increases in the C-P4H mRNA levels were associated with both increased amounts of the C-P4H tetramers and augmented C-P4H activity in hypoxia. The hypoxia inducibility of the C-P4H isoenzymes is thus likely to ensure sufficient C-P4H activity for collagen synthesis occurring in chondrocytes in a hypoxic environment.

  9. Novel characteristics and regulation of a divergent cinnamate 4-hydroxylase (CYP73A15) from French bean: engineering expression in yeast.

    PubMed

    Nedelkina, S; Jupe, S C; Blee, K A; Schalk, M; Werck-Reichhart, D; Bolwell, G P

    1999-04-01

    cDNAs showing high sequence similarity (>70%) over large stretches to plant CYP73A orthologues from other species were isolated from a cDNA library derived from mRNAs expressed in elicitor-treated suspension-cultured cells. These clones appear to code for a full-length 1554 bp open reading frame with a 78 bp 5'-untranslated region and a 140 bp 3'-untranslated region. The open reading frame, determined by sequence similarity, codes for a protein with a predicted Mr of 59229 and a pI of 8.8. It contains the conserved cysteine haem-binding site found in all cytochrome P450s. The protein encoded by this cDNA diverges however from other CYP73As in its N- and C-terminus and in four domains internally, so that overall sequence similarity is in the range 58-66%. Many clones contained an identical intron, which may be associated with a novel regulatory mechanism. Sequence similarity is sufficient for it to be classified as CYP73A15, although it is the least similar member of this family classified so far. The cDNA was expressed in yeast. Successful expression of cinnamate 4-hydroxylase activity required removal of the intron. High-level expression also required modification of the N-terminus to that of CYP73A1. Yeast did not process the intron at all and the leader sequence for A15 was not as compatible as that of A1. The mRNA for CYP73A15 was shown to be rapidly induced by elicitor treatment of suspension-cultured cells of French bean but induction was more transient than that of phenylalanine ammonia-lyase (PAL). In contrast, induction in cells undergoing xylogenesis was much more coordinate with PAL. The cloned cDNA may represent a cinnamate 4-hydroxylase isoform, whose expression is more related to differentiation than the responses to stress in which the majority of CYP73As cloned so far are involved.

  10. Cellular oxygen sensing: Importins and exportins are mediators of intracellular localisation of prolyl-4-hydroxylases PHD1 and PHD2

    SciTech Connect

    Steinhoff, Amrei; Pientka, Friederike Katharina; Moeckel, Sylvia; Kettelhake, Antje; Hartmann, Enno; Koehler, Matthias; Depping, Reinhard

    2009-10-02

    Hypoxia-inducible factors are crucial in the regulatory process of oxygen homeostasis of vertebrate cells. Inhibition of prolyl hydroxylation of HIF-{alpha} subunits by prolyl-hydroxylases (PHD1, PHD2 and PHD3) leads to transcription of a greater number of hypoxia responsive genes. We have investigated the subcellular distribution and the molecular mechanisms regulating the intracellular allocation of PHD1 and PHD2. As reported earlier we find PHD1 located exclusively in the nucleus. We demonstrate that nuclear import of PHD1 occurs importin {alpha}/{beta} dependently and relies on a nuclear localisation signal (NLS). By contrast PHD2 is cycling between nucleus and cytoplasm, and nuclear import seems to be independent of 'classical' importin {alpha}/{beta} receptors. Furthermore, we reveal that the exit of PHD2 from the nucleus requires CRM1 and the N-terminal 100 amino acids of the protein. Our findings provide new insights into the mechanisms of the regulation of the oxygen sensor cascade of PHDs in different cellular compartments.

  11. Overexpression of Prolyl-4-Hydroxylase-α1 Stabilizes but Increases Shear Stress-Induced Atherosclerotic Plaque in Apolipoprotein E-Deficient Mice

    PubMed Central

    Liu, Xin-xin; Li, Meng-meng; Zhang, Yu; Chen, Liang; Wang, Lin; Di, Ming-xue

    2016-01-01

    The rupture and erosion of atherosclerotic plaque can induce coronary thrombosis. Prolyl-4-hydroxylase (P4H) plays a central role in the synthesis of all known types of collagens, which are the most abundant constituent of the extracellular matrix in atherosclerotic plaque. The pathogenesis of atherosclerosis is thought to be in part caused by shear stress. In this study, we aimed to investigate a relationship between P4Hα1 and shear stress-induced atherosclerotic plaque. Carotid arteries of ApoE−/− mice were exposed to low and oscillatory shear stress conditions by the placement of a shear stress cast for 2 weeks; we divided 60 male ApoE−/− mice into three groups for treatments with saline (mock) (n = 20), empty lentivirus (lenti-EGFP) (n = 20), and lentivirus-P4Hα1 (lenti-P4Hα1) (n = 20). Our results reveal that after 2 weeks of lenti-P4Hα1 treatment both low and oscillatory shear stress-induced plaques increased collagen and the thickness of fibrous cap and decreased macrophage accumulation but no change in lipid accumulation. We also observed that overexpression of P4Ha1 increased plaque size. Our study suggests that P4Hα1 overexpression might be a potential therapeutic target in stabilizing vulnerable plaques. PMID:27818566

  12. Pichia pastoris production of a prolyl 4-hydroxylase derived from Chondrosia reniformis sponge: A new biotechnological tool for the recombinant production of marine collagen.

    PubMed

    Pozzolini, Marina; Scarfì, Sonia; Mussino, Francesca; Salis, Annalisa; Damonte, Gianluca; Benatti, Umberto; Giovine, Marco

    2015-08-20

    Prolyl 4-hydroxylase (P4H) is a α2β2 tetramer catalyzing the post-translational hydroxylation of prolines in collagen. Its recombinant production is mainly pursued to realize biotechnological tools able to generate animal contaminant-free hydroxylated collagen. One promising candidate for biomedical applications is the collagen extracted from the marine sponge Chondrosia reniformis, because of its biocompatibility and because is devoid of the health risks associated with bovine and porcine collagens. Here we report on the production and selection, by enzymatic and biomolecular analyses, of a triple transformed Pichia pastoris strain expressing a stable P4H tetramer derived from C. reniformis sponge and a hydroxylated non fibrillar procollagen polypeptide from the same animal. The percentage of recombinant procollagen hydroxylated prolines inside the transformed yeast was of 36.3% analyzed by mass spectrometry indicating that the recombinant enzyme is active on its natural substrate inside the yeast cell host. Furthermore, the recombinant sponge P4H has the ability to hydroxylate its natural substrate in both X and Y positions in the Xaa-Yaa-Gly collagenous triplets. In conclusion this Pichia system seems ideal for high-level production of hydroxylated sponge- or marine-derived collagen polypeptides as well as of conotoxins or other marine proteins of high pharmacological interest needing this particular post-translational modification.

  13. Microbial production of N-acetyl cis-4-hydroxy-L-proline by coexpression of the Rhizobium L-proline cis-4-hydroxylase and the yeast N-acetyltransferase Mpr1.

    PubMed

    Bach, Thi Mai Hoa; Hara, Ryotaro; Kino, Kuniki; Ohtsu, Iwao; Yoshida, Nobuyuki; Takagi, Hiroshi

    2013-01-01

    The proline analogue cis-4-hydroxy-L-proline (CHOP), which inhibits the biosynthesis of collagen, has been clinically evaluated as an anticancer drug, but its water solubility and low molecular weight limits its therapeutic potential since it is rapidly excreted. In addition, CHOP is too toxic to be practical as an anticancer drug, due primarily to its systematic effects on noncollagen proteins. To promote CHOP's retention in blood and/or to decrease its toxicity, N-acetylation of CHOP might be a novel approach as a prodrug. The present study was designed to achieve the microbial production of N-acetyl CHOP from L-proline by coexpression of L-proline cis-4-hydroxylases converting L-proline into CHOP (SmP4H) from the Rhizobium Sinorhizobium meliloti and N-acetyltransferase converting CHOP into N-acetyl CHOP (Mpr1) from the yeast Saccharomyces cerevisiae. We constructed a coexpression plasmid harboring both the SmP4H and Mpr1 genes and introduced it into Escherichia coli BL21(DE3) or its L-proline oxidase gene-disrupted (ΔputA) strain. M9 medium containing L-proline produced more N-acetyl CHOP than LB medium containing L-proline. E. coli ΔputA cells accumulated L-proline (by approximately 2-fold) compared to that in wild-type cells, but there was no significant difference in CHOP production between wild-type and ΔputA cells. The addition of NaCl and L-ascorbate resulted in a 2-fold increase in N-acetyl CHOP production in the L-proline-containing M9 medium. The highest yield of N-acetyl CHOP was achieved at 42 h cultivation in the optimized medium. Five unknown compounds were detected in the total protein reaction, probably due to the degradation of N-acetyl CHOP. Our results suggest that weakening of the degradation or deacetylation pathway improves the productivity of N-acetyl CHOP.

  14. Prolyl-4-hydroxylase Domain Protein 2 Controls NF-κB/p65 Transactivation and Enhances the Catabolic Effects of Inflammatory Cytokines on Cells of the Nucleus Pulposus*

    PubMed Central

    Li, Jun; Yuan, Wen; Jiang, Shuai; Ye, Wei; Yang, Hao; Shapiro, Irving M.; Risbud, Makarand V.

    2015-01-01

    Prolyl-4-hydroxylase (PHD) proteins are key in sensing tissue hypoxia. In nucleus pulposus (NP) cells, our previous work demonstrated that PHD isoforms have a differential contribution in controlling hypoxia-inducible factor (HIF)-α degradation and activity. Recently we have shown that a regulatory relationship exists between PHD3 and inflammatory cytokines in NP cells. With respect to PHD2, the most abundant PHD isoform in NP cells, very little is known concerning its function and regulation under inflammatory conditions that characterize intervertebral disc degeneration. Here, we show that PHD2 is a potent regulator of the catabolic activities of TNF-α; silencing of PHD2 significantly decreased TNF-α-induced expression of catabolic markers including SDC4, MMP-3, MMP-13, and ADAMTS5, as well as several inflammatory cytokines and chemokines, while partially restoring aggrecan and collagen II expression. Use of NF-κB reporters with ShPHD2, SiHIF-1α, as well as p65−/−, PHD2−/−, and PHD3−/− cells, shows that PHD2 serves as a co-activator of NF-κB/p65 signaling in HIF-1-independent fashion. Immunoprecipitation of endogenous and exogenously expressed tagged proteins, as well as fluorescence microscopy, indicates that following TNF-α treatment, PHD2 interacts and co-localizes with p65. Conversely, loss of function experiments using lentivirally delivered Sh-p65, Sh-IKKβ, and NF-κB inhibitor confirmed that cytokine-dependent PHD2 expression in NP cells requires NF-κB signaling. These findings clearly demonstrate that PHD2 forms a regulatory circuit with TNF-α via NF-κB and thereby plays an important role in enhancing activity of this cytokine. We propose that during disc degeneration PHD2 may offer a therapeutic target to mitigate the deleterious actions of TNF-α, a key proinflammatory cytokine. PMID:25635047

  15. Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway.

    PubMed Central

    Teutsch, H G; Hasenfratz, M P; Lesot, A; Stoltz, C; Garnier, J M; Jeltsch, J M; Durst, F; Werck-Reichhart, D

    1993-01-01

    Cinnamate 4-hydroxylase [CA4H; trans-cinnamate,NADPH:oxygen oxidoreductase (4-hydroxylating), EC 1.14.13.11] is a cytochrome P450 that catalyzes the first oxygenation step of the general phenylpropanoid metabolism in higher plants. The compounds formed are essential for lignification and defense against predators and pathogens. We recently reported the purification of this enzyme from Mn(2+)-induced Jerusalem artichoke (Helianthus tuberosus L.) tuber tissues. Highly selective polyclonal antibodies raised against the purified protein were used to screen a lambda gt11 cDNA expression library from wound-induced Jerusalem artichoke, allowing isolation of a 1130-base-pair insert. Typical P450 domains were identified in this incomplete sequence, which was used as a probe for the isolation of a 1.7-kilobase clone in a lambda gt10 library. A full-length open reading frame of 1515 base pairs, encoding a P450 protein of 505 residues (M(r) = 57,927), was sequenced. The N terminus, essentially composed of hydrophobic residues, matches perfectly the microsequenced N terminus of the purified protein. The calculated pI is 9.78, in agreement with the chromatographic behavior and two-dimensional electrophoretic analysis of CA4H. Synthesis of the corresponding mRNA is induced in wounded plant tissues, in correlation with CA4H enzymatic activity. This P450 protein exhibits the most similarity (28% amino acid identity) with avocado CYP71, but also good similarity with CYP17 and CYP21, or with CYP1 and CYP2 families. According to current criteria, it qualifies as a member of a new P450 family. Images Fig. 4 PMID:8097885

  16. Cell-free synthesis and assembly of prolyl 4-hydroxylase: the role of the beta-subunit (PDI) in preventing misfolding and aggregation of the alpha-subunit.

    PubMed Central

    John, D C; Grant, M E; Bulleid, N J

    1993-01-01

    Prolyl 4-hydroxylase (P4-H) catalyses a vital post-translational modification in the biosynthesis of collagen. The enzyme consists of two distinct polypeptides forming an alpha 2 beta 2 tetramer (alpha = 64 kDa, beta = 60 kDa), the beta-subunit being identical to the multifunctional enzyme protein disulfide isomerase (PDI). By studying the cell-free synthesis of the rat alpha-subunit of P4-H we have shown that the alpha-subunit can be translocated, glycosylated and the signal peptide cleaved by dog pancreatic microsomal membranes to yield both singly and doubly glycosylated forms. When translations were carried out under conditions which prevent disulfide bond formation, the product synthesized formed aggregates which were associated with the immunoglobulin heavy chain binding protein (BiP). Translations carried out under conditions that promote disulfide bond formation yielded a product that was not associated with BiP but formed a complex with the endogenous beta-subunit (PDI). Complex formation was detected by co-precipitation of the newly synthesized alpha-subunit with antibodies raised against PDI, by sucrose gradient centrifugation and by chemical cross-linking. When microsomal vesicles were depleted of PDI, BiP and other soluble endoplasmic reticulum proteins, no complex formation was observed and the alpha-subunit aggregated even under conditions that promote disulfide bond formation. We have therefore demonstrated that the enzyme P4-H can be assembled at synthesis in a cell-free system and that the solubility of the alpha-subunit is dependent upon its association with PDI. Images PMID:8385607

  17. Impact of homeobox genes in gastrointestinal cancer

    PubMed Central

    Joo, Moon Kyung; Park, Jong-Jae; Chun, Hoon Jai

    2016-01-01

    Homeobox genes, including HOX and non-HOX genes, have been identified to be expressed aberrantly in solid tumors. In gastrointestinal (GI) cancers, most studies have focused on the function of non-HOX genes including caudal-related homeobox transcription factor 1 (CDX1) and CDX2. CDX2 is a crucial factor in the development of pre-cancerous lesions such as Barrett’s esophagus or intestinal metaplasia in the stomach, and its tumor suppressive role has been investigated in colorectal cancers. Recently, several HOX genes were reported to have specific roles in GI cancers; for example, HOXA13 in esophageal squamous cell cancer and HOXB7 in stomach and colorectal cancers. HOXD10 is upregulated in colorectal cancer while it is silenced epigenetically in gastric cancer. Thus, it is essential to examine the differential expression pattern of various homeobox genes in specific tumor types or cell lineages, and understand their underlying mechanisms. In this review, we summarize the available research on homeobox genes and present their potential value for the prediction of prognosis in GI cancers. PMID:27729732

  18. Catechol estrogen formation by brain tissue: characterization of a direct product isolation assay for estrogen-2- and 4-hydroxylase activity and its application to studies of 2- and 4-hydroxyestradiol formation by rabbit hypothalamus

    SciTech Connect

    Hersey, R.M.; Williams, K.I.; Weisz, J.

    1981-12-01

    A direct product isolation assay for quantifying the formation of 2- and 4-hydroxyestradiol (2-OHE2 and 4-OHE2) from (6,7-3H)estradiol by rabbit hypothalami in vitro was developed, and the assay was used to characterize some properties of estrogen-2- and 4-hydroxylase activity in this tissue. The reaction was carried out under conditions that minimized further metabolism of enzymatically formed catechol estrogens. A simple two-step separation procedure, involving the use of a neutral alumina column, followed by thin layer chromatography, was developed to isolate the enzymatically formed catechol estrogens in a radiochemically homogeneous form. The detergent, Tween-80, was found to activate the enzyme and was used routinely at a concentration of 0.1% in the assay. The formation of 2-OHE2 was linear up to 10 min and with increasing protein concentrations up to 150 micrograms/incubation. Similar values were obtained for 4-OHE2. Maximum velocities (Vmax) for the formation of 2- and 4-OHE2 were 190 and 270 pmol/mg protein . 10 min, respectively. The apparent Km values with respect to estradiol for 2-OHE2 and 4-OHE2 were 125 and 150 microM, respectively. The highest specific activity for the enzyme was present in the 100,000 X g supernatant (S3), while the activity in the microsomal fraction (P3) was less than that in the original homogenate. Enzyme activity depended on the presence of NADPH and oxygen and was inhibited by CO as well as by high concentrations of SKF-525A. Estrogen-2- and 4-hydroxylase activity in rabbit hypothalamus differed from that in rat liver in two respects. In the liver, enzyme activity was localized in the microsomal fraction and was virtually abolished by Tween-80. In contrast, enzyme activity in rabbit hypothalamus was maximal in the soluble fraction (100,000 X g supernatant)and was stimulated by the detergent.

  19. Impact of RNA degradation on gene expression profiling

    PubMed Central

    2010-01-01

    Background Gene expression profiling is a highly sensitive technique which is used for profiling tumor samples for medical prognosis. RNA quality and degradation influence the analysis results of gene expression profiles. The impact of this influence on the profiles and its medical impact is not fully understood. As patient samples are very valuable for clinical studies, it is necessary to establish criteria for the RNA quality to be able to use these samples in later analysis. Methods To investigate the effects of RNA integrity on gene expression profiling, whole genome expression arrays were used. We used tumor biopsies from patients diagnosed with locally advanced rectal cancer. To simulate degradation, the isolated total RNA of all patients was subjected to heat-induced degradation in a time-dependent manner. Expression profiling was then performed and data were analyzed bioinformatically to assess the differences. Results The differences introduced by RNA degradation were largely outweighed by the biological differences between the patients. Only a relatively small number of probes (275 out of 41,000) show a significant effect due to degradation. The genes that show the strongest effect due to RNA degradation were, especially, those with short mRNAs and probe positions near the 5' end. Conclusions Degraded RNA from tumor samples (RIN > 5) can still be used to perform gene expression analysis. A much higher biological variance between patients is observed compared to the effect that is imposed by degradation of RNA. Nevertheless there are genes, very short ones and those with the probe binding side close to the 5' end that should be excluded from gene expression analysis when working with degraded RNA. These results are limited to the Agilent 44 k microarray platform and should be carefully interpreted when transferring to other settings. PMID:20696062

  20. Impact of Statins on Gene Expression in Human Lung Tissues

    PubMed Central

    Lane, Jérôme; van Eeden, Stephan F.; Obeidat, Ma’en; Sin, Don D.; Tebbutt, Scott J.; Timens, Wim; Postma, Dirkje S.; Laviolette, Michel; Paré, Peter D.; Bossé, Yohan

    2015-01-01

    Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that alter the synthesis of cholesterol. Some studies have shown a significant association of statins with improved respiratory health outcomes of patients with asthma, chronic obstructive pulmonary disease and lung cancer. Here we hypothesize that statins impact gene expression in human lungs and may reveal the pleiotropic effects of statins that are taking place directly in lung tissues. Human lung tissues were obtained from patients who underwent lung resection or transplantation. Gene expression was measured on a custom Affymetrix array in a discovery cohort (n = 408) and two replication sets (n = 341 and 282). Gene expression was evaluated by linear regression between statin users and non-users, adjusting for age, gender, smoking status, and other covariables. The results of each cohort were combined in a meta-analysis and biological pathways were studied using Gene Set Enrichment Analysis. The discovery set included 141 statin users. The lung mRNA expression levels of eighteen and three genes were up-regulated and down-regulated in statin users (FDR < 0.05), respectively. Twelve of the up-regulated genes were replicated in the first replication set, but none in the second (p-value < 0.05). Combining the discovery and replication sets into a meta-analysis improved the significance of the 12 up-regulated genes, which includes genes encoding enzymes and membrane proteins involved in cholesterol biosynthesis. Canonical biological pathways altered by statins in the lung include cholesterol, steroid, and terpenoid backbone biosynthesis. No genes encoding inflammatory, proteases, pro-fibrotic or growth factors were altered by statins, suggesting that the direct effect of statin in the lung do not go beyond its antilipidemic action. Although more studies are needed with specific lung cell types and different classes and doses of statins, the improved health outcomes and survival observed in statin

  1. Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don.

    PubMed

    Vazquez-Flota, F; De Carolis, E; Alarco, A M; De Luca, V

    1997-08-01

    A 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.11) which catalyzes the 4-hydroxylation of desacetoxyvindoline was purified to homogeneity. Three oligopeptides isolated from a tryptic digest of the purified protein were microsequenced and one oligopeptide showed significant homology to hyoscyamine 6 beta-hydroxylase from Hyoscyamus niger. A 36-mer degenerate oligonucleotide based on this peptide sequence was used to screen a Catharanthus roseus cDNA library and three clones, cD4H-1 to -3, were isolated. Although none of the three clones were full-length, the open reading frame on each clone encoded a putative protein containing the sequence of all three peptides. Primer extension analysis suggested that cD4H-3, the longest cDNA clone, was missing 156 bp at the 5' end of the clone and sequencing of the genomic clone, gD4H-8, confirmed these results. Southern blot analysis suggested that d4h is present as a single-copy gene in C. roseus which is a diploid plant, and the significant differences in the sequence of the 3'-UTR between cD4H-1 and -3 suggest that they represent dimorphic alleles of the same hydroxylase. The identity of the clone was further confirmed when extracts of transformed Escherichia coli expressed D4H enzyme activity. The D4H clone encoded a putative protein of 401 amino acids with a calculated molecular mass of 45.5 kDa and the amino acid sequence showed a high degree of similarity with those of a growing family of 2-oxoglutarate-dependent dioxygenases of plant and fungal origin. The similarity was not restricted to the dioxygenase protein sequences but was also extended to the gene structure and organization since the 205 and 1720 bp introns of d4h were inserted around the same highly conserved amino acid consensus sequences as those for e8 protein, hyoscyamine-6 beta-hydroxylase and ethylene-forming enzyme. These results provide further support that a common ancestral gene is responsible for the appearance of this family of dioxygenases

  2. Impact of the cell division cycle on gene circuits

    NASA Astrophysics Data System (ADS)

    Bierbaum, Veronika; Klumpp, Stefan

    2015-12-01

    In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle.

  3. Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant-Ruta graveolens-exhibiting low sensitivity to psoralen inactivation.

    PubMed

    Gravot, Antoine; Larbat, Romain; Hehn, Alain; Lièvre, Karine; Gontier, Eric; Goergen, Jean Louis; Bourgaud, Frédéric

    2004-02-01

    Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) complete cDNA was cloned from the leaves of Ruta graveolens, a psoralen producing plant. The recombinant enzyme (classified CYP73A32) was expressed in Saccharomyces cerevisiae. Mechanism-based inactivation was investigated using various psoralen derivatives. Only psoralen and 8-methoxypsoralen were found to inactivate C4H. The inactivation was dependent on the presence of NADPH, time of pre-incubation, and inhibitor concentration. Inactivation stoichiometry was 0.9 (+/-0.2) for CYP73A1 and 1.1 (+/-0.2) for CYP73A32. SDS-PAGE analysis demonstrated that [3H]psoralen was irreversibly bound to the C4H apoprotein. K(i) and k(inact) for psoralen and 8-methoxypsoralen inactivation on the two C4H revealed a lower sensitivity for CYP73A32 compared to CYP73A1. Inactivation kinetics were also determined for CYP73A10, a C4H from another furocoumarin-producing plant, Petroselinum crispum. This enzyme was found to behave like CYP73A32, with a weak sensitivity to psoralen and 8-MOP inactivation. Cinnamic acid hydroxylation is a key step in the biosynthesis of phenylpropanoid compounds, psoralen derivatives included. Our results suggest a possible evolution of R. graveolens and P. crispum C4H that might tolerate substantial levels of psoralen derivatives in the cytoplasmic compartment without a depletive effect on C4H and the general phenylpropanoid metabolism.

  4. Impact of gene editing on the study of cystic fibrosis.

    PubMed

    Harrison, Patrick T; Sanz, David J; Hollywood, Jennifer A

    2016-09-01

    Cystic fibrosis (CF) is a chronic and progressive autosomal recessive disorder of secretory epithelial cells, which causes obstructions in the lung airways and pancreatic ducts of 70,000 people worldwide (for recent review see Cutting Nat Rev Genet 16(1):45-56, 2015). The finding that mutations in the CFTR gene cause CF (Kerem et al. Science 245(4922):1073-1080, 1989; Riordan et al. Science 245(4922):1066-1073, 1989; Rommens et al. Science 245(4922):1059-1065, 1989), was hailed as the very happy middle of a story whose end is a cure for a fatal disease (Koshland Science 245(4922):1029, 1989). However, despite two licensed drugs (Ramsey et al. N Engl J Med 365(18):1663-1672, 2011; Wainwright et al. N Engl J Med 373(3):220-231, 2015), and a formal demonstration that repeated administration of CFTR cDNA to patients is safe and effects a modest but significant stabilisation of disease (Alton et al. Lancet Respir Med 3(9):684-691, 2015), we are still a long way from a cure, with many patients taking over 100 tablets per day, and a mean age at death of 28 years. The aim of this review is to discuss the impact on the study of CF of gene-editing techniques as they have developed over the last 30 years, up to and including the possibility of editing as a therapeutic approach.

  5. Impact of gene stacking on gene flow: the case of maize.

    PubMed

    Paul, Lénaïc; Angevin, Frédérique; Collonnier, Cécile; Messéan, Antoine

    2012-04-01

    To respect the European labelling threshold for the adventitious presence of genetically modified organisms (GMOs) in food and feed, stakeholders mainly rely on real-time PCR analysis, which provides a measurement expressed as a percentage of GM-DNA. However, this measurement veils the complexity of gene flow, especially in the case of gene stacking. We have investigated the impact of gene stacking on adventitious GM presence due to pollen flow and seed admixture as well as its translation in terms of the percentage of GM-DNA in a non-GM maize harvest. In the case of varieties bearing one to four stacked events, we established a set of relationships between the percentage of GM kernels and the percentage of GM-DNA in a non-GM harvest as well as a set of relationships between the rate of seed admixture and the percentages of GM material in a non-GM harvest. Thanks to these relationships, and based on simulations with a gene flow model, we have been able to demonstrate that the number of events and the stacking structure of the emitting fields impact the ability of a non-GM maize producer to comply with given GM kernel or GM-DNA thresholds. We also show that a great variability in the rates of GM kernels, embryos and DNA results from seed admixture. Finally, the choice of a unit of measurement for a GM threshold in seed lots can have opposite effects on the ability of farmers to comply with a given threshold depending on whether they are crop or seed producers.

  6. Changes in chondrocyte gene expression following in vitro impaction of porcine articular cartilage in an impact injury model.

    PubMed

    Ashwell, Melissa S; Gonda, Michael G; Gray, Kent; Maltecca, Christian; O'Nan, Audrey T; Cassady, Joseph P; Mente, Peter L

    2013-03-01

    Our objective was to monitor chondrocyte gene expression at 0, 3, 7, and 14 days following in vitro impaction to the articular surface of porcine patellae. Patellar facets were either axially impacted with a cylindrical impactor (25 mm/s loading rate) to a load level of 2,000 N or not impacted to serve as controls. After being placed in organ culture for 0, 3, 7, or 14 days, total RNA was isolated from full thickness cartilage slices and gene expression measured for 17 genes by quantitative real-time RT-PCR. Targeted genes included those encoding proteins involved with biological stress, inflammation, or anabolism and catabolism of cartilage extracellular matrix. Some gene expression changes were detected on the day of impaction, but most significant changes occurred at 14 days in culture. At 14 days in culture, 10 of the 17 genes were differentially expressed with col1a1 most significantly up-regulated in the impacted samples, suggesting impacted chondrocytes may have reverted to a fibroblast-like phenotype.

  7. Impact of recurrent gene duplication on adaptation of plant genomes

    PubMed Central

    2014-01-01

    Background Recurrent gene duplication and retention played an important role in angiosperm genome evolution. It has been hypothesized that these processes contribute significantly to plant adaptation but so far this hypothesis has not been tested at the genome scale. Results We studied available sequenced angiosperm genomes to assess the frequency of positive selection footprints in lineage specific expanded (LSE) gene families compared to single-copy genes using a dN/dS-based test in a phylogenetic framework. We found 5.38% of alignments in LSE genes with codons under positive selection. In contrast, we found no evidence for codons under positive selection in the single-copy reference set. An analysis at the branch level shows that purifying selection acted more strongly on single-copy genes than on LSE gene clusters. Moreover we detect significantly more branches indicating evolution under positive selection and/or relaxed constraint in LSE genes than in single-copy genes. Conclusions In this – to our knowledge –first genome-scale study we provide strong empirical support for the hypothesis that LSE genes fuel adaptation in angiosperms. Our conservative approach for detecting selection footprints as well as our results can be of interest for further studies on (plant) gene family evolution. PMID:24884640

  8. Potential impact of environmental bacteriophages in spreading antibiotic resistance genes.

    PubMed

    Muniesa, Maite; Colomer-Lluch, Marta; Jofre, Juan

    2013-06-01

    The idea that bacteriophage transduction plays a role in the horizontal transfer of antibiotic resistance genes is gaining momentum. Such transduction might be vital in horizontal transfer from environmental to human body-associated biomes and here we review many lines of evidence supporting this notion. It is well accepted that bacteriophages are the most abundant entities in most environments, where they have been shown to be quite persistent. This fact, together with the ability of many phages to infect bacteria belonging to different taxa, makes them suitable vehicles for gene transfer. Metagenomic studies confirm that substantial percentages of the bacteriophage particles present in most environments contain bacterial genes, including mobile genetic elements and antibiotic resistance genes. When specific genes of resistance to antibiotics are detected by real-time PCR in the bacteriophage populations of different environments, only tenfold lower numbers of these genes are observed, compared with those found in the corresponding bacterial populations. In addition, the antibiotic resistance genes from these bacteriophages are functional and generate resistance to the bacteria when these genes are transfected. Finally, reports about the transduction of antibiotic resistance genes are on the increase.

  9. Identification and Validation of Reference Genes and Their Impact on Normalized Gene Expression Studies across Cultivated and Wild Cicer Species.

    PubMed

    Reddy, Dumbala Srinivas; Bhatnagar-Mathur, Pooja; Reddy, Palakolanu Sudhakar; Sri Cindhuri, Katamreddy; Sivaji Ganesh, Adusumalli; Sharma, Kiran Kumar

    2016-01-01

    Quantitative Real-Time PCR (qPCR) is a preferred and reliable method for accurate quantification of gene expression to understand precise gene functions. A total of 25 candidate reference genes including traditional and new generation reference genes were selected and evaluated in a diverse set of chickpea samples. The samples used in this study included nine chickpea genotypes (Cicer spp.) comprising of cultivated and wild species, six abiotic stress treatments (drought, salinity, high vapor pressure deficit, abscisic acid, cold and heat shock), and five diverse tissues (leaf, root, flower, seedlings and seed). The geNorm, NormFinder and RefFinder algorithms used to identify stably expressed genes in four sample sets revealed stable expression of UCP and G6PD genes across genotypes, while TIP41 and CAC were highly stable under abiotic stress conditions. While PP2A and ABCT genes were ranked as best for different tissues, ABCT, UCP and CAC were most stable across all samples. This study demonstrated the usefulness of new generation reference genes for more accurate qPCR based gene expression quantification in cultivated as well as wild chickpea species. Validation of the best reference genes was carried out by studying their impact on normalization of aquaporin genes PIP1;4 and TIP3;1, in three contrasting chickpea genotypes under high vapor pressure deficit (VPD) treatment. The chickpea TIP3;1 gene got significantly up regulated under high VPD conditions with higher relative expression in the drought susceptible genotype, confirming the suitability of the selected reference genes for expression analysis. This is the first comprehensive study on the stability of the new generation reference genes for qPCR studies in chickpea across species, different tissues and abiotic stresses.

  10. Identification and Validation of Reference Genes and Their Impact on Normalized Gene Expression Studies across Cultivated and Wild Cicer Species

    PubMed Central

    Reddy, Palakolanu Sudhakar; Sri Cindhuri, Katamreddy; Sivaji Ganesh, Adusumalli; Sharma, Kiran Kumar

    2016-01-01

    Quantitative Real-Time PCR (qPCR) is a preferred and reliable method for accurate quantification of gene expression to understand precise gene functions. A total of 25 candidate reference genes including traditional and new generation reference genes were selected and evaluated in a diverse set of chickpea samples. The samples used in this study included nine chickpea genotypes (Cicer spp.) comprising of cultivated and wild species, six abiotic stress treatments (drought, salinity, high vapor pressure deficit, abscisic acid, cold and heat shock), and five diverse tissues (leaf, root, flower, seedlings and seed). The geNorm, NormFinder and RefFinder algorithms used to identify stably expressed genes in four sample sets revealed stable expression of UCP and G6PD genes across genotypes, while TIP41 and CAC were highly stable under abiotic stress conditions. While PP2A and ABCT genes were ranked as best for different tissues, ABCT, UCP and CAC were most stable across all samples. This study demonstrated the usefulness of new generation reference genes for more accurate qPCR based gene expression quantification in cultivated as well as wild chickpea species. Validation of the best reference genes was carried out by studying their impact on normalization of aquaporin genes PIP1;4 and TIP3;1, in three contrasting chickpea genotypes under high vapor pressure deficit (VPD) treatment. The chickpea TIP3;1 gene got significantly up regulated under high VPD conditions with higher relative expression in the drought susceptible genotype, confirming the suitability of the selected reference genes for expression analysis. This is the first comprehensive study on the stability of the new generation reference genes for qPCR studies in chickpea across species, different tissues and abiotic stresses. PMID:26863232

  11. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster.

    PubMed

    Rogers, Rebekah L; Bedford, Trevor; Lyons, Ana M; Hartl, Daniel L

    2010-06-15

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3' segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5' and 3' regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution.

  12. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster

    PubMed Central

    Rogers, Rebekah L.; Bedford, Trevor; Lyons, Ana M.; Hartl, Daniel L.

    2010-01-01

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3′ segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5′ and 3′ regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution. PMID:20534482

  13. On the origins of Mendelian disease genes in man: the impact of gene duplication.

    PubMed

    Dickerson, Jonathan E; Robertson, David L

    2012-01-01

    Over 3,000 human diseases are known to be linked to heritable genetic variation, mapping to over 1,700 unique genes. Dating of the evolutionary age of these disease-associated genes has suggested that they have a tendency to be ancient, specifically coming into existence with early metazoa. The approach taken by past studies, however, assumes that the age of a disease is the same as the age of its common ancestor, ignoring the fundamental contribution of duplication events in the evolution of new genes and function. Here, we date both the common ancestor and the duplication history of known human disease-associated genes. We find that the majority of disease genes (80%) are genes that have been duplicated in their evolutionary history. Periods for which there are more disease-associated genes, for example, at the origins of bony vertebrates, are explained by the emergence of more genes at that time, and the majority of these are duplicates inferred to have arisen by whole-genome duplication. These relationships are similar for different disease types and the disease-associated gene's cellular function. This indicates that the emergence of duplication-associated diseases has been ongoing and approximately constant (relative to the retention of duplicate genes) throughout the evolution of life. This continued until approximately 390 Ma from which time relatively fewer novel genes came into existence on the human lineage, let alone disease genes. For single-copy genes associated with disease, we find that the numbers of disease genes decreases with recency. For the majority of duplicates, the disease-associated mutation is associated with just one of the duplicate copies. A universal explanation for heritable disease is, thus, that it is merely a by-product of the evolutionary process; the evolution of new genes (de novo or by duplication) results in the potential for new diseases to emerge.

  14. Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia

    PubMed Central

    Fromer, Menachem; Roussos, Panos; Sieberts, Solveig K; Johnson, Jessica S; Kavanagh, David H; Perumal, Thanneer M; Ruderfer, Douglas M; Oh, Edwin C; Topol, Aaron; Shah, Hardik R; Klei, Lambertus L; Kramer, Robin; Pinto, Dalila; Gümüş, Zeynep H; Cicek, A. Ercument; Dang, Kristen K; Browne, Andrew; Lu, Cong; Xie, Lu; Readhead, Ben; Stahl, Eli A; Parvizi, Mahsa; Hamamsy, Tymor; Fullard, John F; Wang, Ying-Chih; Mahajan, Milind C; Derry, Jonathan M J; Dudley, Joel; Hemby, Scott E; Logsdon, Benjamin A; Talbot, Konrad; Raj, Towfique; Bennett, David A; De Jager, Philip L; Zhu, Jun; Zhang, Bin; Sullivan, Patrick F; Chess, Andrew; Purcell, Shaun M; Shinobu, Leslie A; Mangravite, Lara M; Toyoshiba, Hiroyoshi; Gur, Raquel E; Hahn, Chang-Gyu; Lewis, David A; Haroutunian, Vahram; Peters, Mette A; Lipska, Barbara K; Buxbaum, Joseph D; Schadt, Eric E; Hirai, Keisuke; Roeder, Kathryn; Brennand, Kristen J; Katsanis, Nicholas; Domenici, Enrico; Devlin, Bernie; Sklar, Pamela

    2016-01-01

    Over 100 genetic loci harbor schizophrenia associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of schizophrenia cases (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ~20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3, or SNAP91. Altering expression of FURIN, TSNARE1, or CNTN4 changes neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yields abnormal migration. Of 693 genes showing significant case/control differential expression, their fold changes are ≤ 1.33, and an independent cohort yields similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases. PMID:27668389

  15. Impact of Solar Radiation on Gene Expression in Bacteria

    PubMed Central

    Matallana-Surget, Sabine; Wattiez, Ruddy

    2013-01-01

    Microorganisms often regulate their gene expression at the level of transcription and/or translation in response to solar radiation. In this review, we present the use of both transcriptomics and proteomics to advance knowledge in the field of bacterial response to damaging radiation. Those studies pertain to diverse application areas such as fundamental microbiology, water treatment, microbial ecology and astrobiology. Even though it has been demonstrated that mRNA abundance is not always consistent with the protein regulation, we present here an exhaustive review on how bacteria regulate their gene expression at both transcription and translation levels to enable biomarkers identification and comparison of gene regulation from one bacterial species to another. PMID:28250399

  16. Impact of ACTH Signaling on Transcriptional Regulation of Steroidogenic Genes

    PubMed Central

    Ruggiero, Carmen; Lalli, Enzo

    2016-01-01

    The trophic peptide hormone adrenocorticotropic (ACTH) stimulates steroid hormone biosynthesis evoking both a rapid, acute response and a long-term, chronic response, via the activation of cAMP/protein kinase A (PKA) signaling. The acute response is initiated by the mobilization of cholesterol from lipid stores and its delivery to the inner mitochondrial membrane, a process that is mediated by the steroidogenic acute regulatory protein. The chronic response results in the increased coordinated transcription of genes encoding steroidogenic enzymes. ACTH binding to its cognate receptor, melanocortin 2 receptor (MC2R), stimulates adenylyl cyclase, thus inducing cAMP production, PKA activation, and phosphorylation of specific nuclear factors, which bind to target promoters and facilitate coactivator protein recruitment to direct steroidogenic gene transcription. This review provides a general view of the transcriptional control exerted by the ACTH/cAMP system on the expression of genes encoding for steroidogenic enzymes in the adrenal cortex. Special emphasis will be given to the transcription factors required to mediate ACTH-dependent transcription of steroidogenic genes. PMID:27065945

  17. Impact of physical activity and doping on epigenetic gene regulation.

    PubMed

    Schwarzenbach, Heidi

    2011-10-01

    To achieve success in sports, many athletes consume doping substances, such as anabolic androgenic steroids and growth hormones, and ignore the negative influence of these drugs on their health. Apart from the unethical aspect of doping in sports, it is essential to consider the tremendous risk it represents to their physical condition. The abuse of pharmaceuticals which improve athletic performance may alter the expression of specific genes involved in muscle and bone metabolism by epigenetic mechanisms, such as DNA methylation and histone modifications. Moreover, excessive and relentless training to increase the muscle mass, may also have an influence on the health of the athletes. This stress releases neurotransmitters and growth factors, and may affect the expression of endogenous genes by DNA methylation, too. This paper focuses on the relationship between epigenetic mechanisms and sports, highlights the potential consequences of abuse of doping drugs on gene expression, and describes methods to molecularly detect epigenetic changes of gene markers reflecting the physiological or metabolic effects of doping agents.

  18. Estrogen Signaling Multiple Pathways to Impact Gene Transcription

    PubMed Central

    Marino, Maria; Galluzzo, Paola; Ascenzi, Paolo

    2006-01-01

    Steroid hormones exert profound effects on cell growth, development, differentiation, and homeostasis. Their effects are mediated through specific intracellular steroid receptors that act via multiple mechanisms. Among others, the action mechanism starting upon 17β-estradiol (E2) binds to its receptors (ER) is considered a paradigmatic example of how steroid hormones function. Ligand-activated ER dimerizes and translocates in the nucleus where it recognizes specific hormone response elements located in or near promoter DNA regions of target genes. Behind the classical genomic mechanism shared with other steroid hormones, E2 also modulates gene expression by a second indirect mechanism that involves the interaction of ER with other transcription factors which, in turn, bind their cognate DNA elements. In this case, ER modulates the activities of transcription factors such as the activator protein (AP)-1, nuclear factor-κB (NF-κB) and stimulating protein-1 (Sp-1), by stabilizing DNA-protein complexes and/or recruiting co-activators. In addition, E2 binding to ER may also exert rapid actions that start with the activation of a variety of signal transduction pathways (e.g. ERK/MAPK, p38/MAPK, PI3K/AKT, PLC/PKC). The debate about the contribution of different ER-mediated signaling pathways to coordinate the expression of specific sets of genes is still open. This review will focus on the recent knowledge about the mechanism by which ERs regulate the expression of target genes and the emerging field of integration of membrane and nuclear receptor signaling, giving examples of the ways by which the genomic and non-genomic actions of ERs on target genes converge. PMID:18369406

  19. Impact of obesity-related genes in Spanish population

    PubMed Central

    2013-01-01

    Background The objective was to investigate the association between BMI and single nucleotide polymorphisms previously identified of obesity-related genes in two Spanish populations. Forty SNPs in 23 obesity-related genes were evaluated in a rural population characterized by a high prevalence of obesity (869 subjects, mean age 46 yr, 62% women, 36% obese) and in an urban population (1425 subjects, mean age 54 yr, 50% women, 19% obese). Genotyping was assessed by using SNPlex and PLINK for the association analysis. Results Polymorphisms of the FTO were significantly associated with BMI, in the rural population (beta 0.87, p-value <0.001). None of the other SNPs showed significant association after Bonferroni correction in the two populations or in the pooled analysis. A weighted genetic risk score (wGRS) was constructed using the risk alleles of the Tag-SNPs with a positive Beta parameter in both populations. From the first to the fifth quintile of the score, the BMI increased 0.45 kg/m2 in Hortega and 2.0 kg/m2 in Pizarra. Overall, the obesity predictive value was low (less than 1%). Conclusion The risk associated with polymorphisms is low and the overall effect on BMI or obesity prediction is minimal. A weighted genetic risk score based on genes mainly acting through central nervous system mechanisms was associated with BMI but it yields minimal clinical prediction for the obesity risk in the general population. PMID:24267414

  20. Gene flow, invasiveness, and ecological impact of genetically modified crops.

    PubMed

    Warwick, Suzanne I; Beckie, Hugh J; Hall, Linda M

    2009-06-01

    The main environmental concerns about genetically modified (GM) crops are the potential weediness or invasiveness in the crop itself or in its wild or weedy relatives as a result of transgene movement. Here we briefly review evidence for pollen- and seed-mediated gene flow from GM crops to non-GM or other GM crops and to wild relatives. The report focuses on the effect of abiotic and biotic stress-tolerance traits on plant fitness and their potential to increase weedy or invasive tendencies. An evaluation of weediness and invasive traits that contribute to the success of agricultural weeds and invasive plants was of limited value in predicting the effect of biotic and abiotic stress-tolerance GM traits, suggesting context-specific evaluation rather than generalizations. Fitness data on herbicide, insect, and disease resistance, as well as cold-, drought-, and salinity-tolerance traits, are reviewed. We describe useful ecological models predicting the effects of gene flow and altered fitness in GM crops and wild/weedy relatives, as well as suitable mitigation measures. A better understanding of factors controlling population size, dynamics, and range limits in weedy volunteer GM crop and related host or target weed populations is necessary before the effect of biotic and abiotic stress-tolerance GM traits can be fully assessed.

  1. Impact of gene patents on the development of molecular diagnostics.

    PubMed

    Toneguzzo, Frances

    2011-07-01

    There is a widely held view that gene patents in particular and patents in general, because of the exclusionary rights that they provide, are inhibiting the development of and access to critical molecular diagnostic testing. This is a highly relevant issue for healthcare delivery as we move towards personalized medicine, which relies heavily on genetic testing to tailor treatments that are specific for individual characteristics. Critics of the patent system hope to void or diminish the exclusionary aspect of patents by removing genes from the definition of what is patentable, by increasing the number of activities that fall within the research use exemption, or by compelling patent holders to license their rights non-exclusively. Although a re-examination of what constitutes patentable subject matter is an important undertaking, narrowing the definition of patentable subject matter is at best only a partial solution. Erosion of the patent system through compulsory licensing or expansion of the research use exemption runs the risk of destroying important incentives without also fully addressing the problem. To promote solutions that truly address the issues, this article distinguishes documented facts from perceptions and suggests alternative approaches to explore. The author believes that efforts to undermine the patent system are simply counterproductive and that time would be better spent addressing the real issues that lie within molecular diagnostic development.

  2. Aberrant DNA methylation impacts gene expression and prognosis in breast cancer subtypes.

    PubMed

    Győrffy, Balázs; Bottai, Giulia; Fleischer, Thomas; Munkácsy, Gyöngyi; Budczies, Jan; Paladini, Laura; Børresen-Dale, Anne-Lise; Kristensen, Vessela N; Santarpia, Libero

    2016-01-01

    DNA methylation has a substantial impact on gene expression, affecting the prognosis of breast cancer (BC) patients dependent on molecular subtypes. In this study, we investigated the prognostic relevance of the expression of genes reported as aberrantly methylated, and the link between gene expression and DNA methylation in BC subtypes. The prognostic value of the expression of 144 aberrantly methylated genes was evaluated in ER+/HER2-, HER2+, and ER-/HER2- molecular BC subtypes, in a meta-analysis of two large transcriptomic cohorts of BC patients (n = 1,938 and n = 1,640). The correlation between gene expression and DNA methylation in distinct gene regions was also investigated in an independent dataset of 104 BCs. Survival and Pearson correlation analyses were computed for each gene separately. The expression of 48 genes was significantly associated with BC prognosis (p < 0.05), and 32 of these prognostic genes exhibited a direct expression-methylation correlation. The expression of several immune-related genes, including CD3D and HLA-A, was associated with both relapse-free survival (HR = 0.42, p = 3.5E-06; HR = 0.35, p = 1.7E-08) and overall survival (HR = 0.50, p = 5.5E-04; HR = 0.68, p = 4.5E-02) in ER-/HER2- BCs. On the overall, the distribution of both positive and negative expression-methylation correlation in distinct gene regions have different effects on gene expression and prognosis in BC subtypes. This large-scale meta-analysis allowed the identification of several genes consistently associated with prognosis, whose DNA methylation could represent a promising biomarker for prognostication and clinical stratification of patients with distinct BC subtypes.

  3. Impact of Panel Gene Testing for Hereditary Breast and Ovarian Cancer on Patients.

    PubMed

    Lumish, Heidi S; Steinfeld, Hallie; Koval, Carrie; Russo, Donna; Levinson, Elana; Wynn, Julia; Duong, James; Chung, Wendy K

    2017-03-29

    Recent advances in next generation sequencing have enabled panel gene testing, or simultaneous testing for mutations in multiple genes for a clinical condition. With more extensive and widespread genetic testing, there will be increased detection of genes with moderate penetrance without established clinical guidelines and of variants of uncertain significance (VUS), or genetic variants unknown to either be disease-causing or benign. This study surveyed 232 patients who underwent genetic counseling for hereditary breast and ovarian cancer to examine the impact of panel gene testing on psychological outcomes, patient understanding, and utilization of genetic information. The survey used standardized instruments including the Impact of Event Scale (IES), Multidimensional Impact of Cancer Risk Assessment (MICRA), Satisfaction with Decision Instrument (SWD), Ambiguity Tolerance Scale (AT-20), genetics knowledge, and utilization of genetic test results. Study results suggested that unaffected individuals with a family history of breast or ovarian cancer who received positive results were most significantly impacted by intrusive thoughts, avoidance, and distress. However, scores were also modestly elevated among unaffected patients with a family history of breast and ovarian cancer who received VUS, highlighting the impact of ambiguous results that are frequent among patients undergoing genetic testing with large panels of genes. Potential risk factors for increased genetic testing-specific distress in this study included younger age, black or African American race, Hispanic origin, lower education level, and lower genetic knowledge and highlight the need for developing strategies to provide effective counseling and education to these communities, particularly when genetic testing utilizes gene panels that more commonly return VUS. More detailed pre-test education and counseling may help patients appreciate the probability of various types of test results and how results

  4. The 'Fat Mass and Obesity Related' (FTO) gene: Mechanisms of Impact on Obesity and Energy Balance.

    PubMed

    Speakman, John R

    2015-03-01

    A cluster of single nucleotide polymorphisms (SNPs) in the first intron of the fat mass and obesity related (FTO) gene were the first common variants discovered to be associated with body mass index and body fatness. This review summarises what has been later discovered about the biology of FTO drawing together information from both human and animal studies. Subsequent work showed that the 'at risk' alleles of these SNPs are associated with greater food intake and increased hunger/lowered satiety, but are not associated with altered resting energy expenditure or low physical activity in humans. FTO is an FE (II) and 2-oxoglutarate dependent DNA/RNA methylase. Contrasting the impact of the SNPs on energy balance in humans, knocking out or reducing activity of the Fto gene in the mouse resulted in lowered adiposity, elevated energy expenditure with no impact on food intake (but the impact on expenditure is disputed). In contrast, overexpression of the gene in mice led to elevated food intake and adiposity, with no impact on expenditure. In rodents, the Fto gene is widely expressed in the brain including hypothalamic nuclei linked to food intake regulation. Since its activity is 2-oxoglutarate dependent it could potentially act as a sensor of citrate acid cycle flux, but this function has been dismissed, and instead it has been suggested to be much more likely to act as an amino acid sensor, linking circulating AAs to the mammalian target of rapamycin complex 1. This may be fundamental to its role in development but the link to obesity is less clear. It has been recently suggested that although the obesity related SNPs reside in the first intron of FTO, they may not only impact FTO but mediate their obesity effects via nearby genes (notably RPGRIP1L and IRX3).

  5. Impact of IL-27 on hepatocyte antiviral gene expression and function

    PubMed Central

    2016-01-01

    Background: Interleukin (IL)-27 is a member of the IL-6/IL-12 family of cytokines. It is a potent cytokine, with potential antiviral impact, and has been shown to play a role in modulating functions of diverse cell types, including Th1, Th2, and NK and B cells, demonstrating both pro- and anti-inflammatory roles.  In hepatocytes, it is capable of inducing signal transducer and activator of transcription (STAT)1, STAT3 and interferon-stimulated genes. Methods: To address its role in viral hepatitis, the antiviral activity of IL-27 against hepatitis C virus (HCV) and hepatitis B virus (HBV) was tested in vitro using cell-culture-derived infectious HCV (HCVcc) cell culture system and the HepaRG HBV cell culture model. To further investigate the impact of IL-27 on hepatocytes, Huh7.5 cells were treated with IL-27 to analyse the differentially expressed genes by microarray analysis. Furthermore, by quantitative PCR, we analyzed the up-regulation of chemokine (CXCL)-10 in response to IL-27. Results: In both HCV and HBV infection models, we observed only a modest direct antiviral effect. Microarray analysis showed that the up-regulated genes mostly belonged to antigen presentation and DNA replication pathways, and involved strong up-regulation of CXCL-10, a gene associated with liver inflammation. Overall, gene set enrichment analysis showed a striking correlation of these genes with those up-regulated in response to related cytokines in diverse cell populations. Conclusion: Our data indicate that IL-27 can have a significant pro-inflammatory impact in vitro, although the direct antiviral effect is modest. It may have a potential impact on hepatocyte function, especially chemokine expression and antigen presentation. PMID:28058287

  6. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease

    PubMed Central

    Cammaerts, Sophia; Strazisar, Mojca; De Rijk, Peter; Del Favero, Jurgen

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression and like any other gene, their coding sequences are subject to genetic variation. Variants in miRNA genes can have profound effects on miRNA functionality at all levels, including miRNA transcription, maturation, and target specificity, and as such they can also contribute to disease. The impact of variants in miRNA genes is the focus of the present review. To put these effects into context, we first discuss the requirements of miRNA transcripts for maturation. In the last part an overview of available databases and tools and experimental approaches to investigate miRNA variants related to human disease is presented. PMID:26052338

  7. Impact of estrogen receptor α gene and oxytocin receptor gene polymorphisms on female sexuality.

    PubMed

    Armeni, Anastasia K; Assimakopoulos, Konstantinos; Marioli, Dimitra; Koika, Vassiliki; Michaelidou, Euthychia; Mourtzi, Niki; Iconomou, Gregoris; Georgopoulos, Neoklis A

    2017-01-01

    Over the past decades, research attention has increasingly been paid to the neurobiological component of sexual behavior. The aim of the present study was to investigate the correlation of estrogen receptor α (ERA) gene polymorphism (rs2234693-PvuII) (T→C substitution) and oxytocin receptor gene polymorphism (rs53576) (G→A substitution) with sexuality parameters of young, healthy women. One hundred thirty-three Greek heterosexual women, students in higher education institutions, 20-25 years of age, sexually active, with normal menstrual cycles (28-35 days), were recruited in the study. Exclusion criteria were chronic and/or major psychiatric diseases, use of oral contraceptive pills (OCs), polycystic ovary syndrome (PCOS), thyroid diseases as well as drugs that are implicated in hypothalamus-pituitary-gonadal axis. T allele (wildtype) of rs2234693 (PvuII) polymorphism of ERA gene was correlated with increased levels of arousal and lubrication, whereas A allele (polymorphic) of rs53576 (OXTR) polymorphism was correlated with increased arousal levels. The simultaneous presence of both T allele of rs2234693 (PvuII) and A allele of rs53576 (OXTR) polymorphisms (T + A group) was correlated with increased arousal, orgasm levels as well as female sexual function index full score. To our knowledge, this is the first study to investigate the interaction between ERA and OXTR with regard to sexual function in women. Female sexuality is a complex behavioral trait that encompasses both biological and psychological components. It seems that variability in female sexual response stems from genetic variability that characterizes endocrine, neurotransmitter and central nervous system influences.

  8. Impact of estrogen receptor α gene and oxytocin receptor gene polymorphisms on female sexuality

    PubMed Central

    Armeni, Anastasia K; Assimakopoulos, Konstantinos; Marioli, Dimitra; Koika, Vassiliki; Michaelidou, Euthychia; Mourtzi, Niki; Iconomou, Gregoris

    2017-01-01

    Over the past decades, research attention has increasingly been paid to the neurobiological component of sexual behavior. The aim of the present study was to investigate the correlation of estrogen receptor α (ERA) gene polymorphism (rs2234693-PvuII) (T→C substitution) and oxytocin receptor gene polymorphism (rs53576) (G→A substitution) with sexuality parameters of young, healthy women. One hundred thirty-three Greek heterosexual women, students in higher education institutions, 20–25 years of age, sexually active, with normal menstrual cycles (28–35 days), were recruited in the study. Exclusion criteria were chronic and/or major psychiatric diseases, use of oral contraceptive pills (OCs), polycystic ovary syndrome (PCOS), thyroid diseases as well as drugs that are implicated in hypothalamus–pituitary–gonadal axis. T allele (wildtype) of rs2234693 (PvuII) polymorphism of ERA gene was correlated with increased levels of arousal and lubrication, whereas A allele (polymorphic) of rs53576 (OXTR) polymorphism was correlated with increased arousal levels. The simultaneous presence of both T allele of rs2234693 (PvuII) and A allele of rs53576 (OXTR) polymorphisms (T + A group) was correlated with increased arousal, orgasm levels as well as female sexual function index full score. To our knowledge, this is the first study to investigate the interaction between ERA and OXTR with regard to sexual function in women. Female sexuality is a complex behavioral trait that encompasses both biological and psychological components. It seems that variability in female sexual response stems from genetic variability that characterizes endocrine, neurotransmitter and central nervous system influences. PMID:28069897

  9. Impact of gene patents on diagnostic testing: a new patent landscaping method applied to spinocerebellar ataxia

    PubMed Central

    Berthels, Nele; Matthijs, Gert; Van Overwalle, Geertrui

    2011-01-01

    Recent reports in Europe and the United States raise concern about the potential negative impact of gene patents on the freedom to operate of diagnosticians and on the access of patients to genetic diagnostic services. Patents, historically seen as legal instruments to trigger innovation, could cause undesired side effects in the public health domain. Clear empirical evidence on the alleged hindering effect of gene patents is still scarce. We therefore developed a patent categorization method to determine which gene patents could indeed be problematic. The method is applied to patents relevant for genetic testing of spinocerebellar ataxia (SCA). The SCA test is probably the most widely used DNA test in (adult) neurology, as well as one of the most challenging due to the heterogeneity of the disease. Typically tested as a gene panel covering the five common SCA subtypes, we show that the patenting of SCA genes and testing methods and the associated licensing conditions could have far-reaching consequences on legitimate access to this gene panel. Moreover, with genetic testing being increasingly standardized, simply ignoring patents is unlikely to hold out indefinitely. This paper aims to differentiate among so-called ‘gene patents' by lifting out the truly problematic ones. In doing so, awareness is raised among all stakeholders in the genetic diagnostics field who are not necessarily familiar with the ins and outs of patenting and licensing. PMID:21811306

  10. Impact of variation in the BDNF gene on social stress sensitivity and the buffering impact of positive emotions: replication and extension of a gene-environment interaction.

    PubMed

    van Winkel, Mark; Peeters, Frenk; van Winkel, Ruud; Kenis, Gunter; Collip, Dina; Geschwind, Nicole; Jacobs, Nele; Derom, Catherine; Thiery, Evert; van Os, Jim; Myin-Germeys, Inez; Wichers, Marieke

    2014-06-01

    A previous study reported that social stress sensitivity is moderated by the brain-derived-neurotrophic-factor(Val66Met) (BDNF rs6265) genotype. Additionally, positive emotions partially neutralize this moderating effect. The current study aimed to: (i) replicate in a new independent sample of subjects with residual depressive symptoms the moderating effect of BDNF(Val66Met) genotype on social stress sensitivity, (ii) replicate the neutralizing impact of positive emotions, (iii) extend these analyses to other variations in the BDNF gene in the new independent sample and the original sample of non-depressed individuals. Previous findings were replicated in an experience sampling method (ESM) study. Negative Affect (NA) responses to social stress were stronger in "Val/Met" carriers of BDNF(Val66Met) compared to "Val/Val" carriers. Positive emotions neutralized the moderating effect of BDNF(Val66Met) genotype on social stress sensitivity in a dose-response fashion. Finally, two of four additional BDNF SNPs (rs11030101, rs2049046) showed similar moderating effects on social stress-sensitivity across both samples. The neutralizing effect of positive emotions on the moderating effects of these two additional SNPs was found in one sample. In conclusion, ESM has important advantages in gene-environment (GxE) research and may attribute to more consistent findings in future GxE research. This study shows how the impact of BDNF genetic variation on depressive symptoms may be explained by its impact on subtle daily life responses to social stress. Further, it shows that the generation of positive affect (PA) can buffer social stress sensitivity and partially undo the genetic susceptibility.

  11. Bacteria and Genes Involved in Arsenic Speciation in Sediment Impacted by Long-Term Gold Mining

    PubMed Central

    Costa, Patrícia S.; Scholte, Larissa L. S.; Reis, Mariana P.; Chaves, Anderson V.; Oliveira, Pollyanna L.; Itabayana, Luiza B.; Suhadolnik, Maria Luiza S.; Barbosa, Francisco A. R.; Chartone-Souza, Edmar; Nascimento, Andréa M. A.

    2014-01-01

    The bacterial community and genes involved in geobiocycling of arsenic (As) from sediment impacted by long-term gold mining were characterized through culture-based analysis of As-transforming bacteria and metagenomic studies of the arsC, arrA, and aioA genes. Sediment was collected from the historically gold mining impacted Mina stream, located in one of the world’s largest mining regions known as the “Iron Quadrangle”. A total of 123 As-resistant bacteria were recovered from the enrichment cultures, which were phenotypically and genotypically characterized for As-transformation. A diverse As-resistant bacteria community was found through phylogenetic analyses of the 16S rRNA gene. Bacterial isolates were affiliated with Proteobacteria, Firmicutes, and Actinobacteria and were represented by 20 genera. Most were AsV-reducing (72%), whereas AsIII-oxidizing accounted for 20%. Bacteria harboring the arsC gene predominated (85%), followed by aioA (20%) and arrA (7%). Additionally, we identified two novel As-transforming genera, Thermomonas and Pannonibacter. Metagenomic analysis of arsC, aioA, and arrA sequences confirmed the presence of these genes, with arrA sequences being more closely related to uncultured organisms. Evolutionary analyses revealed high genetic similarity between some arsC and aioA sequences obtained from isolates and clone libraries, suggesting that those isolates may represent environmentally important bacteria acting in As speciation. In addition, our findings show that the diversity of arrA genes is wider than earlier described, once none arrA-OTUs were affiliated with known reference strains. Therefore, the molecular diversity of arrA genes is far from being fully explored deserving further attention. PMID:24755825

  12. Impacts of Neanderthal-Introgressed Sequences on the Landscape of Human Gene Expression.

    PubMed

    McCoy, Rajiv C; Wakefield, Jon; Akey, Joshua M

    2017-02-23

    Regulatory variation influencing gene expression is a key contributor to phenotypic diversity, both within and between species. Unfortunately, RNA degrades too rapidly to be recovered from fossil remains, limiting functional genomic insights about our extinct hominin relatives. Many Neanderthal sequences survive in modern humans due to ancient hybridization, providing an opportunity to assess their contributions to transcriptional variation and to test hypotheses about regulatory evolution. We developed a flexible Bayesian statistical approach to quantify allele-specific expression (ASE) in complex RNA-seq datasets. We identified widespread expression differences between Neanderthal and modern human alleles, indicating pervasive cis-regulatory impacts of introgression. Brain regions and testes exhibited significant downregulation of Neanderthal alleles relative to other tissues, consistent with natural selection influencing the tissue-specific regulatory landscape. Our study demonstrates that Neanderthal-inherited sequences are not silent remnants of ancient interbreeding but have measurable impacts on gene expression that contribute to variation in modern human phenotypes.

  13. Impact of karyotype organization on interlocus recombination between T cell receptor genes in Equidae.

    PubMed

    Drbalova, Jitka; Musilova, Petra; Kubickova, Svatava; Sebestova, Hana; Vahala, Jiri; Rubes, Jiri

    2014-01-01

    The T cell receptor (TCR) genes (TRA, TRB, TRD and TRG) reside in 3 different chromosomal regions. During the maturation of T lymphocytes, the TCR genes are rearranged by site-specific recombination, a process that also predisposes T cells to aberrant rearrangements. Illegitimate recombination between the TCR genes occurs at a low level in healthy individuals, but this frequency may correlate with the risk of lymphoma. The aim of this work was to investigate interlocus recombination in equids. Illegitimate rearrangements were studied in peripheral blood lymphocytes by FISH with painting and BAC probes and by sequencing of PCR products, and the frequencies of recombination were assessed in horses and 4 other equids. The presence of several trans-rearrangement products between the TRA and TRG genes was verified by PCR in all investigated equids. Frequencies of trans-rearrangements in horses are higher than in humans, and colocalization of the TCR genes on the same chromosome increases the incidence of trans-rearrangements between them. The orientation of the TCR genes does not impact interlocus recombination itself but does affect the viability of cells carrying its products and consequently the number of trans-rearrangements observed in lymphocytes.

  14. Microevolution of Duplications and Deletions and Their Impact on Gene Expression in the Nematode Pristionchus pacificus

    PubMed Central

    2015-01-01

    The evolution of diversity across the animal kingdom has been accompanied by tremendous gene loss and gain. While comparative genomics has been fruitful to characterize differences in gene content across highly diverged species, little is known about the microevolution of structural variations that cause these differences in the first place. In order to investigate the genomic impact of structural variations, we made use of genomic and transcriptomic data from the nematode Pristionchus pacificus, which has been established as a satellite model to Caenorhabditis elegans for comparative biology. We exploit the fact that P. pacificus is a highly diverse species for which various genomic data including the draft genome of a sister species P. exspectatus is available. Based on resequencing coverage data for two natural isolates we identified large (> 2kb) deletions and duplications relative to the reference strain. By restriction to completely syntenic regions between P. pacificus and P. exspectatus, we were able to polarize the comparison and to assess the impact of structural variations on expression levels. We found that while loss of genes correlates with lack of expression, duplication of genes has virtually no effect on gene expression. Further investigating expression of individual copies at sites that segregate between the duplicates, we found in the majority of cases only one of the copies to be expressed. Nevertheless, we still find that certain gene classes are strongly depleted in deletions as well as duplications, suggesting evolutionary constraint acting on synteny. In summary, our results are consistent with a model, where most structural variations are either deleterious or neutral and provide first insights into the microevolution of structural variations in the P. pacificus genome. PMID:26125626

  15. Impact of Neutron Exposure on Global Gene Expression in a Human Peripheral Blood Model.

    PubMed

    Broustas, Constantinos G; Xu, Yanping; Harken, Andrew D; Chowdhury, Mashkura; Garty, Guy; Amundson, Sally A

    2017-04-01

    The detonation of an improvised nuclear device would produce prompt radiation consisting of both photons (gamma rays) and neutrons. While much effort in recent years has gone into the development of radiation biodosimetry methods suitable for mass triage, the possible effect of neutrons on the endpoints studied has remained largely uninvestigated. We have used a novel neutron irradiator with an energy spectrum based on that 1-1.5 km from the epicenter of the Hiroshima blast to begin examining the effect of neutrons on global gene expression, and the impact this may have on the development of gene expression signatures for radiation biodosimetry. We have exposed peripheral blood from healthy human donors to 0.1, 0.3, 0.5 or 1 Gy of neutrons ex vivo using our neutron irradiator, and compared the transcriptomic response 24 h later to that resulting from sham exposure or exposure to 0.1, 0.3, 0.5, 1, 2 or 4 Gy of photons (X rays). We identified 125 genes that responded significantly to both radiation qualities as a function of dose, with the magnitude of response to neutrons generally being greater than that seen after X-ray exposure. Gene ontology analysis suggested broad involvement of the p53 signaling pathway and general DNA damage response functions across all doses of both radiation qualities. Regulation of immune response and chromatin-related functions were implicated only following the highest doses of neutrons, suggesting a physiological impact of greater DNA damage. We also identified several genes that seem to respond primarily as a function of dose, with less effect of radiation quality. We confirmed this pattern of response by quantitative real-time RT-PCR for BAX, TNFRSF10B, ITLN2 and AEN and suggest that gene expression may provide a means to differentiate between total dose and a neutron component.

  16. Psychological resilience and the gene regulatory impact of posttraumatic stress in Nepali child soldiers

    PubMed Central

    Worthman, Carol M.; Adhikari, Ramesh P.; Luitel, Nagendra P.; Arevalo, Jesusa M. G.; Ma, Jeffrey; McCreath, Heather; Seeman, Teresa E.; Crimmins, Eileen M.; Cole, Steven W.

    2016-01-01

    Adverse social conditions in early life have been linked to increased expression of proinflammatory genes and reduced expression of antiviral genes in circulating immune cells—the conserved transcriptional response to adversity (CTRA). However, it remains unclear whether such effects are specific to the Western, educated, industrialized, rich, and democratic (WEIRD) cultural environments in which previous research has been conducted. To assess the roles of early adversity and individual psychological resilience in immune system gene regulation within a non-WEIRD population, we evaluated CTRA gene-expression profiles in 254 former child soldiers and matched noncombatant civilians 5 y after the People’s War in Nepal. CTRA gene expression was up-regulated in former child soldiers. These effects were linked to the degree of experienced trauma and associated distress—that is, posttraumatic stress disorder (PTSD) severity—more than to child soldier status per se. Self-perceived psychological resilience was associated with marked buffering of CTRA activation such that PTSD-affected former child soldiers with high levels of personal resilience showed molecular profiles comparable to those of PTSD-free civilians. These results suggest that CTRA responses to early life adversity are not restricted to WEIRD cultural contexts and they underscore the key role of resilience in determining the molecular impact of adverse environments. PMID:27402736

  17. Impact of blue LED irradiation on proliferation and gene expression of cultured human keratinocytes

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Sticht, Carsten; Dweep, Harsh; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2015-03-01

    Blue light is known for its anti-microbial, anti-proliferative and anti-inflammatory effects. Furthermore, it is already used for the treatment of neonatal jaundice and acne. However, little is known about the exact mechanisms of action on gene expression level. The aim of this study was to assess the impact of blue LED irradiation on the proliferation and gene expression in immortalized human keratinocytes (HaCaT) in vitro. Furthermore its safety was assessed. XTT-tests revealed a decrease in cell proliferation in blue light irradiated cells depending on the duration of light irradiation. Moreover, gene expression analysis demonstrated deregulated genes already 3 hours after blue light irradiation. 24 hours after blue light irradiation the effects seemed to be even more pronounced. The oxidative stress response was significantly increased, pointing to increased ROS production due to blue light, as well as steroid hormone biosynthesis. Downregulated pathways or biological processes were connected to anti-inflammatory response. Interestingly, also the melanoma pathway contained significantly downregulated genes 24 hours after blue light irradiation, which stands in accordance to literature that blue light can also inhibit proliferation in cancer cells. First tests with melanoma cells revealed a decrease in cell proliferation after blue light irradiation. In conclusion, blue light irradiation might open avenues to new therapeutic regimens; at least blue light seems to have no effect that induces cancer growth or formation.

  18. CARDIOPULMONARY GENE EXPRESSION PROFILES IN NORMO- AND SPONTANEOUSLY HYPERSENSITIVE (SH) RATS: IMPACT OF PARTICULATE MATTER (PM) EXPOSURE

    EPA Science Inventory

    CARDIOPULMONARY GENE EXPRESSION PROFILES IN NORMO- AND SPONTANEOUSLY HYPERTENSIVE (SH) RATS: IMPACT OF PARTICULATE MATTER (PM) EXPOSURE. SS Nadadur UP Kodavanti, Pulmonary Toxicology Branch, ETD, ORD, NHEERL, US Environmental Protection Agency, Research Triangle Park, NC 27711.

  19. Impact of virulence genes on sepsis severity and survival in Escherichia coli bacteremia

    PubMed Central

    Mora-Rillo, Marta; Fernández-Romero, Natalia; Francisco, Carolina Navarro-San; Díez-Sebastián, Jesús; Romero-Gómez, Maria Pilar; Fernández, Francisco Arnalich; López, Jose Ramon Arribas; Mingorance, Jesús

    2015-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) are a frequent cause of bacteremia and sepsis, but the role of ExPEC genetic virulence factors (VFs) in sepsis development and outcome is ill-defined. Prospective study including 120 adult patients with E. coli bacteremia to investigate the impact of bacterial and host factors on sepsis severity and mortality. Patients' clinical and demographic data were registered. Phylogenetic background of E. coli isolates was analyzed by SNP pyrosequencing and VFs by PCR. The E. coli isolates presented an epidemic population structure with 6 dominant clones making up to half of the isolates. VF gene profiles were highly diverse. Multivariate analysis for sepsis severity showed that the presence of cnf and blaTEM genes increased the risk of severe illness by 6.75 (95% confidence interval [CI] 1.79–24.71) and 2.59 (95% CI 1.04–6.43) times respectively, while each point in the Pitt score increased the risk by 1.34 (95% CI 1.02–1.76) times. Multivariate analysis for mortality showed that active chemotherapy (OR 17.87, 95% CI 3.35–95.45), McCabe-Jackson Index (OR for rapidly fatal category 120.15, 95% CI 4.19–3446.23), Pitt index (OR 1.78, 95% CI 1.25–2.56) and presence of fyuA gene (OR 8.05, 95% CI 1.37–47.12) were associated to increased mortality while the presence of P fimbriae genes had a protective role (OR 0.094, 95%IC 0.018–0.494). Bacteremic E. coli had a high diversity of genetic backgrounds and VF gene profiles. Bacterial VFs and host determinants had an impact on disease evolution and mortality. PMID:25654604

  20. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    USGS Publications Warehouse

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  1. Impact of high predation risk on genome-wide hippocampal gene expression in snowshoe hares.

    PubMed

    Lavergne, Sophia G; McGowan, Patrick O; Krebs, Charles J; Boonstra, Rudy

    2014-11-01

    The population dynamics of snowshoe hares (Lepus americanus) are fundamental to the ecosystem dynamics of Canada's boreal forest. During the 8- to 11-year population cycle, hare densities can fluctuate up to 40-fold. Predators in this system (lynx, coyotes, great-horned owls) affect population numbers not only through direct mortality but also through sublethal effects. The chronic stress hypothesis posits that high predation risk during the decline severely stresses hares, leading to greater stress responses, heightened ability to mobilize cortisol and energy, and a poorer body condition. These effects may result in, or be mediated by, differential gene expression. We used an oligonucleotide microarray designed for a closely-related species, the European rabbit (Oryctolagus cuniculus), to characterize differences in genome-wide hippocampal RNA transcript abundance in wild hares from the Yukon during peak and decline phases of a single cycle. A total of 106 genes were differentially regulated between phases. Array results were validated with quantitative real-time PCR, and mammalian protein sequence similarity was used to infer gene function. In comparison to hares from the peak, decline phase hares showed increased expression of genes involved in metabolic processes and hormone response, and decreased expression of immune response and blood cell formation genes. We found evidence for predation risk effects on the expression of genes whose putative functions correspond with physiological impacts known to be induced by predation risk in snowshoe hares. This study shows, for the first time, a link between changes in demography and alterations in neural RNA transcript abundance in a natural population.

  2. Potential impact of human mitochondrial replacement on global policy regarding germline gene modification.

    PubMed

    Ishii, Tetsuya

    2014-08-01

    Previous discussions regarding human germline gene modification led to a global consensus that no germline should undergo genetic modification. However, the UK Human Fertilisation and Embryology Authority, having conducted at the UK Government's request a scientific review and a wide public consultation, provided advice to the Government on the pros and cons of Parliament's lifting a ban on altering mitochondrial DNA content of human oocytes and embryos, so as to permit the prevention of maternal transmission of mitochondrial diseases. In this commentary, relevant ethical and biomedical issues are examined and requirements for proceeding with this novel procedure are suggested. Additionally, potentially significant impacts of the UK legalization on global policy concerning germline gene modification are discussed in the context of recent advances in genome-editing technology. It is concluded that international harmonization is needed, as well as further ethical and practical consideration, prior to the legalization of human mitochondrial replacement.

  3. The impact of non-electrical factors on electrical gene transfer

    PubMed Central

    Hu, Jiemiao; Cutrera, Jeffry; Li, Shulin

    2014-01-01

    Electrical pulses directly and effectively boost both in vitro and in vivo gene transfer, but this process is greatly affected by non-electrical factors that exist during electroporation. These factors include, but are not limited to, the types of cells or tissues used, the property of DNA, DNA formulation, and the expressed protein. In this mini-review, we only describe and discuss a summary of DNA properties and selected DNA formulations on gene transfer via electroporation. The properties of DNA were selected for review because a substantial amount of remarkable work has been performed during the past few years but has received less notice than other work, although DNA properties appear to be critical for boosting electroporation delivery. The selected formulations will be covered in this mini-review because we are only interested in the simple formulations that could be used for cell or gene therapy via electroporation. Plus, there was an extensive review of DNA formulations in the first edition of this book. The formulations discussed in this mini-review represent novel developments in recent years and may impact electroporation significantly. These advancements in DNA formulations could prove to be important for gene delivery and disease treatment. PMID:24510810

  4. Apolipoprotein A5: A newly identified gene impacting plasmatriglyceride levels in humans and mice

    SciTech Connect

    Pennacchio, Len A.; Rubin, Edward M.

    2002-09-15

    Apolipoprotein A5 (APOA5) is a newly described member of theapolipoprotein gene family whose initial discovery arose from comparativesequence analysis of the mammalian APOA1/C3/A4 gene cluster. Functionalstudies in mice indicated that alteration in the level of APOA5significantly impacted plasma triglyceride concentrations. Miceover-expressing human APOA5 displayed significantly reducedtriglycerides, while mice lacking apoA5 had a large increase in thislipid parameter. Studies in humans have also suggested an important rolefor APOA5 in determining plasma triglyceride concentrations. In theseexperiments, polymorphisms in the human gene were found to define severalcommon haplotypes that were associated with significant changes intriglyceride concentrations in multiple populations. Several separateclinical studies have provided consistent and strong support for theeffect with 24 percent of Caucasians, 35 percent of African-Americans and53 percent of Hispanics carrying APOA5 haplotypes associated withincreased plasma triglyceride levels. In summary, APOA5 represents anewly discovered gene involved in triglyceride metabolism in both humansand mice whose mechanism of action remains to be deciphered.

  5. Analysis of the multi-copied genes and the impact of the redundant protein coding sequences on gene annotation in prokaryotic genomes.

    PubMed

    Yu, Jia-Feng; Chen, Qing-Li; Ren, Jing; Yang, Yan-Ling; Wang, Ji-Hua; Sun, Xiao

    2015-07-07

    The important roles of duplicated genes in evolutional process have been recognized in bacteria, archaebacteria and eukaryotes, while there is very little study on the multi-copied protein coding genes that share sequence identity of 100%. In this paper, the multi-copied protein coding genes in a number of prokaryotic genomes are comprehensively analyzed firstly. The results show that 0-15.93% of the protein coding genes in each genome are multi-copied genes and 0-16.49% of the protein coding genes in each genome are highly similar with the sequence identity ≥ 80%. Function and COG (Clusters of Orthologous Groups of proteins) analysis shows that 64.64% of multi-copied genes concentrate on the function of transposase and 86.28% of the COG assigned multi-copied genes concentrate on the COG code of 'L'. Furthermore, the impact of redundant protein coding sequences on the gene prediction results is studied. The results show that the problem of protein coding sequence redundancies cannot be ignored and the consistency of the gene annotation results before and after excluding the redundant sequences is negatively related with the sequences redundancy degree of the protein coding sequences in the training set.

  6. Impact of Hot and Cold Exposure on Human Skeletal Muscle Gene Expression

    PubMed Central

    Zak, Roksana B.; Shute, Robert J.; Heesch, Matthew W.S.; La Salle, D. Taylor; Bubak, Matthew P.; Dinan, Nicholas E.; Laursen, Terence L.; Slivka, Dustin R.

    2017-01-01

    Many human diseases lead to a loss of skeletal muscle metabolic function and mass. Local and environmental temperature can modulate the exercise-stimulated response of several genes involved in mitochondrial biogenesis and skeletal muscle function in a human model. However, the impact of environmental temperature, independent of exercise, has not been addressed in a human model. Thus, the purpose of this study was to compare the effects of exposure to hot, cold, and room temperature conditions on skeletal muscle gene expression related to mitochondrial biogenesis and muscle mass. METHODS Recreationally trained male subjects (n=12) had muscle biopsies taken from the vastus lateralis before and after 3 h exposure to hot (33 °C), cold (7 °C), or room temperature (20 °C) conditions. RESULTS Temperature had no effect on most of the genes related to mitochondrial biogenesis, myogenesis, or proteolysis (p > 0.05). Core temperature was significantly higher in hot and cold environments compared to room temperature (37.2 ± 0.1 °C, p = 0.001; 37.1 ± 0.1 °C, p = 0.013; 36.9 ± 0.1 °C, respectively). Whole body oxygen consumption was also significantly higher in hot and cold compared to room temperature (0.38 ± 0.01 L·min−1, p < 0.001; 0.52 ± 0.03 L·min−1, p < 0.001; 0.35 ± 0.01 L·min−1, respectively). CONCLUSIONS These data show that acute temperature exposure alone does not elicit significant changes in skeletal muscle gene expression. When considered in conjunction with previous research, exercise appears to be a necessary component to observe gene expression alterations between different environmental temperatures in humans. PMID:28177744

  7. Burden Analysis of Rare Microdeletions Suggests a Strong Impact of Neurodevelopmental Genes in Genetic Generalised Epilepsies

    PubMed Central

    Trucks, Holger; Schulz, Herbert; de Kovel, Carolien G.; Kasteleijn-Nolst Trenité, Dorothée; Sonsma, Anja C. M.; Koeleman, Bobby P.; Lindhout, Dick; Weber, Yvonne G.; Lerche, Holger; Kapser, Claudia; Schankin, Christoph J.; Kunz, Wolfram S.; Surges, Rainer; Elger, Christian E.; Gaus, Verena; Schmitz, Bettina; Helbig, Ingo; Muhle, Hiltrud; Stephani, Ulrich; Klein, Karl M.; Rosenow, Felix; Neubauer, Bernd A.; Reinthaler, Eva M.; Zimprich, Fritz; Feucht, Martha; Møller, Rikke S.; Hjalgrim, Helle; De Jonghe, Peter; Suls, Arvid; Lieb, Wolfgang; Franke, Andre; Strauch, Konstantin; Gieger, Christian; Schurmann, Claudia; Schminke, Ulf; Nürnberg, Peter; Sander, Thomas

    2015-01-01

    Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes. PMID:25950944

  8. Widespread Impact of Chromosomal Inversions on Gene Expression Uncovers Robustness via Phenotypic Buffering

    PubMed Central

    Naseeb, Samina; Carter, Zorana; Minnis, David; Donaldson, Ian; Zeef, Leo; Delneri, Daniela

    2016-01-01

    The nonrandom gene organization in eukaryotes plays a significant role in genome evolution and function. Chromosomal structural changes impact meiotic fitness and, in several organisms, are associated with speciation and rapid adaptation to different environments. Small sized chromosomal inversions, encompassing few genes, are pervasive in Saccharomyces “sensu stricto” species, while larger inversions are less common in yeasts compared with higher eukaryotes. To explore the effect of gene order on phenotype, reproductive isolation, and gene expression, we engineered 16 Saccharomyces cerevisiae strains carrying all possible paracentric and pericentric inversions between Ty1 elements, a natural substrate for rearrangements. We found that 4 inversions were lethal, while the other 12 did not show any fitness advantage or disadvantage in rich and minimal media. At meiosis, only a weak negative correlation with fitness was seen with the size of the inverted region. However, significantly lower fertility was seen in heterozygote invertant strains carrying recombination hotspots within the breakpoints. Altered transcription was observed throughout the genome rather than being overrepresented within the inversions. In spite of the large difference in gene expression in the inverted strains, mitotic fitness was not impaired in the majority of the 94 conditions tested, indicating that the robustness of the expression network buffers the deleterious effects of structural changes in several environments. Overall, our results support the notion that transcriptional changes may compensate for Ty-mediated rearrangements resulting in the maintenance of a constant phenotype, and suggest that large inversions in yeast are unlikely to be a selectable trait during vegetative growth. PMID:26929245

  9. Burden analysis of rare microdeletions suggests a strong impact of neurodevelopmental genes in genetic generalised epilepsies.

    PubMed

    Lal, Dennis; Ruppert, Ann-Kathrin; Trucks, Holger; Schulz, Herbert; de Kovel, Carolien G; Kasteleijn-Nolst Trenité, Dorothée; Sonsma, Anja C M; Koeleman, Bobby P; Lindhout, Dick; Weber, Yvonne G; Lerche, Holger; Kapser, Claudia; Schankin, Christoph J; Kunz, Wolfram S; Surges, Rainer; Elger, Christian E; Gaus, Verena; Schmitz, Bettina; Helbig, Ingo; Muhle, Hiltrud; Stephani, Ulrich; Klein, Karl M; Rosenow, Felix; Neubauer, Bernd A; Reinthaler, Eva M; Zimprich, Fritz; Feucht, Martha; Møller, Rikke S; Hjalgrim, Helle; De Jonghe, Peter; Suls, Arvid; Lieb, Wolfgang; Franke, Andre; Strauch, Konstantin; Gieger, Christian; Schurmann, Claudia; Schminke, Ulf; Nürnberg, Peter; Sander, Thomas

    2015-05-01

    Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.

  10. Distribution patterns and impact of transposable elements in genes of green algae.

    PubMed

    Philippsen, Gisele S; Avaca-Crusca, Juliana S; Araujo, Ana P U; DeMarco, Ricardo

    2016-12-05

    Transposable elements (TEs) are DNA sequences able to transpose in the host genome, a remarkable feature that enables them to influence evolutive trajectories of species. An investigation about the TE distribution and TE impact in different gene regions of the green algae species Chlamydomonas reinhardtii and Volvox carteri was performed. Our results indicate that TEs are very scarce near introns boundaries, suggesting that insertions in this region are negatively selected. This contrasts with previous results showing enrichment of tandem repeats in introns boundaries and suggests that different evolutionary forces are acting in these different classes of repeats. Despite the relatively low abundance of TEs in the genome of green algae when compared to mammals, the proportion of poly(A) sites derived from TEs found in C. reinhardtii was similar to that described in human and mice. This fact, associated with the enrichment of TEs in gene 5' and 3' flanks of C. reinhardtii, opens up the possibility that TEs may have considerably contributed for gene regulatory sequences evolution in this species. Moreover, it was possible identify several instances of TE exonization for C. reinhardtii, with a particularly interesting case from a gene coding for Condensin II, a protein involved in the maintenance of chromosomal structure, where the addition of a transposomal PHD finger may contribute to binding specificity of this protein. Taken together, our results suggest that the low abundance of TEs in green algae genomes is correlated with a strict negative selection process, combined with the retention of copies that contribute positively with gene structures.

  11. Impact of hot and cold exposure on human skeletal muscle gene expression.

    PubMed

    Zak, Roksana B; Shute, Robert J; Heesch, Matthew W S; La Salle, D Taylor; Bubak, Matthew P; Dinan, Nicholas E; Laursen, Terence L; Slivka, Dustin R

    2017-03-01

    Many human diseases lead to a loss of skeletal muscle metabolic function and mass. Local and environmental temperature can modulate the exercise-stimulated response of several genes involved in mitochondrial biogenesis and skeletal muscle function in a human model. However, the impact of environmental temperature, independent of exercise, has not been addressed in a human model. Thus, the purpose of this study was to compare the effects of exposure to hot, cold, and room temperature conditions on skeletal muscle gene expression related to mitochondrial biogenesis and muscle mass. Recreationally trained male subjects (n = 12) had muscle biopsies taken from the vastus lateralis before and after 3 h of exposure to hot (33 °C), cold (7 °C), or room temperature (20 °C) conditions. Temperature had no effect on most of the genes related to mitochondrial biogenesis, myogenesis, or proteolysis (p > 0.05). Core temperature was significantly higher in hot and cold environments compared with room temperature (37.2 ± 0.1 °C, p = 0.001; 37.1 ± 0.1 °C, p = 0.013; 36.9 ± 0.1 °C, respectively). Whole-body oxygen consumption was also significantly higher in hot and cold compared with room temperature (0.38 ± 0.01 L·min(-1), p < 0.001; 0.52 ± 0.03 L·min(-1), p < 0.001; 0.35 ± 0.01 L·min(-1), respectively). In conclusion, these data show that acute temperature exposure alone does not elicit significant changes in skeletal muscle gene expression. When considered in conjunction with previous research, exercise appears to be a necessary component to observe gene expression alterations between different environmental temperatures in humans.

  12. Chemical dispersant potentiates crude oil impacts on growth, reproduction, and gene expression in Caenorhabditis elegans.

    PubMed

    Zhang, Yanqiong; Chen, Dongliang; Ennis, Adrien C; Polli, Joseph R; Xiao, Peng; Zhang, Baohong; Stellwag, Edmund J; Overton, Anthony; Pan, Xiaoping

    2013-02-01

    The economic, environmental, and human health impacts of the deepwater horizon (DWH) oil spill have been of significant concern in the general public and among scientists. This study employs parallel experiments to test the effects of crude oil from the DWH oil well, chemical dispersant Corexit 9500A, and dispersant-oil mixture on growth and reproduction in the model organism Caenorhabditis elegans. Both the crude oil and the dispersant significantly inhibited the reproduction of C. elegans. Dose-dependent inhibitions of hatched larvae production were observed in worms exposed to both crude oil and dispersant. Importantly, the chemical dispersant Corexit 9500A potentiated crude oil effects; dispersant-oil mixture induced more significant effects than oil or dispersant-alone exposures. While oil-alone exposure and dispersant-alone exposure have none to moderate inhibitory effects on hatched larvae production, respectively, the mixture of dispersant and oil induced much more significant inhibition of offspring production. The production of hatched larvae was almost completely inhibited by several high concentrations of the dispersant-oil mixture. This suggests a sensitive bioassay for future investigation of oil/dispersant impacts on organisms. We also investigated the effects of crude oil/dispersant exposure at the molecular level by measuring the expressions of 31 functional genes. Results showed that the dispersant and the dispersant-oil mixture induced aberrant expressions of 12 protein-coding genes (cat-4, trxr-2, sdhb-1, lev-8, lin-39, unc-115, prdx-3, sod-1, acr-16, ric-3, unc-68, and acr-8). These 12 genes are associated with a variety of biological processes, including egg-laying, oxidative stress, muscle contraction, and neurological functions. In summary, the toxicity potentiating effect of chemical dispersant must be taken into consideration in future crude oil cleanup applications.

  13. Interactions between DNA and gemini surfactant: impact on gene therapy: part II.

    PubMed

    Ahmed, Taksim; Kamel, Amany O; Wettig, Shawn D

    2016-02-01

    Nonviral gene delivery, provides distinct treatment modalities for the inherited and acquired diseases, relies upon the encapsulation of a gene of interest, which is then ideally delivered to the target cells. Variations in the chemical structure of gemini surfactants and subsequent physicochemical characteristics of the gemini-based lipoplexes and their impact on efficient gene transfection were assessed in part I, which was published in first March 2016 issue of Nanomedicine (1103). In order to design an efficient vector using gemini surfactants, the interaction of the surfactant with DNA and other components of the delivery system must be characterized, and more critically, well understood. Such studies will help to understand how nonviral transfection complexes, in general, overcome various cellular barriers. The Langmuir-Blodgett monolayer studies, atomic force microscopy, differential scanning calorimetry, isothermal titration calorimetry, small-angle x-ray scattering, are extensively used to evaluate the interaction behavior of gemini surfactants with DNA and other vector components. Part II of this review focuses on the use of these unique techniques to understand their interaction with DNA.

  14. Phevalin (aureusimine B) production by Staphylococcus aureus biofilm and impacts on human keratinocyte gene expression.

    PubMed

    Secor, Patrick R; Jennings, Laura K; James, Garth A; Kirker, Kelly R; Pulcini, Elinor Delancey; McInnerney, Kate; Gerlach, Robin; Livinghouse, Tom; Hilmer, Jonathan K; Bothner, Brian; Fleckman, Philip; Olerud, John E; Stewart, Philip S

    2012-01-01

    Staphylococcus aureus biofilms are associated with chronic skin infections and are orders of magnitude more resistant to antimicrobials and host responses. S. aureus contains conserved nonribosomal peptide synthetases that produce the cyclic dipeptides tyrvalin and phevalin (aureusimine A and B, respectively). The biological function of these compounds has been speculated to be involved in virulence factor gene expression in S. aureus, protease inhibition in eukaryotic cells, and interspecies bacterial communication. However, the exact biological role of these compounds is unknown. Here, we report that S. aureus biofilms produce greater amounts of phevalin than their planktonic counterparts. Phevalin had no obvious impact on the extracellular metabolome of S. aureus as measured by high-performance liquid chromatography-mass spectrometry and nuclear magnetic resonance. When administered to human keratinocytes, phevalin had a modest effect on gene expression. However, conditioned medium from S. aureus spiked with phevalin amplified differences in keratinocyte gene expression compared to conditioned medium alone. Phevalin may be exploited as potential biomarker and/or therapeutic target for chronic, S. aureus biofilm-based infections.

  15. Using Blood Informative Transcripts in Geographical Genomics: Impact of Lifestyle on Gene Expression in Fijians

    PubMed Central

    Nath, Artika Praveeta; Arafat, Dalia; Gibson, Greg

    2012-01-01

    In previous geographical genomics studies of the impact of lifestyle on gene expression inferred from microarray analysis of peripheral blood samples, we described the complex influences of culture, ethnicity, and gender in Morocco, and of pregnancy in Brisbane. Here we describe the use of nanofluidic Fluidigm quantitative RT-PCR arrays targeted at a set of 96 transcripts that are broadly informative of the major axes of immune gene expression, to explore the population structure of transcription in Fiji. As in Morocco, major differences are seen between the peripheral blood transcriptomes of rural villagers and residents of the capital city, Suva. The effect is much greater in Indian villages than in Melanesian highlanders and appears to be similar with respect to the nature of at least two axes of variation. Gender differences are much smaller than ethnicity or lifestyle effects. Body mass index is shown to associate with one of the axes as it does in Atlanta and Brisbane, establishing a link between the epidemiological transition of human metabolic disease, and gene expression profiles. PMID:23162571

  16. Temperature and Development Impacts on Housekeeping Gene Expression in Cowpea Aphid, Aphis craccivora (Hemiptera: Aphidiae)

    PubMed Central

    Liu, Yong; Zhou, Xuguo

    2015-01-01

    Quantitative real-time PCR (qRT-PCR) is a powerful technique to quantify gene expression. To standardize gene expression studies and obtain more accurate qRT-PCR analysis, normalization relative to consistently expressed housekeeping genes (HKGs) is required. In this study, ten candidate HKGs including elongation factor 1 α (EF1A), ribosomal protein L11 (RPL11), ribosomal protein L14 (RPL14), ribosomal protein S8 (RPS8), ribosomal protein S23 (RPS23), NADH-ubiquinone oxidoreductase (NADH), vacuolar-type H+-ATPase (ATPase), heat shock protein 70 (HSP70), 18S ribosomal RNA (18S), and 12S ribosomal RNA (12S) from the cowpea aphid, Aphis craccivora Koch were selected. Four algorithms, geNorm, Normfinder, BestKeeper, and the ΔCt method were employed to evaluate the expression profiles of these HKGs as endogenous controls across different developmental stages and temperature regimes. Based on RefFinder, which integrates all four analytical algorithms to compare and rank the candidate HKGs, RPS8, RPL14, and RPL11 were the three most stable HKGs across different developmental stages and temperature conditions. This study is the first step to establish a standardized qRT-PCR analysis in A. craccivora following the MIQE guideline. Results from this study lay a foundation for the genomics and functional genomics research in this sap-sucking insect pest with substantial economic impact. PMID:26090683

  17. Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression

    PubMed Central

    Rosso, Marie-Laure; Chauvaux, Sylvie; Dessein, Rodrigue; Laurans, Caroline; Frangeul, Lionel; Lacroix, Céline; Schiavo, Angèle; Dillies, Marie-Agnès; Foulon, Jeannine; Coppée, Jean-Yves; Médigue, Claudine; Carniel, Elisabeth; Simonet, Michel; Marceau, Michaël

    2008-01-01

    Background In man, infection by the Gram-negative enteropathogen Yersinia pseudotuberculosis is usually limited to the terminal ileum. However, in immunocompromised patients, the microorganism may disseminate from the digestive tract and thus cause a systemic infection with septicemia. Results To gain insight into the metabolic pathways and virulence factors expressed by the bacterium at the blood stage of pseudotuberculosis, we compared the overall gene transcription patterns (the transcriptome) of bacterial cells cultured in either human plasma or Luria-Bertani medium. The most marked plasma-triggered metabolic consequence in Y. pseudotuberculosis was the switch to high glucose consumption, which is reminiscent of the acetogenic pathway (known as "glucose overflow") in Escherichia coli. However, upregulation of the glyoxylate shunt enzymes suggests that (in contrast to E. coli) acetate may be further metabolized in Y. pseudotuberculosis. Our data also indicate that the bloodstream environment can regulate major virulence genes (positively or negatively); the yadA adhesin gene and most of the transcriptional units of the pYV-encoded type III secretion apparatus were found to be upregulated, whereas transcription of the pH6 antigen locus was strongly repressed. Conclusion Our results suggest that plasma growth of Y. pseudotuberculosis is responsible for major transcriptional regulatory events and prompts key metabolic reorientations within the bacterium, which may in turn have an impact on virulence. PMID:19055764

  18. The Differential Impact of Oxytocin Receptor Gene in Violence-Exposed Boys and Girls.

    PubMed

    Merrill, Livia C; Jones, Christopher W; Drury, Stacy S; Theall, Katherine P

    2017-03-21

    Childhood violence exposure is a prevalent public health problem. Understanding the lasting impact of violence requires an enhanced appreciation for the complex effects of violence across behavioral, physiologic, and molecular outcomes. This subject matched, cross-sectional study of 80 children explored the impact of violence exposure across behavioral, physiologic, and cellular outcomes. Externalizing behavior, diurnal cortisol rhythm, and telomere length (TL) were examined in a community recruited cohort of Black youth. Given evidence that genetic variation contributes to individual differences in response to the environment, we further tested whether a polymorphism in the oxytocin receptor gene (OXTR rs53576) moderated associations between violence and youth outcomes. Exposure to violence was directly associated with increased externalizing behavior, but no direct association of violence was found with cortisol or TL. Oxytocin genotype, however, moderated the association between violence and both cortisol and TL, suggesting that pathways linked to oxytocin may contribute to individual differences in the physiologic and molecular consequences of violence exposure. Sex differences with OXTR in cortisol and TL outcomes were also detected. Taken together, these findings suggest that there are complex pathways through which violence exposure impacts children, and that these pathways differ by both genetic variation and the sex of the child.

  19. Rat Models of Cardiovascular Disease Demonstrate Distinctive Pulmonary Gene Expressions for Vascular Response Genes: Impact of Ozone Exposure

    EPA Science Inventory

    Comparative gene expression profiling of multiple tissues from rat strains with genetic predisposition to diverse cardiovascular diseases (CVD) can help decode the transcriptional program that governs organ-specific functions. We examined expressions of CVD genes in the lungs of ...

  20. Memory acquisition and retrieval impact different epigenetic processes that regulate gene expression

    PubMed Central

    2015-01-01

    Background A fundamental question in neuroscience is how memories are stored and retrieved in the brain. Long-term memory formation requires transcription, translation and epigenetic processes that control gene expression. Thus, characterizing genome-wide the transcriptional changes that occur after memory acquisition and retrieval is of broad interest and importance. Genome-wide technologies are commonly used to interrogate transcriptional changes in discovery-based approaches. Their ability to increase scientific insight beyond traditional candidate gene approaches, however, is usually hindered by batch effects and other sources of unwanted variation, which are particularly hard to control in the study of brain and behavior. Results We examined genome-wide gene expression after contextual conditioning in the mouse hippocampus, a brain region essential for learning and memory, at all the time-points in which inhibiting transcription has been shown to impair memory formation. We show that most of the variance in gene expression is not due to conditioning and that by removing unwanted variance through additional normalization we are able provide novel biological insights. In particular, we show that genes downregulated by memory acquisition and retrieval impact different functions: chromatin assembly and RNA processing, respectively. Levels of histone 2A variant H2AB are reduced only following acquisition, a finding we confirmed using quantitative proteomics. On the other hand, splicing factor Rbfox1 and NMDA receptor-dependent microRNA miR-219 are only downregulated after retrieval, accompanied by an increase in protein levels of miR-219 target CAMKIIγ. Conclusions We provide a thorough characterization of coding and non-coding gene expression during long-term memory formation. We demonstrate that unwanted variance dominates the signal in transcriptional studies of learning and memory and introduce the removal of unwanted variance through normalization as a

  1. Impact of Enriched Environment on Murine T Cell Differentiation and Gene Expression Profile

    PubMed Central

    Rattazzi, Lorenza; Piras, Giuseppa; Brod, Samuel; Smith, Koval; Ono, Masahiro; D’Acquisto, Fulvio

    2016-01-01

    T cells are known to be plastic and to change their phenotype according to the cellular and biochemical milieu they are embedded in. In this study, we transposed this concept at a macroscopic level assessing whether changes in the environmental housing conditions of C57/BL6 mice would influence the phenotype and function of T cells. Our study shows that exposure to 2 weeks in an enriched environment (EE) does not impact the T cell repertoire in vivo and causes no changes in the early TCR-driven activation events of these cells. Surprisingly, however, T cells from enriched mice showed a unique T helper effector cell phenotype upon differentiation in vitro. This was featured by a significant reduction in their ability to produce IFN-γ and by an increased release of IL-10 and IL-17. Microarray analysis of these cells also revealed a unique gene fingerprint with key signaling pathways involved in autoimmunity being modulated. Together, our results provide first evidence for a specific effect of EE on T cell differentiation and its associated changes in gene expression profile. In addition, our study sheds new light on the possible mechanisms by which changes in environmental factors can significantly influence the immune response of the host and favor the resolution of the inflammatory response. PMID:27746779

  2. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery.

    PubMed

    Chicoine, L G; Montgomery, C L; Bremer, W G; Shontz, K M; Griffin, D A; Heller, K N; Lewis, S; Malik, V; Grose, W E; Shilling, C J; Campbell, K J; Preston, T J; Coley, B D; Martin, P T; Walker, C M; Clark, K R; Sahenk, Z; Mendell, J R; Rodino-Klapac, L R

    2014-02-01

    Duchenne muscular dystrophy is a monogenic disease potentially treatable by gene replacement. Use of recombinant adeno-associated virus (AAV) will ultimately require a vascular approach to broadly transduce muscle cells. We tested the impact of preexisting AAV antibodies on microdystrophin expression following vascular delivery to nonhuman primates. Rhesus macaques were treated by isolated limb perfusion using a fluoroscopically guided catheter. In addition to serostatus stratification, the animals were placed into one of the three immune suppression groups: no immune suppression, prednisone, and triple immune suppression (prednisone, tacrolimus, and mycophenolate mofetil). The animals were analyzed for transgene expression at 3 or 6 months. Microdystrophin expression was visualized in AAV, rhesus serotype 74 sero-negative animals (mean: 48.0 ± 20.8%) that was attenuated in sero-positive animals (19.6 ± 18.7%). Immunosuppression did not affect transgene expression. Importantly, removal of AAV binding antibodies by plasmapheresis in AAV sero-positive animals resulted in high-level transduction (60.8 ± 18.0%), which is comparable with that of AAV sero-negative animals (53.7 ± 7.6%), whereas non-pheresed sero-positive animals demonstrated significantly lower transduction levels (10.1 ± 6.0%). These data support the hypothesis that removal of AAV binding antibodies by plasmapheresis permits successful and sustained gene transfer in the presence of preexisting immunity (natural infection) to AAV.

  3. Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success.

    PubMed

    Casarini, Livio; Santi, Daniele; Marino, Marco

    2015-12-01

    Gonadotropins and their receptors' genes carry several single-nucleotide polymorphisms resulting in endocrine genotypes modulating reproductive parameters, diseases, and lifespan leading to important implications for reproductive success and potential relevance during human evolution. Here we illustrate common genotypes of the gonadotropins and gonadotropin receptors' genes and their clinical implications in phenotypes relevant for reproduction such as ovarian cycle length, age of menopause, testosterone levels, polycystic ovary syndrome, and cancer. We then discuss their possible role in human reproduction and adaptation to the environment. Gonadotropins and their receptors' variants are differently distributed among human populations. Some hints suggest that they may be the result of natural selection that occurred in ancient times, increasing the individual chance of successful mating, pregnancy, and effective post-natal parental cares. The gender-related differences in the regulation of the reproductive endocrine systems imply that many of these genotypes may lead to sex-dependent effects, increasing the chance of mating and reproductive success in one sex at the expenses of the other sex. Also, we suggest that sexual conflicts within the FSH and LH-choriogonadotropin receptor genes contributed to maintain genotypes linked to subfertility among humans. Because the distribution of polymorphic markers results in a defined geographical pattern due to human migrations rather than natural selection, these polymorphisms may have had only a weak impact on reproductive success. On the contrary, such genotypes could acquire relevant consequences in the modern, developed societies in which parenthood attempts often occur at a later age, during a short, suboptimal reproductive window, making clinical fertility treatments necessary.

  4. The impact of H63D HFE gene carriage on hemoglobin and iron status in children.

    PubMed

    Barbara, Kaczorowska-Hac; Marcin, Luszczyk; Jedrzej, Antosiewicz; Wieslaw, Ziolkowski; Elzbieta, Adamkiewicz-Drozynska; Malgorzata, Mysliwiec; Ewa, Milosz; Jacek, Kaczor Jan

    2016-12-01

    The molecular mechanism that regulates iron homeostasis is based on a network of signals, which reflect on the iron requirements of the body. Hereditary hemochromatosis is a heterogenic metabolic syndrome which is due to unchecked transfer of iron into the bloodstream and its toxic effects on parenchymatous organs. It is caused by the mutation of genes that encode proteins that help hepcidin to monitor serum iron. These proteins include the human hemochromatosis protein -HFE, transferrin-receptor 2, hemojuvelin in rare instances, and ferroportin. HFE-related hemochromatosis is the most frequent form of the disease. Interestingly, the low penetrance of polymorphic HFE genes results in rare clinical presentation of the disease, predominantly in middle-aged males. Taking into account the wide dispersion of HFE mutation in our population and also its unknown role in heterozygotes, we analyzed the impact of H63D HFE carriage in the developmental age, with respect to gender, on the iron status and hemoglobin concentration of carriers in comparison to those of wild-type HFE gene (12.7 ± 3.07 years, 42 boys and 41 girls). H63D carriers presented higher blood iron, transferrin saturation, and ferritin concentration than wild-type probands (p < 0.05.) Interestingly, male H63D carriers showed higher hemoglobin concentration than the unburdened children. Moreover, in the H63D carrier group, a positive correlation between iron and hemoglobin was noted. In conclusion, this study demonstrates that changes in iron metabolism occur at a young age in HFE heterozygotes.

  5. Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes

    NASA Astrophysics Data System (ADS)

    Garner, Emily; Wallace, Joshua S.; Argoty, Gustavo Arango; Wilkinson, Caitlin; Fahrenfeld, Nicole; Heath, Lenwood S.; Zhang, Liqing; Arabi, Mazdak; Aga, Diana S.; Pruden, Amy

    2016-12-01

    Record-breaking floods in September 2013 caused massive damage to homes and infrastructure across the Colorado Front Range and heavily impacted the Cache La Poudre River watershed. Given the unique nature of this watershed as a test-bed for tracking environmental pathways of antibiotic resistance gene (ARG) dissemination, we sought to determine the impact of extreme flooding on ARG reservoirs in river water and sediment. We utilized high-throughput DNA sequencing to obtain metagenomic profiles of ARGs before and after flooding, and investigated 23 antibiotics and 14 metals as putative selective agents during post-flood recovery. With 277 ARG subtypes identified across samples, total bulk water ARGs decreased following the flood but recovered to near pre-flood abundances by ten months post-flood at both a pristine site and at a site historically heavily influenced by wastewater treatment plants and animal feeding operations. Network analysis of de novo assembled sequencing reads into 52,556 scaffolds identified ARGs likely located on mobile genetic elements, with up to 11 ARGs per plasmid-associated scaffold. Bulk water bacterial phylogeny correlated with ARG profiles while sediment phylogeny varied along the river’s anthropogenic gradient. This rare flood afforded the opportunity to gain deeper insight into factors influencing the spread of ARGs in watersheds.

  6. Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes

    PubMed Central

    Garner, Emily; Wallace, Joshua S.; Argoty, Gustavo Arango; Wilkinson, Caitlin; Fahrenfeld, Nicole; Heath, Lenwood S.; Zhang, Liqing; Arabi, Mazdak; Aga, Diana S.; Pruden, Amy

    2016-01-01

    Record-breaking floods in September 2013 caused massive damage to homes and infrastructure across the Colorado Front Range and heavily impacted the Cache La Poudre River watershed. Given the unique nature of this watershed as a test-bed for tracking environmental pathways of antibiotic resistance gene (ARG) dissemination, we sought to determine the impact of extreme flooding on ARG reservoirs in river water and sediment. We utilized high-throughput DNA sequencing to obtain metagenomic profiles of ARGs before and after flooding, and investigated 23 antibiotics and 14 metals as putative selective agents during post-flood recovery. With 277 ARG subtypes identified across samples, total bulk water ARGs decreased following the flood but recovered to near pre-flood abundances by ten months post-flood at both a pristine site and at a site historically heavily influenced by wastewater treatment plants and animal feeding operations. Network analysis of de novo assembled sequencing reads into 52,556 scaffolds identified ARGs likely located on mobile genetic elements, with up to 11 ARGs per plasmid-associated scaffold. Bulk water bacterial phylogeny correlated with ARG profiles while sediment phylogeny varied along the river’s anthropogenic gradient. This rare flood afforded the opportunity to gain deeper insight into factors influencing the spread of ARGs in watersheds. PMID:27917931

  7. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest.

    PubMed

    Tien, Yuan-Ching; Li, Bing; Zhang, Tong; Scott, Andrew; Murray, Roger; Sabourin, Lyne; Marti, Romain; Topp, Edward

    2017-03-01

    Manuring ground used for crop production is an important agricultural practice. Should antibiotic-resistant enteric bacteria carried in the manure be transferred to crops that are consumed raw, their consumption by humans or animals will represent a route of exposure to antibiotic resistance genes. Treatment of manures prior to land application is a potential management option to reduce the abundance of antibiotic resistance genes entrained with manure application. In this study, dairy manure that was untreated, anaerobically digested, mechanically dewatered or composted was applied to field plots that were then cropped to lettuce, carrots and radishes. The impact of treatment on manure composition, persistence of antibiotic resistance gene targets in soil following application, and distribution of antibiotic resistance genes and bacteria on vegetables at harvest was determined. Composted manure had the lowest abundance of antibiotic resistance gene targets compared to the other manures. There was no significant difference in the persistence characteristics of antibiotic resistance genes following land application of the various manures. Compared to unmanured soil, antibiotic resistance genes were detected more frequently in soil receiving raw or digested manure, whereas they were not in soil receiving composted manure. The present study suggests that vegetables grown in ground receiving raw or digested manure are at risk of contamination with manure-borne antibiotic resistant bacteria, whereas vegetables grown in ground receiving composted manure are less so.

  8. Impact of obesity and nitric oxide synthase gene G894T polymorphism on essential hypertension.

    PubMed

    Wrzosek, M; Sokal, M; Sawicka, A; Wlodarczyk, M; Glowala, M; Wrzosek, M; Kosior, M; Talalaj, M; Biecek, P; Nowicka, G

    2015-10-01

    Hypertension is a multifactorial disease caused by environmental, metabolic and genetic factors, but little is currently known on the complex interplay between these factors and blood pressure. The aim of the present study was to assess the potential impact of obesity, and angiotensin-converting enzyme (ACE) I/D polymorphism and endothelial nitric oxide synthase gene (NOS3) 4a/4b, G894T and -T786C variants on the essential hypertension. The study group consisted of 1,027 Caucasian adults of Polish nationality (45.5 ± 13.6 years old), of which 401 met the criteria for hypertension. Body weight, height and blood pressure were measured and data on self-reported smoking status were collected. Fasting blood glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides were determined by standard procedures. The ACE I/D polymorphism and three polymorphisms in NOS3 gene (4a/4b, G894T, -T786C) were detected by the PCR method. Multivariable logistic regression demonstrated that age above 45 years, diabetes, dyslipidemia, smoking and male sex are important risk factors for hypertension and no significant influence of variants in ACE and NOS3 genes on this risk was recognized. Obese subjects had a 3.27-times higher risk (OR = 3.27, 95% CI: 2.37 - 4.52) of hypertension than non-obese, and in obese the NOS3 894T allele was associated with 1.37 fold higher risk of hypertension (P = 0.031). The distribution of NOS3 G894T genotypes supported the co-dominant (OR = 1.35, P = 0.034, Pfit = 0.435) or recessive (OR = 2.00, P = 0.046, Pfit = 0.286), but not dominant model of inheritance (P = 0.100). The study indicates that in obese NOS3 G894T polymorphism may enhance hypertension risk. However, in the presence of such strong risk factors as age, diabetes and smoking, the impact of this genetic variant seems to be attenuated. Further studies are needed to reveal the usefulness of G894T polymorphism in hypertension risk assessment in obese.

  9. The impact of gene expression variation on the robustness and evolvability of a developmental gene regulatory network.

    PubMed

    Garfield, David A; Runcie, Daniel E; Babbitt, Courtney C; Haygood, Ralph; Nielsen, William J; Wray, Gregory A

    2013-10-01

    Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive variation in gene expression in this network throughout development in a natural population, some of which has a heritable genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later development are typically more sensitive (linear), allowing variation in expression to affect downstream target genes. Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at terminal positions within the network. These results indicate that the position and properties of gene interactions within a network can have important evolutionary consequences independent of their immediate regulatory role.

  10. Antimicrobial-resistant bacterial populations and antimicrobial resistance genes obtained from environments impacted by livestock and municipal waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal waste water treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact...

  11. Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation

    PubMed Central

    Klipsic, Devon; Landrock, Danilo; Martin, Gregory G.; McIntosh, Avery L.; Landrock, Kerstin K.; Mackie, John T.; Schroeder, Friedhelm

    2015-01-01

    While a high-cholesterol diet induces hepatic steatosis, the role of intracellular sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) proteins is unknown. We hypothesized that ablating SCP-2/SCP-x [double knockout (DKO)] would impact hepatic lipids (cholesterol and cholesteryl ester), especially in high-cholesterol-fed mice. DKO did not alter food consumption, and body weight (BW) gain decreased especially in females, concomitant with hepatic steatosis in females and less so in males. DKO-induced steatosis in control-fed wild-type (WT) mice was associated with 1) loss of SCP-2; 2) upregulation of liver fatty acid binding protein (L-FABP); 3) increased mRNA and/or protein levels of sterol regulatory element binding proteins (SREBP1 and SREBP2) as well as increased expression of target genes of cholesterol synthesis (Hmgcs1 and Hmgcr) and fatty acid synthesis (Acc1 and Fas); and 4) cholesteryl ester accumulation was also associated with increased acyl-CoA cholesterol acyltransferase-2 (ACAT2) in males. DKO exacerbated the high-cholesterol diet-induced hepatic cholesterol and glyceride accumulation, without further increasing SREBP1, SREBP2, or target genes. This exacerbation was associated both with loss of SCP-2 and concomitant downregulation of Ceh/Hsl, apolipoprotein B (ApoB), MTP, and/or L-FABP protein expression. DKO diminished the ability to secrete excess cholesterol into bile and oxidize cholesterol to bile acid for biliary excretion, especially in females. This suggested that SCP-2/SCP-x affects cholesterol transport to particular intracellular compartments, with ablation resulting in less to the endoplasmic reticulum for SREBP regulation, making more available for cholesteryl ester synthesis, for cholesteryl-ester storage in lipid droplets, and for bile salt synthesis and/or secretion. These alterations are significant findings, since they affect key processes in regulation of sterol metabolism. PMID:26113298

  12. Impact of the GeneXpert MTB/RIF Technology on Tuberculosis Control.

    PubMed

    Stevens, Wendy Susan; Scott, Lesley; Noble, Lara; Gous, Natasha; Dheda, Keertan

    2017-01-01

    Molecular technology revolutionized the diagnosis of tuberculosis (TB) with a paradigm shift to faster, more sensitive, clinically relevant patient care. The most recent molecular leader is the GeneXpert MTB/RIF assay (Xpert) (Cepheid, Sunnyvale, CA), which was endorsed by the World Health Organization with unprecedented speed in December 2010 as the initial diagnostic for detection of HIV-associated TB and for where high rates of drug resistance are suspected. South Africa elected to take an aggressive smear replacement approach to facilitate earlier diagnosis and treatment through the decision to implement the Xpert assay nationally in March 2011, against the backdrop of approximately 6.3 million HIV-infected individuals, one of highest global TB and HIV coinfection rates, no available implementation models, uncertainties around field performance and program costs, and lack of guidance on how to operationalize the assay into existing complex clinical algorithms. South Africa's national implementation was conducted as a phased, forecasted, and managed approach (March 2011 to September 2013), through political will and both treasury-funded and donor-funded support. Today there are 314 GeneXperts across 207 microscopy centers; over 8 million assays have been conducted, and South Africa accounts for over half the global test cartridge usage. As with any implementation of new technology, challenges were encountered, both predicted and unexpected. This chapter discusses the challenges and consequences of such large-scale implementation efforts, the opportunities for new innovations, and the need to strengthen health systems, as well as the impact of the Xpert assay on rifampin-sensitive and multidrug-resistant TB patient care that translated into global TB control as we move toward the sustainable development goals.

  13. Impact of gene molecular evolution on phylogenetic reconstruction: a case study in the rosids (Superorder Rosanae, Angiosperms).

    PubMed

    Hilu, Khidir W; Black, Chelsea M; Oza, Dipan

    2014-01-01

    Rate of substitution of genomic regions is among the most debated intrinsic features that impact phylogenetic informativeness. However, this variable is also coupled with rates of nonsynonymous substitutions that underscore the nature and degree of selection on the selected genes. To empirically address these variables, we constructed four completely overlapping data sets of plastid matK, atpB, rbcL, and mitochondrial matR genes and used the rosid lineage (angiosperms) as a working platform. The genes differ in combinations of overall rates of nucleotide and amino acid substitutions. Tree robustness, homoplasy, accuracy in contrast to a reference tree, and phylogenetic informativeness are evaluated. The rapidly evolving/unconstrained matK faired best, whereas remaining genes varied in degrees of contribution to rosid phylogenetics across the lineage's 108 million years evolutionary history. Phylogenetic accuracy was low with the slowly evolving/unconstrained matR despite least amount of homoplasy. Third codon positions contributed the highest amount of parsimony informative sites, resolution and informativeness, but magnitude varied with gene mode of evolution. These findings are in clear contrast with the views that rapidly evolving regions and the 3rd codon position have inevitable negative impact on phylogenetic reconstruction at deep historic level due to accumulation of multiple hits and subsequent elevation in homoplasy and saturation. Relaxed evolutionary constraint in rapidly evolving genes distributes substitutions across codon positions, an evolutionary mode expected to reduce the frequency of multiple hits. These findings should be tested at deeper evolutionary histories.

  14. Palliating the impact of fixation of a major gene on the genetic variation of artificially selected polygenes.

    PubMed

    Sánchez, Leopoldo; Caballero, Armando; Santiago, Enrique

    2006-10-01

    Selective sweeps of variation caused by fixation of major genes may have a dramatic impact on the genetic gain from background polygenic variation, particularly in the genome regions closely linked to the major gene. The response to selection can be restrained because of the reduced selection intensity and the reduced effective population size caused by the increase in frequency of the major gene. In the context of a selected population where fixation of a known major gene is desired, the question arises as to which is the optimal path of increase in frequency of the gene so that the selective sweep of variation resulting from its fixation is minimized. Using basic theoretical arguments we propose a frequency path that maximizes simultaneously the effective population size applicable to the selected background and the selection intensity on the polygenic variation by minimizing the average squared selection intensity on the major gene over generations up to a given fixation time. We also propose the use of mating between carriers and non-carriers of the major gene, in order to promote the effective recombination between the major gene and its linked polygenic background. Using a locus-based computer simulation assuming different degrees of linkage, we show that the path proposed is more effective than a similar path recently published, and that the combination of the selection and mating methods provides an efficient way to palliate the negative effects of a selective sweep.

  15. The Impact of Selection, Gene Conversion, and Biased Sampling on the Assessment of Microbial Demography

    PubMed Central

    Lapierre, Marguerite; Blin, Camille; Lambert, Amaury; Achaz, Guillaume; Rocha, Eduardo P. C.

    2016-01-01

    Recent studies have linked demographic changes and epidemiological patterns in bacterial populations using coalescent-based approaches. We identified 26 studies using skyline plots and found that 21 inferred overall population expansion. This surprising result led us to analyze the impact of natural selection, recombination (gene conversion), and sampling biases on demographic inference using skyline plots and site frequency spectra (SFS). Forward simulations based on biologically relevant parameters from Escherichia coli populations showed that theoretical arguments on the detrimental impact of recombination and especially natural selection on the reconstructed genealogies cannot be ignored in practice. In fact, both processes systematically lead to spurious interpretations of population expansion in skyline plots (and in SFS for selection). Weak purifying selection, and especially positive selection, had important effects on skyline plots, showing patterns akin to those of population expansions. State-of-the-art techniques to remove recombination further amplified these biases. We simulated three common sampling biases in microbiological research: uniform, clustered, and mixed sampling. Alone, or together with recombination and selection, they further mislead demographic inferences producing almost any possible skyline shape or SFS. Interestingly, sampling sub-populations also affected skyline plots and SFS, because the coalescent rates of populations and their sub-populations had different distributions. This study suggests that extreme caution is needed to infer demographic changes solely based on reconstructed genealogies. We suggest that the development of novel sampling strategies and the joint analyzes of diverse population genetic methods are strictly necessary to estimate demographic changes in populations where selection, recombination, and biased sampling are present. PMID:26931140

  16. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes.

    PubMed

    Ahmetov, Ildus I; Williams, Alun G; Popov, Daniil V; Lyubaeva, Ekaterina V; Hakimullina, Albina M; Fedotovskaya, Olga N; Mozhayskaya, Irina A; Vinogradova, Olga L; Astratenkova, Irina V; Montgomery, Hugh E; Rogozkin, Viktor A

    2009-12-01

    Endurance performance is a complex phenotype subject to the influence of both environmental and genetic factors. Although the last decade has seen a variety of specific genetic factors proposed, many in metabolic pathways, each is likely to make a limited contribution to an 'elite' phenotype: it seems more likely that such status depends on the simultaneous presence of multiple such variants. The aim of the study was to investigate individually and in combination the association of common metabolic gene polymorphisms with endurance athlete status, the proportion of slow-twitch muscle fibers and maximal oxygen consumption. A total of 1,423 Russian athletes and 1,132 controls were genotyped for 15 gene polymorphisms, of which most were previously reported to be associated with athlete status or related intermediate phenotypes. Muscle fiber composition of m. vastus lateralis in 45 healthy men was determined by immunohistochemistry. Maximal oxygen consumption of 50 male rowers of national competitive standard was determined during an incremental test to exhaustion on a rowing ergometer. Ten 'endurance alleles' (NFATC4 Gly160, PPARA rs4253778 G, PPARD rs2016520 C, PPARGC1A Gly482, PPARGC1B 203Pro, PPP3R1 promoter 5I, TFAM 12Thr, UCP2 55Val, UCP3 rs1800849 T and VEGFA rs2010963 C) were first identified showing discrete associations with elite endurance athlete status. Next, to assess the combined impact of all 10 gene polymorphisms, all athletes were classified according to the number of 'endurance' alleles they possessed. The proportion of subjects with a high (≥9) number of 'endurance' alleles was greater in the best endurance athletes compared with controls (85.7 vs. 37.8%, P = 7.6 × 10(-6)). The number of 'endurance' alleles was shown to be positively correlated (r = 0.50; P = 4.0 × 10(-4)) with the proportion of fatigue-resistant slow-twitch fibers, and with maximal oxygen consumption (r = 0.46; P = 7.0 × 10(-4)). These data suggest that the likelihood of

  17. Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis.

    PubMed

    Huang, Li-Hua; Chen, Bing; Kang, Le

    2007-12-01

    The pea leafminer, Liriomyza huidobrensis, is one of the most important economic insect pests around the world. Its population fluctuates greatly with seasonal change in China, and temperature was thought to be one of the important reasons. In attempt to further explore the impact of disadvantageous temperature on L. huidobrensis, 1-day-old adults were shocked at various temperatures (10, 25, 32, and 35 degrees C, respectively) for 4h, and the effects on thermotolerance, feeding, and fecundity were studied. Meanwhile the expression of five heat shock genes (hsp90, 70, 60, 40, and 20) was examined by real-time quantitative PCR. Our results showed that both 32 and 35 degrees C hardenings remarkably increased adult heat resistance, whereas cold tolerance was not improved accordingly. No cross resistance in response to cold and heat stresses was observed. Both adult feeding and fecundity were dramatically reduced, but no effect was observed on egg hatching, larval survival, pupal eclosion, or sex ratio. The results indicate that the deleterious effect on fecundity is the result of direct cessation of oviposition during the period of stress. Simultaneously, the mRNA levels of hsp70 and hsp20 significantly increased upon thermal hardening. Taken together, our results suggest that mild heat hardening improves thermotolerance of L. huidobrensis at the cost of impairment on fecundity, and the induced expression of hsp70 and hsp20 may play an important role in balancing the functional tradeoff.

  18. Global analysis of somatic structural genomic alterations and their impact on gene expression in diverse human cancers

    PubMed Central

    Alaei-Mahabadi, Babak; Karlsson, Joakim W.; Nilsson, Jonas A.; Larsson, Erik

    2016-01-01

    Tumor genomes are mosaics of somatic structural variants (SVs) that may contribute to the activation of oncogenes or inactivation of tumor suppressors, for example, by altering gene copy number amplitude. However, there are multiple other ways in which SVs can modulate transcription, but the general impact of such events on tumor transcriptional output has not been systematically determined. Here we use whole-genome sequencing data to map SVs across 600 tumors and 18 cancers, and investigate the relationship between SVs, copy number alterations (CNAs), and mRNA expression. We find that 34% of CNA breakpoints can be clarified structurally and that most amplifications are due to tandem duplications. We observe frequent swapping of strong and weak promoters in the context of gene fusions, and find that this has a measurable global impact on mRNA levels. Interestingly, several long noncoding RNAs were strongly activated by this mechanism. Additionally, SVs were confirmed in telomere reverse transcriptase (TERT) upstream regions in several cancers, associated with elevated TERT mRNA levels. We also highlight high-confidence gene fusions supported by both genomic and transcriptomic evidence, including a previously undescribed paired box 8 (PAX8)–nuclear factor, erythroid 2 like 2 (NFE2L2) fusion in thyroid carcinoma. In summary, we combine SV, CNA, and expression data to provide insights into the structural basis of CNAs as well as the impact of SVs on gene expression in tumors. PMID:27856756

  19. [Histamine H₁ receptor gene as an allergic diseases-sensitive gene and its impact on therapeutics for allergic diseases].

    PubMed

    Mizuguchi, Hiroyuki; Kitamura, Yoshiaki; Kondo, Yuto; Kuroda, Wakana; Yoshida, Haruka; Miyamoto, Yuko; Hattori, Masashi; Takeda, Noriaki; Fukui, Hiroyuki

    2011-02-01

    Therapeutics targeting disease-sensitive genes are required for the therapy of multifactorial diseases. There is no clinical report on therapeutics for allergic disease-sensitive genes. We are focusing on the histamine H₁ receptor (H1R) as a sensitive gene. H1R mediates allergy histamine signals. H1R is a rate-limiting molecule of the H1R signal because the signal is increased with elevated receptor expression level. We discovered that the stimulation of H1R induced H1R gene expression through PKCδ activation, resulting in receptor upregulation. The mechanism of H1R gene expression was revealed to play a key role in the receptor expression level in studies using cultured HeLa cells and allergic rhinitis model rats. Preseasonal prophylactic treatment with antihistamines is recommended for the therapy of pollinosis. However, the mechanism of the therapy remains to be elucidated. We demonstrated that repeated pretreatment treatment with antihistamines in the allergic rhinitis model rats resulted not only in improvement of symptoms but also in suppressed elevation of H1R mRNA levels in the nasal mucosa. A clinical trial was then initiated. When symptoms and H1R mRNA levels in the nasal mucosa of pollinosis patients with or without preseasonal prophylactic treatment with antihistamines were examined, both symptoms and high levels of H1R mRNA were significantly improved in treated compared with untreated patients. These results strongly suggest that H1R is an allergic disease-sensitive gene.

  20. The impact of microRNAs on transcriptional heterogeneity and gene co-expression across single embryonic stem cells

    PubMed Central

    Gambardella, Gennaro; Carissimo, Annamaria; Chen, Amy; Cutillo, Luisa; Nowakowski, Tomasz J.; di Bernardo, Diego; Blelloch, Robert

    2017-01-01

    MicroRNAs act posttranscriptionally to suppress multiple target genes within a cell population. To what extent this multi-target suppression occurs in individual cells and how it impacts transcriptional heterogeneity and gene co-expression remains unknown. Here we used single-cell sequencing combined with introduction of individual microRNAs. miR-294 and let-7c were introduced into otherwise microRNA-deficient Dgcr8 knockout mouse embryonic stem cells. Both microRNAs induce suppression and correlated expression of their respective gene targets. The two microRNAs had opposing effects on transcriptional heterogeneity within the cell population, with let-7c increasing and miR-294 decreasing the heterogeneity between cells. Furthermore, let-7c promotes, whereas miR-294 suppresses, the phasing of cell cycle genes. These results show at the individual cell level how a microRNA simultaneously has impacts on its many targets and how that in turn can influence a population of cells. The findings have important implications in the understanding of how microRNAs influence the co-expression of genes and pathways, and thus ultimately cell fate. PMID:28102192

  1. Gene patents, patenting life and the impact of court rulings on US stem cell patents and research.

    PubMed

    Matthews, Kirstin R W; Cuchiara, Maude L

    2014-03-01

    In June 2013, the US Supreme Court ruled that naturally occurring genes were unpatentable in the case Association for Molecular Pathology v. Myriad Genetics. Up until this decision, Myriad Genetics was the only company in the USA that could legally conduct diagnostic testing for BRCA1 and 2, genes that are linked to familial breast and ovarian cancer. The court case and rulings garnered discussion in public about patenting biological materials. This paper will describe the progression of the Myriad Genetics case, similar US rulings and biological intellectual property policies. In addition, it will discuss the impact of the case on biological patents - specifically those for human embryonic stem cells.

  2. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes.

    PubMed

    Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut

    2015-08-01

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water.

  3. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics.

    PubMed

    Eckhoff, Philip A; Wenger, Edward A; Godfray, H Charles J; Burt, Austin

    2017-01-10

    The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in various settings and what new tools need to be developed. Gene drive mosquitoes constitute a promising set of tools, with multiple different possible approaches including population replacement with introduced genes limiting malaria transmission, driving-Y chromosomes to collapse a mosquito population, and gene drive disrupting a fertility gene and thereby achieving population suppression or collapse. Each of these approaches has had recent success and advances under laboratory conditions, raising the urgency for understanding how each could be deployed in the real world and the potential impacts of each. New analyses are needed as existing models of gene drive primarily focus on nonseasonal or nonspatial dynamics. We use a mechanistic, spatially explicit, stochastic, individual-based mathematical model to simulate each gene drive approach in a variety of sub-Saharan African settings. Each approach exhibits a broad region of gene construct parameter space with successful elimination of malaria transmission due to the targeted vector species. The introduction of realistic seasonality in vector population dynamics facilitates gene drive success compared with nonseasonal analyses. Spatial simulations illustrate constraints on release timing, frequency, and spatial density in the most challenging settings for construct success. Within its parameter space for success, each gene drive approach provides a tool for malaria elimination unlike anything presently available. Provided potential barriers to success are surmounted, each achieves high efficacy at reducing transmission potential and lower delivery requirements in logistically challenged settings.

  4. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics

    PubMed Central

    Eckhoff, Philip A.; Wenger, Edward A.; Godfray, H. Charles J.; Burt, Austin

    2017-01-01

    The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in various settings and what new tools need to be developed. Gene drive mosquitoes constitute a promising set of tools, with multiple different possible approaches including population replacement with introduced genes limiting malaria transmission, driving-Y chromosomes to collapse a mosquito population, and gene drive disrupting a fertility gene and thereby achieving population suppression or collapse. Each of these approaches has had recent success and advances under laboratory conditions, raising the urgency for understanding how each could be deployed in the real world and the potential impacts of each. New analyses are needed as existing models of gene drive primarily focus on nonseasonal or nonspatial dynamics. We use a mechanistic, spatially explicit, stochastic, individual-based mathematical model to simulate each gene drive approach in a variety of sub-Saharan African settings. Each approach exhibits a broad region of gene construct parameter space with successful elimination of malaria transmission due to the targeted vector species. The introduction of realistic seasonality in vector population dynamics facilitates gene drive success compared with nonseasonal analyses. Spatial simulations illustrate constraints on release timing, frequency, and spatial density in the most challenging settings for construct success. Within its parameter space for success, each gene drive approach provides a tool for malaria elimination unlike anything presently available. Provided potential barriers to success are surmounted, each achieves high efficacy at reducing transmission potential and lower delivery requirements in logistically challenged settings. PMID:28028208

  5. Impact of deletion of envelope-related genes of recombinant Sendai viruses on immune responses following pulmonary gene transfer of neonatal mice.

    PubMed

    Tanaka, S; Yonemitsu, Y; Yoshida, K; Okano, S; Kondo, H; Inoue, M; Hasegawa, M; Masumoto, K; Suita, S; Taguchi, T; Sueishi, K

    2007-07-01

    We demonstrated previously that the additive-type recombinant Sendai virus (rSeV) is highly efficient for use in pulmonary gene transfer; however, rSeV exhibits inflammatory responses. To overcome this problem, we tested newly developed non-transmissible constructs, namely, temperature-sensitive F-deleted vector, rSeV/dF (ts-rSeV/dF) and a rSeV with all the envelope-related genes deleted (rSeV/dFdMdHN), for pulmonary gene transfer in neonatal mice, by assessing their toxicity and immune responses. The gene expression in the lungs of neonatal ICR mice peaked on day 2, then gradually decreased until almost disappearing at 14 days after infection in all constructs. Loss of body weight and mortality rate, however, were dramatically improved in mice treated with SeV/dFdMdHN (mortality=0%, n=41) and ts-rSeV/dF (24.2%, n=33) compared with additive rSeV (70.7%, n=58). Although the deletion of envelope-related genes of SeV had a small impact on the production of antibody and cytotoxic T-lymphocyte activity in both adults and neonates, a dramatic reduction was found in the events related to innate responses, including the production of proinflammatory cytokines, particularly in the case of neonates. These results indicate that pulmonary gene transfer using SeV/dFdMdHN warrants further investigation for its possible use in developing safer therapeutics for neonatal lung diseases, including cystic fibrosis.

  6. Cancer predisposition genes: molecular mechanisms and clinical impact on personalized cancer care: examples of Lynch and HBOC syndromes.

    PubMed

    Wang, Qing

    2016-02-01

    Up to 10% of cancers occur through the inherited mutation of a group of genes called cancer predisposition genes. Individuals who carry a mutant allele of these genes have an increased susceptibility to cancer. A growing number of cancer susceptibility genes are being identified, and the physiopathology of germline mutation-based cancer development is also being elucidated with accumulating clinical and molecular data. More importantly, the identification of familial mutations has become routine practice, which is a perfect example of bench-to-bed translational medicine. Recently, other clinical applications of predisposition genes have been exploited, especially as efficient biomarkers predicting prognosis or response to treatment. Thus, it appears interesting to give an overview of the advances and impacts of predisposition genes in personalized cancer care by taking representative and common cancer syndromes as examples: Lynch syndrome for the first example, which is related to cancer susceptibility, and breast and ovary cancer syndrome for the second example, which involves BRCA deficiency-related targeted therapy.

  7. Evolutionary analysis of multidrug resistance genes in fungi - impact of gene duplication and family conservation.

    PubMed

    Gossani, Cristiani; Bellieny-Rabelo, Daniel; Venancio, Thiago M

    2014-11-01

    Although the emergence of bacterial drug resistance is of great concern to the scientific community, few studies have evaluated this phenomenon systematically in fungi by using genome-wide datasets. In the present study, we assembled a large compendium of Saccharomyces cerevisiae chemical genetic data to study the evolution of multidrug resistance genes (MDRs) in the fungal lineage. We found that MDRs typically emerge in widely conserved families, most of which containing homologs from pathogenic fungi, such as Candida albicans and Coccidioides immitis, which could favor the evolution of drug resistance in those species. By integrating data from chemical genetics with protein family conservation, genetic and protein interactions, we found that gene families rarely have more than one MDR, indicating that paralogs evolve asymmetrically with regard to multidrug resistance roles. Furthermore, MDRs have more genetic and protein interaction partners than non-MDRs, supporting their participation in complex biochemical systems underlying the tolerance to multiple bioactive molecules. MDRs share more chemical genetic interactions with other MDRs than with non-MDRs, regardless of their evolutionary affinity. These results suggest the existence of an intricate system involved in the global drug tolerance phenotypes. Finally, MDRs are more likely to be hit repeatedly by mutations in laboratory evolution experiments, indicating that they have great adaptive potential. The results presented here not only reveal the main genomic features underlying the evolution of MDRs, but also shed light on the gene families from which drug resistance is more likely to emerge in fungi.

  8. Widespread impact of horizontal gene transfer on plant colonization of land

    PubMed Central

    Yue, Jipei; Hu, Xiangyang; Sun, Hang; Yang, Yongping; Huang, Jinling

    2012-01-01

    In complex multicellular eukaryotes such as animals and plants, horizontal gene transfer is commonly considered rare with very limited evolutionary significance. Here we show that horizontal gene transfer is a dynamic process occurring frequently in the early evolution of land plants. Our genome analyses of the moss Physcomitrella patens identified 57 families of nuclear genes that were acquired from prokaryotes, fungi or viruses. Many of these gene families were transferred to the ancestors of green or land plants. Available experimental evidence shows that these anciently acquired genes are involved in some essential or plant-specific activities such as xylem formation, plant defence, nitrogen recycling as well as the biosynthesis of starch, polyamines, hormones and glutathione. These findings suggest that horizontal gene transfer had a critical role in the transition of plants from aquatic to terrestrial environments. On the basis of these findings, we propose a model of horizontal gene transfer mechanism in nonvascular and seedless vascular plants. PMID:23093189

  9. Widespread impact of horizontal gene transfer on plant colonization of land.

    PubMed

    Yue, Jipei; Hu, Xiangyang; Sun, Hang; Yang, Yongping; Huang, Jinling

    2012-01-01

    In complex multicellular eukaryotes such as animals and plants, horizontal gene transfer is commonly considered rare with very limited evolutionary significance. Here we show that horizontal gene transfer is a dynamic process occurring frequently in the early evolution of land plants. Our genome analyses of the moss Physcomitrella patens identified 57 families of nuclear genes that were acquired from prokaryotes, fungi or viruses. Many of these gene families were transferred to the ancestors of green or land plants. Available experimental evidence shows that these anciently acquired genes are involved in some essential or plant-specific activities such as xylem formation, plant defence, nitrogen recycling as well as the biosynthesis of starch, polyamines, hormones and glutathione. These findings suggest that horizontal gene transfer had a critical role in the transition of plants from aquatic to terrestrial environments. On the basis of these findings, we propose a model of horizontal gene transfer mechanism in nonvascular and seedless vascular plants.

  10. Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow.

    PubMed

    Egan, Scott P; Ragland, Gregory J; Assour, Lauren; Powell, Thomas H Q; Hood, Glen R; Emrich, Scott; Nosil, Patrik; Feder, Jeffrey L

    2015-08-01

    Theory predicts that speciation-with-gene-flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome-wide impacts of host-associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation-with-gene-flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co-occurring apple and hawthorn flies in nature. This striking genome-wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco-evolutionary dynamics and genome divergence.

  11. Phylogenetic Diversity of Archaea and the Archaeal Ammonia Monooxygenase Gene in Uranium Mining-Impacted Locations in Bulgaria

    PubMed Central

    Radeva, Galina; Kenarova, Anelia; Bachvarova, Velina; Popov, Ivan; Selenska-Pobell, Sonja

    2014-01-01

    Uranium mining and milling activities adversely affect the microbial populations of impacted sites. The negative effects of uranium on soil bacteria and fungi are well studied, but little is known about the effects of radionuclides and heavy metals on archaea. The composition and diversity of archaeal communities inhabiting the waste pile of the Sliven uranium mine and the soil of the Buhovo uranium mine were investigated using 16S rRNA gene retrieval. A total of 355 archaeal clones were selected, and their 16S rDNA inserts were analysed by restriction fragment length polymorphism (RFLP) discriminating 14 different RFLP types. All evaluated archaeal 16S rRNA gene sequences belong to the 1.1b/Nitrososphaera cluster of Crenarchaeota. The composition of the archaeal community is distinct for each site of interest and dependent on environmental characteristics, including pollution levels. Since the members of 1.1b/Nitrososphaera cluster have been implicated in the nitrogen cycle, the archaeal communities from these sites were probed for the presence of the ammonia monooxygenase gene (amoA). Our data indicate that amoA gene sequences are distributed in a similar manner as in Crenarchaeota, suggesting that archaeal nitrification processes in uranium mining-impacted locations are under the control of the same key factors controlling archaeal diversity. PMID:24711725

  12. Phylogenetic diversity of archaea and the archaeal ammonia monooxygenase gene in uranium mining-impacted locations in Bulgaria.

    PubMed

    Radeva, Galina; Kenarova, Anelia; Bachvarova, Velina; Flemming, Katrin; Popov, Ivan; Vassilev, Dimitar; Selenska-Pobell, Sonja

    2014-01-01

    Uranium mining and milling activities adversely affect the microbial populations of impacted sites. The negative effects of uranium on soil bacteria and fungi are well studied, but little is known about the effects of radionuclides and heavy metals on archaea. The composition and diversity of archaeal communities inhabiting the waste pile of the Sliven uranium mine and the soil of the Buhovo uranium mine were investigated using 16S rRNA gene retrieval. A total of 355 archaeal clones were selected, and their 16S rDNA inserts were analysed by restriction fragment length polymorphism (RFLP) discriminating 14 different RFLP types. All evaluated archaeal 16S rRNA gene sequences belong to the 1.1b/Nitrososphaera cluster of Crenarchaeota. The composition of the archaeal community is distinct for each site of interest and dependent on environmental characteristics, including pollution levels. Since the members of 1.1b/Nitrososphaera cluster have been implicated in the nitrogen cycle, the archaeal communities from these sites were probed for the presence of the ammonia monooxygenase gene (amoA). Our data indicate that amoA gene sequences are distributed in a similar manner as in Crenarchaeota, suggesting that archaeal nitrification processes in uranium mining-impacted locations are under the control of the same key factors controlling archaeal diversity.

  13. [Impact of SIRT1 gene expression on the development and treatment of the metabolic syndrome in oncological patients].

    PubMed

    Wawryka, Joanna; Barg, Ewa

    2016-01-01

    Sirtuins - products of gene SIRT expression have been divided into 7 classes, according to the amino acid composition and location of the cell. Those factors, called longevities proteins, are a group of histone deacetylases, depend on nicotinamide adenine dinucleotide (NAD). Particularly noteworthy is the protein sirtuin 1, which further deacetylates numerous transcription factors, receptors and enzymes. Through its action reduces the activity of glucocorticoid receptors in the body. Products of gene SIRT1 expression is responsible for apoptosis, differentiation, senescence cells, also affect the regulation of carbohydrate and lipid metabolism. Cardioprotective and hypotensive impact is also very important. SIRT1 reduces the accumulation of fat and decreases the risk of visceral obesity. Low gene expression of SIRT1 therefore predispose to the development of metabolic syndrome. Homeostasis sirtuin 1 disorders can also be observed in certain neoplastic diseases, primarily hormone-dependent breast, ovarian and prostate cancer, as well as it can cause leukemias and lymphomas. Components, activating expression of gen SIRT1 or a molecule with biological properties sirtuin 1, may have promising impact for treatment of diabetes mellitus type 2, obesity, hypertension, dyslipidemia. Analyzing, the pleiotropic effect of sirtuin 1 and numerous metabolic pathways, appear to be particularly beneficial effect of supplementation molecules increasing the level of expression gene SIRT1, in treatment of acute lymphoblastic leukemia with using high-dosing glicocorticosteroid therapy. Which would reduce the number of early and late complications of oncological treatment and increase patient survival. Compound requires further study.

  14. Genomic Data Quality Impacts Automated Detection of Lateral Gene Transfer in Fungi

    PubMed Central

    Dupont, Pierre-Yves; Cox, Murray P.

    2017-01-01

    Lateral gene transfer (LGT, also known as horizontal gene transfer), an atypical mechanism of transferring genes between species, has almost become the default explanation for genes that display an unexpected composition or phylogeny. Numerous methods of detecting LGT events all rely on two fundamental strategies: primary structure composition or gene tree/species tree comparisons. Discouragingly, the results of these different approaches rarely coincide. With the wealth of genome data now available, detection of laterally transferred genes is increasingly being attempted in large uncurated eukaryotic datasets. However, detection methods depend greatly on the quality of the underlying genomic data, which are typically complex for eukaryotes. Furthermore, given the automated nature of genomic data collection, it is typically impractical to manually verify all protein or gene models, orthology predictions, and multiple sequence alignments, requiring researchers to accept a substantial margin of error in their datasets. Using a test case comprising plant-associated genomes across the fungal kingdom, this study reveals that composition- and phylogeny-based methods have little statistical power to detect laterally transferred genes. In particular, phylogenetic methods reveal extreme levels of topological variation in fungal gene trees, the vast majority of which show departures from the canonical species tree. Therefore, it is inherently challenging to detect LGT events in typical eukaryotic genomes. This finding is in striking contrast to the large number of claims for laterally transferred genes in eukaryotic species that routinely appear in the literature, and questions how many of these proposed examples are statistically well supported. PMID:28235827

  15. Kinase impact assessment in the landscape of fusion genes that retain kinase domains: a pan-cancer study.

    PubMed

    Kim, Pora; Jia, Peilin; Zhao, Zhongming

    2016-12-24

    Assessing the impact of kinase in gene fusion is essential for both identifying driver fusion genes (FGs) and developing molecular targeted therapies. Kinase domain retention is a crucial factor in kinase fusion genes (KFGs), but such a systematic investigation has not been done yet. To this end, we analyzed kinase domain retention (KDR) status in chimeric protein sequences of 914 KFGs covering 312 kinases across 13 major cancer types. Based on 171 kinase domain-retained KFGs including 101 kinases, we studied their recurrence, kinase groups, fusion partners, exon-based expression depth, short DNA motifs around the break points and networks. Our results, such as more KDR than 5'-kinase fusion genes, combinatorial effects between 3'-KDR kinases and their 5'-partners and a signal transduction-specific DNA sequence motif in the break point intronic sequences, supported positive selection on 3'-kinase fusion genes in cancer. We introduced a degree-of-frequency (DoF) score to measure the possible number of KFGs of a kinase. Interestingly, kinases with high DoF scores tended to undergo strong gene expression alteration at the break points. Furthermore, our KDR gene fusion network analysis revealed six of the seven kinases with the highest DoF scores (ALK, BRAF, MET, NTRK1, NTRK3 and RET) were all observed in thyroid carcinoma. Finally, we summarized common features of 'effective' (highly recurrent) kinases in gene fusions such as expression alteration at break point, redundant usage in multiple cancer types and 3'-location tendency. Collectively, our findings are useful for prioritizing driver kinases and FGs and provided insights into KFGs' clinical implications.

  16. Impact of DNA vector topology on non-viral gene therapeutic safety and efficacy.

    PubMed

    Sum, Chi H; Wettig, Shawn; Slavcev, Roderick A

    2014-01-01

    Gene therapy continues to grow as an emerging treatment strategy toward numerous diseases. However, such prospects are hindered by the use of viral vectors prompting significant safety concerns along with limitations concerning repeat administrations, size of delivered gene construct, scale-up, high production costs, contamination during production, and lack of desired tissue selectivity. Non-viral gene delivery demonstrates the potential to address the abovementioned limitations, but itself generally suffers from low efficacy. Continuing efforts have been made to develop innovative delivery systems, synthetic gene carriers, and DNA vectors in a concerted attempt to enhance gene delivery suitable for clinical applications. In this review, we focus on the advances in the design of novel DNA vectors catered to enhance transfection and transgene expression and their influences on the efficacy and safety of existing and emerging delivery systems and synthetic vectors for non viral gene delivery.

  17. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data

    PubMed Central

    Matthews, Beverley B.; dos Santos, Gilberto; Crosby, Madeline A.; Emmert, David B.; St. Pierre, Susan E.; Gramates, L. Sian; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Strelets, Victor; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3′ UTRs (up to 15–18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts. PMID:26109357

  18. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data.

    PubMed

    Matthews, Beverley B; Dos Santos, Gilberto; Crosby, Madeline A; Emmert, David B; St Pierre, Susan E; Gramates, L Sian; Zhou, Pinglei; Schroeder, Andrew J; Falls, Kathleen; Strelets, Victor; Russo, Susan M; Gelbart, William M

    2015-06-24

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3' UTRs (up to 15-18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts.

  19. Host gene constraints and genomic context impact the expression and evolution of human microRNAs

    PubMed Central

    França, Gustavo S.; Vibranovski, Maria D.; Galante, Pedro A. F.

    2016-01-01

    Increasing evidence has shown that recent miRNAs tend to emerge within coding genes. Here we conjecture that human miRNA evolution is tightly influenced by the genomic context, especially by host genes. Our findings show a preferential emergence of intragenic miRNAs within old genes. We found that miRNAs within old host genes are significantly more broadly expressed than those within young ones. Young miRNAs within old genes are more broadly expressed than their intergenic counterparts, suggesting that young miRNAs have an initial advantage by residing in old genes, and benefit from their hosts' expression control and from the exposure to diverse cellular contexts and target genes. Our results demonstrate that host genes may provide stronger expression constraints to intragenic miRNAs in the long run. We also report associated functional implications, highlighting the genomic context and host genes as driving factors for the expression and evolution of human miRNAs. PMID:27109497

  20. Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution.

    PubMed

    Chandler, Christopher H; Chari, Sudarshan; Dworkin, Ian

    2013-06-01

    The premise of genetic analysis is that a causal link exists between phenotypic and allelic variation. However, it has long been documented that mutant phenotypes are not a simple result of a single DNA lesion, but are instead due to interactions of the focal allele with other genes and the environment. Although an experimentally rigorous approach focused on individual mutations and isogenic control strains has facilitated amazing progress within genetics and related fields, a glimpse back suggests that a vast complexity has been omitted from our current understanding of allelic effects. Armed with traditional genetic analyses and the foundational knowledge they have provided, we argue that the time and tools are ripe to return to the underexplored aspects of gene function and embrace the context-dependent nature of genetic effects. We assert that a broad understanding of genetic effects and the evolutionary dynamics of alleles requires identifying how mutational outcomes depend upon the 'wild type' genetic background. Furthermore, we discuss how best to exploit genetic background effects to broaden genetic research programs.

  1. Aerosol from Tobacco Heating System 2.2 has reduced impact on mouse heart gene expression compared with cigarette smoke.

    PubMed

    Szostak, Justyna; Boué, Stéphanie; Talikka, Marja; Guedj, Emmanuel; Martin, Florian; Phillips, Blaine; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2017-03-01

    Experimental studies clearly demonstrate a causal effect of cigarette smoking on cardiovascular disease. To reduce the individual risk and population harm caused by smoking, alternative products to cigarettes are being developed. We recently reported on an apolipoprotein E-deficient (Apoe(-/-)) mouse inhalation study that compared the effects of exposure to aerosol from a candidate modified risk tobacco product, Tobacco Heating System 2.2 (THS2.2), and smoke from the reference cigarette (3R4F) on pulmonary and vascular biology. Here, we applied a transcriptomics approach to evaluate the impact of the exposure to 3R4F smoke and THS2.2 aerosol on heart tissues from the same cohort of mice. The systems response profiles demonstrated that 3R4F smoke exposure led to time-dependent transcriptomics changes (False Discovery Rate (FDR) < 0.05; 44 differentially expressed genes at 3-months; 491 at 8-months). Analysis of differentially expressed genes in the heart tissue indicated that 3R4F exposure induced the downregulation of genes involved in cytoskeleton organization and the contractile function of the heart, notably genes that encode beta actin (Actb), actinin alpha 4 (Actn4), and filamin C (Flnc). This was accompanied by the downregulation of genes related to the inflammatory response. None of these effects were observed in the group exposed to THS2.2 aerosol.

  2. Transposable elements: insertion pattern and impact on gene expression evolution in hominids.

    PubMed

    Warnefors, Maria; Pereira, Vini; Eyre-Walker, Adam

    2010-08-01

    Transposable elements (TEs) can affect the regulation of nearby genes through several mechanisms. Here, we examine to what extent recent TE insertions have contributed to the evolution of gene expression in hominids. We compare expression levels of human and chimpanzee orthologs and detect a weak increase in expression divergence (ED) for genes with species-specific TE insertions compared with unaffected genes. However, we show that genes with TE insertions predating the human-chimpanzee split also exhibit a similar increase in ED and therefore conclude that the increase is not due to the transcriptional influence of the TEs. These results are further confirmed by lineage-specific analysis of ED, using rhesus macaque as an outgroup: Human-chimpanzee ortholog pairs, where one ortholog has suffered TE insertion but not the other, do not show increased ED along the lineage where the insertion occurred, relative to the other lineage. We also show that genes with recent TE insertions tend to produce more alternative transcripts but find no evidence that the TEs themselves promote transcript diversity. Finally, we observe that TEs are enriched upstream relative to downstream of genes and show that this is due to insertional bias, rather than selection, because this bias is only observed in genes expressed in the germ line. This provides an alternative neutral explanation for the accumulation of TEs in upstream sequences.

  3. UPDATE ON SLA GENES AND THEIR IMPACT ON IMMUNE AND DISEASE INTERACTIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The swine major histocompatibility complex (MHC) or swine leukocyte antigen (SLA) complex is one of the most gene-dense regions in the swine genome. It consists of three major gene clusters, the SLA class I, class III and class II regions, that span ~1.1, 0.7 and 0.5 Mb, respectively, making the swi...

  4. Impact of methionine synthase gene and methylenetetrahydrofolate reductase gene polymorphisms on the risk of sudden sensorineural hearing loss.

    PubMed

    Gross, Menachem; Friedman, Gideon; Eliashar, Ron; Koren-Morag, Nira; Goldschmidt, Neta; Atta, Iman Abou; Ben-Yehuda, Arie

    2006-01-01

    Idiopathic sudden sensorineural hearing loss (SSNHL) represents a frequently encountered otological disease of unknown etiology. In recent years, several inherited risk factors have been found in the pathogenesis of vascular diseases. In the present study, we determined whether specific polymorphism or the combination of polymorphisms in folate-dependent homocysteine metabolism genes can act as predisposing inherited vascular risk factors in the development of SSNHL. We conducted a prospective case-control study using DNA samples extracted from 81 patients diagnosed as suffering from SSNHL and 264 healthy control subjects. Three functional polymorphisms were analyzed by polymerase chain reaction amplification, restriction enzyme digestion, and DNA fragment separation by electrophoresis: methylenetetrahydrofolate reductase (MTHFR) C677T, MTHFR A1298C, and methionine synthase (MTR) A2756G polymorphisms. The prevalence of the homozygous genotype of MTR 2756GG in the SSNHL patients (9%) was significantly higher than in the control group (4%) (p = 0.011). The allelic frequency of the G allele of the MTR A2756G polymorphism among SSNHL patients (12.5%) was also significantly higher than in the control group (5%) (p = 0.033). The prevalence of patients possessing two polymorphisms (31%) and three polymorphisms (17%) in the SSNHL group was significantly higher than in the control group (23 and 9%, respectively; p = 0.019). The frequency of patients with a very high rank risk (double homozygous) was significantly higher in the SSNHL group, MTHFR 677TT/MTR 2675GG--7%, than the frequency of patients in the control group, MTHFR 677TT/MTR 2675GG--3% (p = 0.030). Certain polymorphisms in genes encoding enzymes in the folate-dependent homocysteine metabolism are associated with SSNHL. In our case-control study, a significant association between MTR 2756GG genotype and SSNHL was found which may represent an inherited vascular risk factor in the pathogenesis of SSNHL.

  5. Gene-diet interactions and their impact on colorectal cancer risk

    PubMed Central

    Kantor, Elizabeth D.; Giovannucci, Edward L.

    2015-01-01

    A number of studies have evaluated the role of gene-diet interaction in the etiology of colorectal cancer (CRC). Historically, these studies focused on established dietary risk factors and genes involved in their metabolism. However, results from these candidate gene studies were inconsistent, possibly due to multiple testing and publication bias. In recent years, genome-wide association studies have identified a number of CRC susceptibility loci, and subsequent meta-analyses have observed limited evidence that diet may modify the risk associated with these susceptibility loci. Statistical techniques have been recently developed to evaluate the presence of interaction across the entire genome; results from these genome-wide studies have demonstrated limited evidence of interaction and have failed to replicate results from candidate gene studies and those using established susceptibility loci. However, larger sample sizes are likely needed to elucidate modest or weak interaction in genome-wide studies of gene-diet interaction. PMID:25844273

  6. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones.

    PubMed

    Suzuki, Keiichiro; Yu, Chang; Qu, Jing; Li, Mo; Yao, Xiaotian; Yuan, Tingting; Goebl, April; Tang, Senwei; Ren, Ruotong; Aizawa, Emi; Zhang, Fan; Xu, Xiuling; Soligalla, Rupa Devi; Chen, Feng; Kim, Jessica; Kim, Na Young; Liao, Hsin-Kai; Benner, Chris; Esteban, Concepcion Rodriguez; Jin, Yabin; Liu, Guang-Hui; Li, Yingrui; Izpisua Belmonte, Juan Carlos

    2014-07-03

    The utility of genome editing technologies for disease modeling and developing cellular therapies has been extensively documented, but the impact of these technologies on mutational load at the whole-genome level remains unclear. We performed whole-genome sequencing to evaluate the mutational load at single-base resolution in individual gene-corrected human induced pluripotent stem cell (hiPSC) clones in three different disease models. In single-cell clones, gene correction by helper-dependent adenoviral vector (HDAdV) or Transcription Activator-Like Effector Nuclease (TALEN) exhibited few off-target effects and a low level of sequence variation, comparable to that accumulated in routine hiPSC culture. The sequence variants were randomly distributed and unique to individual clones. We also combined both technologies and developed a TALEN-HDAdV hybrid vector, which significantly increased gene-correction efficiency in hiPSCs. Therefore, with careful monitoring via whole-genome sequencing it is possible to apply genome editing to human pluripotent cells with minimal impact on genomic mutational load.

  7. Impacts of ocean acidification on gene expression and biomineralisation in the Pacific oyster Crassostrea gigas Thunberg, 1793

    NASA Astrophysics Data System (ADS)

    Bagusche, F.; Pouvreau, S.; Trueman, C.; Long, S.; Hauton, C.

    2012-04-01

    The published evidence of impacts of ocean acidification and on marine calcifiers has emphasized the need to understand the molecular mechanisms of biomineralisation. Crassostrea gigas is an ideal organism to examine these processes as: 1) the hatchery rearing of larval stages is well constrained, 2) studies have established an ontogenetic switch in deposition of carbonate polymorphs from aragonite in larval shells to calcite in adults and 3) it is a globally-important commercial species. Research summarized in this presentation will identify some of the molecular mechanisms involved in calcification processes during ontogeny of Crassostrea gigas, as well as possible impacts of changes in environmental conditions such as temperature and pH. Data will be presented from a quantitative real-time PCR study of the changes in gene expression during development in different environments. Additionally scanning electron microscopy and infrared spectroscopy analyses of shell microstructures and composition will be summarised to correlate changes in gene expression with end-point differences in shell structure. Preliminary results suggest that changes in the environmental conditions lead to differences in expression patterns of genes involved in biomineralisation processes. The combined effects of ambient seawater temperature and low pH show the greatest negative effect on larval shell development, identified as malformations, eroded shell surfaces and a significant decrease in shell size. However, the effect of higher seawater temperature seems to amend the effects of ocean acidification on larval shell development.

  8. Impact of pre-existing immunity on gene transfer to nonhuman primate liver with adeno-associated virus 8 vectors.

    PubMed

    Wang, Lili; Calcedo, Roberto; Bell, Peter; Lin, Jianping; Grant, Rebecca L; Siegel, Don L; Wilson, James M

    2011-11-01

    Vectors based on the primate-derived adeno-associated virus serotype 8 (AAV8) are being evaluated in preclinical and clinical models. Natural infections with related AAVs activate memory B cells that produce antibodies capable of modulating the efficacy and safety of the vector. We have evaluated the biology of AAV8 gene transfer in macaque liver, with a focus on assessing the impact of pre-existing humoral immunity. Twenty-one macaques with various levels of AAV neutralizing antibody (NAb) were injected intravenously with AAV8 vector expressing green fluorescent protein. Pre-existing antibody titers in excess of 1:10 substantially diminished hepatocyte transduction that, in the absence of NAbs, was highly efficient. Vector-specific NAb diminished liver deposition of genomes and unexpectedly increased genome distribution to the spleen. The majority of animals showed high-level and stable sequestration of vector capsid protein by follicular dendritic cells of splenic germinal centers. These studies illustrate how natural immunity to a virus that is related to a vector can impact the efficacy and potential safety of in vivo gene therapy. We propose to use the in vitro transduction inhibition assay to evaluate research subjects before gene therapy and to preclude from systemic AAV8 trials those that have titers in excess of 1:10.

  9. Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression.

    PubMed

    Vink, Elizabeth I; Zheng, Yueting; Yeasmin, Rukhsana; Stamminger, Thomas; Krug, Laurie T; Hearing, Patrick

    2015-05-13

    The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interferon-mediated antiviral response. Several E4-ORF3 targets regulate gene expression, linking E4-ORF3 to transcriptional control. Furthermore, E4-ORF3 was shown to promote the formation of heterochromatin, down-regulating p53-dependent gene expression. Here, we characterize how E4-ORF3 alters cellular gene expression. Using an inducible, E4-ORF3-expressing cell line, we performed microarray experiments to highlight cellular gene expression changes influenced by E4-ORF3 expression, identifying over four hundred target genes. Enrichment analysis of these genes suggests that E4-ORF3 influences factors involved in signal transduction and cellular defense, among others. The expression of mutant E4-ORF3 proteins revealed that nuclear track formation is necessary to induce these expression changes. Through the generation of knockdown cells, we demonstrate that the observed expression changes may be independent of Daxx and TRIM33 suggesting that an additional factor(s) may be responsible. The ability of E4-ORF3 to manipulate cellular gene expression through the sequestration of cellular proteins implicates a novel role for E4-ORF3 in transcriptional regulation.

  10. Impact of microRNA regulation on variation in human gene expression

    PubMed Central

    Lu, Jian; Clark, Andrew G.

    2012-01-01

    MicroRNAs (miRNAs) are endogenously expressed small RNAs that regulate expression of mRNAs at the post-transcriptional level. The consequence of miRNA regulation is hypothesized to reduce the expression variation of target genes. However, it is possible that mutations in miRNAs and target sites cause rewiring of the miRNA regulatory networks resulting in increased variation in gene expression. By examining variation in gene expression patterns in human populations and between human and other primate species, we find that miRNAs have stabilized expression of a small number of target genes during primate evolution. Compared with genes not regulated by miRNAs, however, genes regulated by miRNAs overall have higher expression variation at the population level, and they display greater variation in expression among human ethnic groups or between human and other primate species. By integrating expression data with genotypes determined in the HapMap 3 and the 1000 Genomes Projects, we found that expression variation in miRNAs, genetic variants in miRNA loci, and mutations in miRNA target sites are important sources of elevated expression variation of miRNA target genes. A reasonable case can be made that natural selection is driving this pattern of variation. PMID:22456605

  11. Upon Accounting for the Impact of Isoenzyme Loss, Gene Deletion Costs Anticorrelate with Their Evolutionary Rates.

    PubMed

    Jacobs, Christopher; Lambourne, Luke; Xia, Yu; Segrè, Daniel

    2017-01-01

    System-level metabolic network models enable the computation of growth and metabolic phenotypes from an organism's genome. In particular, flux balance approaches have been used to estimate the contribution of individual metabolic genes to organismal fitness, offering the opportunity to test whether such contributions carry information about the evolutionary pressure on the corresponding genes. Previous failure to identify the expected negative correlation between such computed gene-loss cost and sequence-derived evolutionary rates in Saccharomyces cerevisiae has been ascribed to a real biological gap between a gene's fitness contribution to an organism "here and now" and the same gene's historical importance as evidenced by its accumulated mutations over millions of years of evolution. Here we show that this negative correlation does exist, and can be exposed by revisiting a broadly employed assumption of flux balance models. In particular, we introduce a new metric that we call "function-loss cost", which estimates the cost of a gene loss event as the total potential functional impairment caused by that loss. This new metric displays significant negative correlation with evolutionary rate, across several thousand minimal environments. We demonstrate that the improvement gained using function-loss cost over gene-loss cost is explained by replacing the base assumption that isoenzymes provide unlimited capacity for backup with the assumption that isoenzymes are completely non-redundant. We further show that this change of the assumption regarding isoenzymes increases the recall of epistatic interactions predicted by the flux balance model at the cost of a reduction in the precision of the predictions. In addition to suggesting that the gene-to-reaction mapping in genome-scale flux balance models should be used with caution, our analysis provides new evidence that evolutionary gene importance captures much more than strict essentiality.

  12. Aggregation of AcMNPV LEF-10 and Its Impact on Viral Late Gene Expression

    PubMed Central

    Xu, Xiaodong; Zhou, Xinyu; Nan, Hao; Zhao, Yu; Bai, Yu; Ou, Yanmei; Chen, Hongying

    2016-01-01

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) late expression factor gene lef-10 has been identified to be required for viral late gene expression by transient expression assay. Our previous work has shown that the gene product LEF-10 can form very stable high-molecular-weight complexes, but the structure and function of the protein remain unknown. In this study, we demonstrated that LEF-10 was essential for the replication of AcMNPV, and its truncated fragment containing amino acid residues 1 to 48 were sufficient to support the virus survival. Our data also suggested that the LEF-10 could spontaneously aggregate to form punctate spots in virus infected Sf9 cells at low frequency, and the aggregation of the protein could be induced by LEF-10 over-expression. When the protein aggregated to form punctate spots, soluble LEF-10 proteins were depleted and this could result in the down-regulation of viral late gene expression. PMID:27152613

  13. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.

    PubMed

    Pellagatti, Andrea; Boultwood, Jacqueline

    2017-01-01

    Splicing factor gene mutations are the most frequent mutations found in patients with the myeloid malignancy myelodysplastic syndrome (MDS), suggesting that spliceosomal dysfunction plays a major role in disease pathogenesis. The aberrantly spliced target genes and deregulated cellular pathways associated with the commonly mutated splicing factor genes in MDS (SF3B1, SRSF2 and U2AF1) are being identified, illuminating the molecular mechanisms underlying MDS. Emerging data from mouse modeling studies indicate that the presence of splicing factor gene mutations can lead to bone marrow hematopoietic stem/myeloid progenitor cell expansion, impaired hematopoiesis and dysplastic differentiation that are hallmarks of MDS. Importantly, recent evidence suggests that spliceosome inhibitors and splicing modulators may have therapeutic value in the treatment of splicing factor mutant myeloid malignancies.

  14. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste

    PubMed Central

    Durso, Lisa M.; Harhay, Dayna M.; Schmidt, John W.

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two “low impact” environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  15. Impact of smoking cessation on global gene expression in the bronchial epithelium of chronic smokers

    PubMed Central

    Zhang, Li; Lee, Jack; Tang, Hongli; Fan, You-Hong; Xiao, Lianchun; Ren, Hening; Kurie, Jonathan; Morice, Rodolfo C; Hong, Waun Ki; Mao, Li

    2014-01-01

    Cigarette smoke is the major cause of lung cancer and can interact in complex ways with drugs for lung cancer prevention or therapy. Molecular genetic research promises to elucidate the biologic mechanisms underlying divergent drug effects in smokers versus non-smokers and to help in developing new approaches for controlling lung cancer. The present study compared global gene expression profiles (determined via Affymetrix microarray measurements in bronchial epithelial cells) between chronic smokers, former smokers, and never smokers. Smoking effects on global gene expression were determined from a combined analysis of three independent datasets. Differential expression between current and never smokers occurred in 591 of the 13,902 genes measured on the microarrays (P < 0.01 and >2 fold change; pooled data)—a profound effect. In contrast, differential expression between current and former smokers occurred in only 145 of the measured genes (P < 0.01 and >2 fold change; pooled data). Nine of these 145 genes showed consistent and significant changes in each of the three datasets (P < 0.01 and >2 fold change), with 8 being down-regulated in former smokers. Seven of the 8 down-regulated genes, including CYP1B1 and 3 AKR genes, influence the metabolism of carcinogens and/or therapeutic/chemopreventive agents. Our data comparing former and current smokers allowed us to pinpoint the genes involved in smoking–drug interactions in lung cancer prevention and therapy. These findings have important implications for developing new targeted and dosing approaches for prevention and therapy in the lung and other sites, highlighting the importance of monitoring smoking status in patients receiving oncologic drug interventions. PMID:19138944

  16. Complex MHC class I gene transcription profiles and their functional impact in orangutans

    PubMed Central

    de Groot, Natasja G.; Heijmans, Corrine M.C.; van der Wiel, Marit K.H.; Blokhuis, Jeroen H.; Mulder, Arend; Guethlein, Lisbeth A.; Doxiadis, Gaby G.M.; Claas, Frans H.J.; Parham, Peter; Bontrop, Ronald E.

    2015-01-01

    MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented here. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by KIR. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I antibodies, the level of cell-surface expression of proteins correlates with the level of transcription of the allele. PMID:26685209

  17. The Genomic Impact of DNA CpG Methylation on Gene Expression; Relationships in Prostate Cancer.

    PubMed

    Long, Mark D; Smiraglia, Dominic J; Campbell, Moray J

    2017-02-14

    The process of DNA CpG methylation has been extensively investigated for over 50 years and revealed associations between changing methylation status of CpG islands and gene expression. As a result, DNA CpG methylation is implicated in the control of gene expression in developmental and homeostasis processes, as well as being a cancer-driver mechanism. The development of genome-wide technologies and sophisticated statistical analytical approaches has ushered in an era of widespread analyses, for example in the cancer arena, of the relationships between altered DNA CpG methylation, gene expression, and tumor status. The remarkable increase in the volume of such genomic data, for example, through investigators from the Cancer Genome Atlas (TCGA), has allowed dissection of the relationships between DNA CpG methylation density and distribution, gene expression, and tumor outcome. In this manner, it is now possible to test that the genome-wide correlations are measurable between changes in DNA CpG methylation and gene expression. Perhaps surprisingly is that these associations can only be detected for hundreds, but not thousands, of genes, and the direction of the correlations are both positive and negative. This, perhaps, suggests that CpG methylation events in cancer systems can act as disease drivers but the effects are possibly more restricted than suspected. Additionally, the positive and negative correlations suggest direct and indirect events and an incomplete understanding. Within the prostate cancer TCGA cohort, we examined the relationships between expression of genes that control DNA methylation, known targets of DNA methylation and tumor status. This revealed that genes that control the synthesis of S-adenosyl-l-methionine (SAM) associate with altered expression of DNA methylation targets in a subset of aggressive tumors.

  18. Impact of thawing on reference gene expression stability in renal cell carcinoma samples.

    PubMed

    Ma, Yi; Dai, HuiLi; Kong, XianMing; Wang, LiMin

    2012-09-01

    More and more samples are obtained from biobanks for biomedical research; however, some of these samples may undergo thawing before processing. We aim to evaluate the reference gene expression stability in thawed renal cell carcinoma samples. Sixteen matched malignant and nonmalignant renal tissue samples were obtained and each sample was divided into 4 aliquots before being snap frozen and stored at -80°C. By quantitative real-time polymerase chain reaction, a time-course study was conducted on the thawed tissue to evaluate the expression stability of a panel of the 10 most frequently used reference genes in renal cell carcinom samples: ACTB, ALAS1, B2M, GAPDH, HMBS, HPRT, PPIA, RPLP0,TBP, and TUBB. As shown by geNorm M values, PPIA was the most stable gene at the 0-, 15-, and 30-minute time points (M=0.82, 0.85, and 0.76, respectively), whereas GAPDH was ranked last at the 5-, 15-, and 30-minute time points (M=1.38, 1.44, and 1.39, respectively). A positive correlation was found by linear regression between the thawing time and 2 to the power of crossing point values of all candidate reference genes (P<0.05). The mean coefficient of variance of all reference genes increased significantly at time points 5, 15, and 30 minutes compared with 0 minutes (P<0.01). In conclusion, using the geNorm algorithm, PPIA was identified as the most stably expressed gene between malignant and nonmalignant renal tissue samples that were thawed for similar time periods. All the reference genes showed high variations along with the thawing time; it should be recommended to use a combination of several candidate reference genes when comparing samples thawed for different time periods.

  19. Impact of gene patents and licensing practices on access to genetic testing for hearing loss.

    PubMed

    Chandrasekharan, Subhashini; Fiffer, Melissa

    2010-04-01

    Genetic testing for heritable hearing loss involves a mix of patented and unpatented genes, mutations and testing methods. More than half of all hearing loss is linked to inherited mutations, and five genes are most commonly tested for in the United States. There are no patents on three of these genes, but Athena Diagnostics holds exclusive licenses to test for a common mutation in the GJB2 gene associated with about 50% of all cases as well as mutations in the MTRNR1 gene. This fragmented intellectual property landscape made hearing loss a useful case study to assess whether patent rights in genetic testing can proliferate or overlap, and whether it is possible to gather the rights necessary to perform testing. Testing for hearing loss is widely available, primarily from academic medical centers. Based on literature reviews and interviews with researchers, research on the genetics of hearing loss has generally not been impeded by patents. There is no consistent evidence of a premium in testing prices attributable to patent status. Athena Diagnostics has, however, used its intellectual property to discourage other providers from offering some tests. There is no definitive answer about the suitability of current patenting and licensing of commonly tested genes because of continuing legal uncertainty about the extent of enforcement of patent rights. Clinicians have also expressed concerns that multiplex tests will be difficult to develop because of overlapping intellectual property and conflict with Athena's sole provider business model.

  20. An integrative study on the impact of highly differentially methylated genes on expression and cancer etiology

    PubMed Central

    2017-01-01

    DNA methylation is an important epigenetic phenomenon that plays a key role in the regulation of expression. Most of the studies on the topic of methylation’s role in cancer mechanisms include analyses based on differential methylation, with the integration of expression information as supporting evidence. In the present study, we sought to identify methylation-driven patterns by also integrating protein-protein interaction information. We performed integrative analyses of DNA methylation, expression, SNP and copy number data on paired samples from six different cancer types. As a result, we found that genes that show a methylation change larger than 32.2% may influence cancer-related genes via fewer interaction steps and with much higher percentages compared with genes showing a methylation change less than 32.2%. Additionally, we investigated whether there were shared cancer mechanisms among different cancer types. Specifically, five cancer types shared a change in AGTR1 and IGF1 genes, which implies that there may be similar underlying disease mechanisms among these cancers. Additionally, when the focus was placed on distinctly altered genes within each cancer type, we identified various cancer-specific genes that are also supported in the literature and may play crucial roles as therapeutic targets. Overall, our novel graph-based approach for identifying methylation-driven patterns will improve our understanding of the effects of methylation on cancer progression and lead to improved knowledge of cancer etiology. PMID:28178311

  1. Stocking impacts the expression of candidate genes and physiological condition in introgressed brook charr (Salvelinus fontinalis) populations

    PubMed Central

    Lamaze, Fabien C; Garant, Dany; Bernatchez, Louis

    2013-01-01

    Translocation of plants and animal populations between environments is one of the major forms of anthropogenic perturbation experienced by pristine populations, and consequently, human-mediated hybridization by stocking practices between wild and exogenous conspecifics is of increasing concern. In this study, we compared the expression of seven candidate genes involved in multifactorial traits and regulatory pathways for growth as a function of level of introgressive hybridization between wild and domestic brook charr to test the null hypothesis of no effect of introgression on wild fish. Our analyses revealed that the expression of two of the genes tested, cytochrome c oxidase VIIa and the growth hormone receptor isoform I, was positively correlated with the level of introgression. We also observed a positive relationship between the extent of introgression and physiological status quantified by the Fulton's condition index. The expression of other genes was influenced by other variables, including year of sampling (reflecting different thermal conditions), sampling method and lake of origin. This is the first demonstration in nature that introgression from stocked populations has an impact on the expression of genes playing a role in important biological functions that may be related with fitness in wild introgressed populations. PMID:23467764

  2. Identification of Nucleotide-Level Changes Impacting Gene Content and Genome Evolution in Orthopoxviruses

    PubMed Central

    Hatcher, Eneida L.; Hendrickson, Robert Curtis

    2014-01-01

    ABSTRACT Poxviruses are composed of large double-stranded DNA (dsDNA) genomes coding for several hundred genes whose variation has supported virus adaptation to a wide variety of hosts over their long evolutionary history. Comparative genomics has suggested that the Orthopoxvirus genus in particular has undergone reductive evolution, with the most recent common ancestor likely possessing a gene complement consisting of all genes present in any existing modern-day orthopoxvirus species, similar to the current Cowpox virus species. As orthopoxviruses adapt to new environments, the selection pressure on individual genes may be altered, driving sequence divergence and possible loss of function. This is evidenced by accumulation of mutations and loss of protein-coding open reading frames (ORFs) that progress from individual missense mutations to gene truncation through the introduction of early stop mutations (ESMs), gene fragmentation, and in some cases, a total loss of the ORF. In this study, we have constructed a whole-genome alignment for representative isolates from each Orthopoxvirus species and used it to identify the nucleotide-level changes that have led to gene content variation. By identifying the changes that have led to ESMs, we were able to determine that short indels were the major cause of gene truncations and that the genome length is inversely proportional to the number of ESMs present. We also identified the number and types of protein functional motifs still present in truncated genes to assess their functional significance. IMPORTANCE This work contributes to our understanding of reductive evolution in poxviruses by identifying genomic remnants such as single nucleotide polymorphisms (SNPs) and indels left behind by evolutionary processes. Our comprehensive analysis of the genomic changes leading to gene truncation and fragmentation was able to detect some of the remnants of these evolutionary processes still present in orthopoxvirus genomes and

  3. Upon Accounting for the Impact of Isoenzyme Loss, Gene Deletion Costs Anticorrelate with Their Evolutionary Rates

    PubMed Central

    Xia, Yu; Segrè, Daniel

    2017-01-01

    System-level metabolic network models enable the computation of growth and metabolic phenotypes from an organism’s genome. In particular, flux balance approaches have been used to estimate the contribution of individual metabolic genes to organismal fitness, offering the opportunity to test whether such contributions carry information about the evolutionary pressure on the corresponding genes. Previous failure to identify the expected negative correlation between such computed gene-loss cost and sequence-derived evolutionary rates in Saccharomyces cerevisiae has been ascribed to a real biological gap between a gene’s fitness contribution to an organism “here and now” and the same gene’s historical importance as evidenced by its accumulated mutations over millions of years of evolution. Here we show that this negative correlation does exist, and can be exposed by revisiting a broadly employed assumption of flux balance models. In particular, we introduce a new metric that we call “function-loss cost”, which estimates the cost of a gene loss event as the total potential functional impairment caused by that loss. This new metric displays significant negative correlation with evolutionary rate, across several thousand minimal environments. We demonstrate that the improvement gained using function-loss cost over gene-loss cost is explained by replacing the base assumption that isoenzymes provide unlimited capacity for backup with the assumption that isoenzymes are completely non-redundant. We further show that this change of the assumption regarding isoenzymes increases the recall of epistatic interactions predicted by the flux balance model at the cost of a reduction in the precision of the predictions. In addition to suggesting that the gene-to-reaction mapping in genome-scale flux balance models should be used with caution, our analysis provides new evidence that evolutionary gene importance captures much more than strict essentiality. PMID:28107392

  4. Impact of the IL-10 Promoter Gene Polymorphisms in the Severity of Chronic Hepatitis B Infection

    PubMed Central

    Ghaleh Baghi, Sahand; Alavian, Seyed Moayed; Mehrnoush, Leila; Salimi, Shima

    2015-01-01

    Background: Interleukin-10 (IL-10) is an important anti-inflammatory cytokine. The polymorphisms of its promoter gene have been considered to be related with the chronicity of hepatitis B infection. Objectives: The aim of this study was to evaluate the polymorphisms at different positions in the IL-10 promoter gene in patients with chronic hepatitis B. Patients and Methods: Totally, 166 patients with chronic hepatitis B infection were enrolled. Genotypes at different positions (i.e. -819, - 592, and - 1082) in the IL-10 gene promoter were determined. Results: The C/A genotype at position -592, C/T genotype at position -819, and GCC/ATA haplotype of the IL-10 gene promoter were significantly more common in the patients with cirrhosis. The genotypes were significantly different between the hepatitis B e antigen (HBeAg)-negative and HBeAg-positive patients at position -592 (C/A and C/C), position -819 (C/C and C/T), and position -1082 (A/A and G/A). Conclusions: Some IL-10 promoter gene polymorphisms predisposed the infected hepatitis B virus cases to cirrhosis in our study population. PMID:26300930

  5. Impact of gene patents and licensing practices on access to genetic testing for Alzheimer disease.

    PubMed

    Skeehan, Katie; Heaney, Christopher; Cook-Deegan, Robert

    2010-04-01

    Genetic testing for Alzheimer disease includes genotyping for apolipoprotein E, for late-onset Alzheimer disease, and three rare autosomal dominant, early-onset forms of Alzheimer disease associated with different genes (APP, PSEN1, and PSEN2). According to researchers, patents have not impeded research in the field, nor were patents an important consideration in the quest for the genetic risk factors. Athena Diagnostics holds exclusive licenses from Duke University for three "method" patents covering apolipoprotein E genetic testing. Athena offers tests for apolipoprotein E and genes associated with early-onset, autosomal-dominant Alzheimer disease. One of those presenilin genes is patented and exclusively licensed to Athena; the other presenilin gene was patented but the patent was allowed to lapse; and one (amyloid precursor protein) is patented as a research tool. Direct-to-consumer testing is available for some Alzheimer disease-related genes, apparently without a license. Athena Diagnostics consolidated its position in the market for Alzheimer disease genetic testing by collecting exclusive rights to patents arising from university research. Duke University also used its licenses to Athena to enforce adherence to clinical guidelines, including elimination of the service from Smart Genetics, which was offering direct-to-consumer risk assessment based on apolipoprotein E genotyping.

  6. Genes

    MedlinePlus

    ... Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Genes URL of this page: //medlineplus.gov/ency/article/ ...

  7. Interactions between DNA and Gemini surfactant: impact on gene therapy: part I.

    PubMed

    Ahmed, Taksim; Kamel, Amany O; Wettig, Shawn D

    2016-02-01

    Nonviral gene therapy using gemini surfactants is a unique approach to medicine that can be adapted toward the treatment of various diseases. Recently, gemini surfactants have been utilized as candidates for the formation of nonviral vectors. The chemical structure of the surfactant (variations in the alkyl tail length and spacer/head group) and the resulting physicochemical properties of the lipoplexes are critical parameters for efficient gene transfection. Moreover, studying the interaction of the surfactant with DNA can help in designing an efficient vector and understanding how transfection complexes overcome various cellular barriers. Part I of this review provides an overview of various types of gemini surfactants designed for gene therapy and their transfection efficiency; and Part II will focus on different novel methods utilized to understand the interactions between the gemini and DNA in a lipoplex.

  8. Impact of Natural IgM Concentration on Gene Therapy with Adenovirus Type 5 Vectors

    PubMed Central

    Qiu, Qi; Xu, Zhili; Tian, Jie; Moitra, Rituparna; Gunti, Sreenivasulu; Notkins, Abner L.

    2014-01-01

    Natural IgM inhibits gene transfer by adenovirus type 5 (Ad5) vectors. We show that polyreactive natural IgM antibodies bind to Ad5 and that inhibition of liver transduction by IgM depends on Kupffer cells. By manipulating IgM concentration in vivo, we demonstrate that IgM inhibits liver transduction in a concentration-dependent manner. We further show that differences in natural IgM between BALB/c and C57BL/6 mice contribute to lower efficiency of Ad5 gene transfer in BALB/c mice. PMID:25552715

  9. Frequency of undetected CYP2D6 hybrid genes in clinical samples: impact on phenotype prediction.

    PubMed

    Black, John Logan; Walker, Denise L; O'Kane, Dennis J; Harmandayan, Maria

    2012-01-01

    Cytochrome P450 2D6 (CYP2D6) is highly polymorphic. CYP2D6-2D7 hybrid genes can be present in samples containing CYP2D6*4 and CYP2D6*10 alleles. CYP2D7-2D6 hybrid genes can be present in samples with duplication signals and in samples with homozygous genotyping results. The frequency of hybrid genes in clinical samples is unknown. We evaluated 1390 samples for undetected hybrid genes by polymerase chain reaction (PCR) amplification, PCR fragment analysis, TaqMan copy number assays, DNA sequencing, and allele-specific primer extension assay. Of 508 CYP2D6*4-containing samples, 109 (21.5%) harbored CYP2D6*68 + *4-like, whereas 9 (1.8%) harbored CYP2D6*4N + *4-like. Of 209 CYP2D6*10-containing samples, 44 (21.1%) were found to have CYP2D6*36 + *10. Of 332 homozygous samples, 4 (1.2%) harbored a single CYP2D7-2D6 hybrid, and of 341 samples with duplication signals, 25 (7.3%) harbored an undetected CYP2D7-2D6 hybrid. Phenotype before and after accurate genotyping was predicted using a method in clinical use. The presence of hybrid genes had no effect on the phenotype prediction of CYP2D6*4- and CYP2D6*10-containing samples. Four of four (100%) homozygous samples containing a CYP2D7-2D6 gene had a change in predicted phenotype, and 23 of 25 (92%) samples with a duplication signal and a CYP2D7-2D6 gene had a change in predicted phenotype. Four novel genes were identified (CYP2D6*13A1 variants 1 and 2, CYP2D6*13G1, and CYP2D6*13G2), and two novel hybrid tandem structures consisting of CYP2D6*13B + *68×2 + *4-like and CYP2D6*13A1 variant 2 + *1×N were observed.

  10. Impact of I/D polymorphism of ACE gene on risk of development and course of chronic obstructive pulmonary disease

    PubMed Central

    Homa-Mlak, Iwona; Powrózek, Tomasz; Mackiewicz, Barbara; Michnar, Marek; Krawczyk, Paweł; Dziedzic, Marcin; Rubinsztajn, Renata; Chazan, Ryszarda; Milanowski, Janusz; Małecka-Massalska, Teresa

    2016-01-01

    Introduction Chronic obstructive pulmonary disease (COPD) affects more than 10% of the world's population over 40 years of age. The main exogenous risk factor is cigarette smoking; however, only 20% of smokers develop COPD, indicating that some other factors, e.g. genetic, may play an important role in the disease pathogenesis. Recent research indicates that ACE (angiotensin-converting enzyme) may be a susceptibility gene for asthma or COPD. The aim of our study was to determine the influence of I/D (insertion/deletion) polymorphism of the ACE gene (AluYa5, rs4646994) on the risk and course of COPD. Material and methods We investigated ACE I/D polymorphism in 206 COPD and 165 healthy Caucasian subjects. Results In the generalized linear model (GLZ) analysis of the influence of selected factors on presence of COPD we found a significant independent effect for male sex (repeatedly increases the risk of COPD, OR = 7.7, p = 0.049), as well as smoking or lower body mass index, but only in combination with older age (OR = 0.96, p = 0.003 and OR = 1.005, p = 0.04 respectively). Interestingly, analysis of factors which may influence the risk of a higher number of exacerbations demonstrated that occurrence of DD genotype, but only in men, is associated with a lower risk (OR = 0.7, p = 0.03) of this complication. Conclusions We suggest that ACE may not be a susceptibility gene for the origin of COPD but a disease-modifying gene. Since the impact of I/D polymorphism of the ACE gene on COPD risk is moderate or negligible, other molecular changes, that will help predict the development of this disease, should still be sought. PMID:27186170

  11. Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression

    PubMed Central

    Degiacomi, Giulia; Benjak, Andrej; Madacki, Jan; Boldrin, Francesca; Provvedi, Roberta; Palù, Giorgio; Kordulakova, Jana; Cole, Stewart T.; Manganelli, Riccardo

    2017-01-01

    MmpL3 is an inner membrane transporter of Mycobacterium tuberculosis responsible for the export of trehalose momomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. MmpL3 represents an emerging target for tuberculosis therapy. In this paper, we describe the construction and characterization of an mmpL3 knockdown strain of M. tuberculosis. Downregulation of mmpL3 led to a stop in bacterial division and rapid cell death, preceded by the accumulation of TDM precursors. MmpL3 was also shown to be essential for growth in monocyte-derived human macrophages. Using RNA-seq we also found that MmpL3 depletion caused up-regulation of 47 genes and down-regulation of 23 genes (at least 3-fold change and false discovery rate ≤1%). Several genes related to osmoprotection and metal homeostasis were induced, while several genes related to energy production and mycolic acids biosynthesis were repressed suggesting that inability to synthesize a correct outer membrane leads to changes in cellular permeability and a metabolic downshift. PMID:28240248

  12. Gene-environment interactions and the impact on obesity and lipid profile phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequencing the human genome provided the data, human intellectual capital and technology, particularly in terms of infrastructure and methodologies, to begin discovering genes involved in a wide range of human diseases and afflictions. This has led to a resurgence in genetics with the advent of geno...

  13. Impact of treatment strategies on cephalosporin and tetracycline resistance gene quantities in the bovine fecal metagenome

    PubMed Central

    Kanwar, Neena; Scott, H. Morgan; Norby, Bo; Loneragan, Guy H.; Vinasco, Javier; Cottell, Jennifer L.; Chalmers, Gabhan; Chengappa, Muckatira M.; Bai, Jianfa; Boerlin, Patrick

    2014-01-01

    The study objective was to determine the effects of two treatment regimens on quantities of ceftiofur and tetracycline resistance genes in feedlot cattle. The two regimens were ceftiofur crystalline-free acid (CCFA) administered to either one or all steers within a pen and subsequent feeding/not feeding of therapeutic doses of chlortetracycline. A 26-day randomized controlled field trial was conducted on 176 steers. Real-time PCR was used to quantify blaCMY-2, blaCTX-M, tet(A), tet(B), and 16S rRNA gene copies/gram of feces from community DNA. A significant increase in ceftiofur resistance and a decrease in tetracycline resistance elements were observed among the treatment groups in which all steers received CCFA treatment, expressed as gene copies/gram of feces. Subsequent chlortetracycline administration led to rapid expansion of both ceftiofur and tetracycline resistance gene copies/gram of feces. Our data suggest that chlortetracycline is contraindicated when attempting to avoid expansion of resistance to critically important third-generation cephalosporins. PMID:24872333

  14. The Protein Kinase KIS Impacts Gene Expression during Development and Fear Conditioning in Adult Mice

    PubMed Central

    Manceau, Valérie; Kremmer, Elisabeth; Nabel, Elizabeth G.; Maucuer, Alexandre

    2012-01-01

    The brain-enriched protein kinase KIS (product of the gene UHMK1) has been shown to phosphorylate the human splicing factor SF1 in vitro. This phosphorylation in turn favors the formation of a U2AF65-SF1-RNA complex which occurs at the 3′ end of introns at an early stage of spliceosome assembly. Here, we analyzed the effects of KIS knockout on mouse SF1 phosphorylation, physiology, adult behavior, and gene expression in the neonate brain. We found SF1 isoforms are differently expressed in KIS-ko mouse brains and fibroblasts. Re-expression of KIS in fibroblasts restores a wild type distribution of SF1 isoforms, confirming the link between KIS and SF1. Microarray analysis of transcripts in the neonate brain revealed a subtle down-regulation of brain specific genes including cys-loop ligand-gated ion channels and metabolic enzymes. Q-PCR analyses confirmed these defects and point to an increase of pre-mRNA over mRNA ratios, likely due to changes in splicing efficiency. While performing similarly in prepulse inhibition and most other behavioral tests, KIS-ko mice differ in spontaneous activity and contextual fear conditioning. This difference suggests that disregulation of gene expression due to KIS inactivation affects specific brain functions. PMID:22937132

  15. Meiotic drive impacts expression and evolution of x-linked genes in stalk-eyed flies.

    PubMed

    Reinhardt, Josephine A; Brand, Cara L; Paczolt, Kimberly A; Johns, Philip M; Baker, Richard H; Wilkinson, Gerald S

    2014-01-01

    Although sex chromosome meiotic drive has been observed in a variety of species for over 50 years, the genes causing drive are only known in a few cases, and none of these cases cause distorted sex-ratios in nature. In stalk-eyed flies (Teleopsis dalmanni), driving X chromosomes are commonly found at frequencies approaching 30% in the wild, but the genetic basis of drive has remained elusive due to reduced recombination between driving and non-driving X chromosomes. Here, we used RNAseq to identify transcripts that are differentially expressed between males carrying either a driving X (XSR) or a standard X chromosome (XST), and found hundreds of these, the majority of which are X-linked. Drive-associated transcripts show increased levels of sequence divergence (dN/dS) compared to a control set, and are predominantly expressed either in testes or in the gonads of both sexes. Finally, we confirmed that XSR and XST are highly divergent by estimating sequence differentiation between the RNAseq pools. We found that X-linked transcripts were often strongly differentiated (whereas most autosomal transcripts were not), supporting the presence of a relatively large region of recombination suppression on XSR presumably caused by one or more inversions. We have identified a group of genes that are good candidates for further study into the causes and consequences of sex-chromosome drive, and demonstrated that meiotic drive has had a profound effect on sequence evolution and gene expression of X-linked genes in this species.

  16. Differential Impact of the "FMR1" Gene on Visual Processing in Fragile X Syndrome

    ERIC Educational Resources Information Center

    Kogan, Cary S.; Boutet, Isabelle; Cornish, Kim; Zangenehpour, Shahin; Mullen, Kathy T.; Holden, Jeanette J. A.; Kaloustian, Vazken M. Der; Andermann, Eva; Chaudhuri, Avi

    2004-01-01

    Fragile X syndrome (FXS) is the most common form of heritable mental retardation, affecting (~ around) 1 in 4000 males. The syndrome arises from expansion of a trinucleotide repeat in the 5'-untranslated region of the fragile X mental retardation 1 ("FMR1") gene, leading to methylation of the promoter sequence and lack of the fragile X mental…

  17. Population diversity and adaptive evolution in keratinization genes: impact of environment in shaping skin phenotypes.

    PubMed

    Gautam, Pramod; Chaurasia, Amit; Bhattacharya, Aniket; Grover, Ritika; Mukerji, Mitali; Natarajan, Vivek T

    2015-03-01

    Several studies have demonstrated the role of climatic factors in shaping skin phenotypes, particularly pigmentation. Keratinization is another well-designed feature of human skin, which is involved in modulating transepidermal water loss (TEWL). Although this physiological process is closely linked to climate, presently it is not clear whether genetic diversity is observed in keratinization and whether this process also responds to the environmental pressure. To address this, we adopted a multipronged approach, which involved analysis of 1) copy number variations in diverse Indian and HapMap populations from varied geographical regions; 2) genetic association with geoclimatic parameters in 61 populations of dbCLINE database in a set of 549 genes from four processes namely keratinization, pigmentation, epidermal differentiation, and housekeeping functions; 3) sequence divergence in 4,316 orthologous promoters and corresponding exonic regions of human and chimpanzee with macaque as outgroup, and 4) protein sequence divergence (Ka/Ks) across nine vertebrate classes, which differ in their extent of TEWL. Our analyses demonstrate that keratinization and epidermal differentiation genes are under accelerated evolution in the human lineage, relative to pigmentation and housekeeping genes. We show that this entire pathway may have been driven by environmental selection pressure through concordant functional polymorphisms across several genes involved in skin keratinization. Remarkably, this underappreciated function of skin may be a crucial determinant of adaptation to diverse environmental pressures across world populations.

  18. Potential impact of a single nucleotide polymorphism in the hyaluronan synthase 1 gene in Waldenstrom's macroglobulinemia.

    PubMed

    Adamia, Sophia; Treon, Steven P; Reiman, Tony; Tournilhac, Olivier; McQuarrie, Carrie; Mant, Michael J; Belch, Andrew R; Pilarski, Linda M

    2005-03-01

    The hyaluronan synthase 1 (HAS1) gene encodes a plasma membrane protein that synthesizes hyaluronan, an extracellular matrix molecule. Previously, in patients with Waldenstrom's macroglobulinemia (WM), we detected upregulation of HAS1 transcripts and identified aberrant splice variants of this gene. Aberrant splicing of HAS1 results from activation of cryptic splice sites. In turn, activation of cryptic donor and acceptor splice sites can be promoted by mutations occurring upstream of these sites and/or at the branch point of slicing. We measured the frequency of the HAS1 833A/G polymorphism (ie, single-nucleotide polymorphism; SNP) in patients with WM and healthy donors. Additionally, HAS1 gene expression was evaluated in the same group of patients. Our observations so far suggest that HAS1 833A/G SNPs contribute to aberrant splicing of this gene; this idea is supported by the fact that 833A/G SNP is located on an exonic splicing enhancer motif. Based on the results obtained thus far, we speculate that individuals with HAS1 833G/G genotype are predisposed toward aberrant HAS1 splicing and expression of HAS1 variants, resulting in an enhanced risk of developing WM. Study of a larger group of patients and healthy donors is needed to confirm these speculations and to evaluate the prognostic significance of these findings.

  19. Oxytocin Pathway Genes: Evolutionary Ancient System Impacting on Human Affiliation, Sociality, and Psychopathology.

    PubMed

    Feldman, Ruth; Monakhov, Mikhail; Pratt, Maayan; Ebstein, Richard P

    2016-02-01

    Oxytocin (OT), a nonapeptide signaling molecule originating from an ancestral peptide, appears in different variants across all vertebrate and several invertebrate species. Throughout animal evolution, neuropeptidergic signaling has been adapted by organisms for regulating response to rapidly changing environments. The family of OT-like molecules affects both peripheral tissues implicated in reproduction, homeostasis, and energy balance, as well as neuromodulation of social behavior, stress regulation, and associative learning in species ranging from nematodes to humans. After describing the OT-signaling pathway, we review research on the three genes most extensively studied in humans: the OT receptor (OXTR), the structural gene for OT (OXT/neurophysin-I), and CD38. Consistent with the notion that sociality should be studied from the perspective of social life at the species level, we address human social functions in relation to OT-pathway genes, including parenting, empathy, and using social relationships to manage stress. We then describe associations between OT-pathway genes with psychopathologies involving social dysfunctions such as autism, depression, or schizophrenia. Human research particularly underscored the involvement of two OXTR single nucleotide polymorphisms (rs53576, rs2254298) with fewer studies focusing on other OXTR (rs7632287, rs1042778, rs2268494, rs2268490), OXT (rs2740210, rs4813627, rs4813625), and CD38 (rs3796863, rs6449197) single nucleotide polymorphisms. Overall, studies provide evidence for the involvement of OT-pathway genes in human social functions but also suggest that factors such as gender, culture, and early environment often confound attempts to replicate first findings. We conclude by discussing epigenetics, conceptual implications within an evolutionary perspective, and future directions, especially the need to refine phenotypes, carefully characterize early environments, and integrate observations of social behavior across

  20. Impacts of Nonsynonymous Single Nucleotide Polymorphisms of Adiponectin Receptor 1 Gene on Corresponding Protein Stability: A Computational Approach

    PubMed Central

    Saleh, Md. Abu; Solayman, Md.; Paul, Sudip; Saha, Moumoni; Khalil, Md. Ibrahim; Gan, Siew Hua

    2016-01-01

    Despite the reported association of adiponectin receptor 1 (ADIPOR1) gene mutations with vulnerability to several human metabolic diseases, there is lack of computational analysis on the functional and structural impacts of single nucleotide polymorphisms (SNPs) of the human ADIPOR1 at protein level. Therefore, sequence- and structure-based computational tools were employed in this study to functionally and structurally characterize the coding nsSNPs of ADIPOR1 gene listed in the dbSNP database. Our in silico analysis by SIFT, nsSNPAnalyzer, PolyPhen-2, Fathmm, I-Mutant 2.0, SNPs&GO, PhD-SNP, PANTHER, and SNPeffect tools identified the nsSNPs with distorting functional impacts, namely, rs765425383 (A348G), rs752071352 (H341Y), rs759555652 (R324L), rs200326086 (L224F), and rs766267373 (L143P) from 74 nsSNPs of ADIPOR1 gene. Finally the aforementioned five deleterious nsSNPs were introduced using Swiss-PDB Viewer package within the X-ray crystal structure of ADIPOR1 protein, and changes in free energy for these mutations were computed. Although increased free energy was observed for all the mutants, the nsSNP H341Y caused the highest energy increase amongst all. RMSD and TM scores predicted that mutants were structurally similar to wild type protein. Our analyses suggested that the aforementioned variants especially H341Y could directly or indirectly destabilize the amino acid interactions and hydrogen bonding networks of ADIPOR1. PMID:27294143

  1. Impact of murine intestinal apolipoprotein A-IV expression on regional lipid absorption, gene expression, and growth

    PubMed Central

    Simon, Trang; Cook, Victoria R.; Rao, Anuradha; Weinberg, Richard B.

    2011-01-01

    Apolipoprotein A-IV (apoA-IV) is synthesized by intestinal enterocytes during lipid absorption and secreted into lymph on the surface of nascent chylomicrons. A compelling body of evidence supports a central role of apoA-IV in facilitating intestinal lipid absorption and in regulating satiety, yet a longstanding conundrum is that no abnormalities in fat absorption, feeding behavior, or weight gain were observed in chow-fed apoA-IV knockout (A4KO) mice. Herein we reevaluated the impact of apoA-IV expression in C57BL6 and A4KO mice fed a high-fat diet. Fat balance and lymph cannulation studies found no effect of intestinal apoA-IV gene expression on the efficiency of fatty acid absorption, but gut sac transport studies revealed that apoA-IV differentially modulates lipid transport and the number and size of secreted triglyceride-rich lipoproteins in different anatomic regions of the small bowel. ApoA-IV gene deletion increased expression of other genes involved in chylomicron assembly, impaired the ability of A4KO mice to gain weight and increase adipose tissue mass, and increased the distal gut hormone response to a high-fat diet. Together these findings suggest that apoA-IV may play a unique role in integrating feeding behavior, intestinal lipid absorption, and energy storage. PMID:21840868

  2. The impact of ICAM1 and VCAM1 gene polymorphisms on chronic allograft nephropathy and transplanted kidney function.

    PubMed

    Kłoda, K; Domański, L; Pawlik, A; Wiśniewska, M; Safranow, K; Ciechanowski, K

    2013-01-01

    ICAM-1 and VCAM-1 adhesion molecules play important roles in the immune response and emergence of chronic allograft nephropathy (CAN). The several polymorphisms of ICAM1 and VCAM1 genes are associated with changes in molecular expression therefore affecting allograft function and immune responses after kidney transplantation. The aim of this study was to examine the impact of polymorphisms in ICAM1 and VCAM1 genes on biopsy-proven CAN and renal allograft function. The 270 Caucasian renal transplant recipients (166 men and 104 women) were genotyped for the rs5498 ICAM1 and rs1041163 and rs3170794 VCAM1 gene polymorphisms using real-time polymerase chain reaction. There was no correlation between polymorphisms and CAN. Creatinine concentrations in the first month after transplantation differed between the rs5498 ICAM1 genotypes (P = .095), being higher for GG carriers (AA + AG vs GG, P =.07) albeit not with statistical significance. Creatinine concentrations at 12, 24, and 36 months after transplantation differed significantly among rs5498 ICAM1 genotypes (P = .0046, P =.016, and P = .02) and were higher among GG carriers (AA + AG vs GG, P = .001, P = .004, and P = .006). Rs5498 ICAM1 GG genotype and receipient male gender were independent factors associated with higher creatinine concentrations. These results suggest that the rs5498 ICAM1 GG genotype may be associated with long-term allograft function.

  3. Nutritional impacts on gene expression in the surface mucosa of blue catfish (Ictalurus furcatus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Short-term feed deprivation is a common occurrence in both wild and farmed fish species, due to reproductive processes, seasonal variations in temperature, or in response to a disease outbreak. Fasting can have dramatic physiological and biological onsequences for fish, including impacts on mucosal ...

  4. High-Resolution Gene Flow Model for Assessing Environmental Impacts of Transgene Escape Based on Biological Parameters and Wind Speed

    PubMed Central

    Wang, Lei; Haccou, Patsy; Lu, Bao-Rong

    2016-01-01

    Environmental impacts caused by transgene flow from genetically engineered (GE) crops to their wild relatives mediated by pollination are longstanding biosafety concerns worldwide. Mathematical modeling provides a useful tool for estimating frequencies of pollen-mediated gene flow (PMGF) that are critical for assessing such environmental impacts. However, most PMGF models are impractical for this purpose because their parameterization requires actual data from field experiments. In addition, most of these models are usually too general and ignored the important biological characteristics of concerned plant species; and therefore cannot provide accurate prediction for PMGF frequencies. It is necessary to develop more accurate PMGF models based on biological and climatic parameters that can be easily measured in situ. Here, we present a quasi-mechanistic PMGF model that only requires the input of biological and wind speed parameters without actual data from field experiments. Validation of the quasi-mechanistic model based on five sets of published data from field experiments showed significant correlations between the model-simulated and field experimental-generated PMGF frequencies. These results suggest accurate prediction for PMGF frequencies using this model, provided that the necessary biological parameters and wind speed data are available. This model can largely facilitate the assessment and management of environmental impacts caused by transgene flow, such as determining transgene flow frequencies at a particular spatial distance, and establishing spatial isolation between a GE crop and its coexisting non-GE counterparts and wild relatives. PMID:26959240

  5. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function

    SciTech Connect

    Xi, T; Jones, I M; Mohrenweiser, H W

    2003-11-03

    Over 520 different amino acid substitution variants have been previously identified in the systematic screening of 91 human DNA repair genes for sequence variation. Two algorithms were employed to predict the impact of these amino acid substitutions on protein activity. Sorting Intolerant From Tolerant (SIFT) classified 226 of 508 variants (44%) as ''Intolerant''. Polymorphism Phenotyping (PolyPhen) classed 165 of 489 amino acid substitutions (34%) as ''Probably or Possibly Damaging''. Another 9-15% of the variants were classed as ''Potentially Intolerant or Damaging''. The results from the two algorithms are highly associated, with concordance in predicted impact observed for {approx}62% of the variants. Twenty one to thirty one percent of the variant proteins are predicted to exhibit reduced activity by both algorithms. These variants occur at slightly lower individual allele frequency than do the variants classified as ''Tolerant'' or ''Benign''. Both algorithms correctly predicted the impact of 26 functionally characterized amino acid substitutions in the APE1 protein on biochemical activity, with one exception. It is concluded that a substantial fraction of the missense variants observed in the general human population are functionally relevant. These variants are expected to be the molecular genetic and biochemical basis for the associations of reduced DNA repair capacity phenotypes with elevated cancer risk.

  6. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti

    PubMed Central

    Bottino-Rojas, Vanessa; Talyuli, Octávio A. C.; Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George; Venancio, Thiago M.; Bahia, Ana C.; Sorgine, Marcos H.; Oliveira, Pedro L.; Paiva-Silva, Gabriela O.

    2015-01-01

    Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells. PMID:26275150

  7. Impact of diethylhexyl phthalate on gene expression and development of mammary glands of pregnant mouse.

    PubMed

    Li, Lan; Liu, Jing-Cai; Zhao, Yong; Lai, Fang-Nong; Yang, Fan; Ge, Wei; Dou, Cheng-Li; Shen, Wei; Zhang, Xi-Feng; Chen, Hong

    2015-10-01

    The widely used diethylhexyl phthalate (DEHP) is a known endocrine disruptor that causes persistent alterations in the structure and function of female reproductive system, including ovaries, uterus and oviducts. To explore the molecular mechanism of the effect of DEHP on the development of mammary glands, we investigated the cell cycle, growth, proliferation and gene expression of mammary gland cells of pregnant mice exposed to DEHP. It was demonstrated, for the first time, that the mammary gland cells of pregnant mice treated with DEHP for 0.5-3.5 days post-coitum had increased proliferation, growth rate and number of cells in the G2/S phase. The expression of cell proliferation-related genes was significantly altered after short time and low-dose DEHP treatment of mammary gland cells in vivo and in vitro. These findings showed adverse effects of DEHP on mammary gland cells in pregnant mice.

  8. Impact of XPD gene polymorphism on risk of prostate cancer on north Indian population.

    PubMed

    Sobti, Ranbir Chander; Berhane, Nega; Melese, Shiferaw; Mahdi, Salih Abdul; Gupta, Libsy; Thakur, Hitender; Singh, Neha

    2012-03-01

    Prostate cancer is the second most diagnosed cancer in men next to skin cancer in the developed world. Risk of disease varies most prominently with age, ethnicity, family history, and diet. Genetic polymorphism of some genes has been implicated in increasing the risk. The XPD (Xeroderma pigmentosum group D) gene codes for a DNA helicase involved in transcription and nucleotide excision repair. The aim of this study is to evaluate the effect of XPD 751 Lys/Gln polymorphism on risk of prostate cancer on north Indian patients. Blood sample from 150 prostate cancer patients, 150 from Prostate Hyper Plasia and equal number of samples from healthy control groups was collected from North India. The polymerase chain reaction and restrictive fragment length polymorphism techniques were implemented. Statistically non-significant increase risk of prostate cancer was observed with patients having Gln/Gln genotype (OR 1.62, 95% CI).

  9. Impact of Intramammary Treatment on Gene Expression Profiles in Bovine Escherichia coli Mastitis

    PubMed Central

    Sipka, Anja; Klaessig, Suzanne; Duhamel, Gerald E.; Swinkels, Jantijn; Rainard, Pascal; Schukken, Ynte

    2014-01-01

    Clinical mastitis caused by E. coli accounts for significant production losses and animal welfare concerns on dairy farms worldwide. The benefits of therapeutic intervention in mild to moderate cases are incompletely understood. We investigated the effect of intramammary treatment with cefapirin alone or in combination with prednisolone on gene expression profiles in experimentally-induced E. coli mastitis in six mid-lactating Holstein Friesian cows. Cows were challenged with E. coli in 3 quarters and received 4 doses of 300 mg cefapirin in one quarter and 4 doses of 300 mg cefapirin together with 20 mg prednisolone in another quarter. At 24 h (n = 3) or 48 h (n = 3) post-challenge, tissue samples from control and treated quarters were collected for microarray analysis. Gene expression analysis of challenged, un-treated quarters revealed an up-regulation of transcripts associated with immune response functions compared to un-challenged quarters. Both treatments resulted in down-regulation of these transcripts compared to challenged, un-treated quarters most prominently for genes representing Chemokine and TLR-signaling pathways. Gene expression of Lipopolysaccharide Binding Protein (LBP), CCL2 and CXCL2 were only significantly down-regulated in cefapirin-prednisolone-treated quarters compared to un-treated controls. Down-regulation of chemokines was further confirmed on the basis of protein levels in milk whey for CXCL1, CXCL2 and CXCL8 in both treatments with a greater decrease in cefapirin-prednisolone-treated quarters. The data reveal a significant effect of treatment on cell recruitment with a more pronounced effect in cefapirin-prednisolone treated quarters. Provided a rapid bacteriological clearance, combination therapy may prevent neutrophil-induced tissue damage and promote recovery of the gland. PMID:24454893

  10. Gene therapy of hepatocarcinoma: a long way from the concept to the therapeutical impact.

    PubMed

    Gérolami, René; Uch, Rathviro; Bréchot, Christian; Mannoni, Patrice; Bagnis, Claude

    2003-09-01

    Hepatocellular carcinoma (HCC), the most prevalent histological form of primary liver cancer is one of the most frequent cancer worldwide. This pathology still requires the development of new therapeutical approaches. Gene therapy strategies focusing on the genetic manipulation of accessory cells involved in the immune reaction against cancer cells, or on the direct transduction of tumor cells with transgenes able to "suicide" cancer cells have been largely developed for more than ten years.

  11. The Impact of Hypergravity and Vibration on Gene and Protein Expression of Thyroid Cells

    NASA Astrophysics Data System (ADS)

    Wehland, Markus; Warnke, Elisabeth; Frett, Timo; Hemmersbach, Ruth; Hauslage, Jens; Ma, Xiao; Aleshcheva, Ganna; Pietsch, Jessica; Bauer, Johann; Grimm, Daniela

    2016-06-01

    Experiments in space either on orbital missions on-board the ISS, or in suborbital missions using sounding rockets, like TEXUS as well as parabolic flight campaigns are still the gold standard to achieve real microgravity conditions in the field of gravitational biology and medicine. However, during launch, and in flight, hypergravity and vibrations occur which might interfere with the effects of microgravity. It is therefore important to know these effects and discriminate them from the microgravity effects. This can be achieved by ground-based facilities like centrifuges or vibration platforms. Recently, we have conducted several experiments with different thyroid cancer cell lines. This study, as part of the ESA-CORA-GBF 2010-203 project, focused on the influence of vibration and hypergravity on benign human thyroid follicular epithelial cells (Nthy-ori 3-1 cell line). Gene and in part protein expression regulation under both conditions were analyzed for VCAN, ITGA10, ITGB1, OPN, ADAM19, ANXA1, TNFA, ABL2, ACTB, PFN2, TLN1, EZR, RDX, MSN, CTGF, PRKCA, and PRKAA1 using quantitative real-time PCR and Western Blot. We found that hypergravity and vibration affected genes and proteins involved in the extracellular matrix, the cytoskeleton, apoptosis, cell growth and signaling. Vibration always led to a down-regulation, whereas hypergravity resulted in a more heterogeneous expression pattern. Overall we conclude that both conditions can influence gene regulation and production of various genes and proteins. As a consequence, it is important to perform control experiments on hypergravity and vibration facilities in parallel to flight experiments.

  12. Interactions of early adversity with stress-related gene polymorphisms impact regional brain structure in females

    PubMed Central

    Gupta, Arpana; Labus, Jennifer; Kilpatrick, Lisa A.; Bonyadi, Mariam; Ashe-McNalley, Cody; Heendeniya, Nuwanthi; Bradesi, Sylvie; Chang, Lin; Mayer, Emeran A.

    2015-01-01

    Early adverse life events (EALs) have been associated with regional thinning of the subgenual cingulate cortex (sgACC), a brain region implicated in the development of disorders of mood and affect, and often comorbid functional pain disorders, such as irritable bowel syndrome (IBS). Regional neuroinflammation related to chronic stress system activation has been suggested as a possible mechanism underlying these neuroplastic changes. However, the interaction of genetic and environmental factors in these changes is poorly understood. The current study aimed to evaluate the interactions of EALs and candidate gene polymorphisms in influencing thickness of the sgACC. 210 female subjects (137 healthy controls; 73 IBS) were genotyped for stress and inflammation-related gene polymorphisms. Genetic variation with EALs, and diagnosis on sgACC thickness was examined, while controlling for race, age, and total brain volume. Compared to HCs, IBS had significantly reduced sgACC thickness (p = 0.03). Regardless of disease group (IBS vs. HC), thinning of the left sgACC was associated with a significant gene-gene environment interaction between the IL-1β genotype, the NR3C1 haplotype, and a history of EALs (p = 0.05). Reduced sgACC thickness in women with the minor IL-1β allele, was associated with EAL total scores regardless of NR3C1 haplotype status (p = 0.02). In subjects homozygous for the major IL-1β allele, reduced sgACC with increasing levels of EALs was seen only with the less common NR3C1 haplotype (p = 0.02). These findings support an interaction between polymorphisms related to stress and inflammation and early adverse life events in modulating a key region of the emotion arousal circuit. PMID:25630611

  13. Meiotic Drive Impacts Expression and Evolution of X-Linked Genes in Stalk-Eyed Flies

    PubMed Central

    Reinhardt, Josephine A.; Brand, Cara L.; Paczolt, Kimberly A.; Johns, Philip M.; Baker, Richard H.; Wilkinson, Gerald S.

    2014-01-01

    Although sex chromosome meiotic drive has been observed in a variety of species for over 50 years, the genes causing drive are only known in a few cases, and none of these cases cause distorted sex-ratios in nature. In stalk-eyed flies (Teleopsis dalmanni), driving X chromosomes are commonly found at frequencies approaching 30% in the wild, but the genetic basis of drive has remained elusive due to reduced recombination between driving and non-driving X chromosomes. Here, we used RNAseq to identify transcripts that are differentially expressed between males carrying either a driving X (XSR) or a standard X chromosome (XST), and found hundreds of these, the majority of which are X-linked. Drive-associated transcripts show increased levels of sequence divergence (dN/dS) compared to a control set, and are predominantly expressed either in testes or in the gonads of both sexes. Finally, we confirmed that XSR and XST are highly divergent by estimating sequence differentiation between the RNAseq pools. We found that X-linked transcripts were often strongly differentiated (whereas most autosomal transcripts were not), supporting the presence of a relatively large region of recombination suppression on XSR presumably caused by one or more inversions. We have identified a group of genes that are good candidates for further study into the causes and consequences of sex-chromosome drive, and demonstrated that meiotic drive has had a profound effect on sequence evolution and gene expression of X-linked genes in this species. PMID:24832132

  14. Impact of single nucleotide polymorphisms in HBB gene causing haemoglobinopathies: in silico analysis.

    PubMed

    George Priya Doss, C; Rao, Sethumadhavan

    2009-04-01

    Single nucleotide polymorphisms (SNPs) are being intensively studied to understand the biological basis of complex traits and diseases. Deleterious mutations of the human beta-globin gene (HBB) are responsible for beta-thalassaemia and other haemoglobinopathies, which are the most common genetic diseases of blood. Single amino acid substitutions in the globin chain are the commonest forms of haemoglobinopathy. Although many haemoglobinopathies present similar structural abnormal points, their functions sometimes are different. Here, using computational methods, we analysed the genetic variations that can alter the expression and function of the HBB gene. We applied an evolutionary perspective to screen the SNPs using a sequence homology-based SIFT tool, which suggested that 210 (90%) non-synonymous (ns)SNPs were found to be deleterious. The structure-based approach PolyPhen server suggested that 134 (57%) nsSNPS may disrupt protein function and structure. The PupaSuite tool predicted the phenotypic effect of SNPs on the structure and function of the affected protein. Structure analysis was carried out with the major mutation that occurred in the native protein coded by the HBB gene in HbC, HbD, HbE and HbS. The amino acid residues in the native and mutant modelled protein were further analysed for solvent accessibility, and secondary structure to check the stability of the proteins. The functional analysis presented here may be a good model for further research.

  15. Quercetin Impacts Expression of Metabolism- and Obesity-Associated Genes in SGBS Adipocytes.

    PubMed

    Leiherer, Andreas; Stoemmer, Kathrin; Muendlein, Axel; Saely, Christoph H; Kinz, Elena; Brandtner, Eva M; Fraunberger, Peter; Drexel, Heinz

    2016-05-12

    Obesity is characterized by the rapid expansion of visceral adipose tissue, resulting in a hypoxic environment in adipose tissue which leads to a profound change of gene expression in adipocytes. As a consequence, there is a dysregulation of metabolism and adipokine secretion in adipose tissue leading to the development of systemic inflammation and finally resulting in the onset of metabolic diseases. The flavonoid quercetin as well as other secondary plant metabolites also referred to as phytochemicals have anti-oxidant, anti-inflammatory, and anti-diabetic effects known to be protective in view of obesity-related-diseases. Nevertheless, its underlying molecular mechanism is still obscure and thus the focus of this study was to explore the influence of quercetin on human SGBS (Simpson Golabi Behmel Syndrome) adipocytes' gene expression. We revealed for the first time that quercetin significantly changed expression of adipokine (Angptl4, adipsin, irisin and PAI-1) and glycolysis-involved (ENO2, PFKP and PFKFB4) genes, and that this effect not only antagonized but in part even overcompensated the effect mediated by hypoxia in adipocytes. Thus, these results are explained by the recently proposed hypothesis that the protective effect of quercetin is not solely due to its free radical-scavenging activity but also to a direct effect on mitochondrial processes, and they demonstrate that quercetin might have the potential to counteract the development of obesity-associated complications.

  16. Basic concepts of epigenetics: impact of environmental signals on gene expression.

    PubMed

    Mazzio, Elizabeth A; Soliman, Karam F A

    2012-02-01

    Through epigenetic modifications, specific long-term phenotypic consequences can arise from environmental influence on slowly evolving genomic DNA. Heritable epigenetic information regulates nucleosomal arrangement around DNA and determines patterns of gene silencing or active transcription. One of the greatest challenges in the study of epigenetics as it relates to disease is the enormous diversity of proteins, histone modifications and DNA methylation patterns associated with each unique maladaptive phenotype. This is further complicated by a limitless combination of environmental cues that could alter the epigenome of specific cell types, tissues, organs and systems. In addition, complexities arise from the interpretation of studies describing analogous but not identical processes in flies, plants, worms, yeast, ciliated protozoans, tumor cells and mammals. This review integrates fundamental basic concepts of epigenetics with specific focus on how the epigenetic machinery interacts and operates in continuity to silence or activate gene expression. Topics covered include the connection between DNA methylation, methyl-CpG-binding proteins, transcriptional repression complexes, histone residues, histone modifications that mediate gene repression or relaxation, histone core variant stability, H1 histone linker flexibility, FACT complex, nucleosomal remodeling complexes, HP1 and nuclear lamins.

  17. Impact of Gene Patents and Licensing Practices on Access to Genetic Testing for Long QT Syndrome

    PubMed Central

    Angrist, Misha; Chandrasekharan, Subhashini; Heaney, Christopher; Cook-Deegan, Robert

    2010-01-01

    Genetic testing for Long QT syndrome (LQTS) exemplifies patenting and exclusive licensing with different outcomes at different times. Exclusive licensing from the University of Utah changed the business model from sole provider to two US providers of LQTS testing. LQTS is associated with mutations in many genes, ten of which are now tested by two competing firms in the United States, PGxHealth and GeneDx. Until 2009, PGxHealth was sole provider, based largely on exclusive rights to patents from the University of Utah and other academic institutions. University of Utah patents were initially licensed to DNA Sciences, whose patent rights were acquired by Gennaissance, and then by Clinical Data, Inc., which owns PGxHealth. In 2002, DNA Sciences “cleared the market” by sending cease and desist patent enforcement letters to university and reference laboratories offering LQTS genetic testing. There was no test on the market for a one- to two-year period. From 2005-2008, most LQTS-related patents were controlled by Clinical Data, Inc., and its subsidiary PGxHealth. BioReference Laboratories, Inc., secured countervailing exclusive patent rights starting in 2006, also from the University of Utah, and broke the PGxHealth monopoly in early 2009, creating a duopoly for genetic testing in the United States, and expanding the number of genes for which commercial testing is available from five to ten. PMID:20393304

  18. Predicting the impact of deleterious single point mutations in SMAD gene family using structural bioinformatics approach.

    PubMed

    George Priya Doss, C; Nagasundaram, N; Tanwar, Himani

    2012-06-01

    Functional alteration in SMAD proteins leads to dis-regulation of its mechanism results in possibilities of high risk diseases like fibrosis, cancer, juvenile polyposis etc. Studying single nucleotide polymorphism (SNP) in SMAD genes helps understand the malfunction of these proteins. In this study, we focused on deleterious effects of nsSNPs in both structural and functional level using publically available bioinformatics tools. We have mainly focused on identifying deleterious nsSNPs in both structural and functional level in SMAD genes by using SIFT, PolyPhen, SNPs&GO, I-Mutant 3.0, MUpro and PANTHER. Structure analysis was carried out with the major mutation that occurred in the native protein coded by SMAD genes and its amino acid positions (R358W, K306S, R310G, S433R and R361C). SRide was used to check the stability of the native and mutant modelled proteins. In addition, we used MAPPER to identify SNPs present in transcription factor binding sites. These findings demonstrate that the in silico approaches can be used efficiently to identify potential candidate SNPs in large scale analysis.

  19. Quercetin Impacts Expression of Metabolism- and Obesity-Associated Genes in SGBS Adipocytes

    PubMed Central

    Leiherer, Andreas; Stoemmer, Kathrin; Muendlein, Axel; Saely, Christoph H.; Kinz, Elena; Brandtner, Eva M.; Fraunberger, Peter; Drexel, Heinz

    2016-01-01

    Obesity is characterized by the rapid expansion of visceral adipose tissue, resulting in a hypoxic environment in adipose tissue which leads to a profound change of gene expression in adipocytes. As a consequence, there is a dysregulation of metabolism and adipokine secretion in adipose tissue leading to the development of systemic inflammation and finally resulting in the onset of metabolic diseases. The flavonoid quercetin as well as other secondary plant metabolites also referred to as phytochemicals have anti-oxidant, anti-inflammatory, and anti-diabetic effects known to be protective in view of obesity-related-diseases. Nevertheless, its underlying molecular mechanism is still obscure and thus the focus of this study was to explore the influence of quercetin on human SGBS (Simpson Golabi Behmel Syndrome) adipocytes’ gene expression. We revealed for the first time that quercetin significantly changed expression of adipokine (Angptl4, adipsin, irisin and PAI-1) and glycolysis-involved (ENO2, PFKP and PFKFB4) genes, and that this effect not only antagonized but in part even overcompensated the effect mediated by hypoxia in adipocytes. Thus, these results are explained by the recently proposed hypothesis that the protective effect of quercetin is not solely due to its free radical-scavenging activity but also to a direct effect on mitochondrial processes, and they demonstrate that quercetin might have the potential to counteract the development of obesity-associated complications. PMID:27187453

  20. Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata.

    PubMed

    Han, Yong-He; Fu, Jing-Wei; Xiang, Ping; Cao, Yue; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2017-01-05

    Microbially-mediated arsenic (As) transformation in soils affects As speciation and plant uptake. However, little is known about the impacts of As on bacterial communities and their functional genes in the rhizosphere of As-hyperaccumulator Pteris vittata. In this study, arsenite (AsIII) oxidase genes (aroA-like) and arsenate (AsV) reductase genes (arsC) were amplified from three soils, which were amended with 50mgkg(-1) As and/or 1.5% phosphate rock (PR) and grew P. vittata for 90 d. The aroA-like genes in the rhizosphere were 50 times more abundant than arsC genes, consistent with the dominance of AsV in soils. According to functional gene alignment, most bacteria belonged to α-, β- and γ-Proteobacteria. Moreover, aroA-like genes showed a higher biodiversity than arsC genes based on clone library analysis and could be grouped into nine clusters based on terminal restriction fragment length polymorphism (T-RFLP) analysis. Besides, AsV amendment elevated aroA-like gene diversity, but decreased arsC gene diversity. Redundancy analysis indicated that soil pH, available Ca and P, and AsV concentration were key factors driving diverse compositions in aroA-like gene community. This work identified new opportunities to screen for As-oxidizing and/or -reducing bacteria to aid phytoremediation of As-contaminated soils.

  1. The major histocompatibility complex genes impact pain response in DA and DA.1U rats.

    PubMed

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Li, Li; Wang, Hui-Sheng; Xie, Wen; Zhao, Yan

    2015-08-01

    Our recent studies have shown that the difference in basal pain sensitivity to mechanical and thermal stimulation between Dark-Agouti (DA) rats and a novel congenic DA.1U rats is major histocompatibility complex (MHC) genes dependent. In the present study, we further used DA and DA.1U rats to investigate the role of MHC genes in formalin-induced pain model by behavioral, electrophysiological and immunohistochemical methods. Behavioral results showed biphasic nociceptive behaviors increased significantly following the intraplantar injection of formalin in the hindpaw of DA and DA.1U rats. The main nociceptive behaviors were lifting and licking, especially in DA rats (P<0.001 and P<0.01). The composite pain scores (CPS) in DA rats were significantly higher than those in DA.1U rats in both phases of the formalin test (P<0.01). Electrophysiological results also showed the biphasic increase in discharge rates of C and Aδ fibers of L5 dorsal root in the two strains, and the net change of the discharge rate of DA rats was significantly higher than that of DA.1U rats (P<0.05). The mechanical thresholds decreased after formalin injection in both strains (P<0.01), and the net change in the mechanical threshold in DA was greater than that in DA.1U rats (P<0.05). The expression of RT1-B, representation of MHC class II molecule, in laminae I-II of L4/5 spinal cord in DA rats was significantly higher than that in DA.1U rats in the respective experimental group (P<0.05). These results suggested that both DA and DA.1U rats exhibited nociceptive responses in formalin-induced pain model and DA rats were more sensitive to noxious chemical stimulus than DA.1U rats, indicating that MHC genes might contribute to the difference in pain sensitivity.

  2. Impact of Pre-Analytical Variables on Cancer Targeted Gene Sequencing Efficiency

    PubMed Central

    Araujo, Luiz H.; Timmers, Cynthia; Shilo, Konstantin; Zhao, Weiqiang; Zhang, Jianying; Yu, Lianbo; Natarajan, Thanemozhi G.; Miller, Clinton J.; Yilmaz, Ayse Selen; Liu, Tom; Amann, Joseph; Lapa e Silva, José Roberto; Ferreira, Carlos Gil; Carbone, David P.

    2015-01-01

    Tumor specimens are often preserved as formalin-fixed paraffin-embedded (FFPE) tissue blocks, the most common clinical source for DNA sequencing. Herein, we evaluated the effect of pre-sequencing parameters to guide proper sample selection for targeted gene sequencing. Data from 113 FFPE lung tumor specimens were collected, and targeted gene sequencing was performed. Libraries were constructed using custom probes and were paired-end sequenced on a next generation sequencing platform. A PCR-based quality control (QC) assay was utilized to determine DNA quality, and a ratio was generated in comparison to control DNA. We observed that FFPE storage time, PCR/QC ratio, and DNA input in the library preparation were significantly correlated to most parameters of sequencing efficiency including depth of coverage, alignment rate, insert size, and read quality. A combined score using the three parameters was generated and proved highly accurate to predict sequencing metrics. We also showed wide read count variability within the genome, with worse coverage in regions of low GC content like in KRAS. Sample quality and GC content had independent effects on sequencing depth, and the worst results were observed in regions of low GC content in samples with poor quality. Our data confirm that FFPE samples are a reliable source for targeted gene sequencing in cancer, provided adequate sample quality controls are exercised. Tissue quality should be routinely assessed for pre-analytical factors, and sequencing depth may be limited in genomic regions of low GC content if suboptimal samples are utilized. PMID:26605948

  3. The impact of horizontal gene transfer on the biology of Clostridium difficile.

    PubMed

    Roberts, Adam P; Allan, Elaine; Mullany, Peter

    2014-01-01

    Clostridium difficile infection (CDI) is now recognised as the main cause of healthcare associated diarrhoea. Over the recent years there has been a change in the epidemiology of CDI with certain related strains dominating infection. These strains have been termed hyper-virulent and have successfully spread across the globe. Many C. difficile strains have had their genomes completely sequenced allowing researchers to build up a very detailed picture of the contribution of horizontal gene transfer to the adaptive potential, through the acquisition of mobile DNA, of this organism. Here, we review and discuss the contribution of mobile genetic elements to the biology of this clinically important pathogen.

  4. Impact of Mannose-Binding Protein Gene Polymorphisms in Omani Sickle Cell Disease Patients

    PubMed Central

    Zachariah, Mathew; Al Zadjali, Shoaib; Bashir, Wafa; Al Ambusaidi, Rahma; Misquith, Rhea; Wali, Yasser; Pathare, Anil

    2016-01-01

    Objectives Our aim was to study mannose-binding protein (MBP) polymorphisms in exonic and promoter region and correlate it with associated infections and vasoocculsive (VOC) episodes in sickle cell disease (SCD) patients since MBP plays an important role in innate immunity by activating the complement system. Methods We studied the genetic polymorphisms in the Exon 1 (alleles A/O) and promoter region (alleles Y/X; H/L, P/Q) of the MBL2 gene, in SCD patients as an increased incidence of infections is seen in these patients. A PCR-based, targeted genomic DNA sequencing of MBL2 was used to study 68 SCD Omani patients and 44 controls (healthy voluntary blood donors). Results In SCD patients, the frequency of the genotype related to the high production of MBL was 0.35 (YA/YA) and for intermediate/low production was 0.65 (YA/XA, XA/XA, YA/YO, XA/YO, YO/YO). The observed frequencies of MBL2 gene promoter polymorphism (-221, Y/X) were 44.4% and 20.5% for the heterozygous genotype Y/X and 3.2% and 2.2% for the homozygous (X/X) respectively between SCD patients and controls. MBL2 Exon1 gene mutations were 29.4% and 50% for the heterozygous genotype A/O and 5.9% and 6.8% respectively for the homozygous (O/O) genotype between SCD patients and controls. The distribution of variant MBL2 gene polymorphisms did not show any correlation in SCD patients with or without VOC attacks (p=0.16; OR −0.486; CI=0.177 −1.33), however, it was correlated with infections (p=0.0162; OR −3.55; CI 1.25–10.04). Conclusions Although the frequency of the genotypes and haplotypes of MBL2 in SCD patients did not differ from controls, overall in the SCD patient cohort the increased representation of variant alleles was significantly correlated with infections (p<0.05). However, these variant MBL2 polymorphisms did not seem to play a significant role in the VOC episodes in this SCD cohort. PMID:26977272

  5. Unraveling the estrogen receptor (er) genes in Atlantic salmon (Salmo salar) reveals expression differences between the two adult life stages but little impact from polychlorinated biphenyl (PCB) load.

    PubMed

    Nikoleris, Lina; Hansson, Maria C

    2015-01-15

    Estrogen receptors (ers) not only are activated by hormones but also interact with many human-derived environmental contaminants. Here, we present evidence for four expressed er genes in Atlantic salmon cDNA - two more ers (erα2 and erβ2) than previously published. To determine if er gene expression differs between two adult life-stages we sampled 20 adult salmon from the feeding phase in the Baltic Sea and during migration in the River Mörrum, Sweden. Results show that all four er genes are present in the investigated tissues, except for erα2 not appearing in the spleen. Overall, a profile analysis reveals the erα1 gene to be the most highly expressed er gene in both female and male Baltic Sea salmon tissues, and also in female River Mörrum salmon. In contrast, this gene has the lowest gene expression level of the four er genes in male salmon from the River Mörrum. The erα2 gene is expressed at the lowest levels in both female/male Baltic Sea salmon and in female River Mörrum salmon. Statistical analyses indicate a significant and complex interaction where both sex and adult life stage can impact er gene expression. Regression analyses did not demonstrate any significant relationship between polychlorinated biphenyl (PCB) body burden and er gene expression level, suggesting that accumulated pollutants from the Baltic Sea may be deactivated inside the salmon's lipid tissues and have limited impact on er activity. This study is the first comprehensive analysis of four er gene expression levels in two wild salmon populations from two different adult life stages where information about PCB load is also available.

  6. γ-Resorcylate Catabolic-Pathway Genes in the Soil Actinomycete Rhodococcus jostii RHA1

    PubMed Central

    Kasai, Daisuke; Araki, Naoto; Motoi, Kota; Yoshikawa, Shota; Iino, Toju; Imai, Shunsuke; Masai, Eiji

    2015-01-01

    The Rhodococcus jostii RHA1 gene cluster required for γ-resorcylate (GRA) catabolism was characterized. The cluster includes tsdA, tsdB, tsdC, tsdD, tsdR, tsdT, and tsdX, which encode GRA decarboxylase, resorcinol 4-hydroxylase, hydroxyquinol 1,2-dioxygenase, maleylacetate reductase, an IclR-type regulator, a major facilitator superfamily transporter, and a putative hydrolase, respectively. The tsdA gene conferred GRA decarboxylase activity on Escherichia coli. Purified TsdB oxidized NADH in the presence of resorcinol, suggesting that tsdB encodes a unique NADH-specific single-component resorcinol 4-hydroxylase. Mutations in either tsdA or tsdB resulted in growth deficiency on GRA. The tsdC and tsdD genes conferred hydroxyquinol 1,2-dioxygenase and maleylacetate reductase activities, respectively, on E. coli. Inactivation of tsdT significantly retarded the growth of RHA1 on GRA. The growth retardation was partially suppressed under acidic conditions, suggesting the involvement of tsdT in GRA uptake. Reverse transcription-PCR analysis revealed that the tsd genes constitute three transcriptional units, the tsdBADC and tsdTX operons and tsdR. Transcription of the tsdBADC and tsdTX operons was induced during growth on GRA. Inactivation of tsdR derepressed transcription of the tsdBADC and tsdTX operons in the absence of GRA, suggesting that tsd gene transcription is negatively regulated by the tsdR-encoded regulator. Binding of TsdR to the tsdR-tsdB and tsdT-tsdR intergenic regions was inhibited by the addition of GRA, indicating that GRA interacts with TsdR as an effector molecule. PMID:26319878

  7. Impact of Gene Patents and Licensing Practices on Access to Genetic Testing for Hereditary Hemochromatosis

    PubMed Central

    Chandrasekharan, Subhashini; Pitlick, Emily; Heaney, Christopher; Cook-Deegan, Robert

    2010-01-01

    Hereditary hemochromatosis (HH) is an iron metabolism disorder that leads to excess iron buildup, especially in the heart, liver, and pancreas. Mutations in the HFE gene are the single most common cause of HH, which can be treated effectively if diagnosed early. Patents cover the HFE gene, related proteins, screening methods, and testing kits. Most initial testing for HH is biochemical, but HFE DNA testing or genotyping is used to confirm a diagnosis of inherited hemochromatosis. Concerns over patents covering HFE testing emerged in 2002, when scholars argued that exclusive licensing and the patent-enabled sole provider model then in place led to high prices and limited access. Critics of the sole provider model noted that the test was available at multiple laboratories prior to the enforcement of patents. By 2007, however, Bio-Rad, Limited, acquired the key intellectual property and sub-licensed it widely. In part because of broad, non-exclusive licensing, there are now multiple providers and testing technologies, and research continues. This case study illustrates how both changes in intellectual property ownership and evolving clinical utility of HFE genetic testing in the last decade have effected the licensing of patents and availability of genetic testing. PMID:20393306

  8. The Impact of Osteopontin Gene Variations on Multiple Sclerosis Development and Progression

    PubMed Central

    Comi, Cristoforo; Cappellano, Giuseppe; Chiocchetti, Annalisa; Orilieri, Elisabetta; Buttini, Sara; Ghezzi, Laura; Galimberti, Daniela; Guerini, Franca; Barizzone, Nadia; Perla, Franco; Leone, Maurizio; D'Alfonso, Sandra; Caputo, Domenico; Scarpini, Elio; Cantello, Roberto; Dianzani, Umberto

    2012-01-01

    Osteopontin is a proinflammatory molecule, modulating TH1 and TH17 responses. Several reports suggest its involvement in multiple sclerosis (MS) pathogenesis. We previously reported that OPN gene variations at the 3′ end are a predisposing factor for MS development and evolution. In this paper, we extended our analysis to a gene variation at the 5′ end on the −156G > GG single nucleotide polymorphism (SNP) and replicated our previous findings at the 3′ end on the +1239A > C SNP. We found that only +1239A > C SNP displayed a statistically significant association with MS development, but both +1239A > C and −156G > GG had an influence on MS progression, since patients homozygous for both +1239A and −156GG alleles displayed slower progression of disability and slower switch to secondary progression than those carrying +1239C and/or −156G and those homozygous for +1239A only. Moreover, patients homozygous for +1239A also displayed a significantly lower relapse rate than those carrying +1239C, which is in line with the established role of OPN in MS relapses. PMID:23008732

  9. Parental divorce and adolescent delinquency: ruling out the impact of common genes.

    PubMed

    Burt, S Alexandra; Barnes, Ashlee R; McGue, Matt; Iacono, William G

    2008-11-01

    Although the well-documented association between parental divorce and adolescent delinquency is generally assumed to be environmental (i.e., causal) in origin, genetic mediation is also possible. Namely, the behavior problems often found in children of divorce could derive from similar pathology in the parents, pathology that is both heritable and increases the risk that the parent will experience divorce. To test these alternative hypotheses, the authors made use of a novel design that incorporated timing of divorce in a sample of 610 adoptive and biological families. They reasoned that if genes common to parent and child mediate this association, nonadopted youth should manifest increased delinquency in the presence of parental divorce even if the divorce preceded their birth (i.e., was from a prior parental relationship). However, should the association be environmental in origin, the authors reasoned that adolescents should manifest increased delinquency only in response to divorce exposure, and this association should not vary by adoption status. Results firmly supported the latter, suggesting that it is the experience of parental divorce, and not common genes, that drives the association between divorce and adolescent delinquency.

  10. The impact of osteopontin gene variations on multiple sclerosis development and progression.

    PubMed

    Comi, Cristoforo; Cappellano, Giuseppe; Chiocchetti, Annalisa; Orilieri, Elisabetta; Buttini, Sara; Ghezzi, Laura; Galimberti, Daniela; Guerini, Franca; Barizzone, Nadia; Perla, Franco; Leone, Maurizio; D'Alfonso, Sandra; Caputo, Domenico; Scarpini, Elio; Cantello, Roberto; Dianzani, Umberto

    2012-01-01

    Osteopontin is a proinflammatory molecule, modulating TH1 and TH17 responses. Several reports suggest its involvement in multiple sclerosis (MS) pathogenesis. We previously reported that OPN gene variations at the 3' end are a predisposing factor for MS development and evolution. In this paper, we extended our analysis to a gene variation at the 5' end on the -156G > GG single nucleotide polymorphism (SNP) and replicated our previous findings at the 3' end on the +1239A > C SNP. We found that only +1239A > C SNP displayed a statistically significant association with MS development, but both +1239A > C and -156G > GG had an influence on MS progression, since patients homozygous for both +1239A and -156GG alleles displayed slower progression of disability and slower switch to secondary progression than those carrying +1239C and/or -156G and those homozygous for +1239A only. Moreover, patients homozygous for +1239A also displayed a significantly lower relapse rate than those carrying +1239C, which is in line with the established role of OPN in MS relapses.

  11. Polymorphisms of the murine mitochondrial ND4, CYTB and COX3 genes impact hematopoiesis during aging

    PubMed Central

    Timmer, Katrin; Sekora, Anett; Knübel, Gudrun; Escobar, Hugo Murua; Fuellen, Georg; Ibrahim, Saleh M.; Tiedge, Markus; Baltrusch, Simone; Jaster, Robert; Köhling, Rüdiger; Junghanss, Christian

    2016-01-01

    During aging, mitochondrial DNA (mtDNA) can accumulate mutations leading to increasing levels of reactive oxygen species (ROS). Increased ROS were described to activate formerly quiescent hematopoietic stem cells (HSC). Mutations in mtDNA were shown to enhance the risk for myelodysplastic syndrome and leukemia. However, the complex relationship between mtDNA variations, ROS and aging of the hematopoietic system is not fully understood. Herein, three mouse strains with mtDNA polymorphisms in genes of respiratory chain complexes I (ND4), III (CYTB) and IV (COX3) were compared to a reference strain during aging. Analysis focused on ROS and ATP levels, bone marrow composition and blood counts. Additionally, hematopoietic restoration capacity following cytotoxic stress was tested. Mice with polymorphisms in ND4 and CYTB gene had significantly decreasing ROS levels in bone marrow cells during aging, without effecting ATP levels. In addition, the frequency of stem and progenitor cells increased during aging but the amount of lymphocytes in the peripheral blood decreased during aging. In summary, the presence of mtDNA polymorphisms affecting the respiratory chain complexes I, III and IV was associated with altered ROS levels as well as changes in BM and peripheral blood composition during aging. PMID:27626489

  12. Impact of Bi-Axial Shear on Atherogenic Gene Expression by Endothelial Cells.

    PubMed

    Chakraborty, Amlan; Chakraborty, Sutirtha; Jala, Venkatakrishna R; Thomas, Jonathan M; Sharp, M Keith; Berson, R Eric; Haribabu, Bodduluri

    2016-10-01

    This study demonstrated the effects of the directionality of oscillatory wall shear stress (WSS) on proliferation and proatherogenic gene expression (I-CAM, E-Selectin, and IL-6) in the presence of inflammatory mediators leukotriene B4 (LTB4) and bacterial lipopolysaccharide (LPS) from endothelial cells grown in an orbiting culture dish. Computational fluid dynamics (CFD) was applied to quantify the flow in the dish, while an analytical solution representing an extension of Stokes second problem was used for validation. Results indicated that WSS magnitude was relatively constant near the center of the dish and oscillated significantly (0-0.9 Pa) near the side walls. Experiments showed that LTB4 dominated the shear effects on cell proliferation and area. Addition of LPS didn't change proliferation, but significantly affected cell area. The expression of I-CAM1, E-Selectin and IL-6 were altered by directional oscillatory shear index (DOSI, a measure of the biaxiality of oscillatory shear), but not shear magnitude. The significance of DOSI was further reinforced by the strength of its interactions with other atherogenic factors. Hence, directionality of shear appears to be an important factor in regulating gene expression and provides a potential explanation of the propensity for increased vascular lesions in regions in the arteries with oscillating biaxial flow.

  13. The impact of unprotected T cells in RNAi-based gene therapy for HIV-AIDS.

    PubMed

    Herrera-Carrillo, Elena; Liu, Ying Poi; Berkhout, Ben

    2014-03-01

    RNA interference (RNAi) is highly effective in inhibiting human immunodeficiency virus type 1 (HIV-1) replication by the expression of antiviral short hairpin RNA (shRNA) in stably transduced T-cell lines. For the development of a durable gene therapy that prevents viral escape, we proposed to combine multiple shRNAs against highly conserved regions of the HIV-1 RNA genome. The future in vivo application of such a gene therapy protocol will reach only a fraction of the T cells, such that HIV-1 replication will continue in the unmodified T cells, thereby possibly frustrating the therapy by generation of HIV-1 variants that escape from the inhibition imposed by the protected cells. We studied virus inhibition and evolution in pure cultures of shRNA-expressing cells versus mixed cell cultures of protected and unprotected T cells. The addition of the unprotected T cells indeed seems to accelerate HIV-1 evolution and escape from a single shRNA inhibitor. However, expression of three antiviral shRNAs from a single lentiviral vector prevents virus escape even in the presence of unprotected cells. These results support the idea to validate the therapeutic potential of this anti-HIV approach in appropriate in vivo models.

  14. Gastric Cancer and Helicobacter pylori: Impact of hopQII Gene.

    PubMed

    Kazemi, E; Kahrizi, D; Moradi, M T; Sohrabi, M; Yari, K

    2016-02-29

    The Helicobacter pylori is a Gram-negative, microaerophilic bacterium found usually in the stomach and use a number of mechanisms to survive in the stomach lumen. The presence of these bacteria in the stomach can lead to gastritis and reduction in stomach acid production. Acute inflammation can directly damage to the peripheral cells that are responsible for the secretion of acid. The risk of developing gastric carcinoma is associated to heterogeneity of Helicobacter pylori virulence factors. The HopQII is one of the outer membrane proteins involved in bacterial adherence to gastric mucosa and has been suggested to also play a role in the virulence of H. pylori. The purpose of the current study was to investigate the association between different H. pylori virulence hopQII allele and patients with gastroduodenal disorders. For this purpose 58 stomach biopsies of patients with gastric cancer and 100 saliva samples from healthy individuals were collected. Then genomic DNA was purified and PCR for was done for desired genes via specific primers. The H. pylori infections were diagnosed by PCR for GlmM gene. Then frequencies of hopQII+ and hopQII- genotypes was determined in H. pylori infected cases. Statistical analysis showed that there were not significant differences between healthy and diseased ones for genotype hopQII+.

  15. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype.

    PubMed

    Forrest, Kerrie L; Bhave, Mrinal

    2007-10-01

    The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant-water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry.

  16. CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae.

    PubMed

    Stumpp, M; Dupont, S; Thorndyke, M C; Melzner, F

    2011-11-01

    Extensive use of fossil fuels is leading to increasing CO(2) concentrations in the atmosphere and causes changes in the carbonate chemistry of the oceans which represents a major sink for anthropogenic CO(2). As a result, the oceans' surface pH is expected to decrease by ca. 0.4 units by the year 2100, a major change with potentially negative consequences for some marine species. Because of their carbonate skeleton, sea urchins and their larval stages are regarded as likely to be one of the more sensitive taxa. In order to investigate sensitivity of pre-feeding (2 days post-fertilization) and feeding (4 and 7 days post-fertilization) pluteus larvae, we raised Strongylocentrotus purpuratus embryos in control (pH 8.1 and pCO(2) 41 Pa e.g. 399 μatm) and CO(2) acidified seawater with pH of 7.7 (pCO(2) 134 Pa e.g. 1318 μatm) and investigated growth, calcification and survival. At three time points (day 2, day 4 and day 7 post-fertilization), we measured the expression of 26 representative genes important for metabolism, calcification and ion regulation using RT-qPCR. After one week of development, we observed a significant difference in growth. Maximum differences in size were detected at day 4 (ca. 10% reduction in body length). A comparison of gene expression patterns using PCA and ANOSIM clearly distinguished between the different age groups (two-way ANOSIM: Global R=1) while acidification effects were less pronounced (Global R=0.518). Significant differences in gene expression patterns (ANOSIM R=0.938, SIMPER: 4.3% difference) were also detected at day 4 leading to the hypothesis that differences between CO(2) treatments could reflect patterns of expression seen in control experiments of a younger larva and thus a developmental artifact rather than a direct CO(2) effect. We found an up regulation of metabolic genes (between 10%and 20% in ATP-synthase, citrate synthase, pyruvate kinase and thiolase at day 4) and down regulation of calcification related genes

  17. Genome-Wide Nucleosome Occupancy and Positioning and Their Impact on Gene Expression and Evolution in Plants.

    PubMed

    Zhang, Tao; Zhang, Wenli; Jiang, Jiming

    2015-08-01

    The fundamental unit of chromatin is the nucleosome that consists of a protein octamer composed of the four core histones (Hs; H3, H4, H2A, and H2B) wrapped by 147 bp of DNA. Nucleosome occupancy and positioning have proven to be dynamic and have a critical impact on expression, regulation, and evolution of eukaryotic genes. We developed nucleosome occupancy and positioning data sets using leaf tissue of rice (Oryza sativa) and both leaf and flower tissues of Arabidopsis (Arabidopsis thaliana). We show that model plant and animal species share the fundamental characteristics associated with nucleosome dynamics. Only 12% and 16% of the Arabidopsis and rice genomes, respectively, were occupied by well-positioned nucleosomes. The cores of positioned nucleosomes were enriched with G/C dinucleotides and showed a lower C→T mutation rate than the linker sequences. We discovered that nucleosomes associated with heterochromatic regions were more spaced with longer linkers than those in euchromatic regions in both plant species. Surprisingly, different nucleosome densities were found to be associated with chromatin in leaf and flower tissues in Arabidopsis. We show that deep MNase-seq data sets can be used to map nucleosome occupancy of specific genomic loci and reveal gene expression patterns correlated with chromatin dynamics in plant genomes.

  18. The Impact of CYP1A2 and CYP2E1 Genes Polymorphism on Theophylline Response.

    PubMed

    Sutrisna, Em

    2016-11-01

    Theophylline is a medicine with narrow therapeutic index. This implies that a small change in dosage would cause side effects. Theophylline is metabolized by CYP1A2 and CYP2E1. The aim of this review is to know the impact of CYP1A2 and CYP2E1 genes polymorphism on theophylline response. The review was done by searching literature in Pubmed and Science Direct databases with keywords 'polymorphism', 'pharmacogenetic', 'CYP1A2', 'CYP2E1' and 'theophylline'. There were 5 research articles from Pubmed and 65 articles (21 research articles, 23 review articles and 21 book chapters) from Science Direct. The exclusion criteria were - articles discussing about polymorphism but not CYP1A2 or CYP2E1, the ones with a mention of theophylline but not about its metabolism, articles on CYP1A2 and/or 2E1 polymorphism but not on the effect on theophylline. Thus, 33 articles were reviewed due to their suitability. The review discusses the influence of polymorphism of CYP1A2 and CYP2E1 genes on theophylline response.

  19. Impact of Huntington Disease Gene-Positive Status on Pre-Symptomatic Young Adults and Recommendations for Genetic Counselors.

    PubMed

    Gong, Ping; Fanos, Joanna H; Korty, Lauren; Siskind, Carly E; Hanson-Kahn, Andrea K

    2016-12-01

    Huntington disease (HD) is an autosomal dominant, progressive neurodegenerative disorder for which there is no cure. Predictive testing for HD is available to asymptomatic at-risk individuals. Approximately half of the population undergoing predictive testing for HD consists of young adults (≤35 years old). Finishing one's education, starting a career, engaging in romantic relationships and becoming a parent are key milestones of young adulthood. We conducted a qualitative study to explore how testing gene-positive for HD influences young adults' attainment of these milestones, and to identify major challenges that pre-symptomatic young adults face to aid the development of targeted genetic counseling. Results of our study demonstrate that 1) knowing one's gene-positive status results in an urgency to reach milestones and positively changes young adults' approach to life; 2) testing positive influences young adults' education and career choices, romantic relationships, and family planning; 3) young adults desire flexible and tailored genetic counseling to address needs and concerns unique to this population. Findings of this study contribute to the understanding of the impact of predictive testing for HD on young adults, and highlight issues unique to this population that call for further research, intervention and advocacy.

  20. Null Mutants of Individual RABA Genes Impact the Proportion of Different Cell Wall Components in Stem Tissue of Arabidopsis thaliana

    PubMed Central

    Lunn, Daniel; Gaddipati, Sanyasi R.; Tucker, Gregory A.; Lycett, Grantley W.

    2013-01-01

    In Arabidopsis, and other plants, the RABA GTPases (orthologous to the Rab11a of mammals) have expanded in number and diversity and have been shown to belong to eight sub clades, some of which have been implicated in controlling vesicles that traffic cell wall polymers and enzymes that synthesise or modify them to the cell wall. In order to investigate this, we have investigated whether T-DNA insertion knockouts of individual RABA genes belonging to different sub clades, impact on the composition of the plant cell wall. Single gene knockouts of the RABA1, RABA2 and RABA4 sub clades primarily affected the percentage composition of pectin, cellulose and hemicellulose within the cell wall, respectively, despite having no obvious phenotype in the whole plant. We hypothesise that vesicles carrying specific types of cargoes from the Golgi to the cell surface may be regulated by particular sub types of RABA proteins, a finding that could have wider implications for how trafficking systems work and could be a useful tool in cell wall research and other fields of plant biology. PMID:24124508

  1. Impacts of light and temperature on shoot branching gradient and expression of strigolactone synthesis and signalling genes in rose.

    PubMed

    Djennane, Samia; Hibrand-Saint Oyant, Laurence; Kawamura, Koji; Lalanne, David; Laffaire, Michel; Thouroude, Tatiana; Chalain, Séverine; Sakr, Soulaiman; Boumaza, Rachid; Foucher, Fabrice; Leduc, Nathalie

    2014-03-01

    Light and temperature are two environmental factors that deeply affect bud outgrowth. However, little is known about their impact on the bud burst gradient along a stem and their interactions with the molecular mechanisms of bud burst control. We investigated this question in two acrotonic rose cultivars. We demonstrated that the darkening of distal buds or exposure to cold (5 °C) prior to transfer to mild temperatures (20 °C) both repress acrotony, allowing the burst of quiescent medial and proximal buds. We sequenced the strigolactone pathway MAX-homologous genes in rose and studied their expression in buds and internodes along the stem. Only expressions of RwMAX1, RwMAX2 and RwMAX4 were detected. Darkening of the distal part of the shoot triggered a strong increase of RwMAX2 expression in darkened buds and bark-phloem samples, whereas it suppressed the acropetal gradient of the expression of RwMAX1 observed in stems fully exposed to light. Cold treatment induced an acropetal gradient of expression of RwMAX1 in internodes and of RwMAX2 in buds along the stem. Our results suggest that the bud burst gradient along the stem cannot be explained by a gradient of expression of RwMAX genes but rather by their local level of expression at each individual position.

  2. A research program for the socioeconomic impacts of gene editing regulation.

    PubMed

    Whelan, Agustina I; Lema, Martin A

    2017-01-02

    Gene editing technologies are a group of recent innovations in plant breeding using molecular biology, which have in common the capability of introducing a site-directed mutation or deletion in the genome. The first cases of crops improved with these technologies are approaching the market; this has raised an international debate regarding if they should be regulated as genetically modified crops or just as another form of mutagenesis under conventional breeding. This dilemma for policymakers not only entails issues pertaining safety information and legal/regulatory definitions. It also demands borrowing tools developed in the field of social studies of science and technology, as an additional basis for sound decision making.

  3. Sexual Polyploidization in Medicago sativa L.: Impact on the Phenotype, Gene Transcription, and Genome Methylation

    PubMed Central

    Rosellini, Daniele; Ferradini, Nicoletta; Allegrucci, Stefano; Capomaccio, Stefano; Zago, Elisa Debora; Leonetti, Paola; Balech, Bachir; Aversano, Riccardo; Carputo, Domenico; Reale, Lara; Veronesi, Fabio

    2016-01-01

    Polyploidization as the consequence of 2n gamete formation is a prominent mechanism in plant evolution. Studying its effects on the genome, and on genome expression, has both basic and applied interest. We crossed two diploid (2n = 2x = 16) Medicago sativa plants, a subsp. falcata seed parent, and a coerulea × falcata pollen parent that form a mixture of n and 2n eggs and pollen, respectively. Such a cross produced full-sib diploid and tetraploid (2n = 4x = 32) hybrids, the latter being the result of bilateral sexual polyploidization (BSP). These unique materials allowed us to investigate the effects of BSP, and to separate the effect of intraspecific hybridization from those of polyploidization by comparing 2x with 4x full sib progeny plants. Simple sequence repeat marker segregation demonstrated tetrasomic inheritance for all chromosomes but one, demonstrating that these neotetraploids are true autotetraploids. BSP brought about increased biomass, earlier flowering, higher seed set and weight, and larger leaves with larger cells. Microarray analyses with M. truncatula gene chips showed that several hundred genes, related to diverse metabolic functions, changed their expression level as a consequence of polyploidization. In addition, cytosine methylation increased in 2x, but not in 4x, hybrids. Our results indicate that sexual polyploidization induces significant transcriptional novelty, possibly mediated in part by DNA methylation, and phenotypic novelty that could underpin improved adaptation and reproductive success of tetraploid M. sativa with respect to its diploid progenitor. These polyploidy-induced changes may have promoted the adoption of tetraploid alfalfa in agriculture. PMID:26858330

  4. MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression.

    PubMed

    Smith, Spenser S; Dole, Neha S; Franceschetti, Tiziana; Hrdlicka, Henry C; Delany, Anne M

    2016-10-07

    Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3'-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling.

  5. Interplay of Promoter Usage and Intragenic CpG Content: Impact on GFP Reporter Gene Expression.

    PubMed

    Krinner, Simone; Heitzer, Asli; Asbach, Benedikt; Wagner, Ralf

    2015-12-01

    Successful therapeutic protein production in vitro and in vivo requires efficient and long-term transgene expression supported by optimized vector and transgene cis-regulatory sequence elements. This study provides a comparative analysis of CpG-rich, highly expressed, versus CpG-depleted, poorly expressed green fluorescent protein (GFP) reporter transgenes, transcribed by various promoters in two different cell systems. Long-term GFP expression from a defined locus in stable Chinese hamster ovary cells was clearly influenced by the combination of transgene CpG content and promoter usage, as shown by differential silencing effects on selection pressure removal among the cytomegalovirus (CMV) promoter and elongation factor (EF)-1α promoter. Whereas a high intragenic CpG content promoted local DNA methylation, CpG depletion rather accelerated transgene loss and increased the local chromatin density. On lentiviral transfer of various expression modules into epigenetically sensitive P19 embryonic pluripotent carcinoma cells, CMV promoter usage led to rapid gene silencing irrespective of the intragenic CpG content. In contrast, EF-1α promoter-controlled constructs showed delayed silencing activity and high-level transgene expression, in particular when the CpG-rich GFP reporter was used. Notably, GFP silencing in P19 cells could be prevented completely by the bidirectional, dual divergently transcribed A2UCOE (ubiquitously acting chromatin-opening element derived from the human HNRPA2B1-CBX3 locus) promoter. Because the level of GFP expression by the A2UCOE promoter was entirely unaffected by the intragenic CpG level, we suggest that A2UCOE can overcome chromatin compaction resulting from intragenic CpG depletion due to its ascribed chromatin-opening abilities. Our analyses provide insights into the interplay of the intragenic CpG content with promoter sequences and regulatory sequence elements, thus contributing toward the design of therapeutic transgene expression

  6. Deletion of the APOBEC3B gene strongly impacts susceptibility to falciparum malaria.

    PubMed

    Jha, Pankaj; Sinha, Swapnil; Kanchan, Kanika; Qidwai, Tabish; Narang, Ankita; Singh, Prashant Kumar; Pati, Sudhanshu S; Mohanty, Sanjib; Mishra, Saroj K; Sharma, Surya K; Awasthi, Shally; Venkatesh, Vimala; Jain, Sanjeev; Basu, Analabha; Xu, Shuhua; Mukerji, Mitali; Habib, Saman

    2012-01-01

    APOBEC3B, a gene involved in innate response, exhibits insertion-deletion polymorphism across world populations. We observed the insertion allele to be nearly fixed in malaria endemic regions of sub-Saharan Africa as well as populations with high malaria incidence in the past. This prompted us to investigate the possible association of the polymorphism with falciparum malaria. We studied the distribution of APOBEC3B, in 25 diverse Indian populations comprising of 500 samples and 176 severe or non-severe Plasmodium falciparum patients and 174 ethnically-matched uninfected individuals from a P. falciparum endemic and a non-endemic region of India. The deletion frequencies ranged from 0% to 43% in the Indian populations. The frequency of the insertion allele strikingly correlated with the endemicity map of P. falciparum malaria in India. A strong association of the deletion allele with susceptibility to falciparum malaria in the endemic region (non-severe vs. control, Odds ratio=4.96, P value=9.5E(-06); severe vs. control, OR=4.36, P value=5.76E(-05)) was observed. Although the frequency of deletion allele was higher in the non-endemic region, there was a significant association of the homozygous deletion genotype with malaria (OR=3.17, 95% CI=1.10-10.32, P value=0.0177). Our study also presents a case for malaria as a positive selection force for the APOBEC3B insertion and suggests a major role for this gene in innate immunity against malaria.

  7. Impact of Gene Patents and Licensing Practices on Access to Genetic Testing for Cystic Fibrosis

    PubMed Central

    Chandrasekharan, Subhashini; Heaney, Christopher; James, Tamara; Conover, Chris; Cook-Deegan, Robert

    2010-01-01

    Cystic fibrosis (CF) is one of the most commonly tested autosomal recessive disorders in the US. Clinical CF is associated with mutations in the CFTR gene, of which the most common mutation among Caucasians, ΔF508, was identified in 1989. The University of Michigan, Johns Hopkins University, and the Hospital for Sick Children, where much of the initial research occurred, hold key patents for CF genetic sequences, mutations and methods for detecting them. Several patents including the one that covers detection of the ΔF508 mutation are jointly held by the University of Michigan and the Hospital for Sick Children in Toronto, with Michigan administering patent licensing in the US. The University of Michigan broadly licenses the ΔF508 patent for genetic testing with over 60 providers of genetic testing to date. Genetic testing is now used in newborn screening, diagnosis, and reproductive decisions. Interviews with key researchers and intellectual property managers, a survey of laboratories’ prices for CF genetic testing, a review of literature on CF tests’ cost effectiveness, and a review of the developing market for CF testing provide no evidence that patents have significantly hindered access to genetic tests for CF or prevented financially cost-effective screening. Current licensing practices for cystic fibrosis (CF) genetic testing appear to facilitate both academic research and commercial testing. More than one thousand different CFTR mutations have been identified, and research continues to determine their clinical significance. Patents have been nonexclusively licensed for diagnostic use, and have been variably licensed for gene transfer and other therapeutic applications. The Cystic Fibrosis Foundation has been engaged in licensing decisions, making CF a model of collaborative and cooperative patenting and licensing practice. PMID:20393308

  8. Maternal stress retards fetal development in mice with transcriptome-wide impact on gene expression profiles of the limb.

    PubMed

    Choe, Han Kyoung; Son, Gi Hoon; Chung, Sooyoung; Kim, Myungjin; Sun, Woong; Kim, Hyun; Geum, Dongho; Kim, Kyungjin

    2011-03-01

    The environment of a pregnant mother has a life-long impact on later life of offspring. Maternal stress is known to cause low birth weight and programs several physiological dysfunctions in offspring. However, the direct effects of maternal stress on the developing fetus remain largely unknown. The present study focused on the effect of chronic maternal stress on the developmental program and its molecular mechanisms. Pregnant mice were given 6-hour immobilization stress every day from 8.5 days post coitum. Fetal body weight was significantly decreased by maternal stress throughout development. Importantly, developmental events were retarded in the stressed fetuses. Around embryonic day 13.5 (E13.5), the developmental increment of somite numbers was delayed, although this difference recovered by E15.5. Limb bud formation and regression of interdigital webbing were also retarded by approximately 0.5 days. Subsequently, transcriptomes of developing limbs were analyzed by cDNA microarrays. Approximately, one-tenth of detected transcripts were significantly influenced by maternal stress. Q-PCR AQ analyses further demonstrated that the expression of a subset of limb development-associated genes, including Igf1, Aldh1a2, and Acta1, was changed in the stressed fetus. In conclusion, our findings suggest that maternal stress can retard limb and somite development in mice, with profound impacts on the developmental genetic program of limb.

  9. Impacts of selective logging on inbreeding and gene flow in two Amazonian timber species with contrasting ecological and reproductive characteristics.

    PubMed

    Vinson, C C; Kanashiro, M; Harris, S A; Boshier, D H

    2015-01-01

    Selective logging in Brazil allows for the removal of up to 90% of trees above 50 cm diameter of a given timber species, independent of a species' life history characteristics or how quickly it will recover. The genetic and demographic effects of selective logging on two Amazonian timber species (Dipteryx odorata Leguminosae, Jacaranda copaia Bignoniaceae) with contrasting ecological and reproductive characteristics were assessed in the same forest. Genetic diversity and gene flow were characterized by genotyping adults and seed sampled before and after logging, using hypervariable microsatellite markers. Overall, there were no short-term genetic impacts on the J. copaia population, with commercial application of current Brazilian forest management regulations. In contrast, for D. Odorata, selective logging showed a range of genetic impacts, with a 10% loss of alleles, and reductions in siring by pollen from trees within the 546-ha study area (23-11%) and in the number of pollen donors per progeny array (2.8-1.6), illustrating the importance of the surrounding landscape. Asynchrony in flowering between D. odorata trees led to trees with no breeding partners, which could limit the species reproduction and regeneration under current regulations. The results are summarized with other published studies from the same site and the implications for forest management discussed. The different types and levels of impacts associated with each species support the idea that ecological and genetic information by species, ecological guild or reproductive group is essential in helping to derive sustainable logging guidelines for tropical forests.

  10. Reduced impact of pyrimethamine drug pressure on Plasmodium malariae dihydrofolate reductase gene.

    PubMed

    Khim, Nimol; Kim, Saorin; Bouchier, Christiane; Tichit, Magali; Ariey, Frédéric; Fandeur, Thierry; Chim, Pheaktra; Ke, Sopheakvatey; Sum, Sarorn; Man, Somnang; Ratsimbasoa, Arsène; Durand, Rémy; Ménard, Didier

    2012-02-01

    Molecular investigations performed following the emergence of sulfadoxine-pyrimethamine (SP) resistance in Plasmodium falciparum have allowed the identification of the dihydrofolate reductase (DHFR) enzyme as the target of pyrimethamine. Although clinical cases of Plasmodium malariae are not usually treated with antifolate therapy, incorrect diagnosis and the high frequency of undetected mixed infections has probably exposed non-P. falciparum parasites to antifolate therapy in many areas. In this context, we aimed to assess the worldwide genetic diversity of the P. malariae dhfr gene in 123 samples collected in Africa and Asia, areas with different histories of SP use. Among the 10 polymorphic sites found, we have observed 7 new mutations (K55E, S58R, S59A, F168S, N194S, D207G, and T221A), which led us to describe 6 new DHFR proteins. All isolates from African countries were classified as wild type, while new mutations and haplotypes were recognized as exclusive to Madagascar (except for the double mutations at nucleotides 341 and 342 [S114N] found in one Cambodian isolate). Among these nonsynonymous mutations, two were likely related to pyrimethamine resistance: S58R (corresponding to C59R in P. falciparum and S58R in Plasmodium vivax; observed in one Malagasy sample) and S114N (corresponding to S108N in P. falciparum and S117N in P. vivax; observed in three Cambodian samples).

  11. Reduced Impact of Pyrimethamine Drug Pressure on Plasmodium malariae Dihydrofolate Reductase Gene

    PubMed Central

    Khim, Nimol; Kim, Saorin; Bouchier, Christiane; Tichit, Magali; Ariey, Frédéric; Fandeur, Thierry; Chim, Pheaktra; Ke, Sopheakvatey; Sum, Sarorn; Man, Somnang; Ratsimbasoa, Arsène; Durand, Rémy

    2012-01-01

    Molecular investigations performed following the emergence of sulfadoxine-pyrimethamine (SP) resistance in Plasmodium falciparum have allowed the identification of the dihydrofolate reductase (DHFR) enzyme as the target of pyrimethamine. Although clinical cases of Plasmodium malariae are not usually treated with antifolate therapy, incorrect diagnosis and the high frequency of undetected mixed infections has probably exposed non-P. falciparum parasites to antifolate therapy in many areas. In this context, we aimed to assess the worldwide genetic diversity of the P. malariae dhfr gene in 123 samples collected in Africa and Asia, areas with different histories of SP use. Among the 10 polymorphic sites found, we have observed 7 new mutations (K55E, S58R, S59A, F168S, N194S, D207G, and T221A), which led us to describe 6 new DHFR proteins. All isolates from African countries were classified as wild type, while new mutations and haplotypes were recognized as exclusive to Madagascar (except for the double mutations at nucleotides 341 and 342 [S114N] found in one Cambodian isolate). Among these nonsynonymous mutations, two were likely related to pyrimethamine resistance: S58R (corresponding to C59R in P. falciparum and S58R in Plasmodium vivax; observed in one Malagasy sample) and S114N (corresponding to S108N in P. falciparum and S117N in P. vivax; observed in three Cambodian samples). PMID:22123682

  12. Dopamine D2 gene expression interacts with environmental enrichment to impact lifespan and behavior

    PubMed Central

    Thanos, Panayotis K.; Hamilton, John; O'Rourke, Joseph R.; Napoli, Anthony; Febo, Marcelo; Volkow, Nora D.; Blum, Kenneth; Gold, Mark

    2016-01-01

    Aging produces cellular, molecular, and behavioral changes affecting many areas of the brain. The dopamine (DA) system is known to be vulnerable to the effects of aging, which regulate behavioral functions such as locomotor activity, body weight, and reward and cognition. In particular, age-related DA D2 receptor (D2R) changes have been of particular interest given its relationship with addiction and other rewarding behavioral properties. Male and female wild-type (Drd2 +/+), heterozygous (Drd2 +/−) and knockout (Drd2 −/−) mice were reared post-weaning in either an enriched environment (EE) or a deprived environment (DE). Over the course of their lifespan, body weight and locomotor activity was assessed. While an EE was generally found to be correlated with longer lifespan, these increases were only found in mice with normal or decreased expression of the D2 gene. Drd2 +/+ EE mice lived nearly 16% longer than their DE counterparts. Drd2 +/+ and Drd2 +/− EE mice lived 22% and 21% longer than Drd2 −/− EE mice, respectively. Moreover, both body weight and locomotor activity were moderated by environmental factors. In addition, EE mice show greater behavioral variability between genotypes compared to DE mice with respect to body weight and locomotor activity. PMID:26992232

  13. The VEGF gene polymorphism impacts brain volume and arterial blood volume.

    PubMed

    Takeuchi, Hikaru; Tomita, Hiroaki; Taki, Yasuyuki; Kikuchi, Yoshie; Ono, Chiaki; Yu, Zhiqian; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2017-04-12

    Vascular endothelial growth factor (VEGF) plays a critical role in the angiogenesis and proliferation of various types of cells such as neurons, astroglia, and endothelial cells in the brain. A common polymorphism in the VEGF gene (-2578 C/A) is associated with circulating VEGF levels, cancers and Alzheimer's disease. Nonetheless, the effects of this polymorphism on normal human brain volume, arterial blood volume, and blood supply remain unclear. In this study, the effects of this polymorphism on the total gray matter volume (TGMV) and total white matter volume (TWMV) using T1-weighted structural images and the total arterial blood volume (TABV) and mean cerebral blood flow (mCBF) during rest using arterial spin labeling (ASL) in 765 young adult humans were investigated. Voxel-by-voxel whole-brain analyses of these measures were also performed. Multiple regression analyses with age and sex as covariates revealed that the VEGF genotype (number of C alleles) was significantly and positively correlated with TGMV, TWMV, and TABV as well as with regional gray and white matter volumes in widespread areas and regional arterial blood volume in some areas with high arterial blood volume. However, these regional associations were not seen when the corresponding global signal was included as a covariate in the multiple regression analyses, indicating that we failed to obtain evidence of region-specific associations between these brain measures and the genotype. The results suggest that the VEGF-2578C allele, is associated with changes in the vascular system that lead to increased blood volume and larger brain volume. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  14. Economic Impact of Gene Expression Profiling in Patients with Early-Stage Breast Cancer in France

    PubMed Central

    Katz, Gregory; Romano, Olivier; Foa, Cyril; Vataire, Anne-Lise; Chantelard, Jean-Victor; Hervé, Robert; Barletta, Hugues; Durieux, Axel; Martin, Jean-Pierre; Salmon, Rémy

    2015-01-01

    Background and Aims The heterogeneous nature of breast cancer can make decisions on adjuvant chemotherapy following surgical resection challenging. Oncotype DX is a validated gene expression profiling test that predicts the likelihood of adjuvant chemotherapy benefit in early-stage breast cancer. The aim of this study is to determine the costs of chemotherapy in private hospitals in France, and evaluate the cost-effectiveness of Oncotype DX from national insurance and societal perspectives. Methods A multicenter study was conducted in seven French private hospitals, capturing retrospective data from 106 patient files. Cost estimates were used in conjunction with a published Markov model to assess the cost-effectiveness of using Oncotype DX to inform chemotherapy decision making versus standard care. Sensitivity analyses were performed. Results The cost of adjuvant chemotherapy in private hospitals was estimated at EUR 8,218 per patient from a national insurance perspective and EUR 10,305 from a societal perspective. Cost-effectiveness analysis indicated that introducing Oncotype DX improved life expectancy (+0.18 years) and quality-adjusted life expectancy (+0.17 QALYs) versus standard care. Oncotype DX was found cost-effective from a national insurance perspective (EUR 2,134 per QALY gained) and cost saving from a societal perspective versus standard care. Inclusion of lost productivity costs in the modeling analysis meant that costs for eligible patients undergoing Oncotype DX testing were on average EUR 602 lower than costs for those receiving standard care. Conclusions As Oncotype DX was found both cost and life-saving from a societal perspective, the test was considered to be dominant to standard care. However, the delay in coverage has the potential to erode the quality of the French healthcare system, thus depriving patients of technologies that could improve clinical outcomes and allow healthcare professionals to better allocate hospital resources to

  15. A gene to organism approach—assessing the impact of environmental pollution in eelpout (Zoarces viviparus) females and larvae

    PubMed Central

    Carney Almroth, Bethanie; Albertsson, Eva; Coltellaro, Mariateresa; Bignell, John Paul; Hanson, Niklas; Scarcelli, Vittoria; Fagerholm, Björn; Parkkonen, Jari; Wijkmark, Emma; Frenzilli, Giada; Förlin, Lars; Sturve, Joachim

    2015-01-01

    Abstract A broad biomarker approach was applied to study the effects of marine pollution along the Swedish west coast using the teleost eelpout (Zoarces viviparus) as the sentinel species. Measurements were performed on different biological levels, from the molecular to the organismal, including measurements of messenger RNA (mRNA), proteins, cellular and tissue changes, and reproductive success. Results revealed that eelpout captured in Stenungsund had significantly higher hepatic ethoxyresorufin O‐deethylase activity, high levels of both cytochrome P4501A and diablo homolog mRNA, and high prevalence of dead larvae and nuclear damage in erythrocytes. Eelpout collected in Göteborg harbor displayed extensive macrovesicular steatosis, whereby the majority of hepatocytes were affected throughout the liver, which could indicate an effect on lipid metabolism. Results also indicate that eelpouts collected at polluted sites might have an affected immune system, with lower mRNA expression of genes involved in the innate immune system and a higher number of lymphocytes. Biomarker assessment also was performed on livers dissected from unborn eelpout larvae collected from the ovary of the females. No significant differences were noted, which might indicate that the larvae to some extent are protected from effects of environmental pollutants. In conclusion, usage of the selected set of biological markers, covering responses from gene to organism, has demonstrated site‐specific biomarker patterns that provided a broad and comprehensive picture of the impact of environmental stressors. Environ Toxicol Chem 2015;34:1511–1523. © 2015 The Authors. Published by SETAC. PMID:25663503

  16. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes.

    PubMed

    Berglund, Björn; Khan, Ghazanfar Ali; Weisner, Stefan E B; Ehde, Per Magnus; Fick, Jerker; Lindgren, Per-Eric

    2014-04-01

    Recently, there have been growing concerns about pharmaceuticals including antibiotics as environmental contaminants. Antibiotics of concentrations commonly encountered in wastewater have been suggested to affect bacterial population dynamics and to promote dissemination of antibiotic resistance. Conventional wastewater treatment processes do not always adequately remove pharmaceuticals causing environmental dissemination of low levels of these compounds. Using constructed wetlands as an additional treatment step after sewage treatment plants have been proposed as a cheap alternative to increase reduction of wastewater contaminants, however this means that the natural microbial community of the wetlands becomes exposed to elevated levels of antibiotics. In this study, experimental surface-flow wetlands in Sweden were continuously exposed to antibiotics of concentrations commonly encountered in wastewater. The aim was to assess the antibiotic removal efficiency of constructed wetlands and to evaluate the impact of low levels of antibiotics on bacterial diversity, resistance development and expression in the wetland bacterial community. Antibiotic concentrations were measured using liquid chromatography-mass spectrometry and the effect on the bacterial diversity was assessed with 16S rRNA-based denaturing gradient gel electrophoresis. Real-time PCR was used to detect and quantify antibiotic resistance genes and integrons in the wetlands, during and after the exposure period. The results indicated that the antibiotic removal efficiency of constructed wetlands was comparable to conventional wastewater treatment schemes. Furthermore, short-term treatment of the constructed wetlands with environmentally relevant concentrations (i.e. 100-2000 ng×l(-1)) of antibiotics did not significantly affect resistance gene concentrations, suggesting that surface-flow constructed wetlands are well-suited for wastewater treatment purposes.

  17. Impact of a single session of intermittent pneumatic leg compressions on skeletal muscle and isolated artery gene expression in rats

    PubMed Central

    Roseguini, Bruno T.; Arce-Esquivel, Arturo A.; Newcomer, Sean C.

    2011-01-01

    Intermittent pneumatic leg compressions (IPC) have proven to be an effective noninvasive approach for treatment of patients with claudication, but the mechanisms underlying the clinical benefits remain elusive. In the present study, a rodent model of claudication produced by bilateral ligation of the femoral artery was used to investigate the acute impact of a single session of IPC (150 min) on hemodynamics, skeletal muscle (tibialis anterior), and isolated collateral artery (perforating artery) expression of a subset of genes associated with inflammation and vascular remodeling. In addition, the effect of compression frequency (15 vs. 3 compressions/min) on the expression of these factors was studied. In ligated animals, IPC evoked an increase of monocyte chemoattractant protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant 1 (CXCL1) mRNA (P < 0.01) and immunostaining (P < 0.05), as well as a minor increase in VEGF immunostaining in the muscle endomysium 150 min postintervention. Further, collateral arteries from these animals showed an increased expression of MCP-1 (approximately twofold, P = 0.02). These effects were most evident in the group exposed to the high-frequency protocol (15 compressions/min). In contrast, IPC in sham-operated control animals evoked a modest initial upregulation of VEGF (P = 0.01), MCP-1 (P = 0.02), and CXCL1 (P = 0.03) mRNA in the muscle without concomitant changes in protein levels. No changes in gene expression were observed in arteries isolated from sham animals. In conclusion, IPC acutely up-regulates the expression of important factors involved in vascular remodeling in the compressed muscle and collateral arteries in a model of hindlimb ischemia. These effects appear to be dependent on the compression frequency, such that a high compression frequency (15 compressions/min) evokes more consistent and robust effects compared with the frequency commonly employed clinically to treat patients with claudication (3

  18. Impact of estrogen receptor gene polymorphisms and mRNA levels on obesity and lipolysis – a cohort study

    PubMed Central

    Nilsson, Maria; Dahlman, Ingrid; Jiao, Hong; Gustafsson, Jan-Åke; Arner, Peter; Dahlman-Wright, Karin

    2007-01-01

    Background The estrogen receptors α and β (ESR1, ESR2) have been implicated in adiposity, lipid metabolism and feeding behaviour. In this report we analyse ESR1 and ESR2 gene single nucleotide polymorphisms (SNPs) for association with obesity. We also relate adipose tissue ESR1 mRNA levels and ESR1 SNPs to adipocyte lipolysis and lipogenesis phenotypes. Methods 23 ESR1 and 11 ESR2 tag-SNPs, covering most of the common haplotype variation in each gene according to HAPMAP data, were analysed by Chi2 for association with obesity in a cohort comprising 705 adults with severe obesity and 402 lean individuals. Results were replicated in a cohort comprising 837 obese and 613 lean subjects. About 80% of both cohorts comprised women and 20% men. Adipose tissue ESR1 mRNA was quantified in 122 women and related to lipolysis and lipogenesis by multiple regression. ESR1 SNPs were analysed for association with adipocyte lipolysis and lipogenesis phenotypes in 204 obese women by simple regression. Results No ESR1 SNP was associated with obesity. Five ESR2 SNPs displayed nominal significant allelic association with obesity in women and one in men. The two ESR2 SNPs associated with obesity with nominal P value < 0.01 were genotyped in a second cohort where no association with obesity was observed. There was an inverse correlation between ESR1 mRNA levels in abdominal subcutaneous (sc) adipose tissue and basal lipolysis, as well as responsiveness to adrenoceptor agonists independent of age and BMI (P value 0.009–0.045). ESR1 rs532010 was associated with lipolytic sensitivity to noradrenaline (nominal P value 0.012), and ESR1 rs1884051 with responsiveness to the non-selective beta-adrenoceptor agonist isoprenaline (nominal P value 0.05). These associations became non-significant after Bonferroni correction. Conclusion ESR1 gene alleles are unlikely to be a major cause of obesity in women. A minor importance of ESR2 on severe obesity cannot be excluded. The inverse correlation

  19. The impact of RNA standardization and heterogeneous gene expression on the results of cDNA array of human breast carcinoma.

    PubMed

    Khoshnoud, Reza; He, Qimin; Sylván, Maria; Khoshnoud, Aida; Ivarsson, Madleen; Fornander, Tommy; Bergh, Jonas; Frisell, Jan; Rutqvist, Lars-Erik; Skog, Sven

    2010-05-01

    cDNA microarray is an established technique. However, difficulties such as handling tissue samples under RNase-free conditions, the heterogeneous tumor composition, i.e. non-malignant versus malignant cells and different pathologic types of malignant cells, and lack of appropriate reference may limit the potentially benefit of this method in clinical use. In this study, we examined how standardization of gene expression to total mg RNA or mg tissue and tumor heterogeneity affect the final results. We found that the gene expression of human breast tumors was approximately 9 times higher in malignant tissue as compared to the non-malignant tissue when expressed per total mg RNA, but approximately 40 times higher when expressed per mg tissue. Genes that were expected to act as housekeeping genes (PUC18, RPL and beta-actin) varied between different parts of the tumor and also between non-malignant and malignant tissues, excluding them as reference genes. We also found that the gene expression differed in various parts of the breast tumor, probably due to a mixture of different types of cells, i.e. non-malignant and malignant cells. To find out if the variations in the gene expression were due to cell heterogeneity we used microdissection to collect malignant cells separately. We found that the gene expression was markedly different in the isolated malignant cells as compared to the gene expression of the bulk tumor tissue. Thus, to be able to evaluate results from cDNA array gene expression experiments it is, to our opinion, necessary to work with pure tumor cell populations, until solid information is available on the impact of stromal component. Housekeeping genes should be handling with care and mg tissue may be preferred instead of microg RNA for standardization.

  20. The acute impact of polyphenols from Hibiscus sabdariffa in metabolic homeostasis: an approach combining metabolomics and gene-expression analyses.

    PubMed

    Beltrán-Debón, Raúl; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Senan-Campos, Oriol; Massucci, Francesco A; Hernández-Aguilera, Anna; Sales-Pardo, Marta; Guimerà, Roger; Camps, Jordi; Menendez, Javier A; Joven, Jorge

    2015-09-01

    We explored the acute multifunctional effects of polyphenols from Hibiscus sabdariffa in humans to assess possible consequences on the host's health. The expected dynamic response was studied using a combination of transcriptomics and metabolomics to integrate specific functional pathways through network-based methods and to generate hypotheses established by acute metabolic effects and/or modifications in the expression of relevant genes. Data were obtained from healthy male volunteers after 3 hours of ingestion of an aqueous Hibiscus sabdariffa extract. The data were compared with data obtained prior to the ingestion, and the overall findings suggest that these particular polyphenols had a simultaneous role in mitochondrial function, energy homeostasis and protection of the cardiovascular system. These findings suggest beneficial actions in inflammation, endothelial dysfunction, and oxidation, which are interrelated mechanisms. Among other effects, the activation of the heme oxygenase-biliverdin reductase axis, the systemic inhibition of the renin-angiotensin system, the inhibition of the angiotensin-converting enzyme, and several actions mirroring those of the peroxisome proliferator-activated receptor agonists further support this notion. We also found concordant findings in the serum of the participants, which include a decrease in cortisol levels and a significant increase in the active vasodilator metabolite of bradykinin (des-Arg(9)-bradykinin). Therefore, our data support the view that polyphenols from Hibiscus sabdariffa play a regulatory role in metabolic health and in the maintenance of blood pressure, thus implying a multi-faceted impact in metabolic and cardiovascular diseases.

  1. CYP1A2 and CYP2D6 Gene Polymorphisms in Schizophrenic Patients with Neuroleptic Drug-Induced Side Effects.

    PubMed

    Ivanova, S A; Filipenko, M L; Vyalova, N M; Voronina, E N; Pozhidaev, I V; Osmanova, D Z; Ivanov, M V; Fedorenko, O Yu; Semke, A V; Bokhan, N A

    2016-03-01

    Polymorphic variants of CYP1A2 and CYP2D6 genes of the cytochrome P450 system were studied in patients with schizophrenia with drug-induced motor disorders and hyperprolactinemia against the background of long-term neuroleptic therapy. We revealed an association of polymorphic variant C-163A CYP1A2*1F of CYP1A2 gene with tardive dyskinesia and association of polymorphic variant 1846G>A CY2D6*4 and genotype A/A of CYP2D6 gene (responsible for debrisoquin-4-hydroxylase synthesis) with limbotruncal tardive dyskinesia in patients with schizophrenia receiving neuroleptics for a long time.

  2. Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization.

    PubMed

    Seibt, Kathrin M; Wenke, Torsten; Muders, Katja; Truberg, Bernd; Schmidt, Thomas

    2016-05-01

    Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions.

  3. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water.

    PubMed

    Harnisz, Monika; Korzeniewska, Ewa; Gołaś, Iwona

    2015-06-01

    The aim of this study was to assess the impact of a fish farm on the structure of antibiotic resistant bacteria and antibiotic resistance genes in water of Drwęca River. Samples of upstream river waters; post-production waters and treated post-production waters from fish farm; as well as downstream river waters were monitored for tetracycline resistant bacteria, tetracycline resistant genes, basic physico-chemical parameters and tetracyclines concentration. The river waters was characterized by low levels of pollution, which was determined based on water temperature, pH and concentrations of dissolved oxygen and tetracycline antibiotics. Culture-dependent (heterotrophic plate counts, counts of bacteria resistant to oxytetracycline (OTC(R)) and doxycycline (DOX(R)), minimum inhibitory concentrations for oxytetracycline and doxycycline, multidrug resistance of OTC(R) and DOX(R), qualitative composition of OTC(R) and DOX(R), prevalence of tet genes in resistant isolates) and culture-independent surveys (quantity of tet gene copies) revealed no significant differences in the abundance of antibiotic-resistant bacteria and antibiotic resistance genes between the studied samples. The only way in which the fish farm influenced water quality in the Drwęca River was by increasing the diversity of tetracycline-resistance genes. However, it should also be noted that the bacteria of the genera Aeromonas sp. and Acinetobacter sp. were able to transfer 6 out of 13 tested tet genes into Escherichiacoli, which can promote the spread of antibiotic resistance in the environment.

  4. Impacts of gene bioaugmentation with pJP4-harboring bacteria of 2,4-D-contaminated soil slurry on the indigenous microbial community.

    PubMed

    Inoue, Daisuke; Yamazaki, Yuji; Tsutsui, Hirofumi; Sei, Kazunari; Soda, Satoshi; Fujita, Masanori; Ike, Michihiko

    2012-04-01

    Gene bioaugmentation is a bioremediation strategy that enhances biodegradative potential via dissemination of degradative genes from introduced microorganisms to indigenous microorganisms. Bioremediation experiments using 2,4-dichlorophenoxyacetic acid (2,4-D)-contaminated soil slurry and strains of Pseudomonas putida or Escherichia coli harboring a self-transmissible 2,4-D degradative plasmid pJP4 were conducted in microcosms to assess possible effects of gene bioaugmentation on the overall microbial community structure and ecological functions (carbon source utilization and nitrogen transformation potentials). Although exogenous bacteria decreased rapidly, 2,4-D degradation was stimulated in bioaugmented microcosms, possibly because of the occurrence of transconjugants by the transfer of pJP4. Terminal restriction fragment length polymorphism analysis revealed that, although the bacterial community structure was disturbed immediately after introducing exogenous bacteria to the inoculated microcosms, it gradually approached that of the uninoculated microcosms. Biolog assay, nitrate reduction assay, and monitoring of the amoA gene of ammonia-oxidizing bacteria and nirK and nirS genes of denitrifying bacteria showed no irretrievable depressive effects of gene bioaugmentation on the carbon source utilization and nitrogen transformation potentials. These results may suggest that gene bioaugmentation with P. putida and E. coli strains harboring pJP4 is effective for the degradation of 2,4-D in soil without large impacts on the indigenous microbial community.

  5. Impact of colistin sulfate treatment of broilers on the presence of resistant bacteria and resistance genes in stored or composted manure.

    PubMed

    Le Devendec, Laetitia; Mourand, Gwenaelle; Bougeard, Stéphanie; Léaustic, Julien; Jouy, Eric; Keita, Alassane; Couet, William; Rousset, Nathalie; Kempf, Isabelle

    2016-10-15

    The application of manure may result in contamination of the environment with antimicrobials, antimicrobial-resistant bacteria, resistance genes and plasmids. The aim of this study was to investigate the impact of the administration of colistin and of manure management on (i) the presence of colistin-resistant Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa and (ii) the prevalence of various antimicrobial resistance genes in feces and in composted or stored manure. One flock of chickens was treated with colistin at the recommended dosage and a second flock was kept as an untreated control. Samples of feces, litter and stored or composted manure from both flocks were collected for isolation and determination of the colistin-susceptibility of E. coli, K. pneumoniae and P. aeruginosa and quantification of genes coding for resistance to different antimicrobials. The persistence of plasmids in stored or composted manure from colistin-treated broilers was also evaluated by plasmid capturing experiments. Results revealed that colistin administration to chickens had no apparent impact on the antimicrobial resistance of the dominant Enterobacteriaceae and P. aeruginosa populations in the chicken gut. Composting stimulated an apparently limited decrease in genes coding for resistance to different antimicrobial families. Importantly, it was shown that even after six weeks of composting or storage, plasmids carrying antimicrobial resistance genes could still be transferred to a recipient E. coli. In conclusion, composting is insufficient to completely eliminate the risk of spreading antimicrobial resistance through chicken manure.

  6. Pharmacodynamic Impact of Carboxylesterase 1 Gene Variants in Patients with Congestive Heart Failure Treated with Angiotensin-Converting Enzyme Inhibitors

    PubMed Central

    Bie, Peter; Ferrero, Laura; Bjerre, Ditte; Bruun, Niels E.; Egfjord, Martin; Rasmussen, Henrik B.; Hansen, Peter R.

    2016-01-01

    Background Variation in the carboxylesterase 1 gene (CES1) may contribute to the efficacy of ACEIs. Accordingly, we examined the impact of CES1 variants on plasma angiotensin II (ATII)/angiotensin I (ATI) ratio in patients with congestive heart failure (CHF) that underwent ACEI dose titrations. Five of these variants have previously been associated with drug response or increased CES1 expression, i.e., CES1 copy number variation, the variant of the duplicated CES1 gene with high transcriptional activity, rs71647871, rs2244613, and rs3815583. Additionally, nine variants, representatives of CES1Var, and three other CES1 variants were examined. Methods Patients with CHF, and clinical indication for ACEIs were categorized according to their CES1 genotype. Differences in mean plasma ATII/ATI ratios between genotype groups after ACEI dose titration, expressed as the least square mean (LSM) with 95% confidence intervals (CIs), were assessed by analysis of variance. Results A total of 200 patients were recruited and 127 patients (63.5%) completed the study. The mean duration of the CHF drug dose titration was 6.2 (SD 3.6) months. After ACEI dose titration, there was no difference in mean plasma ATII/ATI ratios between subjects with the investigated CES1 variants, and only one previously unexplored variation (rs2302722) qualified for further assessment. In the fully adjusted analysis of effects of rs2302722 on plasma ATII/ATI ratios, the difference in mean ATII/ATI ratio between the GG genotype and the minor allele carriers (GT and TT) was not significant, with a relative difference in LSMs of 0.67 (95% CI 0.43–1.07; P = 0.10). Results of analyses that only included enalapril-treated patients remained non-significant after Bonferroni correction for multiple parallel comparisons (difference in LSM 0.60 [95% CI 0.37–0.98], P = 0.045). Conclusion These findings indicate that the included single variants of CES1 do not significantly influence plasma ATII/ATI ratios in CHF

  7. Impact of Ciprofloxacin and Clindamycin Administration on Gram-Negative Bacteria Isolated from Healthy Volunteers and Characterization of the Resistance Genes They Harbor

    PubMed Central

    Card, Roderick M.; Mafura, Muriel; Hunt, Theresa; Kirchner, Miranda; Weile, Jan; Rashid, Mamun-Ur; Weintraub, Andrej; Nord, Carl Erik

    2015-01-01

    The aim of this study was to assess the impact of ciprofloxacin, clindamycin, and placebo administration on culturable Gram-negative isolates and the antibiotic resistance genes they harbor. Saliva and fecal samples were collected from healthy human volunteers before and at intervals, up to 1 year after antibiotic administration. Samples were plated on selective and nonselective media to monitor changes in different colony types or bacterial species. Following ciprofloxacin administration, there was a decrease of Escherichia coli in feces and after clindamycin administration a decrease of Bacteroides in feces and Leptotrichia in saliva, which all returned to pretreatment levels within 1 to 4 months. Ciprofloxacin administration also resulted in an increase in ciprofloxacin-resistant Veillonella in saliva, which persisted for 12 months. Additionally, 949 aerobic and anaerobic isolates purified from ciprofloxacin- and clindamycin-containing plates were screened for the presence of resistance genes. Resistance gene carriage was widespread in isolates from all three treatment groups, and no association was observed between genes and antibiotic administration. Although the anaerobic component of the microbiota was not a major reservoir of aerobe-associated antimicrobial resistance (AMR) genes, we detected the sulfonamide resistance gene sul2 in anaerobic isolates. The longitudinal nature of the study allowed identification of distinct Escherichia coli clones harboring multiple resistance genes, including one carrying an extended-spectrum β-lactamase blaCTX-M group 9 gene, which persisted in the gut for up to 4 months. This study provided insight into the effects of antibiotic administration on healthy microbiota and the diversity of resistance genes harbored therein. PMID:25987611

  8. Impact of light intensity and quality on chromatophore and nuclear gene expression in Paulinella chromatophora, an amoeba with nascent photosynthetic organelles.

    PubMed

    Zhang, Ru; Nowack, Eva C M; Price, Dana C; Bhattacharya, Debashish; Grossman, Arthur R

    2017-04-01

    Plastid evolution has been attributed to a single primary endosymbiotic event that occurred about 1.6 billion years ago (BYA) in which a cyanobacterium was engulfed and retained by a eukaryotic cell, although early steps in plastid integration are poorly understood. The photosynthetic amoeba Paulinella chromatophora represents a unique model for the study of plastid evolution because it contains cyanobacterium-derived photosynthetic organelles termed 'chromatophores' that originated relatively recently (0.09-0.14 BYA). The chromatophore genome is about a third the size of the genome of closely related cyanobacteria, but 10-fold larger than most plastid genomes. Several genes have been transferred from the chromatophore genome to the host nuclear genome through endosymbiotic gene transfer (EGT). Some EGT-derived proteins could be imported into chromatophores for function. Two photosynthesis-related genes (psaI and csos4A) are encoded by both the nuclear and chromatophore genomes, suggesting that EGT in Paulinella chromatophora is ongoing. Many EGT-derived genes encode proteins that function in photosynthesis and photoprotection, including an expanded family of high-light-inducible (ncHLI) proteins. Cyanobacterial hli genes are high-light induced and required for cell viability under excess light. We examined the impact of light on Paulinella chromatophora and found that this organism is light sensitive and lacks light-induced transcriptional regulation of chromatophore genes and most EGT-derived nuclear genes. However, several ncHLI genes have reestablished light-dependent regulation, which appears analogous to what is observed in cyanobacteria. We postulate that expansion of the ncHLI gene family and its regulation may reflect the light/oxidative stress experienced by Paulinella chromatophora as a consequence of the as yet incomplete integration of host and chromatophore metabolisms.

  9. Impact of Ciprofloxacin and Clindamycin Administration on Gram-Negative Bacteria Isolated from Healthy Volunteers and Characterization of the Resistance Genes They Harbor.

    PubMed

    Card, Roderick M; Mafura, Muriel; Hunt, Theresa; Kirchner, Miranda; Weile, Jan; Rashid, Mamun-Ur; Weintraub, Andrej; Nord, Carl Erik; Anjum, Muna F

    2015-08-01

    The aim of this study was to assess the impact of ciprofloxacin, clindamycin, and placebo administration on culturable Gram-negative isolates and the antibiotic resistance genes they harbor. Saliva and fecal samples were collected from healthy human volunteers before and at intervals, up to 1 year after antibiotic administration. Samples were plated on selective and nonselective media to monitor changes in different colony types or bacterial species. Following ciprofloxacin administration, there was a decrease of Escherichia coli in feces and after clindamycin administration a decrease of Bacteroides in feces and Leptotrichia in saliva, which all returned to pretreatment levels within 1 to 4 months. Ciprofloxacin administration also resulted in an increase in ciprofloxacin-resistant Veillonella in saliva, which persisted for 12 months. Additionally, 949 aerobic and anaerobic isolates purified from ciprofloxacin- and clindamycin-containing plates were screened for the presence of resistance genes. Resistance gene carriage was widespread in isolates from all three treatment groups, and no association was observed between genes and antibiotic administration. Although the anaerobic component of the microbiota was not a major reservoir of aerobe-associated antimicrobial resistance (AMR) genes, we detected the sulfonamide resistance gene sul2 in anaerobic isolates. The longitudinal nature of the study allowed identification of distinct Escherichia coli clones harboring multiple resistance genes, including one carrying an extended-spectrum β-lactamase blaCTX-M group 9 gene, which persisted in the gut for up to 4 months. This study provided insight into the effects of antibiotic administration on healthy microbiota and the diversity of resistance genes harbored therein.

  10. Impact of pre-application treatment on municipal sludge composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest.

    PubMed

    Lau, Calvin Ho-Fung; Li, Bing; Zhang, Tong; Tien, Yuan-Ching; Scott, Andrew; Murray, Roger; Sabourin, Lyne; Lapen, David R; Duenk, Peter; Topp, Edward

    2017-06-01

    In many jurisdictions sludge recovered from the sewage treatment process is a valued fertilizer for crop production. Pre-treatment of sewage sludge prior to land application offers the potential to abate enteric microorganisms that carry genes conferring resistance to antibiotics. Pre-treatment practices that accomplish this should have the desirable effect of reducing the risk of contamination of crops or adjacent water with antibiotic resistance genes carried in these materials. In the present study, we obtained municipal sludge that had been subjected to one of five treatments. There were, anaerobic-digestion or aerobic-digestion, in both instances with and without dewatering; and heat-treatment and pelletization. Each of the five types of biosolids was applied to an agricultural field at commercial rates, following which lettuce, carrots and radishes were planted. Based on qPCR, the estimated antibiotic gene loading rates were comparable with each of the five biosolids. However, the gene abundance in soil following application of the pelletized biosolids was anomalously lower than expected. Following application, the abundance of antibiotic resistance genes decreased in a generally coherent fashion, except sul1 which increased in abundance during the growing season in the soil fertilized with pelletized biosolids. Based on qPCR and high throughput sequencing evidence for transfer of antibiotic resistance genes from the biosolids to the vegetables at harvest was weak. Clostridia were more abundant in soils receiving any of the biosolids except the pelletized. Overall, the behavior of antibiotic resistance genes in soils receiving aerobically or anaerobically-digested biosolids was consistent and coherent with previous studies. However, dynamics of antibiotic resistance genes in soils receiving the heat treated pelletized biosolids were very different, and the underlying mechanisms merit investigation.

  11. Capturing the biological impact of CDKN2A and MC1R genes as an early predisposing event in melanoma and non melanoma skin cancer

    PubMed Central

    Puig-Butille, Joan Anton; Escámez, María José; Garcia-Garcia, Francisco; Tell-Marti, Gemma; Fabra, Àngels; Martínez-Santamaría, Lucía; Badenas, Celia; Aguilera, Paula; Pevida, Marta; Dopazo, Joaquín; del Río, Marcela; Puig, Susana

    2014-01-01

    Germline mutations in CDKN2A and/or red hair color variants in MC1R genes are associated with an increased susceptibility to develop cutaneous melanoma or non melanoma skin cancer. We studied the impact of the CDKN2A germinal mutation p.G101W and MC1R variants on gene expression and transcription profiles associated with skin cancer. To this end we set-up primary skin cell co-cultures from siblings of melanoma prone-families that were later analyzed using the expression array approach. As a result, we found that 1535 transcripts were deregulated in CDKN2A mutated cells, with over-expression of immunity-related genes (HLA-DPB1, CLEC2B, IFI44, IFI44L, IFI27, IFIT1, IFIT2, SP110 and IFNK) and down-regulation of genes playing a role in the Notch signaling pathway. 3570 transcripts were deregulated in MC1R variant carriers. In particular, genes related to oxidative stress and DNA damage pathways were up-regulated as well as genes associated with neurodegenerative diseases such as Parkinson’s, Alzheimer and Huntington. Finally, we observed that the expression signatures indentified in phenotypically normal cells carrying CDKN2A mutations or MC1R variants are maintained in skin cancer tumors (melanoma and squamous cell carcinoma). These results indicate that transcriptome deregulation represents an early event critical for skin cancer development. PMID:24742402

  12. Capturing the biological impact of CDKN2A and MC1R genes as an early predisposing event in melanoma and non melanoma skin cancer.

    PubMed

    Puig-Butille, Joan Anton; Escámez, María José; Garcia-Garcia, Francisco; Tell-Marti, Gemma; Fabra, Àngels; Martínez-Santamaría, Lucía; Badenas, Celia; Aguilera, Paula; Pevida, Marta; Dopazo, Joaquín; del Río, Marcela; Puig, Susana

    2014-03-30

    Germline mutations in CDKN2A and/or red hair color variants in MC1R genes are associated with an increased susceptibility to develop cutaneous melanoma or non melanoma skin cancer. We studied the impact of the CDKN2A germinal mutation p.G101W and MC1R variants on gene expression and transcription profiles associated with skin cancer. To this end we set-up primary skin cell co-cultures from siblings of melanoma prone-families that were later analyzed using the expression array approach. As a result, we found that 1535 transcripts were deregulated in CDKN2A mutated cells, with over-expression of immunity-related genes (HLA-DPB1, CLEC2B, IFI44, IFI44L, IFI27, IFIT1, IFIT2, SP110 and IFNK) and down-regulation of genes playing a role in the Notch signaling pathway. 3570 transcripts were deregulated in MC1R variant carriers. In particular, genes related to oxidative stress and DNA damage pathways were up-regulated as well as genes associated with neurodegenerative diseases such as Parkinson's, Alzheimer and Huntington. Finally, we observed that the expression signatures indentified in phenotypically normal cells carrying CDKN2A mutations or MC1R variants are maintained in skin cancer tumors (melanoma and squamous cell carcinoma). These results indicate that transcriptome deregulation represents an early event critical for skin cancer development.

  13. The impact of interferon-alpha2 on HLA genes in patients with polycythemia vera and related neoplasms.

    PubMed

    Skov, Vibe; Riley, Caroline Hasselbalch; Thomassen, Mads; Kjær, Lasse; Stauffer Larsen, Thomas; Bjerrum, Ole Weis; Kruse, Torben A; Hasselbalch, Hans Carl

    2017-08-01

    Gene expression profiling in Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have unraveled significant deregulation of several immune and inflammation genes of potential importance for clonal evolution. Other mechanisms might be downregulation of major histocompatibility class I and II genes used by tumor cells to escape antitumor T-cell-mediated immune responses. Several genes encoding human leukocyte antigen (HLA) class I and II molecules have been shown to be significantly downregulated. Upregulation of HLA genes is considered one of the mechanisms of action of interferon (IFN)-alpha2, but regulation of these genes during IFN-alpha2 treatment in MPNs has never been studied. Our findings show a significant upregulation of several HLA genes of importance for tumor immune surveillance by IFN-alpha2 treatment in MPNs. This mechanism might enhance the cytotoxic potential of immune cells against MPNs and explain the induction of minimal residual disease by IFN-alpha2 treatment in these patients.

  14. Impact of genes and proportional contribution of parental genotypes to inheritance of root yield and sugar content in diploid hybrids of sugar beet.

    PubMed

    Stancic, Ivica; Zivic, Jelica; Petrovic, Sasa; Knezevic, Desimir

    2014-01-01

    This paper analyzes the impact of genes and proportional contribution of parental genotypes on the inheritance of root yield and sugar content in diploid hybrids of sugar beet. The survey included two diploid male-sterile monogerm lines and three single (SC) male-sterile hybrids as maternal components, while three multigerm diploids were used as pollinators. The partitioning of genotypic variance into additive and dominant components was performed by half sibling (HS) and full sibling (FS) covariance. The proportional contribution of individual components of crossbreeding (lines, testers, and interactions) was exhibited in the expression of certain characteristics of F1 generation. Genotypic variance components showed a significant effect of nonadditive gene action (dominance) in the inheritance of root yield and sugar content, while the additive effect of genes was less significant. Maternal components had a greater proportional contribution to root yield, while lines, pollinators, and their interactions had an equal contribution to sugar content.

  15. Genetically engineered Oenococcus oeni strains to highlight the impact of estA2 and estA7 esterase genes on wine ester profile.

    PubMed

    Darsonval, M; Alexandre, H; Grandvalet, C

    2016-12-01

    Besides deacidifying wine, Oenococcus oeni bring significant changes in the chemical composition of wine by releasing esters by the action of their own esterases. The impact of O. oeni esterases remains relatively unexplored. Four esterase genes were identified from O. oeni genome (estA2, estA7, estC, and estB). The dual objective of this study was, first to use a genetic tool enabling the expression of esterase genes in enological conditions and, second, to investigate the impact of O. oeni esterase gene expression during winemaking on wine aromatic profile. Both estA2 and estA7 genes were successfully cloned and expressed in O. oeni and recombinant strains were inoculated in Aligoté wine to initiate malolactic fermentation (MLF). Ester profile of experimental wine was established by SPME-GC-MS. EstA2 caused significant decreases in the concentrations of isoamyl acetate, ethyl hexanoate, isobutyl acetate, and hexyl acetate, by 42.7%, 23.4%, 51.5%, and 28.9%, respectively. EstA2 has preferential hydrolytic activity toward acetate esters from higher alcohols. EstA7 has synthetic activity toward hexyl acetate with a significant 22.7% increase. This study reports the first efficient expression system enabling the production of a functional protein in O. oeni in enological conditions.

  16. Vitamin D Impacts the Expression of Runx2 Target Genes and Modulates Inflammation, Oxidative Stress and Membrane Vesicle Biogenesis Gene Networks in 143B Osteosarcoma Cells

    PubMed Central

    Garimella, Rama; Tadikonda, Priyanka; Tawfik, Ossama; Gunewardena, Sumedha; Rowe, Peter; Van Veldhuizen, Peter

    2017-01-01

    Osteosarcoma (OS) is an aggressive malignancy of bone affecting children, adolescents and young adults. Understanding vitamin D metabolism and vitamin D regulated genes in OS is an important aspect of vitamin D/cancer paradigm, and in evaluating vitamin D as adjuvant therapy for human OS. Vitamin D treatment of 143B OS cells induced significant and novel changes in the expression of genes that regulate: (a) inflammation and immunity; (b) formation of reactive oxygen species, metabolism of cyclic nucleotides, sterols, vitamins and mineral (calcium), quantity of gap junctions and skeletogenesis; (c) bone mineral density; and (d) cell viability of skeletal cells, aggregation of bone cancer cells and exocytosis of secretory vesicles. Ingenuity pathway analysis revealed significant reduction in Runx2 target genes such as fibroblast growth factor -1, -12 (FGF1 and FGF12), bone morphogenetic factor-1 (BMP1), SWI/SNF related, matrix associated actin dependent regulator of chromatin subfamily a, member 4 (SMARCA4), Matrix extracellular phosphoglycoprotein (MEPE), Integrin, β4 (ITGBP4), Matrix Metalloproteinase -1, -28 (MMP1 and MMP28), and signal transducer and activator of transcription-4 (STAT4) in vitamin D treated 143B OS cells. These genes interact with the inflammation, oxidative stress and membrane vesicle biogenesis gene networks. Vitamin D not only inhibited the expression of Runx2 target genes MMP1, MMP28 and kallikrein related peptidase-7 (KLK7), but also migration and invasion of 143B OS cells. Vitamin D regulated Runx2 target genes or their products represent potential therapeutic targets and laboratory biomarkers for applications in translational oncology. PMID:28300755

  17. Insights into gene expression changes impacting B-cell transformation: cross-species microarray analysis of bovine leukemia virus tax-responsive genes in ovine B cells.

    PubMed

    Klener, Pavel; Szynal, Maud; Cleuter, Yvette; Merimi, Makram; Duvillier, Hugues; Lallemand, Françoise; Bagnis, Claude; Griebel, Philip; Sotiriou, Christos; Burny, Arsène; Martiat, Philippe; Van den Broeke, Anne

    2006-02-01

    Large-animal models for leukemia have the potential to aid in the understanding of networks that contribute to oncogenesis. Infection of cattle and sheep with bovine leukemia virus (BLV), a complex retrovirus related to human T-cell leukemia virus type 1 (HTLV-1), is associated with the development of B-cell leukemia. Whereas the natural disease in cattle is characterized by a low tumor incidence, experimental infection of sheep leads to overt leukemia in the majority of infected animals, providing a model for studying the pathogenesis associated with BLV and HTLV-1. Tax(BLV), the major oncoprotein, initiates a cascade of events leading toward malignancy, although the basis of transformation is not fully understood. We have taken a cross-species ovine-to-human microarray approach to identify Tax(BLV)-responsive transcriptional changes in two sets of cultured ovine B cells following retroviral vector-mediated delivery of Tax(BLV). Using cDNA-spotted microarrays comprising 10,336 human genes/expressed sequence tags, we identified a cohort of differentially expressed genes, including genes related to apoptosis, DNA transcription, and repair; proto-oncogenes; cell cycle regulators; transcription factors; small Rho GTPases/GTPase-binding proteins; and previously reported Tax(HTLV-1)-responsive genes. Interestingly, genes known to be associated with human neoplasia, especially B-cell malignancies, were extensively represented. Others were novel or unexpected. The results suggest that Tax(BLV) deregulates a broad network of interrelated pathways rather than a single B-lineage-specific regulatory process. Although cross-species approaches do not permit a comprehensive analysis of gene expression patterns, they can provide initial clues for the functional roles of genes that participate in B-cell transformation and pinpoint molecular targets not identified using other methods in animal models.

  18. The Impact of Serum Amyloid P-Component on Gene Expression in RAW264.7 Mouse Macrophages

    PubMed Central

    Xi, Dan; Zhao, Jinzhen; Liu, Jichen; Xiong, Haowei; He, Wenshuai; Hu, Jing; Lai, Wenyan; Guo, Zhigang

    2016-01-01

    Serum amyloid P-component (SAP) contributes to host defense and prevents fibrosis. Macrophages are the most abundant inflammatory cell type in atherosclerotic plaques. In the present study, using 3H-cholesterol-labeled counting radioactivity assay, we demonstrated that the apoAI-mediated cholesterol efflux in RAW264.7 macrophages was increased by SAP treatment in a time- and dose-dependent manner. We analyzed global gene expression changes upon SAP treatment using RNA sequencing. As a result, a total of 175 differentially expressed genes were identified, of which 134 genes were downregulated and 41 genes were upregulated in SAP treated cells compared to control cells. Quantitative RT-PCR analysis confirmed decreased expression of 5 genes and an increase in expression of 1 gene upon SAP treatment. Gene ontology analysis showed that genes involved in response to stimulus were significantly enriched in differentially expressed genes. Beyond protein-coding genes, we also identified 8 differentially expressed long noncoding RNAs. Our study may provide new insights into mechanisms underlying the functional role of SAP in macrophages. PMID:27239478

  19. Impact of three ampicillin dosage regimens on selection of ampicillin resistance in Enterobacteriaceae and excretion of blaTEM genes in swine feces.

    PubMed

    Bibbal, D; Dupouy, V; Ferré, J P; Toutain, P L; Fayet, O; Prère, M F; Bousquet-Mélou, A

    2007-08-01

    The aim of this study was to assess the impact of three ampicillin dosage regimens on ampicillin resistance among Enterobacteriaceae recovered from swine feces by use of phenotypic and genotypic approaches. Phenotypically, ampicillin resistance was determined from the percentage of resistant Enterobacteriaceae and MICs of Escherichia coli isolates. The pool of ampicillin resistance genes was also monitored by quantification of bla(TEM) genes, which code for the most frequently produced beta-lactamases in gram-negative bacteria, using a newly developed real-time PCR assay. Ampicillin was administered intramuscularly and orally to fed or fasted pigs for 7 days at 20 mg/kg of body weight. The average percentage of resistant Enterobacteriaceae before treatment was between 2.5% and 12%, and bla(TEM) gene quantities were below 10(7) copies/g of feces. By days 4 and 7, the percentage of resistant Enterobacteriaceae exceeded 50% in all treated groups, with some highly resistant strains (MIC of >256 microg/ml). In the control group, bla(TEM) gene quantities fluctuated between 10(4) and 10(6) copies/g of feces, whereas they fluctuated between 10(6) to 10(8) and 10(7) to 10(9) copies/g of feces for the intramuscular and oral routes, respectively. Whereas phenotypic evaluations did not discriminate among the three ampicillin dosage regimens, bla(TEM) gene quantification was able to differentiate between the effects of two routes of ampicillin administration. Our results suggest that fecal bla(TEM) gene quantification provides a sensitive tool to evaluate the impact of ampicillin administration on the selection of ampicillin resistance in the digestive microflora and its dissemination in the environment.

  20. Impact of Maspin Polymorphism rs2289520 G/C and Its Interaction with Gene to Gene, Alcohol Consumption Increase Susceptibility to Oral Cancer Occurrence

    PubMed Central

    Yang, Po-Yu; Miao, Nae-Fang; Lin, Chiao-Wen; Chou, Ying-Erh; Yang, Shun-Fa; Huang, Hui-Chuan; Chang, Hsiu-Ju; Tsai, Hsiu-Ting

    2016-01-01

    Background The purpose of this study was to identify gene polymorphisms of mammary serine protease inhibitor (Maspin) specific to patients with oral cancer susceptibility and clinicopathological status. Methodology/Principal Findings Three single-nucleotide polymorphisms (SNPs) of the Maspin gene from 741 patients with oral cancer and 601 non-cancer controls were analyzed by real-time PCR. The participants with G/G homozygotes or with G/C heterozygotes of Maspin rs2289520 polymorphism had a 2.07-fold (p = 0.01) and a 2.01-fold (p = 0.02) risk of developing oral cancer compared to those with C/C homozygotes. Moreover, gene-gene interaction increased the risk of oral cancer susceptibility among subjects expose to oral cancer related risk factors, including areca, alcohol, and tobacco consumption. Conclusion G allele of Maspin rs2289520 polymorphism may be a factor that increases the susceptibility to oral cancer. The interactions of gene to oral cancer-related environmental risk factors have a synergetic effect that can further enhance oral cancer development. PMID:27525723

  1. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE

    SciTech Connect

    Hazen, Terry C.; Chakraborty, Romy; Fleming, James M.; Gregory, Ingrid R.; Bowman, John P.; Jimenez, Luis; Zhang, Dai; Pfiffner, Susan M.; Brockman, Fred J.; Sayler, Gary S.

    2009-03-15

    Gene probe hybridization was used to determine distribution and expression of co-metabolic genes at a contaminated site as it underwent in situ methanotrophic bioremediation of trichloroethylene (TCE). The bioremediation strategies tested included a series of air, air:methane, and air:methane:nutrient pulses of the test plot using horizontal injection wells. During the test period, the levels of TCE reduced drastically in almost all test samples. Sediment core samples (n = 367) taken from 0 m (surface)-43 m depth were probed for gene coding for methanotrophic soluble methane monooxygenase (sMMO) and heterotrophic toluene dioxygenase (TOD), which are known to co-metabolize TCE. The same sediment samples were also probed for genes coding for methanol dehydrogenase (MDH) (catalyzing the oxidation of methanol to formaldehyde) to assess specifically changes in methylotrophic bacterial populations in the site. Gene hybridization results showed that the frequency of detection of sMMO genes were stimulated approximately 250% following 1% methane:air (v/v) injection. Subsequent injection of 4% methane:air (v/v) resulted in an 85% decline probably due to nutrient limitations, since addition of nutrients (gaseous nitrogen and phosphorus) thereafter caused an increase in the frequency of detection of sMMO genes. Detection of TOD genes declined during the process, and eventually they were non-detectable by the final treatment, suggesting that methanotrophs displaced the TOD gene containing heterotrophs. Active transcription of sMMO and TOD was evidenced by hybridization to mRNA. These analyses combined with results showing the concomitant decline in TCE concentrations, increases in chloride concentration and increases in methanotroph viable counts, provide multiple lines of evidence that TCE remediation was caused specifically by methanotrophs. Our results suggest that sMMO genes are responsible for most, if not all, of the observed biodegradation of TCE. This study

  2. The impact of HLA-DRB1 genes on extra-articular disease manifestations in rheumatoid arthritis

    PubMed Central

    Turesson, Carl; Schaid, Daniel J; Weyand, Cornelia M; Jacobsson, Lennart TH; Goronzy, Jörg J; Petersson, Ingemar F; Sturfelt, Gunnar; Nyhäll-Wåhlin, Britt-Marie; Truedsson, Lennart; Dechant, Sonja A; Matteson, Eric L

    2005-01-01

    The objective of this study was to examine HLA-DRB1 and HLA-DQB1 genotypes in patients with severe extra-articular rheumatoid arthritis (ExRA) and to compare them with the genotypes of rheumatoid arthritis (RA) patients without extra-articular manifestations. Patients with severe ExRA were recruited from a large research database of patients with RA, from two cohorts of prevalent RA cases, and from a regional multicenter early RA cohort. Cases with ExRA manifestations (n = 159) were classified according to predefined criteria. Controls (n = 178) with RA but no ExRA were selected from the same sources. Cases and controls were matched for duration of RA and for clinical center. PCR based HLA-DRB1 and HLA-DQB1 genotyping was performed using the Biotest SSP kit, with additional sequencing in order to distinguish DRB1*04 subtypes. Associations between alleles and disease phenotypes were tested using multiple simulations of random distributions of alleles. There was no difference in global distribution of HLA-DRB1 and HLA-DQB1 alleles between patients with ExRA and controls. DRB1*0401 (P = 0.003) and 0401/0401 homozygosity (P = 0.002) were more frequent in Felty's syndrome than in controls. The presence of two HLA-DRB1*04 alleles encoding the shared epitope (SE) was associated with ExRA (overall odds ratio 1.79, 95% confidence interval 1.04–3.08) and with rheumatoid vasculitis (odds ratio 2.44, 95% confidence interval 1.22–4.89). In this large sample of patients with ExRA, Felty's syndrome was the only manifestation that was clearly associated with HLA-DRB1*0401. Other ExRA manifestations were not associated with individual alleles but with DRB1*04 SE double dose genotypes. This confirms that SE genes contribute to RA disease severity and ExRA. Other genetic and environmental factors may have a more specific impact on individual ExRA manifestations. PMID:16277691

  3. Polyphenol composition in the ripe fruits of Fragaria species and transcriptional analyses of key genes in the pathway.

    PubMed

    Muñoz, Cristina; Sánchez-Sevilla, José F; Botella, Miguel A; Hoffmann, Thomas; Schwab, Wilfried; Valpuesta, Victoriano

    2011-12-14

    Polyphenolics are important secondary metabolites in strawberry as they fulfill a wide variety of physiological functions and are beneficial to human health. Seventeen structurally well-defined phenolic compounds including phenylpropanoids, flavonols, flavan-3-ols, and anthocyanins were individually analyzed by LC-MS in the ripe fruits of two cultivars of the commercial strawberry (Fragaria × ananassa Duch., Rosaceae) as well as in accessions of F. vesca, F. moschata, and F. chiloensis. Metabolic analysis revealed that the majority of the compounds analyzed accumulated in a genotype-dependent manner. Transcriptional studies of genes encoding for enzymes of the biosynthetic pathway such as phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, chalcone synthase, and flavonoid 3'-hydroxylase could partially explain the different levels of polyphenolics observed in the Fragaria species. The results can provide a sound basis for selecting markers for the development of cultivars with high phenolic content, which can be of value for the food industry.

  4. Mutation frequencies of the cytochrome CYP2D6 gene in Parkinson disease patients and in families

    SciTech Connect

    Lucotte, G.; Turpin, J.C.; Gerard, N.

    1996-07-26

    The frequencies of five mutations of the debrisoquine 4-hydroxylase (CYP2D6) gene (mutations D6-A, B, C, D, and T), corresponding to poor metabolizer (PM) phenotypes, were determined by restriction fragment length polymorphism (RFLP) and polymerase chain reaction (PCR) in 47 patients with Parkinson disease, and compared with the findings in 47 healthy controls. These mutant alleles were about twice as frequent among patients as in controls, with an approximate relative risk ratio of 2.12 (95% confidence interval, 1.41-2.62). There seem to be no significant differences in frequencies of mutant genotypes in patients among gender and modalities of response with levodopa therapy; but frequency of the mutations was slightly enhanced after age-at-onset of 60 years. Mutations D6-B, D, and T were detected in 7 patients belonging to 10 Parkinson pedigrees. 25 refs., 1 fig., 2 tabs.

  5. Impact of biotic and abiotic factors on the expression of fungal effector-encoding genes in axenic growth conditions.

    PubMed

    Meyer, Michel; Bourras, Salim; Gervais, Julie; Labadie, Karine; Cruaud, Corinne; Balesdent, Marie-Hélène; Rouxel, Thierry

    2017-02-01

    In phytopathogenic fungi, the expression of hundreds of small secreted protein (SSP)-encoding genes is induced upon primary infection of plants while no or a low level of expression is observed during vegetative growth. In some species such as Leptosphaeria maculans, this coordinated in-planta upregulation of SSP-encoding genes expression relies on an epigenetic control but the signals triggering gene expression in-planta are unknown. In the present study, biotic and abiotic factors that may relieve suppression of SSP-encoding gene expression during axenic growth of L. maculans were investigated. Some abiotic factors (temperature, pH) could have a limited effect on SSP gene expression. In contrast, two types of cellular stresses induced by antibiotics (cycloheximide, phleomycin) activated strongly the transcription of SSP genes. A transcriptomic analysis to cycloheximide exposure revealed that biological processes such as ribosome biosynthesis and rRNA processing were induced whereas important metabolic pathways such as glycogen and nitrogen metabolism, glycolysis and tricarboxylic acid cycle activity were down-regulated. A quantitatively different expression of SSP-encoding genes compared to plant infection was also detected. Interestingly, the same physico-chemical parameters as those identified here for L. maculans effectors were identified to regulate positively or negatively the expression of bacterial effectors. This suggests that apoplastic phytopathogens may react to similar physiological parameters for regulation of their effector genes.

  6. The impact of polyploidy on the evolution of a complex NB-LRR resistance gene cluster in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparative genomics approach was used to investigate the evolution of a complex NB-LRR gene cluster found in soybean (Glycine max), common bean (Phaseolus vulgaris), and other legumes. In soybean, the cluster is associated with several disease resistance (R) genes of known function including Rpg1...

  7. Impact of high-fat diet on liver genes expression profiles in mice model of nonalcoholic fatty liver disease.

    PubMed

    Wang, Chunhua; Tao, Qimeng; Wang, Xinghe; Wang, Xiurong; Zhang, Xiuying

    2016-07-01

    Evidences have shown that NAFLD influences expression of some drug metabolic enzyme genes. This study aims to investigate the role of HFD-induced NAFLD in regulating the transcription of genes, particularly the drug metabolizing genes variation. Transcriptome analysis demonstrated that HFD feeding caused the 150 genes expression to change, most genes associated with lipid metabolism, inflammatory, oxidative stress and oxidoreductase activity up-regulated, whereas most genes involved in nucleic acid metabolism repressed. The genes involved in drug metabolism had 16 down-regulated and 21 up-regulated in NAFLD. The over-4-fold change genes included the down-regulation of Cyp8b1, Cyp7a1, Sult3a1, Sult1e1, Cyp17a1, Cyp3a41a, Gstt3, Cyp51, Cyp2c54 and Cyp4f14, and the up-regulation of Asns, Past1, Cyp2c55, Gstm2, Cyp2e1 and Gstaα1. In conclusion, significant alterations in the expression of drug metabolizing enzymes may affect the clearance of therapeutic drugs, with the potential to result in adverse drug reactions or drug toxicity in nonalcoholic fatty liver disease.

  8. Impact of broiler egg storage on the relative expression of selected blastoderm genes associated with apoptosis, oxidative stress, and fatty acid metabolism.

    PubMed

    Bakst, M R; Welch, G R; Fetterer, R; Miska, K

    2016-06-01

    Cool temperature storage of eggs prior to incubation is a frequent practice by commercial broiler hatcheries. However, continued storage beyond 7 d leads to a progressive increase in the rate of early embryonic mortality. In this study, we examined the relative expression of 31 genes associated with fatty acid metabolism (8), apoptosis (7), and oxidative stress (16) pathways to better understand the basis of embryo mortality during egg storage. A total of 642 broiler eggs in 2 separate trials were subjected to the following egg treatments: stored 4 d (Control 1, C1); stored 21 d but subjected to short periods of incubation during egg storage (SPIDES); stored un-manipulated 21 d (NonSPIDES, NS); and stored 4 d then incubated for 10 h to advance the embryos to the same developmental stages as the SPIDES embryos (Control 2, C2). Hatchability trials (277 eggs) confirmed the efficacy of SPIDES compared to NS treatments in both trials. To determine relative expression of 31 selected genes, 365 blastoderms were isolated, staged, and flash frozen in batches of 5 to 10 blastoderms per vial (7 vials per egg treatment) prior to RNA extractions. Analysis of gene expression was performed using qRT-PCR and the results presented as relative expression normalized to C1. The relative expression of genes in which the SPIDES and C2 treatments were significantly up- or down-regulated in tandem indicated that the stage-specific expression of those genes was maintained by the SPIDES treatment. This study provides the relative gene expressions of blastodermal cells before and after prolonged egg storage as well as insight as to how SPIDES impacts blastodermal cell gene expression.

  9. Global Analysis of Arabidopsis Gene Expression Uncovers a Complex Array of Changes Impacting Pathogen Response and Cell Cycle during Geminivirus Infection1[W][OA

    PubMed Central

    Ascencio-Ibáñez, José Trinidad; Sozzani, Rosangela; Lee, Tae-Jin; Chu, Tzu-Ming; Wolfinger, Russell D.; Cella, Rino; Hanley-Bowdoin, Linda

    2008-01-01

    Geminiviruses are small DNA viruses that use plant replication machinery to amplify their genomes. Microarray analysis of the Arabidopsis (Arabidopsis thaliana) transcriptome in response to cabbage leaf curl virus (CaLCuV) infection uncovered 5,365 genes (false discovery rate <0.005) differentially expressed in infected rosette leaves at 12 d postinoculation. Data mining revealed that CaLCuV triggers a pathogen response via the salicylic acid pathway and induces expression of genes involved in programmed cell death, genotoxic stress, and DNA repair. CaLCuV also altered expression of cell cycle-associated genes, preferentially activating genes expressed during S and G2 and inhibiting genes active in G1 and M. A limited set of core cell cycle genes associated with cell cycle reentry, late G1, S, and early G2 had increased RNA levels, while core cell cycle genes linked to early G1 and late G2 had reduced transcripts. Fluorescence-activated cell sorting of nuclei from infected leaves revealed a depletion of the 4C population and an increase in 8C, 16C, and 32C nuclei. Infectivity studies of transgenic Arabidopsis showed that overexpression of CYCD3;1 or E2FB, both of which promote the mitotic cell cycle, strongly impaired CaLCuV infection. In contrast, overexpression of E2FA or E2FC, which can facilitate the endocycle, had no apparent effect. These results showed that geminiviruses and RNA viruses interface with the host pathogen response via a common mechanism, and that geminiviruses modulate plant cell cycle status by differentially impacting the CYCD/retinoblastoma-related protein/E2F regulatory network and facilitating progression into the endocycle. PMID:18650403

  10. Monitoring and assessing the impact of wastewater treatment on release of both antibiotic-resistant bacteria and their typical genes in a Chinese municipal wastewater treatment plant.

    PubMed

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2014-08-01

    Wastewater treatment plants (WWTPs) are important hotspots for the spread of antibiotic resistance. However, the release and impact factors of both antibiotic resistant bacteria and the relevant genes over long periods in WWTPs have rarely been investigated. In this study, the fate of bacteria and genes resistant to six commonly used antibiotics was assessed over a whole year. In WWTP effluent and biosolids, a high prevalence of heterotrophic bacteria resistant to vancomycin, cephalexin, sulfadiazine and erythromycin were detected, each with a proportion of over 30%. The corresponding genes (vanA, ampC, sulI and ereA) were all detected in proportions of (2.2 ± 0.8) × 10(-10), (6.2 ± 3.2) × 10(-9), (1.2 ± 0.8) × 10(-7) and (7.6 ± 4.8) × 10(-8), respectively, in the effluent. The sampling season imposed considerable influence on the release of all ARB. High release loads of most ARB were detected in the spring, while low release loads were generally found in the winter. In comparison, the ARG loads changed only slightly over various seasons. No statistical relevance was found between all ARB abundances and their corresponding genes over the long-term investigation period. This inconsistent behavior indicates that bacteria and genes should both be considered when exploring resistance characteristics in wastewater. A redundancy analysis was adopted to assess the impact of wastewater quality and operational conditions on antibiotic resistance. The results indicated that most ARB and ARG proportions were positively related to the COD and turbidity of the raw sewage, while negatively related to those of the effluent. DO and temperature exhibited strong negative relevance to most ARB prevalence.

  11. Use of gene probes to assess the impact and effectiveness of aerobic In situ bioremediation of TCE.

    SciTech Connect

    Hazen, Terry C.; Chakraborty, Romy; Fleming, James M.; Gregory, Ingrid R.; Bowman, John P.; Jimenez, Luis; Zhang, Dai; Pfiffner, Susan M.; Brockman, Fred J.; Sayler, Gary S.

    2009-03-01

    Gene probe hybridization was used to determine distribution and expression of co-metabolic genes at a contaminated site as it underwent in situ methanotrophic bioremediation of trichloroethylene (TCE). The bioremediation strategies tested consisted of a series of air, air:methane, and air:methane:nutrient pulses using a horizontal injection well. Sediment core samples (n=367) taken from 0 (surface)-43m depth were probed for genes coding for soluble methane monooxygenase (sMMO) and toluene dioxygenase (TOD), which are known to cometabolize TCE. The same samples were also probed for genes coding for methanol dehydrogenase (MDH) to access changes in methylotrophic bacterial populations. Hybridization results showed that the frequency of detection of sMMO genes were stimulated approximately 250% following 1% methane:air (v/v) injection. Subsequent 4% methane:air (v/v) injection resulted in an 85% decline probably due to nutrient limitations, since subsequent addition of nutrients (gaseous nitrogen and phosphorus) caused an increase in the frequency of detection of sMMO genes. Detection of TOD genes declined during the process becoming non-detectable by the final treatment. These patterns indicate methanotrophs displaced heterotrophs containing TOD genes. Active transcription of sMMO and TOD was evidenced by hybridization to mRNA. These analyses combined with studies showing the concomitant decline in TCE concentrations, increases in methanotroph viable counts, increased mineralization rates of TCE, and increases in chloride inventories provide multiple lines of evidence that TCE remediation was caused specifically by methanotrophs. This work suggests that sMMO genes are responsible for most, if not all, of the biodegradation of TCE observed. This study demonstrated that the use of nucleic acid analytical methods provided a gene specific assessment of the effects of in situ treatment technologies.

  12. Impact of the Autism-Associated Long Noncoding RNA MSNP1AS on Neuronal Architecture and Gene Expression in Human Neural Progenitor Cells

    PubMed Central

    DeWitt, Jessica J.; Grepo, Nicole; Wilkinson, Brent; Evgrafov, Oleg V.; Knowles, James A.; Campbell, Daniel B.

    2016-01-01

    We previously identified the long noncoding RNA (lncRNA) MSNP1AS (moesin pseudogene 1, antisense) as a functional element revealed by genome wide significant association with autism spectrum disorder (ASD). MSNP1AS expression was increased in the postmortem cerebral cortex of individuals with ASD and particularly in individuals with the ASD-associated genetic markers on chromosome 5p14.1. Here, we mimicked the overexpression of MSNP1AS observed in postmortem ASD cerebral cortex in human neural progenitor cell lines to determine the impact on neurite complexity and gene expression. ReNcell CX and SK-N-SH were transfected with an overexpression vector containing full-length MSNP1AS. Neuronal complexity was determined by the number and length of neuronal processes. Gene expression was determined by strand-specific RNA sequencing. MSNP1AS overexpression decreased neurite number and neurite length in both human neural progenitor cell lines. RNA sequencing revealed changes in gene expression in proteins involved in two biological processes: protein synthesis and chromatin remodeling. These data indicate that overexpression of the ASD-associated lncRNA MSNP1AS alters the number and length of neuronal processes. The mechanisms by which MSNP1AS overexpression impacts neuronal differentiation may involve protein synthesis and chromatin structure. These same biological processes are also implicated by rare mutations associated with ASD, suggesting convergent mechanisms. PMID:27690106

  13. Impact of the Autism-Associated Long Noncoding RNA MSNP1AS on Neuronal Architecture and Gene Expression in Human Neural Progenitor Cells.

    PubMed

    DeWitt, Jessica J; Grepo, Nicole; Wilkinson, Brent; Evgrafov, Oleg V; Knowles, James A; Campbell, Daniel B

    2016-09-28

    We previously identified the long noncoding RNA (lncRNA) MSNP1AS (moesin pseudogene 1, antisense) as a functional element revealed by genome wide significant association with autism spectrum disorder (ASD). MSNP1AS expression was increased in the postmortem cerebral cortex of individuals with ASD and particularly in individuals with the ASD-associated genetic markers on chromosome 5p14.1. Here, we mimicked the overexpression of MSNP1AS observed in postmortem ASD cerebral cortex in human neural progenitor cell lines to determine the impact on neurite complexity and gene expression. ReNcell CX and SK-N-SH were transfected with an overexpression vector containing full-length MSNP1AS. Neuronal complexity was determined by the number and length of neuronal processes. Gene expression was determined by strand-specific RNA sequencing. MSNP1AS overexpression decreased neurite number and neurite length in both human neural progenitor cell lines. RNA sequencing revealed changes in gene expression in proteins involved in two biological processes: protein synthesis and chromatin remodeling. These data indicate that overexpression of the ASD-associated lncRNA MSNP1AS alters the number and length of neuronal processes. The mechanisms by which MSNP1AS overexpression impacts neuronal differentiation may involve protein synthesis and chromatin structure. These same biological processes are also implicated by rare mutations associated with ASD, suggesting convergent mechanisms.

  14. Therapygenetics in mindfulness-based cognitive therapy: do genes have an impact on therapy-induced change in real-life positive affective experiences?

    PubMed

    Bakker, J M; Lieverse, R; Menne-Lothmann, C; Viechtbauer, W; Pishva, E; Kenis, G; Geschwind, N; Peeters, F; van Os, J; Wichers, M

    2014-04-22

    Positive affect (PA) has an important role in resilience against depression and has been shown to increase with mindfulness-based cognitive therapy (MBCT). To elucidate the underlying mechanisms of change in PA as well as develop insights that may benefit personalized medicine, the current study examined the contribution of genetic variation to individual differences in change in PA in response to MBCT. Individuals (n=126) with residual depressive symptoms were randomized to either an MBCT group or treatment as usual. PA was assessed using experience sampling methodology (ESM). Single-nucleotide polymorphisms (SNPs) in genes known to be involved in reward functioning were selected. SNPs in the genes for brain-derived neurotrophic factor (BDNF), the muscarinic acetylcholine receptor M2 (CHRM2), the dopamine receptor D4 (DRD4) and the μ1 opioid receptor (OPRM1) significantly moderated the impact of treatment condition over time on PA. Genetic variation in the genes for CHRM2 and OPRM1 specifically had an impact on the level of PA following MBCT. The current study shows that variation in response to MBCT may be contingent on genetic factors associated with the regulation of PA. These findings contribute to our understanding of the processes moderating response to treatment and prediction of treatment outcome.

  15. An integrative “omics” approach identifies new candidate genes to impact aroma volatiles in peach fruit

    PubMed Central

    2013-01-01

    Background Ever since the recent completion of the peach genome, the focus of genetic research in this area has turned to the identification of genes related to important traits, such as fruit aroma volatiles. Of the over 100 volatile compounds described in peach, lactones most likely have the strongest effect on fruit aroma, while esters, terpenoids, and aldehydes have minor, yet significant effects. The identification of key genes underlying the production of aroma compounds is of interest for any fruit-quality improvement strategy. Results Volatile (52 compounds) and gene expression (4348 genes) levels were profiled in peach fruit from a maturity time-course series belonging to two peach genotypes that showed considerable differences in maturation characteristics and postharvest ripening. This data set was analyzed by complementary correlation-based approaches to discover the genes related to the main aroma-contributing compounds: lactones, esters, and phenolic volatiles, among others. As a case study, one of the candidate genes was cloned and expressed in yeast to show specificity as an ω-6 Oleate desaturase, which may be involved in the production of a precursor of lactones/esters. Conclusions Our approach revealed a set of genes (an alcohol acyl transferase, fatty acid desaturases, transcription factors, protein kinases, cytochromes, etc.) that are highly associated with peach fruit volatiles, and which could prove useful in breeding or for biotechnological purposes. PMID:23701715

  16. Methylation impact analysis of erythropoietin (EPO) Gene to hypoxia inducible factor-1α (HIF-1α) activity.

    PubMed

    Dewi, Firli Rahmah Primula; Fatchiyah, Fatchiyah

    2013-01-01

    Erythropoietin (EPO) is a glycoprotein hormone that play a role as key regulator in the production of red blood cells. The promoter region of EPO is methylated in normoxic (non-hypoxia) condition, but not in hypoxic condition. Methylation of the EPO enhancer region decline the transcription activity of EPO gene. The aim of this study is to investigate how different methylation percentage affected on the regulation and transcriptional activity of EPO gene. The DNA sequence of erythropoietin gene and protein sequence was retrieved from the sequence database of NCBI. DNA structure was constructed using 3D-DART web server and modeling structure of HIF1 predicted using SWISS-MODEL web server. Methylated DNA sequence of EPO gene using performed with YASARA View software and docking of EPO gene and transcription factor HIF1 analyzed by using HADDOCK webserver. Our result showed that binding energy in 46% methylated DNA was higher (-161,45 kcal/mol) than in unmethylated DNA (-194,16 kcal/mol) and 8% methylated DNA (-175,94 kcal/mol). So, we presume that a silencing mechanism of the Epo gene by methylation is correlated with the binding energy, which is required for interaction. A higher methylation percentage correlates with a higher binding energy which can cause an unstable interaction between DNA and transcription factor. In conclution, methylation of promoter and enhancer region of Epo gene leads to silencing.

  17. Genome assembly has a major impact on gene content: a comparison of annotation in two Bos taurus assemblies.

    PubMed

    Florea, Liliana; Souvorov, Alexander; Kalbfleisch, Theodore S; Salzberg, Steven L

    2011-01-01

    Gene and SNP annotation are among the first and most important steps in analyzing a genome. As the number of sequenced genomes continues to grow, a key question is: how does the quality of the assembled sequence affect the annotations? We compared the gene and SNP annotations for two different Bos taurus genome assemblies built from the same data but with significant improvements in the later assembly. The same annotation software was used for annotating both sequences. While some annotation differences are expected even between high-quality assemblies such as these, we found that a staggering 40% of the genes (>9,500) varied significantly between assemblies, due in part to the availability of new gene evidence but primarily to genome mis-assembly events and local sequence variations. For instance, although the later assembly is generally superior, 660 protein coding genes in the earlier assembly are entirely missing from the later genome's annotation, and approximately 3,600 (15%) of the genes have complex structural differences between the two assemblies. In addition, 12-20% of the predicted proteins in both assemblies have relatively large sequence differences when compared to their RefSeq models, and 6-15% of bovine dbSNP records are unrecoverable in the two assemblies. Our findings highlight the consequences of genome assembly quality on gene and SNP annotation and argue for continued improvements in any draft genome sequence. We also found that tracking a gene between different assemblies of the same genome is surprisingly difficult, due to the numerous changes, both small and large, that occur in some genes. As a side benefit, our analyses helped us identify many specific loci for improvement in the Bos taurus genome assembly.

  18. Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression.

    PubMed

    Petrenko, Volodymyr; Saini, Camille; Giovannoni, Laurianne; Gobet, Cedric; Sage, Daniel; Unser, Michael; Heddad Masson, Mounia; Gu, Guoqiang; Bosco, Domenico; Gachon, Frédéric; Philippe, Jacques; Dibner, Charna

    2017-02-15

    A critical role of circadian oscillators in orchestrating insulin secretion and islet gene transcription has been demonstrated recently. However, these studies focused on whole islets and did not explore the interplay between α-cell and β-cell clocks. We performed a parallel analysis of the molecular properties of α-cell and β-cell oscillators using a mouse model expressing three reporter genes: one labeling α cells, one specific for β cells, and a third monitoring circadian gene expression. Thus, phase entrainment properties, gene expression, and functional outputs of the α-cell and β-cell clockworks could be assessed in vivo and in vitro at the population and single-cell level. These experiments showed that α-cellular and β-cellular clocks are oscillating with distinct phases in vivo and in vitro. Diurnal transcriptome analysis in separated α and β cells revealed that a high number of genes with key roles in islet physiology, including regulators of glucose sensing and hormone secretion, are differentially expressed in these cell types. Moreover, temporal insulin and glucagon secretion exhibited distinct oscillatory profiles both in vivo and in vitro. Altogether, our data indicate that differential entrainment characteristics of circadian α-cell and β-cell clocks are an important feature in the temporal coordination of endocrine function and gene expression.

  19. Impact of UV and peracetic acid disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli in wastewater effluents.

    PubMed

    Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke; Frigon, Dominic

    2014-06-01

    Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm(2) and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.

  20. Impact of exercise and a complex environment on hippocampal dendritic morphology, Bdnf gene expression, and DNA methylation in male rat pups neonatally exposed to alcohol.

    PubMed

    Boschen, K E; McKeown, S E; Roth, T L; Klintsova, A Y

    2016-09-06

    Alcohol exposure in utero can result in Fetal Alcohol Spectrums Disorders (FASD). Measures of hippocampal neuroplasticity, including long-term potentiation, synaptic and dendritic organization, and adult neurogenesis, are consistently disrupted in rodent models of FASD. The current study investigated whether third trimester-equivalent binge-like alcohol exposure (AE) [postnatal days (PD) 4-9] affects dendritic morphology of immature dentate gyrus granule cells, and brain-derived neurotrophic factor (Bdnf) gene expression and DNA methylation in hippocampal tissue in adult male rats. To understand immediate impact of alcohol, DNA methylation was measured in the PD10 hippocampus. In addition, two behavioral interventions, wheel running (WR) and environmental complexity (EC), were utilized as rehabilitative therapies for alcohol-induced deficits. AE significantly decreased dendritic complexity of the immature neurons, demonstrating the long-lasting impact of neonatal alcohol exposure on dendritic morphology of immature neurons in the hippocampus. Both housing conditions robustly enhanced dendritic complexity in the AE animals. While Bdnf exon I DNA methylation was lower in the AE and sham-intubated animals compared with suckle controls on PD10, alterations to Bdnf DNA methylation and gene expression levels were not present at PD72. In control animals, exercise, but not exercise followed by housing in EC, resulted in higher levels of hippocampal Bdnf gene expression and lower DNA methylation. These studies demonstrate the long-lasting negative impact of developmental alcohol exposure on hippocampal dendritic morphology and support the implementation of exercise and complex environments as therapeutic interventions for individuals with FASD. © 2016 Wiley Periodicals, Inc. Develop Neurobiol, 2016.

  1. The impacts of neutralized acid mine drainage contaminated water on the expression of selected endocrine-linked genes in juvenile Mozambique tilapia Oreochromis mossambicus exposed in vivo.

    PubMed

    Truter, Johannes Christoff; va Wyk, Johannes Hendrik; Oberholster, Paul Johan; Botha, Anna-Maria

    2014-02-01

    Acid mine drainage (AMD) is a global environmental concern due to detrimental impacts on river ecosystems. Little is however known regarding the biological impacts of neutralized AMD on aquatic vertebrates despite excessive discharge into watercourses. The aim of this investigation was to evaluate the endocrine modulatory potential of neutralized AMD, using molecular biomarkers in the teleost fish Oreochromis mossambicus in exposure studies. Surface water was collected from six locations downstream of a high density sludge (HDS) AMD treatment plant and a reference site unimpacted by AMD. The concentrations of 28 elements, including 22 metals, were quantified in the exposure water in order to identify potential links to altered gene expression. Relatively high concentrations of manganese (~ 10mg/l), nickel (~ 0.1mg/l) and cobalt (~ 0.03 mg/l) were detected downstream of the HDS plant. The expression of thyroid receptor-α (trα), trβ, androgen receptor-1 (ar1), ar2, glucocorticoid receptor-1 (gr1), gr2, mineralocorticoid receptor (mr) and aromatase (cyp19a1b) was quantified in juvenile fish after 48 h exposure. Slight but significant changes were observed in the expression of gr1 and mr in fish exposed to water collected directly downstream of the HDS plant, consisting of approximately 95 percent neutralized AMD. The most pronounced alterations in gene expression (i.e. trα, trβ, gr1, gr2, ar1 and mr) was associated with water collected further downstream at a location with no other apparent contamination vectors apart from the neutralized AMD. The altered gene expression associated with the "downstream" locality coincided with higher concentrations of certain metals relative to the locality adjacent to the HDS plant which may indicate a causative link. The current study provides evidence of endocrine disruptive activity associated with neutralized AMD contamination in regard to alterations in the expression of key genes linked to the thyroid, interrenal and

  2. Different circadian expression of major matrix-related genes in various types of cartilage: modulation by light-dark conditions.

    PubMed

    Honda, Kiyomasa K; Kawamoto, Takeshi; Ueda, Hiroki R; Nakashima, Ayumu; Ueshima, Taichi; Yamada, Rikuhiro G; Nishimura, Masahiro; Oda, Ryo; Nakamura, Shigeo; Kojima, Tomoko; Noshiro, Mitsuhide; Fujimoto, Katsumi; Hashimoto, Seiichi; Kato, Yukio

    2013-10-01

    We screened circadian-regulated genes in rat cartilage by using a DNA microarray analysis. In rib growth-plate cartilage, numerous genes showed statistically significant circadian mRNA expression under both 12:12 h light-dark and constant darkness conditions. Type II collagen and aggrecan genes--along with several genes essential for post-translational modifications of collagen and aggrecan, including prolyl 4-hydroxylase 1, lysyl oxidase, lysyl oxidase-like 2 and 3'-phosphoadenosine 5'-phosphosulphate synthase 2--showed the same circadian phase. In addition, the mRNA level of SOX9, a master transcription factor for the synthesis of type II collagen and aggrecan, has a similar phase of circadian rhythms. The circadian expression of the matrix-related genes may be critical in the development and the growth of various cartilages, because similar circadian expression of the matrix-related genes was observed in hip joint cartilage. However, the circadian phase of the major matrix-related genes in the rib permanent cartilage was almost the converse of that in the rib growth-plate cartilage under light-dark conditions. We also found that half of the oscillating genes had conserved clock-regulatory elements, indicating contribution of the elements to the clock outputs. These findings suggest that the synthesis of the cartilage matrix macromolecules is controlled by cell-autonomous clocks depending upon the in vivo location of cartilage.

  3. Toxicity mechanisms identification via gene set enrichment analysis of time-series toxicogenomics data: impact of time and concentration.

    PubMed

    Gao, Ce; Weisman, David; Lan, Jiaqi; Gou, Na; Gu, April Z

    2015-04-07

    The advance in high-throughput "toxicogenomics" technologies, which allows for concurrent monitoring of cellular responses globally upon exposure to chemical toxicants, presents promises for next-generation toxicity assessment. It is recognized that cellular responses to toxicants have a highly dynamic nature, and exhibit both temporal complexity and dose-response shifts. Most current gene enrichment or pathway analysis lack the recognition of the inherent correlation within time series data, and may potentially miss important pathways or yield biased and inconsistent results that ignore dynamic patterns and time-sensitivity. In this study, we investigated the application of two score metrics for GSEA (gene set enrichment analysis) to rank the genes that consider the temporal gene expression profile. One applies a novel time series CPCA (common principal components analysis) to generate scores for genes based on their contributions to the common temporal variation among treatments for a given chemical at different concentrations. Another one employs an integrated altered gene expression quantifier-TELI (transcriptional effect level index) that integrates altered gene expression magnitude over the exposure time. By comparing the GSEA results using two different ranking metrics for examining the dynamic responses of reporter cells treated with various dose levels of three model toxicants, mitomycin C, hydrogen peroxide, and lead nitrate, the analysis identified and revealed different toxicity mechanisms of these chemicals that exhibit chemical-specific, as well as time-aware and dose-sensitive nature. The ability, advantages, and disadvantages of varying ranking metrics were discussed. These findings support the notion that toxicity bioassays should account for the cells' complex dynamic responses, thereby implying that both data acquisition and data analysis should look beyond simple traditional end point responses.

  4. Long-term impacts of selective logging on two Amazonian tree species with contrasting ecological and reproductive characteristics: inferences from Eco-gene model simulations

    PubMed Central

    Vinson, C C; Kanashiro, M; Sebbenn, A M; Williams, T CR; Harris, S A; Boshier, D H

    2015-01-01

    The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests. PMID:24424164

  5. Long-term impacts of selective logging on two Amazonian tree species with contrasting ecological and reproductive characteristics: inferences from Eco-gene model simulations.

    PubMed

    Vinson, C C; Kanashiro, M; Sebbenn, A M; Williams, T C R; Harris, S A; Boshier, D H

    2015-08-01

    The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests.

  6. Impact of Gene Patents and Licensing Practices on Access to Genetic Testing for Alzheimer’s Disease

    PubMed Central

    Skeehan, Katie; Heaney, Christopher; Cook-Deegan, Robert

    2010-01-01

    Genetic testing for Alzheimer’s disease (AD) includes genotyping for apolipoprotein E, for late-onset AD, and three rare autosomal dominant, early-onset forms of AD associated with different genes (APP, PSEN1 and PSEN2). According to researchers, patents have not impeded research in the field, nor were patents an important consideration in the quest for the genetic risk factors. Athena Diagnostics holds exclusive licenses from Duke University for three “method” patents covering APOE genetic testing. Athena offers tests for APOE and genes associated with early onset, autosomal dominant AD. One of those presenilin genes is patented and exclusively licensed to Athena; the other presenilin gene was patented but the patent was allowed to lapse; and one (APP) is patented only as a research tool and patent claims do not cover diagnostic use. Direct-to-consumer testing is available for some AD-related genes, apparently without a license. Athena Diagnostics consolidated its position in the market for AD genetic testing by collecting exclusive rights to patents arising from university research. Duke University also used its licenses to Athena to enforce adherence to clinical guidelines, including elimination of the service from Smart Genetics, which was offering direct-to-consumer risk assessment based on APOE genotyping. PMID:20393312

  7. Impact of agricultural management on bacterial laccase-encoding genes with possible implications for soil carbon storage in semi-arid Mediterranean olive farming

    PubMed Central

    Moreno, Beatriz

    2016-01-01

    Background: In this work, we aimed to gain insights into the contribution of soil bacteria to carbon sequestration in Mediterranean habitats. In particular, we aimed to use bacterial laccase-encoding genes as molecular markers for soil organic C cycling. Using rainfed olive farming as an experimental model, we determined the stability and accumulation levels of humic substances and applied these data to bacterial laccase-encoding gene expression and diversity in soils under four different agricultural management systems (bare soils under tillage/no tillage and vegetation cover under chemical/mechanical management). Materials and Methods: Humic C (> 104 Da) was subjected to isoelectric focusing. The GC-MS method was used to analyze aromatic hydrocarbons. Real-Time PCR quantification and denaturing gradient gel electrophoresis (DGGE) for functional bacterial laccase-like multicopper oxidase (LMCO)-encoding genes and transcripts were also carried out. Results: Soils under spontaneous vegetation, eliminated in springtime using mechanical methods for more than 30 years, showed the highest humic acid levels as well as the largest bacterial population rich in laccase genes and transcripts. The structure of the bacterial community based on LMCO genes also pointed to phylogenetic differences between these soils due to the impact of different management systems. Soils where herbicides were used to eliminate spontaneous vegetation once a year and those where pre-emergence herbicides resulted in bare soils clustered together for DNA-based DGGE analysis, which indicated a certain amount of microbial selection due to the application of herbicides. When LMCO-encoding gene expression was studied, soils where cover vegetation was managed either with herbicides or with mechanical methods showed less than 10% similarity, suggesting that the type of weed management strategy used can impact weed community composition and consequently laccase substrates derived from vegetation decay

  8. Characterization of the Bradyrhizobium japonicum galE gene: its impact on lipopolysaccharide profile and nodulation of soybean.

    PubMed

    Chang, Woo-Suk; Park, Kyoung-Min; Koh, Sung-Cheol; So, Jae-Seong

    2008-03-01

    The galE gene from Bradyrhizobium japonicum 61A101C, a soybean endosymbiont, was cloned and characterized. Its deduced amino-acid sequence showed a high similarity with that of other rhizobia. Functional identification of the galE gene was achieved by complementation of a galE mutant strain, PL2, with a series of pKM subclones. Disruption of the B. japonicum galE gene affects the lipopolysaccharide profile compared with that of the wild type, suggesting that galE is responsible for alteration of lipopolysaccharide structure. Examination of nodule formation by the wild-type and galE mutant revealed that the former displayed normal nodule development on soybean roots, whereas the latter showed no nodule formation at all time points examined except for 20 days after inoculation when <10% of soybean formed pseudo-nodules.

  9. Impacts of bioturbation on temporal variation in bacterial and archaeal nitrogen-cycling gene abundance in coastal sediments

    PubMed Central

    Laverock, B; Tait, K; Gilbert, J A; Osborn, A M; Widdicombe, S

    2014-01-01

    In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments. PMID:24596269

  10. Promoter Hypermethylation and Its Impact on Expression of MGMT Gene in the GIT Malignant Patients of Kashmiri Origin.

    PubMed

    Bhat, Arif Akbar; Wani, Hilal Ahmad; Ishaq, Shiekh; Waza, Ajaz Ahmad; Malik, Rawoof Ahmad; Shabir, Iram; Jeelani, Showkat; Kadla, Showkat; Qureshie, Waseem; Masood, Akbar; Majid, Sabhiya

    2017-02-07

    Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Gastrointestinal tract (GIT) cancer is a major medical and economic burden worldwide. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumor suppressor genes. Although a number of cancer-associated genes have been found to be hypermethylated in GIT cancer, valuable methylation markers for early diagnosis and prognostic evaluation of this cancer remain largely unknown. O6-methyguanine DNA methyltransferase (MGMT) is a DNA-repair gene that removes mutagenic and cytotoxic adducts from the O6 position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression have been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human GIT carcinomas. A total of 210 GIT tumor samples and 90 adjacent normal tissues were analyzed for MGMT promoter methylation by methylation-specific polymerase chain reaction after bisulfite modification of DNA and same samples were analyzed for MGMT protein expression by Western blotting. The methylation frequencies of MGMT gene promoter were 41.4%, 34.2%, and 44.2% in stomach, esophageal, and colorectal cancer cases while as 16.6, 13.3, and 13.3 in respective controls. MGMT protein was found downregulated in controls of all GIT. The results suggest that methylation at CpG islands of MGMT may be responsible for the downregulation of MGMT protein expression in GIT cancers.

  11. A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus x domestica Borkh)

    PubMed Central

    2013-01-01

    Background Apple is a widely cultivated fruit crop for its quality properties and extended storability. Among the several quality factors, texture is the most important and appreciated, and within the apple variety panorama the cortex texture shows a broad range of variability. Anatomically these variations depend on degradation events occurring in both fruit primary cell wall and middle lamella. This physiological process is regulated by an enzymatic network generally encoded by large gene families, among which polygalacturonase is devoted to the depolymerization of pectin. In apple, Md-PG1, a key gene belonging to the polygalacturonase gene family, was mapped on chromosome 10 and co-localized within the statistical interval of a major hot spot QTL associated to several fruit texture sub-phenotypes. Results In this work, a QTL corresponding to the position of Md-PG1 was validated and new functional alleles associated to the fruit texture properties in 77 apple cultivars were discovered. 38 SNPs genotyped by gene full length resequencing and 2 SSR markers ad hoc targeted in the gene metacontig were employed. Out of this SNP set, eleven were used to define three significant haplotypes statistically associated to several texture components. The impact of Md-PG1 in the fruit cell wall disassembly was further confirmed by the cortex structure electron microscope scanning in two apple varieties characterized by opposite texture performance, such as ‘Golden Delicious’ and ‘Granny Smith’. Conclusions The results here presented step forward into the genetic dissection of fruit texture in apple. This new set of haplotypes, and microsatellite alleles, can represent a valuable toolbox for a more efficient parental selection as well as the identification of new apple accessions distinguished by superior fruit quality features. PMID:23496960

  12. The Guinea Pig as a Model for Sporadic Alzheimer’s Disease (AD): The Impact of Cholesterol Intake on Expression of AD-Related Genes

    PubMed Central

    Ong, Daniel; Wijaya, Linda; Laws, Simon M.; Taddei, Kevin; Newman, Morgan; Lardelli, Michael; Martins, Ralph N.; Verdile, Giuseppe

    2013-01-01

    We investigated the guinea pig, Cavia porcellus, as a model for Alzheimer’s disease (AD), both in terms of the conservation of genes involved in AD and the regulatory responses of these to a known AD risk factor - high cholesterol intake. Unlike rats and mice, guinea pigs possess an Aβ peptide sequence identical to human Aβ. Consistent with the commonality between cardiovascular and AD risk factors in humans, we saw that a high cholesterol diet leads to up-regulation of BACE1 (β-secretase) transcription and down-regulation of ADAM10 (α-secretase) transcription which should increase release of Aβ from APP. Significantly, guinea pigs possess isoforms of AD-related genes found in humans but not present in mice or rats. For example, we discovered that the truncated PS2V isoform of human PSEN2, that is found at raised levels in AD brains and that increases γ-secretase activity and Aβ synthesis, is not uniquely human or aberrant as previously believed. We show that PS2V formation is up-regulated by hypoxia and a high-cholesterol diet while, consistent with observations in humans, Aβ concentrations are raised in some brain regions but not others. Also like humans, but unlike mice, the guinea pig gene encoding tau, MAPT, encodes isoforms with both three and four microtubule binding domains, and cholesterol alters the ratio of these isoforms. We conclude that AD-related genes are highly conserved and more similar to human than the rat or mouse. Guinea pigs represent a superior rodent model for analysis of the impact of dietary factors such as cholesterol on the regulation of AD-related genes. PMID:23805206

  13. Postprandial kinetics of gene expression of proteins involved in the digestive process in rainbow trout (O. mykiss) and impact of diet composition.

    PubMed

    Borey, Marion; Panserat, Stephane; Surget, Anne; Cluzeaud, Marianne; Plagnes-Juan, Elisabeth; Herman, Alexandre; Lazzarotto, Viviana; Corraze, Geneviève; Médale, Françoise; Lauga, Beatrice; Burel, Christine

    2016-08-01

    The impact of increased incorporation of plant ingredients on diets for rainbow trout was evaluated in terms of gene expression of gastric (gastric lipase, pepsinogen) and intestinal (prolidase, maltase, phospholipase A2) digestive enzymes and nutrient transporters (peptide and glucose transporters), as well as of postprandial levels of plasma glucose, triglycerides and total free amino acids. For that purpose, trout alevins were fed from the start of exogenous feeding one of three different experimental diets: a diet rich in fish meal and fish oil (FM-FO), a plant-based diet (noFM-noFO) totally free from fish meal and fish oil, but containing plant ingredients and a Mixed diet (Mixed) intermediate between the FM-FO and noFM-noFO diets. After 16 months of rearing, all fish were left unfed for 72 h and then given a single meal to satiation. Blood, stomach and anterior intestine were sampled before the meal and at 2, 6 and 12 h after this meal. The postprandial kinetics of gene expression of gastric and intestinal digestive enzymes and nutrient transporters were then followed in trout fed the FM-FO diet. The postprandial profiles showed that the expression of almost all genes studied was stimulated by the presence of nutrients in the digestive tract of trout, but the timing (appearance of peaks) varied between genes. Based on these data, we have focused on the molecular response to dietary factors in the stomach and the intestine at 6 and 12 h after feeding, respectively. The reduction in FM and FO levels of dietary incorporation induced a significant decrease in the gene expression of gastric lipase, GLUT2 and PEPT1. The plasma glucose and triglycerides levels were also reduced in trout fed the noFM-noFO diet. Consequently, the present study suggests a decrease in digestive capacities in trout fed a diet rich in plant ingredients.

  14. Scanning SNPs from a large set of expressed genes to assess the impact of artificial selection on the undomesticated genetic diversity of white spruce.

    PubMed

    Namroud, Marie-Claire; Bousquet, Jean; Doerksen, Trevor; Beaulieu, Jean

    2012-09-01

    A scan involving 1134 single-nucleotide polymorphisms (SNPs) from 709 expressed genes was used to assess the potential impact of artificial selection for height growth on the genetic diversity of white spruce. Two case populations of different sizes simulating different family selection intensities (K = 13% and 5%, respectively) were delineated from the Quebec breeding program. Their genetic diversity and allele frequencies were compared with those of control populations of the same size and geographic origin to assess the effect of increasing the selection intensity. The two control populations were also compared to assess the effect of reducing the sampling size. On one hand, in all pairwise comparisons, genetic diversity parameters were comparable and no alleles were lost in the case populations compared with the control ones, except for few rare alleles in the large case population. Also, the distribution of allele frequencies did not change significantly (P ≤ 0.05) between the populations compared, but ten and nine SNPs (0.8%) exhibited significant differences in frequency (P ≤ 0.01) between case and control populations of large and small sizes, respectively. Results of association tests between breeding values for height at 15 years of age and these SNPs supported the hypothesis of a potential effect of selection on the genes harboring these SNPs. On the other hand, contrary to expectations, there was no evidence that selection induced an increase in linkage disequilibrium in genes potentially affected by selection. These results indicate that neither the reduction in the sampling size nor the increase in selection intensity was sufficient to induce a significant change in the genetic diversity of the selected populations. Apparently, no loci were under strong selection pressure, confirming that the genetic control of height growth in white spruce involves many genes with small effects. Hence, selection for height growth at the present intensities did not

  15. Comparative Transcriptomic Analyses of Differentially Expressed Genes in Transgenic Melatonin Biosynthesis Ovine HIOMT Gene in Switchgrass

    PubMed Central

    Yuan, Shan; Guan, Cong; Liu, Sijia; Huang, Yanhua; Tian, Danyang; Cui, Xin; Zhang, Yunwei; Yang, Fuyu

    2016-01-01

    Melatonin serves pleiotropic functions in prompting plant growth and resistance to various stresses. The accurate biosynthetic pathway of melatonin remains elusive in plant species, while the N-acetyltransferase and O-methyltransferase were considered to be the last two key enzymes during its biosynthesis. To investigate the biosynthesis and metabolic pathway of melatonin in plants, the RNA-seq profile of overexpression of the ovine HIOMT was analyzed and compared with the previous transcriptome of transgenic oAANAT gene in switchgrass, a model plant for cellulosic ethanol production. A total of 946, 405, and 807 differentially expressed unigenes were observed in AANAT vs. control, HIOMT vs. control, and AANAT vs. HIOMT, respectively. Two hundred and seventy-five upregulated and 130 downregulated unigenes were detected in transgenic oHIOMT line comparing with control, including the significantly upregulated (F-box/kelch-repeat protein, zinc finger BED domain-containing protein-3) genes, which were potentially correlated with enhanced phenotypes of shoot, stem and root growth in transgenic oHIOMT switchgrass. Several stress resistant related genes (SPX domain-containing membrane protein, copper transporter 1, late blight resistance protein homolog R1A-6 OS etc.) were specifically and significantly upregulated in transgenic oHIOMT only, while metabolism-related genes (phenylalanine-4-hydroxylase, tyrosine decarboxylase 1, protein disulfide-isomerase and galactinol synthase 2 etc.) were significantly upregulated in transgenic oAANAT only. These results provide new sights into the biosynthetic and physiological functional networks of melatonin in plants. PMID:27877177

  16. Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor

    PubMed Central

    Rintala, Anniina; Pietilä, Sami; Munukka, Eveliina; Eerola, Erkki; Pursiheimo, Juha-Pekka; Laiho, Asta; Pekkala, Satu; Huovinen, Pentti

    2017-01-01

    Next-generation sequencing (NGS) is currently the method of choice for analyzing gut microbiota composition. As gut microbiota composition is a potential future target for clinical diagnostics, it is of utmost importance to enhance and optimize the NGS analysis procedures. Here, we have analyzed the impact of DNA extraction and selected 16S rDNA primers on the gut microbiota NGS results. Bacterial DNA from frozen stool specimens was extracted with 5 commercially available DNA extraction kits. Special attention was paid to the semiautomated DNA extraction methods that could expedite the analysis procedure, thus being especially suitable for clinical settings. The microbial composition was analyzed with 2 distinct protocols: 1 targeting the V3–V4 and the other targeting the V4–V5 area of the bacterial 16S rRNA gene. The overall effect of DNA extraction on the gut microbiota 16S rDNA profile was relatively small, whereas the 16S rRNA gene target region had an immense impact on the results. Furthermore, semiautomated DNA extraction methods clearly appeared suitable for NGS procedures, proposing that application of these methods could importantly reduce hands-on time and human errors without compromising the validity of results. PMID:28260999

  17. Down-Regulation of KORRIGAN-Like Endo-β-1,4-Glucanase Genes Impacts Carbon Partitioning, Mycorrhizal Colonization and Biomass Production in Populus

    PubMed Central

    Kalluri, Udaya C.; Payyavula, Raja S.; Labbé, Jessy L.; Engle, Nancy; Bali, Garima; Jawdy, Sara S.; Sykes, Robert W.; Davis, Mark; Ragauskas, Arthur; Tuskan, Gerald A.; Tschaplinski, Timothy J.

    2016-01-01

    A greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-β-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis. Altered metabolism and reduced growth characteristics of RNAi plants revealed new implications on carbon allocation and partitioning. The distinctive metabolome phenotype comprised of a higher phenolic and salicylic acid content, and reduced lignin, shikimic acid and maleic acid content relative to control. Plant sustainability implications of modified cell walls on beneficial plant-microbe interactions were explored via co-culture with an ectomycorrhizal fungus, Laccaria bicolor. A significant increase in the mycorrhization rate was observed in transgenic plants, leading to measurable beneficial growth effects. These findings present new evidence for functional interconnectedness of cellulose biosynthesis pathway, metabolism and mycorrhizal association in plants, and further emphasize the consideration of the sustainability implications of plant trait improvement efforts. PMID:27757116

  18. Down-regulation of KORRIGAN-like endo-β-1,4-glucanase genes impacts carbon partitioning, mycorrhizal colonization and biomass production in Populus

    DOE PAGES

    Kalluri, Udaya C; Engle, Nancy L.; Bali, Garima; ...

    2016-10-04

    Here, a greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-β-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis. Altered metabolism and reduced growth characteristicsmore » of RNAi plants revealed new implications on carbon allocation and partitioning. The distinctive metabolome phenotype comprised of a higher phenolic and salicylic acid content, and reduced lignin, shikimic acid and maleic acid content relative to control. Plant sustainability implications of modified cell walls on beneficial plant-microbe interactions were explored via co-culture with an ectomycorrhizal fungus, Laccaria bicolor. A significant increase in the mycorrhization rate was observed in transgenic plants, leading to measurable beneficial growth effects. These findings present new evidence for functional interconnectedness of cellulose biosynthesis pathway, metabolism and mycorrhizal association in plants, and further emphasize the consideration of the sustainability implications of plant trait improvement efforts.« less

  19. Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor.

    PubMed

    Rintala, Anniina; Pietilä, Sami; Munukka, Eveliina; Eerola, Erkki; Pursiheimo, Juha-Pekka; Laiho, Asta; Pekkala, Satu; Huovinen, Pentti

    2017-02-28

    Next-generation sequencing (NGS) is currently the method of choice for analyzing gut microbiota composition. As gut microbiota composition is a potential future target for clinical diagnostics, it is of utmost importance to enhance and optimize the NGS analysis procedures. Here, we have analyzed the impact of DNA extraction and selected 16S rDNA primers on the gut microbiota NGS results. Bacterial DNA from frozen stool specimens was extracted with 5 commercially available DNA extraction kits. Special attention was paid to the semiautomated DNA extraction methods that could expedite the analysis procedure, thus being especially suitable for clinical settings. The microbial composition was analyzed with 2 distinct protocols: 1 targeting the V3-V4 and the other targeting the V4-V5 area of the bacterial 16S rRNA gene. The overall effect of DNA extraction on the gut microbiota 16S rDNA profile was relatively small, whereas the 16S rRNA gene target region had an immense impact on the results. Furthermore, semiautomated DNA extraction methods clearly appeared suitable for NGS procedures, proposing that application of these methods could importantly reduce hands-on time and human errors without compromising the validity of results.

  20. Impact of early developmental arsenic exposure on promotor CpG-island methylation of genes involved in neuronal plasticity.

    PubMed

    Martínez, Liborio; Jiménez, Verónica; García-Sepúlveda, Christian; Ceballos, Fátima; Delgado, Juan Manuel; Niño-Moreno, Perla; Doniz, Lesly; Saavedra-Alanís, Víctor; Castillo, Claudia G; Santoyo, Martha E; González-Amaro, Roberto; Jiménez-Capdeville, María E

    2011-04-01

    Epigenetic mechanisms are crucial to regulate the expression of different genes required for neuronal plasticity. Neurotoxic substances such as arsenic, which induces cognitive deficits in exposed children before any other manifestation of toxicity, could interfere with the epigenetic modulation of neuronal gene expression required for learning and memory. This study assessed in Wistar rats the effects that developmental arsenic exposure had on DNA methylation patterns in hippocampus and frontal cortex. Animals were exposed to arsenic in drinking water (3 and 36ppm) from gestation until 4 months of age, and DNA methylation in brain cells was determined by flow cytometry, immunohistochemistry and methylation-specific polymerase chain reaction (PCR) of the promoter regions of reelin (RELN) and protein phosphatase 1 (PP1) at 1, 2, 3 and 4 months of age. Immunoreactivity to 5 methyl-cytosine was significantly higher in the cortex and hippocampus of exposed animals compared to controls at 1 month, and DNA hypomethylation was observed the following months in the cortex at high arsenic exposure. Furthermore, we observed a significant increase in the non-methylated form of PP1 gene promoter at 2 and 3 months of age, either in cortex or hippocampus. In order to determine whether this exposure level is associated with memory deficits, a behavioral test was performed at the same age points, revealing progressive and dose-dependent deficits of fear memory. Our results demonstrate alterations of the methylation pattern of genes involved in neuronal plasticity in an animal model of memory deficit associated with arsenic exposure.

  1. Functional Impact of RNA editing and ADARs on regulation of gene expression: perspectives from deep sequencing studies.

    PubMed

    Liu, Hsuan; Ma, Chung-Pei; Chen, Yi-Tung; Schuyler, Scott C; Chang, Kai-Ping; Tan, Bertrand Chin-Ming

    2014-01-01

    Cells regulate gene expression at multiple levels leading to a balance between robustness and complexity within their proteome. One core molecular step contributing to this important balance during metazoan gene expression is RNA editing, such as the co-transcriptional recoding of RNA transcripts catalyzed by the adenosine deaminse acting on RNA (ADAR) family of enzymes. Understanding of the adenosine-to-inosine RNA editing process has been broadened considerably by the next generation sequencing (NGS) technology, which allows for in-depth demarcation of an RNA editome at nucleotide resolution. However, critical issues remain unresolved with regard to how RNA editing cooperates with other transcript-associated events to underpin regulated gene expression. Here we review the growing body of evidence, provided by recent NGS-based studies, that links RNA editing to other mechanisms of post-transcriptional RNA processing and gene expression regulation including alternative splicing, transcript stability and localization, and the biogenesis and function of microRNAs (miRNAs). We also discuss the possibility that systematic integration of NGS data may be employed to establish the rules of an "RNA editing code", which may give us new insights into the functional consequences of RNA editing.

  2. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures

    PubMed Central

    Sytnikova, Yuliya A.; Rahman, Reazur; Chirn, Gung-wei; Clark, Josef P.

    2014-01-01

    Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity. PMID:25267525

  3. Landscape features impact on soil available water, corn biomass, and gene expression during the late vegetative stage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In rolling landscapes, plant available water can vary drastically by topographic location with growth impaired by too much water in footslope locations and too little water in summit locations. This study examined corn (Zea mays) gene expression and plant productivity differences between two landsc...

  4. Dual gain of HER2 and EGFR gene copy numbers impacts the prognosis of carcinoma ex pleomorphic adenoma.

    PubMed

    Nishijima, Toshimitsu; Yamamoto, Hidetaka; Nakano, Takafumi; Nakashima, Torahiko; Taguchi, Ken-ichi; Masuda, Muneyuki; Motoshita, Jun-ichi; Komune, Shizuo; Oda, Yoshinao

    2015-11-01

    We investigated the potential roles of HER2 and EGFR and evaluated their prognostic significance in carcinoma ex pleomorphic adenoma (CXPA). We analyzed HER2 and EGFR overexpression status using immunohistochemistry (IHC) and gene copy number gain by chromogenic in situ hybridization (CISH) in 50 cases of CXPA (40 ductal-type and 10 myoepithelial-type CXPAs). Salivary duct carcinoma was the most common histologic subtype of malignant component (n = 21). Immunohistochemistry positivity and chromogenic in situ hybridization positivity were closely correlated in both HER2 and EGFR. HER2 CISH positivity (mostly gene amplification) and EGFR CISH positivity (mostly gene high polysomy) were present in 19 (40%) and 21 (44%) cases, respectively, and were each significantly correlated with poor outcome (P = .0009 and P = .0032, respectively). Dual gain of HER2 and EGFR gene copy numbers was present in 11 cases (23%) and was the most aggressive genotype. HER2 CISH positivity was more frequently present in ductal-type CXPAs (47%) than in myoepithelial-type CXPAs (10%), whereas the prevalence of EGFR CISH positivity was similar in both histologic subtypes (42% and 50%, respectively). Our results suggest that HER2 and EGFR gene copy number gains may play an important role in the progression of CXPA, in particular ductal-type CXPAs. HER2 CISH-positive/EGFR CISH-positive tumors may be the most aggressive subgroup in CXPA. The molecular subclassification of CXPA based on the HER2 and EGFR status may be helpful for prognostic prediction and decisions regarding the choice of therapeutic strategy.

  5. Impacts of coexisting antibiotics, antibacterial residues, and heavy metals on the occurrence of erythromycin resistance genes in urban wastewater.

    PubMed

    Gao, Pin; He, Shi; Huang, Shenglin; Li, Kanzhu; Liu, Zhenhong; Xue, Gang; Sun, Weimin

    2015-05-01

    Antibiotic resistance is a global challenge and represents a growing threat on human health worldwide. Wastewater treatment plants (WWTPs) are generally considered as hotspots for control and/or dissemination of antibiotic resistance. The role of antibiotics, antibacterial residues, and heavy metals played on the evolution and spread of antibiotic resistance is still not well understood. Here, the occurrence of antibiotics (i.e., macrolides, tetracyclines, sulfonamides, and quinolones), antibacterial residues (i.e., triclosan), as well as heavy metals (i.e., cadmium, chromium, copper, zinc, lead, and nickel) in urban wastewater was investigated. Also, the abundances of erythromycin resistance genes (ERY-ARGs) including ere(A), ere(B), mef(A)/mef(E), erm(A), erm(B), erm(C), and msr(A)/msr(B) genes were screened. A relationship between certain antibiotics, antibacterial residues, and heavy metals and ERY-ARGs was demonstrated. ERY presented significant correlations (0.883 < r < 0.929, P < 0.05) with ere(A), ere(B), and mef(A)/mef(E) genes, while tetracycline exhibited a significant correlation (r = 0.829, P < 0.05) with erm(B) genes. It is noteworthy that triclosan correlated significantly (0.859 < r < 0.956, P < 0.05) with ere(A), ere(B), mef(A)/mef(E), and erm(B) genes. In addition, significantly positive correlations (0.823 < r < 0.871, P < 0.05) were observed between zinc and lead and certain ERY-ARGs (i.e., ere(B), mef(A)/mef(E), erm(B), etc.). Further investigations should be involved to elucidate the co-selection and/or cross-selection mechanisms due to co-existence of these selective factors in urban wastewater.

  6. High Sequence Variability of the ppE18 Gene of Clinical Mycobacterium tuberculosis Complex Strains Potentially Impacts Effectivity of Vaccine Candidate M72/AS01E.

    PubMed

    Homolka, Susanne; Ubben, Tanja; Niemann, Stefan

    2016-01-01

    The development of an effective vaccine is urgently needed to fight tuberculosis (TB) which is still the leading cause of death from a single infectious agent worldwide. One of the promising vaccine candidates M72/AS01E consists of two proteins subunits PepA and PPE18 coded by Rv0125 and Rv1196. However, preliminary data indicate a high level of sequence variability among clinical Mycobacterium tuberculosis complex (MTBC) strains that might have an impact on the vaccine efficacy. To further investigate this finding, we determined ppE18 sequence variability in a well-characterized reference collection of 71 MTBC strains from 23 phylogenetic lineages representing the global MTBC diversity. In total, 100 sequence variations consisting of 96 single nucleotide polymorphisms (SNPs), three insertions and one deletion were detected resulting in 141 variable positions distributed over the entire gene. The majority of SNPs detected were non-synonymous (n = 68 vs. n = 28 synonymous). Strains from animal adapted lineages, e.g., M. bovis, showed a significant higher diversity than the human pathogens such as M. tuberculosis Haarlem. SNP patterns specific for different lineages as well as for deeper branches in the phylogeny could be identified. The results of our study demonstrate a high variability of the ppE18 gene even in the N-terminal domains that is normally highly conserved in ppe genes. As the N-terminal region interacts with TLR2 receptor inducing a protective anti-inflammatory immune response, genetic heterogeneity has a potential impact on the vaccine efficiency, however, this has to be investigated in future studies.

  7. Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the impact of temperature on proanthocyanidin (PA) accumulation in grape skins, despite its significance in berry composition and wine quality. Field grown grapes (cv. Merlot) were cooled during the day or heated at night by +/- 8 °C, from fruit set to véraison in three seasons...

  8. Derivation of Tissue-specific Functional Gene Sets to Aid Transcriptomic Analysis of Chemical Impacts on the Teleost Reproductive Axis.

    EPA Science Inventory

    Oligonucleotide microarrays are a powerful tool for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the poor power of microarray-based analyses to detect diffe...

  9. The CAG polymorphism in androgen receptor (AR) gene impacts the moral permissibility of harmful behavior in females.

    PubMed

    Gong, Pingyuan; Fang, Pengpeng; Yang, Xing; Ru, Wenzhao; Wang, Bei; Gao, Xiaocai; Liu, Jinting

    2017-03-07

    The moral permissibility of harm is strikingly varied among individuals. In light of the connection between testosterone levels and utilitarian moral judgment, this study examined to what extent a CAG polymorphism in the androgen receptor gene, a genetic polymorphism with the ability to regulate testosterone function, contributes to individual differences in moral judgment. Four hundred and thirty-nine Chinese Han participants completed permissibility ratings of harm in moral dilemmas and moral transgression scenarios. Results showed a significant association between the CAG polymorphism and moral permissibility of harm in females. Females with more copies of the S allele, which is associated with higher availability of testosterone, were more likely to judge harmful utilitarian acts and unintentionally harmful acts as permissible, while these effects were absent in males. The findings provide the first evidence for a link between the androgen receptor gene and moral judgment and highlight the role of androgens in moral foundations.

  10. The impact of heat shock protein 70 gene variations on clinical presentation and outcome in schizophrenic inpatients.

    PubMed

    Pae, Chi-Un; Drago, Antonio; Kim, Jung-Jin; Mandelli, Laura; De Ronchi, Diana; Serretti, Alessandro

    2009-01-01

    We previously investigated a group of single-nucleotide polymorphisms of a set of genes coding for heat shock proteins (HSPA1A, HSPA1B and HSPA1L) and found a significant association between one HSPA1B variation and schizophrenia (SZ). We now report an association between a set of variations (rs2227956, rs2075799, rs1043618, rs562047 and rs539689) within the same genes and a larger sample of schizophrenic inpatients. A single variation, rs539689 (HSPA1B), was found to be marginally associated with Positive and Negative Syndrome Scale (PANSS) positive scores at discharge, and haplotype analysis revealed a significant association between improvement in PANSS scores with both A-C-G-G and A-C-G-G haplotypes. These findings further support a role of heat shock proteins in the pathophysiology of SZ.

  11. Rapid Diagnostic Tests for Malaria Diagnosis in the Peruvian Amazon: Impact of pfhrp2 Gene Deletions and Cross-Reactions

    PubMed Central

    Maltha, Jessica; Gamboa, Dionicia; Bendezu, Jorge; Sanchez, Luis; Cnops, Lieselotte; Gillet, Philippe; Jacobs, Jan

    2012-01-01

    Background In the Peruvian Amazon, Plasmodium falciparum and Plasmodium vivax malaria are endemic in rural areas, where microscopy is not available. Malaria rapid diagnostic tests (RDTs) provide quick and accurate diagnosis. However, pfhrp2 gene deletions may limit the use of histidine-rich protein-2 (PfHRP2) detecting RDTs. Further, cross-reactions of P. falciparum with P. vivax-specific test lines and vice versa may impair diagnostic specificity. Methods Thirteen RDT products were evaluated on 179 prospectively collected malaria positive samples. Species diagnosis was performed by microscopy and confirmed by PCR. Pfhrp2 gene deletions were assessed by PCR. Results Sensitivity for P. falciparum diagnosis was lower for PfHRP2 compared to P. falciparum-specific Plasmodium lactate dehydrogenase (Pf-pLDH)- detecting RDTs (71.6% vs. 98.7%, p<0.001). Most (19/21) false negative PfHRP2 results were associated with pfhrp2 gene deletions (25.7% of 74 P. falciparum samples). Diagnostic sensitivity for P. vivax (101 samples) was excellent, except for two products. In 10/12 P. vivax-detecting RDT products, cross-reactions with the PfHRP2 or Pf-pLDH line occurred at a median frequency of 2.5% (range 0%–10.9%) of P. vivax samples assessed. In two RDT products, two and one P. falciparum samples respectively cross-reacted with the Pv-pLDH line. Two Pf-pLDH/pan-pLDH-detecting RDTs showed excellent sensitivity with few (1.0%) cross-reactions but showed faint Pf-pLDH lines in 24.7% and 38.9% of P. falciparum samples. Conclusion PfHRP2-detecting RDTs are not suitable in the Peruvian Amazon due to pfhrp2 gene deletions. Two Pf-pLDH-detecting RDTs performed excellently and are promising RDTs for this region although faint test lines are of concern. PMID:22952633

  12. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products.

    PubMed

    Zhu, Xiaobiao; Gong, Huiling; He, Qunyan; Zeng, Zixian; Busse, James S; Jin, Weiwei; Bethke, Paul C; Jiang, Jiming

    2016-02-01

    Acrylamide is produced in a wide variety of carbohydrate-rich foods during high-temperature cooking. Dietary acrylamide is a suspected human carcinogen, and health concerns related to dietary acrylamide have been raised worldwide. French fries and potato chips contribute a significant proportion to the average daily intake of acrylamide, especially in developed countries. One way to mitigate health concerns related to acrylamide is to develop potato cultivars that have reduced contents of the acrylamide precursors asparagine, glucose and fructose in tubers. We generated a large number of silencing lines of potato cultivar Russet Burbank by targeting the vacuolar invertase gene VInv and the asparagine synthetase genes StAS1 and StAS2 with a single RNA interference construct. The transcription levels of these three genes were correlated with reducing sugar (glucose and fructose) and asparagine content in tubers. Fried potato products from the best VInv/StAS1/StAS2-triple silencing lines contained only one-fifteenth of the acrylamide content of the controls. Interestingly, the extent of acrylamide reduction of the best triple silencing lines was similar to that of the best VInv-single silencing lines developed previously from the same potato cultivar Russet Burbank. These results show that an acrylamide mitigation strategy focused on developing potato cultivars with low reducing sugars is likely to be an effective and sufficient approach for minimizing the acrylamide-forming potential of French fry processing potatoes.

  13. Coupling of enhancer and insulator properties identified in two retrotransposons modulates their mutagenic impact on nearby genes.

    PubMed

    Conte, Caroline; Dastugue, Bernard; Vaury, Chantal

    2002-03-01

    We recently reported a novel transposition system in which two retroelements from Drosophila melanogaster, ZAM and Idefix, are highly mobilized and preferentially insert within intergenic regions. Among the loci where new copies are detected, a hot spot for their insertion was identified at the white locus, where up to three elements occurred within a 3-kb fragment upstream of the transcriptional start site of white. We have used these insertions as molecular entry points to throw light on the mutagenic effect exerted by multiple insertions of retrotransposons within intergenic regions of a genome. Analysis of the molecular mechanisms by which ZAM and Idefix elements interfere with the regulation of the white gene has shown that ZAM bears cis-acting regulatory sequences able to enhance transcription of the white gene in the eyes of the flies. This activation may be counteracted by Idefix, which acts as an insulator able to isolate the white gene from the upstream ZAM enhancer. In addition to revealing a novel insulator sequence with its own specific features, our data clearly illustrate how retroelements can act as epigenetic factors able to interfere with the transcriptional regulation of their host.

  14. The impact of pollination syndrome and habitat on gene flow: a comparative study of two Streptocarpus (Gesneriaceae) species.

    PubMed

    Hughes, Mark; Möller, Michael; Edwards, Trevor J; Bellstedt, Dirk U; Villiers, Margaret de

    2007-10-01

    Gene flow through pollen and seed dispersal is important in terms of population differentiation and eventually speciation. Seed and pollen flow are affected in turn by habitats and pollen vectors. We examined the effect of different pollinators and habitats on gene flow by comparing two species of Streptocarpus, using microsatellite and chloroplast RFLP markers. Populations of the forest-dwelling S. primulifolius were highly differentiated according to nuclear microsatellite data and had mutually exclusive chloroplast haplotypes. This result is congruent with infrequent seed dispersal and limited between-population foraging by the long-tongued fly pollinator Stenobasipteron wiedemanni. In contrast, populations of S. dunnii growing in exposed crags had lower levels of population differentiation according to both nuclear and chloroplast data, congruent with a hypothesis of more effective between population seed dispersal and greater pollen-mediated gene flow due to the sunbird pollinator Nectarinia famosa. The population genetic behavior of these species is reflected in their taxonomy and phylogenetic position; S. primulifolius belongs to a taxonomically complex clade in which recent speciation is evident, while the clade containing S. dunnii is characterized by taxonomically well-defined species on longer phylogenetic branches. Our study shows that pollinator movements and seed dispersal patterns are a major determinant of the evolutionary trajectories of these species.

  15. Impact of bisphenol A (BPA) on early embryo development in the marine mussel Mytilus galloprovincialis: Effects on gene transcription.

    PubMed

    Balbi, Teresa; Franzellitti, Silvia; Fabbri, Rita; Montagna, Michele; Fabbri, Elena; Canesi, Laura

    2016-11-01

    Bisphenol A (BPA), a monomer used in plastic manufacturing, is weakly estrogenic and a potential endocrine disruptor in mammals. Although it degrades quickly, it is pseudo-persistent in the environment because of continual inputs, with reported concentrations in aquatic environments between 0.0005 and 12 μg/L. BPA represents a potential concern for aquatic ecosystems, as shown by its reproductive and developmental effects in aquatic vertebrates. In invertebrates, endocrine-related effects of BPA were observed in different species and experimental conditions, with often conflicting results, indicating that the sensitivity to this compound can vary considerably among related taxa. In the marine mussel Mytilus galloprovincialis BPA was recently shown to affect early development at environmental concentrations. In this work, the possible effects of BPA on mussel embryos were investigated at the molecular level by evaluating transcription of 13 genes, selected on the basis of their biological functions in adult mussels. Gene expression was first evaluated in trocophorae and D-veligers (24 and 48 h post fertilization) grown in physiological conditions, in comparison with unfertilized eggs. Basal expressions showed a general up-regulation during development, with distinct transcript levels in trocophorae and D-veligers. Exposure of fertilized eggs to BPA (10 μg/L) induced a general upregulation at 24 h pf, followed by down regulation at 48 h pf. Mytilus Estrogen Receptors, serotonin receptor and genes involved in biomineralization (Carbonic Anydrase and Extrapallial Protein) were the most affected by BPA exposure. At 48 h pf, changes in gene expression were associated with irregularities in shell formation, as shown by scanning electron microscopy (SEM), indicating that the formation of the first shelled embryo, a key step in mussel development, represents a sensitive target for BPA. Similar results were obtained with the natural estrogen 17β-estradiol. The

  16. Carbon cycling and carbon metabolism by soil fungi in a boreal forest: impacts of wildfire and permafrost on functional genes, isotope signatures, and ectomycorrhizae

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Harden, J. W.

    2006-12-01

    Understanding the mechanisms that control the stabilization and destabilization of soil carbon within boreal forest ecosystems is of great importance to the global carbon budget. Much is currently known about boreal soil carbon dynamics in relation to biophysical and landscape variables such as temperature, moisture, wildfire intensity, and stand age. We have less information regarding the controls on decomposition at the molecular scale, where interactions between microbial communities, their genetic `potential' for decomposition, functional genes, enzyme synthesis, and organic matter transformations occur. We have entered an age in which these connections can be made at the molecular scale, but what form do they take, and can they scale up to affect carbon dynamics at the level of the ecosystem? We examined these molecular scale processes in mature boreal forest soils and soils that had been impacted by wildfire near Delta Junction, Alaska. We also examined the interactive effect of permafrost presence, which reduces soil drainage, with wildfire. We focused on three themes: linking microbial communities and laccase functional genes to soil laccase enzyme activity and lignin decomposition, assessing substrate availability using the natural abundance δ13C isotope ratios of microbial biomass, and the influence of ectomycorrhizal mats on decomposition. Wildfire reduced fungal biomass, laccase functional gene abundance, laccase activity, and δ13C-lignin decomposition. Relationships between gene abundance and microbial activity were significant and logarithmic in form. Soil drainage, which is mediated by the presence of permafrost, had little effect on the abundance of fungi, functional genes, or potential process rates. Microbial biomass δ13C was always enriched relative to soil organic matter, and this difference was greater in control soils compared to wildfire-affected soils, indicating that ÄΔδ13C MB-SOIL may indicate the level of bioavailability of soil

  17. Impact of single-gene and dual-gene Bt broccoli on the herbivore Pieris rapae (Lepidoptera: Pieridae) and its pupal endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae).

    PubMed

    Chen, Mao; Zhao, Jian-zhou; Shelton, Anthony M; Cao, Jun; Earle, Elizabeth D

    2008-08-01

    Transgenic brassica crops producing insecticidal proteins from Bacillus thuringiensis (Bt) are being investigated as candidates for field release to control lepidopteran pests. Information on the potential impact of Bt brassica crops on pests and non-target natural enemies is needed as part of an environmental risk assessment prior to the commercial release. This first tier study provides insight into the tritrophic interactions among Bt broccoli plants, the herbivore Pieris rapae and its parasitoid Pteromalus puparum. We first evaluated the efficacy of three types of Bt broccoli plants, cry1Ac, cry1C and cry1Ac + cry1C, on different instars of P. rapae. Bt broccoli effectively controlled P. rapae larvae, although later instars were more tolerant. The efficacy of different Bt broccoli plants on P. rapae larvae was consistently cry1Ac > cry1Ac + cry1C > cry1C. When the parasitoid P. puparum developed in a P. rapae pupa (host) that had developed from Bt plant-fed older larvae, developmental time, total number and longevity of the P. puparum generated from the Bt plant-fed host were significantly affected compared with those generated from the non-Bt control plant-fed host. Simultaneously, negative effects on P. rapae pupae were found, i.e. pupal length, width and weight were significantly reduced after older P. rapae larvae fed on different Bt plants for 1 or 2 days. Cry1C toxin was detected using ELISA in P. rapae pupae after older larvae fed on cry1C broccoli. However, no Cry1C toxin was detected in newly emerged P. puparum adults developing in Bt-fed hosts. Only a trace amount of toxin was detected from entire P. puparum pupae dissected from the Bt plant-fed host. Moreover, no negative effect was found on the progeny of P. puparum developing from the Bt plant-fed host when subsequently supplied with a healthy host, P. rapae pupae. The reduced quality of the host appears to be the only reason for the observed deleterious effects on P. puparum. Our data suggest that

  18. Modification of Monolignol Biosynthetic Pathway in Jute: Different Gene, Different Consequence.

    PubMed

    Shafrin, Farhana; Ferdous, Ahlan Sabah; Sarkar, Suprovath Kumar; Ahmed, Rajib; Amin, Al-; Hossain, Kawsar; Sarker, Mrinmoy; Rencoret, Jorge; Gutiérrez, Ana; Del Rio, Jose C; Sanan-Mishra, Neeti; Khan, Haseena

    2017-01-04

    Lignin, a cross-linked macromolecule of hydrophobic aromatic structure, provides additional rigidity to a plant cell wall. Although it is an integral part of the plant cell, presence of lignin considerably reduces the quality of the fiber of fiber-yielding plants. Decreasing lignin in such plants holds significant commercial and environmental potential. This study aimed at reducing the lignin content in jute-a fiber crop, by introducing hpRNA-based vectors for downregulation of two monolignoid biosynthetic genes- cinnamate 4-hydroxylase (C4H) and caffeic acid O-methyltransferase (COMT). Transgenic generations, analyzed through Southern, RT-PCR and northern assays showed downregulation of the selected genes. Transgenic lines exhibited reduced level of gene expression with ~ 16-25% reduction in acid insoluble lignin for the whole stem and ~13-14% reduction in fiber lignin content compared to the control lines. Among the two transgenic plant types one exhibited an increase in cellulose content and concomitant improvement of glucose release. Composition of the lignin building blocks was found to alter and this alteration resulted in a pattern, different from other plants where the same genes were manipulated. It is expected that successful COMT-hpRNA and C4H-hpRNA transgenesis in jute will have far-reaching commercial implications leading to product diversification and value addition.

  19. Modification of Monolignol Biosynthetic Pathway in Jute: Different Gene, Different Consequence

    PubMed Central

    Shafrin, Farhana; Ferdous, Ahlan Sabah; Sarkar, Suprovath Kumar; Ahmed, Rajib; Amin, Al-; Hossain, Kawsar; Sarker, Mrinmoy; Rencoret, Jorge; Gutiérrez, Ana; del Rio, Jose C.; Sanan-Mishra, Neeti; Khan, Haseena

    2017-01-01

    Lignin, a cross-linked macromolecule of hydrophobic aromatic structure, provides additional rigidity to a plant cell wall. Although it is an integral part of the plant cell, presence of lignin considerably reduces the quality of the fiber of fiber-yielding plants. Decreasing lignin in such plants holds significant commercial and environmental potential. This study aimed at reducing the lignin content in jute-a fiber crop, by introducing hpRNA-based vectors for downregulation of two monolignoid biosynthetic genes- cinnamate 4-hydroxylase (C4H) and caffeic acid O-methyltransferase (COMT). Transgenic generations, analyzed through Southern, RT-PCR and northern assays showed downregulation of the selected genes. Transgenic lines exhibited reduced level of gene expression with ~ 16–25% reduction in acid insoluble lignin for the whole stem and ~13–14% reduction in fiber lignin content compared to the control lines. Among the two transgenic plant types one exhibited an increase in cellulose content and concomitant improvement of glucose release. Composition of the lignin building blocks was found to alter and this alteration resulted in a pattern, different from other plants where the same genes were manipulated. It is expected that successful COMT-hpRNA and C4H-hpRNA transgenesis in jute will have far-reaching commercial implications leading to product diversification and value addition. PMID:28051165

  20. Impact of the 4G/5G polymorphism in the plasminogen activator inhibitor-1 gene on primary nephrotic syndrome.

    PubMed

    Luo, Yuezhong; Wang, Chao; Tu, Haitao

    2014-03-01

    The aim of the present study was to investigate whether the four guanosines (4G)/five guanosines (5G) polymorphism in the gene coding for plasminogen activator inhibitor-1 (PAI-1) affects the clinical features of primary nephrotic syndrome (PNS). A cohort of 200 biopsy-diagnosed PNS patients was studied, with 40 healthy subjects as controls. The PAI-1 gene polymorphism was detected by polymerase chain reaction and DNA sequencing. Associations between the PAI-1 4G/5G polymorphism and clinical features and pathological types of PNS were analyzed. The results indicated that the PAI-1 genotype distribution is significantly different between patients with PNS and healthy controls, with significantly higher numbers of the 4G/4G genotype and lower numbers of the 5G5G genotype detected in PNS patients compared to controls (both P<0.05). The frequency of the 4G allele was also significantly higher in PNS patients compared to healthy controls (P<0.01). Among the different pathological types of PNS, IgA nephropathy (IgAN) and membranous nephropathy (MN) were associated with significantly increased frequencies of the 4G/4G and 4G/5G genotypes, as well as of the 4G allele. The increased 4G frequency was also detected in patients with minimal change disease (MCD). Significantly increased international normalized ratio (INR) and prolonged activated partial thromboplastin time (APTT) were observed in 4G/4G compared to 5G/5G PNS subjects. The response to steroids was not significantly different among the three genotypes. In conclusion, the 4G allele of the PAI-1 gene appears to be associated with PNS, especially in MN and IgAN patients. These findings suggest that specific targeting may be required for the treatment of PNS patients with the 4G/4G genotype.

  1. Metabolic Impacts of Using Nitrogen and Copper-Regulated Promoters to Regulate Gene Expression in Neurospora crassa.

    PubMed

    Ouyang, Shouqiang; Beecher, Consuelo N; Wang, Kang; Larive, Cynthia K; Borkovich, Katherine A

    2015-07-20

    The filamentous fungus Neurospora crassa is a long-studied eukaryotic microbial system amenable to heterologous expression of native and foreign proteins. However, relatively few highly tunable promoters have been developed for this species. In this study, we compare the tcu-1 and nit-6 promoters for controlled expression of a GFP reporter gene in N. crassa. Although the copper-regulated tcu-1 has been previously characterized, this is the first investigation exploring nitrogen-controlled nit-6 for expression of heterologous genes in N. crassa. We determined that fragments corresponding to 1.5-kb fragments upstream of the tcu-1 and nit-6 open reading frames are needed for optimal repression and expression of GFP mRNA and protein. nit-6 was repressed using concentrations of glutamine from 2 to 20 mM and induced in medium containing 0.5-20 mM nitrate as the nitrogen source. Highest levels of expression were achieved within 3 hr of induction for each promoter and GFP mRNA could not be detected within 1 hr after transfer to repressing conditions using the nit-6 promoter. We also performed metabolic profiling experiments using proton NMR to identify changes in metabolite levels under inducing and repressing conditions for each promoter. The results demonstrate that conditions used to regulate tcu-1 do not significantly change the primary metabolome and that the differences between inducing and repressing conditions for nit-6 can be accounted for by growth under nitrate or glutamine as a nitrogen source. Our findings demonstrate that nit-6 is a tunable promoter that joins tcu-1 as a choice for regulation of gene expression in N. crassa.

  2. Impact of elvitegravir on human adipocytes: Alterations in differentiation, gene expression and release of adipokines and cytokines.

    PubMed

    Moure, Ricardo; Domingo, Pere; Gallego-Escuredo, José M; Villarroya, Joan; Gutierrez, Maria Del Mar; Mateo, Maria G; Domingo, Joan C; Giralt, Marta; Villarroya, Francesc

    2016-08-01

    Elvitegravir is a recently developed integrase inhibitor used for antiretroviral treatment of HIV infection. Secondary effects, including disturbances in lipid metabolism and, ultimately, in adipose tissue distribution and function, are common concerns associated with antiretroviral treatments. Here, we provide the first study of the effects of elvitegravir (in comparison with efavirenz, a non-nucleoside analog inhibitor of reverse transcriptase; and raltegravir, another integrase inhibitor) on human adipocyte differentiation, gene expression and secretion of adipokines and cytokines. Elvitegravir impaired adipogenesis and adipocyte metabolism in human SGBS adipocytes in a concentration-dependent manner (delaying acquisition of adipocyte morphology and reducing the expression of adipogenesis marker genes such as PPARγ, glucose transporter GLUT4, lipoprotein lipase, and the adipokines adiponectin and leptin). Compared with efavirenz, the effects of elvitegravir were similar but tended to occur at higher concentrations than those elicited by efavirenz, or were somewhat less intense than those caused by efavirenz at similar concentration. Elvitegravir tended to cause a more moderate induction of pro-inflammatory cytokines than efavirenz. Efavirenz induced a marked concentration-dependent increase in interleukin-8 expression and release whereas elvitregravir had little effect. Raltegravir had totally neutral actions of adipogenesis, adipocyte metabolism-related gene expression and release of adipokines and cytokines. In conclusion, elvitegravir alters adipocyte differentiation and function and promotes induction of pro-inflammatory cytokines similarly to efavirenz, but several effects were less intense. Further assessment of lipid metabolism and adipose tissue function in patients administered elvitegravir-based regimes is advisable considering that totally neutral effects of elvitegravir on lipid homeostasis cannot be anticipated from the current study in vitro.

  3. Functional Impact and Evolution of a Novel Human Polymorphic Inversion That Disrupts a Gene and Creates a Fusion Transcript.

    PubMed

    Puig, Marta; Castellano, David; Pantano, Lorena; Giner-Delgado, Carla; Izquierdo, David; Gayà-Vidal, Magdalena; Lucas-Lledó, José Ignacio; Esko, Tõnu; Terao, Chikashi; Matsuda, Fumihiko; Cáceres, Mario

    2015-10-01

    Despite many years of study into inversions, very little is known about their functional consequences, especially in humans. A common hypothesis is that the selective value of inversions stems in part from their effects on nearby genes, although evidence of this in natural populations is almost nonexistent. Here we present a global analysis of a new 415-kb polymorphic inversion that is among the longest ones found in humans and is the first with clear position effects. This inversion is located in chromosome 19 and has been generated by non-homologous end joining between blocks of transposable elements with low identity. PCR genotyping in 541 individuals from eight different human populations allowed the detection of tag SNPs and inversion genotyping in multiple populations worldwide, showing that the inverted allele is mainly found in East Asia with an average frequency of 4.7%. Interestingly, one of the breakpoints disrupts the transcription factor gene ZNF257, causing a significant reduction in the total expression level of this gene in lymphoblastoid cell lines. RNA-Seq analysis of the effects of this expression change in standard homozygotes and inversion heterozygotes revealed distinct expression patterns that were validated by quantitative RT-PCR. Moreover, we have found a new fusion transcript that is generated exclusively from inverted chromosomes around one of the breakpoints. Finally, by the analysis of the associated nucleotide variation, we have estimated that the inversion was generated ~40,000-50,000 years ago and, while a neutral evolution cannot be ruled out, its current frequencies are more consistent with those expected for a deleterious variant, although no significant association with phenotypic traits has been found so far.

  4. Functional Impact and Evolution of a Novel Human Polymorphic Inversion That Disrupts a Gene and Creates a Fusion Transcript

    PubMed Central

    Puig, Marta; Castellano, David; Pantano, Lorena; Giner-Delgado, Carla; Izquierdo, David; Gayà-Vidal, Magdalena; Lucas-Lledó, José Ignacio; Esko, Tõnu; Terao, Chikashi; Matsuda, Fumihiko; Cáceres, Mario

    2015-01-01

    Despite many years of study into inversions, very little is known about their functional consequences, especially in humans. A common hypothesis is that the selective value of inversions stems in part from their effects on nearby genes, although evidence of this in natural populations is almost nonexistent. Here we present a global analysis of a new 415-kb polymorphic inversion that is among the longest ones found in humans and is the first with clear position effects. This inversion is located in chromosome 19 and has been generated by non-homologous end joining between blocks of transposable elements with low identity. PCR genotyping in 541 individuals from eight different human populations allowed the detection of tag SNPs and inversion genotyping in multiple populations worldwide, showing that the inverted allele is mainly found in East Asia with an average frequency of 4.7%. Interestingly, one of the breakpoints disrupts the transcription factor gene ZNF257, causing a significant reduction in the total expression level of this gene in lymphoblastoid cell lines. RNA-Seq analysis of the effects of this expression change in standard homozygotes and inversion heterozygotes revealed distinct expression patterns that were validated by quantitative RT-PCR. Moreover, we have found a new fusion transcript that is generated exclusively from inverted chromosomes around one of the breakpoints. Finally, by the analysis of the associated nucleotide variation, we have estimated that the inversion was generated ~40,000–50,000 years ago and, while a neutral evolution cannot be ruled out, its current frequencies are more consistent with those expected for a deleterious variant, although no significant association with phenotypic traits has been found so far. PMID:26427027

  5. Impact of different colours of artificial light at night on melatonin rhythm and gene expression of gonadotropins in European perch.

    PubMed

    Brüning, Anika; Hölker, Franz; Franke, Steffen; Kleiner, Wibke; Kloas, Werner

    2016-02-01

    The distribution and intensity of artificial light at night, commonly referred to as light pollution, is consequently rising and progressively also ecological implications come to light. Low intensity light is known to suppress nocturnal melatonin production in several fish species. This study aims to examine the least suppressive light colour for melatonin excreted into the holding water and the influence of different light qualities and quantities in the night on gene expression of gonadotropins in fish. European perch (Perca fluviatilis) were exposed to light of different wavelengths during the night (blue, green, and red). Melatonin concentrations were measured from water samples every 3h during a 24h period. Gene expression of gonadotropins was measured in perch exposed to different light colours and was additionally examined for perch subjected to different intensities of white light (0 lx, 1 lx, 10 lx, 100 lx) during the night. All different light colours caused a significant drop of melatonin concentration; however, blue light was least suppressive. Gene expression of gonadotropins was not influenced by nocturnal light of different light colours, but in female perch gonadotropin expression was significantly reduced by white light already at the lowest level (1 lx). We conclude that artificial light with shorter wavelengths at night is less effective in disturbing biological rhythms of perch than longer wavelengths, coinciding with the light situation in freshwater habitats inhabited by perch. Different light colours in the night showed no significant effect on gonadotropin expression, but white light in the night can disturb reproductive traits already at very low light intensities. These findings indicate that light pollution has not only the potential to disturb the melatonin cycle but also the reproductive rhythm and may therefore have implications on whole species communities.

  6. Ultraviolet filters differentially impact the expression of key endocrine and stress genes in embryos and larvae of Chironomus riparius.

    PubMed

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Several organic UV filters have hormonal activity in vertebrates, as demonstrated in fishes, rodents and human cells. Despite the accumulation of filter contaminants in aquatic systems, research on their effects on the endocrine systems of freshwaters invertebrates is scarce. In this work, the effects of five frequently used UV filters were investigated in embryos and larvae of Chironomus riparius, which is a reference organism in ecotoxicology. LC50 values for larvae as well as the percentage of eclosion of eggs were determined following exposures to: octyl-p-methoxycinnamate (OMC) also known as 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4MBC); 4-hydroxybenzophenone (4HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). To assess sublethal effects, expression levels of the genes coding for the ecdysone receptor (EcR) and heat shock protein HSP70 were investigated as biomarkers for endocrine and stress effects at the cellular level. Life-stage-dependent sensitivity was found. In embryos, all of the UV filters provoked a significant overexpression of EcR at 24h after exposure. OC, 4MBC and OD-PABA also triggered transcriptional activation of the hsp70 stress gene in embryos. In contrast, in larvae, only 4MBC and OMC/EHMC increased EcR and hsp70 mRNA levels and OD-PABA upregulated only the EcR gene. These results revealed that embryos are particularly sensitive to UV filters, which affect endocrine regulation during development. Most UV filters also triggered the cellular stress response, and thus exhibit proteotoxic effects. The differences observed between embryos and larvae and the higher sensitivity of embryos highlight the importance of considering different life stages when evaluating the environmental risks of pollutants, particularly when analyzing endocrine effects.

  7. Impact of blue, red, and far-red light treatments on gene expression and steviol glycoside accumulation in Stevia rebaudiana.

    PubMed

    Yoneda, Yuki; Nakashima, Hiroshi; Miyasaka, Juro; Ohdoi, Katsuaki; Shimizu, Hiroshi

    2017-02-15

    Stevia rebaudiana (Bertoni) Bertoni is a plant that biosynthesizes a group of natural sweeteners that are up to approximately 400 times sweeter than sucrose. The sweetening components of S. rebaudiana are steviol glycosides (SGs) that partially share their biosynthesis pathway with gibberellins (GAs). However, the molecular mechanisms through which SGs levels can be improved have not been studied. Therefore, transcription levels of several SG biosynthesis-related genes were analyzed under several light treatments involved in GA biosynthesis. We detected higher transcription of UGT85C2, which is one of the UDP-glycosyltransferases (UGTs) involved in catalyzing the sugar-transfer reaction, under red/far-red (R/FR) 1.22 light-emitting diodes (LEDs) and blue LEDs treatment. In this study, it was demonstrated that transcription levels of SG-related genes and the SGs content are affected by light treatments known to affect the GA contents. It is expected that this approach could serve as a practical way to increase SG contents using specific light treatments.

  8. The impact of HIV-1 genetic diversity on the efficacy of a combinatorial RNAi-based gene therapy.

    PubMed

    Herrera-Carrillo, E; Berkhout, B

    2015-06-01

    A hurdle for human immunodeficiency virus (HIV-1) therapy is the genomic diversity of circulating viruses and the possibility that drug-resistant virus variants are selected. Although RNA interference (RNAi) is a powerful tool to stably inhibit HIV-1 replication by the expression of antiviral short hairpin RNAs (shRNAs) in transduced T cells, this approach is also vulnerable to pre-existing genetic variation and the development of viral resistance through mutation. To prevent viral escape, we proposed to combine multiple shRNAs against important regions of the HIV-1 RNA genome, which should ideally be conserved in all HIV-1 subtypes. The vulnerability of RNAi therapy to viral escape has been studied for a single subtype B strain, but it is unclear whether the antiviral shRNAs can inhibit diverse virus isolates and subtypes, including drug-resistant variants that could be present in treated patients. To determine the breadth of the RNAi gene therapy approach, we studied the susceptibility of HIV-1 subtypes A-E and drug-resistant variants. In addition, we monitored the evolution of HIV-1 escape variants. We demonstrate that the combinatorial RNAi therapy is highly effective against most isolates, supporting the future testing of this gene therapy in appropriate in vivo models.

  9. Impact of TLR5 rs5744174 on stroke risk, gene expression and on inflammatory cytokines, and lipid levels in stroke patients.

    PubMed

    Gu, Lian; Huang, Jingyan; Tan, Jinjing; Wei, Qiugui; Jiang, Haiyun; Shen, Tingting; Liang, Baoyun; Tang, Nong

    2016-09-01

    Many studies reported that toll-like receptors (TLRs) played an important role in the process of ischemic stroke (IS). However, the impact of TLR5 rs5744174 on stroke risk, gene expression and on inflammatory cytokines, and lipid levels in ischemic stroke patients has not yet been reported and was therefore the subject of this study. In this case-control study, a total of 816 ischemic stroke patients and 816 healthy controls were genotyped using Sequenom MassArray technology. The mRNA expression of TLR5 was detected through quantitative real-time PCR among 52 ischemic stroke patients. The levels of IL-1b, IL-6, IL-8, and TNFα were measured by ELISA among 62 IS patients. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were determined among 816 IS patients using a Hitachi 7600 Automatic Biochemistry Analyzer. Our result showed TLR5 rs5744174 polymorphism was not associated with stroke risk, TLR5 mRNA expression and inflammatory cytokines of IS patients (P > 0.050), but was significantly associated with HDL-C (recessive model: β = - 0.14, 95 % CI: -0.24 to -0.03, P = 0.009). TLR5 rs5744174 polymorphism may have no impact on the stroke risk, gene expression and inflammatory cytokines, but may influence the HDL-C serum level of IS patients in Chinese Han population.

  10. Impact of strong selection for the PrP major gene on genetic variability of four French sheep breeds (Open Access publication)

    PubMed Central

    Palhiere, Isabelle; Brochard, Mickaël; Moazami-Goudarzi, Katayoun; Laloë, Denis; Amigues, Yves; Bed'hom, Bertrand; Neuts, Étienne; Leymarie, Cyril; Pantano, Thais; Cribiu, Edmond Paul; Bibé, Bernard; Verrier, Étienne

    2008-01-01

    Effective selection on the PrP gene has been implemented since October 2001 in all French sheep breeds. After four years, the ARR "resistant" allele frequency increased by about 35% in young males. The aim of this study was to evaluate the impact of this strong selection on genetic variability. It is focussed on four French sheep breeds and based on the comparison of two groups of 94 animals within each breed: the first group of animals was born before the selection began, and the second, 3–4 years later. Genetic variability was assessed using genealogical and molecular data (29 microsatellite markers). The expected loss of genetic variability on the PrP gene was confirmed. Moreover, among the five markers located in the PrP region, only the three closest ones were affected. The evolution of the number of alleles, heterozygote deficiency within population, expected heterozygosity and the Reynolds distances agreed with the criteria from pedigree and pointed out that neutral genetic variability was not much affected. This trend depended on breed, i.e. on their initial states (population size, PrP frequencies) and on the selection strategies for improving scrapie resistance while carrying out selection for production traits. PMID:18990357

  11. Impact of Interleukin-28B gene polymorphism (rs12979860) on Egyptian patients infected with hepatitis C virus genotype-4.

    PubMed

    Ibrahim, G H; Khalil, F A; El-Abaseri, T B; Attia, F M; El-Serafi, A T

    2014-01-09

    Single nucleotide polymorphisms (SNPs) in the Interleukin (IL)-28B gene, namely rs12979860, could predict response to pegylated interferon-α-ribavirin (PR) therapy in hepatitis C virus genotype 1 (HCV-1)-infected patients. A similar role was investigated in a case-control study conducted on 93 Egyptian patients chronically infected with HCV-4 in comparison to 22 individuals with spontaneous HCV clearance and 70 healthy volunteers. The homozygous C allele genotype (CC) was associated with sustained viral response (SVR) to therapy compared with the homozygous T allele genotype (TT) and the heterozygous genotype (CT). In the SVR group, the response rate was statistically significantly higher in CC genotypes (58.6%) compared with CT/TT (20.3%). There was no correlation between SVR patients' genotypes and early response to therapy or HCV baseline viral load. Our findings describe how IL-28B SNP genotyping may guide appropriate selection of HCV-4-infected patients for PR therapy.

  12. Impact of urbanization and agriculture on the occurrence of bacterial pathogens and stx genes in coastal waterbodies of central California.

    PubMed

    Walters, Sarah P; Thebo, Anne L; Boehm, Alexandria B

    2011-02-01

    Fecal pollution enters coastal waters through multiple routes, many of which originate from land-based activities. Runoff from pervious and impervious land surfaces transports pollutants from land to sea and can cause impairment of coastal ocean waters. To understand how land use practices and water characteristics influence concentrations of fecal indicator bacteria (FIB) and pathogens in natural waters, fourteen coastal streams, rivers, and tidal lagoons, surrounded by variable land use and animal densities, were sampled every six weeks over two years (2008 & 2009). Fecal indicator bacteria (FIB; Escherichia coli and Enterococci) and Salmonella concentrations, the occurrence of Bacteroidales human, ruminant, and pig-specific fecal markers, E. coli O157:H7, and Shiga toxin (stx) genes present in E. coli, were measured. In addition, environmental and climatic variables (e.g., temperature, salinity, rainfall), as well as human and livestock population densities and land cover were quantified. Concentrations of FIB and Salmonella were correlated with each other, but the occurrence of host-specific Bacteroidales markers did not correlate with FIB or pathogens. FIB and Salmonella concentrations, as well as the occurrence of E. coli harboring stx genes, were positively associated with the fraction of the surrounding subwatershed that was urban, while the occurrence of E. coli O157:H7 was positively associated with the agricultural fraction. FIB and Salmonella concentrations were negatively correlated to salinity and temperature, and positively correlated to rainfall. Areal loading rates of FIB, Salmonella and E. coli O157:H7 to the coastal ocean were calculated for stream and river sites and varied with land cover, salinity, temperature, and rainfall. Results suggest that FIB and pathogen concentrations are influenced, in part, by their flux from the land, which is exacerbated during rainfall; once waterborne, bacterial persistence is affected by water temperature and

  13. Impact of the AHI1 Gene on the Vulnerability to Schizophrenia: A Case-Control Association Study

    PubMed Central

    Rivero, Olga; Reif, Andreas; Sanjuán, Julio; Moltó, María D.; Kittel-Schneider, Sarah; Nájera, Carmen; Töpner, Theresia; Lesch, Klaus-Peter

    2010-01-01

    Background The Abelson helper integration-1 (AHI1) gene is required for both cerebellar and cortical development in humans. While the accelerated evolution of AHI1 in the human lineage indicates a role in cognitive (dys)function, a linkage scan in large pedigrees identified AHI1 as a positional candidate for schizophrenia. To further investigate the contribution of AHI1 to the susceptibility of schizophrenia, we evaluated the effect of AHI1 variation on the vulnerability to psychosis in two samples from Spain and Germany. Methodology/Principal Findings 29 single-nucleotide polymorphisms (SNPs) located in a genomic region including the AHI1 gene were genotyped in two samples from Spain (280 patients with psychotic disorders; 348 controls) and Germany (247 patients with schizophrenic disorders; 360 controls). Allelic, genotypic and haplotype frequencies were compared between cases and controls in both samples separately, as well as in the combined sample. The effect of genotype on several psychopathological measures (BPRS, KGV, PANSS) assessed in a Spanish subsample was also evaluated. We found several significant associations in the Spanish sample. Particularly, rs7750586 and rs911507, both located upstream of the AHI1 coding region, were found to be associated with schizophrenia in the analysis of genotypic (p = 0.0033, and 0.031, respectively) and allelic frequencies (p = 0.001 in both cases). Moreover, several other risk and protective haplotypes were detected (0.006

  14. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella.

    PubMed

    Fan, Jianhua; Xu, Hui; Luo, Yuanchan; Wan, Minxi; Huang, Jianke; Wang, Weiliang; Li, Yuanguang

    2015-03-01

    Biodiesel production by microalgae with photosynthetic CO2 biofixation is thought to be a feasible way in the field of bioenergy and carbon emission reduction. Knowledge of the carbon-concentrating mechanism plays an important role in improving microalgae carbon fixation efficiency. However, little information is available regarding the dramatic changes of cells suffered upon different environmental factors, such as CO2 concentration. The aim of this study was to investigate the growth, lipid accumulation, carbon fixation rate, and carbon metabolism gene expression under different CO2 concentrations in oleaginous Chlorella. It was found that Chlorella pyrenoidosa grew well under CO2 concentrations ranging from 1 to 20 %. The highest biomass and lipid productivity were 4.3 g/L and 107 mg/L/day under 5 % CO2 condition. Switch from high (5 %) to low (0.03 %, air) CO2 concentration showed significant inhibitory effect on growth and CO2 fixation rate. The amount of the saturated fatty acids was increased obviously along with the transition. Low CO2 concentration (0.03 %) was suitable for the accumulation of saturated fatty acids. Reducing the CO2 concentration could significantly decrease the polyunsaturated degree in fatty acids. Moreover, the carbon-concentrating mechanism-related gene expression revealed that most of them, especially CAH2, LCIB, and HLA3, had remarkable change after 1, 4, and 24 h of the transition, which suggests that Chlorella has similar carbon-concentrating mechanism with Chlamydomonas reinhardtii. The findings of the present study revealed that C. pyrenoidosa is an ideal candidate for mitigating CO2 and biodiesel production and is appropriate as a model for mechanism research of carbon sequestration.

  15. Impact of type 2 diabetes on the gene expression of bone-related factors at sites receiving dental implants.

    PubMed

    Conte, A; Ghiraldini, B; Casarin, R C; Casati, M Z; Pimentel, S P; Cirano, F R; Duarte, P M; Ribeiro, F V

    2015-10-01

    This study evaluated the influence of type 2 diabetes mellitus (T2DM) on the gene expression of bone-related factors in alveolar bone tissue from sites designated to receive dental implants. Bone biopsies were harvested from sites of planned implants for 19 systemically healthy patients and 35 patients with T2DM (17 with better-controlled T2DM (glycated haemoglobin (HbA1c) levels ≤8%) and 18 with poorly controlled T2DM (HbA1c levels >8%)). The mRNA levels of tumour necrosis factor alpha, transforming growth factor beta, receptor activator of the nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), runt-related transcription factor 2, alkaline phosphatase, bone sialoprotein (BSP), type I collagen (COL-I), and osteocalcin were evaluated by quantitative real-time polymerase chain reaction. T2DM up-regulates RANKL levels and the ratio of RANKL/OPG, whereas it down-regulates COL-I and BSP expression (P<0.05). Higher mRNA levels of RANKL/OPG were observed in the poorly controlled T2DM patients compared to those with better-controlled T2DM and systemically healthy patients (P<0.05). A lower amount of COL-I and BSP was detected in the biopsies from individuals with poorly controlled T2DM compared to systemically healthy patients (P<0.05). In conclusion, RANKL, RANKL/OPG, COL-I, and BSP are negatively affected in diabetics. Additionally, the patient's glycaemic status appears to modulate bone-related genes in a different manner.

  16. The Possible Impact of Obesity on Androgen, Progesterone and Estrogen Receptors (ERα and ERβ) Gene Expression in Breast Cancer Patients

    PubMed Central

    Esfahlan, R. Jahanban; Zarghami, N.; Esfahlan, A. Jahanban; Mollazadeh, M.; Nejati, K.; Nasiri, M.

    2011-01-01

    Background Obesity has been associated with increased mortality from hormone dependant cancers such as breast cancer which is the most prevalent cancer in women. The link between obesity and breast cancer can be attributed to excess estrogen produced through aromatization in adipose tissue. The role of steroid hormone receptors in breast cancer development is well studied but how obesity can affect the expression pattern of steroid hormones in patients with different grades of breast cancer was the aim of this study. Methods In this case-control study, 70 women with breast cancer participated with different grades of obesity (36 none obese, BMI < 25 kg/m2 and 34 obese, BMI ≥ 25 kg/m2). The mean age of participants was 44.53 ± 1.79 yr (21–70 yr). The serum level of estrogen, progesterone and androgen determined by ELISA. Following quantitative expression of steroid hormone receptors mRNA in tumor tissues evaluated by Real-time PCR. Patients with previous history of radiotherapy or chemotherapy were excluded. SPSS 16 was used for data analysis and P < 0.05 considered statistically significant. Results The difference in ERα, ERβ and PR mRNA level between normal and obese patients was significant (P < 0.001). In addition, the expression of AR mRNA was found to be higher than other steroid receptors. There was no significant relation between ERβ gene expression in two groups (P = 0.68). We observed a significant relationship between ERα and AR mRNA with tumor stage and tumor grade, respectively (P = 0.023, P = 0.015). Conclusion According to the obtained results, it is speculated that obesity could paly a significant role in estrogen receptors gene expression and also could affect progression and proliferation of breast cancer cells. PMID:22174584

  17. Long-Term Effects of Maternal Citrulline Supplementation on Renal Transcriptome Prevention of Nitric Oxide Depletion-Related Programmed Hypertension: The Impact of Gene-Nutrient Interactions

    PubMed Central

    Tain, You-Lin; Lee, Chien-Te; Huang, Li-Tung

    2014-01-01

    Maternal malnutrition can elicit gene expression leading to fetal programming. l-citrulline (CIT) can be converted to l-arginine to generate nitric oxide (NO). We examined whether maternal CIT supplementation can prevent NG-nitro-l-arginine-methyl ester (l-NAME, NO synthase inhibitor)-induced programmed hypertension and examined their effects on the renal transcriptome in male offspring using next generation RNA sequencing (RNA-Seq) technology. Pregnant Sprague-Dawley rats received l-NAME administration at 60mg/kg/day subcutaneously via osmotic minipump during pregnancy alone or with additional 0.25% l-citrulline solution in drinking water during the whole period of pregnancy and lactation. Male offspring were assigned to three groups: control, l-NAME, and l-NAME + CIT. l-NAME exposure induced hypertension in the 12-week-old offspring, which CIT therapy prevented. Identified differentially expressed genes in l-NAME and CIT-treated offspring kidneys, including Guca2b, Hmox1, Hba2, Hba-a2, Dusp1, and Serpine1 are related to regulation of blood pressure (BP) and oxidative stress. In conclusion, our data suggests that the beneficial effects of CIT supplementation are attributed to alterations in expression levels of genes related to BP control and oxidative stress. Our results suggest that early nutritional intervention by CIT has long-term impact on the renal transcriptome to prevent NO depletion-related programmed hypertension. However, our RNA-Seq results might be a secondary phenomenon. The implications of epigenetic regulation at an early stage of programming deserve further clarification. PMID:25517031

  18. Sexual Dimorphism and Aging in the Human Hyppocampus: Identification, Validation, and Impact of Differentially Expressed Genes by Factorial Microarray and Network Analysis

    PubMed Central

    Guebel, Daniel V.; Torres, Néstor V.

    2016-01-01

    Motivation: In the brain of elderly-healthy individuals, the effects of sexual dimorphism and those due to normal aging appear overlapped. Discrimination of these two dimensions would powerfully contribute to a better understanding of the etiology of some neurodegenerative diseases, such as “sporadic” Alzheimer. Methods: Following a system biology approach, top-down and bottom-up strategies were combined. First, public transcriptome data corresponding to the transition from adulthood to the aging stage in normal, human hippocampus were analyzed through an optimized microarray post-processing (Q-GDEMAR method) together with a proper experimental design (full factorial analysis). Second, the identified genes were placed in context by building compatible networks. The subsequent ontology analyses carried out on these networks clarify the main functionalities involved. Results: Noticeably we could identify large sets of genes according to three groups: those that exclusively depend on the sex, those that exclusively depend on the age, and those that depend on the particular combinations of sex and age (interaction). The genes identified were validated against three independent sources (a proteomic study of aging, a senescence database, and a mitochondrial genetic database). We arrived to several new inferences about the biological functions compromised during aging in two ways: by taking into account the sex-independent effects of aging, and considering the interaction between age and sex where pertinent. In particular, we discuss the impact of our findings on the functions of mitochondria, autophagy, mitophagia, and microRNAs. Conclusions: The evidence obtained herein supports the occurrence of significant neurobiological differences in the hippocampus, not only between adult and elderly individuals, but between old-healthy women and old-healthy men. Hence, to obtain realistic results in further analysis of the transition from the normal aging to incipient

  19. Temporal and spatial dynamics of nrf2-antioxidant response elements mediated gene targets in cortex and hippocampus after controlled cortical impact traumatic brain injury in mice.

    PubMed

    Miller, Darren M; Wang, Juan A; Buchanan, Ashley K; Hall, Edward D

    2014-07-01

    The pathophysiological importance of oxidative damage after traumatic brain injury (TBI) has been extensively demonstrated. The transcription factor nuclear factor erythoid related factor 2 (Nrf2) mediates antioxidant and cytoprotective genes by binding to antioxidant response elements (ARE) present in nuclear DNA. In this study, we characterized the time course of Nrf2-ARE-mediated expression in the cortex and hippocampus using a unilateral controlled cortical impact model of focal TBI. Ipsilateral hippocampal and cortical tissue was collected for Western-blot protein analysis (n=6/group) or quantitative reverse transcription-polymerase chain reaction for mRNA (n=3/group) at 3, 6, 12, 24, 48, and 72 h or 1 week post-injury. Multiple genes mediated by Nrf2-ARE were altered post-TBI. Specifically, Nrf2 mRNA increased significantly post-TBI at 48 and 72 h in the cortex and at 48 and 72 h and 1 week in the hippocampus with a coincident increase in glial fibrillary acidic protein mRNA, thereby implying this response is likely occurring in astrocytes. Presumably linked to Nrf2 activation, heme-oxygenase-1, nicotinamide adenine dinucleotide phosphate-quinone-oxidoreductase 1, glutathione reductase, and catalase mRNA overlap throughout the post-injury time course. This study demonstrates the first evidence of such changes during the first week after focal TBI and that increases in expression of some Nrf2-ARE-mediated cytoprotective genes are not observed until 24-48 h post-injury. Unfortunately, this does not precede, but rather coincides with, the occurrence of lipid peroxidative damage. This is the first known comparison between the time course of peroxidative damage and that of Nrf2-ARE activation during the first week post-TBI. These results underscore the necessity to discover pharmacological agents to accelerate and amplify Nrf2-ARE-mediated expression early post-TBI.

  20. Impacts of human activities on distribution of sulfate-reducing prokaryotes and antibiotic resistance genes in marine coastal sediments of Hong Kong.

    PubMed

    Guo, Feng; Li, Bing; Yang, Ying; Deng, Yu; Qiu, Jian-Wen; Li, Xiangdong; Leung, Kenneth My; Zhang, Tong

    2016-09-01

    Sulfate-reducing prokaryotes (SRPs) and antibiotic resistance genes (ARGs) in sediments could be biomarkers for evaluating the environmental impacts of human activities, although factors governing their distribution are not clear yet. By using metagenomic approach, this study investigated the distributions of SRPs and ARGs in marine sediments collected from 12 different coastal locations of Hong Kong, which exhibited different pollution levels and were classified into two groups based on sediment parameters. Our results showed that relative abundances of major SRP genera to total prokaryotes were consistently lower in the more seriously polluted sediments (P-value < 0.05 in 13 of 20 genera), indicating that the relative abundance of SRPs is a negatively correlated biomarker for evaluating human impacts. Moreover, a unimodel distribution pattern for SRPs along with the pollution gradient was observed. Although total ARGs were enriched in sediments from the polluted sites, distribution of single major ARG types could be explained neither by individual sediment parameters nor by corresponding concentration of antibiotics. It supports the hypothesis that the persistence of ARGs in sediments may not need the selection of antibiotics. In summary, our study provided important hints of the niche differentiation of SRPs and behavior of ARGs in marine coastal sediment.

  1. A multi-year assessment of the environmental impact of transgenic Eucalyptus trees harboring a bacterial choline oxidase gene on biomass, precinct vegetation and the microbial community.

    PubMed

    Oguchi, Taichi; Kashimura, Yuko; Mimura, Makiko; Yu, Xiang; Matsunaga, Etsuko; Nanto, Kazuya; Shimada, Teruhisa; Kikuchi, Akira; Watanabe, Kazuo N

    2014-10-01

    A 4-year field trial for the salt tolerant Eucalyptus globulus Labill. harboring the choline oxidase (codA) gene derived from the halobacterium Arthrobacter globiformis was conducted to assess the impact of transgenic versus non-transgenic trees on biomass production, the adjacent soil microbial communities and vegetation by monitoring growth parameters, seasonal changes in soil microbes and the allelopathic activity of leaves. Three independently-derived lines of transgenic E. globulus were compared with three independent non-transgenic lines including two elite clones. No significant differences in biomass production were detected between transgenic lines and non-transgenic controls derived from same seed bulk, while differences were seen compared to two elite clones. Significant differences in the number of soil microbes present were also detected at different sampling times but not between transgenic and non-transgenic lines. The allelopathic activity of leaves from both transgenic and non-transgenic lines also varied significantly with sampling time, but the allelopathic activity of leaves from transgenic lines did not differ significantly from those from non-transgenic lines. These results indicate that, for the observed variables, the impact on the environment of codA-transgenic E. globulus did not differ significantly from that of the non-transformed controls on this field trial.

  2. The impact of FcγRIIa and FcγRIIIa gene polymorphisms on responses to RCHOP chemotherapy in diffuse large B-cell lymphoma patients

    PubMed Central

    ROŽMAN, SAMO; NOVAKOVIĆ, SRDJAN; GRABNAR, IZTOK; CERKOVNIK, PETRA; NOVAKOVIĆ, BARBARA JEZERŠEK

    2016-01-01

    Rituximab is a monoclonal antibody routinely used in the treatment of B-cell non-Hodgkin lymphomas. It mediates antibody-dependent cellular cytotoxicity of B lymphocytes by bridging them with Fcγ receptors (FcγR) on effector cells. Several polymorphisms in the FcγR genes have been identified to influence rituximab binding to FcγR, thus altering its antitumor effect in indolent lymphomas. In the present study, the impact of FcγRIIa and FcγRIIIa polymorphisms on the survival and response to immunochemotherapy consisting of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone was evaluated in diffuse large B-cell lymphoma (DLBCL) patients. A total of 29 Slovenian DLBCL patients were studied. Genotyping was conducted for FcγRIIa-27, FcγRIIa-131, FcγRIIIa-48 and FcγRIIIa-158 polymorphisms. The median follow-up time was 29.7 months (range, 9.7–45.4 months). No significant impact of the genotypes was observed on the treatment response, progression-free or overall survival of DLBCL patients. There was a non-significant trend of an improved response to chemotherapy without additional irradiation in patients homozygous for Val at FCγIIIa-158 compared to Phe carriers. The findings of the present study indicate that FcγR polymorphisms have no influence on the survival of DLBCL patients. PMID:27123112

  3. Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting.

    PubMed

    Zhang, Junya; Chen, Meixue; Sui, Qianwen; Tong, Juan; Jiang, Chao; Lu, Xueting; Zhang, Yuxiu; Wei, Yuansong

    2016-03-15

    Composting is commonly used for the treatment and resource utilization of sewage sludge, and natural zeolite and nitrification inhibitors can be used for nitrogen conservation during sludge composting, while their impacts on ARGs control are still unclear. Therefore, three lab-scale composting reactors, A (the control), B (natural zeolite addition) and C (nitrification inhibitor addition of 3,4-dimethylpyrazole phosphate, DMPP), were established. The impacts of natural zeolite and DMPP on the levels of ARGs were investigated, as were the roles that heavy metals, mobile genetic elements (MGEs) and the bacterial community play in ARGs evolution. The results showed that total ARGs copies were enriched 2.04 and 1.95 times in reactors A and C, respectively, but were reduced by 1.5% in reactor B due to the reduction of conjugation and co-selection of heavy metals caused by natural zeolite. Although some ARGs (blaCTX-M, blaTEM, ermB, ereA and tetW) were reduced by 0.3-2 logs, others (ermF, sulI, sulII, tetG, tetX, mefA and aac(6')-Ib-cr) increased by 0.3-1.3 logs after sludge composting. Although the contributors for the ARGs profiles in different stages were quite different, the results of a partial redundancy analysis, Mantel test and Procrustes analysis showed that the bacterial community was the main contributor to the changes in ARGs compared to MGEs and heavy metals. Network analysis determined the potential host bacteria for various ARGs and further confirmed our results.

  4. Do dopaminergic gene polymorphisms affect mesolimbic reward activation of music listening response? Therapeutic impact on Reward Deficiency Syndrome (RDS).

    PubMed

    Blum, Kenneth; Chen, Thomas J H; Chen, Amanda L H; Madigan, Margaret; Downs, B William; Waite, Roger L; Braverman, Eric R; Kerner, Mallory; Bowirrat, Abdalla; Giordano, John; Henshaw, Harry; Gold, Mark S

    2010-03-01

    Using fMRI, Menon and Levitin [9] clearly found for the first time that listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the nucleus accumbens (NAc) and the ventral tegmental area (VTA), as well as the hypothalamus, and insula, which are thought to be involved in regulating autonomic and physiological responses to rewarding and emotional stimuli. Importantly, responses in the NAc and VTA were strongly correlated pointing to an association between dopamine release and NAc response to music. Listing to pleasant music induced a strong response and significant activation of the VTA-mediated interaction of the NAc with the hypothalamus, insula, and orbitofrontal cortex. Blum et al. [10] provided the first evidence that the dopamine D2 receptor gene (DRD2) Taq 1 A1 allele significantly associated with severe alcoholism whereby the author's suggested that they found the first "reward gene" located in the mesolimbic system. The enhanced functional and effective connectivity between brain regions mediating reward, autonomic, and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. However, little is known about why some people have a more or less powerful mesolimbic experience when they are listening to music. It is well-known that music may induce an endorphinergic response that is blocked by naloxone, a known opioid antagonist (Goldstein [19]). Opioid transmission in the NAc is associated with dopamine release in the VTA. Moreover, dopamine release in the VTA is linked to polymorphisms of the DRD2 gene and even attention-deficit hyperactivity disorder (ADHD), whereby carriers of the DRD2 A1 allele show a reduced NAc release of dopamine (DA). Thus it is conjectured that similar mechanisms in terms of adequate dopamine release and subsequent activation of reward circuitry by listening to music might also be

  5. A Study of the Impact of Death Receptor 4 (DR4) Gene Polymorphisms in Alzheimer’s Disease

    PubMed Central

    Edgünlü, Tuba Gökdoğan; Özge, Aynur; Yalın, Osman Özgür; Kul, Seval; Erdal, Mehmet Emin

    2013-01-01

    Background: Excessive apoptosis is believed to play a role in many degenerative and non-degenerative neurological diseases including Alzheimer’s disease (AD). Much recent data suggest that apoptotic mechanisms may represent the missing link between Aβ deposition and proteolysis of tau protein. However, there is emerging evidence that apoptotic mechanisms may play a role in Alzheimer’s Disease pathogenesis in the absence of overt apoptosis. TNF-related apoptosis inducing ligand receptor 1 (Death Receptor 4, DR4) might impair the apoptotic signal transduction and lead to dysregulation of the homeostasis between cell survival and cell death. Aims: The aim of our study was to further investigate the relationship between genetic variants of DR4 and Alzheimer’s Disease. Study Design: Case control study. Methods: Sixty-eight patients with AD were included in the study. The control group comprised 72 subjects without signs of neurodegenerative diseases, as evidenced by the examination.DNA was extracted from whole blood using the salting-out procedure. Genotypes were identified by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR-RFLP) products. Results: We observed significant differences in the genotypic distribution of the rs6557634 polymorphism in AD patients compared with controls (p<0.05); our data suggest that the GA genotype in rs6557634 could be protective against AD (p<0.05). However, there were no significant differences between AD patients and control groups in terms of the DR4 rs20575 polymorphism (p>0.05) and the DR4 rs20576 polymorphism (p>0.05). According to haplotype analysis of the DR4 gene for rs6557634, rs20575 and rs20576 polymorphisms, GCA and GCC haplotypes might be a risk factor for AD. Also, we have shown that ACA, GGC and GGA haplotypes might be protective factors against AD. Conclusion: The present results indicate for the first time the possible contribution of the DR4 gene rs6557634, rs20575, rs20576

  6. Impact of molecular weight in four-branched star vectors with narrow molecular weight distribution on gene delivery efficiency.

    PubMed

    Nemoto, Yasushi; Borovkov, Alexey; Zhou, Yue-Min; Takewa, Yoshiaki; Tatsumi, Eisuke; Nakayama, Yasuhide

    2009-12-01

    A series of star-shaped cationic polymers, termed star vectors (SVs), has been developed as effective nonviral gene delivery carriers. In this study, we separated SVs into several fractions having different molecular weights with very narrow molecular weight distributions in order to examine in detail the influence of the molecular weight of the SVs on the gene transfection efficiency. As a model compound for several types of SVs, 4-branched poly(N,N-dimethylaminopropyl acrylamide) having a molecular weight (M(n)) of approximately 35 kDa and polydispersity of 1.6 was prepared by iniferter-based radical polymerization. The SVs were separated using size-exclusion chromatography to obtain seven fractions having M(n) ranging from 27 kDa to 73 kDa with polydispersity ranging from 1.1 to 1.2. All the fractionated SVs have similar pH of 10.2-10.4 and were able to interact with and condense luciferase-encoding plasmid deoxyribonucleic acid (DNA) to yield SV/DNA polyplexes. A water-soluble tetrazolium-1 (WST) assay showed that all SVs had minimal cellular cytotoxicity under an N/P charge ratio of 10. The critical micellar concentration decreased with an increase in the M(n) of the fractionated SVs; however, the particle size of the polyplexes, exclusion activity of ethidium bromide, and zeta-potential of the polyplexes increased. An in vitro evaluation using COS-1 cells at an N/P ratio of 10 showed that transfection activity increased almost linearly with M(n). The highest transfection activity was obtained for SVs with the highest M(n) (73 kDa), which was over 7 times that for the SVs with the lowest M(n) (27 kDa), the nonfractionated original SV, or PEI standard. The transfection efficiency was more correlated with the amphiphilicity or hydrophobicity of the SVs and the surface potential and condensate density of the polyplexes than with the particle size.

  7. Impact of protein supplementation and exercise in preventing changes in gene expression profiling in woman muscles after long-term bedrest as revealed by microarray analysis.

    NASA Astrophysics Data System (ADS)

    Chopard, Angele; Lecunff, Martine; Danger, Richard; Teusan, Raluca; Jasmin, Bernard J.; Marini, Jean-Francois; Leger, Jean

    Long duration space flights have a dramatic impact on human physiology and under such a condition, skeletal muscles are known to be one of the most affected systems. A thorough understanding of the basic mechanisms leading to muscle impairment under microgravity, which causes significant loss of muscle mass as well as structural disorders, is necessary for the development of efficient space flight countermeasures. This study was conducted under the aegis of the European Space Agency (ESA), the National Aeronautics and Space Administration of the USA (NASA), the Canadian Space Agency (CSA), and the French "Centre National d'Etudes Spatiales" (CNES). It gave us the opportunity to investigate for the first time the effects of prolonged disuse (long-term bedrest, LTBR) on the transcriptome of different muscle types in healthy women (control, n=8), as well as the potential beneficial impact of protein supplementation (nutrition, n=8) and a combined resistance and aerobic exercise training program (exercise, n=8). Pre- (LTBR -8) and post- (LTBR +59) biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles from each subject. Skeletal muscle gene expression profiles were obtained using a custom made microarray containing 6681 muscle-relevant genes. 555 differentiallyexpressed and statistically-significant genes were identified in control group following 60 days of LTBR, including 348 specific for SOL, 83 specific for VL, and 124 common for the two types of muscle (p<0.05). After LTBR, both muscle types exhibited a consistent decrease in pathways involved in fatty acid oxidation, ATP synthesis, and oxidative phosphorylation (p<0.05). However, the postural SOL muscle exhibited a higher level of changes with mRNA encoding proteins involved in protein synthesis and activation of protein degradation (mainly ubiquitinproteasome components) (p<0.05). Major changes in muscle function, such as those involved in calcium signaling and muscle structure including

  8. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression.

    PubMed

    Sienski, Grzegorz; Dönertas, Derya; Brennecke, Julius

    2012-11-21

    Eukaryotic genomes are colonized by transposons whose uncontrolled activity causes genomic instability. The piRNA pathway silences transposons in animal gonads, yet how this is achieved molecularly remains controversial. Here, we show that the HMG protein Maelstrom is essential for Piwi-mediated silencing in Drosophila. Genome-wide assays revealed highly correlated changes in RNA polymerase II recruitment, nascent RNA output, and steady-state RNA levels of transposons upon loss of Piwi or Maelstrom. Our data demonstrate piRNA-mediated trans-silencing of hundreds of transposon copies at the transcriptional level. We show that Piwi is required to establish heterochromatic H3K9me3 marks on transposons and their genomic surroundings. In contrast, loss of Maelstrom affects transposon H3K9me3 patterns only mildly yet leads to increased heterochromatin spreading, suggesting that Maelstrom acts downstream of or in parallel to H3K9me3. Our work illustrates the widespread influence of transposons and the piRNA pathway on chromatin patterns and gene expression.

  9. Impact on schizotypal personality trait of a genome-wide supported psychosis variant of the ZNF804A gene.

    PubMed

    Yasuda, Yuka; Hashimoto, Ryota; Ohi, Kazutaka; Fukumoto, Motoyuki; Umeda-Yano, Satomi; Yamamori, Hidenaga; Okochi, Tomo; Iwase, Masao; Kazui, Hiroaki; Iwata, Nakao; Takeda, Masatoshi

    2011-05-20

    Schizophrenia is a complex disorder with a high heritability. Relatives with schizophrenia have an increased risk not only for schizophrenia but also for schizophrenia spectrum disorders, such as schizotypal personality disorder. A single nucleotide polymorphism (SNP), rs1344706, in the Zinc Finger Protein 804A (ZNF804A) gene, has been implicated in susceptibility to schizophrenia by several genome-wide association studies, follow-up association studies and meta-analyses. This SNP has been shown to affect neuronal connectivities and cognitive abilities. We investigated an association between the ZNF804A genotype of rs1344706 and schizotypal personality traits using the Schizotypal Personality Questionnaire (SPQ) in 176 healthy subjects. We also looked for specific associations among ZNF804A polymorphisms and the three factors of schizotypy-cognitive/perceptual, interpersonal and disorganization-assessed by the SPQ. The total score for the SPQ in carriers of the risk T allele was significantly higher than that in individuals with the G/G genotype (p=0.042). For the three factors derived from the SPQ, carriers with the risk T allele showed a higher disorganization factor (p=0.011), but there were no differences in the cognitive/perceptual or interpersonal factors between genotype groups (p>0.30). These results suggest that the genetic variation in ZNF804A might increase susceptibility not only for schizophrenia but also for schizotypal personality traits in healthy subjects.

  10. Warner-Lambert/Parke-Davis Award Lecture. Viral pathogenesis of atherosclerosis. Impact of molecular mimicry and viral genes.

    PubMed Central

    Hajjar, D. P.

    1991-01-01

    Human atherogenesis is a pleiotropic process with an undefined cause. Several pathologic factors have been linked to the disease process, including arterial injury or activation of the endothelium, which may injury or activation of the endothelium, which may initiate proatherosclerotic events in the vessel wall. Atherosclerotic lesions are characterized, in part, by the presence of activated immune cells, abnormal cell proliferation, and altered cholesterol metabolism. These activated immunocompetent cells in plaques produce vasoactive mediators that can alter homeostasis and may promote the arteriopathy. Both molecular and structural evidence is presented that herpesviruses, by way of induction of altered gene function and cellular cholesterol metabolism, coupled with their ability to activate coagulation and a monocyte receptor on the infected endothelium, are involved in major pathogenic events associated with atherosclerosis and thrombosis. Work from the author's laboratory, as well as from other research groups, have shown that avian and human herpesviruses act specifically to induce alterations to the surface and inner layers of the blood vessel wall that may predispose to atherosclerosis and its attendant clinical complications. Images Figure 3 Figure 6 PMID:1661071

  11. Gene-environment interaction from international cohorts: impact on development and evolution of occupational and environmental lung and airway disease.

    PubMed

    Gaffney, Adam; Christiani, David C

    2015-06-01

    Environmental and occupational pulmonary diseases impose a substantial burden of morbidity and mortality on the global population. However, it has been long observed that only some of those who are exposed to pulmonary toxicants go on to develop disease; increasingly, it is being recognized that genetic differences may underlie some of this person-to-person variability. Studies performed throughout the globe are demonstrating important gene-environment interactions for diseases as diverse as chronic beryllium disease, coal workers' pneumoconiosis, silicosis, asbestosis, byssinosis, occupational asthma, and pollution-associated asthma. These findings have, in many instances, elucidated the pathogenesis of these highly complex diseases. At the same time, however, translation of this research into clinical practice has, for good reasons, proceeded slowly. No genetic test has yet emerged with sufficiently robust operating characteristics to be clearly useful or practicable in an occupational or environmental setting. In addition, occupational genetic testing raises serious ethical and policy concerns. Therefore, the primary objective must remain ensuring that the workplace and the environment are safe for all.

  12. Impact of Sim1 gene dosage on the development of the paraventricular and supraoptic nuclei of the hypothalamus.

    PubMed

    Duplan, Sabine Michaëlle; Boucher, Francine; Alexandrov, Lubomir; Michaud, Jacques L

    2009-12-01

    The bHLH-PAS transcription SIM1 is required for the development of all neurons of the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. Mice with a loss of Sim1 die within a few days of birth, presumably because of the lack of a PVN and SON. In contrast, mice with a decrease of Sim1 survive, are hyperphagic and become obese. The mechanism by which Sim1 controls food intake remains unclear. Here we show that the development of specific PVN and SON cell types is sensitive to Sim1 gene dosage. Sim1 haploinsufficiency reduces the number of vasopressin (AVP)- and oxytocin-producing cells in the PVN by about 50 and 80%, respectively, but does not affect the development of Crh, Trh and Ss neurons. A decrease of AVP-producing cells increases the sensitivity of Sim1 heterozygous mice to chronic dehydration. Moreover, retrograde labelling showed a 70% reduction of PVN neurons projecting to the dorsal vagal complex, raising the possibility that a decrease of these axons contributes to the hyperphagia of Sim1(+/-) mice. Sim1 haploinsufficiency is thus associated with a decrease of several PVN/SON cell types, which has the potential of affecting distinct homeostatic processes.

  13. Early phenylpropanoid biosynthetic steps in Cannabis sativa: link between genes and metabolites.

    PubMed

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-06-28

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data.

  14. Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites

    PubMed Central

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-01-01

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data. PMID:23812081

  15. Temporal course of changes in gene expression suggests a cytokine-related mechanism for long-term hippocampal alteration after controlled cortical impact.

    PubMed

    Almeida-Suhett, Camila P; Li, Zheng; Marini, Ann M; Braga, Maria F M; Eiden, Lee E

    2014-04-01

    Mild traumatic brain injury (mTBI) often has long-term effects on cognitive function and social behavior. Altered gene expression may be predictive of long-term psychological effects of mTBI, even when acute clinical effects are minimal or transient. Controlled cortical impact (CCI), which causes concussive, but nonpenetrant, trauma to underlying (non-cortical) brain, resulting in persistent changes in hippocampal synaptic function, was used as a model of mTBI. The hippocampal transcriptomes of sham-operated or injured male rats at 1, 7, and 30 days postinjury were examined using microarrays comprising a comprehensive set of expressed genes, subsequently confirmed by quantitative reverse-transcriptase polymerase chain reaction. Transcripts encoding the chemokines, chemokine (C-C motif) ligand (Ccl)2 and Ccl7, inflammatory mediators lipocalin-2 (Lcn2) and tissue inhibitor of metalloproteinase 1 (Timp1), immunocyte activators C-C chemokine receptor type 5 (Ccr5) and Fc fragment of IgG, low affinity IIb, receptor (CD32) (Fcgr2b), the major histocompatibility complex II immune response-related genes, Cd74 and RT1 class II, locus Da (RT1-Da), the complement component, C3, and the transcription factor, Kruppel-like factor 4 (Klf4), were identified as early (Ccl2, Ccl7, Lcn2, and Timp1), intermediate (Ccr5, Fcgr2b, Cd74, RT1-Da, and C3), and late (Klf4) markers for bilateral hippocampal response to CCI. Ccl2 and Ccl7 transcripts were up-regulated within 24 h after CCI, and their elevation subsided within 1 week of injury. Other transcriptional changes occurred later and were more stable, some persisting for at least 1 month, suggesting that short-term inflammatory responses trigger longer-term alteration in the expression of genes previously associated with injury, aging, and neuronal function in the brain. These transcriptional responses to mTBI may underlie long-term changes in excitatory and inhibitory neuronal imbalance in hippocampus, leading to long

  16. Arsenic impacted the development, thyroid hormone and gene transcription of thyroid hormone receptors in bighead carp larvae (Hypophthalmichthys nobilis).

    PubMed

    Sun, Hong-Jie; Xiang, Ping; Tang, Ming-Hu; Sun, Li; Ma, Lena Q

    2016-02-13

    Arsenic (As) contamination in aquatic environment adversely impacts aquatic organisms. The present study assessed the toxicity of different As species and concentrations on bighead carp (Hypophthalmichthys nobilis) at early life stage, a major fish in Yangtze River, China. We measured the changes in embryo and larvae survival rate, larvae aberration, concentrations of thyroid hormone thyroxine, and transcription levels of thyroid hormone receptors (TRs) in fish larvae after exposing to arsenite (AsIII) or arsenate (AsV) at 0, 10, 30, 50, 100, or 150 μg L(-1) for 78 h. As concentrations ≤ 150 μg L(-1) had limited effect on embryo survival rate (6-8% inhibition), but larvae survival rate decreased to 53-57% and larvae aberration rate increased to 20-24% after As exposure. Moreover, thyroxine levels elevated by 23% and 50% at 100 μg L(-1) AsIII and 150 μg L(-1) AsV. Besides, AsIII and AsV decreased the transcriptional levels of TRα by 72 and 53%, and TRβ by 91 and 81% at 150 μg L(-1) As. Our data showed that AsIII and AsV had limited effect on carp embryo survival, but they were both toxic to carp larvae, with AsIII showing more effect than AsV. As concentrations <150μg L(-1) adversely influenced the development of bighead carp larvae and disturbed their thyroid hormone homeostasis.

  17. The ZbYME2 gene from the food spoilage yeast Zygosaccharomyces bailii confers not only YME2 functions in Saccharomyces cerevisiae, but also the capacity for catabolism of sorbate and benzoate, two major weak organic acid preservatives.

    PubMed

    Mollapour, M; Piper, P W

    2001-11-01

    A factor influencing resistances of food spoilage microbes to sorbate and benzoate is whether these organisms are able to catalyse the degradation of these preservative compounds. Several fungi metabolize benzoic acid by the beta-ketoadipate pathway, involving the hydroxylation of benzoate to 4-hydroxybenzoate. Saccharomyces cerevisiae is unable to use benzoate as a sole carbon source, apparently through the lack of benzoate-4-hydroxylase activity. However a single gene from the food spoilage yeast Zygosaccharomyces bailii, heterologously expressed in S. cerevisiae cells, can enable growth of the latter on benzoate, sorbate and phenylalanine. Although this ZbYME2 gene is essential for benzoate utilization by Z. bailii, its ZbYme2p product has little homology to other fungal benzoate-4-hydroxylases studied to date, all of which appear to be microsomal cytochrome P450s. Instead, ZbYme2p has strong similarity to the matrix domain of the S. cerevisiae mitochondrial protein Yme2p/Rna12p/Prp12p and, when expressed as a functional fusion to green fluorescent protein in S. cerevisiae growing on benzoate, is largely localized to mitochondria. The phenotypes associated with loss of the native Yme2p from S. cerevisiae, mostly apparent in yme1,yme2 cells, may relate to increased detrimental effects of endogenous oxidative stress. Heterologous expression of ZbYME2 complements these phenotypes, yet it also confers a potential for weak acid preservative catabolism that the native S. cerevisiae Yme2p is unable to provide. Benzoate utilization by S. cerevisiae expressing ZbYME2 requires a functional mitochondrial respiratory chain, but not the native Yme1p and Yme2p of the mitochondrion.

  18. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition

    PubMed Central

    Rivero, O; Selten, M M; Sich, S; Popp, S; Bacmeister, L; Amendola, E; Negwer, M; Schubert, D; Proft, F; Kiser, D; Schmitt, A G; Gross, C; Kolk, S M; Strekalova, T; van den Hove, D; Resink, T J; Nadif Kasri, N; Lesch, K P

    2015-01-01

    Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13−/− mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13−/− mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism. PMID:26460479

  19. Impact of CTLA4 genotype and other immune response gene polymorphisms on outcomes after single umbilical cord blood transplantation.

    PubMed

    Cunha, Renato; Zago, Marco A; Querol, Sergio; Volt, Fernanda; Ruggeri, Annalisa; Sanz, Guillermo; Pouthier, Fabienne; Kogler, Gesine; Vicario, José L; Bergamaschi, Paola; Saccardi, Riccardo; Lamas, Carmen H; Díaz-de-Heredia, Cristina; Michel, Gerard; Bittencourt, Henrique; Tavella, Marli; Panepucci, Rodrigo A; Fernandes, Francisco; Pavan, Julia; Gluckman, Eliane; Rocha, Vanderson

    2017-01-26

    We evaluated the impact of recipient and cord blood unit (CBU) genetic polymorphisms related to immune response on outcomes after unrelated cord blood transplantations (CBTs). Pretransplant DNA samples from 696 CBUs with malignant diseases were genotyped for NLRP1, NLRP2, NLRP3, TIRAP/Mal, IL10, REL, TNFRSF1B, and CTLA4. HLA compatibility was 6 of 6 in 10%, 5 of 6 in 39%, and ≥4 of 6 in 51% of transplants. Myeloablative conditioning was used in 80%, and in vivo T-cell depletion in 81%, of cases. The median number of total nucleated cells infused was 3.4 × 10(7)/kg. In multivariable analysis, patients receiving CBUs with GG-CTLA4 genotype had poorer neutrophil recovery (hazard ratio [HR], 1.33; P = .02), increased nonrelapse mortality (NRM) (HR, 1.50; P < .01), and inferior disease-free survival (HR, 1.41; P = .02). We performed the same analysis in a more homogeneous subset of cohort 1 (cohort 2, n = 305) of patients who received transplants for acute leukemia, all given a myeloablative conditioning regimen, and with available allele HLA typing (HLA-A, -B, -C, and -DRB1). In this more homogeneous but smaller cohort, we were able to demonstrate that GG-CTLA4-CBU was associated with increased NRM (HR, 1.85; P = .01). Use of GG-CTLA4-CBU was associated with higher mortality after CBT, which may be a useful criterion for CBU selection, when multiple CBUs are available.

  20. Impact of Lipoprotein Lipase Gene Polymorphism, S447X, on Postprandial Triacylglycerol and Glucose Response to Sequential Meal Ingestion

    PubMed Central

    Shatwan, Israa M.; Minihane, Anne-Marie; Williams, Christine M.; Lovegrove, Julie A.; Jackson, Kim G.; Vimaleswaran, Karani S.

    2016-01-01

    Lipoprotein lipase (LPL) is a key rate-limiting enzyme for the hydrolysis of triacylglycerol (TAG) in chylomicrons and very low-density lipoprotein. Given that postprandial assessment of lipoprotein metabolism may provide a more physiological perspective of disturbances in lipoprotein homeostasis compared to assessment in the fasting state, we have investigated the influence of two commonly studied LPL polymorphisms (rs320, HindIII; rs328, S447X) on postprandial lipaemia, in 261 participants using a standard sequential meal challenge. S447 homozygotes had lower fasting HDL-C (p = 0.015) and a trend for higher fasting TAG (p = 0.057) concentrations relative to the 447X allele carriers. In the postprandial state, there was an association of the S447X polymorphism with postprandial TAG and glucose, where S447 homozygotes had 12% higher TAG area under the curve (AUC) (p = 0.037), 8.4% higher glucose-AUC (p = 0.006) and 22% higher glucose-incremental area under the curve (IAUC) (p = 0.042). A significant gene–gender interaction was observed for fasting TAG (p = 0.004), TAG-AUC (Pinteraction = 0.004) and TAG-IAUC (Pinteraction = 0.016), where associations were only evident in men. In conclusion, our study provides novel findings of an effect of LPL S447X polymorphism on the postprandial glucose and gender-specific impact of the polymorphism on fasting and postprandial TAG concentrations in response to sequential meal challenge in healthy participants. PMID:26999119

  1. Impact of supplementary royal jelly on in vitro maturation of sheep oocytes: genes involved in apoptosis and embryonic development.

    PubMed

    Valiollahpoor Amiri, Mohammad; Deldar, Hamid; Ansari Pirsaraei, Zarbakht

    2016-01-01

    Optimizing culture conditions lead to the improvement of oocyte developmental competence and additives with anti-oxidative activity in culture media improved embryonic development. Royal jelly (RJ) is a product from the cephalic glands of nurse bees that has considerable health effects. The aim of this study was to investigate the effect of different concentrations of RJ on the maturation, cleavage, and blastocyst rates and gene expression in the oocyte and cumulus cells during in vitro maturation (IVM) of sheep oocyte. IVM of oocyte was performed in the presence of control (RJ0), 2.5 (RJ2.5), 5 (RJ5), 10 (RJ10), 20 (RJ20), and 40 (RJ40) mg/mL of RJ. Following the maturation period, parthenogenetic activation was carried out in two treatment groups (RJ0 and RJ10) and embryonic development was examined three and eight days thereafter. Moreover, the relative expression of BCL2 and BAX in oocyte as well as BCL2, BAX, HAS2, PTGS2, and STAR in cumulus cells were assessed. The results indicated that the addition of 10 mg/mL of RJ (90 ± 4.51%) to the maturation medium linearly increased the oocyte maturation rate compared to the control group (57 ± 2.42%), then it remained constant to the RJ40 (93 ± 3.10%) group. The higher RJ concentrations were associated with increased (p < 0.01) cleavage (53.3 ± 1.55% to 82.3 ± 2.82%) and blastocyst rate (15.5 ± 1.16% to 33.8 ± 3.09%) from the RJ0 to the RJ10 group. The relative mRNA expression of BCL2 and BAX in the oocyte was higher at RJ10. In cumulus cells, the expression of BCL2 was not affected, but that of BAX decreased, and expression of HAS2, PTGS2, and STAR were increased following the addition of RJ to the maturation media. In conclusion, the addition of 10 mg/mL of RJ to maturation medium improved blastocyst formation and decreased the apoptotic incidence in sheep cumulus cells and the oocyte during the in vitro development.

  2. Different Zinc Sources Have Diverse Impacts on Gene Expression of Zinc Absorption Related Transporters in Intestinal Porcine Epithelial Cells.

    PubMed

    Huang, Danping; Zhuo, Zhao; Fang, Shenglin; Yue, Min; Feng, Jie

    2016-10-01

    This study was conducted to investigate the effects of zinc sources on gene expression of zinc-related transporters in intestinal porcine epithelial cells (IPEC-1). IPEC-1 cells were treated with zinc glycine chelate (Zn-Gly), zinc methionine (Zn-Met), and zinc sulfate (ZnSO4), respectively, for measurement of cell viability. Then, the relative expression of zinc-related transporters in IPEC-1 in response to different zinc sources (50 μmol/L zinc) was measured. Zinc transporter SLC39A4 (ZIP4) expression was selectively silenced to assess the function of ZIP4 in inorganic and organic zinc absorption. The result showed that Zn-Gly and Zn-Met had lower cell damage compared with ZnSO4 on the same zinc levels. Different zinc sources improved the expression of metallothionein1 (MT1) and zinc transporter SLC30A1 (ZnT1) messenger RNA (mRNA) compared with the control (P < 0.05), while ZIP4 decreased (P < 0.05) in response to zinc addition. MT1 and ZnT1 mRNA expressions in Zn-Gly and Zn-Met were higher than those in ZnSO4, and ZIP4 mRNA expression in Zn-Met was the lowest among three kinds of zinc sources (P < 0.05). Expression of divalent metal transporter 1 (DMT1) mRNA in control was significantly higher (P < 0.05) than added different zinc sources groups. Silencing of ZIP4 significantly decreased MT1 mRNA expression in ZnSO4 and Zn-Gly treatments, reduced zinc absorption rate, and increased DMT1 mRNA expression in ZnSO4 compared with negative control. In summary, different zinc sources could improve zinc status on IPEC-1 cells and organic zinc had lower cell damage compared with ZnSO4. Moreover, Zn-Gly and Zn-Met are more efficient on zinc absorption according to the expression of various zinc-related transporters MT1, ZIP4, ZnT1, and DMT1. ZIP4 played a direct role in inorganic zinc uptake, and the absorption of zinc in Zn-Gly depends on ZIP4 partly, while absorption of Zn-Met is less dependent on ZIP4.

  3. Impact of Gene Patents and Licensing Practices on Access to Genetic Testing for Inherited Susceptibility to Cancer: Comparing Breast and Ovarian Cancers to Colon Cancers

    PubMed Central

    Cook-Deegan, Robert; DeRienzo, Christopher; Carbone, Julia; Chandrasekharan, Subhashini; Heaney, Christopher; Conover, Christopher

    2011-01-01

    Genetic testing for inherited susceptibility to breast and ovarian cancer can be compared to similar testing for colorectal cancer as a “natural experiment.” Inherited susceptibility accounts for a similar fraction of both cancers and genetic testing results guide decisions about options for prophylactic surgery in both sets of conditions. One major difference is that in the United States, Myriad Genetics is the sole provider of genetic testing, because it has sole control of relevant patents for BRCA1 and BRCA2 genes whereas genetic testing for familial colorectal cancer is available from multiple laboratories. Colorectal cancer-associated genes are also patented, but they have been nonexclusively licensed. Prices for BRCA1 and 2 testing do not reflect an obvious price premium attributable to exclusive patent rights compared to colorectal cancer testing, and indeed Myriad’s per unit costs are somewhat lower for BRCA1/2 testing than testing for colorectal cancer susceptibility. Myriad has not enforced patents against basic research, and negotiated a Memorandum of Understanding with the National Cancer Institute in 1999 for institutional BRCA testing in clinical research. The main impact of patenting and licensing in BRCA compared to colorectal cancer is the business model of genetic testing, with a sole provider for BRCA and multiple laboratories for colorectal cancer genetic testing. Myriad’s sole provider model has not worked in jurisdictions outside the United States, largely because of differences in breadth of patent protection, responses of government health services, and difficulty in patent enforcement. PMID:20393305

  4. Impacts of supplementing chemical fertilizers with organic fertilizers manufactured using pig manure as a substrate on the spread of tetracycline resistance genes in soil.

    PubMed

    Kang, Yijun; Hao, Yangyang; Shen, Min; Zhao, Qingxin; Li, Qing; Hu, Jian

    2016-08-01

    Using pig manure (PM) compost as a partial substitute for the conventional chemical fertilizers (CFs) is considered an effective approach in sustainable agricultural systems. This study aimed to analyze the impacts of supplementing CF with organic fertilizers (OFs) manufactured using pig manure as a substrate on the spread of tetracycline resistance genes (TRGs) as well as the community structures and diversities of tetracycline-resistant bacteria (TRB) in bulk and cucumber rhizosphere soils. In this study, three organic fertilizers manufactured using the PM as a substrate, namely fresh PM, common OF, and bio-organic fertilizer (BF), were supplemented with a CF. Composted manures combined with a CF did not significantly increase TRB compared with the CF alone, but PM treatment resulted in the long-term survival of TRB in soil. The use of CF+PM also increased the risk of spreading TRGs in soil. As beneficial microorganisms in BF may function as reservoirs for the spread of antibiotic resistance genes, care should be taken when adding them to the OF matrix. The PM treatment significantly altered the community structures and increased the species diversity of TRB, especially in the rhizosphere soil. BF treatment caused insignificant changes in the community structure of TRB compared with CF treatment, yet it reduced the species diversities of TRB in soil. Thus, the partial use of fresh PM as a substitute for CF could increase the risk of spread of TRGs. Apart from plant growth promotion, BF was a promising fertilizer owing to its potential ability to control TRGs.

  5. The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder(1).

    PubMed

    Mallas, E; Carletti, F; Chaddock, C A; Shergill, S; Woolley, J; Picchioni, M M; McDonald, C; Toulopoulou, T; Kravariti, E; Kalidindi, S; Bramon, E; Murray, R; Barker, G J; Prata, D P

    2016-10-27

    Genome-wide studies have identified allele A (adenine) of single nucleotide polymorphism (SNP) rs1006737 of the calcium-channel CACNA1C gene as a risk factor for both schizophrenia (SZ) and bipolar disorder (BD) as well as allele A for rs1344706 in the ZNF804A gene. These illnesses have also been associated with white matter abnormalities, reflected by reductions in fractional anisotropy (FA), measured using diffusion tensor imaging (DTI). We assessed the impact of the CACNA1C psychosis risk variant on FA in SZ, BD and health. 230 individuals (with existing ZNF804A rs1344706 genotype data) were genotyped for CACNA1C rs1006737 and underwent DTI. FA data was analysed with tract-based spatial statistics and threshold-free cluster enhancement significance correction (P < 0.05) to detect effects of CACNA1C genotype on FA, and its potential interaction with ZNF804A genotype and with diagnosis, on FA. There was no significant main effect of the CACNA1C genotype on FA, nor diagnosis by genotype(s) interactions. Nevertheless, when inspecting SZ in particular, risk allele carriers had significantly lower FA than the protective genotype individuals, in portions of the left middle occipital and parahippocampal gyri, right cerebellum, left optic radiation and left inferior and superior temporal gyri. Our data suggests a minor involvement of CACNA1C rs1006737 in psychosis via conferring susceptibility to white matter microstructural abnormalities in SZ. Put in perspective, ZNF804A rs1344706, not only had a significant main effect, but its SZ-specific effects were two orders of magnitude more widespread than that of CACNA1C rs1006737.

  6. Diversity of Dissimilatory Sulfite Reductase Genes (dsrAB) in a Salt Marsh Impacted by Long-Term Acid Mine Drainage▿ †

    PubMed Central

    Moreau, John W.; Zierenberg, Robert A.; Banfield, Jillian F.

    2010-01-01

    Sulfate-reducing bacteria (SRB) play a major role in the coupled biogeochemical cycling of sulfur and chalcophilic metal(loid)s. By implication, they can exert a strong influence on the speciation and mobility of multiple metal(loid) contaminants. In this study, we combined DsrAB gene sequencing and sulfur isotopic profiling to identify the phylogeny and distribution of SRB and to assess their metabolic activity in salt marsh sediments exposed to acid mine drainage (AMD) for over 100 years. Recovered dsrAB sequences from three sites sampled along an AMD flow path indicated the dominance of a single Desulfovibrio species. Other major sequence clades were related most closely to Desulfosarcina, Desulfococcus, Desulfobulbus, and Desulfosporosinus species. The presence of metal sulfides with low δ34S values relative to δ34S values of pore water sulfate showed that sediment SRB populations were actively reducing sulfate under ambient conditions (pH of ∼2), although possibly within less acidic microenvironments. Interestingly, δ34S values for pore water sulfate were lower than those for sulfate delivered during tidal inundation of marsh sediments. 16S rRNA gene sequence data from sediments and sulfur isotope data confirmed that sulfur-oxidizing bacteria drove the reoxidation of biogenic sulfide coupled to oxygen or nitrate reduction over a timescale of hours. Collectively, these findings imply a highly dynamic microbially mediated cycling of sulfate and sulfide, and thus the speciation and mobility of chalcophilic contaminant metal(loid)s, in AMD-impacted marsh sediments. PMID:20472728

  7. Unraveling new genes associated with seed development and metabolism in Bixa orellana L. by expressed sequence tag (EST) analysis.

    PubMed

    Soares, Virgínia L F; Rodrigues, Simone M; de Oliveira, Tahise M; de Queiroz, Talisson O; Lima, Lívia S; Hora-Júnior, Braz T; Gramacho, Karina P; Micheli, Fabienne; Cascardo, Júlio C M; Otoni, Wagner C; Gesteira, Abelmon S; Costa, Marcio G C

    2011-02-01

    The tropical tree Bixa orellana L. produces a range of secondary metabolites which biochemical and molecular biosynthesis basis are not well understood. In this work we have characterized a set of ESTs from a non-normalized cDNA library of B. orellana seeds to obtain information about the main developmental and metabolic processes taking place in developing seeds and their associated genes. After sequencing a set of randomly selected clones, most of the sequences were assigned with putative functions based on similarity, GO annotations and protein domains. The most abundant transcripts encoded proteins associated with cell wall (prolyl 4-hydroxylase), fatty acid (acyl carrier protein), and hormone/flavonoid (2OG-Fe oxygenase) synthesis, germination (MADS FLC-like protein) and embryo development (AP2/ERF transcription factor) regulation, photosynthesis (chlorophyll a-b binding protein), cell elongation (MAP65-1a), and stress responses (metallothionein- and thaumatin-like proteins). Enzymes were assigned to 16 different metabolic pathways related to both primary and secondary metabolisms. Characterization of two candidate genes of the bixin biosynthetic pathway, BoCCD and BoOMT, showed that they belong, respectively, to the carotenoid-cleavage dioxygenase 4 (CCD4) and caffeic acid O-methyltransferase (COMT) families, and are up-regulated during seed development. It indicates their involvement in the synthesis of this commercially important carotenoid pigment in seeds of B. orellana. Most of the genes identified here are the first representatives of their gene families in B. orellana.

  8. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis

    PubMed Central

    Pandey, Shiv S.; Singh, Sucheta; Babu, C. S. Vivek; Shanker, Karuna; Srivastava, N. K.; Shukla, Ashutosh K.; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229–403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  9. Impact of IL28B and OAS gene family polymorphisms on interferon treatment response in Caucasian children chronically infected with hepatitis B virus

    PubMed Central

    Domagalski, Krzysztof; Pawłowska, Małgorzata; Zaleśna, Agnieszka; Pilarczyk, Małgorzata; Rajewski, Paweł; Halota, Waldemar; Tretyn, Andrzej

    2016-01-01

    AIM To investigate the impact of IL28B and OAS gene polymorphisms on interferon treatment responses in children with chronic hepatitis B. METHODS We enrolled 52 children (between the ages of 4 and 18) with hepatitis B e antigen-negative chronic hepatitis B (CHB), who were treated with pegylated interferon alfa for 48 wk. Single nucleotide polymorphisms in the OAS1 (rs1131476), OAS2 (rs1293747), OAS3 (rs2072136), OASL (rs10849829) and IL28B (rs12979860, rs12980275 and rs8099917) genes were studied to examine their associations with responses to IFN treatment in paediatric patients. We adopted two criteria for the therapeutic response, achieving an hepatitis B virus (HBV) DNA level < 2000 IU/mL and normalization of ALT activity (< 40 IU/L). To perform the analyses, we compared the patients in terms of achieving a partial response (PR) and a complete response (CR) upon measurement at the 24-wk post-treatment follow-up. RESULTS The PR and CR rates were 80.8% and 42.3%, respectively. Factors such as age, gender and liver histology had no impact on the type of response (partial or complete). A statistically significant relationship between higher baseline HBV DNA and ALT activity levels and lower rates of PR and CR was shown (P < 0.05). The allele association analysis revealed that only the IL-28B rs12979860 (C vs T) and IL28B rs12980275 (A vs G) markers significantly affected the achievement of PR (P = 0.021, OR = 3.3, 95%CI: 1.2-9.2 and P = 0.014, OR = 3.7, 95%CI: 1.3-10.1, respectively). However, in the genotype analysis, only IL-28B rs12980275 was significantly associated with PR (AA vs AG-GG, P = 0.014, OR = 10.9, 95%CI: 1.3-93.9). The association analysis for CR showed that the TT genotype of IL28B rs12979860 was present only in the no-CR group (P = 0.033) and the AA genotype of OASL rs10849829 was significantly more frequent in the no-CR group (P = 0.044, OR = 0.26, 95%CI: 0.07-0.88). The haplotype analysis revealed significant associations between PR and CR and

  10. Impact of Food Components on in vitro Calcitonin Gene-Related Peptide Secretion-A Potential Mechanism for Dietary Influence on Migraine.

    PubMed

    Slavin, Margaret; Bourguignon, Julia; Jackson, Kyle; Orciga, Michael-Angelo

    2016-07-01

    Calcitonin gene-related peptide (CGRP) is a pivotal messenger in the inflammatory process in migraine. Limited evidence indicates that diet impacts circulating levels of CGRP, suggesting that certain elements in the diet may influence migraine outcomes. Interruption of calcium signaling, a mechanism which can trigger CGRP release, has been suggested as one potential route by which exogenous food substances may impact CGRP secretion. The objective of this study was to investigate the effects of foods and a dietary supplement on two migraine-related mechanisms in vitro: CGRP secretion from neuroendocrine CA77 cells, and calcium uptake by differentiated PC12 cells. Ginger and grape pomace extracts were selected for their anecdotal connections to reducing or promoting migraine. S-petasin was selected as a suspected active constituent of butterbur extract, the migraine prophylactic dietary supplement. Results showed a statistically significant decrease in stimulated CGRP secretion from CA77 cells following treatment with ginger (0.2 mg dry ginger equivalent/mL) and two doses of grape pomace (0.25 and 1.0 mg dry pomace equivalent/mL) extracts. Relative to vehicle control, CGRP secretion decreased by 22%, 43%, and 87%, respectively. S-petasin at 1.0 μM also decreased CGRP secretion by 24%. Meanwhile, S-petasin and ginger extract showed inhibition of calcium influx, whereas grape pomace had no effect on calcium. These results suggest that grape pomace and ginger extracts, and S-petasin may have anti-inflammatory propensity by preventing CGRP release in migraine, although potentially by different mechanisms, which future studies may elucidate further.

  11. The Impact of tagSNPs in CXCL16 Gene on the Risk of Myocardial Infarction in a Chinese Han Population

    PubMed Central

    Xu, Shun; Cheng, Jie; Cai, Meng-yun; Liang, Li-li; Cen, Jin-ming; Yang, Xi-li; Chen, Can

    2017-01-01

    CXCL16 has been demonstrated to be involved in the development of atherosclerosis and myocardial infarction (MI). Nonetheless, the role of the CXCL16 polymorphisms on MI pathogenesis is far to be elucidated. We herein genotyped four tagSNPs in CXCL16 gene (rs2304973, rs1050998, rs3744700, and rs8123) in 275 MI patients and 670 control subjects, aimed at probing into the impact of CXCL16 polymorphisms on individual susceptibility to MI. Multivariate logistic regression analysis showed that C allele (OR = 1.31, 95% CI = 1.03–1.66, and P = 0.029) and CC genotype (OR = 1.84, 95% CI = 1.11–3.06, and P = 0.018) of rs1050998 were associated with increased MI risk; and C allele (OR = 0.77, 95% CI = 0.60–0.98, and P = 0.036) of rs8123 exhibited decreased MI risk, while the other two tagSNPs had no significant effect. Consistently, the haplotype rs2304973T-rs1050998C-rs3744700G-rs8123A containing the C allele of rs1050998 and A allele of rs8123 exhibited elevated MI risk (OR = 1.41, 95% CI = 1.02–1.96, and P = 0.037). Further stratified analysis unveiled a more apparent association with MI risk among younger subjects (≤60 years old). Taken together, our results provided the first evidence that CXCL16 polymorphisms significantly impacted MI risk in Chinese subjects. PMID:28286356

  12. Impact of Food Components on in vitro Calcitonin Gene-Related Peptide Secretion—A Potential Mechanism for Dietary Influence on Migraine

    PubMed Central

    Slavin, Margaret; Bourguignon, Julia; Jackson, Kyle; Orciga, Michael-Angelo

    2016-01-01

    Calcitonin gene-related peptide (CGRP) is a pivotal messenger in the inflammatory process in migraine. Limited evidence indicates that diet impacts circulating levels of CGRP, suggesting that certain elements in the diet may influence migraine outcomes. Interruption of calcium signaling, a mechanism which can trigger CGRP release, has been suggested as one potential route by which exogenous food substances may impact CGRP secretion. The objective of this study was to investigate the effects of foods and a dietary supplement on two migraine-related mechanisms in vitro: CGRP secretion from neuroendocrine CA77 cells, and calcium uptake by differentiated PC12 cells. Ginger and grape pomace extracts were selected for their anecdotal connections to reducing or promoting migraine. S-petasin was selected as a suspected active constituent of butterbur extract, the migraine prophylactic dietary supplement. Results showed a statistically significant decrease in stimulated CGRP secretion from CA77 cells following treatment with ginger (0.2 mg dry ginger equivalent/mL) and two doses of grape pomace (0.25 and 1.0 mg dry pomace equivalent/mL) extracts. Relative to vehicle control, CGRP secretion decreased by 22%, 43%, and 87%, respectively. S-petasin at 1.0 μM also decreased CGRP secretion by 24%. Meanwhile, S-petasin and ginger extract showed inhibition of calcium influx, whereas grape pomace had no effect on calcium. These results suggest that grape pomace and ginger extracts, and S-petasin may have anti-inflammatory propensity by preventing CGRP release in migraine, although potentially by different mechanisms, which future studies may elucidate further. PMID:27376323

  13. The Drosophila Su(var)3–7 Gene Is Required for Oogenesis and Female Fertility, Genetically Interacts with piwi and aubergine, but Impacts Only Weakly Transposon Silencing

    PubMed Central

    Begeot, Flora; Koryakov, Dmitry E.; Todeschini, Anne-Laure; Ronsseray, Stéphane; Vieira, Cristina; Spierer, Pierre; Delattre, Marion

    2014-01-01

    Heterochromatin is made of repetitive sequences, mainly transposable elements (TEs), the regulation of which is critical for genome stability. We have analyzed the role of the heterochromatin-associated Su(var)3–7 protein in Drosophila ovaries. We present evidences that Su(var)3–7 is required for correct oogenesis and female fertility. It accumulates in heterochromatic domains of ovarian germline and somatic cells nuclei, where it co-localizes with HP1. Homozygous mutant females display ovaries with frequent degenerating egg-chambers. Absence of Su(var)3–7 in embryos leads to defects in meiosis and first mitotic divisions due to chromatin fragmentation or chromosome loss, showing that Su(var)3–7 is required for genome integrity. Females homozygous for Su(var)3–7 mutations strongly impair repression of P-transposable element induced gonadal dysgenesis but have minor effects on other TEs. Su(var)3–7 mutations reduce piRNA cluster transcription and slightly impact ovarian piRNA production. However, this modest piRNA reduction does not correlate with transposon de-silencing, suggesting that the moderate effect of Su(var)3–7 on some TE repression is not linked to piRNA production. Strikingly, Su(var)3–7 genetically interacts with the piwi and aubergine genes, key components of the piRNA pathway, by strongly impacting female fertility without impairing transposon silencing. These results lead us to propose that the interaction between Su(var)3–7 and piwi or aubergine controls important developmental processes independently of transposon silencing. PMID:24820312

  14. The Drosophila Su(var)3-7 gene is required for oogenesis and female fertility, genetically interacts with piwi and aubergine, but impacts only weakly transposon silencing.

    PubMed

    Basquin, Denis; Spierer, Anne; Begeot, Flora; Koryakov, Dmitry E; Todeschini, Anne-Laure; Ronsseray, Stéphane; Vieira, Cristina; Spierer, Pierre; Delattre, Marion

    2014-01-01

    Heterochromatin is made of repetitive sequences, mainly transposable elements (TEs), the regulation of which is critical for genome stability. We have analyzed the role of the heterochromatin-associated Su(var)3-7 protein in Drosophila ovaries. We present evidences that Su(var)3-7 is required for correct oogenesis and female fertility. It accumulates in heterochromatic domains of ovarian germline and somatic cells nuclei, where it co-localizes with HP1. Homozygous mutant females display ovaries with frequent degenerating egg-chambers. Absence of Su(var)3-7 in embryos leads to defects in meiosis and first mitotic divisions due to chromatin fragmentation or chromosome loss, showing that Su(var)3-7 is required for genome integrity. Females homozygous for Su(var)3-7 mutations strongly impair repression of P-transposable element induced gonadal dysgenesis but have minor effects on other TEs. Su(var)3-7 mutations reduce piRNA cluster transcription and slightly impact ovarian piRNA production. However, this modest piRNA reduction does not correlate with transposon de-silencing, suggesting that the moderate effect of Su(var)3-7 on some TE repression is not linked to piRNA production. Strikingly, Su(var)3-7 genetically interacts with the piwi and aubergine genes, key components of the piRNA pathway, by strongly impacting female fertility without impairing transposon silencing. These results lead us to propose that the interaction between Su(var)3-7 and piwi or aubergine controls important developmental processes independently of transposon silencing.

  15. Impact of loss of BH3-only proteins on the development and treatment of MLL-fusion gene-driven AML in mice

    PubMed Central

    Bilardi, Rebecca A; Anstee, Natasha S; Glaser, Stefan P; Robati, Mikara; Vandenberg, Cassandra J; Cory, Suzanne

    2016-01-01

    Inhibition of the apoptosis pathway controlled by opposing members of the Bcl-2 protein family plays a central role in cancer development and resistance to therapy. To investigate how pro-apoptotic Bcl-2 homology domain 3 (BH3)-only proteins impact on acute myeloid leukemia (AML), we generated mixed lineage leukemia (MLL)-AF9 and MLL-ENL AMLs from BH3-only gene knockout mice. Disease development was not accelerated by loss of Bim, Puma, Noxa, Bmf, or combinations thereof; hence these BH3-only proteins are apparently ineffectual as tumor suppressors in this model. We tested the sensitivity of MLL-AF9 AMLs of each genotype in vitro to standard chemotherapeutic drugs and to the proteasome inhibitor bortezomib, with or without the BH3 mimetic ABT-737. Loss of Puma and/or Noxa increased resistance to cytarabine, daunorubicin and etoposide, while loss of Bim protected against cytarabine and loss of Bmf had no impact. ABT-737 increased sensitivity to the genotoxic drugs but was not dependent on any BH3-only protein tested. The AML lines were very sensitive to bortezomib and loss of Noxa conveyed significant resistance. In vivo, several MLL-AF9 AMLs responded well to daunorubicin and this response was highly dependent on Puma and Noxa but not Bim. Combination therapy with ABT-737 provided little added benefit at the daunorubicin dose trialed. Bortezomib also extended survival of AML-bearing mice, albeit less than daunorubicin. In summary, our genetic studies reveal the importance of Puma and Noxa for the action of genotoxics currently used to treat MLL-driven AML and suggest that, while addition of ABT-737-like BH3 mimetics might enhance their efficacy, new Noxa-like BH3 mimetics targeting Mcl-1 might have greater potential. PMID:27584789

  16. Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma.

    PubMed

    Jardin, Fabrice; Pujals, Anais; Pelletier, Laura; Bohers, Elodie; Camus, Vincent; Mareschal, Sylvain; Dubois, Sydney; Sola, Brigitte; Ochmann, Marlène; Lemonnier, François; Viailly, Pierre-Julien; Bertrand, Philippe; Maingonnat, Catherine; Traverse-Glehen, Alexandra; Gaulard, Philippe; Damotte, Diane; Delarue, Richard; Haioun, Corinne; Argueta, Christian; Landesman, Yosef; Salles, Gilles; Jais, Jean-Philippe; Figeac, Martin; Copie-Bergman, Christiane; Molina, Thierry Jo; Picquenot, Jean Michel; Cornic, Marie; Fest, Thierry; Milpied, Noel; Lemasle, Emilie; Stamatoullas, Aspasia; Moeller, Peter; Dyer, Martin J S; Sundstrom, Christer; Bastard, Christian; Tilly, Hervé; Leroy, Karen

    2016-09-01

    Primary mediastinal B-cell lymphoma (PMBL) is an entity of B-cell lymphoma distinct from the other molecular subtypes of diffuse large B-cell lymphoma (DLBCL). We investigated the prevalence, specificity, and clinical relevance of mutations of XPO1, which encodes a member of the karyopherin-β nuclear transporters, in a large cohort of PMBL. PMBL cases defined histologically or by gene expression profiling (GEP) were sequenced and the XPO1 mutational status was correlated to genetic and clinical characteristics. The XPO1 mutational status was also assessed in DLBCL, Hodgkin lymphoma (HL) and mediastinal gray-zone lymphoma (MGZL).The biological impact of the mutation on Selective Inhibitor of Nuclear Export (SINE) compounds (KPT-185/330) sensitivity was investigated in vitro. XPO1 mutations were present in 28/117 (24%) PMBL cases and in 5/19 (26%) HL cases but absent/rare in MGZL (0/20) or DLBCL (3/197). A higher prevalence (50%) of the recurrent codon 571 variant (p.E571K) was observed in GEP-defined PMBL and was associated with shorter PFS. Age, International Prognostic Index and bulky mass were similar in XPO1 mutant and wild-type cases. KPT-185 induced a dose-dependent decrease in cell proliferation and increased cell-death in PMBL cell lines harboring wild type or XPO1 E571K mutant alleles. Experiments in transfected U2OS cells further confirmed that the XPO1 E571K mutation does not have a drastic impact on KPT-330 binding. To conclude the XPO1 E571K mutation represents a genetic hallmark of the PMBL subtype and serves as a new relevant PMBL biomarker. SINE compounds appear active for both mutated and wild-type protein. Am. J. Hematol. 91:923-930, 2016. © 2016 Wiley Periodicals, Inc.

  17. An apple rootstock overexpressing a peach CBF gene alters growth and flowering in the scion but does not impact cold hardiness or dormancy

    PubMed Central

    Artlip, Timothy S; Wisniewski, Michael E; Arora, Rajeev; Norelli, John L

    2016-01-01

    The C-repeat binding factor (CBF) transcription factor is involved in responses to low temperature and water deficit in many plant species. Overexpression of CBF genes leads to enhanced freezing tolerance and growth inhibition in many species. The overexpression of a peach CBF (PpCBF1) gene in a transgenic line of own-rooted apple (Malus×domestica) M.26 rootstock (T166) trees was previously reported to have additional effects on the onset of dormancy and time of spring budbreak. In the current study, the commercial apple cultivar ‘Royal Gala’ (RG) was grafted onto either non-transgenic M.26 rootstocks (RG/M.26) or transgenic M.26 (T166) rootstocks (RG/T166) and field grown for 3 years. No PpCBF1 transcript was detected in the phloem or cambium of RG scions grafted on T166 rootstocks indicating that no graft transmission of transgene mRNA had occurred. In contrast to own-rooted T166 trees, no impact of PpCBF1 overexpression in T166 rootstocks was observed on the onset of dormancy, budbreak or non-acclimated leaf-cold hardiness in RG/T166 trees. Growth, however, as measured by stem caliper, current-year shoot extension and overall height, was reduced in RG/T166 trees compared with RG/M.26 trees. Although flowering was evident in both RG/T166 and RG/M.26 trees in the second season, the number of trees in flower, the number of shoots bearing flowers, and the number of flower clusters per shoot was significantly higher in RG/M.26 trees than RG/T166 trees in both the second and third year after planting. Elevated levels of RGL (DELLA) gene expression were observed in RG/T166 trees and T166 trees, which may play a role in the reduced growth observed in these tree types. A model is presented indicating how CBF overexpression in a rootstock might influence juvenility and flower abundance in a grafted scion. PMID:26981253

  18. Genes and Gene Therapy

    MedlinePlus

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  19. 14-bp ins/del polymorphism and +3142C>G SNP of the HLA-G gene have a significant impact on acute rejection after liver transplantation.

    PubMed

    Thude, Hansjörg; Janssen, Maike; Sterneck, Martina; Nashan, Björn; Koch, Martina

    2016-12-01

    Expression of human leukocyte antigen G (HLA-G) has been associated with increased graft survival and decreased rejection episodes. It has been described that the HLA-G 14-base pair (bp) insertion/deletion (ins/del) (rs66554220) and +3142C>G (rs1063320) gene polymorphisms modify the expression level of HLA-G. The aim of the study was to investigate whether these HLA-G polymorphisms have an impact on acute rejection after liver transplantation. In total, 146 liver transplant recipients (57 with acute rejection and 89 without acute rejection) and 99 corresponding liver donors were genotyped for both polymorphisms. In liver transplantation the 14-bp ins/ins and the +3142GG genotypes are more frequent in recipients without rejection compared to recipients with rejection (3.5% vs. 31.5%, p=<0.001; 12.3% vs. 41.6%, p=<0.001) demonstrating an association with protection from acute rejection. In contrast, in liver donors we could not reveal an association. We conclude that 14-bp ins/ins and +3142GG genotypes of HLA-G in liver transplant recipients are of importance for prediction of acute rejection after liver transplantation. Thus genotyping of liver recipients for both polymorphisms might be useful to stratify liver transplant recipients according to the risk of acute liver transplant rejection.

  20. A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin

    PubMed Central

    Parsons, Juliana; Altmann, Friedrich; Graf, Manuela; Stadlmann, Johannes; Reski, Ralf; Decker, Eva L.

    2013-01-01

    Recombinant production of pharmaceutical proteins is crucial, not only for personalized medicine. While most biopharmaceuticals are currently produced in mammalian cell culture, plant-made pharmaceuticals gain momentum. Post-translational modifications in plants are similar to those in humans, however, existing differences may affect quality, safety and efficacy of the products. A frequent modification in higher eukaryotes is prolyl-4-hydroxylase (P4H)-catalysed prolyl-hydroxylation. P4H sequence recognition sites on target proteins differ between humans and plants leading to non-human posttranslational modifications of recombinant human proteins produced in plants. The resulting hydroxyprolines display the anchor for plant-specific O-glycosylation, which bears immunogenic potential for patients. Here we describe the identification of a plant gene responsible for non-human prolyl-hydroxylation of human erythropoietin (hEPO) recombinantly produced in plant (moss) bioreactors. Targeted ablation of this gene abolished undesired prolyl-hydroxylation of hEPO and thus paves the way for plant-made pharmaceuticals humanized via glyco-engineering in moss bioreactors. PMID:24145658

  1. Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum).

    PubMed

    Li, Xiaohua; Park, Nam Il; Xu, Hui; Woo, Sun-Hee; Park, Cheol Ho; Park, Sang Un

    2010-12-08

    Common buckwheat (Fagopyrum esculentum) is a short-season grain crop that is a source of rutin and other phenolic compounds. In this study, we isolated the cDNAs of 11 F. esculentum enzymes in the flavonoid biosynthesis pathway, namely, phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL) 1 and 2, chalcone synthase (CHS), chalcone isomerase (CHI), flavone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), flavonol synthase (FLS) 1 and 2, and anthocyanidin synthase (ANS). Quantitative real-time polymerase chain reaction analysis showed that these genes were most highly expressed in the stems and roots. However, high performance liquid chromatography analysis indicated that their flavonoid products, such as rutin and catechin, accumulated in the flowers and leaves. These results suggested that flavonoids may be transported within F. esculentum. In addition, light and dark growth conditions affected the expression levels of the biosynthesis genes and accumulation of phenolic compounds in F. esculentum sprouts.

  2. Chemical changes and overexpressed genes in sweet basil (Ocimum basilicum L.) upon methyl jasmonate treatment.

    PubMed

    Li, Zhigang; Wang, Xi; Chen, Feng; Kim, Hyun-Jin

    2007-02-07

    The effects of methyl jasmonate (MeJA) on the production of bioactive chemicals and gene expression in sweet basil were investigated. The total amount of phenolic compounds significantly increased in sweet basil after 0.5 mM MeJA treatment. Among the phenolic compounds, rosmarinic acid (RA) and caffeic acid (CA) were identified, and their amounts increased by 55 and 300%, respectively. The total amount of terpenoids also significantly increased after the same treatment. Particularly, eugenol and linalool increased by 56 and 43%, respectively. To better understand the signaling effect of MeJA on sweet basil, suppression subtractive hybridization (SSH) was used to identify the MeJA up-regulated genes. Among the 576 cDNA clones screened from the forward SSH cDNA library, 28 were found to be up-regulated by the MeJA treatment. Sequencing of these cDNA clones followed by BLAST searching revealed six unique transcripts displaying high similarities to the known enzymes and peptide, that is, lipoxygenase (LOX), cinnamic acid 4-hydroxylase (C4H), prephenate dehydrogenase (PDH), polyphenol oxidase (PPO), acid phosphatase (APase), and pentatricopeptide repeat (PPR), which play significant roles in the formation of secondary metabolites in sweet basil. Northern blot further confirmed the increased production at transcriptional level of LOX, C4H, PDH, PPO, PPR, and APase.

  3. Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus).

    PubMed

    Park, Nam Il; Xu, Hui; Li, Xiaohua; Jang, In Hyuk; Park, Suhyoung; Ahn, Gil Hwan; Lim, Yong Pyo; Kim, Sun Ju; Park, Sang Un

    2011-06-08

    Radish [Raphanus sativus (Rs)] is an important dietary vegetable in Asian countries, especially China, Japan, and Korea. To elucidate the molecular mechanisms of anthocyanin accumulation in radish, the gene expression of enzymes directly involved in anthocyanin biosynthesis was analyzed. These genes include phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol reductase (DFR), and anthocyanidin synthase (ANS). RsDFR and RsANS were found to accumulate in the flesh or skin of two radish cultivars (Man Tang Hong and Hong Feng No.1). Radish skin contained higher CHS, CHI, and F3H transcript levels than radish flesh in all three cultivars. In the red radish, 16 anthocyanins were separated and identified by high-performance liquid chromatography (HPLC) and elctrospray ionization-tandem mass spectrometry (ESI-MS/MS). Some of them were acylated with coumaroyl, malonoyl, feruoyl, and caffeoyl moieties. Furthermore (-)-epicatechin and ferulic acid were also identified in the three cultivars.

  4. Accumulation of kaempferitrin and expression of phenyl-propanoid biosynthetic genes in kenaf (Hibiscus cannabinus).

    PubMed

    Zhao, Shicheng; Li, Xiaohua; Cho, Dong Ha; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2014-10-23

    Kenaf (Hibiscus cannabinus) is cultivated worldwide for its fiber; however, the medicinal properties of this plant are currently attracting increasing attention. In this study, we investigated the expression levels of genes involved in the biosynthesis of kaempferitrin, a compound with many biological functions, in different kenaf organs. We found that phenylalanine ammonia lyase (HcPAL) was more highly expressed in stems than in other organs. Expression levels of cinnamate 4-hydroxylase (HcC4H) and 4-coumarate-CoA ligase (Hc4CL) were highest in mature leaves, followed by stems and young leaves, and lowest in roots and mature flowers. The expression of chalcone synthase (HcCHS), chalcone isomerase (HcCHI), and flavone 3-hydroxylase (HcF3H) was highest in young flowers, whereas that of flavone synthase (HcFLS) was highest in leaves. An analysis of kaempferitrin accumulation in the different organs of kenaf revealed that the accumulation of this compound was considerably higher (>10-fold) in leaves than in other organs. On the basis of a comparison of kaempferitrin contents with the expression levels of different genes in different organs, we speculate that HcFLS plays an important regulatory role in the kaempferitrin biosynthetic pathway in kenaf.

  5. Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling.

    PubMed

    Luttgeharm, Kyle D; Kimberlin, Athen N; Cahoon, Rebecca E; Cerny, Ronald L; Napier, Johnathan A; Markham, Jonathan E; Cahoon, Edgar B

    2015-07-01

    Although sphingolipids are essential for male gametophytic development in Arabidopsis thaliana, sphingolipid composition and biosynthetic gene expression have not been previously examined in pollen. In this report, electrospray ionization (ESI)-MS/MS was applied to characterization of sphingolipid compositional profiles in pollen isolated from wild type Arabidopsis Col-0 and a long-chain base (LCB) Δ4 desaturase mutant. Pollen fractions were highly enriched in glucosylceramides (GlcCer) relative to levels previously reported in leaves. Accompanying the loss of the Δ4 unsaturated LCB sphingadiene (d18:2) in the Δ4 desaturase mutant was a 50% reduction in GlcCer concentrations. In addition, pollen glycosylinositolphosphoceramides (GIPCs) were found to have a complex array of N-acetyl-glycosylated GIPCs, including species with up to three pentose units that were absent from leaf GIPCs. Underlying the distinct sphingolipid composition of pollen, genes for key biosynthetic enzymes for GlcCer and d18:2 synthesis and metabolism were more highly expressed in pollen than in leaves or seedlings, including genes for GlcCer synthase (GCS), sphingoid base C-4 hydroxylase 2 (SBH2), LCB Δ8 desaturases (SLD1 and SLD2), and LOH2 ceramide synthase (LOH2). Overall, these findings indicate strikingly divergent sphingolipid metabolism between pollen and leaves in Arabidopsis, the significance of which remains to be determined.

  6. Identification of cold-responsive genes in a New Zealand alpine stick insect using RNA-Seq.

    PubMed

    Dunning, Luke T; Dennis, Alice B; Park, Duckchul; Sinclair, Brent J; Newcomb, Richard D; Buckley, Thomas R

    2013-03-01

    The endemic New Zealand alpine stick insect Micrarchus nov. sp. 2 regularly experiences sub-zero temperatures in the wild. 454-based RNA-Seq was used to generate a de novo transcriptome and differentiate between treatments to investigate the genetic basis of cold tolerance. Non cold-treated individuals were compared to those exposed to 0°C for 1 h followed by a 1 h recovery period at 20°C. We aligned 607,410 Roche 454 reads, generating a transcriptome of 5235 contigs. Differential expression analysis ranked candidate cold responsive genes for qPCR validation by P-value. The top nine up-regulated candidates, together with eight a priori targets identified from previous studies, had their relative expression quantified using qPCR. Three candidate cold responsive genes from the RNA-Seq data were verified as significantly up-regulated, annotated as: prolyl 4-hydroxylase subunit alpha-1 (P4HA1), staphylococcal nuclease domain-containing protein 1 (snd1) and cuticular protein analogous to peritrophins 3-D2 (Cpap3-d2). All three are novel candidate genes, illustrating the varied response to low temperature across insects.

  7. Transcriptional Profiles of Hybrid Eucalyptus Genotypes with Contrasting Lignin Content Reveal That Monolignol Biosynthesis-related Genes Regulate Wood Composition

    PubMed Central

    Shinya, Tomotaka; Iwata, Eiji; Nakahama, Katsuhiko; Fukuda, Yujiroh; Hayashi, Kazunori; Nanto, Kazuya; Rosa, Antonio C.; Kawaoka, Akiyoshi

    2016-01-01

    Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected 3-year old hybrid Eucalyptus (Eucalyptus urophylla × Eucalyptus grandis) genotypes (AM063 and AM380) that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0 and 48.2%, α-cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA) and sucrose synthase (SUSY) were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase and xyloglucan endotransglucoxylase than those in AM380. Most monolignol biosynthesis-related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase, cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL). Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF, and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents in Eucalyptus plants. PMID

  8. Genome-wide discovered psychosis-risk gene ZNF804A impacts on white matter microstructure in health, schizophrenia and bipolar disorder

    PubMed Central

    Mallas, Emma-Jane; Carletti, Francesco; Chaddock, Christopher A.; Woolley, James; Picchioni, Marco M.; Shergill, Sukhwinder S.; Kane, Fergus; Allin, Matthew P.G.; Barker, Gareth J.

    2016-01-01

    Background. Schizophrenia (SZ) and bipolar disorder (BD) have both been associated with reduced microstructural white matter integrity using, as a proxy, fractional anisotropy (FA) detected using diffusion tensor imaging (DTI). Genetic susceptibility for both illnesses has also been positively correlated in recent genome-wide association studies with allele A (adenine) of single nucleotide polymorphism (SNP) rs1344706 of the ZNF804A gene. However, little is known about how the genomic linkage disequilibrium region tagged by this SNP impacts on the brain to increase risk for psychosis. This study aimed to assess the impact of this risk variant on FA in patients with SZ, in those with BD and in healthy controls. Methods. 230 individuals were genotyped for the rs1344706 SNP and underwent DTI. We used tract-based spatial statistics (TBSS) followed by an analysis of variance, with threshold-free cluster enhancement (TFCE), to assess underlying effects of genotype, diagnosis and their interaction, on FA. Results. As predicted, statistically significant reductions in FA across a widely distributed brain network (p < 0.05, TFCE-corrected) were positively associated both with a diagnosis of SZ or BD and with the double (homozygous) presence of the ZNF804A rs1344706 risk variant (A). The main effect of genotype was medium (d = 0.48 in a 44,054-voxel cluster) and the effect in the SZ group alone was large (d = 1.01 in a 51,260-voxel cluster), with no significant effects in BD or controls, in isolation. No areas under a significant diagnosis by genotype interaction were found. Discussion. We provide the first evidence in a predominantly Caucasian clinical sample, of an association between ZNF804A rs1344706 A-homozygosity and reduced FA, both irrespective of diagnosis and particularly in SZ (in overlapping brain areas). This suggests that the previously observed involvement of this genomic region in psychosis susceptibility, and in impaired functional connectivity, may be

  9. Genome-wide discovered psychosis-risk gene ZNF804A impacts on white matter microstructure in health, schizophrenia and bipolar disorder.

    PubMed

    Mallas, Emma-Jane; Carletti, Francesco; Chaddock, Christopher A; Woolley, James; Picchioni, Marco M; Shergill, Sukhwinder S; Kane, Fergus; Allin, Matthew P G; Barker, Gareth J; Prata, Diana P

    2016-01-01

    Background. Schizophrenia (SZ) and bipolar disorder (BD) have both been associated with reduced microstructural white matter integrity using, as a proxy, fractional anisotropy (FA) detected using diffusion tensor imaging (DTI). Genetic susceptibility for both illnesses has also been positively correlated in recent genome-wide association studies with allele A (adenine) of single nucleotide polymorphism (SNP) rs1344706 of the ZNF804A gene. However, little is known about how the genomic linkage disequilibrium region tagged by this SNP impacts on the brain to increase risk for psychosis. This study aimed to assess the impact of this risk variant on FA in patients with SZ, in those with BD and in healthy controls. Methods. 230 individuals were genotyped for the rs1344706 SNP and underwent DTI. We used tract-based spatial statistics (TBSS) followed by an analysis of variance, with threshold-free cluster enhancement (TFCE), to assess underlying effects of genotype, diagnosis and their interaction, on FA. Results. As predicted, statistically significant reductions in FA across a widely distributed brain network (p < 0.05, TFCE-corrected) were positively associated both with a diagnosis of SZ or BD and with the double (homozygous) presence of the ZNF804A rs1344706 risk variant (A). The main effect of genotype was medium (d = 0.48 in a 44,054-voxel cluster) and the effect in the SZ group alone was large (d = 1.01 in a 51,260-voxel cluster), with no significant effects in BD or controls, in isolation. No areas under a significant diagnosis by genotype interaction were found. Discussion. We provide the first evidence in a predominantly Caucasian clinical sample, of an association between ZNF804A rs1344706 A-homozygosity and reduced FA, both irrespective of diagnosis and particularly in SZ (in overlapping brain areas). This suggests that the previously observed involvement of this genomic region in psychosis susceptibility, and in impaired functional connectivity, may be

  10. Impact of the -675 4G/5G polymorphism of the plasminogen activator inhibitor-1 gene on childhood IgA nephropathy.

    PubMed

    Han, Su-Ryun; Kim, Cheon-Jong; Lee, Byung-Cheol

    2012-04-01

    Plasminogen activator inhibitor-1 (PAI-1) is an important regulator of the fibrinolytic pathway and extracellular matrix (ECM) turnover. The -675 4G/5G polymorphism in the PAI-1 promoter is associated with altered PAI-1 transcription, suggesting that this polymorphism may be a candidate risk factor for diseases characterized by ECM accumulation, such as immunoglobulin A nephropathy (IgAN) and mesangial proliferative glomerulonephritis (MesPGN). We genotyped childhood patients with biopsy-confirmed IgAN (n=111) and MesPGN (n=47), and healthy control subjects (n=230) for the -675 4G/5G PAI-1 polymorphism by polymerase chain reaction-restriction fragment length polymorphism methods. The distribution of the 4G/4G (27.9%), 4G/5G (45.1%) and 5G/5G (27.0%) genotypes in IgAN patients was significantly different from the healthy controls (32.2, 54.3 and 13.5%, respectively) (p=0.0092). There was no significant difference in the genotype distributions of the 4G/5G polymorphism between MesPGN patients and the healthy controls. Regarding the impact of the polymorphism on IgAN, the 4G/4G genotype was markedly increased in patients with proteinuria (≥1,000 mg/day) and/or hypertension when compared to patients without proteinuria and hypertension (OR=5.23, 95% CI 1.34-20.38, P=0.0183). These findings indicate that the PAI-1 gene polymorphism may affect the susceptibility of childhood IgAN.

  11. The impact of exposure-biased sampling designs on detection of gene-environment interactions in case-control studies with potential exposure misclassification.

    PubMed

    Stenzel, Stephanie L; Ahn, Jaeil; Boonstra, Philip S; Gruber, Stephen B; Mukherjee, Bhramar

    2015-05-01

    With limited funding and biological specimen availability, choosing an optimal sampling design to maximize power for detecting gene-by-environment (G-E) interactions is critical. Exposure-enriched sampling is often used to select subjects with rare exposures for genotyping to enhance power for tests of G-E effects. However, exposure misclassification (MC) combined with biased sampling can affect characteristics of tests for G-E interaction and joint tests for marginal association and G-E interaction. Here, we characterize the impact of exposure-biased sampling under conditions of perfect exposure information and exposure MC on properties of several methods for conducting inference. We assess the Type I error, power, bias, and mean squared error properties of case-only, case-control, and empirical Bayes methods for testing/estimating G-E interaction and a joint test for marginal G (or E) effect and G-E interaction across three biased sampling schemes. Properties are evaluated via empirical simulation studies. With perfect exposure information, exposure-enriched sampling schemes enhance power as compared to random selection of subjects irrespective of exposure prevalence but yield bias in estimation of the G-E interaction and marginal E parameters. Exposure MC modifies the relative performance of sampling designs when compared to the case of perfect exposure information. Those conducting G-E interaction studies should be aware of exposure MC properties and the prevalence of exposure when choosing an ideal sampling scheme and method for characterizing G-E interactions and joint effects.

  12. Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine D2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance.

    PubMed

    Luque, Guillermina María; Lopez-Vicchi, Felicitas; Ornstein, Ana María; Brie, Belén; De Winne, Catalina; Fiore, Esteban; Perez-Millan, Maria Inés; Mazzolini, Guillermo; Rubinstein, Marcelo; Becu-Villalobos, Damasia

    2016-12-01

    We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage.

  13. Vascular Endothelial Growth Factor A (VEGFA) Gene Polymorphisms Have an Impact on Survival in a Subgroup of Indolent Patients with Chronic Lymphocytic Leukemia

    PubMed Central

    Lozano-Santos, Carol; Martinez-Velasquez, Jimena; Fernandez-Cuevas, Belen; Polo, Natividad; Navarro, Belen; Millan, Isabel; Garcia, Jose Miguel; Collado, Rosa; Sanchez-Godoy, Pedro; Carbonell, Felix; Garcia-Vela, Jose Antonio

    2014-01-01

    Vascular endothelial growth factor (VEGF)-mediated angiogenesis contributes to the pathogenesis of B-cell chronic lymphocytic leukaemia (CLL). We investigated the impact of VEGFA gene diversity on the clinical outcome of patients with this disease. A VEGFA haplotype conformed by positions rs699947 (–1540C>A), rs833061 (–460T>C) and rs2010963 (405C>G) and two additional single-nucleotide polymorphisms (SNPs), rs3025039 (936C>T) and rs25648 (1032C>T), were analysed in 239 patients at the time of their CLL diagnosis. Here, we showed that homozygosity for rs699947/rs833061/rs2010963 ACG haplotype (ACG+/+ genotype) correlated with a reduced survival in CLL patients (ACG+/+ vs other genotypes: HR = 2.3, p = 0.002; recessive model). In multivariate analysis, the ACG+/+ genotype was identified as a novel independent prognostic factor (HR = 2.1, p = 0.005). Moreover, ACG homozygosity subdivided patients with CLL with otherwise indolent parameters into prognostic subgroups with different outcomes. Specifically, patients carrying the ACG+/+ genotype with mutated IgVH, very low and low-risk cytogenetics, initial clinical stage, CD38 negative status or early age at diagnosis showed a shorter survival (ACG+/+ vs other genotypes: HR = 3.5, p = 0.035; HR = 3.4, p = 0.001; HR = 2.2, p = 0.035; HR = 3.4, p = 0.0001 and HR = 3.1, p = 0.009, respectively). In conclusion, VEGFA ACG+/+ genotype confers an adverse effect in overall survival in CLL patients with an indolent course of the disease. These observations support the biological and prognostic implications of VEGFA genetics in CLL. PMID:24971577

  14. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger.

    PubMed

    Dai, Ziyu; Aryal, Uma K; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D; Magnuson, Jon K; Adney, William S; Beckham, Gregg T; Brunecky, Roman; Himmel, Michael E; Decker, Stephen R; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E

    2013-12-01

    Dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl α-1,3-mannosyltransferase (also known as "asparagine-linked glycosylation 3", or ALG3) is involved in early N-linked glycan synthesis and thus is essential for formation of N-linked protein glycosylation. In this study, we examined the effects of alg3 gene deletion (alg3Δ) on growth, development, pigment production, protein secretion and recombinant Trichoderma reesei cellobiohydrolase (rCel7A) expressed in Aspergillus niger. The alg3Δ delayed spore germination in liquid cultures of complete medium (CM), potato dextrose (PD), minimal medium (MM) and CM with addition of cAMP (CM+cAMP), and resulted in significant reduction of hyphal growth on CM, potato dextrose agar (PDA), and CM+cAMP and spore production on CM. The alg3Δ also led to a significant accumulation of red pigment on both liquid and solid CM cultures. The relative abundances of 54 of the total 215 proteins identified in the secretome were significantly altered as a result of alg3Δ, 63% of which were secreted at higher levels in alg3Δ strain than the parent. The rCel7A expressed in the alg3Δ mutant was smaller in size than that expressed in both wild-type and parental strains, but still larger than T. reesei Cel7A. The circular dichroism (CD)-melt scans indicated that change in glycosylation of rCel7A does not appear to impact the secondary structure or folding. Enzyme assays of Cel7A and rCel7A on nanocrystalline cellulose and bleached kraft pulp demonstrated that the rCel7As have improved activities on hydrolyzing the nanocrystalline cellulose. Overall, the results suggest that alg3 is critical for growth, sporulation, pigment production, and protein secretion in A. niger, and demonstrate the feasibility of this alternative approach to evaluate the roles of N-linked glycosylation in glycoprotein secretion and function.

  15. An apple rootstock overexpressing a peach CBF gene alters growth and flowering in the scion but does not impact cold hardiness or dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The C-repeat Binding Factor (CBF) transcription factor is involved in responses to low temperature and water deficit in many plant species. Overexpression of CBF genes leads to enhanced freezing tolerance and growth inhibition in many species. The overexpression of a peach CBF (PpCBF1) gene in a t...

  16. The allostatic impact of chronic ethanol on gene expression: A genetic analysis of chronic intermittent ethanol treatment in the BXD cohort.

    PubMed

    van der Vaart, Andrew D; Wolstenholme, Jennifer T; Smith, Maren L; Harris, Guy M; Lopez, Marcelo F; Wolen, Aaron R; Becker, Howard C; Williams, Robert W; Miles, Michael F

    2017-02-01

    The transition from acute to chronic ethanol exposure leads to lasting behavioral and physiological changes such as increased consumption, dependence, and withdrawal. Changes in brain gene expression are hypothesized to underlie these adaptive responses to ethanol. Previous studies on acute ethanol identified genetic variation in brain gene expression networks and behavioral responses to ethanol across the BXD panel of recombinant inbred mice. In this work, we have performed the first joint genetic and genomic analysis of transcriptome shifts in response to chronic intermittent ethanol (CIE) by vapor chamber exposure in a BXD cohort. CIE treatment is known to produce significant and sustained changes in ethanol consumption with repeated cycles of ethanol vapor. Using Affymetrix microarray analysis of prefrontal cortex (PFC) and nucleus accumbens (NAC) RNA, we compared CIE expression responses to those seen following acute ethanol treatment, and to voluntary ethanol consumption. Gene expression changes in PFC and NAC after CIE overlapped significantly across brain regions and with previously published expression following acute ethanol. Genes highly modulated by CIE were enriched for specific biological processes including synaptic transmission, neuron ensheathment, intracellular signaling, and neuronal projection development. Expression quantitative trait locus (eQTL) analyses identified genomic loci associated with ethanol-induced transcriptional changes with largely distinct loci identified between brain regions. Correlating CIE-regulated genes to ethanol consumption data identified specific genes highly associated with variation in the increase in drinking seen with repeated cycles of CIE. In particular, multiple myelin-related genes were identified. Furthermore, genetic variance in or near dynamin3 (Dnm3) on Chr1 at ∼164 Mb may have a major regulatory role in CIE-responsive gene expression. Dnm3 expression correlates significantly with ethanol consumption

  17. Change in HER2 (ERBB2) gene status after taxane-based chemotherapy for breast cancer: polyploidization can lead to diagnostic pitfalls with potential impact for clinical management.

    PubMed

    Valent, Alexander; Penault-Llorca, Frédérique; Cayre, Anne; Kroemer, Guido

    2013-01-01

    The status of the HER2 (ERBB2) gene in breast cancer is not static and may change among the primary tumor, lymph node metastases, and distant metastases. This status change can be a consequence of the natural evolution of the tumor or can be induced by therapy. The HER2 gene status is, in the majority of cases, established at the moment of diagnosis. After chemotherapy, monitoring HER2 status can be a challenge because of ploidy changes induced by drugs. The cytogeneticist or the pathologist can face real difficulties in distinguishing between a true HER2 amplification and HER2 copy number increase by polyploidization. We performed a HER2 genetic examination by fluorescence in situ hybridization (FISH) of invasive breast cancers before and after taxane treatment. The majority of patients (91%) were HER2-negative both at diagnosis and after treatment. Thirty of 344 patients (9%) whose tumors were initially HER2-negative were found by FISH to have supernumerary HER2 gene copies (up to 15 copies) after neoadjuvant chemotherapy. This HER2 copy increase could not be attributed to true gene amplifications and instead reflected polyploidization events, which presumably affected all chromosomes. Indeed, when we used other FISH probes, we found other gene copy numbers to parallel those of HER2. We recommend careful checking of invasive breast carcinomas by supplementary FISH probes if the copy number of the HER2 gene is >6. This procedure allows the discrimination of specific HER2 gene amplifications and global increases in ploidy.

  18. Impact of gsp oncogene on the expression of genes coding for Gsalpha, Pit-1, Gi2alpha, and somatostatin receptor 2 in human somatotroph adenomas: involvement in octreotide sensitivity.

    PubMed

    Barlier, A; Pellegrini-Bouiller, I; Gunz, G; Zamora, A J; Jaquet, P; Enjalbert, A

    1999-08-01

    The impact of the gsp oncogene on the expression of genes engaged in the somatotroph cell phenotype remains poorly understood in human somatotroph adenomas. As the gsp oncogene is associated with an increased octreotide (somatostatin agonist) sensitivity, a group of 8 somatotroph adenomas bearing the gsp mutation (gsp+) and another group of 16 adenomas without the mutation (gsp-) were analyzed, all of them presenting variable octreotide sensitivities. The expressions of genes encoding for G(s)alpha, Pit-1, G(i2)alpha, and SSTR2, involved in the regulation of secretory activity in somatotroph cells, were assessed by Northern blot. A decreased expression of the G(s)alpha gene was found in gsp + tumors, suggesting the existence of a negative feedback of the oncogenic protein upon its own messenger ribonucleic acid (mRNA). In contrast, G(i2)alpha, Pit-1, and GH messengers were not significantly different in the groups. A positive correlation between the in vitro and in vivo GH octreotide-induced secretory inhibition and the expression of SSTR2 mRNA was found. However, the expression of the gene for SSTR2 appeared not to be different between gsp + and gsp-, even when the octreotide sensitivity was significantly higher in the adenomas carrying the mutation. Interestingly, the SSTR2 gene expression was significantly correlated to those of G(i2)alpha and Pit-1. In the same way, the G(s)alpha mRNA expression was positively correlated with those of Gi2alpha and Pit-1. Such correlations strongly suggest a concerted dysregulation of the expression of these genes in both categories of adenomas. The loss of the octreotide sensitivity represents one aspect of the dysregulation process that partially results from the decreased SSTR2 expression. However, the improvement of the sensitivity associated with the presence of the gsp oncogene seems to proceed in a way different from SSTR2 expression.

  19. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism.

    PubMed

    Roques, Béatrice B; Leghait, Julien; Lacroix, Marlène Z; Lasserre, Frédéric; Pineau, Thierry; Viguié, Catherine; Martin, Pascal G P

    2013-10-01

    Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance.

  20. The impact of oregano (Origanum heracleoticum) essential oil and carvacrol on virulence gene transcription by Escherichia coli O157:H7.

    PubMed

    Mith, Hasika; Clinquart, Antoine; Zhiri, Abdesselam; Daube, Georges; Delcenserie, Véronique

    2015-01-01

    The aim of the current study was to determine, via reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, the effect of oregano essential oil (Origanum heracleoticum) and carvacrol, its major component, on the expression of virulence-associated genes in enterohaemorrhagic Escherichia coli (EHEC) O157:H7 ATCC strain 35150. Both oregano oil and carvacrol demonstrated their efficacy firstly, by inhibiting the transcription of the ler gene involved in upregulation of the LEE2, LEE3 and LEE4 promoters and of attaching and effacing lesions and secondly by decreasing both Shiga toxin and fliC genes expression. In addition, a decrease in luxS gene transcription involved in quorum sensing was observed. These results were dose dependent and showed a specific effect of O. heracleoticum and carvacrol in downregulating the expression of virulence genes in EHEC O157:H7. These findings suggest that oregano oil and carvacrol have the potential to mitigate the adverse health effects caused by virulence gene expression in EHEC O157:H7, through the use of these substances as natural antibacterial additives in foods or as an alternative to antibiotics.

  1. Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana plants grown under iron deficiency

    PubMed Central

    Koen, Emmanuel; Szymańska, Katarzyna; Klinguer, Agnès; Dobrowolska, Grażyna; Besson-Bard, Angélique; Wendehenne, David

    2012-01-01

    Mounting evidence indicate that nitric oxide (NO) acts as a signaling molecule mediating iron deficiency responses through the upregulation of the expression of iron uptake-related genes. Accordingly, NO donors such as nitrosoglutathione (GSNO) were reported to improve the fitness of plants grown under iron deficiency. Here, we showed that glutathione, a by-product of GSNO, triggered the upregulation of the expression of iron uptake- and transport-related gene and an increase of iron concentration in Arabidopsis thaliana seedlings facing iron deficiency. Furthermore, we provided evidence that under iron deficiency, NO released by GSNO did not improve the root iron concentration but impacted the content of copper. Collectively, our data highlight the complexity of interpreting data based on the use of NO donors when investigating the role of NO in iron homeostasis. PMID:22902693

  2. Correlation of quantitative PCR for a poultry-specific brevibacterium marker gene with bacterial and chemical indicators of water pollution in a watershed impacted by land application of poultry litter.

    PubMed

    Weidhaas, Jennifer L; Macbeth, Tamzen W; Olsen, Roger L; Harwood, Valerie J

    2011-03-01

    The impact of fecal contamination from human and agricultural animal waste on water quality is a major public health concern. Identification of the dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and protecting water resources. A field study was conducted using quantitative PCR (qPCR) for the 16S rRNA gene of Brevibacterium sp. LA35 to track feces-contaminated poultry litter in environmental samples. Based on sensitivity and specificity characteristics of the qPCR method, the Bayesian conditional probability that detection of the LA35 marker gene in a water sample represented a true-positive result was 93%. The marker's covariance with fecal indicator bacteria (FIB) and metals associated with poultry litter was also assessed in litter, runoff, surface water, and groundwater samples. LA35 was detected in water and soil samples collected throughout the watershed, and its concentration covaried with concentrations of Escherichia coli, enterococci, As, Cu, P, and Zn. Significantly greater concentrations of FIB, As, Cu, P, and Zn were observed in edge-of-field runoff samples in which LA35 was detected, compared to samples in which it was not detected. Furthermore, As, Cu, P, and Zn concentrations covaried in environmental samples in which LA35 was detected and typically did not in samples in which the marker gene was not detected. The covariance of the poultry-specific LA35 marker gene with these known contaminants from poultry feces provides further evidence that it is a useful tool for assessing the impact of poultry-derived fecal pollution in environmental waters.

  3. Impact of viral E2-gene status on outcome after radiotherapy for patients with human papillomavirus 16-positive cancer of the uterine cervix

    SciTech Connect

    Lindel, Katja . E-mail: Katja_Lindel@med.uni-heidelberg.de; Villiers, Ethel-Michele de; Burri, Philipp; Studer, Ueli; Altermatt, Hans J.; Greiner, Richard H.; Gruber, Guenther

    2006-07-01

    Purpose: Integration of high-risk papillomavirus DNA has been considered an important step in oncogenic progression to cervical carcinoma. Disruption of the human papillomavirus (HPV) genome within the E2 gene is frequently a consequence. This study investigated the influence of episomal viral DNA on outcome in patients with advanced cervical cancer treated with primary radiotherapy. Methods and Materials: Paraffin-embedded biopsies of 82 women with locally advanced cervical cancer could be analyzed for HPV infection by multiplex polymerase chain reaction (PCR) by use of SPF1/2 primers. E2-gene intactness of HPV-16-positive samples was analyzed in 3 separate amplification reactions by use of the E2A, E2B, E2C primers. Statistical analyses (Kaplan-Meier method; log-rank test) were performed for overall survival (OS), disease-free survival (DFS), local progression-free survival (LPFS), and distant metastases-free survival (DMFS). Results: Sixty-one (75%) of 82 carcinomas were HPV positive, 44 of them for HPV-16 (72%). Seventeen of the 44 HPV-16-positive tumors (39%) had an intact E2 gene. Patients with a HPV-16-positive tumor and an intact E2 gene showed a trend for a better DFS (58% vs. 38%, p = 0.06) compared with those with a disrupted E2 gene. A nonsignificant difference occurred regarding OS (87% vs. 66%, p = 0.16) and DMFS (57% vs. 48%, p = 0.15). Conclusion: E2-gene status may be a promising new target, but more studies are required to elucidate the effect of the viral E2 gene on outcome after radiotherapy in HPV-positive tumors.

  4. Impact of Aeration and Heme-Activated Respiration on Lactococcus lactis Gene Expression: Identification of a Heme-Responsive Operon▿ †

    PubMed Central

    Pedersen, Martin Bastian; Garrigues, Christel; Tuphile, Karine; Brun, Célia; Vido, Karin; Bennedsen, Mads; Møllgaard, Henrik; Gaudu, Philippe; Gruss, Alexandra

    2008-01-01

    Lactococcus lactis is a widely used food bacterium mainly characterized for its fermentation metabolism. However, this species undergoes a metabolic shift to respiration when heme is added to an aerobic medium. Respiration results in markedly improved biomass and survival compared to fermentation. Whole-genome microarrays were used to assess changes in L. lactis expression under aerobic and respiratory conditions compared to static growth, i.e., nonaerated. We observed the following. (i) Stress response genes were affected mainly by aerobic fermentation. This result underscores the differences between aerobic fermentation and respiration environments and confirms that respiration growth alleviates oxidative stress. (ii) Functions essential for respiratory metabolism, e.g., genes encoding cytochrome bd oxidase, menaquinone biosynthesis, and heme uptake, are similarly expressed under the three conditions. This indicates that cells are prepared for respiration once O2 and heme become available. (iii) Expression of only 11 genes distinguishes respiration from both aerobic and static fermentation cultures. Among them, the genes comprising the putative ygfCBA operon are strongly induced by heme regardless of respiration, thus identifying the first heme-responsive operon in lactococci. We give experimental evidence that the ygfCBA genes are involved in heme homeostasis. PMID:18487342