Science.gov

Sample records for 4-hydroxynonenal protein adducts

  1. 4-hydroxynonenal protein adducts: Key mediator in Rett syndrome oxinflammation.

    PubMed

    Valacchi, Giuseppe; Pecorelli, Alessandra; Cervellati, Carlo; Hayek, Joussef

    2017-01-05

    In the last 15 years a strong correlation between oxidative stress (OxS) and Rett syndrome (RTT), a rare neurodevelopmental disorder known to be caused in 95% of the cases, by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, has been well documented. Here, we revised, summarized and discussed the current knowledge on the role of lipid peroxidation byproducts, with special emphasis on 4-hydroxynonenal (4HNE), in RTT pathophysiology. The posttranslational modifications of proteins via 4HNE, known as 4HNE protein adducts (4NHE-PAs), causing detrimental effects on protein functions, appear to contribute to the clinical severity of the syndrome, since their levels increase significantly during the subsequent 4 clinical stages, reaching the maximum degree at stage 4, represented by a late motor deterioration. In addition, 4HNE-PA are only partially removed due to the compromised functionality of the proteasome activity, contributing therefore to the cellular damage in RTT. All this will lead to a characteristic subclinical inflammation, defined "OxInflammation", derived by a positive feedback loop between OxS byproducts and inflammatory mediators that in a long run further aggravates the clinical features of RTT patients. Therefore, in a pathology completely orphan of any therapy, aiming 4HNE as a therapeutic target could represent a coadjuvant treatment with some beneficial impact in these patients.‬‬‬.

  2. Non-protein-bound iron and 4-hydroxynonenal protein adducts in classic autism.

    PubMed

    Pecorelli, Alessandra; Leoncini, Silvia; De Felice, Claudio; Signorini, Cinzia; Cerrone, Cosimina; Valacchi, Giuseppe; Ciccoli, Lucia; Hayek, Joussef

    2013-02-01

    A link between oxidative stress and autism spectrum disorders (ASDs) remains controversial with opposing views on its role in the pathogenesis of the disease. We investigated for the first time the levels of non-protein-bound iron (NPBI), a pro-oxidant factor, and 4-hydroxynonenal protein adducts (4-HNE PAs), as a marker of lipid peroxidation-induced protein damage, in classic autism. Patients with classic autism (n=20, mean age 12.0±6.2years) and healthy controls (n=18, mean age 11.7±6.5years) were examined. Intraerythrocyte and plasma NPBI were measured by high performance liquid chromatography (HPLC), and 4-HNE PAs in erythrocyte membranes and plasma were detected by Western blotting. The antioxidant defences were evaluated as erythrocyte glutathione (GSH) levels using a spectrophotometric assay. Intraerythrocyte and plasma NPBI levels were significantly increased (1.98- and 3.56-folds) in autistic patients, as compared to controls (p=0.0019 and p<0.0001, respectively); likewise, 4-HNE PAs were significantly higher in erythrocyte membranes and in plasma (1.58- and 1.6-folds, respectively) from autistic patients than controls (p=0.0043 and p=0.0001, respectively). Erythrocyte GSH was slightly decreased (-10.34%) in patients compared to controls (p=0.0215). Our findings indicate an impairment of the redox status in classic autism patients, with a consequent imbalance between oxidative stress and antioxidant defences. Increased levels of NPBI could contribute to lipid peroxidation and, consequently, to increased plasma and erythrocyte membranes 4-HNE PAs thus amplifying the oxidative damage, potentially contributing to the autistic phenotype.

  3. S-adenosyl-L-methionine protection of acetaminophen mediated oxidative stress and identification of hepatic 4-hydroxynonenal protein adducts by mass spectrometry

    SciTech Connect

    Brown, James Mike; Kuhlman, Christopher; Terneus, Marcus V.; Labenski, Matthew T.; Lamyaithong, Andre Benja; Ball, John G.; Lau, Serrine S.; Valentovic, Monica A.

    2014-12-01

    Acetaminophen (APAP) hepatotoxicity is protected by S-adenosyl-L-methionine (SAMe) treatment 1 hour (h) after APAP in C57/Bl6 mice. This study examined protein carbonylation as well as mitochondrial and cytosolic protein adduction by 4-hydroxynonenal (4-HNE) using mass spectrometry (MS) analysis. Additional studies investigated the leakage of mitochondrial proteins and 4-HNE adduction of these proteins. Male C57/Bl6 mice (n = 5/group) were divided into the following groups and treated as indicated: Veh (15 ml/kg water, ip), SAMe (1.25 mmol/kg, ip), APAP (250 mg/kg), and SAMe given 1 h after APAP (S + A). APAP toxicity was confirmed by an increase (p < 0.05) in plasma ALT (U/l) and liver weight/10 g body weight relative to the Veh, SAMe and S + A groups 4 h following APAP treatment. SAMe administered 1 h post-APAP partially corrected APAP hepatotoxicity as ALT and liver weight/10 g body weights were lower in the S + A group compared the APAP group. APAP induced leakage of the mitochondrial protein, carbamoyl phosphate synthase-1 (CPS-1) into the cytosol and which was reduced in the S + A group. SAMe further reduced the extent of APAP mediated 4-HNE adduction of CPS-1. MS analysis of hepatic and mitochondrial subcellular fractions identified proteins from APAP treated mice. Site specific 4-HNE adducts were identified on mitochondrial proteins sarcosine dehydrogenase and carbamoyl phosphate synthase-1 (CPS-1). In summary, APAP is associated with 4-HNE adduction of proteins as identified by MS analysis and that CPS-1 leakage was greater in APAP treated mice. SAMe reduced the extent of 4-HNE adduction of proteins as well as leakage of CPS-1. - Highlights: • Acetaminophen (APAP) toxicity protected by S-adenosylmethionine (SAMe) • 4-Hydroxynonenal adducted to sarcosine dehydrogenase • 4-Hydroxynonenal adducted to carbamoyl phosphate synthetase-1 • SAMe reduced APAP mediated CPS-1 mitochondrial leakage.

  4. Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy

    PubMed Central

    Bai, Xiang; Wey, Margaret Chia-Ying; Fernandez, Elizabeth; Hart, Matthew J.; Gelfond, Jonathan; Bokov, Alex F.; Rani, Sheela; Strong, Randy

    2015-01-01

    Background Synucleinopathy is any of a group of age-related neurodegenerative disorders including Parkinson's disease, multiple system atrophy, and dementia with Lewy Bodies, which is characterized by α-synuclein inclusions and parkinsonian motor deficits affecting millions of patients worldwide. But there is no cure at present for synucleinopathy. Rapamycin has been shown to be neuroprotective in several in vitro and in vivo synucleinopathy models. However, there are no reports on the long-term effects of RAPA on motor function or measures of neurodegeneration in models of synucleinopathy. Methods We determined whether long-term feeding a rapamycin diet (14 ppm in diet; 2.25 mg/kg body weight/day) improves motor function in neuronal A53T α-synuclein transgenic mice (TG) and explored underlying mechanisms using a variety of behavioral and biochemical approaches. Results After 24 weeks of treatment, rapamycin improved performance on the forepaw stepping adjustment test, accelerating rotarod and pole test. Rapamycin did not alter A53T α-synuclein content. There was no effect of rapamycin treatment on midbrain or striatal monoamines or their metabolites. Proteins adducted to the lipid peroxidation product 4-hydroxynonenal were decreased in brain regions of both wild-type and TG mice treated with rapamycin. Reduced levels of the presynaptic marker synaptophysin were found in several brain regions of TG mice. Rapamycin attenuated the loss of synaptophysin protein in the affected brain regions. Rapamycin also attenuated the loss of synaptophysin protein and prevented the decrease of neurite length in SH-SY5Y cells treated with 4-hydroxynonenal. Conclusion Taken together, these data suggest that rapamycin, an FDA approved drug, may prove useful in the treatment of synucleinopathy. PMID:26306821

  5. Mass Spectrometric Evidence of Malonaldehyde and 4-Hydroxynonenal Adductions to Radical-Scavenging Soy Peptides

    PubMed Central

    Zhao, Jing; Chen, Jing; Zhu, Haining; Xiong, Youling L.

    2012-01-01

    Antioxidative peptides in food systems are potential targets of lipid oxidation-generated reactive aldehydes, such as malonaldehyde (MDA) and 4-hydroxynonenal (HNE). In this study, covalent modifications on radical-scavenging peptides prepared from soy protein hydrolysate by MDA and HNE were characterized by liquid chromatography–electrospray ionization-mass spectrometry (LC-ESI-MS/MS). MS/MS analyses detected the formation of Schiff base type adducts of MDA on the side chain groups of lysine, histidine, arginine, glutamine, and asparagine residues as well as the N-termini of peptides. MDA also formed a fluorescent product with lysine residues. HNE adducted on lysine residues through Schiff base formation and on histidine, arginine, glutamine, and asparagine residues mainly through Michael addition. In spite of the extensive MDA modification, peptide cross-linking by this potential mechanism was undetectable. PMID:22946674

  6. Protein adducts of malondialdehyde and 4-hydroxynonenal contribute to trichloroethene-mediated autoimmunity via activating Th17 cells: Dose- and time-response studies in female MRL+/+ mice

    PubMed Central

    Wang, Gangduo; Wang, Jianling; Fan, Xiuzhen; Ansari, G. A. S.; Khan, M. Firoze

    2011-01-01

    Trichloroethene (TCE), a common occupational and environmental toxicant, is known to induce autoimmunity. Previous studies in our laboratory showed increased oxidative stress in TCE-mediated autoimmunity. To further establish the role of oxidative stress and to investigate the mechanisms of TCE-mediated autoimmunity, dose- and time- response studies were conducted in MRL+/+ mice by treating them with TCE via drinking water at doses of 0.5, 1.0 or 2.0 mg/ml for 12, 24 or 36 weeks. TCE exposure led to dose-related increases in malondialdehyde (MDA)-/hydroxynonenal (HNE)-protein adducts and their corresponding antibodies in the sera and decreases in GSH and GSH/GSSG ratio in the kidneys at 24 and 36 weeks, with greater changes at 36 weeks. The increases in these protein adducts and decreases in GSH/GSSG ratio were associated with significant elevation in serum anti-nuclear- and anti-ssDNA-antibodies, suggesting an association between TCE-induced oxidative stress and autoimmune response. Interestingly, splenocytes from mice treated with TCE for 24 weeks secreted significantly higher levels of IL-17 and IL-21 than did splenocytes from controls after stimulation with MDA-mouse serum albumin (MSA) or HNE-MSA adducts. The increased release of these cytokines showed a dose-related response and was more pronounced in mice treated with TCE for 36 weeks. These studies provide evidence that MDA- and or HNE-protein adducts contribute to TCE-mediated autoimmunity, which may be via activation of Th17 cells. PMID:22178267

  7. PARP INHIBITION ALLEVIATES DIABETES-INDUCED SYSTEMIC OXIDATIVE STRESS AND NEURAL TISSUE 4-HYDROXYNONENAL ADDUCT ACCUMULATION: CORRELATION WITH PERIPHERAL NERVE FUNCTION

    PubMed Central

    Lupachyk, Sergey; Shevalye, Hanna; Maksimchyk, Yury; Drel, Viktor R.; Obrosova, Irina G.

    2011-01-01

    This study evaluated the role of poly(ADP-ribose) polymerase in systemic oxidative stress and 4-hydoxynonenal adduct accumulation in diabetic peripheral neuropathy. Control and streptozotocin-diabetic rats were maintained with or without treatment with the PARP inhibitor, 1,5-isoquinolinediol, 3 mg kg−1d−1, for 10 weeks after initial 2 weeks. Treatment efficacy was evaluated by poly(ADP-ribosyl)ated protein content in peripheral nerve and spinal cord (Western blot analysis) and dorsal root ganglion neurons and non-neuronal cells (fluorescent immunohistochemistry), as well as by indices of peripheral nerve function. Diabetic rats displayed increased urinary isoprostane and 8-hydroxy-2'-deoxyguanosine excretion (ELISA), 4-hydroxynonenal adduct accumulation in endothelial and Schwann cells of the peripheral nerve, neurons, astrocytes, and oligodendrocytes of the spinal cord, and neurons and glial cells of the dorsal root ganglia (double-label fluorescent immunohistochemistry) as well as motor and sensory nerve conduction velocity deficits, thermal hypoalgesia, and tactile allodynia. PARP inhibition counteracted diabetes-induced systemic oxidative stress and 4-hydroxynonenal adduct accumulation in peripheral nerve and spinal cord (Western blot analysis) and dorsal root ganglion neurons (perikarya, fluorescent immunohistochemistry) which correlated with improvement of large and small nerve fiber function. The findings reveal the important role of PARP activation in systemic oxidative stress and 4-hydroxynonenal adduct accumulation in diabetic peripheral neuropathy. PMID:21300148

  8. Selective cleavage of thioether linkage in proteins modified with 4-hydroxynonenal.

    PubMed Central

    Uchida, K; Stadtman, E R

    1992-01-01

    The peroxidation of polyunsaturated fatty acids leads to numerous products, including 4-hydroxynonenal (HNE). That 4-hydroxy-2-alkenal compounds react with sulfhydryl groups of proteins to form thioether adducts possessing a carbonyl function has been established [Schauenstein, E. & Esterbauer, H. (1979) Ciba Found. Symp. 67, 225-244]. Taking advantage of the fact that Raney nickel catalyzes cleavage of thioether bonds, we have developed a procedure to quantitate the amount of HNE moiety bound to protein by means of a thioether linkage. Adducts of HNE with N-acetylcysteine and glutathione were prepared, labeled with NaB[3H]H4, and then treated with Raney nickel. The 3H-labeled product was recovered in 85-90% yield from both HNE-N-acetylcysteine and HNE-glutathione adducts in a solvent [10% (vol/vol) methanol/chloroform]-estractable form. Treatment of proteins with HNE led to the disappearance of protein sulfhydryl groups. However, less than 10% of the labeled adducts obtained after subsequent reduction with NaB[3H]H4 could be released in a solvent-extractable form upon treatment with Raney nickel. This and the observation that HNE reacts with proteins lacking a sulfhydryl group attests to the fact that HNE can react with amino acid residues other than cysteinyl residues. Images PMID:1608970

  9. Proteomic analysis of 4-hydroxynonenal and nitrotyrosine modified proteins in RTT fibroblasts.

    PubMed

    Pecorelli, Alessandra; Cervellati, Carlo; Cortelazzo, Alessio; Cervellati, Franco; Sticozzi, Claudia; Mirasole, Cristiana; Guerranti, Roberto; Trentini, Alessandro; Zolla, Lello; Savelli, Vinno; Hayek, Joussef; Valacchi, Giuseppe

    2016-12-01

    Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births. A clear etiological factor present in more than 90% of classical RTT cases is the mutation of the gene encoding methyl-CpG-binding protein 2 (MECP2). Recent work from our group was able to shown a systemic oxidative stress (OxS) in these patients that correlates with the gravity of the clinical features. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have performed a two-dimensional gel electrophoresis in order to evidence the oxidative modifications of proteins with special focus on the formation of protein adducts with 4-hydroxynonenal (4-HNE PAs)-a major secondary product of lipid peroxidation- and Nitrotyrosine, a marker derived from the biochemical interaction of nitric oxide (NO) or nitric oxide-derived secondary products with reactive oxygen species (ROS). Then, oxidatively modified spots were identified by mass spectrometry, LC-ESI-CID-MS/MS. Our results showed that 15 protein spots presented 4-HNE PAs and/or nitrotyrosine adducts in fibroblasts proteome from RTT patients compared to healthy control cells. Post-translationally modified proteins were related to several functional categories, in particular to cytoskeleton structure and protein folding. In addition, clear upregulated expression of the inducible NO synthase (iNOS) with high nitrite levels were observed in RTT fibroblasts, justifying the increased nitrotyrosine protein modifications. The present work describes not only the proteomic profile in RTT fibroblasts, but also identifies the modified proteins by 4-HNE and nitrotyrosine. Of note, for the first time, it appears that a dysregulation of NO pathway can be associated to RTT pathophysiology. In conclusion, the evidence of a wide range of proteins able to forms adducts with 4-HNE, Nitrotyrosine or with both confirms the possible alteration of several aspects of cellular functions

  10. Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal.

    PubMed

    Nadkarni, D V; Sayre, L M

    1995-03-01

    The lipid peroxidation product trans-4-hydroxy-2-nonenal (HNE) has been implicated in the covalent modification of low-density lipoproteins (LDL) thought to contribute to the over-accumulation of LDL in the arterial wall in the initial stages of atherosclerosis. Proposals for the exact structures of "early" protein side-chain modifications until now have been based on indirect evidence. In this paper, the structures of first-formed His- and Lys-based adducts were elucidated by correlating NMR spectral properties with those obtained on models with reduced chiral center content, in some cases following hydride reduction. In this manner, we could confirm unambiguously the structure of a HNE-His imidazole(N tau) Michael adduct, stabilized as a cyclic hemiacetal and isolated from a neutral aqueous 1:1 stoichiometry reaction mixture. In the case of Lys/amine reactivity, where an excess of amine is needed to avert HNE aldol condensation, the predominance of a 1:1 Michael adduct in homogeneous aqueous solution and a 1:2 Michael-Schiff base adduct under two-phase aqueous-organic conditions could be verified by isolation of the respective borohydride-reduced forms. The 1:2 adduct, shown to exist as the cyclic hemiaminal, could represent a stable lysine-based cross-link in certain protein microenvironments.

  11. Adduct formation of 4-hydroxynonenal and malondialdehyde with elongation factor-2 in vitro and in vivo.

    PubMed

    Argüelles, Sandro; Machado, Alberto; Ayala, Antonio

    2009-08-01

    Protein synthesis is universally affected by aging in all organisms. There is no clear consensus about the mechanism underlying the decline of translation with aging. Previous reports from our laboratory have shown that the elongation step is especially affected with aging as a consequence of alterations in elongation factor-2 (eEF-2), the monomeric protein that catalyzes the movement of the ribosome along the mRNA during protein synthesis. eEF-2 seems to be specifically affected by lipid peroxidant compounds, which concomitantly produce several reactive, toxic aldehydes, such as MDA and HNE. These aldehydes are able to form adducts with proteins that lead to their inactivation. In this paper we studied the formation of adducts between MDA or HNE and eEF-2. The study was performed both in vitro, using liver homogenates treated with cumene hydroperoxide, and in vivo using young control rats, treated with the same oxidant, and 12-and 24-month-old rats. In all cases we found a decrease in the levels of eEF-2, an increase in the amount of lipid peroxidation, and a concomitant formation of adducts between eEF-2 and MDA or HNE. The results suggest that one possible mechanism responsible for the decline of protein synthesis during aging could be the alteration in eEF-2 levels, secondary to lipid peroxidation and adduct formation with these aldehydes.

  12. Activation of proinflammatory signaling by 4-hydroxynonenal-Src adducts in aged kidneys

    PubMed Central

    Lee, Bonggi; Lee, Eun Kyeong; Chung, Ki Wung; Moon, Kyoung Mi; Kim, Min Jo; An, Hye Jin; Jeong, Ji Won; Kim, Ye Ra; Yu, Byung Pal; Chung, Hae Young

    2016-01-01

    In our previous study, reactive 4-hydroxy-2-nonenal (4-HNE) was shown to activate Src (a non-receptor tyrosine kinase) by forming an adduct on binding with a specific residue of Src, leading to the activation of proinflammatory signaling pathways in cultured cells. However, to date, the deleterious roles of 4-HNE in inflammatory signaling activation in kidneys during aging have not been explored. The purpose of the present study was to document the mechanisms by which 4-HNE induces inflammation in the kidney during aging. Initial experiments revealed that activated nuclear factor-κB (NF-κB) expression was caused by 4-HNE activation, which suppressed transcriptional activity in the aged kidney. Treatment of human umbilical vein endothelial cells with 4-HNE revealed that Src caused senescence via NF-κB activation. Furthermore, our immunohistochemistry data showed that 4-HNE-adducted Src significantly increased in aged kidney tissues. The data showed age-related upregulation of downstream signaling molecules such as mitogen activated protein kinases (MAPKs), activator protein-1 (AP-1), NF-κB, and COX-2 in a cell culture cell system. Taken together, the results of this study show that the formation of adducts between 4-HNE and Src activates inflammatory signaling pathways in the aged kidney, contributing to age-related nephropathy. PMID:27472463

  13. Identification of Protein Targets of 4-Hydroxynonenal Using Click Chemistry for Ex Vivo Biotinylation of Azido and Alkynyl Derivatives

    PubMed Central

    Vila, Andrew; Tallman, Keri A.; Jacobs, Aaron T.; Liebler, Daniel C.; Porter, Ned A.; Marnett, Lawrence J.

    2009-01-01

    Polyunsaturated fatty acids (PUFA) are primary targets of free radical damage during oxidative stress. Diffusible electrophilic α, β-unsaturated aldehydes, such as 4-hydroxynonenal (HNE), have been shown to modify proteins that mediate cell signaling (e.g. IKK and Keap1) and alter gene expression pathways responsible for inducing antioxidant genes, heat shock proteins, and the DNA damage response. To fully understand cellular responses to HNE, it is important to determine its protein targets in an unbiased fashion. This requires a strategy for detecting and isolating HNE-modified proteins regardless of the nature of the chemical linkage between HNE and its targets. Azido or alkynyl derivatives of HNE were synthesized and demonstrated to be equivalent to HNE in their ability to induce heme oxygenase induction and induce apoptosis in colon cancer (RKO) cells. Cells exposed to the tagged HNE derivatives were lysed and exposed to reagents to effect Staudinger ligation or copper-catalyzed Huisgen 1,3 dipolar cycloaddition reaction (click chemistry) to conjugate HNE-adducted proteins with biotin for subsequent affinity purification. Both strategies yielded efficient biotinylation of tagged HNE-protein conjugates but click chemistry was found to be superior for recovery of biotinylated proteins from streptavidin-coated beads. Biotinylated proteins were detected in lysates from RKO cell incubations with azido-HNE at concentrations as low as 1 μM. These proteins were affinity purified with streptavidin beads and proteomic analysis was performed by linear ion trap mass spectrometry. Proteomic analysis revealed a dose-dependent increase in labeled proteins with increased sequence coverage at higher concentrations. Several proteins involved in stress signaling (heat shock proteins 70 and 90, and the 78-kDa glucose-regulated protein) were selectively adducted by azido- and alkynyl-HNE. The use of azido and alkynyl derivatives in conjunction with click chemistry appears to be

  14. Modification of Platelet Proteins by 4-hydroxynonenal: Potential Mechanisms for Inhibition of Aggregation and Metabolism

    PubMed Central

    Ravi, Saranya; Johnson, Michelle S.; Chacko, Balu K.; Kramer, Philip A.; Sawada, Hirotaka; Locy, Morgan L.; Wilson, Landon. S.; Barnes, Stephen; Marques, Marisa B.; Darley-Usmar, Victor M.

    2015-01-01

    Platelet aggregation is an essential response to tissue injury and is associated with activation of pro-oxidant enzymes, such as cyclooxygenase, and is also a highly energetic process. The two central energetic pathways in the cell, glycolysis and mitochondrial oxidative phosphorylation, are susceptible to damage by reactive lipid species. Interestingly, how platelet metabolism is affected by the oxidative stress associated with aggregation is largely unexplored. To address this issue, we examined the response of human platelets to 4-hydroxynonenal (4-HNE), a reactive lipid species which is generated during thrombus formation and during oxidative stress. Elevated plasma 4-HNE has been associated with renal failure, septic shock and cardiopulmonary bypass surgery. In this study, we found that 4-HNE decreased thrombin stimulated platelet aggregation by approximately 60%. The metabolomics analysis demonstrated that underlying our previous observation of a stimulation of platelet energetics by thrombin glycolysis and TCA (Tricarboxylic acid) metabolites were increased. Next, we assessed the effect of both 4-HNE and alkyne HNE (A-HNE) on bioenergetics and targeted metabolomics, and found a stimulatory effect on glycolysis, associated with inhibition of bioenergetic parameters. In the presence of HNE and thrombin glycolysis was further stimulated but the levels of the TCA metabolites were markedly suppressed. Identification of proteins modified by A-HNE followed by click chemistry and mass spectrometry revealed essential targets in platelet activation including proteins involved in metabolism, adhesion, cytoskeletal reorganization, aggregation, vesicular transport, protein folding, antioxidant proteins, and small GTPases. In summary, the biological effects of 4-HNE can be more effectively explained in platelets by the integrated effects of the modification of an electrophile responsive proteome rather than the isolated effects of candidate proteins. PMID:26475426

  15. Replication Bypass of the trans-4-Hydroxynonenal-Derived (6S,8R,11S)-1,N2-Deoxyguanosine DNA Adduct by the Sulfolobus solfataricus DNA Polymerase IV

    PubMed Central

    2012-01-01

    trans-4-Hydroxynonenal (HNE) is the major peroxidation product of ω-6 polyunsaturated fatty acids in vivo. Michael addition of the N2-amino group of dGuo to HNE followed by ring closure of N1 onto the aldehyde results in four diastereomeric 1,N2-dGuo (1,N2-HNE-dGuo) adducts. The (6S,8R,11S)-HNE-1,N2-dGuo adduct was incorporated into the 18-mer templates 5′-d(TCATXGAATCCTTCCCCC)-3′ and d(TCACXGAATCCTTCCCCC)-3′, where X = (6S,8R,11S)-HNE-1,N2-dGuo adduct. These differed in the identity of the template 5′-neighbor base, which was either Thy or Cyt, respectively. Each of these templates was annealed with either a 13-mer primer 5′-d(GGGGGAAGGATTC)-3′ or a 14-mer primer 5′-d(GGGGGAAGGATTCC)-3′. The addition of dNTPs to the 13-mer primer allowed analysis of dNTP insertion opposite to the (6S,8R,11S)-HNE-1,N2-dGuo adduct, whereas the 14-mer primer allowed analysis of dNTP extension past a primed (6S,8R,11S)-HNE-1,N2-dGuo:dCyd pair. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) belongs to the Y-family of error-prone polymerases. Replication bypass studies in vitro reveal that this polymerase inserted dNTPs opposite the (6S,8R,11S)-HNE-1,N2-dGuo adduct in a sequence-specific manner. If the template 5′-neighbor base was dCyt, the polymerase inserted primarily dGTP, whereas if the template 5′-neighbor base was dThy, the polymerase inserted primarily dATP. The latter event would predict low levels of Gua → Thy mutations during replication bypass when the template 5′-neighbor base is dThy. When presented with a primed (6S,8R,11S)-HNE-1,N2-dGuo:dCyd pair, the polymerase conducted full-length primer extension. Structures for ternary (Dpo4-DNA-dNTP) complexes with all four template-primers were obtained. For the 18-mer:13-mer template-primers in which the polymerase was confronted with the (6S,8R,11S)-HNE-1,N2-dGuo adduct, the (6S,8R,11S)-1,N2-dGuo lesion remained in the ring-closed conformation at the active site. The incoming dNTP, either d

  16. Increased accumulation of 4-hydroxynonenal adducts in male GSTA4/PPAR alpha double knockout mice enhances injury during early stages of alcoholic liver disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hepatic lipid peroxidation and accumulation of aldehyde-adducted proteins occur early in alcohol-mediated injury and are postulated to mediate the subsequent pro-inflammatory and fibrotic responses observed in alcoholic liver disease. To test the significance of lipid peroxidation formation in the ...

  17. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    SciTech Connect

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  18. Replication Bypass of the trans-4-Hydroxynonenal-Derived (6S,8R,11S)-1,N[superscript 2]-Deoxyguanosine DNA Adduct by the Sulfolobus solfataricus DNA Polymerase IV

    SciTech Connect

    Banerjee, Surajit; Christov, Plamen P.; Kozekova, Albena; Rizzo, Carmelo J.; Egli, Martin; Stone, Michael P.

    2014-10-02

    trans-4-Hydroxynonenal (HNE) is the major peroxidation product of {omega}-6 polyunsaturated fatty acids in vivo. Michael addition of the N{sub 2}-amino group of dGuo to HNE followed by ring closure of N1 onto the aldehyde results in four diastereomeric 1,N{sub 2}-dGuo (1,N{sub 2}-HNE-dGuo) adducts. The (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct was incorporated into the 18-mer templates 5'-d(TCATXGAATCCTTCCCCC)-3' and d(TCACXGAATCCTTCCCCC)-3', where X = (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct. These differed in the identity of the template 5'-neighbor base, which was either Thy or Cyt, respectively. Each of these templates was annealed with either a 13-mer primer 5'-d(GGGGGAAGGATTC)-3' or a 14-mer primer 5'-d(GGGGGAAGGATTCC)-3'. The addition of dNTPs to the 13-mer primer allowed analysis of dNTP insertion opposite to the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct, whereas the 14-mer primer allowed analysis of dNTP extension past a primed (6S,8R,11S)-HNE-1,N{sub 2}-dGuo:dCyd pair. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) belongs to the Y-family of error-prone polymerases. Replication bypass studies in vitro reveal that this polymerase inserted dNTPs opposite the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct in a sequence-specific manner. If the template 5'-neighbor base was dCyt, the polymerase inserted primarily dGTP, whereas if the template 5'-neighbor base was dThy, the polymerase inserted primarily dATP. The latter event would predict low levels of Gua {yields} Thy mutations during replication bypass when the template 5'-neighbor base is dThy. When presented with a primed (6S,8R,11S)-HNE-1,N{sub 2}-dGuo:dCyd pair, the polymerase conducted full-length primer extension. Structures for ternary (Dpo4-DNA-dNTP) complexes with all four template-primers were obtained. For the 18-mer:13-mer template-primers in which the polymerase was confronted with the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct, the (6S,8R,11S)-1,N{sub 2}-dGuo lesion remained in the ring

  19. Increased accumulation of 4-hydroxynonenal adducts in female GSTA4/PPAR alpha double knockout mice enhance steatosis and inflammation in a model of pediatric nonalcoholic fatty liver disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hepatocellular injury resulting from increased lipid peroxidation products and oxidative stress is considered a potential mechanism driving the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitsis (NASH). To test the significance of lipid peroxidation and protein...

  20. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: Methodological aspects and biological consequences.

    PubMed

    Mol, Marco; Regazzoni, Luca; Altomare, Alessandra; Degani, Genny; Carini, Marina; Vistoli, Giulio; Aldini, Giancarlo

    2017-02-02

    4-Hydroxynonenal (HNE), an electrophilic end-product deriving from lipid peroxidation, undergoes a heterogeneous set of biotransformations including enzymatic and non-enzymatic reactions. The former mostly involve red-ox reactions on the HNE oxygenated functions (phase I metabolism) and GSH conjugations (phase II) while the latter are due to the HNE capacity to spontaneously condense with nucleophilic sites within endogenous molecules such as proteins, nucleic acids and phospholipids. The overall metabolic fate of HNE has recently attracted great interest not only because it clearly determines the HNE disposal, but especially because the generated metabolites and adducts are not inactive molecules (as initially believed) but show biological activities even more pronounced than those of the parent compound as exemplified by potent pro-inflammatory stimulus induced by GSH conjugates. Similarly, several studies revealed that the non-enzymatic reactions, initially considered as damaging processes randomly involving all endogenous nucleophilic reactants, are in fact quite selective in terms of both reactivity of the nucleophilic sites and stability of the generated adducts. Even though many formed adducts retain the expected toxic consequences, some adducts exhibit well-defined beneficial roles as documented by the protective effects of sublethal concentrations of HNE against toxic concentrations of HNE. Clearly, future investigations are required to gain a more detailed understanding of the metabolic fate of HNE as well as to identify novel targets involved in the biological activity of the HNE metabolites. These studies are and will be permitted by the continuous progress in the analytical methods for the identification and quantitation of novel HNE metabolites as well as for proteomic analyses able to offer a comprehensive picture of the HNE-induced adducted targets. On these grounds, the present review will focus on the major enzymatic and non-enzymatic HNE

  1. Involvement of lipid peroxidation-derived aldehyde-protein adducts in autoimmunity mediated by trichloroethene.

    PubMed

    Wang, Gangduo; Ansari, G A S; Khan, M Firoze

    2007-12-01

    Lipid peroxidation, a major contributor to cellular damage, is also implicated in the pathogenesis of autoimmune diseases (AD). The focus of this study was to elucidate the role of lipid peroxidation-derived aldehydes in autoimmunity induced and/or exacerbated by chemical exposure. Previous studies showed that trichloroethene (TCE) is capable of inducing/accelerating autoimmunity. To test whether TCE-induced lipid peroxidation might be involved in the induction/exacerbation of autoimmune responses, groups of autoimmune-prone female MRL +/+ mice were treated with TCE (10 mmol/kg, i.p., every 4th day) for 6 or 12 wk. Significant increases of the formation of malondialdehyde (MDA)- and 4-hydroxynonenal (HNE)-protein adducts were found in the livers of TCE-treated mice at both 6 and 12 wk, but the response was greater at 12 wk. Further characterization of these adducts in liver microsomes showed increased formation of MDA-protein adducts with molecular masses of 86, 65, 56, 44, and 32 kD, and of HNE-protein adducts with molecular masses of 87, 79, 46, and 17 kD in TCE-treated mice. In addition, significant induction of anti-MDA- and anti-HNE-protein adduct-specific antibodies was observed in the sera of TCE-treated mice, and showed a pattern similar to MDA- or HNE-protein adducts. The increases in anti-MDA- and anti-HNE-protein adduct antibodies were associated with significant elevation in serum anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies at 6 wk and, to a greater extent, at 12 wk. These studies suggest that TCE-induced lipid peroxidation is associated with induction/exacerbation of autoimmune response in MRL+/+ mice, and thus may play an important role in disease pathogenesis. Further interventional studies are needed to establish a causal relationship between lipid peroxidation and TCE-induced autoimmune response.

  2. Increased 4-hydroxynonenal protein adducts in male GSTA4–4/PPAR-alpha double knockout mice enhance injury during early stages of alcoholic liver disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To test the significance of lipid peroxidation in the development of alcoholic liver injury, an ethanol (EtOH) liquid diet was fed to male wild type 129/SvJ mice, and glutathione S-transferase A4-4 null (GSTA4-/-) mice for 40 d. GSTA4-/- mice were also crossed with peroxisome proliferator-activated ...

  3. Alcohol, Aldehydes, Adducts and Airways

    PubMed Central

    Sapkota, Muna; Wyatt, Todd A.

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  4. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing on mitochondria

    PubMed Central

    Zhong, Huiqin; Yin, Huiyong

    2014-01-01

    Oxidative stress-induced lipid peroxidation has been associated with human physiology and diseases including cancer. Overwhelming data suggest that reactive lipid mediators generated from this process, such as 4-hydroxynonenal (4-HNE), are biomarkers for oxidative stress and important players for mediating a number of signaling pathways. The biological effects of 4-HNE are primarily due to covalent modification of important biomolecules including proteins, DNA, and phospholipids containing amino group. In this review, we summarize recent progress on the role of 4-HNE in pathogenesis of cancer and focus on the involvement of mitochondria: generation of 4-HNE from oxidation of mitochondria-specific phospholipid cardiolipin; covalent modification of mitochondrial proteins, lipids, and DNA; potential therapeutic strategies for targeting mitochondrial ROS generation, lipid peroxidation, and 4-HNE. PMID:25598486

  5. 4-Hydroxynonenal, a lipid peroxidation byproduct of spinal cord injury, is cytotoxic for oligodendrocyte progenitors and inhibits their responsiveness to PDGF.

    PubMed

    Gard, A L; Solodushko, V G; Waeg, G; Majic, T

    2001-03-15

    Oligodendroglial reactions to compression injury of spinal cord include apoptosis, secondary demyelination, and remyelination failure. Within hours after contusion, the membrane lipid peroxidation (MLP) byproduct, 4-hydroxynonenal (HNE), increases rapidly in gray matter and thereafter in white matter tracts beyond the initial lesion level. Considering that HNE is a mediator and marker of neuronal MLP toxicity in various neurodegenerative conditions, the present study examined its effect on the regeneration potential of oligodendrocyte progenitors, as defined by their capacity to survive, proliferate and migrate in primary culture. Treatment of oligodendroblasts with HNE evoked a time- and dose-dependent cytotoxicity resembling apoptosis at aldehyde concentrations known to be produced by neurons and achieved in tissue undergoing peroxidative injury. In addition, sublethal concentrations of HNE inhibited the mitogenic and chemotactic responses of more immature progenitors to platelet-derived growth factor. These effects appear to be mediated in part by the formation of HNE adducts with progenitor proteins located within the plasma membrane and cytoplasmic compartments. Our data are the first to show that HNE can have direct, deleterious effects on oligodendrocyte precursors. The present study also suggests a mechanism by which the striking accumulation of HNE in white matter tracts surrounding the site of spinal cord compression injury and in other ischemic-hypoxic insults associated with MLP could suppress the potential regenerative response of endogenous oligodendrocyte progenitor cells.

  6. Reduced cellular redox status induces 4-hydroxynonenal-mediated caspase 3 activation leading to erythrocyte death during chronic arsenic exposure in rats

    SciTech Connect

    Biswas, Debabrata; Sen, Gargi; Biswas, Tuli

    2010-05-01

    Chronic exposure to arsenic in rats led to gradual accumulation of the toxicant in erythrocytes causing oxidative stress in these cells. 4-Hydroxynonenal (4-HNE), a major aldehyde product of lipid peroxidation, contributed significantly to the cytopathological events observed during oxidative stress in the erythrocytes of exposed rats. 4-HNE triggered death signal cascade that was initiated with the formation of HNE-protein adducts in cytosol. HNE-protein adduct formation resulted in depletion of cytosolic antioxidants followed by increased generation of ROS. Results showed accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) from the early stages of arsenic exposure, while superoxide (O{sub 2}{sup c}entre dot{sup -}) and hydroxyl radical ({sup c}entre dotOH) also contributed to the oxidative stress during longer period of exposure. Suppression of antioxidant system coupled with increased generation of ROS eventually led to activation of caspase 3 during arsenic exposure. Attenuation of HNE-mediated activation of caspase 3 in presence of N-acetylcysteine (NAC) indicated the involvement of GSH in the process. Prevention of HNE-mediated degradation of membrane proteins in presence of Z-DEVD-FMK identified caspase 3 as the principal mediator of HNE-induced cellular damage during arsenic exposure. Degradation of band 3 followed by its aggregation on the red cell surface promoted immunologic recognition of redistributed band 3 by autologous IgG with subsequent attachment of C3b. Finally, the formation of C3b-IgG-band 3 immune complex accelerated the elimination of affected cells from circulation and led to the decline of erythrocyte life span during chronic arsenic toxicity.

  7. The effects of angiotensin II and the oxidative stress mediator 4-hydroxynonenal on human osteoblast-like cell growth: possible relevance to otosclerosis.

    PubMed

    Rudić, Milan; Milković, Lidija; Žarković, Kamelija; Borović-Šunjić, Suzana; Sterkers, Olivier; Waeg, Georg; Ferrary, Evelyne; Bozorg Grayeli, Alexis; Žarković, Neven

    2013-04-01

    Otosclerosis is a complex disease characterized by an abnormal bone turnover of the otic capsule resulting in conductive hearing loss. Recent findings have shown that angiotensin II (Ang II), a major effector peptide of the renin-angiotensin system, plays an important role in the pathophysiology of otosclerosis, most likely by its proinflammatory effects on the bone cells. Because reactive oxygen species play a role both in inflammation and in the cellular signaling pathway of Ang II, the appearance of protein adducts of the "second messenger of free radicals," the aldehyde 4-hydroxynonenal (HNE), in otosclerotic bone has been analyzed. Immunohistochemical analysis of HNE-modified proteins in tissue samples of the stapedial bones performed on 15 otosclerotic patients and 6 controls revealed regular HNE-protein adducts present in the subperiosteal parts of control bone specimens, whereas irregular areas of a pronounced HNE-protein adduct presence were found within stapedial bone in cases of otosclerosis. To study possible interference by HNE and Ang II in human bone cell proliferation, differentiation, and induction of apoptosis we used an in vitro model of osteoblast-like cells. HNE interacted with Ang II in a dose-dependent manner, both by forming HNE-Ang II adducts, as revealed by immunoblotting, and by modifying its effects on cultured cells. Namely, treatment with 0.1 nM Ang II and 2.5 μM HNE stimulated proliferation, whereas treatment with 10 μM HNE or in combination with Ang II (0.1, 0.5, and 1 nM) decreased cell proliferation. Moreover, 10 μM HNE alone and with Ang II (except if 1 nM Ang II was used) increased cellular differentiation and apoptosis. HNE at 5 μM did not affect differentiation nor significantly change apoptosis. On the other hand, when cells were treated with lower concentrations of HNE and Ang II we observed a decrease in cellular differentiation (combination of 1.0 or 2.5 μM HNE with 0.1 nM Ang II) and decrease in apoptosis (0.1 and 0

  8. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    SciTech Connect

    Zheng, Ruijin; Heck, Diane E.; Mishin, Vladimir; Black, Adrienne T.; Shakarjian, Michael P.; Kong, Ah-Ng Tony; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-03-01

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of

  9. Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease.

    PubMed

    Bradley, M A; Markesbery, W R; Lovell, M A

    2010-06-15

    Previous studies demonstrate increased levels of 4-hydroxynonenal (HNE) and acrolein in vulnerable brain regions of subjects with mild cognitive impairment and late-stage Alzheimer disease (LAD). Recently preclinical AD (PCAD) subjects, who demonstrate normal antemortem neuropsychological test scores but abundant AD pathology at autopsy, have become the focus of increased study. Levels of extractable HNE and acrolein were quantified by gas chromatography-mass spectrometry with negative chemical ionization, and protein-bound HNE and acrolein were quantified by dot-blot immunohistochemistry in the hippocampus/parahippocampal gyrus (HPG), superior and middle temporal gyri (SMTG), and cerebellum (CER) of 10 PCAD and 10 age-matched normal control (NC) subjects. Results of the analyses show a significant (P<0.05) increase in levels of extractable acrolein in the HPG of PCAD subjects compared to age-matched NC subjects and a significant decrease in extractable acrolein in PCAD CER. Significant increases in protein-bound HNE in HPG and a significant decrease in CER of PCAD subjects compared to NC subjects were observed. No significant alterations were observed in either extractable or protein-bound HNE or acrolein in the SMTG of PCAD subjects. Additionally, no significant differences in levels of protein carbonyls were observed in the HPG, SMTG, or CER of PCAD subjects compared to NC subjects.

  10. Geldanamycin increases 4-hydroxynonenal (HNE)-induced cell death in human retinal pigment epithelial cells.

    PubMed

    Kaarniranta, Kai; Ryhänen, Tuomas; Karjalainen, Hannu M; Lammi, Mikko J; Suuronen, Tiina; Huhtala, Anne; Kontkanen, Matti; Teräsvirta, Markku; Uusitalo, Hannu; Salminen, Antero

    Development of age-related macular degeneration (AMD) is associated with functional abnormalities and cell death in retinal pigment epithelial (RPE) cells attributable to oxidative stress. To minimize the adverse effects of oxidative stress, cells activate their defence systems, e.g., via increased expression of heat shock protein (Hsp), activation of stress sensitive AP-1 and NF-kappaB transcription factors. In this study, we examined the accumulation of Hsp70 protein, activation of AP-1 and NF-kappaB transcription factors in human ARPE-19 cells subjected to a 4-hydroxynonenal (HNE)-induced oxidative stress. In addition, the influence of Hsp90 inhibitor geldanamycin (GA) was studied in HNE-treated cells. Mitochondrial metabolic activity and apoptosis were determined to evaluate cell death in the ARPE-19 cells. The ARPE-19 cells showed increased accumulation of Hsp70 protein before of the cytotoxic hallmarks appearing in response to HNE. In contrast, increased DNA-binding activities of AP-1 or NF-kappaB transcription factors were not seen under HNE insults. Interestingly, GA significantly increased cell death in the HNE-treated cells, which was involved in caspase-3 independent apoptosis. This study reveals that the Hsps have an important role in the cytoprotection of RPE cells subjected to HNE-derived oxidative stress.

  11. Differential regulation of c-jun and CREB by acrolein and 4-hydroxynonenal.

    PubMed

    Pugazhenthi, Subbiah; Phansalkar, Ketaki; Audesirk, Gerald; West, Anne; Cabell, Leigh

    2006-01-01

    In Alzheimer's disease (AD), oxidative stress-induced lipid peroxidation leads to accumulation of unsaturated aldehydes including acrolein and 4-hydroxynonenal (4HNE) in brain. In this study, we examined the effects of these lipid peroxidation products on apoptotic pathways in cultured neurons. Acrolein and 4HNE increased the levels of active phosphorylated forms of c-jun and CREB, the transcription factors that promote apoptosis and cell survival, respectively. However, they decreased the activity of CREB-dependent BDNF promoter while they increased the activity of promoters responsive to c-jun. We hypothesized that this differential regulation could be due to competition between proapoptotic c-jun and cytoprotective CREB for CBP (CREB-binding protein), a coactivator shared by several transcription factors. In support of this hypothesis, we demonstrate that the decrease of BDNF promoter activity by acrolein and 4HNE could be restored (i) by cotransfection with CBP, (ii) by cotransfection with VP 16-CREB, a constitutively active form of CREB that does not depend on CBP for its activation, or (iii) by inhibiting JNK-mediated c-jun activation. Finally, adenoviral transduction of hippocampal neurons with VP 16-CREB resulted in significant reduction in caspase-3 activation by acrolein and 4HNE. These observations suggest that lipid peroxidation-induced differential regulation of CREB and c-jun might play a role in neurodegeneration in AD.

  12. Protein modification by acrolein: Formation and stability of cysteine adducts

    PubMed Central

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2010-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to identify in vitro and in vivo. In this study, model peptides with cysteine, lysine, and histidine residues were used to examine the reactivity of acrolein. Results from these experiments show that acrolein reacts rapidly with cysteine residues through Michael addition to form M+56 Da adducts. These M+56 adducts are, however, not stable, even though spontaneous dissociation of the adduct is slow. Further studies demonstrated that when acrolein and model peptides are incubated at physiological pH and temperature, the M+56 adducts decreased gradually accompanied by the increase of M+38 adducts, which are formed from intra-molecular Schiff base formation. Adduct formation with the side chains of other amino acid residues (lysine and histidine) was much slower than cysteine and required higher acrolein concentration. When cysteine residues were blocked by reaction with iodoacetamide and higher concentrations of acrolein were used, adducts of the N-terminal amino group or histidyl residues were formed but lysine adducts were not detected. Collectively, these data demonstrate that acrolein reacts avidly with protein cysteine residues and that the apparent loss of protein-acrolein Michael adducts over time may be related to the appearance of a novel (M+38) adduct. These findings may be important in identification of in vivo adducts of acrolein with protein cysteine residues. PMID:19231900

  13. Differential oxidative modification of proteins in MRL+/+ and MRL/lpr mice: Increased formation of lipid peroxidation-derived aldehyde-protein adducts may contribute to accelerated onset of autoimmune response.

    PubMed

    Wang, Gangduo; Li, Hui; Firoze Khan, M

    2012-12-01

    Even though reactive oxygen species (ROS) have been implicated in SLE pathogenesis, the contributory role of ROS, especially the consequences of oxidative modification of proteins by lipid peroxidation-derived aldehydes (LPDAs) such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) in eliciting an autoimmune response and disease pathogenesis remains largely unexplored. MRL/lpr mice, a widely used model for SLE, spontaneously develop a condition similar to human SLE, whereas MRL+/+ mice with the same MRL background, show much slower onset of SLE. To assess if the differences in the onset of SLE in the two substrains could partly be due to differential expression of LPDAs and to provide evidence for the role of LPDA-modified proteins in SLE pathogenesis, we determined the serum levels of MDA-/HNE-protein adducts, anti-MDA-/HNE-protein adduct antibodies, MDA-/HNE-protein adduct specific immune complexes, and various autoantibodies in 6-, 12- and 18-week old mice of both substrains. The results show age-related increases in the formation of MDA-/HNE-protein adducts, their corresponding antibodies and MDA-/HNE-specific immune complexes, but MRL/lpr mice showed greater and more accelerated response. Interestingly, a highly positive correlation between increased anti-MDA-/HNE-protein adduct antibodies and autoantibodies was observed. More importantly, we further observed that HNE-MSA caused significant inhibition in antinuclear antibodies (ANA) binding to nuclear antigens. These findings suggest that LPDA-modified proteins could be important sources of autoantibodies and CICs in these mice, and thus contribute to autoimmune disease pathogenesis. The observed differential responses to LPDAs in MRL/lpr and MRL+/+ mice may, in part, be responsible for accelerated and delayed onset of the disease, respectively.

  14. Malarial pigment hemozoin impairs chemotactic motility and transendothelial migration of monocytes via 4-hydroxynonenal.

    PubMed

    Skorokhod, Oleksii A; Barrera, Valentina; Heller, Regine; Carta, Franco; Turrini, Franco; Arese, Paolo; Schwarzer, Evelin

    2014-10-01

    Natural hemozoin, nHZ, is avidly phagocytosed in vivo and in vitro by human monocytes. The persistence of the undigested β-hematin core of nHZ in the phagocyte lysosome for long periods of time modifies several cellular immune functions. Here we show that nHZ phagocytosis by human primary monocytes severely impaired their chemotactic motility toward MCP-1, TNF, and FMLP, by approximately 80% each, and their diapedesis across a confluent human umbilical vein endothelial cell layer toward MCP-1 by 45±5%. No inhibition was observed with latex-fed or unfed monocytes. Microscopic inspection revealed polarization defects in nHZ-fed monocytes due to irregular actin polymerization. Phagocytosed nHZ catalyzes the peroxidation of polyunsaturated fatty acids and generation of the highly reactive derivative 4-hydroxynonenal (4-HNE). Similar to nHZ phagocytosis, the exposure of monocytes to in vivo-compatible 4-HNE concentrations inhibited cell motility in both the presence and the absence of chemotactic stimuli, suggesting severe impairment of cytoskeleton dynamics. Consequently, 4-HNE conjugates with the cytoskeleton proteins β-actin and coronin-1A were immunochemically identified in nHZ-fed monocytes and mass spectrometrically localized in domains of protein-protein interactions involved in cytoskeleton reorganization and cell motility. The molecular and functional modifications of actin and coronin by nHZ/4-HNE may also explain impaired phagocytosis, another motility-dependent process previously described in nHZ-fed monocytes. Further studies will show whether impaired monocyte motility may contribute to the immunodepression and the frequent occurrence of secondary infections observed in malaria patients.

  15. Quantitation of carcinogen bound protein adducts by fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Gan, Liang-Shang; Otteson, Michael S.; Doxtader, Mark M.; Skipper, Paul L.; Dasari, Ramachandra R.; Tannenbaum, Steven R.

    1989-01-01

    A highly significant correlation of aflatoxin B 1 serum albumin adduct level with daily aflatoxin B 1 intake was observed in a molecular epidemiological study of aflatoxin carcinogenesis which used conventional fluorescence spectroscopy methods for adduct quantitation. Synchronous fluorescence spectroscopy and laser induced fluorescence techniques have been employed to quantitate antibenzo[ a]pyrene diol epoxide derived globin peptide adducts. Fast and efficient methods to isolate the peptide adducts as well as eliminate protein fluorescence background are described. A detection limit of several femtomoles has been achieved. Experimental and technical considerations of low temperature synchronous fluorescence spectroscopy and fluorescence line narrowing to improve the detection sensitivities are also presented.

  16. Lipid peroxidation-derived aldehyde-protein adducts contribute to trichloroethene-mediated autoimmunity via activation of CD4+ T cells.

    PubMed

    Wang, Gangduo; König, Rolf; Ansari, G A S; Khan, M Firoze

    2008-04-01

    Lipid peroxidation is implicated in the pathogenesis of various autoimmune diseases. Lipid peroxidation-derived aldehydes such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are highly reactive and bind to proteins, but their role in eliciting an autoimmune response and their contribution to disease pathogenesis remain unclear. To investigate the role of lipid peroxidation in the induction and/or exacerbation of autoimmune response, 6-week-old autoimmune-prone female MRL+/+ mice were treated for 4 weeks with trichloroethene (TCE; 10 mmol/kg, ip, once a week), an environmental contaminant known to induce lipid peroxidation. Sera from TCE-treated mice showed significant levels of antibodies against MDA-and HNE-adducted proteins along with antinuclear antibodies. This suggested that TCE exposure not only caused increased lipid peroxidation, but also accelerated autoimmune responses. Furthermore, stimulation of cultured splenic lymphocytes from both control and TCE-treated mice with MDA-adducted mouse serum albumin (MDA-MSA) or HNE-MSA for 72 h showed significant proliferation of CD4+ T cells in TCE-treated mice as analyzed by flow cytometry. Also, splenic lymphocytes from TCE-treated mice released more IL-2 and IFN-gamma into cultures when stimulated with MDA-MSA or HNE-MSA, suggesting a Th1 cell activation. Thus, our data suggest a role for lipid peroxidation-derived aldehydes in TCE-mediated autoimmune responses and involvement of Th1 cell activation.

  17. Evaluation of three simple direct or indirect carbonyl detection methods for characterization of oxidative modifications of proteins.

    PubMed

    Vásquez-Garzón, Verónica R; Rouimi, Patrick; Jouanin, Isabelle; Waeg, Georg; Zarkovic, Neven; Villa-Treviño, Saul; Guéraud, Françoise

    2012-05-01

    Among disruptions induced by oxidative stress, modifications of proteins, particularly irreversible carbonylation, are associated with the development of several diseases, including cardiovascular diseases, neurodegenerative diseases, and cancer. Carbonylation of proteins can occur directly or indirectly through the adduction of lipid oxidation products. In this study, three classical and easy-to-perform techniques to detect direct or indirect carbonylation of proteins were compared. A model protein apomyoglobin and a complex mixture of rat liver cytosolic proteins were exposed to cumene hydroperoxide oxidation or adduction to the lipid peroxidation product 4-hydroxynonenal in order to test direct or indirect carbonylation, respectively. The technique using a specific anti-4-hydroxynonenal-histidine adduct antibody was effective to detect in vitro modification of model apomyoglobin and cytosolic proteins by 4-hydroxynonenal but not by direct carbonylation which was achieved by techniques using biotin-coupled hydrazide or dinitrophenylhydrazine derivatization of carbonyls. Sequential use of these methods enabled the detection of both direct and indirect carbonyl modification in proteins, although constitutively biotinylated proteins were detected by biotin-hydrazide. Although rather classical and efficient, methods for carbonyl detection on proteins in oxidative stress studies may be biased by some artifactual detections and complicated by proteins multimerizations. The use of more and more specific available antibodies is recommended to complete detection of lipid peroxidation product adducts on proteins.

  18. 4-Hydroxynonenal dependent alteration of TRPV1-mediated coronary microvascular signaling.

    PubMed

    DelloStritto, Daniel J; Sinharoy, Pritam; Connell, Patrick J; Fahmy, Joseph N; Cappelli, Holly C; Thodeti, Charles K; Geldenhuys, Werner J; Damron, Derek S; Bratz, Ian N

    2016-12-01

    We demonstrated previously that TRPV1-dependent regulation of coronary blood flow (CBF) is disrupted in diabetes. Further, we have shown that endothelial TRPV1 is differentially regulated, ultimately leading to the inactivation of TRPV1, when exposed to a prolonged pathophysiological oxidative environment. This environment has been shown to increase lipid peroxidation byproducts including 4-Hydroxynonenal (4-HNE). 4-HNE is notorious for producing protein post-translation modification (PTM) via reactions with the amino acids: cysteine, histidine and lysine. Thus, we sought to determine if 4-HNE mediated post-translational modification of TRPV1 could account for dysfunctional TRPV1-mediated signaling observed in diabetes. Our initial studies demonstrate 4-HNE infusion decreases TRPV1-dependent coronary blood flow in C57BKS/J (WT) mice. Further, we found that TRPV1-dependent vasorelaxation was suppressed after 4-HNE treatment in isolated mouse coronary arterioles. Moreover, we demonstrate 4-HNE significantly inhibited TRPV1 currents and Ca(2+) entry utilizing patch-clamp electrophysiology and calcium imaging respectively. Using molecular modeling, we identified potential pore cysteines residues that, when mutated, could restore TRPV1 function in the presence of 4-HNE. Specifically, complete rescue of capsaicin-mediated activation of TRPV1 was obtained following mutation of pore Cysteine 621. Finally, His tag pull-down of TRPV1 in HEK cells treated with 4-HNE demonstrated a significant increase in 4-HNE binding to TRPV1, which was reduced in the TRPV1 C621G mutant. Taken together these data suggest that 4-HNE decreases TRPV1-mediated responses, at both the in vivo and in vitro levels and this dysfunction can be rescued via mutation of the pore Cysteine 621. Our results show the first evidence of an amino acid specific modification of TRPV1 by 4-HNE suggesting this 4-HNE-dependent modification of TRPV1 may contribute to microvascular dysfunction and tissue perfusion

  19. PROTEIN ADDUCTS AS BIOMAKERS OF EXPOSURE TO ORGANOPHOSPHORUS COMPOUNDS

    PubMed Central

    Marsillach, Judit; Costa, Lucio G.; Furlong, Clement E.

    2013-01-01

    Exposure to organophosphorus (OP) compounds can lead to serious neurological damage or death. Following bioactivation by the liver cytochromes P450, the OP metabolites produced are potent inhibitors of serine active-site enzymes including esterases, proteases and lipases. OPs may form adducts on other cellular proteins. Blood cholinesterases (ChEs) have long served as biomarkers of OP exposure in humans. However, the enzymatic assays used for biomonitoring OP exposures have several drawbacks. A more useful approach will focus on multiple biomarkers and avoid problems with the enzymatic activity assays. OP inhibitory effects result from a covalent bond with the active-site serine of the target enzymes. The serine OP adducts become irreversible following a process referred to as aging where one alkyl group dissociates over variable lengths of time depending on the OP adduct. The OP-adducted enzyme then remains in circulation until it is degraded, allowing for a longer window of detection compared with direct analysis of OPs or their metabolites. Mass spectrometry (MS) provides a very sensitive method for identification of post-translational protein modifications. MS analyses of the percentage adduction of the active-site serine of biomarker proteins such as ChEs will eliminate the need for basal activity levels of the individual and will provide for a more accurate determination of OP exposure. MS analysis of biomarker proteins also provides information about the OP that has caused inhibition. Other useful biomarker proteins include other serine hydrolases, albumin, tubulin and transferrin. PMID:23261756

  20. Malondialdehyde-acetaldehyde-adducted protein inhalation causes lung injury.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; McCaskill, Michael L; Tuma, Dean J; Yanov, Daniel; DeVasure, Jane; Sisson, Joseph H

    2012-02-01

    In addition to cigarette smoking, alcohol exposure is also associated with increased lung infections and decreased mucociliary clearance. However, little research has been conducted on the combination effects of alcohol and cigarette smoke on lungs. Previously, we have demonstrated in a mouse model that the combination of cigarette smoke and alcohol exposure results in the formation of a very stable hybrid malondialdehyde-acetaldehyde (MAA)-adducted protein in the lung. In in vitro studies, MAA-adducted protein stimulates bronchial epithelial cell interleukin-8 (IL-8) via the activation of protein kinase C epsilon (PKCɛ). We hypothesized that direct MAA-adducted protein exposure in the lungs would mimic such a combination of smoke and alcohol exposure leading to airway inflammation. To test this hypothesis, C57BL/6J female mice were intranasally instilled with either saline, 30μL of 50μg/mL bovine serum albumin (BSA)-MAA, or unadducted BSA for up to 3 weeks. Likewise, human lung surfactant proteins A and D (SPA and SPD) were purified from human pulmonary proteinosis lung lavage fluid and successfully MAA-adducted in vitro. Similar to BSA-MAA, SPD-MAA was instilled into mouse lungs. Lungs were necropsied and assayed for histopathology, PKCɛ activation, and lung lavage chemokines. In control mice instilled with saline, normal lungs had few inflammatory cells. No significant effects were observed in unadducted BSA- or SPD-instilled mice. However, when mice were instilled with BSA-MAA or SPD-MAA for 3 weeks, a significant peribronchiolar localization of inflammatory cells was observed. Both BSA-MAA and SPD-MAA stimulated increased lung lavage neutrophils and caused a significant elevation in the chemokine, keratinocyte chemokine, which is a functional homologue to human IL-8. Likewise, MAA-adducted protein stimulated the activation of airway and lung slice PKCɛ. These data support that the MAA-adducted protein induces a proinflammatory response in the lungs and

  1. Role of the Lipoperoxidation Product 4-Hydroxynonenal in the Pathogenesis of Severe Malaria Anemia and Malaria Immunodepression

    PubMed Central

    Schwarzer, Evelin; Arese, Paolo; Skorokhod, Oleksii A.

    2015-01-01

    Oxidative stress plays an important role in the pathogenesis of falciparum malaria, a disease still claiming close to 1 million deaths and 200 million new cases per year. Most frequent complications are severe anemia, cerebral malaria, and immunodepression, the latter being constantly present in all forms of malaria. Complications are associated with oxidative stress and lipoperoxidation. Its final product 4-hydroxynonenal (4-HNE), a stable yet very reactive and diffusible molecule, forms covalent conjugates with proteins, DNA, and phospholipids and modulates important cell functions at very low concentrations. Since oxidative stress plays important roles in the pathogenesis of severe malaria, it appears important to explore the role of 4-HNE in two important malaria complications such as malaria anemia and malaria immunodepression where oxidative stress is considered to be involved. In this review we will summarize data about 4-HNE chemistry, its biologically relevant chemical properties, and its role as regulator of physiologic processes and as pathogenic factor. We will review studies documenting the role of 4-HNE in severe malaria with emphasis on malaria anemia and immunodepression. Data from other diseases qualify 4-HNE both as oxidative stress marker and as pathomechanistically important molecule. Further studies are needed to establish 4-HNE as accepted pathogenic factor in severe malaria. PMID:25969702

  2. 4-Hydroxynonenal differentially regulates adiponectin gene expression and secretion via activating PPARγ and accelerating ubiquitin–proteasome degradation

    PubMed Central

    Wanga, Zhigang; Dou, Xiaobing; Gu, Dongfang; Shen, Chen; Yao, Tong; Nguyen, Van; Braunschweig, Carol; Song, Zhenyuan

    2011-01-01

    Although well-established, the underlying mechanisms involved in obesity-related plasma adiponectin decline remain elusive. Oxidative stress is associated with obesity and insulin resistance and considered to contribute to the progression toward obesity-related metabolic disorders. In this study, we investigated the effects of 4-hydroxynonenal (4-HNE), the most abundant lipid peroxidation end product, on adiponectin production and its potential implication in obesity-related adiponectin decrease. Long-term high-fat diet feeding led to obesity in mouse, accompanied by decreased plasma adiponectin and increased adipose tissue 4-HNE content. Exposure of adipocytes to exogenous 4-HNE resulted in decreased adiponectin secretion in a dose-dependent manner, which was consistent with significantly decreased intracellular adiponectin protein abundance. In contrast, adiponectin gene expression was significantly elevated by 4-HNE treatment, which was concomitant with increased peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expression and transactivity. The effect was abolished by T0070907, a PPAR-γ antagonist, suggesting that PPAR-γ activation plays a critical role in this process. To gain insight into mechanisms involved in adiponectin protein decrease, we examined the effects of 4-HNE on adiponectin protein degradation. Cycloheximide (CHX)-chase assay revealed that 4-HNE exposure accelerated adiponectin protein degradation, which was prevented by MG132, a potent proteasome inhibitor. Immunoprecipitation assay showed that 4-HNE exposure increased ubiquitinated adiponectin protein levels. These data altogether indicated that 4-HNE enhanced adiponectin protein degradation via ubiquitin–proteasome system. Finally, we demonstrated that supplementation of HF diet with betaine, an antioxidant and methyl donor, alleviated high-fat-induced adipose tissue 4-HNE increase and attenuated plasma adiponectin decline. Taken together, our findings suggest that the lipid

  3. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    SciTech Connect

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  4. Tetrahydrohyperforin decreases cholinergic markers associated with amyloid-β plaques, 4-hydroxynonenal formation, and caspase-3 activation in AβPP/PS1 mice.

    PubMed

    Carvajal, Francisco J; Zolezzi, Juan M; Tapia-Rojas, Cheril; Godoy, Juan A; Inestrosa, Nibaldo C

    2013-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle deposition, synaptic alterations, and oxidative injury. In AD patients, acetylcholinesterase (AChE) activity is low in most regions of the brain, but increased within and around amyloid plaques, where it accelerates the Aβ assembly into oligomers and fibrils, increasing its neurotoxicity. Tetrahydrohyperforin (THH), a semi-synthetic derivative of hyperforin, reduces tau phosphorylation and Aβ accumulation in AD mouse models. In the present study, we examined the effects of THH on Aβ-AChE complexes, α7-nicotinic acetylcholine receptors (α7-nAChR), 4-hydroxynonenal (4-HNE) adducts, caspase-3 activation, and spatial memory in young AβPPSwe/PSEN1ΔE9 (AβPP/PS1) transgenic mice, in order to evaluate its potential preventive effects on the development of the disease. We report here that treatment with THH prevents the association of AChE to different types of amyloid plaques; partially restores the brain distribution of AChE molecular forms; increases α7-nAChR levels in the hippocampus of treated mice; decreases the amount of these receptors in amyloid plaques; and reduces the oxidative damage, evidenced by 4-HNE adduct formation and caspase-3 activation on AβPP/PS1 mice brain; demonstrating the neuroprotective properties of THH. Finally, we found that the acute treatment of hippocampal neurons with THH, in the presence of Aβ-AChE complexes, prevents 4-HNE adduct formation and caspase-3 activation. Our data support a therapeutic potential of THH for the treatment of AD.

  5. Prolonged Acetaminophen-Protein Adduct Elimination During Renal Failure, Lack of Adduct Removal by Hemodiafiltration, and Urinary Adduct Concentrations After Acetaminophen Overdose.

    PubMed

    Curry, Steven C; Padilla-Jones, Angela; O'Connor, Ayrn D; Ruha, Anne-Michelle; Bikin, Dale S; Wilkins, Diana G; Rollins, Douglas E; Slawson, Matthew H; Gerkin, Richard D

    2015-06-01

    Elevated concentrations of serum acetaminophen-protein adducts, measured as protein-derived acetaminophen-cysteine (APAP-CYS), have been used to support a diagnosis of APAP-induced liver injury when histories and APAP levels are unhelpful. Adducts have been reported to undergo first-order elimination, with a terminal half-life of about 1.6 days. We wondered whether renal failure would affect APAP-CYS elimination half-life and whether continuous venovenous hemodiafiltration (CVVHDF), commonly used in liver failure patients, would remove adducts to lower their serum concentrations. Terminal elimination half-lives of serum APAP-CYS were compared between subjects with and without renal failure in a prospective cohort study of 168 adults who had ingested excessive doses of APAP. APAP-CYS concentrations were measured in plasma ultrafiltrate during CVVHDF at times of elevated serum adduct concentrations. Paired samples of urine and serum APAP-CYS concentrations were examined to help understand the potential importance of urinary elimination of serum adducts. APAP-CYS elimination half-life was longer in 15 renal failure subjects than in 28 subjects with normal renal function (41.3 ± 2.2 h versus 26.8 ± 1.1 h [mean ± SEM], respectively, p < 0.001). CVVHDF failed to remove detectable amounts of APAP-CYS in any of the nine subjects studied. Sixty-eight percent of 557 urine samples from 168 subjects contained no detectable APAP-CYS, despite levels in serum up to 16.99 μM. Terminal elimination half-life of serum APAP-CYS was prolonged in patients with renal failure for reasons unrelated to renal urinary adduct elimination, and consideration of prolonged elimination needs to be considered if attempting back-extrapolation of adduct concentrations. CVVHDF did not remove detectable APAP-CYS, suggesting approximate APAP-protein adduct molecular weights ≥ 50,000 Da. The presence of urinary APAP-CYS in the minority of instances was most compatible with renal

  6. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    PubMed Central

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. PMID:23566956

  7. Olive leaf extracts protect cardiomyocytes against 4-hydroxynonenal-induced toxicity in vitro: comparison with oleuropein, hydroxytyrosol, and quercetin.

    PubMed

    Bali, Elif Burcu; Ergin, Volkan; Rackova, Lucia; Bayraktar, Oğuz; Küçükboyaci, Nurgün; Karasu, Çimen

    2014-08-01

    Olive (Olea europaea) leaf, an important traditional herbal medicine, displays cardioprotection that may be related to the cellular redox modulating effects of its polyphenolic constituents. This study was undertaken to investigate the protective effect of the ethanolic and methanolic extracts of olive leaves compared to the effects of oleuropein, hydroxytyrosol, and quercetin as a positive standard in a carbonyl compound (4-hydroxynonenal)-induced model of oxidative damage to rat cardiomyocytes (H9c2). Cell viability was detected by the MTT assay; reactive oxygen species production was assessed by the 2',7'-dichlorodihydrofluorescein diacetate method, and the mitochondrial membrane potential was determined using a JC-1 dye kit. Phospho-Hsp27 (Ser82), phospho-MAPKAPK-2 (Thr334), phospho-c-Jun (Ser73), cleaved-caspase-3 (cl-CASP3) (Asp175), and phospho-SAPK/JNK (Thr183/Tyr185) were measured by Western blotting. The ethanolic and methanolic extracts of olive leaves inhibited 4-hydroxynonenal-induced apoptosis, characterized by increased reactive oxygen species production, impaired viability (LD50: 25 µM), mitochondrial dysfunction, and activation of pro-apoptotic cl-CASP3. The ethanolic and methanolic extracts of olive leaves also inhibited 4-hydroxynonenal-induced phosphorylation of stress-activated transcription factors, and the effects of extracts on p-SAPK/JNK, p-Hsp27, and p-MAPKAPK-2 were found to be concentration-dependent and comparable with oleuropein, hydroxytyrosol, and quercetin. While the methanolic extract downregulated 4-hydroxynonenal-induced p-MAPKAPK-2 and p-c-Jun more than the ethanolic extract, it exerted a less inhibitory effect than the ethanolic extract on 4-hydroxynonenal-induced p-SAPK/JNK and p-Hsp27. cl-CASP3 and p-Hsp27 were attenuated, especially by quercetin. Experiments showed a predominant reactive oxygen species inhibitory and mitochondrial protecting ability at a concentration of 1-10 µg/mL of each extract, oleuropein

  8. Macrophage uptake of low-density lipoprotein modified by 4-hydroxynonenal. An ultrastructural study

    SciTech Connect

    Hoff, H.F.; Cole, T.B. )

    1991-02-01

    We have documented the ultrastructural characteristics of the uptake and processing by mouse peritoneal macrophages (MPM) of low-density lipoprotein (LDL) modified with 4-hydroxynonenal (HNE), an intermediate of lipid peroxidation. This was performed as part of a larger biochemical study assessing the role of LDL oxidation in lipid loading of macrophages during atherogenesis. Gold-labeled LDL that was modified with HNE leading to particle aggregation represented the morphologic probe used. When incubated with MPM, the probe became associated with short segments of cell membrane, probably derived from blebs or from lysed cells. At 37 degrees C there was a time-dependent increase in uptake by MPM, and at 4 hours the increase paralleled the degradation by MPM of 125I-labeled HNE-LDL-cAu. Clathrin-coated pits on the cell surface were consistently associated with probe. Uptake of probe appeared to occur via phagocytosis, because pseudopods frequently surrounded probe, and cytochalasin D quantitatively prevented probe uptake. A time-dependent increase was found in the number of gold particles per unit area within vacuoles, some of which were secondary lysosomes, based on acid phosphatase-positive staining. Thus, HNE-induced aggregation of LDL during oxidation, binding of aggregates to clathrin-coated pits on MPM, and subsequent phagocytosis may represent one of the ways lipid-laden foam cells are formed in vivo.

  9. “Twin peaks”: Searching for 4-hydroxynonenal urinary metabolites after oral administration in rats

    PubMed Central

    Keller, Julia; Baradat, Maryse; Jouanin, Isabelle; Debrauwer, Laurent; Guéraud, Françoise

    2014-01-01

    4-Hydroxynonenal (HNE) is a cytotoxic and genotoxic lipid oxidation secondary product which is formed endogenously upon peroxidation of cellular n-6 fatty acids. However, it can also be formed in food or during digestion, upon peroxidation of dietary lipids. Several studies have evidenced that we are exposed through food to significant concentrations of HNE that could pose a toxicological concern. It is then of importance to known how HNE is metabolized after oral administration. Although its metabolism has been studied after intravenous administration in order to mimick endogenous formation, its in vivo fate after oral administration had never been studied. In order to identify and quantify urinary HNE metabolites after oral administration in rats, radioactive and stable isotopes of HNE were used and urine was analyzed by radio-chromatography (radio-HPLC) and chromatography coupled with High Resolution Mass Spectrometry (HPLC–HRMS). Radioactivity distribution revealed that 48% of the administered radioactivity was excreted into urine and 15% into feces after 24 h, while 3% were measured in intestinal contents and 2% in major organs, mostly in the liver. Urinary radio-HPLC profiles revealed 22 major peaks accounting for 88% of the urinary radioactivity. For identification purpose, HNE and its stable isotope [1,2-13C]-HNE were given at equimolar dose to be able to univocally identify HNE metabolites by tracking twin peaks on HPLC–HRMS spectra. The major peak was identified as 9-hydroxy-nonenoic acid (27% of the urinary radioactivity) followed by classical HNE mercapturic acid derivatives (the mercapturic acid conjugate of di-hydroxynonane (DHN-MA), the mercapturic acid conjugate of 4-hydroxynonenoic acid (HNA-MA) in its opened and lactone form) and by metabolites that are oxidized in the terminal position. New urinary metabolites as thiomethyl and glucuronide conjugates were also evidenced. Some analyses were also performed on feces and gastro

  10. Dietary-regulation of catabolic disposal of 4-hydroxynonenal analogs in rat liver

    PubMed Central

    Li, Qingling; Tomcik, Kristyen; Zhang, Shenghui; Puchowicz, Michelle A; Zhang, Guo-Fang

    2012-01-01

    Our previous work in perfused rat livers has demonstrated that 4-hydroxynonenal (HNE) is catabolized predominantly via beta oxidation. Therefore, we hypothesized that perturbations of beta oxidation, such as diet-altered fatty acid oxidation activity, could lead to changes in HNE levels. To test our hypothesis, we (i) developed a simple and sensitive GC/MS method combined with mass isotopomer analysis to measure HNE and HNE analogs, 4-oxononenal (ONE) and 1,4-dihydroxynonene (DHN), and (ii) investigated the effects of four diets (standard, low fat, ketogenic, and high fat mix diets) on HNE, ONE, and DHN concentrations in rat livers. Our results showed that livers from rats fed ketogenic diet or high fat mix diet had high ω-6 polyunsaturated fatty acid concentrations and markers of oxidative stress. However, high concentrations of HNE (1.6 ± 0.5 nmol/g) and ONE (0.9 ± 0.2 nmol/g) were only found in livers from rats fed the high fat mix diet. Livers from rats fed the ketogenic diet had low HNE (0.8 ± 0.1 nmol/g) and ONE (0.4 ± 0.07 nmol/g), similar to rats fed the standard diet. A possible explanation is that the predominant pathway of HNE catabolism (i.e. beta oxidation) is activated in the liver by the ketogenic diet. This is consistent with a 10 fold decrease in malonyl-CoA in livers from rats fed a ketogenic diet compared to a standard diet. The accelerated catabolism of HNE lowers HNE and HNE analog concentrations in livers from rats fed the ketogenic diet. On the other hand, rats fed the high fat mix diet had high rates of lipid synthesis and low rates of fatty acid oxidation, resulting in the slowing down of the catabolic disposal of HNE and HNE analogs. Thus, decreased HNE catabolism by a high fat mix diet induces high concentrations of HNE and HNE analogs. The results of the present work suggested a potential causal relationship to metabolic syndrome induced by western diets (i.e. high fat mix), as well as the effects of the ketogenic diet on the

  11. Dietary regulation of catabolic disposal of 4-hydroxynonenal analogs in rat liver.

    PubMed

    Li, Qingling; Tomcik, Kristyen; Zhang, Shenghui; Puchowicz, Michelle A; Zhang, Guo-Fang

    2012-03-15

    Our previous work in perfused rat livers has demonstrated that 4-hydroxynonenal (HNE) is catabolized predominantly via β oxidation. Therefore, we hypothesized that perturbations in β oxidation, such as diet-altered fatty acid oxidation activity, could lead to changes in HNE levels. To test our hypothesis, we (i) developed a simple and sensitive GC/MS method combined with mass isotopomer analysis to measure HNE and HNE analogs, 4-oxononenal (ONE) and 1,4-dihydroxynonene (DHN), and (ii) investigated the effects of four diets (standard, low-fat, ketogenic, and high-fat mix) on HNE, ONE, and DHN concentrations in rat livers. Our results showed that livers from rats fed the ketogenic diet or high-fat mix diet had high ω-6 polyunsaturated fatty acid concentrations and markers of oxidative stress. However, high concentrations of HNE (1.6 ± 0.5 nmol/g) and ONE (0.9 ± 0.2 nmol/g) were found only in livers from rats fed the high-fat mix diet. Livers from rats fed the ketogenic diet had low HNE (0.8 ± 0.1 nmol/g) and ONE (0.4 ± 0.07 nmol/g), similar to rats fed the standard diet. A possible explanation is that the predominant pathway of HNE catabolism (i.e., β oxidation) is activated in the liver by the ketogenic diet. This is consistent with a 10-fold decrease in malonyl-CoA in livers from rats fed a ketogenic diet compared to a standard diet. The accelerated catabolism of HNE lowers HNE and HNE analog concentrations in livers from rats fed the ketogenic diet. On the other hand, rats fed the high-fat mix diet had high rates of lipid synthesis and low rates of fatty acid oxidation, resulting in the slowing down of the catabolic disposal of HNE and HNE analogs. Thus, decreased HNE catabolism from a high-fat mix diet induces high concentrations of HNE and HNE analogs. The results of this work suggest a potential causal relationship to metabolic syndrome induced by Western diets (i.e., high-fat mix), as well as the effects of a ketogenic diet on the catabolism of lipid

  12. A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins.

    PubMed

    Soriano, Brian D; Tam, Lei-Ting T; Lu, Hsieng S; Valladares, Violeta G

    2012-01-01

    Recombinant proteins expressed in Escherichia coli are often produced as unfolded, inactive forms accumulated in inclusion bodies. Redox-coupled thiols are typically employed in the refolding process in order to catalyze the formation of correct disulfide bonds at maximal folding efficiency. These thiols and the recombinant proteins can form mixed disulfide bonds to generate thiol-protein adducts. In this work, we apply a fluorescent-based assay for the quantification of cysteine and cysteamine adducts as observed in E. coli-derived proteins. The thiols are released by reduction of the adducted protein, collected and labeled with a fluorescent reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The derivatized thiols are separated by reversed-phase HPLC and can be accurately quantified after method optimization. The estimated thiol content represents total amount of adducted forms present in the analyzed samples. The limit of quantification (LOQ) was established; specifically, the lowest amount of quantifiable cysteine adduction is 30 picograms and the lowest amount of quantifiable cysteamine adduction is 60 picograms. The assay is useful for quantification of adducts in final purified products as well as in-process samples from various purification steps. The assay indicates that the purification process accomplishes a decrease in cysteine adduction from 0.19 nmol adduct/nmol protein to 0.03 nmol adduct/nmol protein as well as a decrease in cysteamine adduction from 0.24 nmol adduct/nmol protein to 0.14 nmol adduct/nmol protein.

  13. Effects of metal ion adduction on the gas-phase conformations of protein ions.

    PubMed

    Flick, Tawnya G; Merenbloom, Samuel I; Williams, Evan R

    2013-11-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.

  14. PROTEIN TARGETS OF ACRYLAMIDE ADDUCT FORMATION IN CULTURED RAT DOPAMINERGIC CELLS

    PubMed Central

    Martyniuk, Christopher J.; Feswick, April; Fang, Bin; Koomen, John M.; Barber, David S.; Gavin, Terrence; LoPachin, Richard M.

    2013-01-01

    Acrylamide (ACR) is an electrophilic unsaturated carbonyl derivative that produces neurotoxicity by forming irreversible Michael-type adducts with nucleophilic sulfhydryl thiolate groups on cysteine residues of neuronal proteins. Identifying specific proteins targeted by ACR can lead to a better mechanistic understanding of the corresponding neurotoxicity. Therefore, in the present study, the ACR-adducted proteome in exposed primary immortalized mesencephalic dopaminergic cells (N27) was determined using tandem mass spectrometry (LTQ-Orbitrap). N27 cells were characterized based on the presumed involvement of CNS dopaminergic damage in ACR neurotoxicity. Shotgun proteomics identified a total of 15,243 peptides in N27 cells of which 103 unique peptides exhibited ACR-adducted Cys groups. These peptides were derived from 100 individual proteins and therefore ~0.7% of the N27 cell proteome was adducted. Proteins that contained ACR adducts on multiple peptides included annexin A1 and pleckstrin homology domain-containing family M member 1. Sub-network enrichment analyses indicated that ACR-adducted proteins were involved in processes associated with neuron toxicity, diabetes, inflammation, nerve degeneration and atherosclerosis. These results provide detailed information regarding the ACR-adducted proteome in a dopaminergic cell line. The catalog of affected proteins indicates the molecular sites of ACR action and the respective roles of these proteins in cellular processes can offer insight into the corresponding neurotoxic mechanism. PMID:23566896

  15. The generation of 4-hydroxynonenal, an electrophilic lipid peroxidation end product, in rabbit cornea organ cultures treated with UVB light and nitrogen mustard

    SciTech Connect

    Zheng, Ruijin; Po, Iris; Mishin, Vladimir; Black, Adrienne T.; Heck, Diane E.; Laskin, Debra L.; Sinko, Patrick J.; Gerecke, Donald R.; Gordon, Marion K.; Laskin, Jeffrey D.

    2013-10-15

    The cornea is highly sensitive to oxidative stress, a process that can lead to lipid peroxidation. Ultraviolet light B (UVB) and nitrogen mustard (mechlorethamine) are corneal toxicants known to induce oxidative stress. Using a rabbit air-lifted corneal organ culture model, the oxidative stress responses to these toxicants in the corneal epithelium was characterized. Treatment of the cornea with UVB (0.5 J/cm{sup 2}) or nitrogen mustard (100 nmol) resulted in the generation of 4-hydroxynonenal (4-HNE), a reactive lipid peroxidation end product. This was associated with increased expression of the antioxidant, heme oxygenase-1 (HO-1). In human corneal epithelial cells in culture, addition of 4-HNE or 9-nitrooleic acid, a reactive nitrolipid formed during nitrosative stress, caused a time-dependent induction of HO-1 mRNA and protein; maximal responses were evident after 10 h with 30 μM 4-HNE or 6 h with 10 μM 9-nitrooleic acid. 4-HNE and 9-nitrooleic acid were also found to activate Erk1/2, JNK and p38 MAP kinases, as well as phosphoinositide-3-kinase (PI3)/Akt. Inhibition of p38 blocked 4-HNE- and 9-nitrooleic acid-induced HO-1 expression. Inhibition of Erk1/2, and to a lesser extent, JNK and PI3K/Akt, suppressed only 4-HNE-induced HO-1, while inhibition of JNK and PI3K/Akt, but not Erk1/2, partly reduced 9-nitrooleic acid-induced HO-1. These data indicate that the actions of 4-HNE and 9-nitrooleic acid on corneal epithelial cells are distinct. The sensitivity of corneal epithelial cells to oxidative stress may be an important mechanism mediating tissue injury induced by UVB or nitrogen mustard. - Highlights: • UVB or nitrogen mustard causes rabbit corneal epithelial injury. • 4-Hydroxynonenal (4-HNE) was formed and heme oxygenase-1 (HO-1) was increased. • 4-HNE induced HO-1 mRNA and protein expression in human corneal epithelial cells. • The induction of HO-1 by 4-HNE was through MAP kinase activation.

  16. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells

    SciTech Connect

    Raza, Haider John, Annie; Brown, Eric M.; Benedict, Sheela; Kambal, Amr

    2008-01-15

    Cellular oxidative stress and alterations in redox metabolisms have been implicated in the etiology and pathology of many diseases including cancer. Antioxidant treatments have been proven beneficial in controlling these diseases. We have recently shown that 4-hydroxynonenal (4-HNE), a by-product of lipid peroxidation, induces oxidative stress in PC12 cells by compromising the mitochondrial redox metabolism. In this study, we have further investigated the deleterious effects of 4-HNE on mitochondrial respiratory functions and apoptosis using the same cell line. In addition, we have also compared the effects of two antioxidants, curcumin and melatonin, used as chemopreventive agents, on mitochondrial redox metabolism and respiratory functions in these cells. 4-HNE treatment has been shown to cause a reduction in glutathione (GSH) pool, an increase in reactive oxygen species (ROS), protein carbonylation and apoptosis. A marked inhibition in the activities of the mitochondrial respiratory enzymes, cytochrome c oxidase and aconitase was observed after 4-HNE treatment. Increased nuclear translocation of NF-kB/p65 protein was also observed after 4-HNE treatment. Curcumin and melatonin treatments, on the other hand, maintained the mitochondrial redox and respiratory functions without a marked effect on ROS production and cell viability. These results suggest that 4-HNE-induced cytotoxicity may be associated, at least in part, with the altered mitochondrial redox and respiratory functions. The alterations in mitochondrial energy metabolism and redox functions may therefore be critical in determining the difference between cell death and survival.

  17. Noncovalent adducts of poly(ethylene glycols) with proteins.

    PubMed

    Topchieva, I N; Sorokina, E M; Efremova, N V; Ksenofontov, A L; Kurganov, B I

    2000-01-01

    A new method of preparation of noncovalent complexes between poly(ethylene glycol) (PEG) and proteins (alpha-chymotrypsin (ChT), lysozyme, bovine serum albumine) under high pressure has been developed. The involvement of polymer in the complexes was proved using (3)H-labeled PEG. The composition of the complexes (the number of polymer chains per one ChT molecule) depends on the molecular mass of PEG and decreases with the increase in molecular mass from 300 to 4000, whereas the portion of the protein (wt %) in complexes does not depend on the molecular mass of incorporated PEG and corresponds to approximately 70 wt %. The kinetic constants for enzymatic hydrolysis of N-benzoyl-L-tyrosine ethyl ester and azocasein catalyzed by the PEG-ChT complexes are identical with the corresponding values for the native ChT. According to the data obtained by the method of circular dichroism, the enzyme in the complexes fully retains its secondary structure. The steric availability of PEG polymer chains in the complexes was evaluated by their complexation with alpha-cyclodextrin (CyD) or polymer derivatives of beta-CyD modified with PEG (PEG-beta-CyD). In contrast to free PEG, only part of PEG polymer chains ( approximately 10%) interact with alpha-CyD. Thus, the complexation of PEG with ChT proceeds by means of multipoint interaction with surface groups of the protein globule located far from the active site and results in the sufficient decrease in the availability of polymer chains. The complexes between PEG chains in PEG-protein adducts and PEG-beta-CyD may be considered as a novel type of dendritic structures.

  18. 4-HNE adduct stability characterized by collision-induced dissociation and electron transfer dissociation mass spectrometry.

    PubMed

    Fritz, Kristofer S; Kellersberger, Katherine A; Gomez, Jose D; Petersen, Dennis R

    2012-04-16

    4-Hydroxynonenal (4-HNE) alters numerous proteomic and genomic processes. Understanding chemical mechanisms of 4-HNE interactions with biomolecules and their respective stabilities may lead to new discoveries in biomarkers for numerous diseases of oxidative stress. Collision-induced dissociation (CID) and electron transfer dissociation (ETD) MS/MS were utilized to examine the stability of a 4-HNE-Cys Michael adduct. CID conditions resulted in the neutral loss of 4-HNE, also known as a retro-Michael addition reaction (RMA). Consequently, performing ETD fragmentation on this same adduct did not result in RMA. Interestingly, 4-HNE adduct reduction via sodium borohydride (NaBH₄) treatment stabilized against the CID induced RMA. In a direct comparison of three forms of 4-HNE adducts, computational modeling revealed sizable shifts in the shape and orientation of the lowest unoccupied molecular orbital (LUMO) density around the 4-HNE-Cys moiety. These findings demonstrate that ETD MS/MS analysis can be used to improve the detection of 4-HNE-protein modifications by preventing RMA reactions from occurring.

  19. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells

    PubMed Central

    Berger, John P.; Simet, Samantha M.; DeVasure, Jane M.; Boten, Jessica A.; Sweeter, Jenea M.; Kharbanda, Kusum K.; Sisson, Joseph H.; Wyatt, Todd A.

    2014-01-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3–7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3–7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium. PMID:24880893

  20. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells.

    PubMed

    Berger, John P; Simet, Samantha M; DeVasure, Jane M; Boten, Jessica A; Sweeter, Jenea M; Kharbanda, Kusum K; Sisson, Joseph H; Wyatt, Todd A

    2014-08-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3-7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3 to 7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium.

  1. Inhibition of mercapturic acid pathway-mediated disposal of 4-hydroxynonenal causes complete and sustained remission of human cancer xenografts in nude mice.

    PubMed

    Kumar, Sushil; Kokate, Rutika A; Sahu, Mukesh; Chaudhary, Pankaj; Sharma, Rajendra; Awasthi, Sanjay; Awasthi, Yogesh C

    2011-11-01

    Environmental electrophilic chemical carcinogens are detoxified via mercapturic acid pathway to be excreted as mercapturic acid derivatives. Mercapturic acid pathway is also involved in the metabolism of pro-apoptotic and toxic endogenous electrophiles such as 4-hydroxynonenal (HNE). HNE is a common denominator in stress induced signaling and is a pro-apoptotic second messenger that affects cell cycle signaling in a concentration dependent manner. It can regulate signaling for apoptosis, differentiation, and gene expression by interacting with the transcriptional factors, transcriptional repressors, membrane receptors and other proteins. First two rate limiting enzymes of the mercapturic acid pathway, GSTs that conjugate HNE to glutathione (GSH), and RLIP76 that excludes GHS-HNE conjugate from cells, regulate the intracellular concentration of HNE. Thus GSTs and RLIP76 can have a profound effect on cell cycle signaling. Our studies have established that increased HNE levels in cells promote apoptotic signaling while at decreased levels below its basal constituted levels HNE promote proliferation. A major outcome of these findings is that by blocking the mercapturic acid pathway mediated detoxification of HNE through the inhibition of RLIP76 catalyzed transport of GS-HNE, a complete remission of many human cancer xenografts in mice can be achieved.

  2. Abacavir forms novel cross-linking abacavir protein adducts in patients.

    PubMed

    Meng, Xiaoli; Lawrenson, Alexandre S; Berry, Neil G; Maggs, James L; French, Neil S; Back, David J; Khoo, Saye H; Naisbitt, Dean J; Park, B Kevin

    2014-04-21

    Abacavir (ABC), a nucleoside-analogue reverse transcriptase inhibitor, is associated with severe hypersensitivity reactions that are thought to involve the activation of CD8+ T cells in a HLA-B*57:01-restricted manner. Recent studies have claimed that noncovalent interactions of ABC with HLA-B*57:01 are responsible for the immunological reactions associated with ABC. However, the formation of hemoglobin-ABC aldehyde (ABCA) adducts in patients exposed to ABC suggests that protein conjugation might represent a pathway for antigen formation. To further characterize protein conjugation reactions, we used mass spectrometric methods to define ABCA modifications in patients receiving ABC therapy. ABCA formed a novel intramolecular cross-linking adduct on human serum albumin (HSA) in patients and in vitro via Michael addition, followed by nucleophilic adduction of the aldehyde with a neighboring protein nucleophile. Adducts were detected on Lys159, Lys190, His146, and Cys34 residues in the subdomain IB of HSA. Only a cysteine adduct and a putative cross-linking adduct were detected on glutathione S-transferase Pi (GSTP). These findings reveal that ABC forms novel types of antigens in all patients taking the drug. It is therefore vital that the immunological consequences of such pathways of haptenation are explored in the in vitro models that have been used by various groups to define new mechanisms of drug hypersensitivity exemplified by ABC.

  3. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms?

    PubMed

    Domingues, Rosário M; Domingues, Pedro; Melo, Tânia; Pérez-Sala, Dolores; Reis, Ana; Spickett, Corinne M

    2013-10-30

    Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.

  4. Immunochemical quantitation of 3-(cystein-S-yl)acetaminophen adducts in serum and liver proteins of acetaminophen-treated mice.

    PubMed

    Pumford, N R; Hinson, J A; Potter, D W; Rowland, K L; Benson, R W; Roberts, D W

    1989-01-01

    Using a recently developed enzyme-linked immunosorbent assay specific for 3-(cystein-S-yl)acetaminophen adducts we have quantitated the formation of these specific adducts in liver and serum protein of B6C3F1 male mice dosed with acetaminophen. Administration of acetaminophen at doses of 50, 100, 200, 300, 400 and 500 mg/kg to mice resulted in evidence of hepatotoxicity (increase in serum levels of alanine aminotransferase and aspartate aminotransferase) at 4 hr in the 300, 400 and 500 mg/kg treatment groups only. The formation of 3-(cystein-S-yl)acetaminophen adducts in liver protein was not observed in the groups receiving 50, 100 and 200 mg/kg doses, but was observed in the groups receiving doses above 300 mg/kg of acetaminophen. Greater levels of adduct formation were observed at the higher doses. 3-(Cystein-S-yl)acetaminophen protein adducts were also observed in serum of mice receiving hepatotoxic doses of acetaminophen. After a 400 mg/kg dose of acetaminophen, 3-(cystein-S-yl)acetaminophen adducts in the liver protein reached peak levels 2 hr after dosing. By 12 hr the levels decreased to approximately 10% of the peak level. In contrast, 3-(cystein-S-yl)acetaminophen adducts in serum protein were delayed, reaching a sustained peak 6 to 12 hr after dosing. The dose-response correlation between the appearance of serum aminotransferases and 3-(cystein-S-yl)acetaminophen adducts in serum protein and the temporal correlation between the decrease in 3-(cystein-S-yl)acetaminophen adducts in liver protein and the appearance of adducts in serum protein are consistent with a hepatic origin of the adducts detected in serum protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Resveratrol and 4-hydroxynonenal act in concert to increase glutamate cysteine ligase expression and glutathione in human bronchial epithelial cells

    PubMed Central

    Zhang, Hongqiao; Shih, Albert; Rinna, Alessandra; Forman, Henry Jay

    2009-01-01

    Resveratrol has been shown to protect against oxidative stress through modulating antioxidant capacity. In this study, we investigated resveratrol-mediated induction of glutathione (GSH) and glutamate cysteine ligase (GCL), and the combined effect of resveratrol and 4-hydroxynonenal (HNE) on GSH synthesis in cultured HBE1 human bronchial epithelial cells. Resveratrol increased GSH and the mRNA contents of both the catalytic (GCLC) and modulatory subunit (GCLM) of GCL. Combined HNE and resveratrol treatment increased GSH content and GCL mRNAs to a greater extent than either compound did alone. Compared to individual agent, combining exposure to HNE and resveratrol also showed more protection against cell death caused by oxidative stress. These effects of combined exposure were additive rather than synergistic. In addition, Nrf2 silencing significantly decreased the combined effect of HNE and resveratrol on GCL induction. Our data suggest that resveratrol increases GSH and GCL gene expression and that there is an additive effect on GSH synthesis between resveratrol and HNE. The results also reveal that Nrf2-EpRE signaling was involved in the combined effects. PMID:18983812

  6. Evaluation of the 1-methyl-2-phenylindole colorimetric assay for aldehydic lipid peroxidation products in plants: malondialdehyde and 4-hydroxynonenal.

    PubMed

    Johnston, Jason W; Horne, Susan; Harding, Keith; Benson, Erica E

    2007-02-01

    The 1-methyl-2-phenylindole colorimetric assay is considered specific for malondialdehyde (MDA) and 4-hydroxynonenal (HNE) in mammalian systems, but its specificity in plant tissues is unknown. This study demonstrates that the assay produces a purple/blue chromophore with an absorbance peak at 586 nm for a malondialdehyde standard, while aqueous extractions from Ribes spp. Beta vulgaris, and Lycopersicon esculentum tissues produce an orange chromophore with an absorbance maximum at 450 nm and a large shoulder that extends to 700 nm. No distinctive MDA peak was discernable in plant samples at lambda=586 nm and absorbance was attributed to background interference. The reaction between sucrose and 1-methyl-2-phenylindole produced an orange chromophore with a spectrum similar to those obtained from plant extractions, suggesting that simple sugars are the likely source of background interference. This study demonstrates that the 1-methyl-2-phenylindole colorimetric assay is non-specific for detecting MDA and HNE in plants and its use is cautioned due to interference, particularly from sugars.

  7. Formation of Malondialdehyde, 4-Hydroxynonenal, and 4-Hydroxyhexenal during in Vitro Digestion of Cooked Beef, Pork, Chicken, and Salmon.

    PubMed

    Steppeler, Christina; Haugen, John-Erik; Rødbotten, Rune; Kirkhus, Bente

    2016-01-20

    Red meat high in heme iron may promote the formation of potentially genotoxic aldehydes during lipid peroxidation in the gastrointestinal tract. In this study, the formation of malondialdehyde (MDA) equivalents measured by the thiobarbituric acid reactive substances (TBARS) method was determined during in vitro digestion of cooked red meat (beef and pork), as well as white meat (chicken) and fish (salmon), whereas analysis of 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE) was performed during in vitro digestion of cooked beef and salmon. Comparing products with similar fat contents indicated that the amount of unsaturated fat and not total iron content was the dominating factor influencing the formation of aldehydes. It was also shown that increasing fat content in beef products caused increasing concentrations of MDA equivalents. The highest levels, however, were found in minced beef with added fish oil high in unsaturated fat. This study indicates that when ingested alone, red meat products low in unsaturated fat and low in total fat content contribute to relatively low levels of potentially genotoxic aldehydes in the gastrointestinal tract.

  8. SHP-1 inhibition by 4-hydroxynonenal activates Jun N-terminal kinase and glutamate cysteine ligase.

    PubMed

    Rinna, Alessandra; Forman, Henry Jay

    2008-07-01

    4-Hydroxy-2-nonenal (HNE), a major lipid peroxidation product, is toxic at high concentrations, but at near-physiological concentrations it induces detoxifying enzymes. Previous data established that in human bronchial epithelial (HBE1) cells, both genes for glutamate cysteine ligase (GCL) are induced by HNE through the c-Jun N-terminal kinase (JNK) pathway. The protein-tyrosine phosphatase SH2 domain containing phosphatase-1 (SHP-1) is thought to play a role as a negative regulator of cell signaling, and has been implicated as such in the JNK pathway. In the present study, SHP-1 was demonstrated to contribute to HNE-induced-gclc expression via regulation of the JNK pathway in HBE1 cells. Treatment of HBE1 cells with HNE induced phosphorylation of mitogen-activated protein kinase kinase 4 (MKK4), JNK, and c-Jun. HNE was able to inhibit protein tyrosine phosphatase activity of SHP-1 through increased degradation of the protein. Furthermore, transfection with small interference RNA SHP-1 showed an enhancement of JNK and c-Jun phosphorylation, but not of MKK4, leading to increased gclc expression. These results demonstrate that SHP-1 plays a role as a negative regulator of the JNK pathway and that HNE activated the JNK pathway by inhibiting SHP-1. Thus, SHP-1 acts as a sensor for HNE and is responsible for an important adaptive response to oxidative stress.

  9. The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal

    PubMed Central

    Forman, Henry Jay; Fukuto, Jon M.; Miller, Tom; Zhang, Hongqiao; Rinna, Alessandra; Levy, Smadar

    2008-01-01

    During the past several years, major advances have been made in understanding how reactive oxygen species (ROS) and nitrogen species (RNS) participate in signal transduction. Identification of the specific targets and the chemical reactions involved still remains to be resolved with many of the signaling pathways in which the involvement of reactive species has been determined. Our understanding is that ROS and RNS have second messenger roles. While cysteine residues in the thiolate (ionized) form found in several classes of signaling proteins can be specific targets for reaction with H2O2 and RNS, better understanding of the chemistry, particularly kinetics, suggests that for many signaling events in which ROS and RNS participate, enzymatic catalysis is more likely to be involved than non-enzymatic reaction. Due to increased interest in how oxidation products, particularly lipid peroxidation products, also are involved with signaling, a review of signaling by 4-hydroxy-2-nonenal (HNE) is included. This article focuses on the chemistry of signaling by ROS, RNS, and HNE and will describe reactions with selected target proteins as representatives of the mechanisms rather attempt to comprehensively review the many signaling pathways in which the reactive species are involved. PMID:18602883

  10. Foam cell-derived 4-hydroxynonenal induces endothelial cell senescence in a TXNIP-dependent manner.

    PubMed

    Riahi, Yael; Kaiser, Nurit; Cohen, Guy; Abd-Elrahman, Ihab; Blum, Galia; Shapira, Oz M; Koler, Tomer; Simionescu, Maya; Sima, Anca V; Zarkovic, Neven; Zarkovic, Kamelija; Orioli, Marica; Aldini, Giancarlo; Cerasi, Erol; Leibowitz, Gil; Sasson, Shlomo

    2015-08-01

    Vascular endothelial cell (VEC) senescence is considered an early event in the development of atherosclerotic lesions. Stressful stimuli, in particular oxidative stress, have been linked to premature senescence in the vasculature. Foam cells are a major source of reactive oxygen species and may play a role in the induction of VEC senescence; hence, we investigated their involvement in the induction of VEC senescence in a co-culture transwell system. Primary bovine aortic endothelial cells, exposed to the secretome of THP-1 monocyte-derived foam cells, were analysed for the induction of senescence. Senescence associated β-galactosidase activity and the expression of p16 and p21 were increased, whereas phosphorylated retinoblastoma protein was reduced. This senescent phenotype was mediated by 4-hydroxnonenal (4-HNE), a lipid peroxidation product secreted from foam cells; scavenging of 4-HNE in the co-culture medium blunted this effect. Furthermore, both foam cells and 4-HNE increased the expression of the pro-oxidant thioredoxin-interacting protein (TXNIP). Molecular manipulation of TXNIP expression confirmed its involvement in foam cell-induced senescence. Previous studies showed that peroxisome proliferator-activated receptor (PPAR)δ was activated by 4-hydroalkenals, such as 4-HNE. Pharmacological interventions supported the involvement of the 4-HNE-PPARδ axis in the induction of TXNIP and VEC senescence. The association of TXNIP with VEC senescence was further supported by immunofluorescent staining of human carotid plaques in which the expression of both TXNIP and p21 was augmented in endothelial cells. Collectively, these findings suggest that foam cell-released 4-HNE activates PPARδ in VEC, leading to increased TXNIP expression and consequently to senescence.

  11. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity

    PubMed Central

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury. PMID:26208104

  12. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  13. Free flow electrophoresis separation and AMS quantitation of 14C-naphthalene-protein adducts

    NASA Astrophysics Data System (ADS)

    Buchholz, Bruce A.; Haack, Kurt W.; Sporty, Jennifer L.; Buckpitt, Alan R.; Morin, Dexter

    2010-04-01

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose-(concentration)dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 μCi) of 14C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 h post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with 14C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  14. Free flow electrophoresis separation and AMS quantitation of C-naphthalene-protein adducts.

    PubMed

    Buchholz, Bruce A; Haack, Kurt W; Sporty, Jennifer L; Buckpitt, Alan R; Morin, Dexter

    2010-04-01

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose- (concentration) dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 μCi) of (14)C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2 D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 hr post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with (14)C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  15. INVESTIGATION OF THE RADICAL-MEDIATED PRODUCTION OF BENZENE OXIDE PROTEIN ADDUCTS IN VITRO AND IN VIVO

    EPA Science Inventory

    High background levels of benzene oxide (BO) adducts with hemoglobin and albumin (BO-Hb and BO-Alb) have been measured in unexposed humans and animals. To test the influence of radical-mediated pathways on production of these BO-protein adducts, we employed Fenton chemistry to...

  16. Immunohistochemical localization and quantification of the 3-(cystein-S-yl)-acetaminophen protein adduct in acetaminophen hepatotoxicity.

    PubMed

    Roberts, D W; Bucci, T J; Benson, R W; Warbritton, A R; McRae, T A; Pumford, N R; Hinson, J A

    1991-02-01

    Acetaminophen overdose causes severe hepatotoxicity in humans and laboratory animals, presumably by metabolism to N-acetyl-p-benzoquinone imine: and binding to cysteine groups as 3-(cystein-S-yl)acetaminophen-protein adduct. Antiserum specific for the adduct was used immunohistochemically to demonstrate the formation, distribution, and concentration of this specific adduct in livers of treated mice and was correlated with cell injury as a function of dose and time. Within the liver lobule, immunohistochemically demonstrable adduct occurred in a temporally progressive, central-to-peripheral pattern. There was concordance between immunohistochemical staining and quantification of the adduct in hepatic 10,000g supernate, using a quantitative particle concentration fluorescence immunoassay. Findings include: 1) immunochemically detectable adduct before the appearance of centrilobular necrosis, 2) distinctive lobular zones of adduct localization with subsequent depletion during the progression of toxicity, 3) drug-protein binding in hepatocytes at subhepatotoxic doses and before depletion of total hepatic glutathione, 4) immunohistochemical evidence of drug binding in the nucleus, and 5) adduct in metabolically active and dividing hepatocytes and in macrophagelike cells in the regenerating liver.

  17. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal.

    PubMed

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence.

  18. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal

    PubMed Central

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A.; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence. PMID:25170083

  19. Protein Adducts of the Prostate Carcinogen PhlP in Children

    DTIC Science & Technology

    2006-02-01

    DAMD17-03-1-0076 TITLE: Protein Adducts of the Prostate Carcinogen PhIP in Children PRINCIPAL INVESTIGATOR: Paul T. Henderson, Ph.D...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and... reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information

  20. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins

    PubMed Central

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø.; Rizzo, Carmelo J.; Guengerich, F. Peter; Tudek, Barbara

    2015-01-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno (ε)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ε-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ε-adducts, 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC) and 1,N2-ethenoguanine (1,N2-εG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ε-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed εA and εC from ds and ssDNA but were inactive toward 1,N2-εG. SC-1A repaired only εA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ε-adducts in dsDNA, while only εA and εC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only εC in ssDNA Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N2-εG and that ALKBH3 removes only εC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. PMID:25797601

  1. Electrochemical oxidation and protein adduct formation of aniline: a liquid chromatography/mass spectrometry study.

    PubMed

    Melles, Daniel; Vielhaber, Torsten; Baumann, Anne; Zazzeroni, Raniero; Karst, Uwe

    2012-04-01

    Historically, skin sensitization tests are typically based on in vivo animal tests. However, for substances used in cosmetic products, these tests have to be replaced according to the European Commission regulation no. 1223/2009. Modification of skin proteins by electrophilic chemicals is a key process associated with the induction of skin sensitization. The present study investigates the capabilities of a purely instrumental setup to determine the potential of commonly used non-electrophilic chemicals to cause skin sensitization by the generation of electrophilic species from the parent compound. In this work, the electrophiles were generated by the electrochemical oxidation of aniline, a basic industrial chemical which may also be released from azo dyes in cosmetics. The compound is a known sensitizer and was oxidized in an electrochemical thin-layer cell which was coupled online to electrospray ionization-mass spectrometry. The electrochemical oxidation was performed on a boron-doped diamond working electrode, which is able to generate hydroxyl radicals in aqueous solutions at high potentials. Without any pretreatment, the oxidation products were identified by electrospray ionization/time-of-flight mass spectrometry (ESI-ToF-MS) using their exact masses. A mass voltammogram was generated by plotting the obtained mass spectra against the applied potential. Oligomerization states with up to six monomeric units in different redox states of aniline were observed using this setup. This approach was extended to generate adducts between the oxidation products of aniline and the tripeptide glutathione. Two adducts were identified with this trapping experiment. Protein modification was carried out subsequently: Aniline was oxidized at a constant potential and was allowed to react with β-lactoglobulin A (β-LGA) or human serum albumin (HSA), respectively. The generated adducts were analyzed by liquid chromatography coupled to ESI-ToF-MS. For both β-LGA and HSA, aniline

  2. Protein adducts of the prostate carcinogen PhIP in children

    SciTech Connect

    Lawrence Livermore National Laboratory

    2004-02-20

    Prostate cancer is the second leading cause of cancer death in men in the United States. few epidemiology studies have indicated that exposure to PhIP, a rodent prostate carcinogen formed in meat during cooking, may be an important risk factor for prostate cancer in humans. Therefore, a highly sensitive biomarker assay is urgently needed to clarify the role of PhIP in prostate cancer. The goal of this project is to develop an assay that can be used to more accurately quantify human exposure to PhIP and potential prostate cancer risk. Our hypothesis is that an Accelerator Mass Spectrometry-based method can be developed to measure protein adducts of PhIP in the blood of humans. This will provide a measure of the internal dose, as well as the capacity for carcinogen bioactivation to a form that can initiate the cancer process. Towards this goal, we have characterized an adduct formed by PhIP in vitro with the amino acid cysteine. This adduct should provide a biomarker of dietary PhIP exposure and potential prostate cancer risk that could be used to identify individuals for prevention and for monitoring the effect chemoprevention strategies.

  3. Mass spectrometry-based quantification of myocardial protein adducts with acrolein in an in vivo model of oxidative stress

    PubMed Central

    Wu, Jianyong; Stevens, Jan F.; Maier, Claudia S.

    2012-01-01

    Acrolein exposure leads to the formation of protein-acrolein adducts. Protein modification by acrolein has been associated with various chronic diseases including cardiovascular and neurodegenerative diseases. Here we report an analytical strategy that enables the quantification of Michael-type protein adducts of acrolein in mitochondrial proteome samples using liquid chromatography in combination with tandem mass spectrometry and selected ion monitoring (LC-MS/MS SRM) analysis. Our approach combines site-specific identification and relative quantification at the peptide level of protein–acrolein adducts in relation to the unmodified protein thiol pool. Treatment of 3-month old rats with CCl4, an established in vivo model of acute oxidative stress, resulted in significant increases in the ratios of distinct acrolein-adducted peptides to the corresponding unmodified thiol-peptides obtained from proteins that were isolated from cardiac mitochondria. The mitochondrial proteins that were found adducted by acrolein were malate dehydrogenase, NADH dehydrogenase [ubiquinone] flavoprotein 1, cytochrome c oxidase subunit VIb isoform 1, ATP synthase d chain, and ADP/ATP translocase 1. The findings indicate that protein modification by acrolein has potential value as an index of mitochondrial oxidative stress. PMID:21809440

  4. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts

    PubMed Central

    Savreux-Lenglet, Gaëlle; Depauw, Sabine; David-Cordonnier, Marie-Hélène

    2015-01-01

    DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts. PMID:26556350

  5. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts.

    PubMed

    Savreux-Lenglet, Gaëlle; Depauw, Sabine; David-Cordonnier, Marie-Hélène

    2015-11-05

    DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.

  6. Nitro-fatty Acid Metabolome: Saturation, Desaturation, β-Oxidation, and Protein Adduction*

    PubMed Central

    Rudolph, Volker; Schopfer, Francisco J.; Khoo, Nicholas K. H.; Rudolph, Tanja K.; Cole, Marsha P.; Woodcock, Steven R.; Bonacci, Gustavo; Groeger, Alison L.; Golin-Bisello, Franca; Chen, Chen-Shan; Baker, Paul R. S.; Freeman, Bruce A.

    2009-01-01

    Nitrated derivatives of fatty acids (NO2-FA) are pluripotent cell-signaling mediators that display anti-inflammatory properties. Current understanding of NO2-FA signal transduction lacks insight into how or if NO2-FA are modified or metabolized upon formation or administration in vivo. Here the disposition and metabolism of nitro-9-cis-octadecenoic (18:1-NO2) acid was investigated in plasma and liver after intravenous injection in mice. High performance liquid chromatography-tandem mass spectrometry analysis showed that no 18:1-NO2 or metabolites were detected under basal conditions, whereas administered 18:1-NO2 is rapidly adducted to plasma thiol-containing proteins and glutathione. NO2-FA are also metabolized via β-oxidation, with high performance liquid chromatography-tandem mass spectrometry analysis of liver lipid extracts of treated mice revealing nitro-7-cis-hexadecenoic acid, nitro-5-cis-tetradecenoic acid, and nitro-3-cis-dodecenoic acid and corresponding coenzyme A derivatives of 18:1-NO2 as metabolites. Additionally, a significant proportion of 18:1-NO2 and its metabolites are converted to nitroalkane derivatives by saturation of the double bond, and to a lesser extent are desaturated to diene derivatives. There was no evidence of the formation of nitrohydroxyl or conjugated ketone derivatives in organs of interest, metabolites expected upon 18:1-NO2 hydration or nitric oxide (•NO) release. Plasma samples from treated mice had significant extents of protein-adducted 18:1-NO2 detected by exchange to added β-mercaptoethanol. This, coupled with the observation of 18:1-NO2 release from glutathione-18:1-NO2 adducts, supports that reversible and exchangeable NO2-FA-thiol adducts occur under biological conditions. After administration of [3H]18:1-NO2, 64% of net radiolabel was recovered 90 min later in plasma (0.2%), liver (18%), kidney (2%), adipose tissue (2%), muscle (31%), urine (6%), and other tissue compartments, and may include metabolites not yet

  7. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: Dose–response, mechanisms, and clinical implications

    SciTech Connect

    McGill, Mitchell R.; Lebofsky, Margitta; Norris, Hye-Ryun K.; Slawson, Matthew H.; Bajt, Mary Lynn; Xie, Yuchao; Williams, C. David; Wilkins, Diana G.; Rollins, Douglas E.; Jaeschke, Hartmut

    2013-06-15

    At therapeutic doses, acetaminophen (APAP) is a safe and effective analgesic. However, overdose of APAP is the principal cause of acute liver failure in the West. Binding of the reactive metabolite of APAP (NAPQI) to proteins is thought to be the initiating event in the mechanism of hepatotoxicity. Early work suggested that APAP-protein binding could not occur without glutathione (GSH) depletion, and likely only at toxic doses. Moreover, it was found that protein-derived APAP-cysteine could only be detected in serum after the onset of liver injury. On this basis, it was recently proposed that serum APAP-cysteine could be used as diagnostic marker of APAP overdose. However, comprehensive dose–response and time course studies have not yet been done. Furthermore, the effects of co-morbidities on this parameter have not been investigated. We treated groups of mice with APAP at multiple doses and measured liver GSH and both liver and plasma APAP-protein adducts at various timepoints. Our results show that protein binding can occur without much loss of GSH. Importantly, the data confirm earlier work that showed that protein-derived APAP-cysteine can appear in plasma without liver injury. Experiments performed in vitro suggest that this may involve multiple mechanisms, including secretion of adducted proteins and diffusion of NAPQI directly into plasma. Induction of liver necrosis through ischemia–reperfusion significantly increased the plasma concentration of protein-derived APAP-cysteine after a subtoxic dose of APAP. While our data generally support the measurement of serum APAP-protein adducts in the clinic, caution is suggested in the interpretation of this parameter. - Highlights: • Extensive GSH depletion is not required for APAP-protein binding in the liver. • APAP-protein adducts appear in plasma at subtoxic doses. • Proteins are adducted in the cell and secreted out. • Coincidental liver injury increases plasma APAP-protein adducts at subtoxic doses

  8. Depletion of Intracellular Thiols and Increased Production of 4-Hydroxynonenal that Occur During Cryopreservation of Stallion Spermatozoa Lead to Caspase Activation, Loss of Motility, and Cell Death.

    PubMed

    Martin Muñoz, Patricia; Ortega Ferrusola, Cristina; Vizuete, Guillermo; Plaza Dávila, Maria; Rodriguez Martinez, Heriberto; Peña, Fernando J

    2015-12-01

    Oxidative stress has been linked to sperm death and the accelerated senescence of cryopreserved spermatozoa. However, the molecular mechanisms behind this phenomenon remain poorly understood. Reactive oxygen species (ROS) are considered relevant signaling molecules for sperm function, only becoming detrimental when ROS homeostasis is lost. We hereby hypothesize that a major component of the alteration of ROS homeostasis in cryopreserved spermatozoa is the exhaustion of intrinsic antioxidant defense mechanisms. To test this hypothesis, semen from seven stallions was frozen using a standard technique. The parameters of sperm quality (motility, velocity, and membrane integrity) and markers of sperm senescence (caspase 3, 4-hydroxynonenal, and mitochondrial membrane potential) were assessed before and after cryopreservation. Changes in the intracellular thiol content were also monitored. Cryopreservation caused significant increases in senescence markers as well as dramatic depletion of intracellular thiols to less than half of the initial values (P < 0.001) postthaw. Interestingly, very high and positive correlations were observed among thiol levels with sperm functionality postthaw: total motility (r = 0.931, P < 0.001), progressive motility (r = 0.904, P < 0.001), and percentage of live spermatozoa without active caspase 3 (r = 0.996, P < 0.001). In contrast, negative correlations were detected between active caspase 3 and thiol content both in living (r = -0.896) and dead (r = -0.940) spermatozoa; additionally, 4-hydroxynonenal levels were negatively correlated with thiol levels (r = -0.856). In conclusion, sperm functionality postthaw correlates with the maintenance of adequate levels of intracellular thiols. The accelerated senescence of thawed spermatozoa is related to oxidative and electrophilic stress induced by increased production of 4-hydroxynoneal in thawed samples once intracellular thiols are depleted.

  9. Immunochemical quantitation of 3-(cystein-S-yl)acetaminophen protein adducts in subcellular liver fractions following a hepatotoxic dose of acetaminophen.

    PubMed

    Pumford, N R; Roberts, D W; Benson, R W; Hinson, J A

    1990-08-01

    The hepatotoxicity of acetaminophen correlates with the formation of 3-(cystein-S-yl)acetaminophen protein adducts. Using a sensitive and specific immunochemical assay, we quantitated the formation of these protein adducts in liver fractions and serum after administration of a hepatotoxic dose of acetaminophen (400 mg/kg) to B6C3F1 mice. Adducts in the cytosolic fraction increased to 3.6 nmol/mg protein at 2 hr and then decreased to 1.1 nmol/mg protein by 8 hr. Concomitant with the decrease in adducts in the cytosol, 3-(cystein-S-yl)acetaminophen protein adducts appeared in serum and their levels paralleled increases in serum alanine aminotransferase. Microsomal protein adducts peaked at 1 hr (0.7 nmol/mg protein) and subsequently decreased to 0.2 nmol/mg at 8 hr. The 4000 g pellet (nuclei, plasma membranes, and cell debris) had the highest level of adducts (3.5 nmol/mg protein), which remained constant from 1 to 8 hr. Evaluation of fractions purified from a 960 g pellet indicated that the highest concentration of 3-(cystein-S-yl)acetaminophen protein adducts was located in plasma membranes and mitochondria; peak levels were 10.3 and 5.1 nmol/mg respectively. 3-(Cystein-S-yl)acetaminophen protein adducts were detected in nuclei only after enzymatic hydrolysis of the proteins. The localization of high levels of 3-(cystein-S-yl)acetaminophen protein adducts in plasma membranes and mitochondria may play a critical role in acetaminophen toxicity.

  10. Identification of Bound Nitro Musk-Protein Adduct in Fish Liver By Gas Chromatography-Mass Sectrometry: Biotransformation, Dose-Response and Toxicokinetics of Nitro Musk Metabolites Protein Adducts in Trout Liver as Biomarker of Exposure

    EPA Science Inventory

    Ubiquitous occurrences of synthetic nitro musks are evident in the literature. The In vivo analysis of musk xylene (MX) and musk ketone (MK) - protein adducts in trout liver have been performed by gas chromatography-mass spectrometry using selected ion monitoring (GC-SIM-MS). Bio...

  11. Reactive Intermediates: Molecular and MS-Based Approaches to Assess the Functional Significance of Chemical:Protein Adducts1

    PubMed Central

    Monks, Terrence J.; Lau, Serrine S.

    2014-01-01

    Biologically reactive intermediates formed as endogenous products of various metabolic processes are considered important factors in a variety of human diseases, including Parkinson’s disease and other neurological disorders, diabetes and complications thereof, and other inflammatory-associated diseases. Chemical-induced toxicities are also frequently mediated via the bioactivation of relatively stable organic molecules to reactive electrophilic metabolites. Indeed, chemical-induced toxicities have long been known to be associated with the ability of electrophilic metabolites to react with a variety of targets within the cell, including their covalent adduction to nucleophilic residues in proteins, and nucleotides within DNA. Although we possess considerable knowledge of the various biochemical mechanisms by which chemicals undergo metabolic bioactivation, we understand far less about the processes that couple bioactivation to toxicity. Identifying specific sites within a protein that are targets for adduction can provide the initial information necessary to determine whether such adventitious post-translational modifications significantly alter either protein structure and/or function. To address this problem we have developed MS-based approaches to identify specific amino acid targets of electrophile adduction (electrophile-binding motifs), coupled with molecular modeling of such adducts, to determine the potential structural and functional consequences. Where appropriate, functional assays are subsequently conducted to assess protein function. PMID:23222993

  12. Site-specific protein adducts of 4-hydroxy-2(E)-nonenal in human THP-1 monocytic cells: Protein carbonylation is diminished by ascorbic acid

    PubMed Central

    Chavez, Juan; Chung, Woon-Gye; Miranda, Cristobal L.; Singhal, Mudita; Stevens, Jan F.; Maier, Claudia S.

    2010-01-01

    The protein targets and sites of modification by 4-hydroxy-2(E)-nonenal (HNE) in human monocytic THP-1 cells after exogenous exposure to HNE were examined using a multi-pronged proteomic approach involving electrophoretic, immunoblotting and mass spectrometric methods. Immunoblot analysis using monoclonal anti-HNE antibodies showed several proteins as targets of HNE adduction. Pretreatment of THP-1 cells with ascorbic acid resulted in reduced levels of HNE-protein adducts. Biotinylation of Michael-type HNE adducts using an aldehyde-reactive hydroxylamine-functionalized probe (aldehyde-reactive probe, ARP) and subsequent enrichment facilitated the identification and site-specific assignment of the modifications by LC-MS/MS analysis. Sixteen proteins were unequivocally identified as targets of HNE adduction and eighteen sites of HNE modification at Cys and His residues were assigned. HNE exposure of THP-1 cells resulted in the modification of proteins involved in cytoskeleton organization and regulation, proteins associated with stress responses and enzymes of the glycolytic and other metabolic pathways. This study yielded the first evidence of site-specific adduction of HNE to Cys-295 in tubulin α-1B chain, Cys-351 and Cys-499 in α-actinin-4, Cys-328 in vimentin, Cys-369 in D-3-phosphoglycerate dehydrogenase and His-246 in aldolase A. PMID:20043646

  13. Utilization of MALDI-TOF to Determine Chemical-Protein Adduct Formation In Vitro

    PubMed Central

    Fisher, Ashley A.; Labenski, Matthew T.; Monks, Terrence J.; Lau, Serrine S.

    2014-01-01

    Biological reactive intermediates can be created via metabolism of xenobiotics during the process of chemical elimination. They can also be formed as by-products of cellular metabolism, which produces reactive oxygen and nitrogen species. These reactive intermediates tend to be electrophilic in nature, which enables them to interact with tissue macromolecules, disrupting cellular signaling processes and often producing acute and chronic toxicities. Quinones are a well-known class of electrophilic species. Many natural products contain quinones as active constituents, and the quinone moiety exists in a number of chemotherapeutic agents. Quinones are also frequently formed as electrophilic metabolites from a variety of xeno- and endobiotics. Hydroquinone (HQ) is present in the environment from various sources, and it is also a known metabolite of benzene. HQ is converted in the body to 1,4-benzoqui-none, which subsequently gives rise to hematotoxic and nephrotoxic quinone–thioether metabolites. The toxicity of these metabolites is dependent upon their ability to arylate proteins and to produce oxidative stress. Protein tertiary structure and protein amino acid sequence combine to determine which proteins are targets of these electrophilic quinone–thioether metabolites. We have used cytochrome c and model peptides to view adduction profiles of quinone–thioether metabolites, and have determined by MALDI-TOF analysis that these electrophiles target specific residues within these model systems. PMID:20972761

  14. Detection of cysteine- and lysine-based protein adductions by reactive metabolites of 2,5-dimethylfuran.

    PubMed

    Wang, Kai; Li, Weiwei; Chen, Jiaming; Peng, Ying; Zheng, Jiang

    2015-10-08

    Many furan-containing compounds are known to be toxic and/or carcinogenic. Metabolic activation of toxic furans to cis-enediones (cis-enedials or γ-ketoenals) is generally considered as the initial step towards the processes of their toxicities. Sequential modification of key proteins by the electrophilic reactive intermediates is suggested to be an important mechanism of the toxic actions. In the present study, we developed a novel and simple analytical platform to detect protein modification resulting from metabolic activation of model compound 2,5-dimethylfuran (DMF). 4-Bromobenzylamine and 4-bromobenzylmercaptan were employed to trap protein adductions at cysteine and lysine residues, respectively. The resulting protein samples were proteolytically digested by chymotrypsin and Pronase E, followed by LC-MS/MS analysis. Modifications of cysteine and lysine residues of proteins were observed in microsomal incubations and animals after exposure to DMF. In conclusion, the approach established has been proven highly selective and reliable. This advance allows us not only to detect the protein adductions but also to define the structural identities of amino acid residues modified. This technique provides a unique platform to assess protein modifications arising from metabolic activation of potentially harmful furan-containing compounds. Hepatic protein adductions were found to be proportional to the hepatotoxicity of DMF.

  15. Proteomic assessment of sulfur mustard-induced protein adducts and other protein modifications in human epidermal keratinocytes

    SciTech Connect

    Mol, Marijke A.E. Berg, Roland M. van den; Benschop, Henk P.

    2008-07-01

    Although some toxicological mechanisms of sulfur mustard (HD) have been uncovered, new knowledge will allow for advanced insight in the pathways that lead towards epidermal-dermal separation in skin. In the present investigation, we aimed to survey events that occur at the protein level in human epidermal keratinocytes (HEK) during 24 h after exposure to HD. By using radiolabeled {sup 14}C-HD, it was found that proteins in cultured HEK are significant targets for alkylation by HD. HD-adducted proteins were visualized by two-dimensional gel electrophoresis and analyzed by mass spectrometry. Several type I and II cytokeratins, actin, stratifin (14-3-3{sigma}) and galectin-7 were identified. These proteins are involved in the maintenance of the cellular cytoskeleton. Their alkylation may cause changes in the cellular architecture and, in direct line with that, be determinative for the onset of vesication. Furthermore, differential proteomic analysis was applied to search for novel features of the cellular response to HD. Partial breakdown of type I cytokeratins K14, K16 and K17 as well as the emergence of new charge variants of the proteins heat shock protein 27 and ribosomal protein P0 were observed. Studies with caspase inhibitors showed that caspase-6 is probably responsible for the breakdown of type I cytokeratins in HEK. The significance of the results is discussed in terms of toxicological relevance and possible clues for therapeutic intervention.

  16. Immunoblot analysis of protein containing 3-(cystein-S-yl)acetaminophen adducts in serum and subcellular liver fractions from acetaminophen-treated mice.

    PubMed

    Pumford, N R; Hinson, J A; Benson, R W; Roberts, D W

    1990-07-01

    The hepatotoxicity of acetaminophen is believed to be mediated by the metabolic activation of acetaminophen to N-acetyl-p-benzoquinone imine which covalently binds to cysteinyl residues on proteins as 3-(cystein-S-yl)acetaminophen adducts. The formation of these adducts in hepatic protein correlates with the hepatotoxicity. In this study, the formation of 3-(cystein-S-yl)acetaminophen adducts in specific cellular proteins was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and detected using affinity-purified antisera specific for 3-(cystein-S-yl)acetaminophen adducts on immunoblots. These techniques were used to investigate the liver 10,000g supernatant and serum from B6C3F1 mice that received hepatotoxic doses of acetaminophen. More than 15 proteins containing 3-(cystein-S-yl)acetaminophen adducts were detected in the liver 10,000g supernatant. The most prominent protein containing 3-(cystein-S-yl)acetaminophen adducts in the hepatic 10,000g supernatant had a relative molecular mass of 55 kDa. Serum proteins containing 3-(cystein-S-yl)acetaminophen adducts had molecular masses similar to those found in the liver 10,000g supernatant (55, 87, and approximately 102 kDa). These data, combined with our previous findings describing the temporal relationship between the appearance of 3-(cystein-S-yl)acetaminophen adducts in protein in the serum and the decrease in the levels of 3-(cystein-S-yl)acetaminophen adducts in protein in the liver, suggested that liver adducts were released into the serum following lysis of hepatocytes. The temporal relationship between the formation of specific adducts and hepatotoxicity in mice following a hepatotoxic dose of acetaminophen was examined using immunoblots of mitochondria, microsomes, cytosol, and plasma membranes. Hepatotoxicity indicated by serum alanine aminotransferase levels was increased at 2 and 4 hr after dosing. The cytosolic fraction contained numerous proteins with 3-(cystein

  17. Rotenone Induces the Formation of 4-Hydroxynonenal Aggresomes. Role of ROS-Mediated Tubulin Hyperacetylation and Autophagic Flux Disruption.

    PubMed

    Bonet-Ponce, Luis; Saez-Atienzar, Sara; da Casa, Carmen; Sancho-Pelluz, Javier; Barcia, Jorge M; Martinez-Gil, Natalia; Nava, Eduardo; Jordan, Joaquín; Romero, Francisco J; Galindo, Maria F

    2016-11-01

    Oxidative stress causes cellular damage by (i) altering protein stability, (ii) impairing organelle function, or (iii) triggering the formation of 4-HNE protein aggregates. The catabolic process known as autophagy is an antioxidant cellular response aimed to counteract these stressful conditions. Therefore, autophagy might act as a cytoprotective response by removing impaired organelles and aggregated proteins. In the present study, we sought to understand the role of autophagy in the clearance of 4-HNE protein aggregates in ARPE-19 cells under rotenone exposure. Rotenone induced an overproduction of reactive oxygen species (ROS), which led to an accumulation of 4-HNE inclusions, and an increase in the number of autophagosomes. The latter resulted from a disturbed autophagic flux rather than an activation of the autophagic synthesis pathway. In compliance with this, rotenone treatment induced an increase in LC3-II while upstream autophagy markers such as Beclin- 1, Vsp34 or Atg5-Atg12, were decreased. Rotenone reduced the autophagosome-to-lysosome fusion step by increasing tubulin acetylation levels through a ROS-mediated pathway. Proof of this is the finding that the free radical scavenger, N-acetylcysteine, restored autophagy flux and reduced rotenone-induced tubulin hyperacetylation. Indeed, this dysfunctional autophagic response exacerbates cell death triggered by rotenone, since 3-methyladenine, an autophagy inhibitor, reduced cell mortality, while rapamycin, an inductor of autophagy, caused opposite effects. In summary, we shed new light on the mechanisms involved in the autophagic responses disrupted by oxidative stress, which take place in neurodegenerative diseases such as Huntington or Parkinson diseases, and age-related macular degeneration.

  18. Unique Antibody Responses to Malondialdehyde-Acetaldehyde (MAA)-Protein Adducts Predict Coronary Artery Disease

    PubMed Central

    Anderson, Daniel R.; Duryee, Michael J.; Shurmur, Scott W.; Um, John Y.; Bussey, Walter D.; Hunter, Carlos D.; Garvin, Robert P.; Sayles, Harlan R.; Mikuls, Ted R.; Klassen, Lynell W.; Thiele, Geoffrey M.

    2014-01-01

    Malondialdehyde-acetaldehyde adducts (MAA) have been implicated in atherosclerosis. The purpose of this study was to investigate the role of MAA in atherosclerotic disease. Serum samples from controls (n = 82) and patients with; non-obstructive coronary artery disease (CAD), (n = 40), acute myocardial infarction (AMI) (n = 42), or coronary artery bypass graft (CABG) surgery due to obstructive multi-vessel CAD (n = 72), were collected and tested for antibody isotypes to MAA-modifed human serum albumin (MAA-HSA). CAD patients had elevated relative levels of IgG and IgA anti-MAA, compared to control patients (p<0.001). AMI patients had a significantly increased relative levels of circulating IgG anti-MAA-HSA antibodies as compared to stable angina (p<0.03) or CABG patients (p<0.003). CABG patients had significantly increased relative levels of circulating IgA anti-MAA-HSA antibodies as compared to non-obstructive CAD (p<0.001) and AMI patients (p<0.001). Additionally, MAA-modified proteins were detected in the tissue of human AMI lesions. In conclusion, the IgM, IgG and IgA anti-MAA-HSA antibody isotypes are differentially and significantly associated with non-obstructive CAD, AMI, or obstructive multi-vessel CAD and may serve as biomarkers of atherosclerotic disease. PMID:25210746

  19. Development of a Monoclonal Antibody Against Estrogen Quinone-Adducted Proteins as Potential Biomarkers of Breast Cancer Risk

    DTIC Science & Technology

    2002-06-01

    escape detoxification, e.g., methylation of the catechol or glutathione conjugation of the quinone, and form E2-3,4-Q adducts to proteins. The presence...benzoquinone (Figure 1). The reaction produced a characteristic red shift in the absorption spectrum of the quinone. The aminoquinone had an absorption ... absorption spectrum of the quinone. The aminoquinone exhibited a distinctive red color that permits convenient monitoring of the occurrence and progression of

  20. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1.

    PubMed

    Trevisani, Marcello; Siemens, Jan; Materazzi, Serena; Bautista, Diana M; Nassini, Romina; Campi, Barbara; Imamachi, Noritaka; Andrè, Eunice; Patacchini, Riccardo; Cottrell, Graeme S; Gatti, Raffaele; Basbaum, Allan I; Bunnett, Nigel W; Julius, David; Geppetti, Pierangelo

    2007-08-14

    TRPA1 is an excitatory ion channel expressed by a subpopulation of primary afferent somatosensory neurons that contain substance P and calcitonin gene-related peptide. Environmental irritants such as mustard oil, allicin, and acrolein activate TRPA1, causing acute pain, neuropeptide release, and neurogenic inflammation. Genetic studies indicate that TRPA1 is also activated downstream of one or more proalgesic agents that stimulate phospholipase C signaling pathways, thereby implicating this channel in peripheral mechanisms controlling pain hypersensitivity. However, it is not known whether tissue injury also produces endogenous proalgesic factors that activate TRPA1 directly to augment inflammatory pain. Here, we report that recombinant or native TRPA1 channels are activated by 4-hydroxy-2-nonenal (HNE), an endogenous alpha,beta-unsaturated aldehyde that is produced when reactive oxygen species peroxidate membrane phospholipids in response to tissue injury, inflammation, and oxidative stress. HNE provokes release of substance P and calcitonin gene-related peptide from central (spinal cord) and peripheral (esophagus) nerve endings, resulting in neurogenic plasma protein extravasation in peripheral tissues. Moreover, injection of HNE into the rodent hind paw elicits pain-related behaviors that are inhibited by TRPA1 antagonists and absent in animals lacking functional TRPA1 channels. These findings demonstrate that HNE activates TRPA1 on nociceptive neurons to promote acute pain, neuropeptide release, and neurogenic inflammation. Our results also provide a mechanism-based rationale for developing novel analgesic or anti-inflammatory agents that target HNE production or TRPA1 activation.

  1. 4-Hydroxynonenal enhances MMP-9 production in murine macrophages via 5-lipoxygenase-mediated activation of ERK and p38 MAPK

    SciTech Connect

    Lee, Seung J.; Kim, Chae E.; Yun, Mi R.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Shin, Hwa K.; Bae, Sun S.; Kim, Chi D.

    2010-01-15

    Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B{sub 4} (LTB{sub 4}) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT{sub 1} (cysLT{sub 1}) receptor antagonist, REV-5901 as well as a BLT{sub 1} receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB{sub 4} and cysLT (LTC{sub 4} and LTD{sub 4}) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB{sub 4} and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.

  2. Protein modifications by electrophilic lipoxidation products: Adduct formation, chemical strategies and tandem mass spectrometry for their detection and identification

    PubMed Central

    Vasil’ev, Yury V.; Tzeng, Shin-Chen; Huang, Lin; Maier, Claudia S.

    2014-01-01

    The post-translational modification of proteins by electrophilic oxylipids is emerging as an important mechanism that contributes to the complexity of proteomes. Enzymatic and nonenzymatic oxidation of biological lipids results in the formation of chemically diverse electrophilic carbonyl compounds, such as 2-alkenals and 4-hydroxy alkenals, epoxides and eicosanoids with reactive cyclopentenone structures. These lipoxidation products are capable of modifying proteins. Originally considered solely as markers of oxidative insult, more recently the modifications of proteins by lipid peroxidation products are being recognized as a new mechanism of cell signaling with relevance to redox homeostasis, adaptive response and inflammatory resolution. The growing interest in protein modifications by reactive oxylipid species necessitates the availability of methods that are capable of detecting, identifying and characterizing these protein adducts in biological samples with high complexity. However, the efficient analysis of these chemically diverse proteins presents a considerable analytical challenge. We first provide an introduction into the chemistry and biological relevance of the protein adduction by electrophilic lipoxidation products. We then provide an overview of tandem mass spectrometry approaches that have been developed in recent years for the interrogation of protein modifications by electrophilic oxylipid species. PMID:24818247

  3. Ozone-derived Oxysterols Affect Liver X Receptor (LXR) Signaling: A POTENTIAL ROLE FOR LIPID-PROTEIN ADDUCTS.

    PubMed

    Speen, Adam M; Kim, Hye-Young H; Bauer, Rebecca N; Meyer, Megan; Gowdy, Kymberly M; Fessler, Michael B; Duncan, Kelly E; Liu, Wei; Porter, Ned A; Jaspers, Ilona

    2016-11-25

    When inhaled, ozone (O3) interacts with cholesterols of airway epithelial cell membranes or the lung-lining fluid, generating chemically reactive oxysterols. The mechanism by which O3-derived oxysterols affect molecular function is unknown. Our data show that in vitro exposure of human bronchial epithelial cells to O3 results in the formation of oxysterols, epoxycholesterol-α and -β and secosterol A and B (Seco A and Seco B), in cell lysates and apical washes. Similarly, bronchoalveolar lavage fluid obtained from human volunteers exposed to O3 contained elevated levels of these oxysterol species. As expected, O3-derived oxysterols have a pro-inflammatory effect and increase NF-κB activity. Interestingly, expression of the cholesterol efflux pump ATP-binding cassette transporter 1 (ABCA1), which is regulated by activation of the liver X receptor (LXR), was suppressed in epithelial cells exposed to O3 Additionally, exposure of LXR knock-out mice to O3 enhanced pro-inflammatory cytokine production in the lung, suggesting LXR inhibits O3-induced inflammation. Using alkynyl surrogates of O3-derived oxysterols, our data demonstrate adduction of LXR with Seco A. Similarly, supplementation of epithelial cells with alkynyl-tagged cholesterol followed by O3 exposure causes observable lipid-LXR adduct formation. Experiments using Seco A and the LXR agonist T0901317 (T09) showed reduced expression of ABCA1 as compared with stimulation with T0901317 alone, indicating that Seco A-LXR protein adduct formation inhibits LXR activation by traditional agonists. Overall, these data demonstrate that O3-derived oxysterols have pro-inflammatory functions and form lipid-protein adducts with LXR, thus leading to suppressed cholesterol regulatory gene expression and providing a biochemical mechanism mediating O3-derived formation of oxidized lipids in the airways and subsequent adverse health effects.

  4. Structural analysis of naphthoquinone protein adducts with liquid chromatography/tandem mass spectrometry and the scoring algorithm for spectral analysis (SALSA).

    PubMed

    Zhang, Fagen; Bartels, Michael J

    2004-01-01

    The relative reactivities of various naphthoquinone isomers (1,4-, 1,2- and 2-methyl-1,4-naphthoquinone) to two test proteins, apomyoglobin and human hemoglobin, were evaluated via liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). The structural characterization of the resulting adducts was also obtained by LC/ESI-MS analysis of the intact proteins. The reactive sites of apomyoglobin and human hemoglobin with 1,4-naphthoquinone and 1,2-naphthoquinone were also identified through characterization of adducted tryptic peptides by use of high-pressure liquid chromatography/electrospray ionization with tandem mass spectrometry (HPLC/ESI-MS/MS), TurboSEQUEST, and the scoring algorithm for spectral analysis (SALSA). Four adducted peptides, which were formed by nucleophilic addition of a lysine amino acid residue to 1,4-naphthoquinone, were also identified, as was an adducted peptide from incubation of 1,2-naphthoquinone with apomyoglobin. In the case of incubation of human hemoglobin with the two naphthoquinones, two adducted peptides were identified from the N-terminal valine modification of the alpha and beta chains of human hemoglobin. The adducted protein formation may imply that naphthalene produces its in vivo toxicity through 1,2- and 1,4-naphthoquinone metabolites reacting with biomolecular proteins.

  5. Down-regulation of Notch1 expression is involved in HL-60 cell growth inhibition induced by 4-hydroxynonenal, a product of lipid peroxidation.

    PubMed

    Pizzimenti, Stefania; Barrera, Giuseppina; Calzavara, Elisabetta; Mirandola, Leonardo; Toaldo, Cristina; Dianzani, Mario Umberto; Comi, Paola; Chiaramonte, Raffaella

    2008-11-01

    The role of the Notch1 pathway has been well assessed in leukemia. Notch1 mutations are the most common ones in T acute lymphoblastic leukaemia patients which carry either oncogenic Notch1 forms or ineffective ubiquitin ligase implicated in Notch1 turnover. Abnormalities in the Notch1-Jagged1 system have been reported also in acute myelogenous leukaemia (AML) patients where Jagged1 is frequently over-expressed. Moreover, activating Notch1 mutations, as well, can occur in human AML and in leukemia cases with lineage infidelity. As a result, Notch1 signalling inhibition is an attractive goal in leukaemia therapy. Blockage/delay in cell differentiation and/or increase of proliferation are the main results of Notch1 signalling activation in several leukemic cell lines. Moreover, specific genes involved in cell growth control have been identified as Notch1 transcriptional targets, i.e. Cyclin D1 and c-Myc. 4-Hydroxynonenal (HNE), an aldehyde produced during lipid peroxidation, is involved in several pathological and physiological conditions, including inflammation; atherosclerosis; and neurodegenerative and chronic liver diseases. Moreover HNE has an antiproliferative/ differentiative effect in several cell lines, by affecting the expression of key genes, such as oncogenes (e.g. c-Myc, c-Myb), cyclins and telomerase. This prompted us to study the effect of HNE on Notch1 expression and its related signalling in HL-60 cells, a leukemic cell line widely used for differentiation studies. RT-PCR as well as Western blot assay showed Notch1down-regulation in HNE-treated HL-60 cells. The expression of Hes1, a Notch1 target gene, was concomitantly down-regulated by HNE treatment, reflecting Notch1 signalling inhibition. DAPT, an inhibitor of Notch activity, when added contemporary to HNE, further increased cell growth inhibition, without affecting apoptosis. Moreover, DAPT treatment reversed the HNE-induced differentiation. Overall these results suggest that Notch1 is a target

  6. Absolute quantification of E1, ubiquitin-like proteins and Nedd8-MLN4924 adduct by mass spectrometry.

    PubMed

    Yang, Xiaofeng; Brownell, James E; Xu, Qing; Zhu, Fengying; Ma, Jingya; Loke, Huay-Keng; Rollins, Neil; Soucy, Teresa A; Minissale, James J; Thomas, Michael P; Mallender, William D; Dick, Lawrence R; Li, Ping; Liao, Hua

    2013-09-01

    Ubiquitin (Ub) and ubiquitin-like (Ubl) proteins regulate a variety of important cellular processes by forming covalent conjugates with target proteins or lipids. Ubl conjugation is catalyzed by a cascade of proteins including activating enzymes (E1), conjugating enzymes (E2), and in many cases ligation enzymes (E3). The discovery of MLN4924 (Brownell et al., Mol Cell 37: 102-111, 1), an investigational small molecule that is a mechanism-based inhibitor of NEDD8-activating enzyme (NAE), reveals a promising strategy of targeting E1/Ubl pathway for therapeutic purposes. In order to better understand, the biochemical dynamics of Ubl conjugation in cells and tissues, we have developed a mass spectrometry-based method to quantify E1 and Ubls using isotope-labeled proteins as internal standards. Furthermore, we have used the described method to quantify levels of the covalent Nedd8-inhibitor adduct formed in MLN4924 treated cells and tissues. The Nedd8-MLN4924 adduct is a tight-binding inhibitor of NAE, and its cellular concentration represents an indirect pharmacodynamic readout of NAE/Nedd8 pathway inhibition.

  7. Exposure to the chlorofluorocarbon substitute 2,2-dichloro-1,1,1- trifluoroethane and the anesthetic agent halothane is associated with transient protein adduct formation in the heart

    SciTech Connect

    Huwyler, J.; Gut, J. )

    1992-05-15

    Hydrochlorofluorocarbons (HCFCs) that are structural analogues of the anesthetic agent halothane may follow a common pathway of bioactivation and formation of adducts to cellular targets of distinct tissues. Exposure of rats to a single dose of HCFC 123 (2,2-dichloro- 1,1,1-trifluoroethane) or its structural analogue halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in vivo resulted in the formation of one prominent trifluoroacetylated protein adduct (TFA-protein adduct) in the heart. In contrast, a variety of distinct TFA-protein adducts were formed in the liver and the kidney of the same animals. The TFA-protein adduct in the heart was processed rapidly; t1/2 of the intact TFA-protein adduct was less than 12 h.

  8. Characterization of estrogen quinone-derived protein adducts and their identification in human serum albumin derived from breast cancer patients and healthy controls.

    PubMed

    Chen, Dar-Ren; Chen, Shou-Tung; Wang, Tzu-Wen; Tsai, Chen-His; Wei, Hz-Han; Chen, Guan-Jie; Yang, Tsung-Chou; Lin, Che; Lin, Po-Hsiung

    2011-05-10

    Both 17β-estradiol-2,3-quinone (E₂-2,3-Q) and 17β-estradiol-3,4-quinone (E₂-3,4-Q) are reactive metabolites of estrogen that are thought to be responsible for the estrogen-induced genotoxicity. The aim of this study was to establish a methodology to analyze estrogen quinone-derived protein adducts and to measure the background levels of these adducts in human serum albumin (Alb) derived from female blood donors in Taiwan. Results from in vitro experiments confirmed that the production of estrogen quinone-derived adducts on serum Alb increased with increased concentration of estrogen quinones. Time-course experiments suggested that both E₂-2,3-Q- and E₂-3,4-Q-derived adducts rapidly reached maximum values at 10 min mark and remained constant thereafter for up to 24 h. Additionally, with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) pretreatment, the production of estrogen quinone-derived protein adducts was detected in human MCF-7 breast cancer cells exposed to estrogen. Co-treatment of a catechol-O-methyl transferase inhibitor further enhanced the production of estrogen quinone-derived adducts in all cases. When we investigated the levels of estrogen quinone-derived adducts in human serum Alb, cysteinyl adducts of E₂-2,3-Q-1-S-Alb, E₂-2,3-Q-4-S-Alb, and E₂-3,4-Q-2-S-Alb were detected in all healthy female controls (n=10) with median levels at 147 (range 14.1-533), 197 (range 30.0-777), and 65.6 (range 17.6-1360) (pmol/g), respectively. We noticed that levels of E₂-2,3-Q-derived adducts were 2-fold greater than those of E₂-3,4-Q-2-S-Alb in controls whereas levels of E₂-3,4-Q-2-S-Alb were 2-fold higher than those of E₂-2,3-Q-derived adducts in patients (n = 20). Additionally, levels of E₂-2,3-Q-4-S-Alb correlated significantly with those of E₂-3,4-Q-2-S-Alb (correlation coefficient r = 0.684-0.850, p < 0.05). Overall, we conclude that cumulative body burden of E₂-3,4-Q is a significant predictor of breast cancer.

  9. Detection and quantification of protein adduction by electrophilic fatty acids: mitochondrial generation of fatty acid nitroalkene derivatives.

    PubMed

    Schopfer, F J; Batthyany, C; Baker, P R S; Bonacci, G; Cole, M P; Rudolph, V; Groeger, A L; Rudolph, T K; Nadtochiy, S; Brookes, P S; Freeman, B A

    2009-05-01

    Nitroalkene fatty acid derivatives manifest a strong electrophilic nature, are clinically detectable, and induce multiple transcriptionally regulated anti-inflammatory responses. At present, the characterization and quantification of endogenous electrophilic lipids are compromised by their Michael addition with protein and small-molecule nucleophilic targets. Herein, we report a trans-nitroalkylation reaction of nitro-fatty acids with beta-mercaptoethanol (BME) and apply this reaction to the unbiased identification and quantification of reaction with nucleophilic targets. Trans-nitroalkylation yields are maximal at pH 7 to 8 and occur with physiological concentrations of target nucleophiles. This reaction is also amenable to sensitive mass spectrometry-based quantification of electrophilic fatty acid-protein adducts upon electrophoretic resolution of proteins. In-gel trans-nitroalkylation reactions also permit the identification of protein targets without the bias and lack of sensitivity of current proteomic approaches. Using this approach, it was observed that fatty acid nitroalkenes are rapidly metabolized in vivo by a nitroalkene reductase activity and mitochondrial beta-oxidation, yielding a variety of electrophilic and nonelectrophilic products that could be structurally characterized upon BME-based trans-nitroalkylation reaction. This strategy was applied to the detection and quantification of fatty acid nitration in mitochondria in response to oxidative inflammatory conditions induced by myocardial ischemia-reoxygenation.

  10. Protein carbonylation in a murine model for early alcoholic liver disease.

    PubMed

    Galligan, James J; Smathers, Rebecca L; Fritz, Kristofer S; Epperson, L E; Hunter, Lawrence E; Petersen, Dennis R

    2012-05-21

    Hepatic oxidative stress and subsequent lipid peroxidation are well-recognized consequences of sustained ethanol consumption. The covalent adduction of nucleophilic amino acid side-chains by lipid electrophiles is significantly increased in patients with alcoholic liver disease (ALD); a global assessment of in vivo protein targets and the consequences of these modifications, however, has not been conducted. In this article, we describe the identification of novel protein targets for covalent adduction in a 6-week murine model for ALD. Ethanol-fed mice displayed a 2-fold increase in hepatic TBARS, while immunohistochemical analysis for the reactive aldehydes 4-hydroxynonenal (4-HNE), 4-oxononenal (4-ONE), acrolein (ACR), and malondialdehyde (MDA) revealed a marked increase in the staining of modified proteins in the ethanol-treated mice. Increased protein carbonyl content was confirmed utilizing subcellular fractionation of liver homogenates followed by biotin-tagging through hydrazide chemistry, where approximately a 2-fold increase in modified proteins was observed in microsomal and cytosolic fractions. To determine targets of protein carbonylation, a secondary hydrazide method coupled to a highly sensitive 2-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS or MuDPIT) technique was utilized. Our results have identified 414 protein targets for modification by reactive aldehydes in ALD. The presence of novel in vivo sites of protein modification by 4-HNE (2), 4-ONE (4) and ACR (2) was also confirmed in our data set. While the precise impact of protein carbonylation in ALD remains unknown, a bioinformatic analysis of the data set has revealed key pathways associated with disease progression, including fatty acid metabolism, drug metabolism, oxidative phosphorylation, and the TCA cycle. These data suggest a major role for aldehyde adduction in the pathogenesis of ALD.

  11. Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide.

    PubMed Central

    Marks, D S; Vita, J A; Folts, J D; Keaney, J F; Welch, G N; Loscalzo, J

    1995-01-01

    Endothelium-derived relaxing factor is important for vascular homeostasis and possesses qualities that may modulate vascular injury, including vasodilation, platelet inhibition, and inhibition of smooth muscle proliferation. S-nitrososerum albumin is a naturally occurring adduct of nitric oxide (NO) with a prolonged biologic half-life and is a potent vasodilator and platelet inhibitor. Given the avidity of serum albumin for subendothelial matrix and the antiproliferative effects of NO, we investigated the effects of locally delivered S-nitroso-bovine serum albumin (S-NO-BSA) and a polythiolated form of bovine serum albumin (pS-BSA) modified to carry several S-nitrosothiol groups (pS-NO-BSA) on neointimal responses in an animal model of vascular injury. Locally delivered S-NO-BSA bound preferentially to denuded rabbit femoral vessels producing a 26-fold increase in local concentration compared with uninjured vessels (P = 0.029). pS-NO-BSA significantly reduced the intimal/medial ratio (P = 0.038) and did so in conjunction with elevations in platelet (P < 0.001) and vascular cGMP content (P < or = 0.001). pS-NO-BSA treatment also inhibited platelet deposition (P = 0.031) after denuding injury. Comparison of BSA, S-NO-BSA, pS-NO-BSA, and control revealed a dose-response relationship between the amount of displaceable NO delivered and the extent of inhibition of neointimal proliferation at 2 wk (P < or = 0.001). Local administration of a stable protein S-nitrosothiol inhibits intimal proliferation and platelet deposition after vascular arterial balloon injury. This strategy for the local delivery of a long-lived NO adduct has potential for preventing restenosis after angioplasty. Images PMID:8675628

  12. Flight restriction prevents associative learning deficits but not changes in brain protein-adduct formation during honeybee ageing.

    PubMed

    Tolfsen, Christina C; Baker, Nicholas; Kreibich, Claus; Amdam, Gro V

    2011-04-15

    Honeybees (Apis mellifera) senesce within 2 weeks after they discontinue nest tasks in favour of foraging. Foraging involves metabolically demanding flight, which in houseflies (Musca domestica) and fruit flies (Drosophila melanogaster) is associated with markers of ageing such as increased mortality and accumulation of oxidative damage. The role of flight in honeybee ageing is incompletely understood. We assessed relationships between honeybee flight activity and ageing by simulating rain that confined foragers to their colonies most of the day. After 15 days on average, flight-restricted foragers were compared with bees with normal (free) flight: one group that foraged for ∼15 days and two additional control groups, for flight duration and chronological age, that foraged for ∼5 days. Free flight over 15 days on average resulted in impaired associative learning ability. In contrast, flight-restricted foragers did as well in learning as bees that foraged for 5 days on average. This negative effect of flight activity was not influenced by chronological age or gustatory responsiveness, a measure of the bees' motivation to learn. Contrasting their intact learning ability, flight-restricted bees accrued the most oxidative brain damage as indicated by malondialdehyde protein adduct levels in crude cytosolic fractions. Concentrations of mono- and poly-ubiquitinated brain proteins were equal between the groups, whereas differences in total protein amounts suggested changes in brain protein metabolism connected to forager age, but not flight. We propose that intense flight is causal to brain deficits in aged bees, and that oxidative protein damage is unlikely to be the underlying mechanism.

  13. Modifications to the organophosphorus nerve agent-protein adduct refluoridation method for retrospective analysis of nerve agent exposures.

    PubMed

    Holland, Kerry E; Solano, Maria I; Johnson, Rudolph C; Maggio, Vincent L; Barr, John R

    2008-01-01

    Organophosphorus nerve agents (OPNAs) continue to pose a threat to military personnel and the general public because of their toxicity and their potential use as weapons of mass destruction. An effective method for the detection of human exposure to OPNAs involves the refluoridation of nerve agents adducted to the serum protein butyrylcholinesterase. The regenerated agents are then enriched by solid-phase extraction and quantified by isotope-dilution gas chromatography-mass spectrometry. We have previously reported improvements that resulted in a 10-fold increase in sensitivity. We have now made further changes to the method that include the addition of confirmation ions, the addition of soman (GD) to the assay, the expansion of the linear range, and the elimination of high-volume injection to decrease background noise and run time while improving sensitivity. This report includes the standard operating procedures for this method for tabun, sarin, soman, cyclohexylsarin, and VX and validation studies. The method's limits of detection ranged from 5.5 to 16.5 pg/mL for the G analogue of VX and GD, respectively. Characterization of quality control (QC) materials resulted in an average coefficient of variation of 15.1% for the five analytes in low QC pools and 11.7% in high QC pools.

  14. Feasibility of Biomonitoring of Exposure to Permethrin Through Analysis of Long-Lived (Metabolite) Adducts to Proteins

    DTIC Science & Technology

    2006-09-01

    transacylation mechanism 21 Figure 8. Adduct formation by acyl glucuronides via the glycation Mechanism 22 Figure 9. Identity of presumed...adduct of permethrin-derived O-acyl glucuronide, according to the glycation mechanism 22 Figure 10. Chemical structure of glutathione 3-PBA...ASSAKQR, formed by the glycation mechanism 25 Figure 14. Tandem ES(+) MS spectrum of Cl2CA-glucuronide to Glutathione 26 Appendix

  15. Isolevuglandin Adducts in Disease

    PubMed Central

    Bi, Wenzhao

    2015-01-01

    Abstract Significance: A diverse family of lipid-derived levulinaldehydes, isolevuglandins (isoLGs), is produced by rearrangement of endoperoxide intermediates generated through both cyclooxygenase (COX) and free radical-induced cyclooxygenation of polyunsaturated fatty acids and their phospholipid esters. The formation and reactions of isoLGs with other biomolecules has been linked to alcoholic liver disease, Alzheimer's disease, age-related macular degeneration, atherosclerosis, cardiac arythmias, cancer, end-stage renal disease, glaucoma, inflammation of allergies and infection, mitochondrial dysfunction, multiple sclerosis, and thrombosis. This review chronicles progress in understanding the chemistry of isoLGs, detecting their production in vivo and understanding their biological consequences. Critical Issues: IsoLGs have never been isolated from biological sources, because they form adducts with primary amino groups of other biomolecules within seconds. Chemical synthesis enabled investigation of isoLG chemistry and detection of isoLG adducts present in vivo. Recent Advances: The first peptide mapping and sequencing of an isoLG-modified protein present in human retina identified the modification of a specific lysyl residue of the sterol C27-hydroxylase Cyp27A1. This residue is preferentially modified by iso[4]LGE2 in vitro, causing loss of function. Adduction of less than one equivalent of isoLG can induce COX-associated oligomerization of the amyloid peptide Aβ1-42. Adduction of isoLGE2 to phosphatidylethanolamines causes gain of function, converting them into proinflammatory isoLGE2-PE agonists that foster monocyte adhesion to endothelial cells. Future Directions: Among the remaining questions on the biochemistry of isoLGs are the dependence of biological activity on isoLG isomer structure, the structures and mechanism of isoLG-derived protein–protein and DNA–protein cross-link formation, and its biological consequences. Antioxid. Redox Signal. 22

  16. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity

    SciTech Connect

    McGill, Mitchell R.; Williams, C. David; Xie, Yuchao; Ramachandran, Anup; Jaeschke, Hartmut

    2012-11-01

    Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites a reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Highlights: ► Acetaminophen overdose causes severe liver injury only in mice but not in rats. ► APAP causes hepatic GSH depletion and protein adduct formation in rats and mice. ► Less protein adducts were measured in rat liver mitochondria compared to mouse. ► No oxidant stress, peroxynitrite formation or JNK activation was present in rats. ► The

  17. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER

    PubMed Central

    Kim, Hyun-Suk; Guo, Chunlu; Thompson, Eric L.; Jiang, Yanlin; Kelley, Mark R.; Vasko, Michael R.; Lee, Suk-Hee

    2015-01-01

    Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24 hours. In cultures where APE1 expression was reduced by ~80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Reduction in APE1 expression also altered the expression of the NER proteins RPA70 and XPA in sensory neuronal cultures. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226+177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons. PMID:26164266

  18. The generation of carcinogenic etheno-DNA adducts in the liver of patients with nonalcoholic fatty liver disease

    PubMed Central

    Linhart, Kirsten-Berit; Glassen, Katharina; Peccerella, Teresa; Waldherr, Rüdiger; Linhart, Heinz; Bartsch, Helmut

    2015-01-01

    Background Nonalcoholic fatty liver disease (NAFLD), in particular its more aggressive form nonalcoholic steatohepatitis (NASH) is increasingly observed as a cause of end stage liver disease and hepatocellular carcinoma (HCC). Reactive oxygen species (ROS) are an important factor in the pathogenesis of HCC. ROS can react with polyunsaturated fatty acids derived from membrane phospholipids resulting in the production of reactive aldehydes as lipid oxidation (LPO) byproducts, such as 4-hydroxynonenal (4 HNE). 4 HNE can react with DNA to form mutagenic exocyclic etheno-DNA adducts. ROS is induced by inflammatory processes, but also by induction of cytochrome P450 2E1 (CYP2E1), as seen with chronic alcohol consumption. Methods Immunohistochemical detection of CYP2E1, 4 HNE and hepatic exocyclic etheno-DNA adducts was performed on liver sections from 39 patients with NFLD. Spearman rank correlation was calculated to examine possible correlations. Results Exocyclic etheno-DNA adducts were detected and correlated significantly with 4 HNE, but not with CYP2E1. Conclusions This is the first description of highly carcinogenic exocyclic etheno-DNA adducts in NAFLD patients. We could show that exocyclic etheno-DNA adducts significantly correlated with lipid peroxidation product 4 HNE, but not with CYP2E1, implying that in NAFLD ROS generation with consecutive DNA damage is rather inflammation driven through various cytokines than by induction of CYP2E1. PMID:26005678

  19. Antiatherogenic and antitumoral properties of Opuntia cladodes: inhibition of low density lipoprotein oxidation by vascular cells, and protection against the cytotoxicity of lipid oxidation product 4-hydroxynonenal in a colorectal cancer cellular model.

    PubMed

    Keller, Julia; Camaré, Caroline; Bernis, Corinne; Astello-García, Marizel; de la Rosa, Ana-Paulina Barba; Rossignol, Michel; del Socorro Santos Díaz, María; Salvayre, Robert; Negre-Salvayre, Anne; Guéraud, Françoise

    2015-09-01

    Opuntia species have been used for thousands of years as a folk medicine in the treatment of diseases. However, the components and protective mechanisms are still unclear. We make the hypothesis that Opuntia species may protect the development of oxidative stress-associated diseases, such as atherosclerosis or colon cancer, via their antioxidant properties. We investigated the protective effect of Opuntia cladode powder against the oxidation of low-density lipoprotein (LDL) evoked by vascular endothelial cells, an important risk factor for atherosclerosis development, and the toxicity of 4-hydroxynonenal (a major lipid peroxidation product) on normal (Apc +/+) and preneoplastic (Apc min/+) immortalized epithelial colon cells. Various Opuntia species classified according to their degree of domestication, from the wildest (Opuntia streptacantha, Opuntia hyptiacantha, Opuntia megacantha), medium (Opuntia albicarpa), to the most domesticated (Opuntia ficus-indica) were tested. Cladode powders prepared from these Opuntia species significantly inhibited LDL oxidation induced by incubation with murine endothelial cells and the subsequent foam cell formation of RAW 264.7 murine macrophages and cytotoxicity on murine endothelial cells. Moreover, Opuntia cladode powder blocked the promotion of colon cancer development on an in vitro model of colonocytes. It may be noted that the phenolic acid and flavonoids content, the antioxidant capacity, and the protective effect were relatively similar in all the cladode powders from wild (O. streptacantha) and domesticated Opuntia. Altogether, these data confirm the therapeutic potential of Opuntia cladodes in diseases associated with oxidative stress.

  20. Myeloperoxidase-dependent lipid peroxidation promotes the oxidative modification of cytosolic proteins in phagocytic neutrophils.

    PubMed

    Wilkie-Grantham, Rachel P; Magon, Nicholas J; Harwood, D Tim; Kettle, Anthony J; Vissers, Margreet C; Winterbourn, Christine C; Hampton, Mark B

    2015-04-10

    Phagocytic neutrophils generate reactive oxygen species to kill microbes. Oxidant generation occurs within an intracellular phagosome, but diffusible species can react with the neutrophil and surrounding tissue. To investigate the extent of oxidative modification, we assessed the carbonylation of cytosolic proteins in phagocytic neutrophils. A 4-fold increase in protein carbonylation was measured within 15 min of initiating phagocytosis. Carbonylation was dependent on NADPH oxidase and myeloperoxidase activity and was inhibited by butylated hydroxytoluene and Trolox, indicating a role for myeloperoxidase-dependent lipid peroxidation. Proteomic analysis of target proteins revealed significant carbonylation of the S100A9 subunit of calprotectin, a truncated form of Hsp70, actin, and hemoglobin from contaminating erythrocytes. The addition of the reactive aldehyde 4-hydroxynonenal (HNE) caused carbonylation, and HNE-glutathione adducts were detected in the cytosol of phagocytic neutrophils. The post-translational modification of neutrophil proteins will influence the functioning and fate of these immune cells in the period following phagocytic activation, and provides a marker of neutrophil activation during infection and inflammation.

  1. Myeloperoxidase-dependent Lipid Peroxidation Promotes the Oxidative Modification of Cytosolic Proteins in Phagocytic Neutrophils*

    PubMed Central

    Wilkie-Grantham, Rachel P.; Magon, Nicholas J.; Harwood, D. Tim; Kettle, Anthony J.; Vissers, Margreet C.; Winterbourn, Christine C.; Hampton, Mark B.

    2015-01-01

    Phagocytic neutrophils generate reactive oxygen species to kill microbes. Oxidant generation occurs within an intracellular phagosome, but diffusible species can react with the neutrophil and surrounding tissue. To investigate the extent of oxidative modification, we assessed the carbonylation of cytosolic proteins in phagocytic neutrophils. A 4-fold increase in protein carbonylation was measured within 15 min of initiating phagocytosis. Carbonylation was dependent on NADPH oxidase and myeloperoxidase activity and was inhibited by butylated hydroxytoluene and Trolox, indicating a role for myeloperoxidase-dependent lipid peroxidation. Proteomic analysis of target proteins revealed significant carbonylation of the S100A9 subunit of calprotectin, a truncated form of Hsp70, actin, and hemoglobin from contaminating erythrocytes. The addition of the reactive aldehyde 4-hydroxynonenal (HNE) caused carbonylation, and HNE-glutathione adducts were detected in the cytosol of phagocytic neutrophils. The post-translational modification of neutrophil proteins will influence the functioning and fate of these immune cells in the period following phagocytic activation, and provides a marker of neutrophil activation during infection and inflammation. PMID:25697357

  2. Toward an "omic" physiopathology of reactive chemicals: thirty years of mass spectrometric study of the protein adducts with endogenous and xenobiotic compounds.

    PubMed

    Rubino, Federico Maria; Pitton, Marco; Di Fabio, Daniela; Colombi, Antonio

    2009-01-01

    Cancer and degenerative diseases are major causes of morbidity and death, derived from the permanent modification of key biopolymers such as DNA and regulatory proteins by usually smaller, reactive molecules, present in the environment or generated from endogenous and xenobiotic components by the body's own biochemical mechanisms (molecular adducts). In particular, protein adducts with organic electrophiles have been studied for more than 30 [see, e.g., Calleman et al., 1978] years essentially for three purposes: (a) as passive monitors of the mean level of individual exposure to specific chemicals, either endogenously present in the human body or to which the subject is exposed through food or environmental contamination; (b) as quantitative indicators of the mean extent of the individual metabolic processing which converts a non-reactive chemical substance into its toxic products able to damage DNA (en route to cancer induction through genotoxic mechanisms) or key proteins (as in the case of several drugs, pesticides or otherwise biologically active substances); (c) to relate the extent of protein modification to that of biological function impairment (such as enzyme inhibition) finally causing the specific health damage. This review describes the role that contemporary mass spectrometry-based approaches employed in the qualitative and quantitative study of protein-electrophile adducts play in the discovery of the (bio)chemical mechanisms of toxic substances and highlights the future directions of research in this field. A particular emphasis is given to the measurement of often high levels of the protein adducts of several industrial and environmental pollutants in unexposed human populations, a phenomenon which highlights the possibility that a number of small organic molecules are generated in the human organism through minor metabolic processes, the imbalance of which may be the cause of "spontaneous" cases of cancer and of other degenerative diseases of

  3. Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan

    PubMed Central

    Lu, Ding; Sullivan, Mathilde M.; Phillips, Martin B.; Peterson, Lisa A.

    2009-01-01

    Furan is a liver toxicant and carcinogen in rodents. Based on these observations and the large potential for human exposure, furan has been classified as a possible human carcinogen. The mechanism of tumor induction by furan is unknown. However, the toxicity requires cytochrome P450 catalyzed oxidation of furan. The product of this oxidation, cis-2-butene-1,4-dial (BDA), reacts readily with glutathione, amino acids and DNA and is a bacterial mutagen in Ames assay strain TA104. Characterization of the urinary metabolites of furan is expected to provide information regarding the structure(s) of the reactive metabolite(s). Recently, several urinary metabolites have been identified. We reported the presence of a mono-glutathione-BDA reaction product, N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-L-cysteinylglycine cyclic sulfide. Three additional urinary metabolites of furan were also characterized: R-2-acetylamino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)-1-hexanoic acid, N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-L-cysteine and its sulfoxide. It was postulated that these three metabolites are derived from degraded protein adducts. However, the possibility that these metabolites result from reaction of BDA with free lysine and/or cysteine was not ruled out. In this latter case, one might predict that the reaction of thiol-BDA with free lysine would not occur exclusively on the ε-amino group. Reaction of BDA with N-acetylcysteine or GSH in the presence of lysine indicated that both the α- and ε-amino groups of lysine can be modified by thiol-BDA. The N-acetylcysteine-BDA-N-acetyllysine urinary metabolites were solely linked through the ε-amino group of lysine. A GSH-BDA-lysine crosslink was a significant hepatocyte metabolite of furan. In this case, the major product resulted from reaction with the ε-amino group of lysine, however, small amounts of the α-amino reaction product were also observed. Western analysis of liver and hepatocyte

  4. Enhanced glutathione depletion, protein adduct formation, and cytotoxicity following exposure to 4-hydroxy-2-nonenal (HNE) in cells expressing human multidrug resistance protein-1 (MRP1) together with human glutathione S-transferase-M1 (GSTM1)

    PubMed Central

    Rudd, Lisa P.; Kabler, Sandra L.; Morrow, Charles S.; Townsend, Alan J.

    2011-01-01

    4-hydroxy-2-nonenal (HNE) is one of the most reactive products of lipid peroxidation and has both cytotoxic and genotoxic effects in cells. Several enzymatic pathways have been reported to detoxify HNE, including conjugation by glutathione-S-transferases (GSTs). Removal of the resulting HNE-glutathione conjugate (HNE-SG) by an efflux transporter may required for complete detoxification. We investigated the effect of expression of GSTM1 and/or the ABC efflux transporter protein, multidrug-resistance protein-1 (MRP1), on HNE-induced cellular toxicity. Stably transfected MCF7 cell lines were used to examine the effect of GSTM1 and/or MRP1 expression on HNE-induced cytotoxicity, GSH depletion, and HNE-protein adduct formation. Co-expression in the MCF7 cell line of GSTM1 with MRP1 resulted in a 2.3-fold sensitization to HNE cytotoxicity (0.44-fold IC50 value relative to control) rather than the expected protection. Expression of either GSTM1 or MRP1 alone also resulted in slight sensitization to HNE cytotoxicity (0.79-fold and 0.71-fold decreases in IC50 values, respectively). Co-expression of GSTM1 and MRP1 strongly enhanced the formation of HNE-protein adducts relative to the non-expressing control cell line, whereas expression of either MRP1 alone or GSTM1 alone yielded similarly low levels of HNE-protein adducts to that of the control cell line. Glutathione (GSH) levels were reduced by 10–20% in either the control cell line or the MCF7/GSTM1 cell line with the same HNE exposure for 60 minutes. However, HNE induced > 80% depletion of GSH in cells expressing MRP1 alone. Co-expression of both MRP1 and GSTM1 caused slightly greater GSH depletion, consistent with the greater protein adduct formation and cytotoxicity in this cell line. Since expression of GSTM1 or MRP1 alone did not strongly sensitize cells to HNE, or result in greater HNE-protein adducts than in the control cell line, these results indicate that MRP1 and GSTM1 collaborate to enhance HNE-protein adduct

  5. Time-resolved fluorescence spectroscopy investigation of the effect of 4-hydroxynonenal on endogenous NAD(P)H in living cardiac myocytes

    NASA Astrophysics Data System (ADS)

    Chorvatova, Alzbeta; Aneba, Swida; Mateasik, Anton; Chorvat, Dusan; Comte, Blandine

    2013-06-01

    Lipid peroxidation is a major biochemical consequence of the oxidative deterioration of polyunsaturated lipids in cell membranes and causes damage to membrane integrity and loss of protein function. 4-hydroxy-2-nonenal (HNE), one of the most reactive products of n-6 polyunsaturated fatty acid peroxidation of membrane phospholipids, has been shown to be capable of affecting both nicotinamide adenine dinucleotide (phosphate) reduced [NAD(P)H] as well as NADH production. However, the understanding of its effects in living cardiac cells is still lacking. Our goal was to therefore investigate HNE effects on NAD(P)H noninvasively in living cardiomyocytes. Spectrally resolved lifetime detection of endogenous fluorescence, an innovative noninvasive technique, was employed. Individual fluorescence components were resolved by spectral linear unmixing approach. Gathered results revealed that HNE reduced the amplitude of both resolved NAD(P)H components in a concentration-dependent manner. In addition, HNE increased flavoprotein fluorescence and responsiveness of the NAD(P)H component ratio to glutathione reductase (GR) inhibitor. HNE also increased the percentage of oxidized nucleotides and decreased maximal NADH production. Presented data indicate that HNE provoked an important cell oxidation by acting on NAD(P)H regulating systems in cardiomyocytes. Understanding the precise role of oxidative processes and their products in living cells is crucial for finding new noninvasive tools for biomedical diagnostics of pathophysiological states.

  6. Mass spectrometry-based proteomics of oxidative stress: Identification of 4-hydroxy-2-nonenal (HNE) adducts of amino acids using lysozyme and bovine serum albumin as model proteins.

    PubMed

    Aslebagh, Roshanak; Pfeffer, Bruce A; Fliesler, Steven J; Darie, Costel C

    2016-10-01

    Modification of proteins by 4-hydroxy-2-nonenal (HNE), a reactive by-product of ω6 polyunsaturated fatty acid oxidation, on specific amino acid residues is considered a biomarker for oxidative stress, as occurs in many metabolic, hereditary, and age-related diseases. HNE modification of amino acids can occur either via Michael addition or by formation of Schiff-base adducts. These modifications typically occur on cysteine (Cys), histidine (His), and/or lysine (Lys) residues, resulting in an increase of 156 Da (Michael addition) or 138 Da (Schiff-base adducts), respectively, in the mass of the residue. Here, we employed biochemical and mass spectrometry (MS) approaches to determine the MS "signatures" of HNE-modified amino acids, using lysozyme and BSA as model proteins. Using direct infusion of unmodified and HNE-modified lysozyme into an electrospray quadrupole time-of-flight mass spectrometer, we were able to detect up to seven HNE modifications per molecule of lysozyme. Using nanoLC-MS/MS, we found that, in addition to N-terminal amino acids, Cys, His, and Lys residues, HNE modification of arginine (Arg), threonine (Thr), tryptophan (Trp), and histidine (His) residues can also occur. These sensitive and specific methods can be applied to the study of oxidative stress to evaluate HNE modification of proteins in complex mixtures from cells and tissues under diseased versus normal conditions.

  7. Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes

    PubMed Central

    Xie, Yuchao; McGill, Mitchell R.; Du, Kuo; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Ding, Wen-Xing; Jaeschke, Hartmut

    2015-01-01

    3′-Hydroxyacetanilide or N-acetyl-meta-aminophenol (AMAP) is generally regarded as a non-hepatotoxic analog of acetaminophen (APAP). Previous studies demonstrated absence of toxicity after AMAP in mice, hamsters, primary mouse hepatocytes and several cell lines. In contrast, experiments with liver slices suggested that it may be toxic to human hepatocytes; however, the mechanism of toxicity is unclear. To explore this, we treated primary human hepatocytes (PHH) with AMAP or APAP for up to 48 h and measured several parameters to assess metabolism and injury. Although less toxic than APAP, AMAP dose-dependently triggered cell death in PHH as indicated by alanine aminotransferase (ALT) release and propidium iodide (PI) staining. Similar to APAP, AMAP also significantly depleted glutathione (GSH) in PHH and caused mitochondrial damage as indicated by glutamate dehydrogenase (GDH) release and the JC-1 assay. However, unlike APAP, AMAP treatment did not cause relevant c-jun-N-terminal kinase (JNK) activation in the cytosol or phospho-JNK translocation to mitochondria. To compare, AMAP toxicity was assessed in primary mouse hepatocytes (PMH). No cytotoxicity was observed as indicated by the lack of lactate dehydrogenase release and no PI staining. Furthermore, there was no GSH depletion or mitochondrial dysfunction after AMAP treatment in PMH. Immunoblotting for arylated proteins suggested that AMAP treatment caused extensive mitochondrial protein adducts formation in PHH but not in PMH. In conclusion, AMAP is hepatotoxic in PHH and the mechanism involves formation of mitochondrial protein adducts and mitochondrial dysfunction. PMID:26431796

  8. Inhibition of hydrogen peroxide signaling by 4-hydroxynonenal due to differential regulation of Akt1 and Akt2 contributes to decreases in cell survival and proliferation in hepatocellular carcinoma cells.

    PubMed

    Shearn, Colin T; Reigan, Philip; Petersen, Dennis R

    2012-07-01

    Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation.

  9. Verification, Dosimetry and Biomonitoring of Mustard Gas Exposure via Immunochemical Detection of Mustard Gas Adducts to DNA and Proteins

    DTIC Science & Technology

    1991-12-01

    of supernatants of hybridomas fox specific antibody activity . Mono- and di-adducts at the N7-position of guanosine-5-phosphate were svthesized for use...antibody activity could be developed and optimized, in which single-stranded calf-thymus DNA exposed to 10 pM mustard gas was used as coating...Figure 11: Chemical shift isuignments and coupling constants for the hydrogen (400 MHz:. a) and carbon atoms (100.6 MHz; b) of t4-(2

  10. Feasibility of Biomonitoring of Exposure to Permethrin Through Analysis of Long-Lived (Metabolite) Adducts to Proteins

    DTIC Science & Technology

    2007-09-01

    Cl2CA The synthesis was carried out on a PHB -S-TG resin (Rapp Polymere; 0.24 mmol/g resin) containing immobilized Boc-Lys(Fmoc) on a 36 µmol scale. The...was attempted to quantify adduct formation by using [14C] labelled 3-PBA glucuronides, obtained by combined chemical and enzymatic synthesis ...quantitated by using [14C] labelled 3-PBA glucuronide, which was obtained by enzymatic synthesis . The binding studies were thwarted by non-covalent

  11. Screening for DNA Adducts by Data-Dependent Constant Neutral Loss - Triple Stage (MS3) Mass Spectrometry with a Linear Quadrupole Ion Trap Mass Spectrometer

    PubMed Central

    Bessette, Erin E.; Goodenough, Angela K.; Langouët, Sophie; Yasa, Isil; Kozekov, Ivan D.; Spivack, Simon D.; Turesky, Robert J.

    2009-01-01

    A 2-dimensional linear quadrupole ion trap mass spectrometer (LIT/MS) was employed to simultaneously screen for DNA adducts of environmental, dietary, and endogenous genotoxicants, by data-dependent constant neutral loss scanning followed by triple-stage mass spectrometry (CNL-MS3). The loss of the deoxyribose (dR) from the protonated DNA adducts ([M+H-116]+) in the MS/MS scan mode triggered the acquisition of MS3 product ion spectra of the aglycone adducts [BH2+]. Five DNA adducts of the tobacco carcinogen 4-aminobiphenyl (4-ABP) were detected in human hepatocytes treated with 4-ABP, and three DNA adducts of the cooked-meat carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) were identified in the livers of rats exposed to MeIQx, by the CNL-MS3 scan mode. Buccal-cell DNA from tobacco smokers was screened for DNA adducts of various classes of carcinogens in tobacco smoke including 4-ABP, 2-amino-9H-pyrido[2,3-b]indole (AαC), and benzo[a]pyrene (BaP); the cooked-meat carcinogens MeIQx, AαC, and 2-amino-1-methyl-6-phenylmidazo[4,5-b]pyridine (PhIP); and the lipid peroxidation products acrolein (AC) and trans-4-hydroxynonenal (HNE). The CNL-MS3 scanning technique can be used to simultaneously screen for multiple DNA adducts derived from different classes of carcinogens, at levels of adduct modification approaching 1 adduct per 108 unmodified DNA bases, when 10 μg of DNA are employed for the assay. PMID:19086795

  12. Screening for DNA adducts by data-dependent constant neutral loss-triple stage mass spectrometry with a linear quadrupole ion trap mass spectrometer.

    PubMed

    Bessette, Erin E; Goodenough, Angela K; Langouët, Sophie; Yasa, Isil; Kozekov, Ivan D; Spivack, Simon D; Turesky, Robert J

    2009-01-15

    A two-dimensional linear quadrupole ion trap mass spectrometer (LIT/MS) was employed to simultaneously screen for DNA adducts of environmental, dietary, and endogenous genotoxicants, by data-dependent constant neutral loss scanning followed by triple-stage mass spectrometry (CNL-MS3). The loss of the deoxyribose (dR) from the protonated DNA adducts ([M + H - 116]+) in the MS/MS scan mode triggered the acquisition of MS3 product ion spectra of the aglycone adducts [BH2]+. Five DNA adducts of the tobacco carcinogen 4-aminobiphenyl (4-ABP) were detected in human hepatocytes treated with 4-ABP, and three DNA adducts of the cooked-meat carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) were identified in the livers of rats exposed to MeIQx, by the CNL-MS3 scan mode. Buccal cell DNA from tobacco smokers was screened for DNA adducts of various classes of carcinogens in tobacco smoke including 4-ABP, 2-amino-9H-pyrido[2,3-b]indole (AalphaC), and benzo[a]pyrene (BaP); the cooked-meat carcinogens MeIQx, AalphaC, and 2-amino-1-methyl-6-phenylmidazo[4,5-b]pyridine (PhIP); and the lipid peroxidation products acrolein (AC) and trans-4-hydroxynonenal (HNE). The CNL-MS3 scanning technique can be used to simultaneously screen for multiple DNA adducts derived from different classes of carcinogens, at levels of adduct modification approaching 1 adduct per 108 unmodified DNA bases, when 10 microg of DNA is employed for the assay.

  13. Verification, Dosimetry, and Biomonitoring of Mustard Gas Exposure via Immunochemical Detection of Mustard Gas Adducts to DNA and Proteins

    DTIC Science & Technology

    1993-07-01

    specificity 4- for DNA adducts of mustard gas. With this serum a method for the screening of supernatants of hybridomas for specific antibody activity ...11: Chemical shift assignments and coupling constants for tl-e 1’tdrogen (400 MHz; a) and carbon atoms (100.6 MHz; b) of N7-(2’-hydroxyethylthioethyl...subsequent hydrolysis. 113 Figure 14: Chemical shift assignments and coupling constants for the hydrogen (400 MHz; a) and carbon atoms (100.6 Miz; b) of di-(2

  14. Transfer of 15-lipoxygenase gene into rabbit iliac arteries results in the appearance of oxidation-specific lipid-protein adducts characteristic of oxidized low density lipoprotein.

    PubMed Central

    Ylä-Herttuala, S; Luoma, J; Viita, H; Hiltunen, T; Sisto, T; Nikkari, T

    1995-01-01

    Oxidized low density lipoprotein (LDL) possesses several atherogenic properties. The mechanisms by which LDL becomes oxidized in vivo remain unknown, but previous studies have suggested that 15-lipoxygenase may be one of the factors involved in the initiation of LDL oxidation in the arterial wall. 3 wk after a retrovirus-mediated 15-lipoxygenase gene transfer into iliac arteries of normocholesterolemic rabbits there was a threefold increase in 15-lipoxygenase activity but no signs of LDL oxidation. However, when animals were made moderately hypercholesterolemic by feeding a 0.13% cholesterol diet for 2-3 wk starting from day 4 after the gene transfer, oxidation-specific lipid-protein adducts characteristic of oxidized LDL were detected in 15-lipoxygenase-transduced arteries. Control experiments in which contralateral iliac arteries were transduced with beta-galactosidase-containing retroviruses showed only occasional signs of the presence of oxidation-specific adducts. The results support the hypothesis that products derived from the 15-lipoxygenase activity are involved in the induction of LDL oxidation within the arterial wall, provided that sufficient concentrations of lipoproteins are present in the artery. Images PMID:7769108

  15. The expression and function of vascular endothelial growth factor in retinal pigment epithelial (RPE) cells is regulated by 4-hydroxynonenal (HNE) and glutathione S-transferaseA4-4

    SciTech Connect

    Vatsyayan, Rit; Lelsani, Poorna Chandra Rao; Chaudhary, Pankaj; Kumar, Sushil; Awasthi, Sanjay; Awasthi, Yogesh C.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Low concentration of HNE (0.1-1.0 {mu}M) induced secretion of VEGF in RPE cells. Black-Right-Pointing-Pointer VEGF secreted medium of RPE cells promoted proliferation of endothelial cells. Black-Right-Pointing-Pointer VEGFR2 expression was attenuated with increasing concentrations of HNE. Black-Right-Pointing-Pointer These effects of HNE could be blocked by the over expression of GSTA4-4 in cells. -- Abstract: It is well established that 4-hydroxynonenal (HNE) plays a major role in oxidative stress-induced signaling and the toxicity of oxidants. Surprisingly our recent studies also demonstrate that low levels of HNE generated during oxidative stress promote cell survival mechanisms and proliferation. Since the expression and secretion of VEGF is known to be affected by Oxidative stress, during present studies, we have examined dose dependent effect of HNE on VEGF expression and secretion in a model of retinal pigment epithelial (RPE) cells in culture. Results of these studies showed that while inclusion of 0.1 {mu}M HNE in the medium caused increased secretion of VEGF, its secretion and expression was significantly suppressed in the presence of >5 {mu}M HNE in the media. These concentration dependent hormetic effects of HNE on VEGF secretion could be blocked by the over expression of GSTA4-4 indicating that these effects were specifically attributed to HNE and regulated by GSTA4-4. VEGF secreted into the media showed angiogenic properties as indicated by increased migration and tube formation of HUVEC in matrigel when grown in media from RPE cells treated with 1 {mu}M HNE. The corresponding media from GSTA4-4 over expressing RPE cells had no effect on migration and tube formation of HUVEC in matrigel. These results are consistent with earlier studies showing that at low concentrations, HNE promotes proliferative mechanisms and suggest that HNE induces VEGF secretion from RPE cells that acts in a paracrine fashion to induce

  16. Role of malondialdehyde-acetaldehyde adducts in liver injury.

    PubMed

    Tuma, Dean J

    2002-02-15

    Malondialdehyde and acetaldehyde react together with proteins in a synergistic manner and form hybrid protein adducts, designated as MAA adducts. MAA-protein adducts are composed of two major products whose structures and mechanism of formation have been elucidated. MAA adduct formation, especially in the liver, has been demonstrated in vivo during ethanol consumption. These protein adducts are capable of inducing a potent immune response, resulting in the generation of antibodies against both MAA epitopes, as well as against epitopes on the carrier protein. Chronic ethanol administration to rats results in significant circulating antibody titers against MAA-adducted proteins, and high anti-MAA titers have been associated with the severity of liver damage in humans with alcoholic liver disease. In vitro exposure of liver endothelial or hepatic stellate cells to MAA adducts induces a proinflammatory and profibrogenic response in these cells. Thus, during excessive ethanol consumption, ethanol oxidation and ethanol-induced oxidative stress result in the formation of acetaldehyde and malondialdehyde, respectively. These aldehydes can react together synergistically with proteins and generate MAA adducts, which are very immunogenic and possess proinflammatory and profibrogenic properties. By virtue of these potentially toxic effects, MAA adducts may play an important role in the pathogenesis of alcoholic liver injury.

  17. Development of an immunoassay to detect benzene adducts in hemoglobin

    SciTech Connect

    Grassman, J.A.

    1993-01-01

    The purpose of this project was to develop an immunoassay to detect the adducts formed in hemoglobin after exposure to benzene, which is known to cause bone marrow degeneration and acute myelogenous leukemia. The use of benzene-adduct detection as a biological monitoring method would permit measurement of low exposures and exposures sustained weeks earlier. The reactivity of hydroquinone, an important benzene metabolite, with blood proteins and amino acids was investigated in order to decide which antigens and analytes were likely to be suitable for immunoassay development. The second section determined the combination of benzene-metabolite and antigen need to produce an immunoassay with the requisite low detection limit and specificity. The immunoassays with the best performance were tested on hemoglobin from benzene-exposed mice. In vitro studies showed that hydroquinone efficiently formed adducts with erythrocyte membranes and hemoglobin but not with albumin. Adduction efficiency was greater in incubations using purified hemoglobin than whole blood. Cysteine accounted for 15 to 27% of the adducts formed by hydroquinone. The site of the other adducts were not identified although there was evidence that the hemoglobin heme was adducted. Adducts were found on only 1 of the 2 globin chains. Tryptic digestion of the globin failed to associate the adducts with a specific peptide. Antigens made from hydroquinone-adducted hemoglobin but not hydroquinone-adducted cysteines coupled to carrier proteins effectively elicited adduct-specific antibodies. Interference due to reactivity to hemoglobin was controlled by using uniform quantities of hemoglobin in all wells. The mid-range of the best assays were approximately 12 pmoles HQ per well. Antibodies directed toward hemoglobin adducted with the benzene metabolites phenol, catechol and 1,2,4-trihydroxybenzene were also made. The performance of the anti-1,2,4-trihydroxybenzene were suitable for quantitative immunoassays.

  18. Generation of Adducts of 4-Hydroxy-2-nonenal with Heat Shock 60 kDa Protein 1 in Human Promyelocytic HL-60 and Monocytic THP-1 Cell Lines

    PubMed Central

    Daga, Martina; Cetrangolo, Giovanni Paolo; Ciamporcero, Eric Stefano; Petrella, Claudia; Graf, Maria; Uchida, Koji; Mamone, Gianfranco; Ferranti, Pasquale; Ames, Paul R. J.

    2015-01-01

    Heat shock 60 kDa protein 1 (HSP60) is a chaperone and stress response protein responsible for protein folding and delivery of endogenous peptides to antigen-presenting cells and also a target of autoimmunity implicated in the pathogenesis of atherosclerosis. By two-dimensional electrophoresis and mass spectrometry, we found that exposure of human promyelocytic HL-60 cells to a nontoxic concentration (10 μM) of 4-hydroxy-2-nonenal (HNE) yielded a HSP60 modified with HNE. We also detected adducts of HNE with putative uncharacterized protein CXorf49, the product of an open reading frame identified in various cell and tissue proteomes. Moreover, exposure of human monocytic THP-1 cells differentiated with phorbol 12-myristate 13-acetate to 10 μM HNE, and to light density lipoprotein modified with HNE (HNE-LDL) or by copper-catalyzed oxidation (oxLDL), but not to native LDL, stimulated the formation of HNE adducts with HSP60, as detected by immunoprecipitation and western blot, well over basal levels. The identification of HNE-HSP60 adducts outlines a framework of mutually reinforcing interactions between endothelial cell stressors, like oxLDL and HSP60, whose possible outcomes, such as the amplification of endothelial dysfunction, the spreading of lipoxidative damage to other proteins, such as CXorf49, the activation of antigen-presenting cells, and the breaking of tolerance to HSP60 are discussed. PMID:26078803

  19. Correlation between CYP1A1 transcript, protein level, enzyme activity and DNA adduct formation in normal human mammary epithelial cell strains exposed to benzo[a]pyrene

    PubMed Central

    Divi, Rao L.; Einem Lindeman, Tracey L.; Shockley, Marie E.; Keshava, Channa; Weston, Ainsley; Poirier, Miriam C.

    2014-01-01

    The polycyclic aromatic hydrocarbon (PAH) benzo(a)pyrene (BP) is thought to bind covalently to DNA, through metabolism by cytochrome P450 1A1 (CYP1A1) and CYP1B1, and other enzymes, to form r7, t8, t9-trihydroxy-c-10-(N 2-deoxyguanosyl)-7,8,9,10-tetrahydro-benzo[a]-pyrene (BPdG). Evaluation of RNA expression data, to understand the contribution of different metabolic enzymes to BPdG formation, is typically presented as fold-change observed upon BP exposure, leaving the actual number of RNA transcripts unknown. Here, we have quantified RNA copies/ng cDNA (RNA cpn) for CYP1A1 and CYP1B1, as well as NAD(P)H:quinone oxidoreductase 1 (NQO1), which may reduce formation of BPdG adducts, using primary normal human mammary epithelial cell (NHMEC) strains, and the MCF-7 breast cancer cell line. In unexposed NHMECs, basal RNA cpn values were 58–836 for CYP1A1, 336–5587 for CYP1B1 and 5943–40112 for NQO1. In cells exposed to 4.0 µM BP for 12h, RNA cpn values were 251–13234 for CYP1A1, 4133–57078 for CYP1B1 and 4456–55887 for NQO1. There were 3.5 (mean, range 0.2–15.8) BPdG adducts/108 nucleotides in the NHMECs (n = 16), and 790 in the MCF-7s. In the NHMECs, BP-induced CYP1A1 RNA cpn was highly associated with BPdG (P = 0.002), but CYP1B1 and NQO1 were not. Western blots of four NHMEC strains, chosen for different levels of BPdG adducts, showed a linear correlation between BPdG and CYP1A1, but not CYP1B1 or NQO1. Ethoxyresorufin-O-deethylase (EROD) activity, which measures CYP1A1 and CYP1B1 together, correlated with BPdG, but NQO1 activity did not. Despite more numerous levels of CYP1B1 and NQO1 RNA cpn in unexposed and BP-exposed NHMECs and MCF-7cells, BPdG formation was only correlated with induction of CYP1A1 RNA cpn. The higher level of BPdG in MCF-7 cells, compared to NHMECs, may have been due to a much increased induction of CYP1A1 and EROD. Overall, BPdG correlation was observed with CYP1A1 protein and CYP1A1/1B1 enzyme activity, but not with CYP1B1 or NQO

  20. Electrospray ionization mass spectrometric characterization of acrylamide adducts to hemoglobin

    SciTech Connect

    Springer, D.L.; Goheen, S.C.; Edmonds, C.G. ); Bull, R.J.; Sylvester, D.M. )

    1993-01-01

    The most common procedure to identify hemoglobin adducts has been to cleave the adducts from the protein and characterize the adducting species, by, for example, derivatization and gas chromatography/mass spectrometry. To extend these approaches we used electrospray ionization mass spectrometry (ESI-MS) to characterize adducted hemoglobin. For this we incubated [[sup 14]C]acrylamide with the purified human hemoglobin (type A[sub 0]) under conditions that yielded high adduct levels. When the hemoglobin was separated by reversed-phase high-performance liquid chromatography (HPLC), 65% of the radioactivity copurified with the [beta]-subunit. Three adducted species were prominent in the ESI mass spectrum of the intact [beta]-subunit, indicating acrylamide adduction (i.e., mass increase of 71 Da) and two addition unidentified moieties with mass increments of 102 and 135 Da. Endoproteinase Glu-C digestion of the adducted [beta]-subunit resulted in a peptide mixture that, upon reversed-phase HPLC separation, provided several radiolabeled peptides. Using ESI-MS we identified these as the V[sub 91-101] and V[sub 102-122] peptides that represent the cysteine-containing peptides of the [beta]-subunit. These results provide definitive information on acrylamide-modified human hemoglobin and demonstrate that ESI-MS provides valuable structure information on chemically adducted proteins. 30 refs., 9 figs., 3 tabs.

  1. Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity.

    PubMed

    McGill, Mitchell R; Williams, C David; Xie, Yuchao; Ramachandran, Anup; Jaeschke, Hartmut

    2012-11-01

    Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites a reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity.

  2. A 10-minute point-of-care assay for detection of blood protein adducts resulting from low level exposure to organophosphate nerve agents.

    PubMed

    VanDine, Robert; Babu, Uma Mahesh; Condon, Peter; Mendez, Arlene; Sambursky, Robert

    2013-03-25

    The OrganoTox test is a rapid, point-of-care assay capable of detecting clinically relevant organophosphate (OP) poisoning after low-level exposure to sarin, soman, tabun, or VX chemical nerve agents. The test utilizes either a finger stick peripheral blood sample or plasma specimen. While high-level nerve agent exposure can quickly lead to death, low-level exposure produces vague, nondescript signs and symptoms that are not easily clinically differentiated from other conditions. In initial testing, the OrganoTox test was used to detect the presence of blood protein-nerve agent adducts in exposed blood samples. In order to mimic the in vivo exposure as closely as possible, nerve agents stored in organic solvents were spiked in minute quantities into whole blood samples. For performance testing, 40 plasma samples were spiked with sarin, soman, tabun, or VX and 10 normal plasma samples were used as the negative control. The 40 nerve agent-spiked plasma samples included 10 replicates of each agent. At the clinically relevant low-level exposure of 10 ng/ml, the OrganoTox test demonstrated 100% sensitivity for soman, tabun, and VX and 80% sensitivity for sarin. The OrganoTox test demonstrated greater than 97% specificity with 150 blood samples obtained from healthy adults. No cross-reactivity or interference from pesticide precursor compounds was found. A rapid test for nerve agent exposure will help identify affected patients earlier in the clinical course and trigger more appropriate medical management in a more timely manner.

  3. Strategy for identifying unknown hemoglobin adducts using adductome LC-MS/MS data: Identification of adducts corresponding to acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one.

    PubMed

    Carlsson, Henrik; Törnqvist, Margareta

    2016-06-01

    Electrophilic compounds have the ability to form adducts with nucleophilic sites in proteins and DNA in tissues, and thereby constitute risks for toxic effects. Adductomic approaches are developed for systematic screening of adducts to DNA and blood proteins, with the aim to detect unknown internal exposures to electrophiles. In a previous adductomic screening of adducts to N-terminals in hemoglobin, using LC-MS/MS, 19 unknown adducts were detected in addition to seven previously identified adducts. The present paper describes the identification of four of these unknown adducts, as well as the strategy used to identify them. Using LC-MS data from the screening, hypotheses about adduct identities were formulated: probable precursor electrophiles with matching molecular weights were suggested based on the molecular weights of the modifications and the retention times of the analytes, in combination with comparisons of theoretical Log P calculations and databases. Reference adducts were generated by incubation of blood samples with the hypothesized precursor electrophiles. The four identified precursor electrophiles, corresponding to the observed unknown adducts, were glyoxal, methylglyoxal, acrylic acid and 1-octen-3-one. Possible origins/exposure sources and toxicological information concerning the electrophilic precursors are discussed. The identified adducts could be explored as possible biomarkers for exposure.

  4. Destabilization of the MutSα’s protein-protein interface due to binding to the DNA adduct induced by anticancer agent Carboplatin via molecular dynamics simulations

    PubMed Central

    Negureanu, Lacramioara; Salsbury, Freddie R

    2013-01-01

    DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα’s surveillance for DNA errors would possible be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations. PMID:24061854

  5. Cytochrome c Adducts with PCB Quinoid Metabolites

    PubMed Central

    Li, Miao; Teesch, Lynn M.; Murry, Daryl J.; Pope, R. Marshal; Li, Yalan; Robertson, Larry W.; Ludewig, Gabriele

    2015-01-01

    PCBs are a group of 209 individual congeners widely used as industrial chemicals. PCBs are found as by-products in dye and paint manufacture and are legacy, ubiquitous and persistent as human and environmental contaminants. PCBs with fewer chlorine atoms may be metabolized to hydroxy- and dihydroxy- metabolites and further oxidized to quinoid metabolites both in vitro and in vivo. Specifically, quinoid metabolites may form adducts on nucleophilic sites within cells. We hypothesized that the PCB-quinones covalently bind to cytochrome c and thereby cause defects in the function of cytochrome c. In this study synthetic PCB quinones (2-(4’-chlorophenyl)-1,4-benzoquinone, 2-(3’, 5’-dichlorophenyl)-1,4-benzoquinone, 2-(3’,4’, 5’-trichlorophenyl)-1,4-benzoquinone, and 2-(4’-chlorophenyl)-3,6-dichloro-1,4-benzoquinone) were incubated with cytochrome c, and adducts were detected by LC-MS and MALDI TOF. SDS PAGE gel electrophoresis was employed to separate the adducted proteins, while trypsin digestion and LC-MS/MS were applied to identify the amino acid binding sites on cytochrome c. Conformation change of cytochrome c after binding with PCB3-para-quinone was investigated by SYBYL-X simulation and cytochrome c function was examined. We found that more than one molecule of PCB-quinone may bind to one molecule of cytochrome c. Lysine and glutamic acid were identified as the predominant binding sites. Software simulation showed conformation changes of adducted cytochrome c. Additionally, cross-linking of cytochrome c was observed on the SDS PAGE gel. Cytochrome c was found to be in the reduced form after incubation with PCB quinones. These data provide evidence that the covalent binding of PCB quinone metabolites to cytochrome c may be included among the toxic effects of PCBs. PMID:26062463

  6. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    PubMed

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  7. 4-hydroxynonenal in the pathogenesis and progression of human diseases

    PubMed Central

    Shoeb, Mohammad; Ansari, Naseem H; Srivastava, Satish K; Ramana, Kota V

    2014-01-01

    Metastable aldehydes produced by lipid peroxidation act as 'toxic second messengers' that extend the injurious potential of free radicals. 4-hydroxy 2-nonenal (HNE), a highly toxic and most abundant stable end product of lipid peroxidation, has been implicated in the tissue damage, dysfunction, injury associated with aging and other pathological states such as cancer, Alzheimer, diabetes, cardiovascular and inflammatory complications. Further, HNE has been considered as a oxidative stress marker and it act as a secondary signaling molecule to regulates a number of cell signaling pathways. Biological activity of HNE depends on its intracellular concentration, which can differentially modulate cell death, growth and differentiation. Therefore, the mechanisms responsible for maintaining the intracellular levels of HNE are most important, not only in the defense against oxidative stress but also in the pathophysiology of a number of disease processes. In this review, we discusse the significance of HNE in mediating various disease processes and how regulation of its metabolism could be therapeutically effective. PMID:23848536

  8. High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation.

    PubMed

    Azzu, Vian; Parker, Nadeene; Brand, Martin D

    2008-07-15

    Mitochondria generate reactive oxygen species, whose downstream lipid peroxidation products, such as 4-hydroxynonenal, induce uncoupling of oxidative phosphorylation by increasing proton leak through mitochondrial inner membrane proteins such as the uncoupling proteins and adenine nucleotide translocase. Using mitochondria from rat liver, which lack uncoupling proteins, in the present study we show that energization (specifically, high membrane potential) is required for 4-hydroxynonenal to activate proton conductance mediated by adenine nucleotide translocase. Prolonging the time at high membrane potential promotes greater uncoupling. 4-Hydroxynonenal-induced uncoupling via adenine nucleotide translocase is prevented but not readily reversed by addition of carboxyatractylate, suggesting a permanent change (such as adduct formation) that renders the translocase leaky to protons. In contrast with the irreversibility of proton conductance, carboxyatractylate added after 4-hydroxynonenal still inhibits nucleotide translocation, implying that the proton conductance and nucleotide translocation pathways are different. We propose a model to relate adenine nucleotide translocase conformation to proton conductance in the presence or absence of 4-hydroxynonenal and/or carboxyatractylate.

  9. Carcinogen adducts as an indicator for the public health risks of consuming carcinogen-exposed fish and shellfish.

    PubMed Central

    Dunn, B P

    1991-01-01

    A large variety of environmental carcinogens are metabolically activated to electrophilic metabolites that can bind to nucleic acids and protein, forming covalent adducts. The formation of DNA-carcinogen adducts is thought to be a necessary step in the action of most carcinogens. Recently, a variety of new fluorescence, immunochemical, and radioactive-postlabeling procedures have been developed that allow the sensitive measurement of DNA-carcinogen adducts in organisms exposed to environmental carcinogens. In some cases, similar procedures have been developed for protein-carcinogen adducts. In an organism with active metabolic systems for a given carcinogen, adducts are generally much longer lived than the carcinogens that formed them. Thus, the detection of DNA- or protein-carcinogen adducts in aquatic foodstuffs can act as an indicator of prior carcinogen exposure. The presence of DNA adducts would, in addition, suggest a mutagenic/carcinogenic risk to the aquatic organism itself. Vertebrate fish are characterized by high levels of carcinogen metabolism, low body burdens of carcinogen, the formation of carcinogen-macromolecule adducts, and the occurrence of pollution-related tumors. Shellfish, on the other hand, have low levels of carcinogen metabolism, high body burdens of carcinogen, and have little or no evidence of carcinogen-macromolecule adducts or tumors. The consumption of carcinogen adducts in aquatic foodstuffs is unlikely to represent a human health hazard. There are no metabolic pathways by which protein-carcinogen or DNA-carcinogen adducts could reform carcinogens. Incorporation via salvage pathways of preformed nucleoside-carcinogen adducts from foodstuffs into newly synthesized human DNA is theoretically possible.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 1. FIGURE 1. FIGURE 2. PMID:2050048

  10. Carcinogen adducts as an indicator for the public health risks of consuming carcinogen-exposed fish and shellfish

    SciTech Connect

    Dunn, B.P. )

    1991-01-01

    A large variety of environmental carcinogens are metabolically activated to electrophilic metabolites that can bind to nucleic acids and protein, forming covalent adducts. The formation of DNA-carcinogen adducts is thought to be a necessary step in the action of most carcinogens. Recently, a variety of new fluorescence, immunochemical, and radioactive-postlabeling procedures have been developed that allow the sensitive measurement of DNA-carcinogen adducts in organisms exposed to environmental carcinogens. In some cases, similar procedures have been developed for protein-carcinogen adducts. In an organism with active metabolic systems for a given carcinogen, adducts are generally much longer lived than the carcinogens that formed them. Thus, the detection of DNA- or protein-carcinogen adducts in aquatic foodstuffs can act as an indicator of prior carcinogen exposure. The presence of DNA adducts would, in addition, suggest a mutagenic/carcinogenic risk to the aquatic organism itself. Vertebrate fish are characterized by high levels of carcinogen metabolism, low body burdens of carcinogen, the formation of carcinogen-macromolecule adducts, and the occurrence of pollution-related tumors. Shellfish, on the other hand, have low levels of carcinogen metabolism, high body burdens of carcinogen, and have little or no evidence of carcinogen-macromolecule adducts or tumors. The consumption of carcinogen adducts in aquatic foodstuffs is unlikely to represent a human health hazard. There are no metabolic pathways by which protein-carcinogen or DNA-carcinogen adducts could reform carcinogens. Incorporation via salvage pathways of preformed nucleoside-carcinogen adducts from foodstuffs into newly synthesized human DNA is theoretically possible.

  11. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts.

    PubMed

    Aparicio, Tomas; Baer, Richard; Gottesman, Max; Gautier, Jean

    2016-02-15

    Repair of DNA double-strand breaks (DSBs) with complex ends poses a special challenge, as additional processing is required before DNA ligation. For example, protein-DNA adducts must be removed to allow repair by either nonhomologous end joining or homology-directed repair. Here, we investigated the processing of topoisomerase II (Top2)-DNA adducts induced by treatment with the chemotherapeutic agent etoposide. Through biochemical analysis in Xenopus laevis egg extracts, we establish that the MRN (Mre11, Rad50, and Nbs1) complex, CtIP, and BRCA1 are required for both the removal of Top2-DNA adducts and the subsequent resection of Top2-adducted DSB ends. Moreover, the interaction between CtIP and BRCA1, although dispensable for resection of endonuclease-generated DSB ends, is required for resection of Top2-adducted DSBs, as well as for cellular resistance to etoposide during genomic DNA replication.

  12. Substituted Imidazole of 5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine Inactivates Cytochrome P450 2D6 by Protein Adduction

    PubMed Central

    Nagy, Leslie D.; Mocny, Catherine S.; Diffenderfer, Laura E.; Hsi, David J.; Butler, Brendan F.; Arthur, Evan J.; Fletke, Kyle J.; Palamanda, Jairam R.; Nomeir, Amin A.

    2011-01-01

    5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine (SCH 66712) is a potent mechanism-based inactivator of human cytochrome P450 2D6 that displays type I binding spectra with a Ks of 0.39 ± 0.10 μM. The partition ratio is ∼3, indicating potent inactivation that addition of exogenous nucleophiles does not prevent. Within 15 min of incubation with SCH 66712 and NADPH, ∼90% of CYP2D6 activity is lost with only ∼20% loss in ability to bind CO and ∼25% loss of native heme over the same time. The stoichiometry of binding to the protein was 1.2:1. SDS-polyacrylamide gel electrophoresis with Western blotting and autoradiography analyses of CYP2D6 after incubations with radiolabeled SCH 66712 further support the presence of a protein adduct. Metabolites of SCH 66712 detected by mass spectrometry indicate that the phenyl group on the imidazole ring of SCH 66712 is one site of oxidation by CYP2D6 and could lead to methylene quinone formation. Three other metabolites were also observed. For understanding the metabolic pathway that leads to CYP2D6 inactivation, metabolism studies with CYP2C9 and CYP2C19 were performed because neither of these enzymes is significantly inhibited by SCH 66712. The metabolites formed by CYP2C9 and CYP2C19 are the same as those seen with CYP2D6, although in different abundance. Modeling studies with CYP2D6 revealed potential roles of various active site residues in the oxidation of SCH 66712 and inactivation of CYP2D6 and showed that the phenyl group of SCH 66712 is positioned at 2.2 Å from the heme iron. PMID:21422192

  13. Crystal Structure of a Hidden Protein, YcaC, a Putative Cysteine Hydrolase from Pseudomonas aeruginosa, with and without an Acrylamide Adduct.

    PubMed

    Grøftehauge, Morten K; Truan, Daphne; Vasil, Adriana; Denny, Paul W; Vasil, Michael L; Pohl, Ehmke

    2015-07-14

    As part of the ongoing effort to functionally and structurally characterize virulence factors in the opportunistic pathogen Pseudomonas aeruginosa, we determined the crystal structure of YcaC co-purified with the target protein at resolutions of 2.34 and 2.56 Å without a priori knowledge of the protein identity or experimental phases. The three-dimensional structure of YcaC adopts a well-known cysteine hydrolase fold with the putative active site residues conserved. The active site cysteine is covalently bound to propionamide in one crystal form, whereas the second form contains an S-mercaptocysteine. The precise biological function of YcaC is unknown; however, related prokaryotic proteins have functions in antibacterial resistance, siderophore production and NADH biosynthesis. Here, we show that YcaC is exceptionally well conserved across both bacterial and fungal species despite being non-ubiquitous. This suggests that whilst YcaC may not be part of an integral pathway, the function could confer a significant evolutionary advantage to microbial life.

  14. Quantitation of 4,4′-methylene diphenyl diisocyanate human serum albumin adducts

    PubMed Central

    Luna, Leah G.; Green, Brett J.; Zhang, Fagen; Arnold, Scott M.; Siegel, Paul D.; Bartels, Michael J.

    2016-01-01

    4,4′-Methylene diphenyl diisocyanate (herein 4,4′-MDI) is used in the production of polyurethane foams, elastomers, coatings, adhesives and the like for a wide range of commercial products. Occupational exposure to MDI levels above current airborne exposure limits can elicit immune mediated hypersensitivity reactions such as occupational asthma in sensitive individuals. To accurately determine exposure, there has been increasing interest in developing analytical methods to measure internal biomarkers of exposure to MDI. Previous investigators have reported methodologies for measuring MDI diamine metabolites and MDI-Lysine (4,4′-MDI-Lys) adducts. The purpose of this study was to develop and validate an ultra performance liquid chromatography isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS) quantitation method via a signature peptide approach to enable biomonitoring of 4,4′-MDI adducted to human serum albumin (HSA) in plasma. A murine, anti-4,4′-MDI monoclonal IgM antibody was bound to magnetic beads and utilized for enrichment of the MDI adducted HSA. Following enrichment, trypsin digestion was performed to generate the expected 414 site (primary site of adduction) 4,4′-MDI-adducted HSA signature peptide that was quantified by UPLC-ID/MS/MS. An Agilent 6530 UPLC/quadrupole time of flight MS (QTOF) system was utilized for intact adducted protein analysis and an Agilent 6490 UPLC/MS/MS system operated in multiple reaction monitoring (MRM) mode was utilized for quantification of the adducted signature peptide biomarker both for in chemico and worker serum samples. Worker serum samples were initially screened utilizing the previously developed 4,4′-MDI-Lys amino acid method and results showed that 12 samples were identified as quantifiable for 4,4′-MDI-Lys adducts. The signature peptide adduct approach was applied to the 12 worker samples identified as quantifiable for 4,4′-MDI-Lys adducts. Results indicated no positive results were obtained

  15. Interaction of Nucleotide Excision Repair Protein XPC-RAD23B with DNA Containing Benzo[a]pyrene-Derived Adduct and Apurinic/Apyrimidinic Site within a Cluster.

    PubMed

    Starostenko, L V; Maltseva, E A; Lebedeva, N A; Pestryakov, P E; Lavrik, O I; Rechkunova, N I

    2016-03-01

    The combined action of reactive metabolites of benzo[a]pyrene (B[a]P) and oxidative stress can lead to cluster-type DNA damage that includes both a bulky lesion and an apurinic/apyrimidinic (AP) site, which are repaired by the nucleotide and base excision repair mechanisms - NER and BER, respectively. Interaction of NER protein XPC-RAD23B providing primary damage recognition with DNA duplexes containing a B[a]P-derived residue linked to the exocyclic amino group of a guanine (BPDE-N(2)-dG) in the central position of one strand and AP site in different positions of the other strand was analyzed. It was found that XPC-RAD23B crosslinks to DNA containing (+)-trans-BPDE-N(2)-dG more effectively than to DNA containing cis-isomer, independently of the AP site position in the opposite strand; protein affinity to DNA containing one of the BPDE-N(2)-dG isomers depends on the AP site position in the opposite strand. The influence of XPC-RAD23B on hydrolysis of an AP site clustered with BPDE-N(2)-dG catalyzed by the apurinic/apyrimidinic endonuclease 1 (APE1) was examined. XPC-RAD23B was shown to stimulate the endonuclease and inhibit the 3'-5' exonuclease activity of APE1. These data demonstrate the possibility of cooperation of two proteins belonging to different DNA repair systems in the repair of cluster-type DNA damage.

  16. Determinants of protein hyperthermostability: Purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR

    SciTech Connect

    Blake, P.R.; Summers, M.F. ); Park, J.B.; Bryant, F.O.; Aono, Shigetoshi; Adams, M.W.W. ); Magnuson, J.K.; Eccleston, E.; Howard, J.B. )

    1991-11-12

    The purification, amino acid sequence, and two-dimensional {sup 1}H NMR results are reported for the rubredoxin (Rd) from the hyperthermophilic archaebacterium Pyrococcus furiosus, an organism that grows optimally at 100C. The molecular mass (5397 Da), iron content UV-vis spectrophotometric properties, and amino acid sequence are found to be typical of this class of redox protein. However, P. furiosus Rd is remarkably thermostable, being unaffected after incubation for 24 h at 95C. One- and two-dimensional {sup 1}H nuclear magnetic resonance spectra of the oxidized (Fe(III)Rd) and reduced (Fe(II)Rd) forms of P. furiosus Rd exhibited substantial paramagnetic line broadening, and this precluded detailed 3D structural studies. The apoprotein was not readily amenable to NMR studies due to apparent protein oxidation involving the free cysteine sulfhydryls. Secondary structural elements were determined from qualitative analysis of 2D Overhauser effect spectra. These structural elements are similar to those observed by X-ray crystallography for native Rd from the mesophile C. pasteurianum. From analysis of the secondary structure, potentially stabilizing electrostatic interactions involving the charged groups of residues Ala(1), Glu(14), and Glu(52) are proposed. These interactions, which are not present in rubredoxins from mesophilic organisms, may prevent the {beta}-sheet from unzipping' at elevated temperatures.

  17. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury.

    PubMed

    Ansari, Mubeen A; Roberts, Kelly N; Scheff, Stephen W

    2008-08-15

    Oxidative stress, an imbalance between oxidants and antioxidants, contributes to the pathogenesis of traumatic brain injury (TBI). Oxidative neurodegeneration is a key mediator of exacerbated morphological responses and deficits in behavioral recoveries. The present study assessed early hippocampal sequential imbalance to possibly enhance antioxidant therapy. Young adult male Sprague-Dawley rats were subjected to a unilateral moderate cortical contusion. At various times post-TBI, animals were killed and the hippocampus was analyzed for antioxidants (GSH, GSSG, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, glucose-6-phosphate dehydrogenase, superoxide dismutase, and catalase) and oxidants (acrolein, 4-hydroxynonenal, protein carbonyl, and 3-nitrotyrosine). Synaptic markers (synapsin I, postsynaptic density protein 95, synapse-associated protein 97, growth-associated protein 43) were also analyzed. All values were compared with those for sham-operated animals. Significant time-dependent changes in antioxidants were observed as early as 3 h posttrauma and paralleled increases in oxidants (4-hydroxynonenal, acrolein, and protein carbonyl), with peak values obtained at 24-48 h. Time-dependent changes in synaptic proteins (synapsin I, postsynaptic density protein 95, and synapse-associated protein 97) occurred well after levels of oxidants peaked. These results indicate that depletion of antioxidant systems following trauma could adversely affect synaptic function and plasticity. Early onset of oxidative stress suggests that the initial therapeutic window following TBI appears to be relatively short, and it may be necessary to stagger selective types of antioxidant therapy to target specific oxidative components.

  18. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    SciTech Connect

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  19. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts.

    PubMed Central

    Ylä-Herttuala, S; Rosenfeld, M E; Parthasarathy, S; Sigal, E; Särkioja, T; Witztum, J L; Steinberg, D

    1991-01-01

    Oxidatively modified low density lipoprotein (LDL) exhibits several potentially atherogenic properties, and inhibition of LDL oxidation in rabbits decreases the rate of the development of atherosclerotic lesions. In vitro studies have suggested that cellular lipoxygenases may be involved in LDL oxidation, and we have shown previously that 15-lipoxygenase and oxidized LDL are present in rabbit atherosclerotic lesions. We now report that epitopes of oxidized LDL are also found in macrophage-rich areas of human fatty streaks as well as in more advanced human atherosclerotic lesions. Using in situ hybridization and immunostaining techniques, we also report that 15-lipoxygenase mRNA and protein colocalize to the same macrophage-rich areas. Moreover, these same lesions express abundant mRNA for the acetyl LDL receptor but no detectable mRNA for the LDL receptor. We suggest that atherogenesis in human arteries may be linked to macrophage-induced oxidative modification of LDL mediated by 15-lipoxygenase, leading to subsequent enhanced macrophage uptake, partly by way of the acetyl LDL receptor. Images PMID:2010531

  20. A mathematical model for intracellular effects of toxins on DNA adduction and repair

    SciTech Connect

    Gaver, D.P.; Jacobs, P.A.; Carpenter, R.L.; Burkhart, J.G.

    1997-01-01

    The processes by which certain classes of toxic compounds or their metabolites may react with DNA to alter the genetic information contained in subsequent generations of cells or organisms are a major component of hazard associated with exposure to chemicals in the environment. Many classes of chemicals may form DNA adducts and there may or may not be a defined mechanism to remove a particular adduct from DNA independent of replication. Many compounds and metabolites that bind DNA also readily bind existing proteins; some classes of toxins and DNA adducts have the capacity to inactive a repair enzyme and divert the repair process competitively. This paper formulates an intracellular dynamic model for one aspect of the action of toxins that form DNA adducts, recognizing a capacity for removal of those adducts by a repair enzyme combined with reaction of the toxin and/or the DNA adduct to inactive the repair enzyme. This particular model illustrates the possible saturation of repair enzyme capacity by the toxin dosage and shows that bistable behavior can occur, with the potential to induce abrupt shifts away from steady-state equilibria. The model suggests that bistable behavior, dose and variation between individuals or tissues may combine under certain conditions to amplify the biological effect of dose observed as DNA adduction and its consequences as mutation. A model recognizing stochastic phenomena also indicates that variation in within-cell toxin concentration may promote jumps between stable equilibria.

  1. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts.

    PubMed Central

    Newman, M J; Light, B A; Weston, A; Tollurud, D; Clark, J L; Mann, D L; Blackmon, J P; Harris, C C

    1988-01-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz[a]anthracene and benzo[a]pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactions between the benzo[a]pyrene and the chrysene diol-epoxide adducts were present. Similar cross-reactivity between the benz[a]anthracene and the chrysene adducts was observed. Sera containing antibodies that were apparently specific for each of the three PAH-DNA adducts were also identified. The presence of antibodies to PAH-DNA adducts indicates both past exposure to these carcinogenic PAH and their metabolic activation to the DNA damaging metabolites. These antibodies may prove to be useful in both retrospective and prospective epidemiological studies of various diseases associated with PAH exposure. PMID:3392204

  2. Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future

    PubMed Central

    2016-01-01

    Serum albumin (Alb) is the most abundant protein in blood plasma. Alb reacts with many carcinogens and/or their electrophilic metabolites. Studies conducted over 20 years ago showed that Alb forms adducts with the human carcinogens aflatoxin B1 and benzene, which were successfully used as biomarkers in molecular epidemiology studies designed to address the role of these chemicals in cancer risk. Alb forms adducts with many therapeutic drugs or their reactive metabolites such as β-lactam antibiotics, acetylsalicylic acid, acetaminophen, nonsteroidal anti-inflammatory drugs, chemotherapeutic agents, and antiretroviral therapy drugs. The identification and characterization of the adduct structures formed with Alb have served to understand the generation of reactive metabolites and to predict idiosyncratic drug reactions and toxicities. The reaction of candidate drugs with Alb is now exploited as part of the battery of screening tools to assess the potential toxicities of drugs. The use of gas chromatography-mass spectrometry, liquid chromatography, or liquid chromatography-mass spectrometry (LC-MS) enabled the identification and quantification of multiple types of Alb xenobiotic adducts in animals and humans during the past three decades. In this perspective, we highlight the history of Alb as a target protein for adduction to environmental and dietary genotoxicants, pesticides, and herbicides, common classes of medicinal drugs, and endogenous electrophiles, and the emerging analytical mass spectrometry technologies to identify Alb-toxicant adducts in humans. PMID:27989119

  3. Malondialdehyde-acetaldehyde adducts decrease bronchial epithelial wound repair.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; Tuma, Dean J; Sisson, Joseph H; Spurzem, John R

    2005-05-01

    Most people who abuse alcohol are cigarette smokers. Previously, we have shown that malondialdehyde, an inflammation product of lipid peroxidation, and acetaldehyde, a component of both ethanol metabolism and cigarette smoke, form protein adducts that stimulate protein kinase C (PKC) activation in bronchial epithelial cells. We have also shown that PKC can regulate bronchial epithelial cell wound repair. We hypothesize that bovine serum albumin adducted with malondialdehyde and acetaldehyde (BSA-MAA) decreases bronchial epithelial cell wound repair via binding to scavenger receptors on bronchial epithelial cells. To test this, confluent monolayers of bovine bronchial epithelial cells were grown in serum-free media prior to wounding the cells. Bronchial epithelial cell wound closure was inhibited in a dose-dependent manner (up to 60%) in the presence of BSA-MAA than in media treated cells (Laboratory of Human Carcinogenesis [LHC]-9-Roswell Park Memorial Institute [RPMI]). The specific scavenger receptor ligand, fucoidan, also stimulated PKC activation and decreased wound repair. Pretreatment with fucoidan blocked malondialdehyde-acetaldehyde binding to bronchial epithelial cells. When bronchial epithelial cells were preincubated with a PKC alpha inhibitor, Gö 6976, the inhibition of wound closure by fucoidan and BSA-MAA was blocked. Western blot demonstrated the presence of several scavenger receptors on bronchial epithelial cell membranes, including SRA, SRBI, SRBII, and CD36. Scavenger receptor-mediated activation of PKC alpha may function to reduce wound healing under conditions of alcohol and cigarette smoke exposure where malondialdehyde-acetaldehyde adducts may be present.

  4. The Copper(II) Adduct of the Unstructured Region of the Amyloidogenic Fragment Derived from theHuman Prion Protein is Redox-Active at Physiological pH

    SciTech Connect

    Shearer,J.; Soh, P.

    2007-01-01

    Prion diseases are caused by the misfolding and aggregation of the prion protein (PrP). Herein we provide evidence that the Cu{sup II} adduct of the unstructured amyloidogenic fragment of the human PrP (PrP(91-126)) is redox active under physiological conditions. We have identified that the relevant high-affinity Cu{sup II} binding region of PrP(91-126) is contained between residues 106 and 114. Both [Cu{sup II}(PrP(91-126))] and [Cu{sup II}(PrP(106-114))] have Cu{sup II} K{sub d} values of {approx}90 {mu}M. Furthermore, the smaller PrP fragment PrP(106-114) coordinates Cu{sup II} producing an electronic absorption spectrum nearly identical with [Cu{sup II}(PrP(91-126))] ({lambda}{sub max} {approx}610 nm ({var_epsilon} {approx}125 M{sup -1} cm{sup -1})) suggesting a similar coordination environment for Cu{sup II}. Cu K-edge X-ray absorption spectroscopy (XAS) reveals a nearly identical CuN(N/O){sub 2}S coordination environment for these two metallopeptides (2N/O at {approx}1.97 {angstrom}; 1S at {approx}2.30 {angstrom}; 1 imidazole N at {approx}1.95 {angstrom}). Both display quasireversible Cu{sup II}/Cu{sup I} redox couples at {approx}-350 mV vs Ag/AgCl. ESI-MS indicates that both peptides will coordinate Cu{sup I}. However, XAS indicates differential coordination environments between [Cu{sup I}(PrP(91-126))] and [Cu{sup I}(PrP(106-114))]. These data indicate that [Cu{sup I}(PrP(91-126))] contains Cu in a four coordinate (N/O){sub 2}S{sub 2} environment with similar (N/O)-Cu bond distances (Cu-(N/O) r = 2.048(4) {angstrom}), while [Cu{sup I}(PrP(106-114))] contains Cu in a four coordinate (N/O){sub 2}S{sub 2} environment with differential (N/O)-Cu bond distances (Cu-(N/O) r{sub 1} = 2.057(6) {angstrom}; r{sub 2} = 2.159(3) {angstrom}). Despite the differential coordination environments both Cu-metallopeptides will catalytically reduce O{sub 2} to O{sub 2}{sup {sm_bullet}-} at comparable rates.

  5. Proteomic analysis of adducted butyrylcholinesterase for biomonitoring organophosphorus exposures

    PubMed Central

    Marsillach, Judit; Hsieh, Edward J.; Richter, Rebecca J.; MacCoss, Michael J.; Furlong, Clement E.

    2014-01-01

    Organophosphorus (OP) compounds include a broad group of toxic chemicals such as insecticides, chemical warfare agents and antiwear agents. The liver cytochromes P450 bioactivate many OPs to potent inhibitors of serine hydrolases. Cholinesterases were the first OP targets discovered and are the most studied. They are used to monitor human exposures to OP compounds. However, the assay that is currently used has limitations. The mechanism of action of OP compounds is the inhibition of serine hydrolases by covalently modifying their active-site serine. After structural rearrangement, the complex OP inhibitor-enzyme is irreversible and will remain in circulation until the modified enzyme is degraded. Mass spectrometry is a sensitive technology for analyzing protein modifications, such as OP-adducted enzymes. These analyses also provide some information about the nature of the OP adduct. Our aim is to develop high-throughput protocols for monitoring OP exposures using mass spectrometry. PMID:23123252

  6. Structural water cluster as a possible proton acceptor in the adduct decay reaction of oat phototropin 1 LOV2 domain.

    PubMed

    Chan, Ruby H; Bogomolni, Roberto A

    2012-09-06

    LOV domains (Light, Oxygen, Voltage) are the light-sensory modules of phototropins, the blue-light photoreceptor kinases in plants, and of a wide variety of flavoproteins found in all three domains of life. These 12 kDa modules bind a flavin chromophore (FMN or FAD) noncovalently and undergo a photochemical activation in which the sulfur atom of a conserved cysteine forms an adduct to the C(4a) carbon of the flavin. The adduct breaks spontaneously in a base-catalyzed reaction involving a rate-limiting proton-transfer step, regenerating the dark state in seconds. This photocycle involves chromophore and protein structural changes that activate the C-terminal serine/threonine kinase. Previous studies (Biochemistry 2007, 46, 7016-7021) showed that decreased hydration obtained at high glycerol concentrations stabilizes the adduct state in a manner similar to that attained at low temperatures, resulting in much longer adduct decay times. This kinetic effect was attributed to an increased protein rigidity that hindered structural fluctuations necessary for the decay reaction. In this work, we studied the adduct decay kinetics of oat phototropin 1 (phot1) LOV2 at varying hydration using a specially designed chamber that allowed for measurement of UV-visible and FTIR spectra of the same samples. Therefore, we obtained LOV protein concentrations, adduct decay kinetics, and the different populations of bound water by deconvolution of the broad water absorption peak around 3500 cm(-1). A linear dependence of the adduct decay rate constant on the concentration of double and triple hydrogen-bonded waters strongly suggests that the adduct decay is a pseudo-first-order reaction in which both the adduct and the strongly bound waters are reactants. We suggest that a cluster of strongly bound water functions as the proton acceptor in the rate-limiting step of adduct decay.

  7. Decay studies of DMPO-spin adducts of free radicals produced by reactions of metmyoglobin and methemoglobin with hydrogen peroxide.

    PubMed

    Kim, Y M; Jeong, S H; Yamazaki, I; Piette, L H; Han, S; Hong, S J

    1995-01-01

    The 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) spin adduct of myoglobin (Mb) or hemoglobin (Hb) was formed when metmyoglobin (MetMb) or methemoglobin (MetHb) reacted with H2O2 in the presence of DMPO, and both decayed with half-life of a few minutes. The DMPO spin adduct of Mb decayed with biphasic kinetics with k1 = 0.645 min-1 and k2 = 0.012 min-1, indicating that the spin adduct consisted of two kinetically heterogeneous species, stable and unstable ones. The DPMO spin adduct of Hb, however, was homogeneous. Decay of both spin adducts was accelerated in the presence of tyrosine, tryptophan or cysteine, but not phenylalanine, methionine or histidine. The decay obeyed the first order kinetics at varying concentrations of the spin adducts. The decay was accelerated by denaturation and proteolysis of protein moiety. The decay rate was not affected by the extra addition of MetMb or MetHb to each spin adduct. The decay rate of the spin adduct of Mb was increased by hematin in the presence of H2O2 and decreased by catalase. Decay of stable spin adduct of Mb, however, was not significantly changed under any experimental conditions used. These results led us to conclude that instability of the DMPO-spin adducts of Mb and Hb is due to intramolecular redox reactions between the spin adducts and amino acid residues and/or products of the reaction between heme and H2O2.

  8. Profiling Cys34 Adducts of Human Serum Albumin by Fixed-Step Selected Reaction Monitoring*

    PubMed Central

    Li, He; Grigoryan, Hasmik; Funk, William E.; Lu, Sixin Samantha; Rose, Sherri; Williams, Evan R.; Rappaport, Stephen M.

    2011-01-01

    A method is described for profiling putative adducts (or other unknown covalent modifications) at the Cys34 locus of human serum albumin (HSA), which represents the preferred reaction site for small electrophilic species in human serum. By comparing profiles of putative HSA-Cys34 adducts across populations of interest it is theoretically possible to explore environmental causes of degenerative diseases and cancer caused by both exogenous and endogenous chemicals. We report a novel application of selected-reaction-monitoring (SRM) mass spectrometry, termed fixed-step SRM (FS-SRM), that allows detection of essentially all HSA-Cys34 modifications over a specified range of mass increases (added masses). After tryptic digestion, HSA-Cys34 adducts are contained in the third largest peptide (T3), which contains 21 amino acids and an average mass of 2433.87 Da. The FS-SRM method does not require that exact masses of T3 adducts be known in advance but rather uses a theoretical list of T3-adduct m/z values separated by a fixed increment of 1.5. In terms of added masses, each triply charged parent ion represents a bin of ±2.3 Da between 9.1 Da and 351.1 Da. Synthetic T3 adducts were used to optimize FS-SRM and to establish screening rules based upon selected b- and y-series fragment ions. An isotopically labeled T3 adduct is added to protein digests to facilitate quantification of putative adducts. We used FS-SRM to generate putative adduct profiles from six archived specimens of HSA that had been pooled by gender, race, and smoking status. An average of 66 putative adduct hits (out of a possible 77) were detected in these samples. Putative adducts covered a wide range of concentrations, were most abundant in the mass range below 100 Da, and were more abundant in smokers than in nonsmokers. With minor modifications, the FS-SRM methodology can be applied to other nucleophilic sites and proteins. PMID:21193536

  9. Acetaldehyde and the genome: beyond nuclear DNA adducts and carcinogenesis.

    PubMed

    Brooks, Philip J; Zakhari, Samir

    2014-03-01

    The designation of acetaldehyde associated with the consumption of alcoholic beverages as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer (IARC) has brought renewed attention to the biological effects of acetaldehyde, as the primary oxidative metabolite of alcohol. Therefore, the overall focus of this review is on acetaldehyde and its direct and indirect effects on the nuclear and mitochondrial genome. We first consider different acetaldehyde-DNA adducts, including a critical assessment of the evidence supporting a role for acetaldehyde-DNA adducts in alcohol related carcinogenesis, and consideration of additional data needed to make a conclusion. We also review recent data on the role of the Fanconi anemia DNA repair pathway in protecting against acetaldehyde genotoxicity and carcinogenicity, as well as teratogenicity. We also review evidence from the older literature that acetaldehyde may impact the genome indirectly, via the formation of adducts with proteins that are themselves critically involved in the maintenance of genetic and epigenetic stability. Finally, we note the lack of information regarding acetaldehyde effects on the mitochondrial genome, which is notable since aldehyde dehydrogenase 2 (ALDH2), the primary acetaldehyde metabolic enzyme, is located in the mitochondrion, and roughly 30% of East Asian individuals are deficient in ALDH2 activity due to a genetic variant in the ALDH2 gene. In summary, a comprehensive understanding of all of the mechanisms by which acetaldehyde impacts the function of the genome has implications not only for alcohol and cancer, but types of alcohol related pathologies as well.

  10. Detection of DNA adducts by bioluminescence

    NASA Astrophysics Data System (ADS)

    Xu, Shunqing; Tan, Xianglin; Yao, Qunfeng; He, Min; Zhou, Yikai; Chen, Jian

    2001-09-01

    Luminescent assay for detection ATP is very sensitive with limitation of 10-17 moles. ATP using styrene oxide as a model carcinogen we currently apply a luminescence technique to detect the very low levels of carcinogen-DNA adducts in vitro and in vivo. The bioluminescent assay of DNA adducts entails three consecutive steps: digestion of modified DNA to adducted dinucleoside monophosphate and normal nucleotide are hydrolyzed to nucleosides (N) by nuclease P1 and prostatic acid phosphomonesterase (PAP); incorporation of (gamma) -P of ATP into normal nucleoside(N); detection of consumption of ATP by luminescence. This assay does not require separate manipulation because of the selective property of nuclease P1. One fmol of carcinogen- DNA adducts was detected by luminescent assay. A good correlation between results of luminescent assay and 32P-postlabeling procedures has been observed. We detect 1 adduct in 108 nucleotides for 10(mu) g DNA sample. The procedures of luminescent method is very simple and low- cost. IT appears applicable to the ultra sensitive detection of low levels of DNA adducts without radioactive isotope.

  11. Nitropyrene: DNA binding and adduct formation in respiratory tissues.

    PubMed Central

    Jackson, M A; King, L C; Ball, L M; Ghayourmanesh, S; Jeffrey, A M; Lewtas, J

    1985-01-01

    Binding of 1-nitro (14C)pyrene (NP) or its metabolites to cellular DNA and protein in cultures of rabbit alveolar macrophages, lung tissue, and tracheal tissue was examined. DNA binding in tracheal tissue (136 +/- 18.3 pmole NP/mg DNA) was four to five times the levels measured in either lung tissue (38 +/- 9.4 pmole NP/mg DNA) or macrophages (26 +/- 7.5 pmole NP/mg DNA). Adduct analysis of DNA isolated from lung tissue incubated with 1-nitro[H3]pyrene in vitro resulted in the identification of 2 to 5% of the NP adducts as C8-deoxyguanosine 1-aminopyrene. NP was also bound to cellular protein in tracheal tissue and lung tissue, and at a lower level in macrophages. Cocultivation of the macrophages with lung and tracheal tissue decreased the DNA binding in tracheal tissue by 45%. Following intratracheal instillation of diesel particles (5 mg) vapor-coated with 14C-NP (380 ppm, 0.085 muCi/mg) particles into rats, 5-8% of the radioactivity remained in the lungs after 20 hr. Most of the diesel particles were also deposited in the lung. Examination of DNA and protein binding in this tissue showed 5 to 12% of the pulmonary 14C bound to protein and no detectable levels of 14C bound to DNA. PMID:3841313

  12. Assay of methylglyoxal-derived protein and nucleotide AGEs.

    PubMed

    Rabbani, Naila; Shaheen, Fozia; Anwar, Attia; Masania, Jinit; Thornalley, Paul J

    2014-04-01

    Glyoxalase- and methylglyoxal-related research has required the development of quantitative and reliable techniques for the measurement of methylglyoxal-derived glycation adducts of protein and DNA. There are also other glycation adducts, oxidation adducts and nitration adducts of proteins and oxidation adducts of DNA. Proteolysis of protein releases glycation, oxidation and nitration free adducts (glycated, oxidized and nitrated amino acids) in plasma and nuclease digestion of DNA releases glycated and oxidized nucleosides into plasma and other body fluids for excretion in urine. The gold standard method for quantifying these adducts is stable isotopic dilution analysis LC-MS/MS. Protein and DNA adduct residues are determined by assay of enzymatic hydrolysates of protein and DNA extracts prepared using cocktails of proteases and nucleases respectively. Free adducts are determined by analysis of ultrafiltrates of plasma, urine and other physiological fluids. Protein damage markers (13 glycation adducts, five oxidation adducts and 3-nitrotyrosine) and DNA damage markers (three glycation adducts and one oxidation adduct) are quantified using 25 μg of protein, 10 μg of DNA or 5 μl of physiological fluid. Protein and nucleotide AGE (advanced glycation end-product) assay protocols resistant to interferences is described.

  13. Separation and identification of DMPO adducts of oxygen-centered radicals formed from organic hydroperoxides by HPLC-ESR, ESI-MS and MS/MS.

    PubMed

    Guo, Qiong; Qian, Steven Y; Mason, Ronald P

    2003-08-01

    Many electron spin resonance (ESR) spectra of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) radical adducts from the reaction of organic hydroperoxides with heme proteins or Fe(2+) were assigned to the adducts of DMPO with peroxyl, alkoxyl, and alkyl radicals. In particular, the controversial assignment of DMPO/peroxyl radical adducts was based on the close similarity of their ESR spectra to that of the DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the peroxyl adducts from the DMPO/superoxide adduct. Although recent reports assigned the spectra suggested to be DMPO/peroxyl radical adducts to the DMPO/methoxyl adduct based on independent synthesis of the adduct and/or (17)O-labeling, (17)O-labeling is extremely expensive, and both of these assignments were still based on hyperfine coupling constants, which have not been confirmed by independent techniques. In this study, we have used online high performance liquid chromatography (HPLC or LC)/ESR, electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) to separate and directly characterize DMPO oxygen-centered radical adducts formed from the reaction of Fe(2+) with t-butyl or cumene hydroperoxide. In each reaction system, two DMPO oxygen-centered radical adducts were separated and detected by online LC/ESR. The first DMPO radical adduct from both systems showed identical chromatographic retention times (t(R) = 9.6 min) and hyperfine coupling constants (a(N) = 14.51 G, a(H)(beta) = 10.71 G, and a(H)(gamma) = 1.32 G). The ESI-MS and MS/MS spectra demonstrated that this radical was the DMPO/methoxyl radical adduct, not the peroxyl radical adduct as was thought at one time, although its ESR spectrum is nearly identical to that of the DMPO/superoxide radical adduct. Similarly, based on their MS/MS spectra, we verified that the second adducts (a(N) = 14.86 G and a(H)(beta) = 16.06 G in the reaction system containing t

  14. Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon.

    PubMed

    Winter, Jean; Nyskohus, Laura; Young, Graeme P; Hu, Ying; Conlon, Michael A; Bird, Anthony R; Topping, David L; Le Leu, Richard K

    2011-11-01

    Population studies have shown that high red meat intake may increase colorectal cancer risk. Our aim was to examine the effect of different amounts and sources of dietary protein on induction of the promutagenic adduct O(6)-methyl-2-deoxyguanosine (O(6)MeG) in colonocytes, to relate these to markers of large bowel protein fermentation and ascertain whether increasing colonic carbohydrate fermentation modified these effects. Mice (n = 72) were fed 15% or 30% protein as casein or red meat or 30% protein with 10% high amylose maize starch as the source of resistant starch. Genetic damage in distal colonocytes was detected by immunohistochemical staining for O(6)MeG and apoptosis. Feces were collected for measurement of pH, ammonia, phenols, p-cresol, and short-chain fatty acids (SCFA). O(6)MeG and fecal p-cresol concentrations were significantly higher with red meat than with casein (P < 0.018), with adducts accumulating in cells at the crypt apex. DNA adducts (P < 0.01) and apoptosis (P < 0.001) were lower and protein fermentation products (fecal ammonia, P < 0.05; phenol, P < 0.0001) higher in mice fed resistant starch. Fecal SCFA levels were also higher in mice fed resistant starch (P < 0.0001). This is the first demonstration that high protein diets increase promutagenic adducts (O(6)MeG) in the colon and dietary protein type seems to be the critical factor. The delivery of fermentable carbohydrate to the colon (as resistant starch) seems to switch from fermentation of protein to that of carbohydrate and a reduction in adduct formation, supporting previous observations that dietary resistant starch opposes the mutagenic effects of dietary red meat.

  15. New isocyanate-specific albumin adducts of 4,4'-methylenediphenyl diisocyanate (MDI) in rats.

    PubMed

    Kumar, Anoop; Dongari, Nagaraju; Sabbioni, Gabriele

    2009-12-01

    4,4'-Methylenediphenyl diisocyanate (MDI) is the most important of the isocyanates used as intermediates in the chemical industry. Among the main types of damage after exposure to low levels of MDI are lung sensitization and asthma. Albumin adducts of MDI might be involved in the etiology of sensitization reactions. It is, therefore, necessary to have sensitive and specific methods for monitoring the isocyanate exposure of workers. To date, urinary metabolites or protein adducts have been used as biomarkers in workers exposed to MDI. However, with these methods it is not possible to determine whether the biomarkers result from exposure to MDI or to the parent aromatic amine 4,4'-methylenedianiline (MDA). This work presents a procedure for the determination of isocyanate-specific albumin adducts. In a long-term experiment, designed to determine the carcinogenic and toxic effects of MDI, rats were exposed chronically for 3 months, to 0.0 (control), 0.26, 0.70, and 2.06 mg MDI/m(3) as aerosols. Albumin was isolated from plasma, digested with Pronase E, and analyzed by LC-MS/MS. MDI formed adducts with lysine: N(6)-[({4-[4-aminobenzyl]phenyl}amino)carbonyl]lysine (MDI-Lys) and N(6)-[({4-[4-(acetylamino)benzyl]phenyl}amino)carbonyl] lysine (AcMDI-Lys). For the quantitation of the adducts in vivo, isotope dilution mass spectrometry was used to measure the adducts in 2 mg of albumin. The adducts found in vivo (MDI-Lys and AcMDI-Lys) and the corresponding isotope labeled compounds (MDI-[(13)C(6)(15)N(2)]Lys and Ac[(2)H(4)]MDI-Lys) were synthesized and used for quantitation. The MDI-Lys levels increased from 0-24.8 pmol/mg albumin, and the AcMDI-Lys levels increased from 0-1.85 pmol/mg albumin. The mean ratio of MDI-Lys/AcMDI-Lys for each dose level was greater than >20. The albumin adducts correlate with other biomarkers measured in the same rats in the past: urinary metabolites and hemoglobin adducts released after mild base hydrolysis. This method will enable one to

  16. sup 14 C-sulfur mustard adducts of calf thymus DNA. Final report, Aug-Sep 90

    SciTech Connect

    Yaverbaum, S.

    1991-02-01

    A grant was awarded to TNO-PML to develop immunochemical monitoring systems for the detection of DNA-HD and Protein-HD adducts in humans following exposure to HD. TNO-PML has been using 35S-HD to prepare adducts for their assays, which have inherent shortcomings that limit detection sensitivity. An experimental batch of 14C-HD-DNA adducts was prepared in an attempt to increase the assay sensitivity. Double - and single-stranded purified calf thymus DNA preparations were reacted with 142, 14.2 and 1.42 uM of 14C-HD under aqueousfree conditions. The 14C-HD-DNA adducts were isolated at -20C in 75% ethanol solution and freed of HD agent and organic solvents (i.e., acetone and alcohol). The 14C-HD-DNA adducts in aqueous buffer were analyzed for specific activity and purity. The ds-DNA-HD adducts were uncontaminated, but the ss-DNA-HD adducts were initially slightly contaminated with alcohol.

  17. Identification and quantification of adducts between oxidized rosmarinic acid and thiol compounds by UHPLC-LTQ-Orbitrap and MALDI-TOF/TOF tandem mass spectrometry.

    PubMed

    Tang, Chang-bo; Zhang, Wan-gang; Dai, Chen; Li, Hui-xia; Xu, Xing-lian; Zhou, Guang-hong

    2015-01-28

    LTQ Orbitrap MS/MS was used to identify the adducts between quinones derived from rosmarinic acid (RosA) and thiol compounds, including cysteine (Cys), glutathione (GSH), and peptides digested from myosin. Two adducts of quinone-RosA/Cys and quinone-RosA/2Cys, one quinone-RosA/GSH adduct, and three quinone-RosA/peptide adducts were identified by extracted ion and MS(2) fragment ion chromatograms. By using MALDI-TOF/TOF MS, the adduction reaction between RosA and myosin in myofibrillar protein isolates was determined, demonstrating that the accurate reaction site was at Cys949 of myosin. The effect of reaction conditions, including stirring time, temperature, and oxidative stress, on the formation of adducts was further investigated. The formation of quinone-RosA/Cys and quinone-RosA/GSH increased with stirring time. Both adducts increased with temperature, whereas the reactivity of the addition reaction of GSH was higher than that of Cys. With increasing oxidation stress, the formation of quinone-RosA/GSH adduct increased and that of quinone-RosA/Cys adduct decreased.

  18. Formation of acrolein-derived 2'-deoxyadenosine adduct in an iron-induced carcinogenesis model.

    PubMed

    Kawai, Yoshichika; Furuhata, Atsunori; Toyokuni, Shinya; Aratani, Yasuaki; Uchida, Koji

    2003-12-12

    Acrolein is a representative carcinogenic aldehyde found ubiquitously in the environment and formed endogenously through oxidation reactions, such as lipid peroxidation and myeloperoxidase-catalyzed amino acid oxidation. It shows facile reactivity toward DNA to form an exocyclic DNA adduct. To verify the formation of acrolein-derived DNA adduct under oxidative stress in vivo, we raised a novel monoclonal antibody (mAb21) against the acrolein-modified DNA and found that the antibody most significantly recognized an acrolein-modified 2' -deoxyadenosine. On the basis of chemical and spectroscopic evidence, the major antigenic product of mAb21 was the 1,N6-propano-2' -deoxyadenosine adduct. The exposure of rat liver epithelial RL34 cells to acrolein resulted in a significant accumulation of the acrolein-2' -deoxyadenosine adduct in the nuclei. Formation of this adduct under oxidative stress in vivo was immunohistochemically examined in rats exposed to ferric nitrilotriacetate, a carcinogenic iron chelate that specifically induces oxidative stress in the kidneys of rodents. It was observed that the acrolein-2' -deoxyadenosine adduct was formed in the nuclei of the proximal tubular cells, the target cells of this carcinogenesis model. The same cells were stained with a monoclonal antibody 5F6 that recognizes an acrolein-lysine adduct, by which cytosolic accumulation of acrolein-modified proteins appeared. Similar results were also obtained from myeloperoxidase knockout mice exposed to the iron complex, suggesting that the myeloperoxidase-catalyzed oxidation system might not be essential for the generation of acrolein in this experimental animal carcinogenesis model. The data obtained in this study suggest that the formation of a carcinogenic aldehyde through lipid peroxidation may be causally involved in the pathophysiological effects associated with oxidative stress.

  19. Repair of furocoumarin adducts in mammalian cells

    SciTech Connect

    Zolan, M.E.; Smith, C.A.; Hanawalt, P.C.

    1984-12-01

    DNA repair was studied in cultured mammalian cells treated with the furocoumarins 8-methoxypsoralen (8-MOP), aminomethyl trioxsalen, or angelicin and irradiated with near UV light. The amount of DNA cross-linked by 8-MOP in normal human cells decreased by about one-half in 24 hours after treatment; no decrease was observed in xeroderma pigmentosum cells, group A. At present, it is not known to what extent this decrease represents complete repair events at the sites of cross-links. Furocoumarin adducts elicited excision repair in normal human and monkey cells but not in xeroderma pigmentosum group A cells. This excision repair resembled in several aspects that elicited by pyrimidine dimers, formed in DNA by irradiation with 254-nm UV light; however, it appeared that for at least 8-MOP and aminomethyl trioxsalen, removal of adducts was not as efficient as was the removal of pyrimidine dimers. A comparison was also made of repair in the 172-base-pair repetitive alpha-DNA component of monkey cells to repair in the bulk of the genome. Although repair elicited by pyrimidine dimers in alpha-DNA was the same as in the bulk DNA, that following treatment of cells with either aminomethyl trioxsalen or angelicin and near UV was markedly deficient in alpha-DNA. This deficiency reflected the removal of fewer adducts from alpha-DNA after the same initial adduct frequencies. These results could mean that each furocoumarin may produce several structurally distinct adducts to DNA in cells and that the capacity of cellular repair systems to remove these various adducts may vary greatly.

  20. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  1. Base-Resolution Analysis of Cisplatin–DNA Adducts at the Genome Scale

    PubMed Central

    Shu, Xiaoting; Xiong, Xushen; Song, Jinghui; He, Chuan; Yi, Chengqi

    2016-01-01

    Cisplatin, one of the most widely used anticancer drugs, crosslinks DNA and ultimately induces cell death. However, the genomic pattern of cisplatin–DNA adducts has remained unknown owing to the lack of a reliable and sensitive genome-wide method. Herein we present “cisplatin-seq” to identify genome-wide cisplatin crosslinking sites at base resolution. Cisplatin-seq reveals that mitochondrial DNA is a preferred target of cisplatin. For nuclear genomes, cisplatin–DNA adducts are enriched within promoters and regions harboring transcription termination sites. While the density of GG dinucleotides determines the initial crosslinking of cisplatin, binding of proteins to the genome largely contributes to the accumulative pattern of cisplatin–DNA adducts. PMID:27736024

  2. NITRO MUSK ADDUCTS OF RAINBOW TROUT ...

    EPA Pesticide Factsheets

    Rainbow trout and other fish species can serve as 'sentinel' species for the assessment of ecological status and the presence of certain environmental contaminants. As such they act as bioindicators of exposure. Here we present seminal data regarding dose-response and toxicokinetics of trout hemoglobin adduct formation from exposure to nitro musks that are frequently used as fragrance ingredients in formulations of personal care products. Hemoglobin adducts serve as biomarkers of exposure of the sentinel species as we have shown in previous studies of hemoglobin adducts formed in trout and environmental carp exposed to musk xylene (MX) and musk ketone (MK). Gas chromatography-electron capture negative ion chemical ionization-mass spectrometry (GC-NICI-MS) employing selected ion monitoring is used to measure 4-amino-MX (4-AMX), 2-amino-MX (2-AMX), and 2-amino-MK (2-AMK) released by alkaline hydrolysis from the sulfinamide adducts of hemoglobin. Dose-response and toxicokinetics were investigated using this sensitive method for analysis of these metabolites. In the dose-response investigation, the concentrations of 4-AMX and 2-2AMX are observed to pass through a maximum at 0.10 mg/g. In the case of 2-AMK, the adduct concentration is almost the same at dosages in the range of 0.030 to 0.10 mg/g. For toxicokinetics, the concentration of the metabolites in the Hb reaches a maximum in the 3-day sample after administration of MX or MK. Further elimination of the metabo

  3. Sequence mapping of epoxide adducts in human hemoglobin with LC-tandem MS and the SALSA algorithm.

    PubMed

    Badghisi, Hamid; Liebler, Daniel C

    2002-06-01

    The rapid development and integration of liquid chromatography-tandem mass spectrometry (LC-MS-MS) has enabled the high-throughput identification of proteins and driven the expanding field of proteomics. LC-MS-MS also offers an attractive general approach to the analysis of xenobiotic adducts on proteins. The aim of this study was to examine the combined use of LC-MS-MS and the SALSA algorithm as a general approach to map xenobiotic adducts on proteins at the level of amino acid sequence. Hemoglobin (Hb) adducts are commonly used as biomarkers for exposure to environmental toxicants. Human Hb was incubated with styrene oxide, ethylene oxide, and butadiene dioxide (40 mM) to form adducts, digested with trypsin and analyzed by LC-MS-MS on a ThermoFinnigan LCQ ion trap MS instrument. Data-dependent scanning was used for acquisition of MS-MS spectra. The SALSA algorithm was used to detect MS-MS spectra of native and modified Hb peptides. The adducted sites identified are the N-terminal valines of both Hbalpha and Hbbeta, glutamic acid 7, cysteine 93, and histidines 77, 97, and 143 of the beta chain and histidine 45 of the alpha chain. Specific shifts in the b- and y-ion series in MS-MS spectra confirmed the locations of each adduct. This approach offers a means to simultaneously identify multiple Hb adducts resulting from exposures to known or unknown toxicants. Combined application of LC-MS-MS and SALSA thus provides a general means of mapping protein modifications at the level of amino acid sequence.

  4. Hydroxynonenal inactivates cathepsin B by forming Michael adducts with active site residues.

    PubMed

    Crabb, John W; O'Neil, June; Miyagi, Masaru; West, Karen; Hoff, Henry F

    2002-04-01

    Oxidation of plasma low-density lipoprotein (oxLDL) generates the lipid peroxidation product 4-hydroxy-2 nonenal (HNE) and also reduces proteolytic degradation of oxLDL and other proteins internalized by mouse peritoneal macrophages in culture. This leads to accumulation of undegraded material in lysosomes and formation of ceroid, a component of foam cells in atherosclerotic lesions. To explore the possibility that HNE contributes directly to the inactivation of proteases, structure-function studies of the lysosomal protease cathepsin B have been pursued. We found that treatment of mouse macrophages with HNE reduces degradation of internalized maleyl bovine serine albumin and cathepsin B activity. Purified bovine cathepsin B treated briefly with 15 microM HNE lost approximately 76% of its protease activity and also developed immunoreactivity with antibodies to HNE adducts in Western blot analysis. After stabilization of the potential Michael adducts by sodium borohydride reduction, modified amino acids were localized within the bovine cathepsin B protein structure by mass spectrometric analysis of tryptic peptides. Michael adducts were identified by tandem mass spectrometry at cathepsin B active site residues Cys 29 (mature A chain) and His 150 (mature B chain). Thus, covalent interaction between HNE and critical active site residues inactivates cathepsin B. These results support the hypothesis that the accumulation of undegraded macromolecules in lysosomes after oxidative damage are caused in part by direct protease inactivation by adduct formation with lipid peroxidation products such as HNE.

  5. Correlations between Photodegradation of Bisretinoid Constituents of Retina and Dicarbonyl Adduct Deposition*

    PubMed Central

    Zhou, Jilin; Ueda, Keiko; Zhao, Jin; Sparrow, Janet R.

    2015-01-01

    Non-enzymatic collagen cross-linking and carbonyl adduct deposition are features of Bruch's membrane aging in the eye, and disturbances in extracellular matrix turnover are considered to contribute to Bruch's membrane thickening. Because bisretinoid constituents of the lipofuscin of retinal pigment epithelial (RPE) cells are known to photodegrade to mixtures of aldehyde-bearing fragments and small dicarbonyls (glyoxal (GO) and methylglyoxal (MG)), we investigated RPE lipofuscin as a source of the reactive species that covalently modify protein side chains. Abca4−/− and Rdh8−/−/Abca4−/− mice that are models of accelerated bisretinoid formation were studied and pre-exposure of mice to 430 nm light enriched for dicarbonyl release by bisretinoid photodegradation. MG protein adducts were elevated in posterior eyecups of mutant mice, whereas carbonylation of an RPE-specific protein was observed in Abca4−/− but not in wild-type mice under the same conditions. Immunolabeling of cryostat-sectioned eyes harvested from Abca4−/− mice revealed that carbonyl adduct deposition in Bruch's membrane was accentuated. Cell-based assays corroborated these findings in mice. Moreover, the receptor for advanced glycation end products that recognizes MG and GO adducts and glyoxylase 1 that metabolizes MG and GO were up-regulated in Abca4−/− mice. Additionally, in acellular assays, peptides were cross-linked in the presence of A2E (adduct of two vitamin A aldehyde and ethanolamine) photodegradation products, and in a zymography assay, reaction of collagen IV with products of A2E photodegradation resulted in reduced cleavage by the matrix metalloproteinases MMP2 and MMP9. In conclusion, these mechanistic studies demonstrate a link between the photodegradation of RPE bisretinoid fluorophores and aging changes in underlying Bruch's membrane that can confer risk of age-related macular degeneration. PMID:26400086

  6. Human DNA adduct measurements: State of the art

    SciTech Connect

    Poirier, M.C.; Weston, A.

    1996-10-01

    Human DNA adduct formation (covalent modification of DNA with chemical carcinogens) is a promising biomarker for elucidating the molecular epidemiology of cancer. Classes of compounds for which human DNA adducts have been observed include polycyclic aromatic hydrocarbons (PAHs), nitrosamines, mycotoxins, aromatic amines, heterocyclic amines, ultraviolet light, and alkylating cancer chemotherapeutic agents. Most human DNA adduct exposure monitoring has been performed with either {sup 32}P-postlabeling or immunoassays, neither of which is able to chemically characterize specific DNA adducts. Recently developed combinations of methods with chemical and physical end points have allowed identification of specific adducts in human tissues. Studies are presented that demonstrate that high ambient levels of benzo[a]pyrene are associated with high levels of DNA adducts in human blood cell DNA and that the same DNA adduct levels drop when the ambient PAH levels decrease significantly. DNA adduct dosimetry, which has been achieved with some dietary carcinogens and cancer chemotherapeutic agents, is described, as well as studies correlating DNA adducts with other biomarkers. It is likely that some toxic, noncarcinogenic compounds may have genotoxic effects, including oxidative damage, and that adverse health outcomes other than cancer may be correlated with DNA adduct formation. The studies presented here may serve as useful prototypes for exploration of other toxicological end points. 156 refs., 1 fig., 3 tabs.

  7. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.

    PubMed

    Liu, Guimei; Xia, Qiuqin; Lu, Yongling; Zheng, Tiesong; Sang, Shengmin; Lv, Lishuang

    2017-03-15

    Increasing evidence has identified α-dicarbonyl compounds, the reactive intermediates generated during Maillard reaction, as the potential factors to cause protein glycation and the development of chronic diseases. Therefore, there is an urgent need to decrease the levels of reactive dicarbonyl compounds in foods. In this study, we investigated the inhibitory effect of quercetin, a major dietary flavonoid, and its major mono- and di-MGO adducts on the formation of dicarbonyl compounds, such as methylglyoxal (MGO) and glyoxal (GO), in a lysine/glucose aqueous system, a model system to reflect the Maillard reaction in food process. Our result indicated that quercetin could efficiently inhibit the formation of MGO and GO in a time-dependent manner. Further mechanistic study was conducted by monitoring the formation of quercetin oxidation and conjugation products using LC-MS/MS. Quercetin MGO adducts, quercetin quinones, and the quinones of quercetin MGO adducts were detected in the system, indicating quercetin plays a dual role in inhibiting the formation of MGO and GO by scavenging free radicals generated in the system and trapping of MGO and GO to form MGO adducts. In addition, we prepared the mono- and di-MGO quercetin adducts and investigated their antioxidant activity and trapping capacity of MGO and GO. Our results indicated that both mono- and di-MGO quercetin adducts could scavenge the DPPH radical in a dose-dependent manner with >40% DPPH scavenged by the MGO adducts at 10 μM, and the di-MGO quercetin adduct could further trap MGO to generate tri-MGO adducts. Therefore, we demonstrate for the first time that quercetin MGO adducts retain the antioxidant activity and trapping capacity of reactive dicarbonyl species.

  8. Leptin influences estrogen metabolism and increases DNA adduct formation in breast cancer cells

    PubMed Central

    Shouman, Samia; Wagih, Mohamed; Kamel, Marwa

    2016-01-01

    Objective: The elevated incidence of obesity has been paralleled with higher risks of breast cancer. High adiposity increases leptin secretion from adipose tissue, which in turn increases cancer cell proliferation. The interplay between leptin and estrogen is one of the mechanisms through which leptin influences breast carcinogenesis. An unbalanced estrogen metabolism increases the formations of catechol estrogen quinones, DNA adducts, and cancer mutations. This study aims to investigate the effect of leptin on some estrogen metabolic enzymes and DNA adduction in breast cancer cells. Methods: High performance liquid chromatography (HPLC) was performed to analyze the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Reporter gene assay, real time reverse transcription polymerase chain reaction (real time RT-PCR), and Western blot were used to assess the expression of estrogen metabolizing genes and enzymes: Cytochrome P-450 1B1 (CYP1B1), Nicotinamide adenine dinucleotide phosphate-quinone oxidoreductase1 (NQO1), and Catechol-O-methyl transferase (COMT). Results: Leptin significantly increased the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Furthermore, leptin significantly upregulated CYP1B1 promoter activity and protein expression. The luciferase promoter activities of NQO1 and mRNA levels were significantly reduced. Moreover, leptin greatly reduced the reporter activities of the COMT-P1 and COMT-P2 promoters and diminished the protein expression of COMT. Conclusions: Leptin increases DNA adduct levels in breast cancer cells partly by affecting key genes and enzymes involved in estrogen metabolism. Thus, increased focus should be directed toward leptin and its effects on the estrogen metabolic pathway as an effective approach against breast cancer. PMID:28154783

  9. Adduct supported analysis of γ-hydroxybutyrate in human serum with LC-MS/MS.

    PubMed

    Dziadosz, Marek; Weller, Jens-Peter; Klintschar, Michael; Teske, Jörg

    2013-08-01

    To avoid the detection of small fragmentation products of γ-hydroxybutyrate (GHB), a liquid chromatography-tandem mass spectrometry GHB quantification method in human serum supported by adduct formation was developed and validated. The continuous infusion of GHB/GHB-D6 made the identification of two adducts possible and GHB/GHB-D6 sodium acetate adduct fragmentation was used as target mass transition. A Luna 5 μm C18 (2) 100 A, 150 mm × 2 mm analytical column and elution with a programmed flow of the mobile phase consisting of 10% A (H2O/methanol = 95/5, v/v) and 90% B (H2O/methanol = 3/97, v/v), both with 10 mM ammonium acetate and 0.1% acetic acid (pH = 3.2), were used. Protein precipitation with 1 mL of the mobile phase B was used as the sample preparation. The calculated limit of detection/quantification was 1 μg/mL. The presented study shows that the fragmentation of GHB sodium acetate adducts is an effective way of quantification of this small molecule and is an interesting alternative to other methods based on the detection of ions smaller than 85 Da. This fact together with the short analysis time of 3 min and the fast sample preparation make this method very attractive for forensic/clinical application.

  10. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    SciTech Connect

    Ganesan, Shanthi Keating, Aileen F.

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  11. Signal transduction in light-oxygen-voltage receptors lacking the adduct-forming cysteine residue.

    PubMed

    Yee, Estella F; Diensthuber, Ralph P; Vaidya, Anand T; Borbat, Peter P; Engelhard, Christopher; Freed, Jack H; Bittl, Robert; Möglich, Andreas; Crane, Brian R

    2015-12-09

    Light-oxygen-voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications.

  12. Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue

    PubMed Central

    Yee, Estella F.; Diensthuber, Ralph P.; Vaidya, Anand T.; Borbat, Peter P.; Engelhard, Christopher; Freed, Jack H.; Bittl, Robert; Möglich, Andreas; Crane, Brian R.

    2015-01-01

    Light–oxygen–voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications. PMID:26648256

  13. Redox-derived damage-associated molecular patterns: Ligand function of lipid peroxidation adducts.

    PubMed

    Uchida, Koji

    2013-02-12

    Endogenous electrophiles, such as α,β-unsaturated aldehydes and ketones generated during lipid peroxidation, exhibit a facile reactivity with proteins, generating a variety of intra and intermolecular covalent adducts. It has been postulated that these host-derived, modified proteins with electrophiles, which constitute the products of diverse classes of oxidative reactions, represent damage-associated molecular patterns (DAMPs). The DAMPs, that occur in vivo, can be a ligand of multiple proteins, which in turn, may lead to the profound innate and adaptive immune responses and mediate homeostatic functions consequent to inflammation and cell death.

  14. The antimicrobial activities of the cinnamaldehyde adducts with amino acids.

    PubMed

    Wei, Qing-Yi; Xiong, Jia-Jun; Jiang, Hong; Zhang, Chao; Wen Ye

    2011-11-01

    Cinnamaldehyde is a well-established natural antimicrobial compound. It is probable for cinnamaldehyde to react with amino acid forming Schiff base adduct in real food system. In this paper, 9 such kind of adducts were prepared by the direct reaction of amino acids with cinnamaldehyde at room temperature. Their antimicrobial activities against Bacillus subtilis, Escherichia coli and Saccharomyces cerevisiae were evaluated with benzoic acid as a reference. The adducts showed a dose-dependent activities against the three microbial strains. Both cinnamaldehyde and their adducts were more active against B. subtilis than on E. coli, and their antimicrobial activities were higher at lower pH. Both cinnamaldehyde and its adducts were more active than benzoic acid at the same conditions. The adduct compound A was non-toxic by primary oral acute toxicity study in mice. However, in situ effect of the adduct compound A against E. coli was a little lower than cinnamaldehyde in fish meat. This paper for the first time showed that the cinnamaldehyde adducts with amino acids had similar strong antimicrobial activities as cinnamaldehyde, which may provide alternatives to cinnamaldehyde in food to avoid the strong unacceptable odor of cinnamaldehyde.

  15. Quantification of nerve agent adducts with albumin in rat plasma using liquid chromatography-isotope dilution tandem mass spectrometry.

    PubMed

    Bao, Yi; Liu, Qin; Chen, Jia; Lin, Ying; Wu, Bidong; Xie, Jianwei

    2012-03-16

    A sensitive method for the determination of the organophosphorus nerve agents sarin, soman and VX adducts with tyrosine residue of albumin in rat plasma has been developed and validated using liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS). O-(O-Alkyl methylphosphonyl) tyrosine adducts and their deuterated products that were used as the internal standards were synthesised to establish the quantitative isotope-dilution method. Protein purification and solid-phase extraction (SPE) were applied to improve the recovery efficiency, reduce interference and achieve high sensitivity. The method provided a detection limit of 0.01 ng/mL for sarin and soman adducts and 0.05 ng/mL for the VX adduct. The value of the intra-day relative standard deviation over the calibration range was less than 6.16% (n=6), and that of the inter-day was less than 12.7% (n=6). The recovery varied from 86% to 111%. This sensitive method was successfully applied to the analysis of adducts in rat plasma after nerve agent exposure, and the results demonstrated the dose-effect relationships.

  16. Adduct Formation in ESI/MS by Mobile Phase Additives

    NASA Astrophysics Data System (ADS)

    Kruve, Anneli; Kaupmees, Karl

    2017-03-01

    Adduct formation is a common ionization method in electrospray ionization mass spectrometry (ESI/MS). However, this process is poorly understood and complicated to control. We demonstrate possibilities to control adduct formation via mobile phase additives in ESI positive mode for 17 oxygen and nitrogen bases. Mobile phase additives were found to be a very effective measure for manipulating the formation efficiencies of adducts. An appropriate choice of additive may increase sensitivity by up to three orders of magnitude. In general, sodium adduct [M + Na]+ and protonated molecule [M + H]+ formation efficiencies were found to be in good correlation; however, the former were significantly more influenced by mobile phase properties. Although the highest formation efficiencies for both species were observed in water/acetonitrile mixtures not containing additives, the repeatability of the formation efficiencies was found to be improved by additives. It is concluded that mobile phase additives are powerful, yet not limiting factors, for altering adduct formation.

  17. Role of Red Meat and Resistant Starch in Promutagenic Adduct Formation, MGMT Repair, Thymic Lymphoma and Intestinal Tumourigenesis in Msh2 -Deficient Mice.

    PubMed

    Winter, Jean M; Hu, Ying; Young, Graeme P; Kohonen-Corish, Maija R J; Le Leu, Richard K

    2014-01-01

    Red meat may increase promutagenic lesions in the colon. Resistant starch (RS) can reduce these lesions and chemically induced colon tumours in rodents. Msh2 is a mismatch repair (MMR) protein, recognising unrepaired promutagenic adducts for removal. We determined if red meat and/or RS modulated DNA adducts or oncogenesis in Msh2-deficient mice. A total of 100 Msh2-/- and 60 wild-type mice consumed 1 of 4 diets for 6 months: control, RS, red meat and red meat+RS. Survival time, aberrant crypt foci (ACF), colon and small intestinal tumours, lymphoma, colonic O6-methyl-2-deoxyguanosine (O6MeG) adducts, methylguanine methyltransferase (MGMT) and cell proliferation were examined. In Msh2-/- mice, red meat enhanced survival compared to control (p<0.01) and lowered total tumour burden compared to RS (p<0.167). Msh2-/- mice had more ACF than wild-type mice (p<0.014), but no colon tumours developed. Msh2-/- increased cell proliferation (p<0.001), lowered DNA O6MeG adducts (p<0.143) and enhanced MGMT protein levels (p<0.001) compared to wild-type mice, with RS supplementation also protecting against DNA adducts (p<0.01). No link between red meat-induced promutagenic adducts and risk for colorectal cancer was observed after 6 months' feeding. Colonic epithelial changes after red meat and RS consumption with MMR deficiency will differ from normal epithelial cells.

  18. Nutrient deprivation in neuroblastoma cells alters 4-hydroxynonenal-induced stress response.

    PubMed

    Zimmermann, Lars; Moldzio, Rudolf; Vazdar, Katarina; Krewenka, Christopher; Pohl, Elena E

    2017-01-31

    4-hydroxy-2-nonenal (HNE), a toxic lipid peroxidation product, is associated with oxidative damage in cells and involved in various diseases including the initiation and progression of cancer. Cancer cells have a high, adaptable metabolism with a shift from oxidative phosphorylation to glycolysis and rely on high levels of glucose and glutamine as essential nutrients for cell growth. Here we investigated whether the toxic effects of HNE on the mitochondrial membrane potential (MMP) of cancer cells depends on their metabolic state by deprivation of glucose and/or glutamine. The addition of 16 μM HNE to N18TG2 neuroblastoma cells incubated in glucose medium led to a severe reduction of MMP, which was similar to the MMP of cells fed with both glucose and glutamine. In contrast, HNE addition to cells starved in glutamine medium increased their MMP slightly for a prolonged time period and this was accompanied by increased cellular survival. We found that ß-oxidation of HNE did not cause the increased MMP, since the aldehyde dehydrogenase was distinctly more active in cells with glucose medium. However, after blocking fatty acid ß-oxidation in cells starved in glutamine medium with etomoxir, which inhibits carnitine palmitoyltransferase 1, HNE addition induced a strong reduction of MMP similar to cells in glucose medium. Surprisingly, the effect of more toxic 4-oxo-2-nonenal was less pronounced. Our results suggest that in contrast to cells fed with glucose, glutamine-fed cancer cells are capable of ß-oxidizing fatty acids to maintain their MMP to combat the toxic effects of HNE.

  19. The reversibility of the glutathionyl-quercetin adduct spreads oxidized quercetin-induced toxicity

    SciTech Connect

    Boots, Agnes W. . E-mail: a.boots@farmaco.unimaas.nl; Balk, Jiska M.; Bast, Aalt; Haenen, Guido R.M.M.

    2005-12-16

    Quercetin is one of the most prominent dietary antioxidants. During its antioxidant activity, quercetin becomes oxidized into its o-quinone/quinone methide QQ. QQ is toxic since it instantaneously reacts with thiols of, e.g., proteins. In cells, QQ will initially form an adduct with glutathione (GSH), giving GSQ. We have found that GSQ is not stable; it dissociates continuously into GSH and QQ with a half life of 2 min. Surprisingly, GSQ incubated with 2-mercapto-ethanol (MSH), a far less reactive thiol, results in the conversion of GSQ into the MSH-adduct MSQ. A similar conversion of GSQ into relatively stable protein thiol-quercetin adducts is expected. With the dithiol dihydrolipoic acid (L(SH){sub 2}), quercetin is formed out of GSQ. These results indicate that GSQ acts as transport and storage of QQ. In that way, the initially highly focussed toxicity of QQ is dispersed by the formation of GSQ that finally spreads QQ-induced toxicity, probably even over cells.

  20. Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds.

    PubMed

    Reinkensmeier, Annika; Steinbrenner, Katrin; Homann, Thomas; Bußler, Sara; Rohn, Sascha; Rawel, Hashadrai M

    2016-03-01

    Minimally processed fruit products such as smoothies are increasingly coming into demand. However, they are often combined with dairy ingredients. In this combination, phenolic compounds, polyphenoloxidases, and amino compounds could interact. In this work, a model approach is presented where apple serves as a source for a high polyphenoloxidase activity for modulating the reactions. The polyphenoloxidase activity ranged from 128 to 333nakt/mL in different apple varieties. From these, 'Braeburn' was found to provide the highest enzymatic activity. The formation and stability of resulting chromogenic conjugates was investigated. The results show that such adducts are not stable and possible degradation mechanisms leading to follow-up products formed are proposed. Finally, apple extracts were used to modify proteins and their functional properties characterized. There were retaining antioxidant properties inherent to phenolic compounds after adduct formation. Consequently, such interactions may also be utilized to improve the textural quality of food products.

  1. Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus.

    PubMed

    Bourajjaj, M; Stehouwer, C D A; van Hinsbergh, V W M; Schalkwijk, C G

    2003-12-01

    Various theories have been proposed to explain the hyperglycaemia-induced pathogenesis of vascular complications of diabetes, including detrimental effects of AGEs (advanced glycation end products) on vascular tissues. Increased formation of the very reactive dicarbonyl compound MGO (methylglyoxal), one of the side-products of glycolysis, and MGO-derived AGEs seem to be implicated in the development of diabetic vascular complications. Although the exact role of MGO and MGO adducts in the development of vascular complications is unknown, receptor-mediated activation of vascular cells by the MGO-arginine adduct hydroimidazolone, as well as intracellular modifications of protein by MGO, seem to be involved. The aim of this mini-review is to assess to what extent MGO is related to vascular complications in diabetes.

  2. Switching from adduct formation to electron transfer in a light-oxygen-voltage domain containing the reactive cysteine.

    PubMed

    Magerl, Kathrin; Stambolic, Ivan; Dick, Bernhard

    2017-03-08

    LOV (light-, oxygen- or voltage-sensitive) domains act as photosensory units of many prokaryotic and eukaryotic proteins. Upon blue light excitation they undergo a photocycle via the excited triplet state of their flavin chromophore yielding the flavin-cysteinyl adduct. Adduct formation is highly conserved among all LOV domains and constitutes the primary step of LOV domain signaling. But recently, it has been shown that signal propagation can also be triggered by flavin photoreduction to the neutral semiquinone offering new prospects for protein engineering. This, however, requires mutation of the photo-active Cys. Here, we report on LOV1 mutants of C. reinhardtii phototropin in which adduct formation is suppressed although the photo-active Cys is present. Introduction of a Tyr into the LOV core induces a proton coupled electron transfer towards the flavin chromophore. Flavin radical species are formed via either the excited flavin singlet or triplet state depending on the geometry of donor and acceptor. This photoreductive pathway resembles the photoreaction observed in other blue light photoreceptors, e.g. blue-light sensors using flavin adenine dinucleotide (BLUF) domains or cryptochromes. The ability to tune the photoreactivity of the flavin chromophore inside the LOV core has implications for the mechanism of adduct formation in the wild type and may be of use for protein engineering.

  3. Immunodetection of Serum Albumin Adducts as Biomarkers for Organophosphorus Exposure

    PubMed Central

    Chen, Sigeng; Zhang, Jun; Lumley, Lucille

    2013-01-01

    A major challenge in organophosphate (OP) research has been the identification and utilization of reliable biomarkers for the rapid, sensitive, and efficient detection of OP exposure. Although Tyr 411 OP adducts to human serum albumin (HSA) have been suggested to be one of the most robust biomarkers in the detection of OP exposure, the analysis of HSA-OP adduct detection has been limited to techniques using mass spectrometry. Herein, we describe the procurement of two monoclonal antibodies (mAb-HSA-GD and mAb-HSA-VX) that recognized the HSA Tyr 411 adduct of soman (GD) or S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), respectively, but did not recognize nonphosphonylated HSA. We showed that mAb-HSA-GD was able to detect the HSA Tyr 411 OP adduct at a low level (i.e., human blood plasma treated with 180 nM GD) that could not be detected by mass spectrometry. mAb-HSA-GD and mAb-HSA-VX showed an extremely low-level detection of GD adducted to HSA (on the order of picograms). mAb-HSA-GD could also detect serum albumin OP adducts in blood plasma samples from different animals administered GD, including rats, guinea pigs, and monkeys. The ability of the two antibodies to selectively recognize nerve agents adducted to serum albumin suggests that these antibodies could be used to identify biomarkers of OP exposure and provide a new biologic approach to detect OP exposure in animals. PMID:23192655

  4. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  5. Base sequence effects in bending induced by bulky carcinogen-DNA adducts: experimental and computational analysis.

    PubMed

    Ruan, Q; Zhuang, P; Li, S; Perlow, R; Srinivasan, A R; Lu, X J; Broyde, S; Olson, W K; Geacintov, N E

    2001-09-04

    The covalent binding of bulky mutagenic or carcinogenic compounds to DNA can lead to bending, which could significantly alter the interactions of DNA with critical replication and transcription proteins. The impact of adducts derived from the highly reactive bay region enantiomeric (+)- and (-)-anti-7,8-diol-9,10-epoxide derivatives of benzo[a]pyrene (BPDE) are of interest because the (+)-7R,8S,9S,10R-anti-BPDE enantiomer is highly tumorigenic in rodents, while the (-)-7S,8R,9R,10S-anti-BPDE enantiomer is not. Both (+)- and (-)-anti-BPDE bind covalently with DNA predominantly by trans addition at the exocyclic amino group of guanine to yield 10S (+)- and 10R (-)-trans-anti-[BP]-N(2)-dG adducts. We have synthesized a number of different oligonucleotides with single (+)- and (-)-trans-anti-[BP]-N(2)-dG adducts (G) in the base sequence context XG*Y, where X and Y are different DNA bases. The G* residues were positioned at or close to the center of 11 base pair ( approximately 1 helical turn) or 16 base pair ( approximately 1.5 turns) duplexes. All bases, except for X and Y and their partners, were identical. These sequences were self-ligated with T4 ligase to form multimers that yield a ladder of bands upon electrophoresis in native polyacrylamide gels. The extent of bending in each oligonucleotide was assessed by monitoring the decrease in gel mobilities of these linear, self-ligated oligomers, relative to unmodified oligonucleotides of the same base sequence. The extent of global bending was then estimated using a sequence-specific three-dimensional model from which the values of the base-pair step parameter roll adjacent to the lesion site could be extracted. We find that (+)-trans-anti-[BP]-N(2)-dG adducts are considerably more bent than the (-) isomers regardless of sequence and that A-T base pairs flanking the [BP]-N(2)-dG lesion site allow for local flexibility consistent with adduct conformational heterogeneity. Interestingly, the fit of computed versus

  6. S-arylcysteine-keratin adducts as biomarkers of human dermal exposure to aromatic hydrocarbons.

    PubMed

    Kang-Sickel, Juei-Chuan C; Fox, Donii D; Nam, Tae-Gyu; Jayaraj, Karupiah; Ball, Louise M; French, John E; Klapper, David G; Gold, Avram; Nylander-French, Leena A

    2008-04-01

    To measure biomarkers of skin exposure to ubiquitous industrial and environmental aromatic hydrocarbons, we sought to develop an ELISA to quantitate protein adducts of metabolites of benzene and naphthalene in the skin of exposed individuals. We hypothesized that electrophilic arene oxides formed by CYP isoforms expressed in the human skin react with nucleophilic sites on keratin, the most abundant protein in the stratum corneum that is synthesized de novo during keratinocyte maturation and differentiation. The sulfhydryl groups of cysteines in the head region of the keratin proteins 1 (K1) and 10 (K10) are likely targets. The following synthetic S-arylcysteines were incorporated into 10-mer head sequences of K1 [GGGRFSS( S-aryl-C)GG] and K10 [GGGG( S-aryl-C)GGGGG] to form the predicted immunogenic epitopes for antibody production for ELISA: S-phenylcysteine-K1 (SPK1), S-phenylcysteine-K10 (SPK10), S-(1-naphthyl)cysteine-K1 (1NK1), S-(1-naphthyl)cysteine-K10 (1NK10), S-(2-naphthyl)cysteine-K1 (2NK1), and S-(2-naphthyl)cysteine-K10 (2NK10). Analysis by ELISA was chosen based on its high throughput and sensitivity, and low cost. The synthetic modified oligopeptides, available in quantity, served both as immunogens and as chemical standards for quantitative ELISA. Polyclonal rabbit antibodies produced against the naphthyl-modified keratins reacted with their respective antigens with threshold sensitivities of 15-31 ng/mL and high specificity over a linear range up to 500 ng/mL. Anti- S-phenylcysteine antibodies were not sufficiently specific or sensitive toward the target antigens for use in ELISA under our experimental conditions. In dermal tape-strip samples collected from 13 individuals exposed to naphthalene-containing jet fuel, naphthyl-conjugated peptides were detected at levels from 0.343 +/- 0.274 to 2.34 +/- 1.61 pmol adduct/microg keratin but were undetectable in unexposed volunteers. This is the first report of adducts of naphthalene (or of any polycyclic

  7. A fluorescence-based analysis of aristolochic acid-derived DNA adducts.

    PubMed

    Romanov, Victor; Sidorenko, Victoria; Rosenquist, Thomas A; Whyard, Terry; Grollman, Arthur P

    2012-08-01

    Aristolochic acids (AAs), major components of plant extracts from Aristolochia species, form (after metabolic activation) pro-mutagenic DNA adducts in renal tissue. The DNA adducts can be used as biomarkers for studies of AA toxicity. Identification of these adducts is a complicated and time-consuming procedure. We present here a fast, nonisotopic, fluorescence-based assay for the detection of AA-DNA adducts in multiple samples. This approach allows analysis of AA adducts in synthetic DNA with known nucleotide composition and analysis of DNA adducts formed from chemically diverse AAs in vitro. The method can be applied to compare AA-DNA adduct formation in cells and tissues.

  8. Cigarette side-stream smoke lung and bladder carcinogenesis: inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation.

    PubMed

    Lee, Hyun-Wook; Wang, Hsiang-Tsui; Weng, Mao-wen; Chin, Chiu; Huang, William; Lepor, Herbert; Wu, Xue-Ru; Rom, William N; Chen, Lung-Chi; Tang, Moon-shong

    2015-10-20

    Second-hand smoke (SHS) is associated with 20-30% of cigarette-smoke related diseases, including cancer. Majority of SHS (>80%) originates from side-stream smoke (SSS). Compared to mainstream smoke, SSS contains more tumorigenic polycyclic aromatic hydrocarbons and acrolein (Acr). We assessed SSS-induced benzo(a)pyrene diol epoxide (BPDE)- and cyclic propano-deoxyguanosine (PdG) adducts in bronchoalveolar lavage (BAL), lung, heart, liver, and bladder-mucosa from mice exposed to SSS for 16 weeks. In SSS exposed mice, Acr-dG adducts were the major type of PdG adducts formed in BAL (p < 0.001), lung (p < 0.05), and bladder mucosa (p < 0.001), with no significant accumulation of Acr-dG adducts in heart or liver. SSS exposure did not enhance BPDE-DNA adduct formation in any of these tissues. SSS exposure reduced nucleotide excision repair (p < 0.01) and base excision repair (p < 0.001) in lung tissue. The levels of DNA repair proteins, XPC and hOGG1, in lung tissues of exposed mice were significantly (p < 0.001 and p < 0.05) lower than the levels in lung tissues of control mice. We found that Acr can transform human bronchial epithelial and urothelial cells in vitro. We propose that induction of mutagenic Acr-DNA adducts, inhibition of DNA repair, and induction of cell transformation are three mechanisms by which SHS induces lung and bladder cancers.

  9. Structure of adduct X, the last unknown of the six major DNA adducts of mitomycin C formed in EMT6 mouse mammary tumor cells.

    PubMed

    Palom, Y; Belcourt, M F; Musser, S M; Sartorelli, A C; Rockwell, S; Tomasz, M

    2000-06-01

    Treatment of EMT6 mouse mammary tumor cells with mitomycin C (MC) results in the formation of six major MC-DNA adducts. We identified the last unknown of these ("adduct X") as a guanine N(2) adduct of 2, 7-diaminomitosene (2,7-DAM), in which the mitosene is linked at its C-10 position to guanine N(2). The assigned structure is based on UV and mass spectra of adduct X isolated directly from the cells, as well as on its difference UV, second-derivative UV, and circular dichroism spectra, synthesis from [8-(3)H]deoxyguanosine, and observation of its heat stability. These tests were carried out using 17 microg of synthetic material altogether. The mechanism of formation of adduct X involves reductive metabolism of MC to 2,7-DAM, which undergoes a second round of reductive activation to alkylate DNA, yielding adduct X and another 2,7-DAM-guanine adduct (adduct Y), which is linked at guanine N7 to the mitosene. Adduct Y has been described previously. Adduct X is formed preferentially at GpC, while adduct Y favors the GpG sequence. In contrast to MC-DNA adducts, the 2,7-DAM-DNA adducts are not cytotoxic.

  10. Biomarkers for exposure to ambient air pollution--comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress.

    PubMed

    Autrup, H; Daneshvar, B; Dragsted, L O; Gamborg, M; Hansen, M; Loft, S; Okkels, H; Nielsen, F; Nielsen, P S; Raffn, E; Wallin, H; Knudsen, L E

    1999-03-01

    Human exposure to genotoxic compounds present in ambient air has been studied using selected biomarkers in nonsmoking Danish bus drivers and postal workers. A large interindividual variation in biomarker levels was observed. Significantly higher levels of bulky carcinogen-DNA adducts (75.42 adducts/10(8) nucleotides) and of 2-amino-apidic semialdehyde (AAS) in plasma proteins (56.7 pmol/mg protein) were observed in bus drivers working in the central part of Copenhagen, Denmark. In contrast, significantly higher levels of AAS in hemoglobin (55.8 pmol/mg protein), malondialdehyde in plasma (0. 96 nmol/ml plasma), and polycyclic aromatic hydrocarbon (PAH)-albumin adduct (3.38 fmol/ microg albumin) were observed in the suburban group. The biomarker levels in postal workers were similar to the levels in suburban bus drivers. In the combined group of bus drivers and postal workers, negative correlations were observed between bulky carcinogen-DNA adduct and PAH-albumin levels (p = 0.005), and between DNA adduct and [gamma]-glutamyl semialdehyde (GGS) in hemoglobin (p = 0.11). Highly significant correlations were found between PAH-albumin adducts and AAS in plasma (p = 0.001) and GGS in hemoglobin (p = 0.001). Significant correlations were also observed between urinary 8-oxo-7, 8-dihydro-2'-deoxyguanosine and AAS in plasma (p = 0.001) and PAH-albumin adducts (p = 0.002). The influence of the glutatione S-transferase (GST) M1 deletion on the correlation between the biomarkers was studied in the combined group. A significant negative correlation was only observed between bulky carcinogen-DNA adducts and PAH-albumin adducts (p = 0.02) and between DNA adduct and urinary mutagenic activity (p = 0.02) in the GSTM1 null group, but not in the workers who were homozygotes or heterozygotes for GSTM1. Our results indicate that some of the selected biomarkers can be used to distinguish between high and low exposure to environmental genotoxins.

  11. Immune response to acetaldehyde-human serum albumin adduct among healthy subjects related to alcohol intake.

    PubMed

    Romanazzi, Valeria; Schilirò, Tiziana; Carraro, Elisabetta; Gilli, Giorgio

    2013-09-01

    Acetaldehyde (AA) is the main metabolic product in ethanol metabolism, although it can also derive from sources of airborne pollution. As a typical aldehyde, AA is able to react with a variety of molecular targets, including DNA and protein. This property justifies the hypothesis of a immune reaction against this kind of adduct, to be studied by a seroprevalence screening approach. In this study, the correlation between drinking habits and the amount of circulating AA-human serum albumin adduct (AA-HSA) was evaluated in a group of healthy subjects, non alcohol-addicted. Daily ethanol intake (grams) was inferred for each subject using the information collected through a questionnaire, and AA-HSA antibodies (AA-HSA ab) analyses were performed using the Displacement Assay on whole blood samples. The findings showed a correlation between ethanol intake and immune response to molecular adduct. These results underscore the evaluation of AA-HSA ab amount as a suitable molecular marker for alcohol intake that can be applied in future investigations on a large scale for prevention screening.

  12. Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts.

    PubMed Central

    Rosenfeld, M E; Khoo, J C; Miller, E; Parthasarathy, S; Palinski, W; Witztum, J L

    1991-01-01

    Pure macrophage-derived foam cells (MFC) were isolated from the aortas of rabbits made atherosclerotic by balloon deendothelialization followed by diet-induced hypercholesterolemia. The MFC were isolated under sterile conditions using an enzymatic digestion procedure and discontinuous density gradient centrifugation. The purity of the MFC preparations was verified immunocytochemically with the macrophage specific monoclonal antibody RAM-11. MFC plated in medium containing 0.5% FCS for 24 h contained approximately 600 micrograms cholesterol per mg cell protein, 80% of which was esterified cholesterol. The MFC specifically degraded low density lipoprotein (LDL), acetyl-LDL, copper oxidized LDL, and beta-very low density lipoprotein (beta-VLDL) at rates comparable to mouse peritoneal macrophages (MPM) in 5-h assays. MFC within sections of the atherosclerotic lesions from the ballooned rabbits as well as the MFC isolated from the same lesions in the presence of antioxidants, exhibited positive immunoreactivity with polyclonal guinea pig antisera and mouse monoclonal antibodies directed against malondialdehyde-LDL, and 4-hydroxynonal-LDL. The MFC also exhibited the capacity to induce the oxidation of LDL at rates comparable to those exhibited by MPM and rabbit aortic endothelial cells. These data provide direct evidence that arterial wall macrophages express modified LDL receptors in vivo, contain epitopes found in oxidized-LDL and are capable of oxidizing LDL even when maximally loaded with cholesterol. Images PMID:1985115

  13. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    PubMed Central

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2016-01-01

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). This rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic. PMID:26544157

  14. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    DOE PAGES

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; ...

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides themore » first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.« less

  15. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    SciTech Connect

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.

  16. Validation of a Rapid and Sensitive UPLC–MS-MS Method Coupled with Protein Precipitation for the Simultaneous Determination of Seven Pyrethroids in 100 µL of Rat Plasma by Using Ammonium Adduct as Precursor Ion

    PubMed Central

    Singh, Sheelendra Pratap; Dwivedi, Nistha; Raju, Kanumuri Siva Rama; Taneja, Isha; Wahajuddin, Mohammad

    2016-01-01

    United States Environmental Protection Agency has recommended estimating pyrethroids’ risk using cumulative exposure. For cumulative risk assessment, it would be useful to have a bioanalytical method for quantification of one or several pyrethroids simultaneously in a small sample volume to support toxicokinetic studies. Therefore, in the present study, a simple, sensitive and high-throughput ultraperformance liquid chromatography–tandem mass spectrometry method was developed and validated for simultaneous analysis of seven pyrethroids (fenvalerate, fenpropathrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, cypermethrin and deltamethrin) in 100 µL of rat plasma. A simple single-step protein precipitation method was used for the extraction of target compounds. The total chromatographic run time of the method was 5 min. The chromatographic system used a Supelco C18 column and isocratic elution with a mobile phase consisting of methanol and 5 mM ammonium formate in the ratio of 90 : 10 (v/v). Mass spectrometer (API 4000) was operated in multiple reaction monitoring positive-ion mode using the electrospray ionization technique. The calibration curves were linear in the range of 7.8–2,000 ng/mL with correlation coefficients of ≥0.99. All validation parameters such as precision, accuracy, recovery, matrix effect and stability met the acceptance criteria according to the regulatory guidelines. The method was successfully applied to the toxicokinetic study of cypermethrin in rats. To the best of our knowledge, this is the first LC–MS-MS method for the simultaneous analysis of pyrethroids in rat plasma. This validated method with minimal modification can also be utilized for forensic and clinical toxicological applications due to its simplicity, sensitivity and rapidity. PMID:26801239

  17. Validation of a Rapid and Sensitive UPLC-MS-MS Method Coupled with Protein Precipitation for the Simultaneous Determination of Seven Pyrethroids in 100 µL of Rat Plasma by Using Ammonium Adduct as Precursor Ion.

    PubMed

    Singh, Sheelendra Pratap; Dwivedi, Nistha; Raju, Kanumuri Siva Rama; Taneja, Isha; Wahajuddin, Mohammad

    2016-04-01

    United States Environmental Protection Agency has recommended estimating pyrethroids' risk using cumulative exposure. For cumulative risk assessment, it would be useful to have a bioanalytical method for quantification of one or several pyrethroids simultaneously in a small sample volume to support toxicokinetic studies. Therefore, in the present study, a simple, sensitive and high-throughput ultraperformance liquid chromatography-tandem mass spectrometry method was developed and validated for simultaneous analysis of seven pyrethroids (fenvalerate, fenpropathrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, cypermethrin and deltamethrin) in 100 µL of rat plasma. A simple single-step protein precipitation method was used for the extraction of target compounds. The total chromatographic run time of the method was 5 min. The chromatographic system used a Supelco C18 column and isocratic elution with a mobile phase consisting of methanol and 5 mM ammonium formate in the ratio of 90 : 10 (v/v). Mass spectrometer (API 4000) was operated in multiple reaction monitoring positive-ion mode using the electrospray ionization technique. The calibration curves were linear in the range of 7.8-2,000 ng/mL with correlation coefficients of ≥ 0.99. All validation parameters such as precision, accuracy, recovery, matrix effect and stability met the acceptance criteria according to the regulatory guidelines. The method was successfully applied to the toxicokinetic study of cypermethrin in rats. To the best of our knowledge, this is the first LC-MS-MS method for the simultaneous analysis of pyrethroids in rat plasma. This validated method with minimal modification can also be utilized for forensic and clinical toxicological applications due to its simplicity, sensitivity and rapidity.

  18. Specific adducts formed through a radical reaction between peptides and contact allergenic hydroperoxides.

    PubMed

    Redeby, Theres; Nilsson, Ulrika; Altamore, Timothy M; Ilag, Leopold; Ambrosi, Annalisa; Broo, Kerstin; Börje, Anna; Karlberg, Ann-Therese

    2010-01-01

    The first step in the development of contact allergy (allergic contact dermatitis) includes the penetration of an allergy-causing chemical (hapten) into the skin, where it binds to macromolecules such as proteins. The protein-hapten adduct is then recognized by the immune system as foreign to the body. For hydroperoxides, no relevant hapten target proteins or protein-hapten adducts have so far been identified. In this work, bovine insulin and human angiotensin I were used as model peptides to investigate the haptenation mechanism of three hydroperoxide haptens: (5R)-5-isopropenyl-2-methyl-2-cyclohexene-1-hydroperoxide (Lim-2-OOH), cumene hydroperoxide (CumOOH), and 1-(1-hydroperoxy-1-methylethyl) cyclohexene (CycHexOOH). These hydroperoxides are expected to react via a radical mechanism, for which 5,10,15,20-tetraphenyl-21H,23H-porphine iron(III) chloride (Fe(III)TPPCl) was used as a radical initiator. The reactions were carried out in 1:1 ethanol/10 mM ammonium acetate buffer pH 7.4, for 3 h at 37 degrees C, and the reaction products were either enzymatically digested or analyzed directly by MALDI/TOF-MS, HPLC/MS/MS, and 2D gel electrophoresis. Both hydroperoxide-specific and unspecific reaction products were detected, but only in the presence of the iron catalyst. In the absence of catalyst, the hydroperoxides remained unreacted. This suggests that the hydroperoxides can enter into the skin and remain inert until activated. Through the detection of a Lim-2-OOH adduct bound at the first histidine (of two) of angiotensin I, it was confirmed that hydroperoxides have the potential to form specific antigens in contact allergy.

  19. Detection of adriamycin-DNA adducts by accelerator mass spectrometry.

    PubMed

    Coldwell, Kate; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2010-01-01

    There have been many attempts in the past to determine whether significant levels of Adriamycin-DNA adducts form in cells and contribute to the anticancer activity of this agent. Supraclincal drug levels have been required to study drug-DNA adducts because of the lack of sensitivity associated with many of the techniques employed, including liquid scintillation counting of radiolabeled drug. The use of accelerator mass spectrometry (AMS) has provided the first direct evidence of Adriamycin-DNA adduct formation in cells at clinically relevant Adriamycin concentrations. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection (compared to liquid scintillation counting) and has revealed adduct formation within an hour of drug treatment. The rigorous protocol required for this approach, together with many notes on the precautions and procedures required in order to ensure that absolute levels of Adriamycin-DNA adducts can be determined with good reproducibility, is outlined in this chapter.

  20. A mitomycin-N6-deoxyadenosine adduct isolated from DNA.

    PubMed

    Palom, Y; Lipman, R; Musser, S M; Tomasz, M

    1998-03-01

    A minor N6-deoxyadenosine adduct of mitomycin C (MC) was isolated from synthetic oligonucleotides and calf thymus DNA, representing the first adduct of MC and a DNA base other than guanine. The structure of the adduct (8) was elucidated using submilligram quantities of total available material. UV difference spectroscopy, circular dichroism, and electrospray mass spectroscopy as well as chemical transformations were utilized in deriving the structure of 8. A series of synthetic oligonucleotides was designed to probe the specificities of the alkylation of adenine by MC. The nature and frequency of the oligonucleotide-MC adducts formed under conditions of reductive activation of MC were determined by their enzymatic digestion to the nucleoside level followed by quantitative analysis of the products by HPLC. The analyses indicated the following: (i) (A)n sequence is favored over (AT)n for adduct formation; (ii) the alkylation favors the duplex structure; (iii) at adenine sites only monofunctional alkylation occurs; (iv) the adenine-to-alkylation frequency in the model oligonucleotides was 0.3-0.6 relative to guanine alkylation at the 5'-ApG sequence but only 0.02-0.1 relative to guanine alkylation at 5'-CpG. The 5'-phosphodiester linkage of the MC-adenine adduct is resistant to snake venom diesterase. The overall ratio of adenine to guanine alkylation in calf thymus DNA was 0.03, indicating that 8 is a minor MC-DNA adduct relative to MC-DNA adducts at guanine residues in the present experimental residues in the present experimental system. However, the HPLC elution time of 8 coincides with that of a major, unknown MC adduct detected previously in mouse mammary tumor cells treated with radiolabeled MC [Bizanek, R., Chowdary, D., Arai, H., Kasai, M., Hughes, C. S., Sartorelli, A. C., Rockwell, S., and Tomasz, M. (1993) Cancer Res. 53, 5127-5134]. Thus, 8 may be identical or closely related to this major adduct formed in vivo. This possibility can now be tested by

  1. In silico attempt for adduct agent(s) against malaria: Combination of chloroquine with alkaloids of Adhatoda vasica.

    PubMed

    Swain, Shasank S; Sahu, Mahesh C; Padhy, Rabindra N

    2015-10-01

    With the aim of controlling drug resistant Plasmodium falciparum, a computational attempt of designing novel adduct antimalarial drugs through the molecular docking method of combining chloroquine with five alkaloids, individually is presented. These alkaloids were obtained from the medicinal plant, Adhatoda vasica. From the obtained individual docking values of important derivatives of quinine and chloroquine, as well as, individual alkaloids and adduct agents of chloroquine with Adhatoda alkaloids as ligands, it was discernible that the 'adduct agent-1 with chloroquine and adhatodine' combination had the minimum energy of interaction, as the docking score value of -11.144 kcal/mol against the target protein, triosephosphate isomerase (TIM), the key enzyme of glycolytic pathway. Drug resistance of P. falciparum is due to a mutation in the polypeptide of TIM. Moratorium of mutant TIM would disrupt the metabolism during the control of the drug resistant P. falciparum. This in silico work helped to locate the 'adduct agent-1 with chloroquine and adhatodine', which could be taken up by pharmacology for further development of this compound as a new drug against drug resistant Plasmodium.

  2. BENZENE OXIDE PROTEIN ADDUCTS AS BIOMARKERS OF BENZENE EXPOSURE

    EPA Science Inventory

    Benzene is known to be hematotoxic and carcinogenic in animals and humans. While metabolism is required for toxicity, the identity of the ultimate carcinogen(s) remains unknown. Benzene oxide (BO) is the first and most abundant of the metabolites, but very little is known about...

  3. The formation of argpyrimidine, a methylglyoxal-arginine adduct, in the nucleus of neural cells

    SciTech Connect

    Nakadate, Yusuke; Uchida, Koji; Shikata, Keiji; Yoshimura, Saori; Azuma, Masayuki; Hirata, Tatsumi; Konishi, Hiroyuki; Kiyama, Hiroshi; Tachibana, Taro

    2009-01-09

    Methylglyoxal (MG) is an endogenous metabolite in glycolysis and forms stable adducts primarily with arginine residues of intracellular proteins. The biological role of this modification in cell function is not known. In the present study, we found that a MG-detoxification enzyme glyoxalase I (GLO1) is mainly expressed in the ventricular zone (VZ) at embryonic day 16 which neural stem and progenitor cells localize. Moreover, immunohistochemical analysis revealed that argpyrimidine, a major MG-arginine adduct, is predominantly produced in cortical plate neurons not VZ during cerebral cortex development and is exclusively located in the nucleus. Immunoblotting experiment showed that the formation of argpyrimidine occurs on some nuclear proteins of cortical neurons. To our knowledge, this is first report of the argpyrimidine formation in the nucleus of neuron. These findings suggest that GLO1, which is dominantly expressed in the embryonic VZ, reduces the intracellular level of MG and suppresses the formation of argpyrimidine in neural stem and progenitor cells. Argpyrimidine may contribute to the neural differentiation and/or the maintenance of the differentiated state via the modification of nuclear proteins.

  4. Antitumor Trans Platinum Adducts of GMP and AMP

    PubMed Central

    Liu, Yangzhong; Sivo, Maria F.; Natile, Giovanni

    2000-01-01

    Recently it has been shown that several analogues of the clinically ineffective trans-DDP exhibit antitumor activity comparable to that of cis-DDP. The present paper describes the binding of antitumor trans-[PtCl2(E-iminoether)2] (trans-EE) to guanosinemonophosphate (GMP) and adenosinemonophosphate (AMP). We have used HPLC and 1H and 15N NMR to characterize the different adducts. In the case of a 1:1 mixture of trans-EE and GMP, at an early stage of the reaction, a monofunctional adduct is formed which, subsequently, is partly converted into a monosolvated monofunctional species. After about 70 hours an equilibrium is established between chloro and solvato monofunctional adducts at a ratio of 30/70. In the presence of excess GMP (4:1) the initially formed monofunctional adducts react further to give two bifunctional adducts, one with the iminoether ligands in their original E configurations and the other with the iminoether ligands having one E and the other, Z configurations. The coordination geometry obtained by energy minimization calculations is in qualitative agreement with 2D NMR data. PMID:18475942

  5. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls.

    PubMed

    Slawik, Christian; Rickmeyer, Christiane; Brehm, Martin; Böhme, Alexander; Schüürmann, Gerrit

    2017-02-22

    Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functio-nalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft and soft-soft adducts.

  6. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases

    NASA Astrophysics Data System (ADS)

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  7. Optimized sample preparation strategy for the analysis of low molecular mass adducts of a fluorescent cisplatin analogue in cancer cell lines by CE-dual-LIF.

    PubMed

    Zabel, Robert; Kullmann, Maximilian; Kalayda, Ganna V; Jaehde, Ulrich; Weber, Günther

    2015-02-01

    Pt-based anticancer drugs, such as cisplatin, are known to undergo several (bio-)chemical transformation steps after administration. Hydrolysis and adduct formation with small nucleophiles and larger proteins are their most relevant reactions on the way to the final reaction site (DNA), but there are still many open questions regarding the identity and pharmacological relevance of various proposed adducts and intermediates. Furthermore, the role of buffer components or additives, which are inevitably added to samples during any type of analytical measurement, has been frequently neglected in previous studies. Here, we report on adduct formation reactions of the fluorescent cisplatin analogue carboxyfluorescein diacetate platinum (CFDA-Pt) in commonly used buffers and cell culture medium. Our results indicate that chelation reactions with noninnocent buffers (e.g., Tris) and components of the cell culture/cell lysis medium must be taken into account when interpreting results. Adduct formation kinetics was followed up to 60 h at nanomolar concentrations of CFDA-Pt by using CE-LIF. CE-MS enabled the online identification of such unexpected adducts down to the nanomolar concentration range. By using an optimized sample preparation strategy, unwanted adducts can be avoided and several fluorescent adducts of CFDA-Pt are detectable in sensitive and cisplatin-resistant cancer cell lines. By processing samples rapidly after incubation, we could even identify the initial, but transient, Pt species in the cells as deacetylated CFDA-Pt with unaltered complexing environment at Pt. Overall, the proposed procedure enables a very sensitive and accurate analysis of low molecular mass Pt species in cancer cells, involving a fast CE-LIF detection within 5 min.

  8. Detection and identification of 4-hydroxy-2-nonenal Schiff-base adducts along with products of Michael addition using data-dependent neutral loss-driven MS3 acquisition: method evaluation through an in vitro study on cytochrome c oxidase modifications.

    PubMed

    Rauniyar, Navin; Prokai, Laszlo

    2009-11-01

    We report a data-dependent neutral-loss-driven MS(3) acquisition to enhance, in addition to abundant Michael adducts, the detection of Schiff-base adducts of proteins and 4-hydroxy-2-nonenal, a reactive end product of lipid peroxidation. In vitro modification of cytochrome c oxidase, a mitochondrial protein complex, was used as a model to evaluate the method. The technique allowed for a confident validation of modification sites and also identified a Schiff-base adduct in subunit Vb of the protein complex.

  9. DNA adducts: Mass spectrometry methods and future prospects

    SciTech Connect

    Farmer, P.B. . E-mail: pbf1@le.ac.uk; Brown, K.; Tompkins, E.; Emms, V.L.; Jones, D.J.L.; Singh, R.; Phillips, D.H.

    2005-09-01

    Detection of DNA adducts is widely used for the monitoring of exposure to genotoxic carcinogens. Knowledge of the nature and amounts of DNA adducts formed in vivo also gives valuable information regarding the mutational effects that may result from particular exposures. The power of mass spectrometry (MS) to achieve qualitative and quantitative analyses of human DNA adducts has increased greatly in recent years with the development of improved chromatographic interfaces and ionisation sources. Adducts have been detected on nucleic acid bases, 2'-deoxynucleosides or 2'-deoxynucleotides, with LC-MS/MS being the favoured technique for many of these analyses. Our current applications of this technique include the determination of N7-(2-carbamoyl-2-hydroxyethyl)-guanine, which was postulated to be found as a DNA repair product in urine following exposure to acrylamide, and of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-2'-deoxyadenosine, as markers of oxidative damage in human lymphocyte DNA. Higher sensitivity (with a detection limit of 1-10 adducts/10{sup 12} nucleotides) may be achieved by the use of accelerator mass spectrometry (AMS), although this requires the presence of certain isotopes, such as [{sup 14}C], in the material being analysed. In order to make this technique more amenable for studies of human exposure to environmental carcinogens, new postlabelling techniques, incorporating [{sup 14}C] into specific DNA adducts after formation, are being developed. It is expected that combining the use of advanced MS techniques with existing {sup 32}P-postlabelling and immunochemical methodologies will contribute greatly to the understanding of the burden of human exposure to environmental carcinogens.

  10. Possible rare congenital dysinnervation disorder: congenital ptosis associated with adduction.

    PubMed

    Mendes, Sílvia; Beselga, Diana; Campos, Sónia; Neves, Arminda; Campos, Joana; Carvalho, Sílvia; Silva, Eduardo; Castro Sousa, João Paulo

    2015-01-01

    Ptosis is defined as an abnormally low position of the upper eyelid margin. It can be congenital or acquired, uni or bilateral, and isolated or associated with other ocular and nonocular defects. We report a case of a female child, aged 8 years, with congenital right ptosis increased on right adduction and with left ptosis on left adduction. There was no horizontal ocular movement limitation. Apparent underaction of the right inferior oblique muscle was also present. We believe that within the possible mechanisms it is more likely that it is a congenital innervation dysgenesis syndrome (CID)/congenital cranial dysinnervation disorder (CCDD).

  11. Chemistry and Biology of Aflatoxin-DNA Adducts

    SciTech Connect

    Stone, Michael P.; Banerjee, Surajit; Brown, Kyle L.; Egli, Martin

    2012-03-27

    Aspergillus flavus is a fungal contaminant of stored rice, wheat, corn, and other grainstuffs, and peanuts. This is of concern to human health because it produces the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}), which is genotoxic and is implicated in the etiology of liver cancer. AFB{sub 1} is oxidized in vivo by cytochrome P450 to form aflatoxin B{sub 1} epoxide, which forms an N7-dG adduct (AFB{sub 1}-N7-dG) in DNA. The latter rearranges to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative that equilibrates between {alpha} and {beta} anomers of the deoxyribose. In DNA, both the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts intercalate above the 5'-face of the damaged guanine. Each produces G {yields} T transversions in Escherichia coli, but the AFB{sub 1}-{beta}-FAPY adduct is more mutagenic. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) provides a model for understanding error-prone bypass of the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts. It bypasses the AFB{sub 1}-N7-dG adduct, but it conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including mis-insertion of dATP, consistent with the G {yields} T mutations characteristic of AFB{sub 1} mutagenesis in E. coli. Crystallographic analyses of a series of binary and ternary complexes with the Dpo4 polymerase revealed differing orientations of the N7-C8 bond of the AFB{sub 1}-N7-dG adduct as compared to the N{sup 5}-C8 bond in the AFB{sub 1}-{beta}-FAPY adduct, and differential accommodation of the intercalated AFB{sub 1} moieties within the active site. These may modulate AFB{sub 1} lesion bypass by this polymerase.

  12. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  13. Laboratory studies of weakly bound adducts of atmospheric interest

    SciTech Connect

    Wine, P.H.; Nicovich, J.M.; Stickel, R.E.; Hynes, A.J.

    1995-12-31

    It is now well-established that weakly bound adducts, i.e., species whose life-times toward unimolecular decomposition are only fractions of a second under atmospheric conditions, play an important role in tropospheric sulfur chemistry. In this presentation, recent results from our laboratory concerning the existence and atmospheric fates of two such weakly bound species, (CH{sub 3}){sub 2}S-OH and (CH{sub 3}){sub 2}S-Cl, will be discussed. In addition, evidence for the formation of weakly bound adducts in reactions of chlorine atoms with methyl halides will be presented.

  14. A Cyclic Disilylated Stannylene: Synthesis, Dimerization, and Adduct Formation

    PubMed Central

    2011-01-01

    Reaction of 1,4-dipotassio-1,1,4,4-tetrakis(trimethylsilyl)tetramethyltetrasilane with [(Me3Si)2N]2Sn led to the formation of an endocyclic distannene via the dimerization of a transient stannylene. In the presence of strong donor molecules such as PEt3, the stannylene could be trapped as adduct. Reaction of the PEt3 derivative with B(C6F5)3 gave rise to the formation of the stannylene B(C6F5)3 adduct. PMID:21438553

  15. Formation and repair kinetics of Pt-(GpG) DNA adducts in extracted circulating tumour cells and response to platinum treatment

    PubMed Central

    Nel, I; Gauler, T C; Eberhardt, W E; Nickel, A-C; Schuler, M; Thomale, J; Hoffmann, A-C

    2013-01-01

    Background: Pt-(GpG) intrastrand crosslinks are the major DNA adducts induced by platinum-based anticancer drugs. In the cell lines and mouse models, the persistence of these lesions correlates significantly with cell damage. Here we studied Pt-(GpG) DNA adducts in circulating tumour cells (CTC) treated with cisplatin in medium upfront to systemic therapy from patients with advanced non-small-cell lung cancer (NSCLC). Methods: Blood was drawn before systemic treatment and the CD45/CD15-depleted fraction of mononuclear cells was exposed to cisplatin, verified for the presence of CTC by pan-cytokeratin (pCK) staining and immunoanalysed for the level of Pt-(GpG) in DNA. Results: Immunostaining for pCK, CD45 and subsequently for Pt-(GpG) adducts in the cisplatin-exposed cells (ex vivo) at different time points depicted distinct differences for adduct persistence in CTC between responders vs non-responders. Conclusion: Pt-(GpG) adducts can be detected in CTC from NSCLC patients and assessing their kinetics may constitute a clinically feasible biomarker for response prediction and dose individualisation of platinum-based chemotherapy. This functional pre-therapeutic test might represent a more biological approach than measuring protein factors or other molecular markers. PMID:23942068

  16. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  17. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  18. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  19. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  20. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  1. Volatile Barium Beta-Diketonate Polyether Adducts. Synthesis, Characterization and Metalorganic Chemical Vapor Deposition

    DTIC Science & Technology

    1991-05-31

    Volatile Barium 13- Diketonate Polyether Adducts.... Synthesis , Characterization and Metalorganic Chemical Vapor Deposition by Robin A. Gardiner...has been approved for public release and sale: its distribution is unlimited. Volatile, Barium B- Diketonate Polyether Adducts. Synthesis ...NO. NO. INO. ACCESSION NO. Arlington, VA 22217 II 11. TITLE (include Security Classification) Volatile Barium B- Diketonate Polyether Adducts

  2. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  3. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  4. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  5. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  6. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  7. Chiral Differentiation of DNA Adducts Formed by Enantiomeric Analogues of Antitumor Cisplatin Is Sequence-Dependent

    PubMed Central

    Delalande, Olivier; Malina, Jaroslav; Brabec, Viktor; Kozelka, Jiří

    2005-01-01

    1,2-GG intrastrand cross-links formed in DNA by the enantiomeric complexes [PtCl2(R,R-2,3-diaminobutane (DAB))] and [PtCl2(S,S-DAB)] were studied by biophysical methods. Molecular modeling revealed that structure of the cross-links formed at the TGGT sequence was affected by repulsion between the 5′-directed methyl group of the DAB ligand and the methyl group of the 5′-thymine of the TGGT fragment. Molecular dynamics simulations of the solvated platinated duplexes and our recent structural data indicated that the adduct of [PtCl2(R,R-DAB)] alleviated this repulsion by unwinding the TpG step, whereas the adduct of [PtCl2(S,S-DAB)] avoided the unfavorable methyl-methyl interaction by decreasing the kink angle. Electrophoretic retardation measurements on DNA duplexes containing 1,2-GG intrastrand cross-links of Pt(R,R-DAB)2+ or Pt(S,S-DAB)2+ at a CGGA site showed that in this sequence both enantiomers distorted the double helix to the identical extent similar to that found previously for the same sequence containing the cross-links of the parent antitumor \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}cis-{\\mathrm{Pt}}({\\mathrm{NH}}_{3})_{2}^{2+}\\end{equation*}\\end{document} (cisplatin). In addition, the adducts showed similar affinities toward the high-mobility-group box 1 proteins. Hence, whereas the structural perturbation induced in DNA by 1,2-GG intrastrand cross-links of cisplatin does not depend largely on the bases flanking the cross-links, the perturbation related to GG cross-linking by bulkier platinum diamine derivatives does. PMID:15805172

  8. 2-Amino-9H-pyrido[2,3-b]indole (AαC) Adducts and Thiol Oxidation of Serum Albumin as Potential Biomarkers of Tobacco Smoke*

    PubMed Central

    Pathak, Khyatiben V.; Bellamri, Medjda; Wang, Yi; Langouët, Sophie; Turesky, Robert J.

    2015-01-01

    2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine formed during the combustion of tobacco. AαC undergoes bioactivation to form electrophilic N-oxidized metabolites that react with DNA to form adducts, which can lead to mutations. Many genotoxicants and toxic electrophiles react with human serum albumin (albumin); however, the chemistry of reactivity of AαC with proteins has not been studied. The genotoxic metabolites, 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC), 2-nitroso-9H-pyrido[2,3-b]indole (NO-AαC), N-acetyloxy-2-amino-9H-pyrido[2,3-b]indole (N-acetoxy-AαC), and their [13C6]AαC-labeled homologues were reacted with albumin. Sites of adduction of AαC to albumin were identified by data-dependent scanning and targeted bottom-up proteomics approaches employing ion trap and Orbitrap MS. AαC-albumin adducts were formed at Cys34, Tyr140, and Tyr150 residues when albumin was reacted with HONH-AαC or NO-AαC. Sulfenamide, sulfinamide, and sulfonamide adduct formation occurred at Cys34 (AαC-Cys34). N-Acetoxy-AαC also formed an adduct at Tyr332. Albumin-AαC adducts were characterized in human plasma treated with N-oxidized metabolites of AαC and human hepatocytes exposed to AαC. High levels of N-(deoxyguanosin-8-yl)-AαC (dG-C8-AαC) DNA adducts were formed in hepatocytes. The Cys34 was the sole amino acid of albumin to form adducts with AαC. Albumin also served as an antioxidant and scavenged reactive oxygen species generated by metabolites of AαC in hepatocytes; there was a strong decrease in reduced Cys34, whereas the levels of Cys34 sulfinic acid (Cys-SO2H), Cys34-sulfonic acid (Cys-SO3H), and Met329 sulfoxide were greatly increased. Cys34 adduction products and Cys-SO2H, Cys-SO3H, and Met329 sulfoxide may be potential biomarkers to assess exposure and oxidative stress associated with AαC and other arylamine toxicants present in tobacco smoke. PMID:25953894

  9. Theoretical investigations on the formation of nitrobenzanthrone-DNA adducts.

    PubMed

    Arlt, Volker M; Phillips, David H; Reynisson, Jóhannes

    2011-09-07

    3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. The thermochemical formation cascades were calculated for six 3-NBA-derived DNA adducts employing its arylnitrenium ion as precursor using density functional theory (DFT). Clear exothermic pathways were found for four adducts, i.e., 2-(2'-deoxyadenosin-N(6)-yl)-3-aminobenzanthrone, 2-(2'-deoxyguanosin-N(2)-yl)-3-aminobenzanthrone, N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone and 2-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone. All four have been observed to be formed in cell-free experimental systems. The formation of N-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone is predicted to be not thermochemically viable explaining its absence in either in vitro or in vivo model systems. However, 2-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone, can be formed, albeit not as a major product, and is a viable candidate for an unknown adenine adduct observed experimentally. 2-nitrobenzanthrone (2-NBA), an isomer of 3-NBA, was also included in the calculations; it has a higher abundance in ambient air than 3-NBA, but a much lower genotoxic potency. Similar thermochemical profiles were obtained for the calculated 2-NBA-derived DNA adducts. This leads to the conclusion that enzymatic activation as well as the stability of its arylnitrenium ion are important determinants of 2-NBA genotoxicity.

  10. Infrared spectroscopy of fullerene C60/anthracene adducts

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Cataldo, F.; Manchado, A.

    2013-09-01

    Recent Spitzer Space Telescope observations of several astrophysical environments such as planetary nebulae, reflection nebulae and R Coronae Borealis stars show the simultaneous presence of mid-infrared features attributed to neutral fullerene molecules (i.e. C60) and polycyclic aromatic hydrocarbons (PAHs). If C60 fullerenes and PAHs coexist in fullerene-rich space environments, then C60 may easily form adducts with a number of different PAH molecules, at least with catacondensed PAHs. Here we present the laboratory infrared spectra (˜2-25 μm) of C60 fullerene and anthracene Diels-Alder mono- and bis-adducts as produced by sonochemical synthesis. We find that C60/anthracene Diels-Alder adducts display spectral features strikingly similar to those from C60 (and C70) fullerenes and other unidentified infrared emission features. Thus, fullerene adducts - if formed under astrophysical conditions and are stable/abundant enough - may contribute to the infrared emission features observed in fullerene-containing circumstellar/interstellar environments.

  11. NMR at the Picomole Level of a DNA Adduct

    PubMed Central

    Kautz, Roger; Wang, Poguang; Giese, Roger W.

    2014-01-01

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the pmol level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene 5′-monophosphate (AAF-dGMP), in 1.5 μL of D2O with 10% methanol-d4, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid, and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a several-fold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample into the observed volume realizes the full theoretical mass sensitivity of a microcoil, comparable to a micro-cryo probe. With 80 ng, an NMR spectrum acquired over 40 hr showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a S/N of at least 10, despite broadening due to previously-noted effects of conformational exchange. Also a 2D TOCSY spectrum (total correlation spectroscopy) was acquired on 1.6 μg in 18 hr. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct. PMID:24028148

  12. Conformations of DNA adducts with polycyclic aromatic carcinogens

    SciTech Connect

    Broyde, S.; Hingerty, B.

    1984-01-01

    Minimized semi-empirical potential energy calculations for a number of carcinogen adducts with dCpdG have yielded molecular views of the adduct conformations. The base displaced and Z type conformations of acetylaminofluorene (AAF) adducts to guanine C-8 have been detailed. Model building shows that base displacement causes kinking and denaturation in the B helix, while the Z helix is largely unperturbed by modification with AAF, in agreement with experimental findings. The minor AAF adduct linked to quanine N/sup 2/ can reside at a B-Z junction, with the carcinogen buried in a groove in the Z direction, without causing denaturation. The syn guanine in these modified Z forms could be mutagenic, the lesion escaping repair because the helix is undeformed, while the distorted base-displaced conformers are repaired. Aminofluorene (AF) and 4-aminobiphenyl (ABP) linked to guanine N/sup 2/ are currently believed to be critical lesions. They all have a pair of A or B type low energy states, one of which has base-base stacking with carcinogen at the helix exterior, and a second with carcinogen-base stacking. The two states are easily interconvertible. It is possible that the carcinogen may reside primarily at the unperturbed helix exterior where it escapes repair, but that carcinogen-base stacking may occur at a critical time during replication, leading to a mutation. 49 references, 8 figures.

  13. Structural basis for recognition of 5'-phosphotyrosine adducts by TDP2

    SciTech Connect

    Shi, Ke; Kurahash, Kayo; Gao, Rui; Tsutakawa, Susan E.; Tainer, John A.; Pommier, Yves; Aihara, Hideki

    2012-12-19

    The DNA repair enzyme TDP2 resolves 5'-phosphotyrosyl-DNA adducts, and is responsible for resistance to anti-cancer drugs that target covalent topoisomerase-DNA complexes. TDP2 also participates in key signaling pathways during development and tumorigenesis, and cleaves a protein-RNA linkage during picornavirus replication. The crystal structure of zebrafish TDP2 bound to DNA reveals a deep and narrow basic groove that selectively accommodates the 5'-end of single-stranded DNA in a stretched conformation. The crystal structure of the full-length C. elegans TDP2 shows that this groove can also accommodate an acidic peptide stretch in vitro, with Glu and Asp sidechains occupying the DNA backbone phosphate binding sites. This extensive molecular mimicry suggests a potential mechanism for auto-regulation and how TDP2 may interact with phosphorylated proteins in signaling. Our study provides a framework to interrogate functions of TDP2 and develop inhibitors for chemotherapeutic and antiviral applications.

  14. Mapping Serum Albumin Adducts of the Food-borne Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by Data-Dependent Tandem Mass Spectrometry

    PubMed Central

    Peng, Lijuan; Dasari, Surendra; Tabb, David L.; Turesky, Robert J.

    2012-01-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic aromatic amine that is formed during the cooking of meats. PhIP is a potential human carcinogen: it undergoes metabolic activation to form electrophilic metabolites that bind to DNA and proteins, including serum albumin (SA). The structures of PhIP-SA adducts formed in vivo are unknown and require elucidation before PhIP protein adducts can be implemented as biomarkers in human studies. We previously examined the reaction of genotoxic N-oxidized metabolites of PhIP with human SA in vitro and identified covalent adducts formed at cysteine34 (Cys34); however, other adduction products were thought to occur. We have now identified adducts of PhIP formed at multiple sites of SA reacted with isotopic mixtures of electrophilic metabolites of PhIP and 2-amino-1-methyl-6-[2H5]-phenylimidazo[4,5-b]pyridine ([2H5]-PhIP). The metabolites used for study were: 2-nitro-1-methyl-6-phenylimidazo[4,5-b]pyridine (NO2-PhIP), 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP), or N-acetyloxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-acetoxy-PhIP). Following proteolytic digestion, PhIP-adducted peptides were separated by ultra performance liquid chromatography and characterized by ion trap mass spectrometry, employing isotopic data-dependent scanning. Analysis of the tryptic or tryptic/chymotryptic digests of SA modified with NO2-PhIP revealed that adduction occurred at Cys34, Lys195, Lys199, Lys351, Lys541, Tyr138, Tyr150, Tyr401, and Tyr411, whereas the only site of HONH-PhIP adduction was detected at Cys34. N-Acetoxy-PhIP, a penultimate metabolite of PhIP that reacts with DNA to form covalent adducts, did not appear to form stable adducts with SA; instead, PhIP and 2-amino-1-methyl-6-(5-hydroxy)-phenylimidazo[4,5-b]pyridine, an aqueous reaction product of the proposed nitrenium ion of PhIP, were recovered during the proteolysis of N-acetoxy-PhIP-modified SA. Some of these SA adduction

  15. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    SciTech Connect

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA than that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.

  16. 32P-postlabeling DNA adduct assay: cigarette smoke-induced dna adducts in the respiratory and nonrespiratory rat tissues. Book chapter

    SciTech Connect

    Gupta, R.C.; Gairola, C.G.

    1990-01-01

    An analysis of the tissue DNA adducts in rats by the sensitive (32)p-postlabeling assay showed one to eight detectable DNA adducts in lung, trachea, larynx, heart and bladder of the sham controls. Chronic exposure of animals to mainstream cigarette smoke showed a remarkable enhancement of most adducts in the lung and heart DNA. Since cigarette smoke contains several thousand chemicals and a few dozen of them are known or potential carcinogens, the difference between the DNA adducts of nasal and the other tissues may reflect the diversity of reactive constituents and their differential absorption in different tissues. In comparison to the lung DNA adducts, the adducts in nasal DNA were less hydrophobic. Identity of the predominant adducts was further investigated by comparison with several reference DNA adducts from 10 PAH and aromatic amines. Since some of these chemicals are present in cigarette smoke, the results suggest that these constituents of cigarette smoke may not be directly responsible for formation of DNA adducts in the lung and heart of the smoke-exposed animals.

  17. Effect of aging and oxidative stress on elongation factor-2 in hypothalamus and hypophysis.

    PubMed

    Argüelles, Sandro; Cano, Mercedes; Machado, Alberto; Ayala, Antonio

    2011-01-01

    The hypothalamic-hypophysis system (HHS) secretes peptide hormones whose synthesis requires the integrity of the translation machinery. As the organisms age, a considerable diminution of the protein synthesis takes place in several tissues. Among the possible causes of the decline of translation in old animals are the modifications of elongation factor-2 (eEF-2). We studied whether the level of this protein was affected in the HHS in old animals. The effects of aging are compared to those of an oxidant compound (cumene hydroperoxide) administered to young rats. The results indicate that oxidative stress could be involved in the alterations of eEF-2, which forms adducts with malondialdehyde (MDA) and 4-hydroxynonenal (HNE). The alterations of eEF-2 levels, secondary to lipid peroxidation and adduct formation with these aldehydes could contribute to the suboptimal hormone production from these tissues during aging. Besides eEF-2, proteomic analysis shows that several other proteins are affected.

  18. Detection of Adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations.

    PubMed

    Coldwell, Kate E; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2008-09-01

    Limited sensitivity of existing assays has prevented investigation of whether Adriamycin-DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin-DNA adducts/10(4) bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin-DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [(14)C]Adriamycin-DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin-DNA adducts at clinically-relevant Adriamycin concentrations. [(14)C]Adriamycin treatment (25 nM) resulted in 4.4 +/- 1.0 adducts/10(7) bp ( approximately 1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin-DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.

  19. Enzymology of repair of DNA adducts produced by N-nitroso compounds

    SciTech Connect

    Setlow, R.B.; Cao, E.H.; Delihas, N.C.

    1983-01-01

    The biological effects of DNA adducts depend on their nature, and on their half-lives relative to the rates of DNA replication and transcription. Their half-lives are determined by the rates of spontaneous decay, such as depurination, and the rates of enzymatic repair of the adducts or their decay products. The principle modes of repair of methylating and ethylating agents are by glycosylase catalyzed depurination of 7-alkylguanine and 3-alkyladenine and by the dealkalation of O/sup 6/-alkylguanine. Repair by dealkylation cannot be detected by the standard methods used to measure DNA repair, but it is easy to estimate the acceptor activity in cell extracts by measuring the transfer of radioactive O/sup 6/-alkyl groups in an exogenous DNA to protein. In extracts of cells treated with alkylating agents the activity is depressed because the endogenous DNA is rapidly dealkylated, using up the acceptor activity. In many cell types the decrease in activity is followed by an increase to the normal constitutive level. In other cells there is no such adaptive response. Differences in constitutive levels of methyl accepting activity in extracts of human lymphocytes and on the acceptor activity in lung macrophages from smokers (low activity) and non-smokers (high activity) have been observed. 46 references.

  20. Oxidation process of adrenaline in freshly isolated rat cardiomyocytes: formation of adrenochrome, quinoproteins, and GSH adduct.

    PubMed

    Costa, Vera Marisa; Silva, Renata; Ferreira, Luísa Maria; Branco, Paula Sério; Carvalho, Félix; Bastos, Maria Lourdes; Carvalho, Rui Albuquerque; Carvalho, Márcia; Remião, Fernando

    2007-08-01

    High concentrations of circulating biogenic catecholamines often exist during the course of several cardiovascular disorders. Additionally, coronary dysfunctions are prominent and frequently related to the ischemic and reperfusion phenomenon (I/R) in the heart, which leads to the release of large amounts of catecholamines, namely adrenaline, and to a sustained generation of reactive oxygen species (ROS). Thus, this work aimed to study the toxicity of adrenaline either alone or in the presence of a system capable of generating ROS [xanthine with xanthine oxidase (X/XO)], in freshly isolated, calcium tolerant cardiomyocytes from adult rats. Studies were performed for 3 h, and cardiomyocyte viability, ATP level, lipid peroxidation, protein carbonylation content, and glutathione status were evaluated, in addition to the formation of adrenaline's oxidation products and quinoproteins. Intracellular GSH levels were time-dependently depleted with no GSSG formation when cardiomyocytes were exposed to adrenaline or to adrenaline with X/XO. Meanwhile, a time-dependent increase in the rate of formation of adrenochrome and quinoproteins was observed. Additionally, as a new outcome, 5-(glutathion- S-yl)adrenaline, an adrenaline adduct of glutathione, was identified and quantified. Noteworthy is the fact that the exposure to adrenaline alone promotes a higher rate of formation of quinoproteins and glutathione adduct, while adrenochrome formation is favored where ROS production is stimulated. This study shows that the redox status of the surrounding environment greatly influences adrenaline's oxidation pathway, which may trigger cellular changes responsible for cardiotoxicity.

  1. Identification of novel disulfide adducts between the thiol containing leaving group of the nerve agent VX and cysteine containing tripeptides derived from human serum albumin.

    PubMed

    Kranawetvogl, Andreas; Küppers, Jim; Gütschow, Michael; Worek, Franz; Thiermann, Horst; Elsinghorst, Paul W; John, Harald

    2016-12-09

    Chemical warfare agents represent a continuous and considerable threat to military personnel and the civilian population. Such compounds are prohibited by the Chemical Weapons Convention, to which adherence by the member states is strictly controlled. Therefore, reliable analytical methods for verification of an alleged use of banned substances are required. Accordingly, current research focuses on long-term biomarkers derived from covalent adducts with biomolecules such as proteins. Recently, we have introduced a microbore liquid chromatography/electrospray ionization high-resolution tandem mass spectrometry method allowing for the investigation of two different classes of adducts of the nerve agent VX with human serum albumin (HSA). Phosphonylated tyrosine residues and novel disulfide adducts at cysteine residues of HSA were produced by enzymatic cleavage with pronase and detected simultaneously. Notably, the thiol containing leaving group of VX (2-(diisopropylamino)ethanethiol, DPAET) formed disulfide adducts that were released as cysteine and proline containing dipeptides originating from at least two different sites of HSA. Aim of this study was to identify assumed and novel adducts of DPAET with HSA using synthetic peptide reference compounds. Two novel tripeptides were identified representing disulfide adducts with DPAET (Met-Pro-Cys-DPAET, MPC-DPAET and Asp-Ile-Cys-DPAET, DIC-DPAET). MPC-DPAET was shown to undergo partial in-source decay during electrospray ionization for MS detection thereby losing the N-terminal Met residue. This results in the more stable Pro-Cys-DPAET (PC-DPAET) dipeptide detectable as protonated ion. The limit of detection for MPC-DPAET was evaluated, revealing toxicologically relevant VX plasma concentrations. The results provide novel insights into the reactivity of VX and its endogenous targets. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Conditions for sample preparation and quantitative HPLC/MS-MS analysis of bulky adducts to serum albumin with diolepoxides of polycyclic aromatic hydrocarbons as models.

    PubMed

    Westberg, Emelie; Hedebrant, Ulla; Haglund, Johanna; Alsberg, Tomas; Eriksson, Johan; Seidel, Albrecht; Törnqvist, Margareta

    2014-02-01

    Stable adducts to serum albumin (SA) from electrophilic and genotoxic compounds/metabolites can be used as biomarkers for quantification of the corresponding in vivo dose. In the present study, conditions for specific analysis of stable adducts to SA formed from carcinogenic polycyclic aromatic hydrocarbons (PAH) were evaluated in order to achieve a sensitive and reproducible quantitative method. Bulky adducts from diolepoxides (DE) of PAH, primarily DE of benzo[a]pyrene (BPDE) and also DE of dibenzo[a,l]pyrene (DBPDE) and dibenzo[a,h]anthracene (DBADE), were used as model compounds. The alkylated peptides obtained after enzymatic hydrolysis of human SA modified with the different PAHDE were principally PAHDE-His-Pro, PAHDE-His-Pro-Tyr and PAHDE-Lys. Alkaline hydrolysis under optimised conditions gave the BPDE-His as the single analyte of alkylated His, but also indicated degradation of this adduct. It was not possible to obtain the BPDE-His as one analyte from BPDE-alkylated SA through modifications of the enzymatic hydrolysis. The BPDE-His adduct was shown to be stable during the weak acidic conditions used in the isolation of SA. Enrichment by HPLC or SPE, but not butanol extraction, gave good recovery, using Protein LoBind tubes. A simple internal standard (IS) approach using SA modified with other PAHDE as IS was shown to be applicable. A robust analytical procedure based on digestion with pronase, enrichment by HPLC or SPE, and analysis with HPLC/MS-MS electrospray ionisation was achieved. A good reproducibility (coefficient of variation (CV) 11 %) was obtained, and the achieved limit of detection for the studied PAHDE, using standard instrumentation, was approximately 1 fmol adduct/mg SA analysing extract from 5 mg SA.

  3. Adducts of mitomycin C and DNA in EMT6 mouse mammary tumor cells: effects of hypoxia and dicumarol on adduct patterns.

    PubMed

    Bizanek, R; Chowdary, D; Arai, H; Kasai, M; Hughes, C S; Sartorelli, A C; Rockwell, S; Tomasz, M

    1993-11-01

    6-CH3-3H-Mitomycin C (MC) was used to identify MC-DNA adducts formed in EMT6 mouse mammary tumor cells. DNA was isolated from cells treated with 3H-MC. The DNA was enzymatically digested, and the digest was analyzed for 3H-labeled adducts by high performance liquid chromatography. All four major adducts previously isolated and characterized in cell-free systems were detected: two different monoadducts and two bisadducts forming DNA-interstrand and DNA-intrastrand cross-links, respectively. No MC-DNA adducts other than the DNA interstrand cross-link had been shown previously to be formed in living cells. A MC-deoxyguanosine adduct of unknown structure was also detected in DNA from EMT6 cells; this adduct was also formed with purified EMT6 DNA. High performance liquid chromatography analysis was further applied to study the relationship between DNA adducts and cytotoxicity. The number of adducts increased with the concentration of MC in both aerobic and hypoxic cells. At a constant drug level, more adducts were observed in cells treated under hypoxic conditions than in cells treated aerobically; at 2 microM MC, 4.8 x 10(-7) and 3.1 x 10(-7) adducts/nucleotide were observed under hypoxic and aerobic conditions, respectively. The increased adduct frequency under hypoxia correlates with the known increased cytotoxicity of MC to EMT6 cells under hypoxic conditions. In addition, a higher ratio of cross-linked adducts to monoadducts was observed in hypoxic cells. The high performance liquid chromatography techniques were also used to examine the effects of dicumarol (DIC) on adduct patterns in cells treated simultaneously with 3H-MC. The MC-DNA adduct frequencies in DIC-treated cells were increased 1.5-fold under hypoxia and decreased 1.6-fold under aerobic conditions from those observed without DIC. This finding correlates with the known DIC-induced increase and decrease in the cytotoxicity of MC in hypoxic and aerobic EMT6 cells, respectively. The monoadduct resulting

  4. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    PubMed Central

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  5. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions.

    PubMed

    Zimmerman, David; Goto, Joy J; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin.

  6. Sustained systemic delivery of green tea polyphenols by polymeric implants significantly diminishes benzo[a]pyrene-induced DNA adducts

    PubMed Central

    Cao, Pengxiao; Vadhanam, Manicka V.; Spencer, Wendy A.; Cai, Jian; Gupta, Ramesh C.

    2011-01-01

    The polyphenolics in green tea are believed to be the bioactive components. However, poor bioavailability following ingestion limits their efficacy in vivo. In this study, polyphenon E (poly E), a standardized green tea extract, was administered by sustained-release polycaprolactone implants (two, 2-cm implants; 20% drug load) grafted subcutaneously or via drinking water (0.8% w/v) to female S/D rats. Animals were treated with continuous low dose of benzo[a]pyrene (BP) via subcutaneous polymeric implants (2 cm; 10% load) and euthanized after 1 and 4 weeks. Analysis of lung DNA by 32P-postlabeling resulted in a statistically significant reduction (50%; p=0.023) of BP-induced DNA adducts in the implant group; however, only a modest (34%) but statistically insignificant reduction occurred in the drinking water group at 1 week. The implant delivery system also showed significant reduction (35%; p=0.044) of the known BP diolepoxide-derived DNA adduct after 4 weeks. Notably, the total dose of poly E administered was >100-fold lower in the implant group than the drinking water group (15.7 versus 1,632 mg, respectively). Analysis of selected phase I, phase II, and nucleotide excision repair enzymes at both mRNA and protein levels showed no significant modulation by poly E, suggesting that the reduction in the BP-induced DNA adducts occurred presumably due to known scavenging of the anti-diolepoxide of BP by the poly E catechins. In conclusion, our study demonstrated that sustained systemic delivery of poly E significantly reduced BP-induced DNA adducts in spite of its poor bioavailability following oral administration. PMID:21574630

  7. Quantitation of ortho-cresyl phosphate adducts to butyrylcholinesterase in human serum by immunomagnetic-UHPLC-MS/MS.

    PubMed

    Johnson, Darryl; Carter, Melissa D; Crow, Brian S; Isenberg, Samantha L; Graham, Leigh Ann; Erol, H Akin; Watson, Caroline M; Pantazides, Brooke G; van der Schans, Marcel J; Langenberg, Jan P; Noort, Daan; Blake, Thomas A; Thomas, Jerry D; Johnson, Rudolph C

    2015-04-01

    Tri-ortho-cresyl phosphate (ToCP) is an anti-wear, flame retardant additive used in industrial lubricants, hydraulic fluids and gasoline. The neurotoxic effects of ToCP arise from the liver-activated metabolite 2-(o-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one (cresyl saligenin phosphate or CBDP), which inhibits esterase enzymes including butyrylcholinesterase (BChE). Following BChE adduction, CBDP undergoes hydrolysis to form the aged adduct ortho-cresyl phosphoserine (oCP-BChE), thus providing a biomarker of CBDP exposure. Previous studies have identified ToCP in aircraft cabin and cockpit air, but assessing human exposure has been hampered by the lack of a laboratory assay to confirm exposure. This work presents the development of an immunomagnetic-UHPLC-MS/MS method for the quantitation of unadducted BChE and the long-term CBDP biomarker, oCP-BChE, in human serum. The method has a reportable range from 2.0 ng/ml to 150 ng/ml, which is consistent with the sensitivity of methods used to detect organophosphorus nerve agent protein adducts. The assay demonstrated high intraday and interday accuracy (≥85%) and precision (RSD ≤ 15%) across the calibration range. The method was developed for future analyses of potential human exposure to CBDP. Analysis of human serum inhibited in vitro with CBDP demonstrated that the oCP-BChE adduct was stable for at least 72 h at 4, 22 and 37 °C. Compared to a previously reported assay, this method requires 75% less sample volume, reduces analysis time by a factor of 20 and demonstrates a threefold improvement in sensitivity. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  8. Sustained systemic delivery of green tea polyphenols by polymeric implants significantly diminishes benzo[a]pyrene-induced DNA adducts.

    PubMed

    Cao, Pengxiao; Vadhanam, Manicka V; Spencer, Wendy A; Cai, Jian; Gupta, Ramesh C

    2011-06-20

    The polyphenolics in green tea are believed to be the bioactive components. However, poor bioavailability following ingestion limits their efficacy in vivo. In this study, polyphenon E (poly E), a standardized green tea extract, was administered by sustained-release polycaprolactone implants (two, 2-cm implants; 20% drug load) grafted subcutaneously or via drinking water (0.8% w/v) to female S/D rats. Animals were treated with continuous low dose of benzo[a]pyrene (BP) via subcutaneous polymeric implants (2 cm; 10% load) and euthanized after 1 and 4 weeks. Analysis of lung DNA by (32)P-postlabeling resulted in a statistically significant reduction (50%; p = 0.023) of BP-induced DNA adducts in the implant group; however, only a modest (34%) but statistically insignificant reduction occurred in the drinking water group at 1 week. The implant delivery system also showed significant reduction (35%; p = 0.044) of the known BP diolepoxide-derived DNA adduct after 4 weeks. Notably, the total dose of poly E administered was >100-fold lower in the implant group than the drinking water group (15.7 versus 1,632 mg, respectively). Analysis of selected phase I, phase II, and nucleotide excision repair enzymes at both mRNA and protein levels showed no significant modulation by poly E, suggesting that the reduction in the BP-induced DNA adducts occurred presumably due to known scavenging of the antidiolepoxide of BP by the poly E catechins. In conclusion, our study demonstrated that sustained systemic delivery of poly E significantly reduced BP-induced DNA adducts in spite of its poor bioavailability following oral administration.

  9. Biocidal properties of metal oxide nanoparticles and their halogen adducts

    NASA Astrophysics Data System (ADS)

    Haggstrom, Johanna A.; Klabunde, Kenneth J.; Marchin, George L.

    2010-03-01

    Nanosized metal oxide halogen adducts possess high surface reactivities due to their unique surface morphologies. These adducts have been used as reactive materials against vegetative cells, such as Escherichia coli as well as bacterial endospores, including Bacillus subtilis and Bacillus anthracis (Δ Sterne strain). Here we report high biocidal activities against gram-positive bacteria, gram-negative bacteria, and endospores. The procedure consists of a membrane method. Transmission electron micrographs are used to compare nanoparticle-treated and untreated cells and spores. It is proposed that the abrasive character of the particles, the oxidative power of the halogens/interhalogens, and the electrostatic attraction between the metal oxides and the biological material are responsible for high biocidal activities. While some activity was demonstrated, bacterial endospores were more resistant to nanoparticle treatment than the vegetative bacteria.

  10. Desalting protein ions in native mass spectrometry using supercharging reagents.

    PubMed

    Cassou, Catherine A; Williams, Evan R

    2014-10-07

    Effects of the supercharging reagents m-NBA and sulfolane on sodium ion adduction to protein ions formed using native mass spectrometry were investigated. There is extensive sodium adduction on protein ions formed by electrospray ionization from aqueous solutions containing millimolar concentrations of NaCl, which can lower sensitivity by distributing the signal of a given charge state over multiple adducted ions and can reduce mass measuring accuracy for large proteins and non-covalent complexes for which individual adducts cannot be resolved. The average number of sodium ions adducted to the most abundant ion formed from ten small (8.6-29 kDa) proteins for which adducts can be resolved is reduced by 58% or 80% on average, respectively, when 1.5% m-NBA or 2.5% sulfolane are added to aqueous solutions containing sodium compared to without the supercharging reagent. Sulfolane is more effective than m-NBA at reducing sodium ion adduction and at preserving non-covalent protein-ligand and protein-protein interactions. Desalting with 2.5% sulfolane enables detection of several glycosylated forms of 79.7 kDa holo-transferrin and NADH bound to the 146 kDa homotetramer LDH, which are otherwise unresolved due to peak broadening from extensive sodium adduction. Although sulfolane is more effective than m-NBA at protein ion desalting, m-NBA reduces salt clusters at high m/z and can increase the signal-to-noise ratios of protein ions by reducing chemical noise. Desalting is likely a result of these supercharging reagents binding sodium ions in solution, thereby reducing the sodium available to adduct to protein ions.

  11. Detection of DNA Adducts in Human Breast Tissues

    DTIC Science & Technology

    1997-07-01

    techniques employed are kept simple, which in turn limits the resolution and characterization. Fourth, the limited resolution can make it difficult to...PROCEDURES Our basic scheme for detecting DNA adducts in human samples consists of three general steps. In step I, standard techniques are used to isolate...this adjustment was done without changing the pH. Buffer A was added to part B to keep the volume the same. The samples were stored at room temperature

  12. 2' and 3' Carboranyl uridines and their diethyl ether adducts

    DOEpatents

    Soloway, Albert H.; Barth, Rolf F.; Anisuzzaman, Abul K.; Alam, Fazlul; Tjarks, Werner

    1992-01-01

    There is disclosed a process for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. Said carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of said compounds in methods for boron neutron capture therapy in mammalian tumor cells.

  13. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    ERIC Educational Resources Information Center

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  14. Enhanced Stability of Blood Matrices Using a Dried Sample Spot Assay to Measure Human Butyrylcholinesterase Activity and Nerve Agent Adducts

    PubMed Central

    Perez, Jonas W.; Pantazides, Brooke G.; Watson, Caroline M.; Thomas, Jerry D.; Blake, Thomas A.; Johnson, Rudolph C.

    2015-01-01

    Dried matrix spots are safer to handle and easier to store than wet blood products, but factors such as intra-spot variability and unknown sample volumes have limited their appeal as a sampling format for quantitative analyses. In this work, we introduce a dried spot activity assay for quantifying butyrylcholinesterase (BChE) specific activity which is BChE activity normalized to the total protein content in a sample spot. The method was demonstrated with blood, serum, and plasma spotted on specimen collection devices (cards) which were extracted to measure total protein and BChE activity using a modified Ellman assay. Activity recovered from dried spots was ∼80% of the initial spotted activity for blood and >90% for plasma and serum. Measuring total protein in the sample and calculating specific activity substantially improved quantification and reduced intra-spot variability. Analyte stability of nerve agent adducts was also evaluated, and the results obtained via BChE-specific activity measurements were confirmed by quantification of BChE adducts using a previously established LC-MS/MS method. The spotted samples were up to 10-times more resistant to degradation compared to unspotted control samples when measuring BChE inhibition by the nerve agents sarin and VX. Using this method, both BChE activity and adducts can be accurately measured from a dried sample spot. This use of a dried sample spot with normalization to total protein is robust, demonstrates decreased intra-spot variability without the need to control for initial sample volume, and enhances analyte stability. PMID:25955132

  15. Thermal stability of DNA adducts induced by cyanomorpholinoadriamycin in vitro.

    PubMed Central

    Cullinane, C; Phillips, D R

    1993-01-01

    The Adriamycin derivative, cyanomorpholinoadriamycin (CMA) was reacted with DNA in vitro to form apparent interstrand crosslinks. The extent of interstrand crosslink formation was monitored by a gel electrophoresis assay and maximal crosslinking of DNA was observed within 1 hr with 5 microM of drug. The interstrand crosslinks were heat labile, with a midpoint melting temperature of 70 degrees C (10 min exposure to heat) in 45% formamide. When CMA-induced adducts were detected as blockages of lambda-exonuclease, 12 blockage sites were observed with 8 being prior to 5'-GG sequences, one prior to 5'-CC, one prior to 5'-GC and 2 at unresolved combinations of these sequences. These exonuclease-detected blockages reveal the same sites of CMA-induced crosslinking as detected by in vitro transcription footprinting and primer-extension blockages on single strand DNA, where the blockages at 5'-GG and 5'-CC were identified as sites of intrastrand crosslinking and the 5'-GC blockage as a probable site of interstrand crosslinking. The thermal stability of both types of crosslink (10 min exposure to heat) ranged from 63-70 degrees C at individual sites. High levels of adduct were detected with poly (dG-dC) but not with poly (dI-dC). These results suggest adduct formation involving an aminal linkage between the 3 position of the morpholino moiety and N2 of guanine. Images PMID:8493102

  16. Structural Characterization of Hydroxyl Radical Adducts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2015-06-01

    The oxidation by the hydroxyl (OH) radical is one of the most widely studied reactions because of its central role in chemistry, biology, organic synthesis, and photocatalysis in aqueous environments, wastewater treatment, and numerous other chemical processes. Although the redox potential of OH is very high, direct electron transfer (ET) is rarely observed. If it happens, it mostly proceeds through the formation of elusive OH adduct intermediate which facilitates ET and formation of hydroxide anion. Using time resolved resonance Raman technique we structurally characterized variety of OH adducts to sulfur containing organic compounds, halide ions as well as some metal cations. The bond between oxygen of OH radical and the atom of oxidized molecule differs depending on the nature of solute that OH radical reacts with. For most of sulfur containing organics, as well as halide and pseudo-halide ions, our observation suggested that this bond has two-center three-electron character. For several metal aqua ions studied, the nature of the bond depends on type of the cation being oxidized. Discussion on spectral parameters of all studied hydroxyl radical adducts as well as the role solvent plays in their stabilization will be presented.

  17. Tunable degradation of maleimide-thiol adducts in reducing environments

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2011-01-01

    Addition chemistries are widely used in preparing biological conjugates, and in particular, maleimide-thiol adducts have been widely employed. Here we show that the resulting succinimide thioether formed by a Michael type addition of a thiol to N-ethylmaleimide (NEM), generally accepted as stable, can in fact undergo retro and exchange reactions in the presence of other thiol compounds at physiological pH and temperature, offering a novel strategy for controlled release. Model studies (1H NMR, HPLC) of NEM conjugated to 4-mercaptophenylacetic acid (MPA), N-acetylcysteine, or 3-mercaptopropionic acid (MP) incubated with glutathione showed half lives of conversion from 20–80 hrs, with extents of conversion from 20–90% for MPA and N-acetylcysteine conjugates. Ring-opened the resultant succinimide thioether as well as any MP adduct did not show retro and exchange reactions. The kinetics of the retro reactions can be modulated by the Michael donor’s reactivity; therefore the degradation of maleimide-thiol adducts could be tuned for controlled release of drugs or degradation of materials at timescales different than those currently possible via disulfide-mediated release. Such approaches may find a new niche for controlled release in reducing environments relevant in chemotherapy and sub-cellular trafficking. PMID:21863904

  18. Effect of phytochemical intervention on dibenzo[a,l]pyrene-induced DNA adduct formation

    PubMed Central

    Russell, Gilandra K.; Gupta, Ramesh C.; Vadhanam, Manicka V.

    2015-01-01

    Dibenzo[a,l]pyrene (DBP) has been found to be the most potent carcinogen of the polycyclic aromatic hydrocarbons (PAHs). Primary sources for DBP in the environment are combustion of wood and coal burning, gasoline and diesel exhaust, and tires. Given the likelihood of environmental exposure to DBP and strong experimental evidence of its potency, it is likely to contribute to lung cancer development. Intervention with compounds of natural origin (“phytochemicals”) is considered an effective means to prevent cancer development and favorably modulate the underlying mechanisms, including DNA adduct formation. In this study, several agents have been identified that inhibit environmental carcinogen-induced DNA adduct formation using a cell-free microsomal system. Of the ten agents tested, resveratrol (648 ± 26 adducts/109 nucleotides), oltipraz (1007 ± 348 adducts/109 nucleotides), delphinidin (1252 ± 142 adducts/109 nucleotides), tanshinone I (1981 ± 213 adducts/109 nucleotides), tanshinone IIA (2606 ± 478 adducts/109 nucleotides) and diindoylmethane (3643 ± 469 adducts/109 nucleotides) were the most effective compared to vehicle treatment (14,062 ± 1097 adducts/109 nucleotides). DBP is metabolized by phase I metabolizing enzymes CYP1A1, CYP1A2, and CYP1B1. DBP-induced DNA adducts can be inhibited by several mechanisms. We found that all the test agents inhibited DNA adducts by inhibiting one or more of these enzymes. Oltipraz inhibited DNA adducts entirely by inhibiting the CYP450s, while resveratrol and delphinidin inhibited DNA adducts by also interacting directly with the carcinogenic metabolite, anti-dibenzo(a,l)pyrene-11,12-dihydrodiol-13,14-epoxide. PMID:25794985

  19. Cytotoxic Action of Carboxyborane Heterocyclic Amine Adducts

    PubMed Central

    Miller, Merrill C.; Sood, Anup; Spielvogel, Bernard F.; Bastow, Ken

    1997-01-01

    The heterocyclic carboxyborane amines were found to be potent cytotoxic agents in the murine L1210 lymphoid leukemia and human HeLa suspended carcinoma cells. These agents were observed to inhibit HeLa DNA topoisomerase II activity ~ 200 μM and L1210 topoisomerase II activity ≥ 100 μM. These agents did not cause DNA protein linked breaks themselves, but upon incubation for 14-24 hr did enhance the ability of VP-16 to cause cleavable complexes. The heterocyclic amineboranes inhibited DNA synthesis and caused DNA strand scission. They were additive with VP-16 in affording these results as well as inhibiting colony growth of L1210 cells after co-incubation for 1 hr. The agents inhibited in vitro PKC phosphorylation of both L1210 lymphoid leukemia and human topoisomerase II enzyme. PMID:18475792

  20. Serological characterization of polycyclic aromatic hydrocarbon diolepoxide-DNA adducts using monoclonal antibodies.

    PubMed

    Newman, M J; Weston, A; Carver, D C; Mann, D L; Harris, C C

    1990-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of structurally related compounds that are present in the environment in complex mixtures as common pollutants. These compounds have been studied extensively because of their carcinogenic and toxic properties to humans. We reported previously that humans exposed to certain PAHs produce antibodies that bind to different PAH diolepoxide-DNA (PAH-DNA) adducts. The ability to detect and measure antibodies to PAH-DNA adducts in human blood samples could prove useful as a biological dosimeter for identifying persons that have been exposed to high levels of PAHs, i.e. persons who may be at high cancer risk. In our initial studies we found that it was common for persons who were exposed to PAH to produce antibodies against PAH-DNA adducts. However, we were unable to identify the actual chemical types of PAH-DNA adducts that were recognized by the serum antibodies because many serum samples contained antibody activity to more than one adduct. These data indicate that different PAH-DNA adducts may be serologically similar or that humans actually produce immune responses against more than a single PAH-DNA adduct. We have used monoclonal antibody technology to determine the extent to which different PAH-DNA adducts share serologically recognized epitopes. Monoclonal antibodies were produced against two different PAH-DNA adducts, benzo[a]pyrene diolepoxide-DNA (BPDE-DNA) and benz[a]anthracene diolepoxide-DNA (BADE-DNA). The binding of these antibodies to five PAH-DNA adduct preparations and to soluble PAHs was assessed. We found that most monoclonal antibodies bound to more than a single type of PAH-DNA adduct, documenting the serological relatedness of different PAH-DNA adducts. However, two monoclonal antibodies were produced that bound only to BPDE-DNA. Soluble non-metabolized PAHs and PAH tetraols were not recognized by these antibodies, thus demonstrating their specificity for PAH-DNA adducts and not the PAHs alone

  1. Hydrolytic Cleavage Products of Globin Adducts in Urine as Possible Biomarkers of Cumulative Dose: Proof of Concept Using Styrene Oxide as a Model Adduct-Forming Compound.

    PubMed

    Mráz, Jaroslav; Hanzlíková, Iveta; Moulisová, Alena; Dušková, Šárka; Hejl, Kamil; Bednářová, Aneta; Dabrowská, Ludmila; Linhart, Igor

    2016-04-18

    A new experimental model was designed to study the fate of globin adducts with styrene 7,8-oxide (SO), a metabolic intermediate of styrene and a model electrophilic compound. Rat erythrocytes were incubated with SO at 7 or 22 °C. Levels of specific amino acid adducts in globin were determined by LC/MS analysis of the globin hydrolysate, and erythrocytes with known adduct content were administered intravenously to recipient rats. The course of adduct elimination from the rat blood was measured over the following 50 days. In the erythrocytes incubated at 22 °C, a rapid decline in the adduct levels on the first day post-transfusion followed by a slow phase of elimination was observed. In contrast, the adduct elimination in erythrocytes incubated at 7 °C was nearly linear, copying elimination of intact erythrocytes. In the urine of recipient rats, regioisomeric SO adducts at cysteine, valine, lysine, and histidine in the form of amino acid adducts and/or their acetylated metabolites as well as SO-dipeptide adducts were identified by LC/MS supported by synthesized reference standards. S-(2-Hydroxy-1-phenylethyl)cysteine and S-(2-hydroxy-2-phenylethyl)cysteine, the most abundant globin adducts, were excreted predominantly in the form of the corresponding urinary mercapturic acids (HPEMAs). Massive elimination of HPEMAs via urine occurred within the first day from the erythrocytes incubated at both 7 and 22 °C. However, erythrocytes incubated at 7 °C also showed a slow second phase of elimination such that HPEMAs were detected in urine up to 50 days post-transfusion. These results indicate for the first time that globin adducts can be cleaved in vivo to modified amino acids and dipeptides. The cleavage products and/or their predictable metabolites are excreted in urine over the whole life span of erythrocytes. Some of the urinary adducts may represent a new type of noninvasive biomarker for exposure to adduct-forming chemicals.

  2. Structure of adducts of isoindolo[2,1-a]benzimidazole derivatives with maleimides

    NASA Astrophysics Data System (ADS)

    Korolev, Oleksandr; Yegorova, Tatyana; Levkov, Igor; Malytskyy, Volodymyr; Shishkin, Oleg; Zubatyuk, Roman; Palamarchuk, Genadiy; Vedrenne, Marc; Baltas, Michel; Voitenko, Zoia

    2015-03-01

    The selectivity of formation and some mechanistic insights during the synthesis of substituted isoindolo[2,1-a]benzimidazoles are discussed. Furthermore, the reactions of the obtained products with maleimides were carried out. Two types rearrangement adducts together with intermediate Michael type adducts were isolated. The influence of the reaction conditions and reagents ratio is discussed. Specific spectral criteria for the identification of the Michael type adducts are indicated.

  3. Detection and quantification of 4-ABP adducts in DNA from bladder cancer patients.

    PubMed

    Zayas, Beatriz; Stillwell, Sara W; Wishnok, John S; Trudel, Laura J; Skipper, Paul; Yu, Mimi C; Tannenbaum, Steven R; Wogan, Gerald N

    2007-02-01

    We analyzed bladder DNA from 27 cancer patients for dG-C8-4-aminobiphenyl (dG-C8-ABP) adducts using the liquid chromatography tandem mass spectrometry method with a 700 attomol (1 adduct in 10(9) bases) detection limit. Hemoglobin (Hb) 4-aminobiphenyl (4-ABP) adduct levels were measured by gas chromatography-mass spectrometry. After isolation of dG-C8-ABP by immunoaffinity chromatography and further purification, deuterated (d9) dG-C8-ABP (MW=443 Da) was added to each sample. Structural evidence and adduct quantification were determined by selected reaction monitoring, based on the expected adduct ion [M+H+]+1, at m/z 435 with fragmentation to the product ion at m/z 319, and monitoring of the transition for the internal standard, m/z 444-->328. The method was validated by analysis of DNA (100 microg each) from calf thymus; livers from ABP-treated and untreated rats; human placentas; and TK6 lymphoblastoid cells. Adduct was detected at femtomol levels in DNA from livers of ABP-treated rats and calf thymus, but not in other controls. The method was applied to 41 DNA samples (200 microg each) from 27 human bladders; 28 from tumor and 14 from surrounding non-tumor tissue. Of 27 tissues analyzed, 44% (12) contained 5-80 dG-C8-ABP adducts per 10(9) bases; only 1 out of 27 (4%) contained adduct in both tumor and surrounding tissues. The Hb adduct was detected in samples from all patients, at levels of 12-1960 pg per gram Hb. There was no correlation between levels of DNA and Hb adducts. The presence of DNA adducts in 44% of the subjects and high levels of Hb adducts in these non-smokers indicate environmental sources of exposure to 4-ABP.

  4. Formation of DNA adducts from oil-derived products analyzed by 32P-HPLC.

    PubMed

    Akkineni, L K; Zeisig, M; Baranczewski, P; Ekström, L G; Möller, L

    2001-01-01

    The aim of this study was to investigate the genotoxic potential of DNA adducts and to compare DNA adduct levels and patterns in petroleum vacuum distillates, coal tar distillate, bitumen fume condensates, and related substances that have a wide range of boiling temperatures. An in vitro assay was used for DNA adduct analysis with human and rat S-9 liver extract metabolic activation followed by 32P-postlabeling and 32P-high-performance liquid chromatography (32p-HPLC). For petroleum distillates originating from one crude oil there was a correlation between in vitro DNA adduct formation and mutagenic index, which showed an increase with a distillation temperature of 250 degrees C and a peak around a distillation point of approximately 400 degrees C. At higher temperatures, the genotoxicity (DNA adducts and mutagenicity) rapidly declined to very low levels. Different petroleum products showed a more than 100-fold range in DNA adduct formation, with severely hydrotreated base oil and bitumen fume condensates being lowest. Coal tar distillates showed ten times higher levels of DNA adduct formation than the most potent petroleum distillate. A clustered DNA adduct pattern was seen over a wide distillation range after metabolic activation with liver extracts of rat or human origin. These clusters were eluted in a region where alkylated aromatic hydrocarbons could be expected. The DNA adduct patterns were similar for base oil and bitumen fume condensates, whereas coal tar distillates had a wider retention time range of the DNA adducts formed. Reference substances were tested in the same in vitro assay. Two- and three-ringed nonalkylated aromatics were rather low in genotoxicity, but some of the three- to four-ringed alkylated aromatics were very potent inducers of DNA adducts. Compounds with an amino functional group showed a 270-fold higher level of DNA adduct formation than the same structures with a nitro functional group. The most potent DNA adduct inducers of the 16

  5. Diallyl sulfide inhibits diethylstilbesterol-induced DNA adducts in the breast of female ACI rats.

    PubMed

    Green, M; Wilson, C; Newell, O; Sadrud-Din, S; Thomas, R

    2005-09-01

    Diethylstilbestrol (DES) is metabolized to reactive intermediates that produce DNA adducts and ultimately cancer. Diallyl sulfide (DAS) has been shown to inhibit the metabolism of several procarcinogens. The ability of DES to produce DNA adducts in microsomal, mitochondrial, and nuclear in vitro metabolic systems and in the breast of female ACI rats, as well as ability of DAS to inhibit DNA adducts were investigated. Microsomes, mitochondria, and nuclei isolated from breast tissue of female ACI rats were used to catalyze oxidation reactions. Female ACI rats were treated i.p. as follows: (1) corn oil, (2) 200mg/kg DES, (3) 200mg/kg DES/200mg/kg of DAS, (4) 200mg/kg DES/400mg/kg DAS. DES produced DNA adducts in each metabolic system. The relative adduct levels were 2.1 x 10(-4), 6.2 x 10(-6), and 2.9 x 10(-7) in microsomal, mitochondrial, and nuclear reactions, respectively. DAS inhibited DNA adducts in each metabolic system. The percent inhibition ranged from 86% in microsomes to 93% in nuclei. DES produced DNA adducts in mtDNA and nDNA. DAS completely inhibited the DES-induced mtDNA adducts and caused a dose dependent decrease in nDNA adduct formation. These findings suggest that DAS could inhibit DES-induced breast cancer by inhibiting its metabolism.

  6. Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements

    PubMed Central

    McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-01-01

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567

  7. Regiochemically controlled synthesis of a β-4-β' [70]fullerene bis-adduct

    DOE PAGES

    Cerón, Maira R.; Castro, Edison; Neti, Venkata S. Pavan K.; ...

    2016-12-22

    A β-4-β' C70 bis-adduct regioisomer and an uncommon mono-adduct β-malonate C70 derivative were synthesized by using a Diels–Alder cycloaddition followed by an addition–elimination of bromo-ethylmalonate and a retro-Diels–Alder cycloaddition reaction. Here, we also report the regioselective synthesis and spectroscopic characterization of Cs-symmetric tris- and C2v-symmetric tetra-adducts of C70, which are the precursors of the mono- and bis-adduct final products.

  8. Regiochemically controlled synthesis of a β-4-β' [70]fullerene bis-adduct

    SciTech Connect

    Cerón, Maira R.; Castro, Edison; Neti, Venkata S. Pavan K.; Dunk, Paul W.; Echegoyen, Luis A.

    2016-12-22

    A β-4-β' C70 bis-adduct regioisomer and an uncommon mono-adduct β-malonate C70 derivative were synthesized by using a Diels–Alder cycloaddition followed by an addition–elimination of bromo-ethylmalonate and a retro-Diels–Alder cycloaddition reaction. Here, we also report the regioselective synthesis and spectroscopic characterization of Cs-symmetric tris- and C2v-symmetric tetra-adducts of C70, which are the precursors of the mono- and bis-adduct final products.

  9. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts

    PubMed Central

    Liu, Shuo; Wang, Yinsheng

    2016-01-01

    Exogenous and endogenous sources of chemical species can react, directly or after metabolic activation, with DNA to yield DNA adducts. If not repaired, DNA adducts may compromise cellular functions by blocking DNA replication and/or inducing mutations. Unambiguous identification of the structures and accurate measurements of the levels of DNA adducts in cellular and tissue DNA constitute the first and important step towards understanding the biological consequences of these adducts. The advances in mass spectrometry (MS) instrumentation in the past 2–3 decades have rendered MS an important tool for structure elucidation, quantification, and revelation of the biological consequences of DNA adducts. In this review, we summarized the development of MS techniques on these fronts for DNA adduct analysis. We placed our emphasis of discussion on sample preparation, the combination of MS with gas chromatography-or liquid chromatography (LC)-based separation techniques for the quantitative measurement of DNA adducts, and the use of LC-MS along with molecular biology tools for understanding the human health consequences of DNA adducts. The applications of mass spectrometry-based DNA adduct analysis for predicting the therapeutic outcome of anti-cancer agents, for monitoring the human exposure to endogenous and environmental genotoxic agents, and for DNA repair studies were also discussed. PMID:26204249

  10. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin

    SciTech Connect

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Bérard, Izabel; and others

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied.

  11. Correlation between Quadriceps Endurance and Adduction Moment in Medial Knee Osteoarthritis

    PubMed Central

    Ahn, Sung-Eun; Park, Min-Ji; Lee, Dae-Hee

    2015-01-01

    It is not clear whether the strength or endurance of thigh muscles (quadriceps and hamstring) is positively or negatively correlated with the adduction moment of osteoarthritic knees. This study therefore assessed the relationships between the strength and endurance of the quadriceps and hamstring muscles and adduction moment in osteoarthritic knees and evaluated predictors of the adduction moment. The study cohort comprised 35 patients with unilateral medial osteoarthritis and varus deformity who were candidates for open wedge osteotomy. The maximal torque (60°/sec) and total work (180°/sec) of the quadriceps and hamstring muscles and knee adduction moment were evaluated using an isokinetic testing device and gait analysis system. The total work of the quadriceps (r = 0.429, P = 0.037) and hamstring (r = 0.426, P = 0.045) muscles at 180°/sec each correlated with knee adduction moment. Preoperative varus deformity was positively correlated with adduction moment (r = 0.421, P = 0.041). Multiple linear regression analysis showed that quadriceps endurance at 180°/sec was the only factor independently associated with adduction moment (β = 0.790, P = 0.032). The adduction moment of osteoarthritic knees correlated with the endurance, but not the strength, of the quadriceps muscle. However, knee adduction moment did not correlate with the strength or endurance of the hamstring muscle. PMID:26539830

  12. Gas phase adduct reactions in MOCVD growth of GaN

    SciTech Connect

    Thon, A.; Kuech, T.F.

    1996-11-01

    Gas phase reactions between trimethylgallium (TMG) and ammonia were studied at high temperatures, characteristic to MOCVD of GaN reactors, by means of in situ mass spectroscopy in a flow tube reactor. It is shown, that a very fast adduct formation followed by elimination of methane occurs. The decomposition of TMG and the adduct-derived compounds are both first order and have similar apparent activation energy. The pre-exponential factor of the adduct decomposition is smaller, and hence is responsible for the higher full decomposition temperature of the adduct relative to that of TMG.

  13. Lipid Peroxidation and Its Toxicological Implications

    PubMed Central

    Nam, Tae-gyu

    2011-01-01

    Lipid peroxidation is a free radical oxidation of polyunsaturated fatty acids such as linoleic acid or arachidonic acid. This process has been related with various pathologies and disease status mainly because of the oxidation products formed during the process. The oxidation products include reactive aldehydes such as malondialdehyde and 4-hydroxynonenal. These reactive aldehydes can form adducts with DNAs and proteins, leading to the alterations in their functions to cause various diseases. This review will provide a short summary on the implication of lipid peroxidation on cancer, atherosclerosis, and neurodegeneration as well as chemical and biochemical mechanisms by which these adducts affect the pathological conditions. In addition, select examples will be presented where antioxidants were used to counteract oxidative damage caused by lipid peroxidation. At the end, isoprostanes are discussed as a gold standard for the assessment of oxidative damages. PMID:24278542

  14. Lipid peroxidation and its toxicological implications.

    PubMed

    Nam, Tae-Gyu

    2011-03-01

    Lipid peroxidation is a free radical oxidation of polyunsaturated fatty acids such as linoleic acid or arachidonic acid. This process has been related with various pathologies and disease status mainly because of the oxidation products formed during the process. The oxidation products include reactive aldehydes such as malondialdehyde and 4-hydroxynonenal. These reactive aldehydes can form adducts with DNAs and proteins, leading to the alterations in their functions to cause various diseases. This review will provide a short summary on the implication of lipid peroxidation on cancer, atherosclerosis, and neurodegeneration as well as chemical and biochemical mechanisms by which these adducts affect the pathological conditions. In addition, select examples will be presented where antioxidants were used to counteract oxidative damage caused by lipid peroxidation. At the end, isoprostanes are discussed as a gold standard for the assessment of oxidative damages.

  15. Mass Spectrometric Characterization of Human Serum Albumin Adducts Formed with N-Oxidized Metabolites of 2-Amino-1-methyl-phenylimidazo[4,5-b]pyridine in Human Plasma and Hepatocytes

    PubMed Central

    Wang, Yi; Peng, Lijuan; Bellamri, Medjda; Langoueët, Sophie; Turesky, Robert J.

    2015-01-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic heterocyclic aromatic amine formed in cooked meats, is metabolically activated to electrophilic intermediates that form covalent adducts with DNA and protein. We previously identified an adduct of PhIP formed at the Cys34 residue of human serum albumin following reaction of albumin with the genotoxic metabolite 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP). The major adducted peptide recovered from a tryptic/chymotryptic digest was identified as the missed-cleavage peptide LQQC*[SO2PhIP]PFEDHVK, a [Cysteine-S-yl-PhIP]-S-dioxide linked adduct. In this investigation, we have characterized the albumin adduction products of N-sulfooxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-sulfooxy-PhIP), which is thought to be a major genotoxic metabolite of PhIP formed in vivo. Targeted and data-dependent scanning methods showed that N-sulfooxy-PhIP adducted to the Cys34 of albumin in human plasma to form LQQC*[SO2PhIP]PFEDHVK at levels that were 8 to 10-fold greater than the adduct levels formed with N-(acetyloxy)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-acetoxy-PhIP) or HONH-PhIP. We also discovered that N-sulfooxy-PhIP forms an adduct at the sole tryptophan (Trp214) residue of albumin in the sequence AW*[PhIP]AVAR. However, stable adducts of PhIP with albumin were not detected in human hepatocytes. Instead, PhIP and 2-amino-1-methyl-6-(5-hydroxy)-phenylimidazo[4,5-b]pyridine (5-HO-PhIP), a solvolysis product of the proposed nitrenium ion of PhIP, were recovered during the proteolysis, suggesting a labile sulfenamide linkage had formed between an N-oxidized intermediate of PhIP and Cys34 of albumin. A stable adduct was formed at the Tyr411 residue of albumin in hepatocytes, and identified as a deaminated product of PhIP, Y*[desaminoPhIP]TK, where the 4-HO-tyrosine group bound to the C-2 imidazole atom of PhIP. PMID:25815793

  16. Formation and persistence of arylamine DNA adducts in vivo.

    PubMed Central

    Beland, F A; Kadlubar, F F

    1985-01-01

    Aromatic amines are urinary bladder carcinogens in man and induce tumors at a number of sites in experimental animals including the liver, mammary gland, intestine, and bladder. In this review, the particular pathways involved in the metabolic activation of aromatic amines are considered as well as the specific DNA adducts formed in target and nontarget tissue. Particular emphasis is placed on the following compounds: 1-naphthylamine, 2-naphthylamine, 4-aminobiphenyl, 4-acetylaminobiphenyl, 4-acetylamino-4'-fluorobiphenyl, 3,2'-dimethyl-4-aminobiphenyl, 2-acetylaminofluorene, benzidine, N-methyl-4-aminoazobenzene, 4-aminoazobenzene, and 2-acetylaminophenanthrene. PMID:4085422

  17. Adducts of rare-earth pivaloyltrifluoroacetonates with macrocyclic polyethers

    SciTech Connect

    Martynova, T.N.; Korchkov, V.P.; Nikulina, L.D.

    1986-07-01

    Adducts of lanthanide tris(pivaloyltrifluoroacetonates) with crown ethers having the formulas Ln(PTA)/sub 3/ x 18-crown-6 (Ln = La, Nd, Tb, Er, Lu) and Ln(PTA)/sub 3/ x dibenzo-18-crown-6 (Ln = Nd, Tb, Er) have been synthesized. The compounds obtained have been studied by the methods of elemental analysis, UV and IR spectroscopy, PMR, and mass spectroscopy. On the basis of the physicochemical properties and the spectra studied it has been concluded that the lanthanide tris(..beta..-diketonates) interact with the crown ethers.

  18. Acute adduction deficit in a 7-week-old infant.

    PubMed

    Jain, Sunila; Goulstine, David; Gottlob, Irene

    2002-12-01

    A 7-week-old infant with sudden onset adduction deficit and proptosis is reported. The main differential diagnoses included orbital myositis, orbital cellulitis, capillary haemangioma and rhabdomyosarcoma. A CT scan revealed a postseptal cellulitis-like picture with thickening of the medial rectus muscle. He was given a course of antibiotics, withholding steroids and biopsy. His condition resolved completely on high-dose antibiotics alone. To our knowledge this is the youngest patient with infectious orbital myositis and postseptal cellulitis described in the literature. The clinical course emphasizes the importance of administering sufficiently high doses of antibiotics.

  19. Specific function of the Met-Tyr-Trp adduct radical and residues Arg-418 and Asp-137 in the atypical catalase reaction of catalase-peroxidase KatG.

    PubMed

    Zhao, Xiangbo; Khajo, Abdelahad; Jarrett, Sanchez; Suarez, Javier; Levitsky, Yan; Burger, Richard M; Jarzecki, Andrzej A; Magliozzo, Richard S

    2012-10-26

    Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H(2)O(2), the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H(2)O(2) consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction.

  20. Presence of hypochlorite-modified proteins in human atherosclerotic lesions.

    PubMed Central

    Hazell, L J; Arnold, L; Flowers, D; Waeg, G; Malle, E; Stocker, R

    1996-01-01

    Oxidation of LDL may contribute to atherogenesis, though the nature of the in vivo oxidant(s) remains obscure. Myeloperoxidase, the enzyme responsible for hypochlorous acid/hypochlorite (HOCl) production in vivo, is present in active form in human atherosclerotic lesions, and HOCl aggregates and transforms LDL into a high-uptake form for macrophages in vitro. Here we demonstrate HOCl-modified proteins in human lesions using an mAb raised against HOCl-modified LDL that recognizes HOCl-oxidized proteins but does not cross-react with Cu2+-, malondialdehyde-, or 4-hydroxynonenal-modified LDL. This antibody detected significantly more material in advanced atherosclerotic lesions than normal arteries, even though azide and methionine were included during sample work-up to inhibit myeloperoxidase and to scavenge HOCl. The epitope(s) recognized was predominantly cell associated and present in monocyte/macrophages, smooth muscle, and endothelial cells. The intima and cholesterol clefts stained more heavily than the center of the thickened vessels; adventitial staining was apparent in some cases. Immunostaining was also detected in a very early lesion from an accident victim, beside healthy areas that were unreactive. LDL oxidized by HOCl in vitro, but not native LDL, effectively competed with the epitopes in lesions for antibody binding. Density centrifugation of plaque homogenates and Western blot analysis showed that, in the apo B-containing lipoprotein fraction, the mAb recognized protein(s) of molecular mass greater than apo B, similar to those produced during oxidation of LDL with HOCl in vitro. Three major proteins were recognized by the anti-HOCl-modified protein antibody but not by an anti-apo B antibody in the apo B-free fraction. Together, these results demonstrate HOCl-oxidized proteins in human atherosclerotic lesions, implicating this oxidant in LDL modification in vivo. PMID:8617887

  1. Bulky DNA adducts in white blood cells: a pooled analysis of 3600 subjects

    PubMed Central

    Ricceri, Fulvio; Godschalk, Roger; Peluso, Marco; Phillips, David H.; Agudo, Antonio; Georgiadis, Panos; Loft, Steffen; Tjonneland, Anne; Raaschou-Nielsen, Ole; Palli, Domenico; Perera, Frederica; Vermeulen, Roel; Taioli, Emanuela; Sram, Radim J.; Munnia, Armelle; Rosa, Fabio; Allione, Alessandra; Matullo, Giuseppe; Vineis, Paolo

    2013-01-01

    Background Bulky DNA adducts are markers of exposure to genotoxic aromatic compounds, which reflect an individual’s ability to metabolically activate carcinogens and to repair DNA damage. Polycyclic aromatic hydrocarbons (PAH) represent a major class of carcinogens that are capable of forming such adducts. Factors that have been reported to be related to DNA adduct levels include smoking, diet, body mass index (BMI), genetic polymorphisms, the season of collection of biologic material, and air pollutants. Methods We pooled eleven studies (3,600 subjects) in which bulky DNA adducts were measured in human white blood cells with similar 32P-postlabelling techniques and for which a similar set of variables was available, including individual data on age, gender, ethnicity, batch, smoking habits, BMI, season of blood collection and a limited set of gene variants. Results Lowest DNA adduct levels were observed in the spring (median 0.50 adducts per 108 nucleotides), followed by summer (0.64), autumn (0.70) and winter (0.85) (p=0.006). The same pattern emerged in multivariate analysis, but only among never smokers (p=0.02). Adduct levels were significantly lower (p=0.001) in Northern Europe (the Netherlands, Denmark) (mean 0.60, median 0.40) than in Southern Europe (Italy, Spain, France, Greece) (mean 0.79, median 0.60). Conclusions In this large pooled analysis, we have found only weak associations between bulky DNA adducts and exposure variables. Seasonality (with higher adducts levels in winter) and air pollution may partly explain some of the inter-area differences (North vs South Europe), but most inter-area and inter-individual variation in adduct levels still remain unexplained. Impact Our study describes the largest pooled analysis of bulky DNA adducts so far, showing that inter-individual variation is still largely unexplained, though seasonality appears to play a role. PMID:20921335

  2. Formation and persistence of benzo(a)pyrene metabolite-DNA adducts.

    PubMed Central

    Stowers, S J; Anderson, M W

    1985-01-01

    Benzo(a)pyrene (BP) and other polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and are suspected to be carcinogenic in man. The in vivo formation of BP metabolite-DNA adducts has been characterized in a variety of target and nontarget tissues of mice and rabbits. Tissues included were lung, liver, forestomach, colon, kidney, muscle, and brain. The major adduct identified in each tissue was the (+)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDEI)-deoxyguanosine adduct. A 7 beta, 8 alpha-dihydroxy-9 beta,10 beta-epoxy-7,8,9,10-tetrahydro-BP (BPDEII)-deoxyguanosine adduct, a (-)-BPDEI-deoxyguanosine adduct, and an unidentified adduct were also observed. The adduct levels are unexpectedly similar in all the tissues examined from the same BP-treated animal. For example, the BPDEI-DNA adduct levels in muscle and brain of mice were approximately 50% of those in lung and liver at each oral BP dose used. We have also examined adduct levels formed in vivo in several cell types of lung and liver. Macrophages, type II cells, and Clara cells from lung and hepatocytes and nonpparenchymal cells from liver were isolated from BP-treated rabbits. BPDEI-deoxyguanosine adduct was observed in each cell type and, moreover, the levels were similar in various cell types. These and previous results strongly suggest that DNA in many human tissues is continuously damaged from known exposure of humans to BP and other PAH. Moreover, DNA adducts formed from BP are persistent in lung and brain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4085435

  3. Depurinating acylfulvene-DNA adducts: characterizing cellular chemical reactions of a selective antitumor agent.

    PubMed

    Gong, Jiachang; Vaidyanathan, V G; Yu, Xiang; Kensler, Thomas W; Peterson, Lisa A; Sturla, Shana J

    2007-02-21

    Acylfulvenes (AFs) are a class of semisynthetic agents with high toxicity toward certain tumor cells, and for one analogue, hydroxymethylacylfulvene (HMAF), clinical trials are in progress. DNA alkylation by AFs, mediated by bioreductive activation, is believed to contribute to cytotoxicity, but the structures and chemical properties of corresponding DNA adducts are unknown. This study provides the first structural characterization of AF-specific DNA adducts. In the presence of a reductive enzyme, alkenal/one oxidoreductase (AOR), AF selectively alkylates dAdo and dGuo in reactions with a monomeric nucleoside, as well as in reactions with naked or cellular DNA, with 3-alkyl-dAdo as the apparently most abundant AF-DNA adduct. Characterization of this adduct was facilitated by independent chemical synthesis of the corresponding 3-alkyl-Ade adduct. In addition, in naked or cellular DNA, evidence was obtained for the formation of an additional type of adduct resulting from direct conjugate addition of Ade to AF followed by hydrolytic cyclopropane ring-opening, indicating the potential for a competing reaction pathway involving direct DNA alkylation. The major AF-dAdo and AF-dGuo adducts are unstable under physiologically relevant conditions and depurinate to release an alkylated nucleobase in a process that has a half-life of 8.5 h for 3-alkyladenine and less than approximately 2 h for dGuo adducts. DNA alkylation further leads to single-stranded DNA cleavage, occurring exclusively at dGuo and dAdo sites, in a nonsequence-specific manner. In AF-treated cells that were transfected with either AOR or control vectors, the DNA adducts identified match those from in vitro studies. Moreover, a positive correlation was observed between DNA adduct levels and cell sensitivity to AF. The potential contributing roles of AOR-mediated bioactivation and adduct stability to the cytotoxicity of AF are discussed.

  4. 32P-postlabeling analysis of adducts formed between DNA and safrole 2',3'-epoxide: absence of adduct formation in vivo.

    PubMed

    Qato, M K; Guenthner, T M

    1995-01-01

    We have used the 32P-postlabeling technique to examine the binding of safrole 2',3'-oxide to DNA. At least 8 covalent adducts are formed when calf thymus DNA is incubated with this oxygenated metabolite of safrole in vitro. However, no corresponding adducts are formed with liver DNA when whole animals are exposed to safrole 2',3'-oxide, or safrole itself. Although safrole 2',3'-oxide is readily formed in vivo, and is sufficiently reactive to covalently bind to DNA, it is probably not a factor in the in vivo genotoxicity of safrole. We also demonstrate that adducts with similar mobility to the major safrole 2',3'-oxide-DNA adduct are formed in vitro between safrole 2',3'-oxide and deoxyguanosine, and also between its chemical analogs allylbenzene 2',3'-oxide or estragole 2',3'-oxide and DNA.

  5. Turned head--adducted hip--truncal curvature syndrome.

    PubMed Central

    Hamanishi, C; Tanaka, S

    1994-01-01

    One hundred and eight neonates and infants who showed the clinical triad of a head turned to one side, adduction contracture of the hip joint on the occipital side of the turned head, and truncal curvature, which we named TAC syndrome, were studied. These cases included seven with congenital and five with late infantile dislocations of the hip joint and 14 who developed muscular torticollis. Forty one were among 7103 neonates examined by one of the authors. An epidemiological analysis confirmed the aetiology of the syndrome to be environmental. The side to which the head was turned and that of the adducted hip contracture showed a high correlation with the side of the maternal spine on which the fetus had been lying. TAC syndrome is an important asymmetrical deformity that should be kept in mind during neonatal examination, and may be aetiologically related to the unilateral dislocation of the hip joint, torticollis, and infantile scoliosis which develop after a vertex presentation. Images PMID:8048823

  6. Nonstoichiometric Adduct Approach for High-Efficiency Perovskite Solar Cells.

    PubMed

    Park, Nam-Gyu

    2017-01-03

    Since the groundbreaking report on a solid-state perovskite solar cell employing a methylammonium lead iodide-sensitized mesoporous TiO2 film and an organic hole conducting layer in 2012 by our group, the swift surge of perovskite photovoltaics opens a new paradigm in solar-cell research. As a result, ca. 1300 peer-reviewed research articles were published in 2015. In this Inorganic Chemistry Forum on Halide Perovskite, the researches with highlights of work on perovskite solar cells in my laboratory are reviewed. We have developed a size-controllable two-step spin-coating method and found that minimal nonradiative recombination in perovskite crystals could lead to high photovoltaic performance. A Lewis acid based adduct method and self-formed grain boundary process were developed for high-efficiency devices with reproducibility. A power conversion efficiency of 20.4% was achieved via grain boundary engineering based on a nonstoichiometric adduct approach. The incorporation of cesium in a formamidinium lead iodide perovskite was found to show better photostability and moisture-stability. A reduction in the dimensionality from a three-dimensitonal nanocrystal to a one-dimensional nanowire led to a hypsochromic shift of absorption and fluorescence. To enhance the charge-carrier transport and light-harvesting efficiency, a nanoarchitecture of oxide layers was proposed.

  7. Effect of histone acetylation on the formation and removal of B(a)P chromatin adducts.

    PubMed Central

    Kootstra, A

    1982-01-01

    The modification of core histone proteins in mouse 10T1/2 cells and human lung epitheloid (A549) cells by B(a)PDE in vivo and in vitro was found to be similar. Only histones H2A and H3 were extensively modified. Also other proteins, possibly A24 protein and the minor histone H1 species seem to be binding relatively high levels of this ultimate carcinogen. Butyrate treatment which causes hyperacetylation of the core histones, did not change the specificity of B(a)PDE binding to core histones, nor did it affect the initial level of DNA modification. The acetylated species of histone H3 were all accessible to B(a)PDE, suggesting that these epsilon-amino-groups of the lysine residues are not the targets of the B(a)PDE. The rate of removal of B(a)P-DNA adducts was not affected by butyrate treatment in either normal human or XP fibroblasts. Furthermore the B(a)P-core histones were not preferentially removed from normal human fibroblast chromatin during a 24 h post-treatment incubation. Images PMID:6285308

  8. Detection, characterization, and decay kinetics of ROS and thiyl adducts of mito-DEPMPO spin trap.

    PubMed

    Hardy, Micaël; Rockenbauer, Antal; Vásquez-Vivar, Jeannette; Felix, Christopher; Lopez, Marcos; Srinivasan, Satish; Avadhani, Narayan; Tordo, Paul; Kalyanaraman, B

    2007-07-01

    We report here the detection and characterization of spin adducts formed from the trapping of reactive oxygen species (superoxide and hydroxyl radicals) and glutathiyl and carbon-centered radicals by a newly synthesized nitrone, Mito-DEPMPO. This is a cationic nitrone spin trap with a triphenyl phosphonium cation conjugated to the DEPMPO analogue. The Mito-DEPMPO-OOH adduct, formed from the trapping of superoxide by Mito-DEPMPO, was enzymatically generated using xanthine/xanthine oxidase and neuronal nitric oxide synthase, and chemically generated by KO2 in 18-crown-6. The Mito-DEPMPO-OOH adduct exhibits an eight-line EPR spectrum with partial asymmetry arising from the alternate line-width effect. The half-life of the Mito-DEPMPO-OOH adduct is 2-2.5-times greater than that of the DEPMPO-OOH. The Mito-DEPMPO-SG adduct, formed from the trapping of glutathiyl radicals by Mito-DEPMPO, is 3-times more persistent than the analogue DEPMPO-SG adduct. In this study, we describe the EPR characterization of spin adducts formed from Mito-DEPMPO. The EPR parameters of Mito-DEPMPO adducts are distinctly different and highly characteristic. The detection of superoxide from an intact mitochondrion was feasible with Mito-DEPMPO but not with DEPMPO. We conclude that Mito-DEPMPO nitrone and its analogues are more effective than most nitrone spin traps for trapping superoxide, hydroxyl, and thiyl radicals formed in biological systems, including mitochondria.

  9. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  10. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  11. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  12. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  13. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  14. Photolytic Cross-Linking to Probe Protein-Protein and Protein-Matrix Interactions in Lyophilized Powders.

    PubMed

    Iyer, Lavanya K; Moorthy, Balakrishnan S; Topp, Elizabeth M

    2015-09-08

    Protein structure and local environment in lyophilized formulations were probed using high-resolution solid-state photolytic cross-linking with mass spectrometric analysis (ssPC-MS). In order to characterize structure and microenvironment, protein-protein, protein-excipient, and protein-water interactions in lyophilized powders were identified. Myoglobin (Mb) was derivatized in solution with the heterobifunctional probe succinimidyl 4,4'-azipentanoate (SDA) and the structural integrity of the labeled protein (Mb-SDA) confirmed using CD spectroscopy and liquid chromatography/mass spectrometry (LC-MS). Mb-SDA was then formulated with and without excipients (raffinose, guanidine hydrochloride (Gdn HCl)) and lyophilized. The freeze-dried powder was irradiated with ultraviolet light at 365 nm for 30 min to produce cross-linked adducts that were analyzed at the intact protein level and after trypsin digestion. SDA-labeling produced Mb carrying up to five labels, as detected by LC-MS. Following lyophilization and irradiation, cross-linked peptide-peptide, peptide-water, and peptide-raffinose adducts were detected. The exposure of Mb side chains to the matrix was quantified based on the number of different peptide-peptide, peptide-water, and peptide-excipient adducts detected. In the absence of excipients, peptide-peptide adducts involving the CD, DE, and EF loops and helix H were common. In the raffinose formulation, peptide-peptide adducts were more distributed throughout the molecule. The Gdn HCl formulation showed more protein-protein and protein-water adducts than the other formulations, consistent with protein unfolding and increased matrix interactions. The results demonstrate that ssPC-MS can be used to distinguish excipient effects and characterize the local protein environment in lyophilized formulations with high resolution.

  15. Mass Spectrometry-Based Quantitative Strategies for Assessing the Biological Consequences and Repair of DNA Adducts.

    PubMed

    You, Changjun; Wang, Yinsheng

    2016-02-16

    The genetic integrity of living organisms is constantly threatened by environmental and endogenous sources of DNA damaging agents that can induce a plethora of chemically modified DNA lesions. Unrepaired DNA lesions may elicit cytotoxic and mutagenic effects and contribute to the development of human diseases including cancer and neurodegeneration. Understanding the deleterious outcomes of DNA damage necessitates the investigation about the effects of DNA adducts on the efficiency and fidelity of DNA replication and transcription. Conventional methods for measuring lesion-induced replicative or transcriptional alterations often require time-consuming colony screening and DNA sequencing procedures. Recently, a series of mass spectrometry (MS)-based strategies have been developed in our laboratory as an efficient platform for qualitative and quantitative analyses of the changes in genetic information induced by DNA adducts during DNA replication and transcription. During the past few years, we have successfully used these MS-based methods for assessing the replicative or transcriptional blocking and miscoding properties of more than 30 distinct DNA adducts. When combined with genetic manipulation, these methods have also been successfully employed for revealing the roles of various DNA repair proteins or translesion synthesis DNA polymerases (Pols) in modulating the adverse effects of DNA lesions on transcription or replication in mammalian and bacterial cells. For instance, we found that Escherichia coli Pol IV and its mammalian ortholog (i.e., Pol κ) are required for error-free bypass of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) in cells. We also found that the N(2)-CEdG lesions strongly inhibit DNA transcription and they are repaired by transcription-coupled nucleotide excision repair in mammalian cells. In this Account, we focus on the development of MS-based approaches for determining the effects of DNA adducts on DNA replication and transcription

  16. Metabolic activation of the antibacterial agent triclocarban by cytochrome P450 1A1 yielding glutathione adducts.

    PubMed

    Schebb, Nils Helge; Muvvala, Jaya B; Morin, Dexter; Buckpitt, Alan R; Hammock, Bruce D; Rice, Robert H

    2014-07-01

    Triclocarban (3,4,4'-trichlorocarbanilide; TCC) is an antibacterial agent used in personal care products such as bar soaps. Small amounts of chemical are absorbed through the epidermis. Recent studies show that residues of reactive TCC metabolites are bound covalently to proteins in incubations with keratinocytes, raising concerns about the potential toxicity of this antimicrobial agent. To obtain additional information on metabolic activation of TCC, this study characterized the reactive metabolites trapped as glutathione conjugates. Incubations were carried out with (14)C-labeled TCC, recombinant CYP1A1 or CYP1B1, coexpressed with cytochrome P450 reductase, glutathione-S-transferases (GSH), and an NADPH-generating system. Incubations containing CYP1A1, but not 1B1, led to formation of a single TCC-GSH adduct with a conversion rate of 1% of parent compound in 2 hours. Using high-resolution mass spectrometry and diagnostic fragmentation, the adduct was tentatively identified as 3,4-dichloro-3'-glutathionyl-4'-hydroxycarbanilide. These findings support the hypothesis that TCC is activated by oxidative dehalogenation and oxidation to a quinone imine. Incubations of TCDD-induced keratinocytes with (14)C-TCC yielded a minor radioactive peak coeluting with TCC-GSH. Thus, we conclude that covalent protein modification by TCC in TCDD-induced human keratinocyte incubations is mainly caused by activation of TCC by CYP1A1 via a dehalogenated TCC derivative as reactive species.

  17. Liquid chromatography-thermospray mass spectrometry of DNA adducts formed with mitomycin C, porfiromycin and thiotepa.

    PubMed

    Musser, S M; Pan, S S; Callery, P S

    1989-07-14

    High-performance liquid chromatography (HPLC) and thermospray mass spectrometry were combined for the analysis of DNA adducts formed from the interaction of the anticancer drugs mitomycin C, porfiromycin and thiotepa with calf thymus DNA. The adducts formed from reaction of mitomycin C and porfiromycin with DNA were separated from unmodified nucleosides by HPLC on a C18 column and identified by thermospray mass spectrometry. Thiotepa DNA adducts readily depurinated from DNA and were chromatographed and identified by thermospray liquid chromatography-mass spectrometry as the modified bases without the ribose moiety attached. The utility of thermospray mass spectrometry for the identification of microgram quantities of nucleoside adducts and depurinated base adducts of these anticancer drugs was demonstrated.

  18. DNA adducts in marine mussel and fresh water fishes living in polluted and unpolluted environments

    SciTech Connect

    Kurelec, B.; Checko, M.; Krca, S.; Garg, A.; Gupta, R.C. Baylor College of Medicine, Houston, TX )

    1988-09-01

    {sup 32}P-postlabeling analysis of DNA adducts in the digestive gland of marine mussel Mytilus galloprovincialis from polluted and unpolluted sites near Rovinj, Northern Adriatic, revealed that majority of adducts are caused by natural environmental factors rather than by man-made chemicals. The only pollutant-specific adducts were observed in a mussel exposed to seawater experimentally polluted with aminofluorene, and in a population of mussel living at a site heavily polluted with a waste waters of an oil refinery. Fresh water fish species Leuciscus cephalus, Barbus barbus, Abramis brama and Rutilus pigus virgo living in a polluted Sava River, Yugoslavia, or in its unpolluted tributary Korana River, have induced in their livers qualitatively identical and quantitatively similar DNA adducts. These DNA adducts had a species-specific patterns and their appearance was seasonally-dependent.

  19. Accurate characterization of carcinogenic DNA adducts using MALDI tandem time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Charles A.; Chiu, Norman H. L.

    2009-01-01

    Many chemical carcinogens and their in vivo activated metabolites react readily with genomic DNA, and form covalently bound carcinogen-DNA adducts. Clinically, carcinogen-DNA adducts have been linked to various cancer diseases. Among the current methods for DNA adduct analysis, mass spectroscopic method allows the direct measurement of unlabeled DNA adducts. The goal of this study is to explore the use of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to determine the identity of carcinogen-DNA adducts. Two of the known carcinogenic DNA adducts, namely N-(2'-deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenyl-imidazo [4,5-b] pyridine (dG-C8-PhIP) and N-(2'-deoxyguanosin-8yl)-4-aminobiphenyl (dG-C8-ABP), were selected as our models. In MALDI-TOF MS measurements, the small matrix ion and its cluster ions did not interfere with the measurements of both selected dG adducts. To achieve a higher accuracy for the characterization of selected dG adducts, 1 keV collision energy in MALDI-TOF/TOF MS/MS was used to measure the adducts. In comparison to other MS/MS techniques with lower collision energies, more extensive precursor ion dissociations were observed. The detection of the corresponding fragment ions allowed the identities of guanine, PhIP or ABP, and the position of adduction to be confirmed. Some of the fragment ions of dG-C8-PhIP have not been reported by other MS/MS techniques.

  20. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G2 or G3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N2-dG.

  1. Analysis of serum PAH`s and PAH adducts by LC/MS

    SciTech Connect

    McClure, P.C.; Barr, J.R.; Maggio, V.L.

    1995-12-31

    Polycyclic aromatic hydrocarbons are an important class of chemical carcinogens. Benzo[a]pyrene is the most extensively studied and best understood carcinogenic PAH It is believed that Benzo[a]pyrene is metabolized in vitro to the diol epoxide, Benzo[a]pyrene-7,8-dihydrodiol-9, 10-epoxide which then can react with various nucleophilic centers on DNA. The major alkylation product appears to be the reaction of the Benzo[a]pyrene diol epoxide with the N{sup 2} position of guanine sites on DNA. Methods that can measure exposure and biological response to carcinogens such as PAH`s are needed. Human Blood can be separated into plasma, lymphocytes, and red blood cells. The plasma should contain native PAH`s which may yield some useful information about recent exposure. The red blood cells contain hemoglobin and adducts of PAH`s. Hemoglobin has an average lifetime of 120 days so quantification of hemoglobin adducts should give an average of a persons exposure over four months. Also, the electrophilic metabolites that react with hemoglobin to form adducts are the same metabolites that form DNA adducts which can lead to mutations and cancer. Lymphocytes contain DNA and therefore DNA adducts. DNA adducts can be repaired by a series of enzymes so quantification of these adducts will only yield information about recent or non-repairable adducts. DNA adduct formation is believed to be the first important step in chemical carcinogenesis so quantification of these adducts should yield some information on exposure and a great deal of important data on biological response and risk from specific PAH`s.

  2. Recoveries of DNA adducts of polycyclic aromatic hydrocarbons in the 32P-postlabelling assay.

    PubMed

    Segerbäck, D; Vodicka, P

    1993-12-01

    The 32P-postlabelling assay for analysis of DNA adducts of chemical carcinogens has been applied in a large number of experimental animal and human studies. Most human studies have dealt with occupational and environmental exposures to polycyclic aromatic hydrocarbons (PAHs). The postlabelling assay does not allow direct chemical identification, and most studies with this method have not been performed in a quantitative way. Very little is therefore known about the identity and absolute levels of adducts, which are important contributors to the process of risk identification and quantitation. In the present study it was, therefore, decided to test some parameters suspected to affect recoveries of adducts in the phosphorylation step of the assay. For this purpose 12 different PAHs were reacted individually and in a mixture with DNA in the presence of a rat liver S9 metabolizing system. Different concentrations of ATP, calcium chloride and polynucleotide kinase were tested using the nuclease P1 enhancement. We found that each factor contributed to adduct recovery and that optimal conditions could be defined. Diluting the modified DNA samples up to 1000 times had little influence on the recoveries of adducts. Comparing the nuclease P1 and the butanol extraction procedures for adduct purification showed that both methods gave similar patterns and levels of major adducts. The absolute recoveries in postlabelling, based on 3H-binding of radiolabelled compounds, were for most of the tested compounds relatively low. The fact that the nuclease P1 and the butanol extraction procedures gave similar recoveries points towards common factor(s) involved in the reduction of the recovered adduct levels. Based on the observed recoveries the conclusion can be drawn that when postlabelling related adducts in human samples the true total adduct levels can be considerably underestimated, even if optimal conditions are used.

  3. ON BENZO[A]PYRENE DERIVED DNA ADDUCTS FORMED IN LUNG TISSUE OF MICE

    EPA Science Inventory

    On Benzo [a] pyrene Derived DNA Adducts Formed in Lung Tissue of Mice
    The previously identified major DNA adducts of benzo[a]pyrene (BP) in vitro and in vivo are the stable and unstable adducts formed by reaction of the bay-region diol epoxide of BP (BPDE) and BP radical catio...

  4. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  5. Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism.

    PubMed

    Miki, Yuta; Pogni, Rebecca; Acebes, Sandra; Lucas, Fátima; Fernández-Fueyo, Elena; Baratto, Maria Camilla; Fernández, María I; de los Ríos, Vivian; Ruiz-Dueñas, Francisco J; Sinicropi, Adalgisa; Basosi, Riccardo; Hammel, Kenneth E; Guallar, Victor; Martínez, Angel T

    2013-06-15

    LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2 and VA) lacked this lag, and H2O2-LiP (H2O2-treated LiP) was inactive. MS analyses revealed that VA-LiP includes one VA molecule covalently bound to the side chain of Tyr181, whereas H2O2-LiP contains a hydroxylated Tyr181. No adduct is formed in the Y171N variant. Molecular docking showed that VA binding is favoured by sandwich π stacking with Tyr181 and Phe89. EPR spectroscopy after peroxide activation of the pre-treated LiPs showed protein radicals other than the tyrosine radical found in pristine LiP, which were assigned to a tyrosine-VA adduct radical in VA-LiP and a dihydroxyphenyalanine radical in H2O2-LiP. Both radicals are able to oxidize large low-redox-potential substrates, but H2O2-LiP is unable to oxidize high-redox-potential substrates. Transient-state kinetics showed that the tyrosine-VA adduct strongly promotes (>100-fold) substrate oxidation by compound II, the rate-limiting step in catalysis. The novel activation mechanism is involved in ligninolysis, as demonstrated using lignin model substrates. The present paper is the first report on autocatalytic modification, resulting in functional alteration, among class II peroxidases.

  6. The application of multiple analyte adduct formation in the LC-MS(3) analysis of valproic acid in human serum.

    PubMed

    Dziadosz, Marek

    2017-01-01

    LC-MS using electrospray ionisation (negative ion mode) and low-energy collision-induced dissociation tandem mass spectrometric (CID-MS/MS) analysis, together with the multiple analyte adduct formation with the components of the mobile phase, were applied to analyse valproic acid in human serum with LC-MS(3). The CID-fragmentation of the precursor analyte adduct [M+2CH3COONa-H](-) was applied in the method validation (307.1/225.1/143.0). Chromatographic separation was performed with a Luna 5μm C18 (2) 100A, 150mm×2mm column and the elution with a mobile phase consisting of A (H2O/methanol=95/5, v/v) and B (H2O/methanol=3/97, v/v), both with 10mM ammonium acetate and 0.1% acetic acid. A binary flow pumping mode with a total flow rate of 0.400mL/min was used. The calculated limit of detection/quantification of the method calibrated in the range of 10-200μg/mL was 0.31/1.0μg/mL. The sample preparation based on protein precipitation with 1mL of H2O/methanol solution (3/97, v/v) with 10mM sodium acetate and 100mM acetic acid. On the basis of the experiments performed could be demonstrated, that multiple analyte adduct formation can be applied to generate MS(3) quantitation of analytes with problematic fragmentation. The presented new strategy makes the analysis of small drugs, which do not produce any stable product ions at all, on the basis of LC-MS(3) possible.

  7. Tamoxifen Forms DNA Adducts In Human Colon After Administration Of A Single [14C]-Labeled Therapeutic Dose.

    SciTech Connect

    Brown, K; Tompkins, E M; Boocock, D J; Martin, E A; Farmer, P B; Turteltaub, K W; Ubick, E; Hemingway, D; Horner-Glister, E; White, I H

    2007-05-23

    Tamoxifen is widely prescribed for the treatment of breast cancer and is also licensed in the U.S. for the prevention of this disease. However, tamoxifen therapy is associated with an increased occurrence of endometrial cancer in women and there is also evidence that it may elevate the risk of colorectal cancer. The underlying mechanisms responsible for tamoxifen-induced carcinogenesis in women have not yet been elucidated but much interest has focussed on the role of DNA adduct formation. We investigated the propensity of tamoxifen to bind irreversibly to colorectal DNA when given to ten women as a single [{sup 14}C]-labeled therapeutic (20 mg) dose, {approx}18 h prior to undergoing colon resections. Using the sensitive technique of accelerator mass spectrometry, coupled with HPLC separation of enzymatically digested DNA, a peak corresponding to authentic dG-N{sup 2}-tamoxifen adduct was detected in samples from three patients, at levels ranging from 1-7 adducts/10{sup 9} nucleotides. No [{sup 14}C]-radiolabel associated with tamoxifen or its major metabolites was detected. The presence of detectable CYP3A4 protein in all colon samples suggests this tissue has the potential to activate tamoxifen to {alpha}-hydroxytamoxifen, in addition to that occurring in the systemic circulation, and direct interaction of this metabolite with DNA could account for the binding observed. Although the level of tamoxifeninduced damage displayed a degree of inter-individual variability, when present it was {approx}10-100 times higher than that reported for other suspect human colon carcinogens such as PhIP. These findings provide a mechanistic basis through which tamoxifen could increase the incidence of colon cancers in women.

  8. DNA adducts in hematopoietic tissues and blood of the mummichog (Fundulus heteroclitus) from a creosote-contaminated site in the Elizabeth River, Virginia.

    PubMed

    Rose, W L; French, B L; Reichert, W L; Faisal, M

    2000-01-01

    Hydrophobic DNA adducts were examined in liver, anterior kidney, spleen, and blood of tumor-prone mummichog (Fundulus heterclitus) from the creosote-contaminated Atlantic Wood (AW) site (Elizabeth River, Virginia). DNA adducts eluted in a diagonal radioactive zone, characteristic of polycyclic aromatic hydrocarbon exposure, in all examined tissues of AW fish. Mummichog demonstrated significantly higher levels of DNA adducts in spleen (394 +/- 109 nmol adducts/mol nucleotides) than in liver (201 +/- 77 nmol adducts/mol nucleotides) or anterior kidney (211 +/- 68 nmol adducts/mol nucleotides; P = 0.036). The levels of DNA adducts in the pooled blood (pool of four) were 142 nmol adducts/mol nucleotides. DNA adducts were not detected in the liver, anterior kidney, spleen and blood of fish collected from the reference site (< 2 nmol adducts/mol nucleotides). The high levels of DNA adducts detected in tissues of AW mummichog may be linked to the increased cancer incidence and immunosuppression in this population.

  9. SALSA: a pattern recognition algorithm to detect electrophile-adducted peptides by automated evaluation of CID spectra in LC-MS-MS analyses.

    PubMed

    Hansen, B T; Jones, J A; Mason, D E; Liebler, D C

    2001-04-15

    A pattern recognition algorithm called SALSA (scoring algorithm for spectral analysis) has been developed to rapidly screen large numbers of peptide MS-MS spectra for fragmentation characteristics indicative of specific peptide modifications. The algorithm facilitates sensitive and specific detection of modified peptides at low abundance in an enzymatic protein digest. SALSA can simultaneously score multiple user-specified search criteria, including product ions, neutral losses, charged losses, and ion pairs that are diagnostic of specific peptide modifications. Application of SALSA to the detection of peptide adducts of the electrophiles dehydromonocrotaline, benzoquinone, and iodoacetic acid permitted their detection in a complex tryptic peptide digest mixture. SALSA provides superior detection of adducted peptides compared to conventional tandem MS precursor ion or neutral loss scans.

  10. DNA adduct formation by the environmental contaminant 3-nitrobenzanthrone after intratracheal instillation in rats.

    PubMed

    Bieler, Christian A; Cornelius, Michael G; Klein, Reinhold; Arlt, Volker M; Wiessler, Manfred; Phillips, David H; Schmeiser, Heinz H

    2005-10-10

    3-Nitrobenzanthrone (3-NBA) is an environmental pollutant and suspected human carcinogen found in emissions from diesel and gasoline engines and on the surface of ambient air particulate matter; human exposure to 3-NBA is likely to occur primarily via the respiratory tract. In our study female Sprague Dawley rats were treated by intratracheal instillation with a single dose of 0.2 or 2 mg/kg body weight of 3-NBA. Using the butanol enrichment version of the (32)P-postlabeling method, DNA adduct formation by 3-NBA 48 hr after intratracheal administration in different organs (lung, pancreas, kidney, urinary bladder, heart, small intestine and liver) and in blood was investigated. The same adduct pattern consisting of up to 5 DNA adduct spots was detected by thin layer chromatography in all tissues and blood and at both doses. Highest total adduct levels were found in lung and pancreas (350 +/- 139 and 620 +/- 370 adducts per 10(8) nucleotides for the high dose and 39 +/- 18 and 55 +/- 34 adducts per 10(8) nucleotides for the low dose, respectively) followed by kidney, urinary bladder, heart, small intestine and liver. Adduct levels were dose-dependent in all organs (approximately 10-fold difference between doses). It was demonstrated by high performance liquid chromatography (HPLC) that all 5 3-NBA-derived DNA adducts formed in rats after intratracheal instillation are identical to those formed by other routes of application and are, as previously shown, formed from reductive metabolites bound to purine bases. Although total adduct levels in the blood were much lower (41 +/- 27 and 9.5 +/- 1.9 adducts per 10(8) nucleotides for the high and low dose, respectively) than those found in the lung, they were related to dose and to the levels found in lung. These results show that uptake of 3-NBA by the lung induces high levels of specific DNA adducts in several organs of the rat and an identical adduct pattern in DNA from blood. Therefore, 3-NBA-DNA adducts present in the

  11. Appearance of cross linked proteins in human atheroma and rat pre-fibrotic liver detected by a new monoclonal antibody.

    PubMed

    Itabe, H; Jimi, S; Kamimura, S; Suzuki, K; Uesugi, N; Imanaka, T; Shijo, H; Takano, T

    1998-02-27

    A new monoclonal antibody against malondialdehyde (MDA)-treated low density lipoprotein (LDL) was raised using homogenate of human atheroma as immunogen. This antibody, DLH2, was obtained by selecting the clones which did not react to native LDL but did react to copper-induced oxidized LDL (OxLDL). DLH2 showed a greater reactivity to MDA-LDL than to OxLDL. When LDL was treated with various aldehyde containing reagents, treatment of LDL with glutaraldehyde or MDA greatly increased the reactivity to the antibody, while LDL treated with 2,4-hexadienal or 4-hydroxynonenal was not reactive. Among many proteins tested, high density lipoprotein, bovine serum albumin and hemoglobin showed significant reactivity to DLH2 after they were treated with MDA or glutaraldehyde. When low density and high density lipoproteins treated with MDA were subjected to immunoblot analysis, newly formed products larger than the original apolipoproteins were detected with the antibody, suggesting that this antibody recognizes aggregated proteins with divalent short chain cross linkers. The antigenic materials were shown by immunohistochemical analysis to be present in foamy macrophages in human atheromatous lesions. DLH2 antigen did not colocalize either with apolipoprotein B. Furthermore, we found a massive accumulation of the antigenic material in Kupffer cells in the liver of rats treated with alcohol and carbonyl iron, a model of hepatic fibrosis due to oxidative stress. These results suggest the presence of cross linked proteins in damaged tissues.

  12. Rotational Spectra of Adducts of Formaldehyde with Freons

    NASA Astrophysics Data System (ADS)

    Qian, Gou; Feng, Gang; Evangelisti, Luca; Caminati, W.; Lopez, Montserrat Vallejo; Lesarri, Alberto; Cocinero, Emilio

    2013-06-01

    The rotational spectra of three 1:1 complexes of formaldehyde (H_{2}CO) with freons, i.e. difluoromethane (CH_{2}F_{2}), fluorochloromethane (CH_{2}FCl) and trifluorochloromethane (CF_{3}Cl), have been observed and assigned using pulsed jet Fourier transform microwave technique. Several isotopologues (including some ^{13}C species) have been measured in natural abundance. The tunnelling splittings have been measured in the first two adducts with relative intensity 1:3, due to the internal rotation of the formaldehyde moity along its symmetry axis. The barriers to this motion have been estimated by using a flexible model. For the latter two complexes, each of transition displays the hyperfine structures due to the quadrupolar effects of ^{35}Cl (^{37}Cl) nucleus. The dissociation energy has been estimated within the pseudo-diatomic approximation for all three complexes.

  13. Vitamin A-aldehyde adducts: AMD risk and targeted therapeutics

    PubMed Central

    Sparrow, Janet R.

    2016-01-01

    Although currently available treatment options for age-related macular degeneration (AMD) are limited, particularly for atrophic AMD, the identification of predisposing genetic variations has informed clinical studies addressing therapeutic options such as complement inhibitors and anti-inflammatory agents. To lower risk of early AMD, recommended lifestyle interventions such as the avoidance of smoking and the intake of low glycemic antioxidant-rich diets have largely followed from the identification of nongenetic modifiable factors. On the other hand, the challenge of understanding the complex relationship between aging and cumulative damage leading to AMD has fueled investigations of the visual cycle adducts that accumulate in retinal pigment epithelial (RPE) cells and are a hallmark of aging retina. These studies have revealed properties of these compounds that provide insights into processes that may compromise RPE and could contribute to disease mechanisms in AMD. This work has also led to the design of targeted therapeutics that are currently under investigation. PMID:27071115

  14. Structural phase transitions and adduct release in calcium borohydride

    SciTech Connect

    Paolone, A.; Palumbo, O.; Rispoli, P.; Miriametro, A.; Cantelli, R.; Luedtke, A.; Rönnebro, E.; Chandra, D.

    2011-09-01

    Ca(BH4)2 compounds were investigated above room temperature by anelastic spectroscopy (AS) and concomitant measurements of thermogravimetry and mass spectrometry (TGA/MS). Both AS and TGA/MS indicate that even after a thermal treatment at 125 °C for 20 h, a non-negligible residual of THF adduct is still present in the sample, which can be removed on a subsequent thermal treatment at temperatures lower than 250 °C. Above 250 °C dehydrogenation takes place. Moreover, AS sensitively detects the occurrence of the α → α’ structural phase transition around 180 °C, and the α’ → β transformation, which is completed around 330 °C. Finally, we also show that both transitions are irreversible and are not accompanied by a latent heat.

  15. Non Covalent Interactions and Internal Dynamics in Adducts of Freons

    NASA Astrophysics Data System (ADS)

    Caminati, Walther; Gou, Qian; Evangelisti, Luca; Feng, Gang; Spada, Lorenzo; Vallejo-López, Montserrat; Lesarri, Alberto; Cocinero, Emilio J.

    2014-06-01

    The complexation of chlorofluorocarbons (CFCs) with atmospheric water and pollutants of the atmosphere affects their reactivity and it seems to accelerate, for example, the decomposition rate of freons in the atmosphere [1]. For this reason we characterized shapes, stabilities, nature of the non-covalent interactions, structures and internal dynamics of a number of complexes of CFCs with water and of their dimers or oligomers by rotational spectroscopy. It has been found that hydrogenated CFCs form adducts with other molecules through weak hydrogen bonds (WHBs). Their C-H groups can act as proton donors, enhanced by the electron withdrawing of the halogen atoms, interacting with the electron rich regions of the partner molecules [2]. Also in adducts or oligomers of hydrogenated CFCs the monomer units are held together by nets of WHBs [3]. When CFCs are perhalogenated, the positive electrostatic region ("σ-hole") can interact electrostatically with negative sites of another, or of the same molecular entity, giving rise, according to IUPAC, to the so called halogen bond (HaB). However, it has been observed that when the perhalogenated CFCs has a Π electron system, a lone pair•••Π interaction (Bürgi-Dunitz) is favoured [4]. We describe here the HaBs that CF4 and CF3Cl form with a variety of partner molecules such as water, ammonia, dimethyl ether, etc. Important spectroscopic features outline strong dynamics effects taking place in this kind of complex. References [1] V. Vaida, H. G. Kjaergaard, K. J. Feierabend, Int. Rev. Phys. Chem. 22 (2003) 203. [2] See, for example: W. Caminati, S. Melandri, A. Maris, P. Ottaviani, Angew. Chem. Int. Ed. 45 (2006) 2438. [3] G. Feng, L. Evangelisti, I. Cacelli, L. Carbonaro, G. Prampolini, W. Caminati, Chem. Commun. 50 (2014) 171. [4] Q. Gou, G. Feng, L. Evangelisti, W. Caminati, Angew. Chem. Int. Ed. 52 (2013) 52 11888.

  16. Formation of monofunctional cisplatin-DNA adducts in carbonate buffer.

    PubMed

    Binter, Alexandra; Goodisman, Jerry; Dabrowiak, James C

    2006-07-01

    Carbonate in its various forms is an important component in blood and the cytosol. Since, under conditions that simulate therapy, carbonate reacts with cisplatin to form carbonato complexes, one of which is taken up and/or modified by the cell [C.R. Centerwall, J. Goodisman, D.J. Kerwood, J. Am. Chem. Soc., 127 (2005) 12768-12769], cisplatin-carbonato complexes may be important in the mechanism of action of cisplatin. In this report we study the binding of cisplatin to pBR322 DNA in two different buffers, using gel electrophoresis. In 23.8mM HEPES, N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, 5mM NaCl, pH 7.4 buffer, cisplatin produces aquated species, which react with DNA to unwind supercoiled Form I DNA, increasing its mobility, and reducing the binding of ethidium to DNA. This behavior is consistent with the formation of the well-known intrastrand crosslink on DNA. In 23.8mM carbonate buffer, 5mM NaCl, pH 7.4, cisplatin forms carbonato species that produce DNA-adducts which do not significantly change supercoiling but enhance binding of ethidium to DNA. This behavior is consistent with the formation of a monofunctional cisplatin adduct on DNA. These results show that aquated cisplatin and carbonato complexes of cisplatin produce different types of lesions on DNA and they underscore the importance of carrying out binding studies with cisplatin and DNA using conditions that approximate those found in the cell.

  17. Effect of exercise and gait retraining on knee adduction moment in people with knee osteoarthritis.

    PubMed

    Khalaj, Nafiseh; Abu Osman, Noor A; Mokhtar, Abdul H; Mehdikhani, Mahboobeh; Wan Abas, Wan A B

    2014-02-01

    The knee adduction moment represents the medial knee joint load, and greater value is associated with higher load. In people with knee osteoarthritis, it is important to apply proper treatment with the least side effects to reduce knee adduction moment and, consequently, reduce medial knee joint load. This reduction may slow the progression of knee osteoarthritis. The research team performed a literature search of electronic databases. The search keywords were as follows: knee osteoarthritis, knee adduction moment, exercise program, exercise therapy, gait retraining, gait modification and knee joint loading. In total, 12 studies were selected, according to the selection criteria. Findings from previous studies illustrated that exercise and gait retraining programs could alter knee adduction moment in people with knee osteoarthritis. These treatments are noninvasive and nonpharmacological which so far have no or few side effects, as well as being low cost. The results of this review revealed that gait retraining programs were helpful in reducing the knee adduction moment. In contrast, not all the exercise programs were beneficial in reducing knee adduction moment. Future studies are needed to indicate best clinical exercise and gait retraining programs, which are most effective in reducing knee adduction moment in people with knee osteoarthritis.

  18. DNA adducts in carp exposed to artificial diesel-2 oil slicks.

    PubMed

    Kurelec, B; Garg, A; Krca, S; Britvić, S; Lucić, D; Gupta, R C

    1992-05-01

    In attempts to mimic field exposure, oil slicks prepared from diesel-2 oil/water emulsions were poured onto the surface of water in tanks prepared fresh every day and liver DNA adducts were analyzed by 32P-postlabeling in carp free-swimming in these tanks. 'Clusters' of lipophilic DNA adducts were detected, with five major and numerous minor adducts. Essentially a similar adduct pattern was found in the liver DNA of carp exposed to crude oil-polluted water. Diesel-2 adduct induction was observed slowly with a steady increase to greater than 3000 amol/microgram DNA at day 12. After this time fish were transferred to clean water. Adduct levels continued to increase through day 17 (approximately 10,000 amol/microgram DNA) despite the cessation of exposure, but a 30% and 80% decline was evident at day 22 and day 27, respectively. All major adducts were distinct from the known benzo[a]pyrene diolepoxide-dG. These results indicate that diesel-2 oil can cause extensive DNA damage in carp in vivo and the damage accumulates proportionately with time of exposure.

  19. Polycyclic aromatic hydrocarbon-DNA adducts and the CYP1A1 restriction fragment length polymorphism

    SciTech Connect

    Shields, P.G.; Bowman, E.D.; Weston, A.; Harris, C.C.; Sugimura, H.; Caporaso, N.E.; Petruzzelli, S.F. ); Trump, B.F. )

    1992-11-01

    Human cancer risk assessment at a genetic level involves the investigation of carcinogen metabolism and DNA adduct formation. Wide interindividual differences in metabolism result in different DNA adduct levels. For this and other reasons, many laboratories have considered DNA adducts to be a measure of the biologically effective dose of a carcinogen. Techniques for studying DNA adducts using chemically specific assays are becoming available. A modification of the [sup 32]P-postlabeling assay for polycyclic aromatic hydrocarbon DNA adducts described here provides potential improvements in quantification. DNA adducts, however, reflect only recent exposure to carcinogens; in contrast, genetic testing for metabolic capacity indicates the extent to which carcinogens can be activated and exert genotoxic effects. Such studies may reflect both separate and integrated risk factors together with DNA adduct levels. A recently described restriction fragment length polymorphism for the CYP1A1, which codes for the cytochrome P450 enzyme primarily responsible for the metabolic activation of carcinogenic polycyclic aromatic hydrocarbons, has been found to be associated with lung cancer risk in a Japanese population. In a subset of individuals enrolled in a US lung cancer case-control study, no association with lung cancer was found. 17 refs., 3 figs.

  20. Depurinating estrogen–DNA adducts in the etiology and prevention of breast and other human cancers

    PubMed Central

    Cavalieri, Ercole L; Rogan, Eleanor G

    2015-01-01

    Experiments on estrogen metabolism, formation of DNA adducts, mutagenicity, cell transformation and carcinogenicity have led to and supported the hypothesis that the reaction of specific estrogen metabolites, mostly the electrophilic catechol estrogen-3,4-quinones, with DNA can generate the critical mutations to initiate breast and other human cancers. Analysis of depurinating estrogen–DNA adducts in urine demonstrates that women at high risk of, or with breast cancer, have high levels of the adducts, indicating a critical role for adduct formation in breast cancer initiation. Men with prostate cancer or non-Hodgkin lymphoma also have high levels of estrogen–DNA adducts. This knowledge of the first step in cancer initiation suggests the use of specific antioxidants that can block formation of the adducts by chemical and biochemical mechanisms. Two antioxidants, N-acetylcysteine and resveratrol, are prime candidates to prevent breast and other human cancers because in various in vitro and in vivo experiments, they reduce the formation of estrogen–DNA adducts. PMID:20021210

  1. 2-Methoxyethanol metabolism, embryonic distribution, and macromolecular adduct formation in the rat: the effect of radiofrequency radiation-induced hyperthermia.

    PubMed

    Cheever, K L; Swearengin, T F; Edwards, R M; Nelson, B K; Werren, D W; Conover, D L; DeBord, D G

    2001-05-31

    Exposure of pregnant rats to the solvent 2-methoxyethanol (2ME) and radiofrequency (RF) radiation results in greater than additive fetal malformations (Nelson, B.K., Conover, D.L., Brightwell, W.S., Shaw, P.B., Werren, D.W., Edwards, R.M., Lary, J.M., 1991. Marked increase in the teratogenicity of the combined administration of the industrial solvent 2-methoxyethanol and radiofrequency radiation in rats. Teratology 43, 621-34; Nelson, B.K., Conover, D.L., Shaw, P.B., Werren, D.W., Edwards, R.M., Hoberman, A.M., 1994. Interactive developmental toxicity of radiofrequency radiation and 2-methoxyethanol in rats. Teratology 50, 275-93). The current study evaluated the metabolism of 14C-labeled 2ME and the distribution of methoxyacetic acid (MAA) in maternal and embryonic tissues of pregnant Sprague-Dawley rats either exposed to 10 MHz RF radiation or sham conditions. Additionally, adduct formation for both plasma and embryonic protein was tested as a possible biomarker for the observed 2ME/RF teratogenicity. Rats were administered [ethanol-1,2-(14)C]-2ME (150 mg/kg, 161 microCi/rat average) by gavage on gestation day 13 immediately before RF radiation sufficient to elevate body temperature to 42 degrees C for 30 min. Concurrent sham- and RF-exposed rats were sacrificed at 3, 6, 24 or 48 h for harvest of maternal blood, urine, embryos and extra-embryonic fluid. Tissues were either digested for determination of radioactivity or deproteinized with TCA and analyzed by HPLC for quantification of 2ME metabolites. Results show the presence of 2ME and seven metabolites, with the major metabolite, MAA, peaking at 6 h in the tissues tested. MAA, the proximal teratogen, was detectable in maternal serum, urine, embryo and extraembryonic fluid 48 h after dosing. Clearance of total body 14C was significantly reduced for the RF-exposed animals (P<0.05) for the 24-48 h period, but MAA values for serum, embryos and extraembryonic fluid were similar for both sham- and RF-exposed rats

  2. Ultraviolet irradiation of monkey cells enhances the repair of DNA adducts in alpha DNA

    SciTech Connect

    Leadon, S.A.; Hanawalt, P.C.

    1984-11-01

    Excision repair of bulky adducts in alpha DNA of African green monkey cells has previously been shown to be deficient relative to that in the overall genome. We have found that u.v. irradiation of these cells results in the enhanced removal of both aflatoxin B1 (AFB1) and acetylaminofluorene (AAF) adducts from the alpha DNA sequences without affecting repair in the bulk of the DNA. The degree of enhanced removal of AFB1 is dependent upon the u.v. dose and the time interval between irradiation and AFB1 treatment. The u.v. enhancement is not inhibited by cycloheximide. Exposure of the cells to dimethylsulfate or gamma-rays does not affect AFB1 adduct repair. The formation and removal of N-acetoxy-2-acetylaminofluorene (NA-AAF) adducts from alpha and bulk DNA was studied in detail. A higher initial level of the acetylated C8 adduct of guanine was found in alpha DNA than in bulk DNA. Although both the acetylated and deacetylated C8 adducts were removed from the two DNA species, the level of repair was significantly greater in the bulk DNA. Irradiation of cells with u.v. prior to treatment with NA-AAF enhanced the removal of both adducts from alpha DNA with little or no effect on repair in bulk DNA. We conclude that the presence of u.v. photoproducts or some intermediate in their processing alters the chromatin structure of alpha DNA thereby rendering bulky adducts accessible to repair enzymes. In addition, the differential formation and repair of AAF adducts in alpha DNA compared with that in the bulk of the genome supports the hypothesis of an altered chromatin structure for alpha domains.

  3. Knee adduction moment and medial contact force--facts about their correlation during gait.

    PubMed

    Kutzner, Ines; Trepczynski, Adam; Heller, Markus O; Bergmann, Georg

    2013-01-01

    The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented knee implants with telemetric data transmission were used to measure tibiofemoral contact forces in nine subjects. Gait analyses were performed simultaneously to the joint load measurements. Skeletal kinematics, as well as the ground reaction forces and inertial parameters, were used as inputs in an inverse dynamics approach to calculate the external knee adduction moment. Linear regression analysis was used to analyze the correlation between adduction moment and medial force for the whole stance phase and separately for the early and late stance phase. Whereas only moderate correlations between adduction moment and medial force were observed throughout the whole stance phase (R(2) = 0.56) and during the late stance phase (R(2) = 0.51), a high correlation was observed at the early stance phase (R(2) = 0.76). Furthermore, the adduction moment was highly correlated to the medial force ratio throughout the whole stance phase (R(2) = 0.75). These results suggest that the adduction moment is a surrogate measure, well-suited to predicting the medial force ratio throughout the whole stance phase or medial force during the early stance phase. However, particularly during the late stance phase, moderate correlations and high inter-individual variations revealed that the predictive value of the adduction moment is limited. Further analyses are necessary to examine whether a combination of other kinematic, kinetic or neuromuscular factors may lead to a more reliable

  4. Polycyclic aromatic hydrocarbon-DNA adducts and survival among women with breast cancer

    SciTech Connect

    Sagiv, Sharon K. Gaudet, Mia M.; Eng, Sybil M.; Abrahamson, Page E.; Shantakumar, Sumitra; Teitelbaum, Susan L.; Bell, Paula; Thomas, Joyce A.; Neugut, Alfred I.; Santella, Regina M.; Gammon, Marilie D.

    2009-04-15

    Polycyclic aromatic hydrocarbons (PAH) are mammary carcinogens in animal studies, and a few epidemiologic studies have suggested a link between elevated levels of PAH-DNA adducts and breast cancer incidence. An association between PAH-DNA adducts and survival among breast cancer cases has not been previously reported. We conducted a survival analysis among women with newly diagnosed invasive breast cancer between 1996 and 1997, enrolled in the Long Island Breast Cancer Study Project. DNA was isolated from blood samples that were obtained from cases shortly after diagnosis and assayed for PAH-DNA adducts using ELISA. Among the 722 cases with PAH-DNA adduct measurements, 97 deaths (13.4%) from all causes and 54 deaths (7.5%) due to breast cancer were reported to National Death Index (NDI) by December 31, 2002. Using Cox proportional hazards models and controlling for age at diagnosis, we did not find evidence that all-cause mortality (hazard ratio (HR)=0.88; 95% confidence interval (CI): 0.57-1.37), or breast cancer mortality (HR=1.20; 95% CI: 0.63-2.28) was strongly associated with detectable PAH-DNA adduct levels compared with non-detectable adducts; additionally, no dose-response association was observed. Among a subgroup with treatment data (n=520), adducts were associated with over a two-fold higher mortality among those receiving radiation, but mortality for adducts was reduced among hormone therapy users. Results from this large population-based study do not provide strong support for an association between detectable PAH-DNA adducts and survival among women with breast cancer, except perhaps among those receiving radiation treatment.

  5. Knee Adduction Moment and Medial Contact Force – Facts about Their Correlation during Gait

    PubMed Central

    Kutzner, Ines; Trepczynski, Adam; Heller, Markus O.; Bergmann, Georg

    2013-01-01

    The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented knee implants with telemetric data transmission were used to measure tibiofemoral contact forces in nine subjects. Gait analyses were performed simultaneously to the joint load measurements. Skeletal kinematics, as well as the ground reaction forces and inertial parameters, were used as inputs in an inverse dynamics approach to calculate the external knee adduction moment. Linear regression analysis was used to analyze the correlation between adduction moment and medial force for the whole stance phase and separately for the early and late stance phase. Whereas only moderate correlations between adduction moment and medial force were observed throughout the whole stance phase (R2 = 0.56) and during the late stance phase (R2 = 0.51), a high correlation was observed at the early stance phase (R2 = 0.76). Furthermore, the adduction moment was highly correlated to the medial force ratio throughout the whole stance phase (R2 = 0.75). These results suggest that the adduction moment is a surrogate measure, well-suited to predicting the medial force ratio throughout the whole stance phase or medial force during the early stance phase. However, particularly during the late stance phase, moderate correlations and high inter-individual variations revealed that the predictive value of the adduction moment is limited. Further analyses are necessary to examine whether a combination of other kinematic, kinetic or neuromuscular factors may lead to a more reliable prediction of

  6. 7-Alkylguanine adduct levels in urine, lungs and liver of mice exposed to styrene by inhalation

    SciTech Connect

    Vodicka, Pavel Erik . E-mail: pvodicka@biomed.cas.cz; Linhart, Igor; Novak, Jan; Koskinen, Mikko; Vodickova, Ludmila; Hemminki, Kari

    2006-01-15

    This study describes urinary excretion of two nucleobase adducts derived from styrene 7,8-oxide (SO), i.e., 7-(2-hydroxy-1-phenylethyl)guanine (N7{alpha}G) and 7-(2-hydroxy-2-phenylethyl)guanine (N7{beta}G), as well as a formation of N7-SO-guanine adducts in lungs and liver of two month old male NMRI mice exposed to styrene by inhalation in a 3-week subacute study. Strikingly higher excretion of both isomeric nucleobase adducts in the first day of exposure was recorded, while the daily excretion of nucleobase adducts in following time intervals reached the steady-state level at 4.32 + 1.14 and 6.91 + 1.17 pmol/animal for lower and higher styrene exposure, respectively. {beta}-SO-guanine DNA adducts in lungs increased with exposure in a linear way (F = 13.7 for linearity and 0.17 for non-linearity, respectively), reaching at the 21st day the level of 23.0 adducts/10{sup 8} normal nucleotides, i.e., 0.74 fmol/{mu}g DNA of 7-alkylguanine DNA adducts for the concentration of 1500 mg/m{sup 3}, while no 7-SO-guanine DNA adducts were detected in the liver after 21 days of inhalation exposure to both of styrene concentrations. A comparison of 7-alkylguanines excreted in urine with 7-SO-guanines in lungs (after correction for depurination and for missing {alpha}-isomers) revealed that persisting 7-SO-guanine DNA adducts in lungs account for about 0.5% of the total alkylation at N7 of guanine. The total styrene-specific 7-guanine alkylation accounts for about 1.0 x 10{sup -5}% of the total styrene uptake, while N1-adenine alkylation contributes to this percentage only negligibly.

  7. Suppression of aflatoxin B1-induced lipid abnormalities and macromolecule-adduct formation by L-carnitine.

    PubMed

    Sachan, D S; Yatim, A M

    1992-01-01

    The fatty liver and hypolipidemia caused by aflatoxin B1 (AFB1) were studied in male Sprague-Dawley rats fed Purina Rat Chow with or without L-carnitine supplement for 6 weeks. In Experiment 1, the rats (n = 20) were divided into four groups, i.e., nonsupplemented control (NSC), nonsupplemented AFB1 (NSA), carnitine supplemented control (CSC), and carnitine supplemented AFB1 (CSA). The NSA and CSA groups were given an oral dose of [3H]AFB1 (1 mg/kg) 6 hr before kill. In Experiment 2 (n = 10) there were only NSA and CSA groups and they were killed 24 hr post-AFB1 administration. Hepatic and plasma concentrations of total lipid, triglycerides, AFB1-macromolecules adducts and urinary excretion of AFB1 were determined. Carnitine supplementation ameliorated AFB1-induced hepatic steatosis and hypolipidemia. Supplementary carnitine reduced covalent binding of AFB1 to hepatic DNA, RNA, and protein. The carnitine effect was more pronounced after 24 hr than after 6 hr of AFB1 treatment. We conclude that supplementary carnitine suppressed AFB1-induced fatty liver and AFB1-macromolecule adduct formation in the rat.

  8. Mechanism of repair of 5'-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2.

    PubMed

    Schellenberg, Matthew J; Appel, C Denise; Adhikari, Sanjay; Robertson, Patrick D; Ramsden, Dale A; Williams, R Scott

    2012-12-01

    The topoisomerase II (topo II) DNA incision-and-ligation cycle can be poisoned (for example following treatment with cancer chemotherapeutics) to generate cytotoxic DNA double-strand breaks (DSBs) with topo II covalently conjugated to DNA. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) protects genomic integrity by reversing 5'-phosphotyrosyl-linked topo II-DNA adducts. Here, X-ray structures of mouse Tdp2-DNA complexes reveal that Tdp2 β-2-helix-β DNA damage-binding 'grasp', helical 'cap' and DNA lesion-binding elements fuse to form an elongated protein-DNA conjugate substrate-interaction groove. The Tdp2 DNA-binding surface is highly tailored for engagement of 5'-adducted single-stranded DNA ends and restricts nonspecific endonucleolytic or exonucleolytic processing. Structural, mutational and functional analyses support a single-metal ion catalytic mechanism for the exonuclease-endonuclease-phosphatase (EEP) nuclease superfamily and establish a molecular framework for targeted small-molecule blockade of Tdp2-mediated resistance to anticancer topoisomerase drugs.

  9. Mechanism of repair of 5'-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2

    SciTech Connect

    Schellenberg, Matthew J; Appel, C Denise; Adhikari, Sanjay; Robertson, Patrick D; Ramsden, Dale A; Williams, R Scott

    2012-10-28

    The topoisomerase II (topo II) DNA incision-and-ligation cycle can be poisoned (for example following treatment with cancer chemotherapeutics) to generate cytotoxic DNA double-strand breaks (DSBs) with topo II covalently conjugated to DNA. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) protects genomic integrity by reversing 5'-phosphotyrosyl–linked topo II–DNA adducts. Here, X-ray structures of mouse Tdp2–DNA complexes reveal that Tdp2 β–2-helix–β DNA damage–binding 'grasp', helical 'cap' and DNA lesion–binding elements fuse to form an elongated protein-DNA conjugate substrate-interaction groove. The Tdp2 DNA-binding surface is highly tailored for engagement of 5'-adducted single-stranded DNA ends and restricts nonspecific endonucleolytic or exonucleolytic processing. Structural, mutational and functional analyses support a single–metal ion catalytic mechanism for the exonuclease-endonuclease-phosphatase (EEP) nuclease superfamily and establish a molecular framework for targeted small-molecule blockade of Tdp2-mediated resistance to anticancer topoisomerase drugs.

  10. Preferential Formation of Benzo[a]pyrene Adducts at Lung Cancer Mutational Hotspots in P53

    NASA Astrophysics Data System (ADS)

    Denissenko, Mikhail F.; Pao, Annie; Tang, Moon-Shong; Pfeifer, Gerd P.

    1996-10-01

    Cigarette smoke carcinogens such as benzo[a]pyrene are implicated in the development of lung cancer. The distribution of benzo[a]pyrene diol epoxide (BPDE) adducts along exons of the P53 gene in BPDE-treated HeLa cells and bronchial epithelial cells was mapped at nucleotide resolution. Strong and selective adduct formation occurred at guanine positions in codons 157, 248, and 273. These same positions are the major mutational hotspots in human lung cancers. Thus, targeted adduct formation rather than phenotypic selection appears to shape the P53 mutational spectrum in lung cancer. These results provide a direct etiological link between a defined chemical carcinogen and human cancer.

  11. DNA Adduct Formation of 4-Aminobiphenyl and Heterocyclic Aromatic Amines in Human Hepatocytes

    PubMed Central

    Nauwelaers, Gwendoline; Bessette, Erin E.; Gu, Dan; Tang, Yijin; Rageul, Julie; Fessard, Valérie; Yuan, Jian-Min; Yu, Mimi C.; Langouët, Sophie; Turesky, Robert J.

    2011-01-01

    DNA adduct formation of the aromatic amine, 4-aminobiphenyl (4-ABP), a known human carcinogen present in tobacco smoke, and the heterocyclic aromatic amines (HAAs), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), potential human carcinogens, which are also present in tobacco smoke or formed during the high-temperature cooking of meats, was investigated in freshly cultured human hepatocytes. The carcinogens (10 μM) were incubated with hepatocytes derived from eight different donors for time periods up to 24 h. The DNA adducts were quantified by liquid chromatography-electrospray ionization mass spectrometry with a linear quadrupole ion trap mass spectrometer. The principal DNA adducts formed for all of the carcinogens were N-(deoxyguanosin-8-yl) (dG-C8) adducts. The levels of adducts ranged from 3.4 to 140 adducts per 107 DNA bases. The highest level of adduct formation occurred with AαC, followed by 4-ABP, then by PhIP, MeIQx, and IQ. Human hepatocytes formed dG-C8-HAA-adducts at levels that were up to 100-fold greater than the amounts of adducts produced in rat hepatocytes. In contrast to HAA adducts, the levels of dG-C8-4-ABP adduct formation were similar in human and rat hepatocytes. These DNA binding data demonstrate that the rat, an animal model that is used for carcinogenesis bioassays, significantly underestimates the potential hepatic genotoxicity of HAAs in humans. The high level of DNA adducts formed by AαC, a carcinogen produced in tobacco smoke at levels that are up to 100-fold higher than the amounts of 4-ABP, is noteworthy. The possible causal role of AαC in tobacco-associated cancers warrants investigation. PMID:21456541

  12. Evolution of Research on the DNA Adduct Chemistry of N-Nitrosopyrrolidine and Related Aldehydes

    PubMed Central

    Hecht, Stephen S.; Upadhyaya, Pramod; Wang, Mingyao

    2011-01-01

    This perspective reviews our work on the identification of DNA adducts of N-nitrosopyrrolidine and some related aldehydes. The research began as a focused project to investigate mechanisms of cyclic nitrosamine carcinogenesis but expanded into other areas as aldehyde metabolites of NPYR were shown to have their own diverse DNA adduct chemistry. A total of 69 structurally distinct DNA adducts were identified and some of these, found in human tissues, have provided intriguing leads for investigating carcinogenesis mechanisms in humans due to exposure to both endogenous and exogenous agents. PMID:21480629

  13. The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin

    PubMed Central

    Chakravarti, Dhrubajyoti; Venugopal, Divya; Mailander, Paula C.; Meza, Jane L.; Higginbotham, Sheila; Cavalieri, Ercole L.; Rogan, Eleanor G.

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) form stable and depurinating DNA adducts in mouse skin to induce preneoplastic mutations. Some mutations transform cells, which then clonally expand to establish tumors. Strong clues about the mutagenic mechanism can be obtained if the PAH-DNA adducts can be correlated with both preneoplastic and tumor mutations. To this end, we studied mutagenesis in PAH-treated early preneoplastic skin (1 day after exposure) and in the induced papillomas in SENCAR mice. Papillomas were studied by PCR amplification of the H-ras gene and sequencing. For benzo[a]pyrene (BP), BP-7,8-dihydrodiol (BPDHD), 7,12-dimethylbenz[a]anthracene (DMBA) and dibenzo[a,l]pyrene (DB[a,l]P), the codon 13 (GGC to GTC) and codon 61 (CAA to CTA) mutations in papillomas corresponded to the relative levels of Gua and Ade-depurinating adducts, despite BP and BPDHD forming significant amounts of stable DNA adducts. Such a relationship was expected for DMBA and DB[a,l]P, as they formed primarily depurinating adducts. These results suggest that depurinating adducts play a major role in forming the tumorigenic mutations. To validate this correlation, preneoplastic skin mutations were studied by cloning H-ras PCR products and sequencing individual clones. DMBA- and DB[a,l]P-treated skin showed primarily A.T to G.C mutations, which correlated with the high ratio of the Ade/Gua-depurinating adducts. Incubation of skin DNA with T.G-DNA glycosylase eliminated most of these A.T to G.C mutations, indicating that they existed as G.T heteroduplexes, as would be expected if they were formed by errors in the repair of abasic sites generated by the depurinating adducts. BP and its metabolites induced mainly G.C to T.A mutations in preneoplastic skin. However, PCR over unrepaired anti-BPDE-N2dG adducts can generate similar mutations as artifacts of the study protocol, making it difficult to establish an adduct-mutation correlation for determining which BP-DNA adducts induce the early

  14. Base-Displaced Intercalated Structure of the N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone DNA Adduct.

    PubMed

    Politica, Dustin A; Malik, Chanchal K; Basu, Ashis K; Stone, Michael P

    2015-12-21

    3-Nitrobenzanthrone (3-NBA), an environmental mutagen found in diesel exhaust and a suspected carcinogen, undergoes metabolic reduction followed by reaction with DNA to form aminobenzanthrone (ABA) adducts, with the major alkylation product being N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (C8-dG-ABA). Site-specific synthesis of the C8-dG-ABA adduct in the oligodeoxynucleotide 5'-d(GTGCXTGTTTGT)-3':5'-d(ACAAACACGCAC)-3'; X = C8-dG-ABA adduct, including codons 272-275 of the p53 gene, has allowed for investigation into the structural and thermodynamic properties of this adduct. The conformation of the C8-dG-ABA adduct was determined using NMR spectroscopy and was refined using molecular dynamics (MD) calculations restrained by experimentally determined interproton distance restraints obtained from NOE experiments. The refined structure revealed that the C8-dG-ABA adduct formed a base-displaced intercalated conformation. The adducted guanine was shifted into the syn conformation about the glycosidic bond. The 5'- and 3'-neighboring base pairs remained intact. While this facilitated π-stacking interactions between the ABA moiety and neighboring bases, the thermal melting temperature (Tm) of the adduct-containing duplex showed a decrease of 11 °C as compared to the corresponding unmodified oligodeoxynucleotide duplex. Overall, in this sequence, the base-displaced intercalated conformation of the C8-dG-ABA lesion bears similarity to structures of other arylamine C8-dG adducts. However, in this sequence, the base-displaced intercalated conformation for the C8-dG-ABA adduct differs from the conformation of the N(2)-dG-ABA adduct reported by de los Santos and co-workers, in which it is oriented in the minor groove toward the 5' end of the duplex, with the modified guanine remaining in the anti conformation about the glyosidic torsion angle, and the complementary base remaining within the duplex. The results are discussed in relationship to differences between the C8-d

  15. A new glycation product ‘norpronyl-lysine,’ and direct characterization of cross linking and other glycation adducts: NMR of model compounds and collagen

    PubMed Central

    Bullock, Peter T. B.; Reid, David G.; Ying Chow, W.; Lau, Wendy P. W.; Duer, Melinda J.

    2014-01-01

    NMR is ideal for characterizing non-enzymatic protein glycation, including AGEs (advanced glycation endproducts) underlying tissue pathologies in diabetes and ageing. Ribose, R5P (ribose-5-phosphate) and ADPR (ADP-ribose), could be significant and underinvestigated biological glycating agents especially in chronic inflammation. Using [U-13C]ribose we have identified a novel glycoxidation adduct, 5-deoxy-5-desmethylpronyl-lysine, ‘norpronyl-lysine’, as well as numerous free ketones, acids and amino group reaction products. Glycation by R5P and ADPR proceeds rapidly with R5P generating a brown precipitate with PLL (poly-L-lysine) within hours. ssNMR (solid-state NMR) 13C–13C COSY identifies several crosslinking adducts such as the newly identified norpronyl-lysine, in situ, from the glycating reaction of 13C5-ribose with collagen. The same adducts are also identifiable after reaction of collagen with R5P. We also demonstrate for the first time bio-amine (spermidine, N-acetyl lysine, PLL) catalysed ribose 2-epimerization to arabinose at physiological pH. This work raises the prospect of advancing understanding of the mechanisms and consequences of glycation in actual tissues, in vitro or even ex vivo, using NMR isotope-labelled glycating agents, without analyses requiring chemical or enzymatic degradations, or prior assumptions about glycation products. PMID:27919030

  16. Lifetimes and stabilities of familiar explosive molecular adduct complexes during ion mobility measurements.

    PubMed

    McKenzie-Coe, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-08-21

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailor the stability of the molecular adduct complex. The flexibility of TIMS to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments/low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with high confidence levels.

  17. Methods for synthesizing alane without the formation of adducts and free of halides

    DOEpatents

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  18. Stability and proton transfer in DNA base pairs of AMD473-DNA adduct

    NASA Astrophysics Data System (ADS)

    Sarmah, Pubalee; Deka, Ramesh C.

    2011-05-01

    We investigate the energetics of four different adducts of cisplatin analogue cis-[PtCl 2(NH 3)(2-picoline)] (AMD473) with a duplex DNA using DFT/ONIOM methods to probe their stabilities. Further, we study the possibilities of proton transfer between DNA base pairs of the most stable drug-DNA adduct. The adduct b(2-picoline trans to 3'-G and 2-methyl group directs to the DNA major groove) is found to be the most stable configuration among all the possible adducts. From the proton transfer analysis we found that the single proton transfer between N1 position of guanine (G) and N3 position of cytosine (C) of each GC pair gives a structure energetically as stable as the original one.

  19. Auranofin disrupts selenium metabolism in Clostridium difficile by forming a stable Au-Se adduct.

    PubMed

    Jackson-Rosario, Sarah; Cowart, Darin; Myers, Andrew; Tarrien, Rebecca; Levine, Rodney L; Scott, Robert A; Self, William Thomas

    2009-05-01

    Clostridium difficile is a nosocomial pathogen whose incidence and importance are on the rise. Previous work in our laboratory characterized the central role of selenoenzyme-dependent Stickland reactions in C. difficile metabolism. In this work we have identified, using mass spectrometry, a stable complex formed upon reaction of auranofin (a gold-containing drug) with selenide in vitro. X-ray absorption spectroscopy supports the structure that we proposed on the basis of mass-spectrometric data. Auranofin potently inhibits the growth of C. difficile but does not similarly affect other clostridia that do not utilize selenoproteins to obtain energy. Moreover, auranofin inhibits the incorporation of radioisotope selenium ((75)Se) in selenoproteins in both Escherichia coli, the prokaryotic model for selenoprotein synthesis, and C. difficile without impacting total protein synthesis. Auranofin blocks the uptake of selenium and results in the accumulation of the auranofin-selenide adduct in the culture medium. Addition of selenium in the form of selenite or L-selenocysteine to the growth medium significantly reduces the inhibitory action of auranofin on the growth of C. difficile. On the basis of these results, we propose that formation of this complex and the subsequent deficiency in available selenium for selenoprotein synthesis is the mechanism by which auranofin inhibits C. difficile growth. This study demonstrates that targeting selenium metabolism provides a new avenue for antimicrobial development against C. difficile and other selenium-dependent pathogens.

  20. A variety of electrostatic interactions and adducts can activate NAD(P) cofactors for hydride transfer.

    PubMed

    Meijers, Rob; Cedergren-Zeppezauer, Eila

    2009-03-16

    In NAD(P)-dependent enzymes the coenzyme gives or takes a hydride ion, but how the nicotinamide ring is activated to form the transition state for hydride transfer is not clear. On the basis of ultra-high resolution X-ray crystal structures of liver alcohol dehydrogenase (LADH) in complex with NADH and a number of substrate analogues we proposed that the activation of NADH is an integral part of the enzyme mechanism of aldehyde reduction [R. Meijers, R.J. Morris, H.W. Adolph, A. Merli, V.S. Lamzin, E.S. Cedergren-Zeppezauer, On the enzymatic activation of NADH, The Journal of Biological Chemistry 276(12) (2001) 9316-9321, %U http://www.ncbi.nlm.nih.gov/pubmed/11134046; R. Meijers, H.-W. Adolph, Z. Dauter, K.S. Wilson, V.S. Lamzin, E.S. Cedergren-Zeppezauer, Structural evidence for a ligand coordination switch in liver alcohol dehydrogenase, Biochemistry 46(18) (2007) 5446-5454, %U http://www.ncbi.nlm.nih.gov/pubmed/17429946]. We observed a nicotinamide with a severely distorted pyridine ring and a water molecule in close proximity to the ring. Quantum chemical calculations indicated that (de)protonation of the water molecule can be directly coupled to activation of NADH for hydride transfer. A systematic search of the Protein Data Bank (PDB) for atoms that come within van der Waals distance of the pyridine ring of the nicotinamide reveals that a large number of NAD(P)-containing protein complexes are involved in electrostatic interactions with the enzymatic environment. Using the deposited diffraction data to analyze the cofactor and its surroundings, we observe several adducts between protein atoms and the pyridine ring that were not previously reported. This further indicates that the enzymatic activation of NAD(P) induced by electrostatic interactions is an essential part of the hydride transfer mechanism.

  1. Tamoxifen-DNA adduct formation in monkey and human reproductive organs.

    PubMed

    Hernandez-Ramon, Elena E; Sandoval, Nicole A; John, Kaarthik; Cline, J Mark; Wood, Charles E; Woodward, Ruth A; Poirier, Miriam C

    2014-05-01

    The estrogen analog tamoxifen (TAM), used for adjuvant therapy of breast cancer, induces endometrial and uterine tumors in breast cancer patients. Proliferation stimulus of the uterine endometrium is likely involved in tumor induction, but genotoxicity may also play a role. Formation of TAM-DNA adducts in human tissues has been reported but remains controversial. To address this issue, we examined TAM-DNA adducts in uteri from two species of monkeys, Erythrocebus patas (patas) and Macaca fascicularis (macaque), and in human endometrium and myometrium. Monkeys were given 3-4 months of chronic TAM dosing scaled to be equivalent to the daily human dose. In the uteri, livers and brains from the patas (n = 3), and endometrium from the macaques (n = 4), TAM-DNA adducts were measurable by TAM-DNA chemiluminescence immunoassay. Average TAM-DNA adduct values for the patas uteri (23 adducts/10(8) nucleotides) were similar to those found in endometrium of the macaques (19 adducts/10(8) nucleotides). Endometrium of macaques exposed to both TAM and low-dose estradiol (n = 5) averaged 34 adducts/10(8) nucleotides. To examine TAM-DNA persistence in the patas, females (n = 3) were exposed to TAM for 3 months and to no drug for an additional month, resulting in low or non-detectable TAM-DNA in livers and uteri. Human endometrial and myometrial samples from women receiving (n = 8) and not receiving (n = 8) TAM therapy were also evaluated. Women receiving TAM therapy averaged 10.3 TAM-DNA adducts/10(8) nucleotides, whereas unexposed women showed no detectable TAM-DNA. The data indicate that genotoxicity, in addition to estrogen agonist effects, may contribute to TAM-induced human endometrial cancer.

  2. Passive limitation of adduction after Cüppers's 'Fadenoperation' on medial recti.

    PubMed Central

    Paliaga, G P; Braga, M

    1989-01-01

    In 40 eyes of 20 esotropic subjects in which a 'Fadenoperation' was performed on the medial recti we measured the resistance to ocular rotation in adduction before and after the operation. The difference between the two sets of force measurements demonstrates that the Fadenoperation on medial recti produces a mechanical restriction to adduction which can explain the effect of the surgical procedure on the strabismic deviation. PMID:2765442

  3. Smoking-related DNA adducts as potential diagnostic markers of lung cancer: new perspectives.

    PubMed

    Grigoryeva, E S; Kokova, D A; Gratchev, A N; Cherdyntsev, E S; Buldakov, M A; Kzhyshkowska, J G; Cherdyntseva, N V

    2015-03-01

    In recent years, the new direction such as identification of informative circulating markers reflecting molecular genetic changes in the DNA of tumor cells was actively developed. Smoking-related DNA adducts are very promising research area, since they indicate high pathogenetic importance in the lung carcinogenesis and can be identified in biological samples with high accuracy and reliability using highly sensitive mass spectrometry methods (TOF/TOF, TOF/MS, MS/MS). The appearance of DNA adducts in blood or tissues is the result of the interaction of carcinogenic factors, such as tobacco constituents, and the body reaction which is determined by individual characteristics of metabolic and repair systems. So, DNA adducts may be considered as a cumulative mirror of heterogeneous response of different individuals to smoking carcinogens, which finally could determine the risk for lung cancer. This review is devoted to analysis of the role of DNA adducts in lung carcinogenesis in order to demonstrate their usefulness as cancer associated markers. Currently, there are some serious limitations impeding the widespread use of DNA adducts as cancer biomarkers, due to failure of standardization of mass spectrometry analysis in order to correctly measure the adduct level in each individual. However, it is known that all DNA adducts are immunogenic, their accumulation over some threshold concentration leads to the appearance of long-living autoantibodies. Thus, detection of an informative pattern of autoantibodies against DNA adducts using innovative multiplex ELISA immunoassay may be a promising approach to find lung cancer at an early stage in high-risk groups (smokers, manufacturing workers, urban dwellers).

  4. Correlation of haemoglobin-acrylamide adducts with airborne exposure: an occupational survey.

    PubMed

    Jones, Kate; Garfitt, Sarah; Emms, Vicky; Warren, Nick; Cocker, John; Farmer, Peter

    2006-04-10

    This paper reports an occupational hygiene survey of exposure to acrylamide comparing acrylamide haemoglobin adduct measurements with personal air monitoring and glove liner analysis. The air monitoring data showed that exposure to acrylamide was well-controlled with all samples below the UK maximum exposure limit (MEL) of 300 microg/m(3) with mean exposure about one tenth of the MEL. Each worker provided two blood samples approximately 3 months apart. These samples were well correlated (r=0.61) with a slope of 0.74, indicating that exposure was reasonably constant. Mean personal airborne acrylamide levels and mean acrylamide haemoglobin adduct levels were well correlated (r=0.72, N=46) and using the calculated linear correlation, exposure at the MEL would be expected to give rise to a haemoglobin adduct level of 1,550 pmol/g globin. Smoking status did not affect the correlation. There was also a correlation between levels of acrylamide detected on gloves and haemoglobin adduct levels. A combined regression model between haemoglobin adducts, airborne acrylamide and acrylamide glove contamination was significant for both airborne acrylamide and gloves with a regression coefficient of 0.89. The study showed that haemoglobin adduct level was a good biomarker of acrylamide exposure which correlated to both inhaled and potentially skin absorbed acrylamide estimates. There was excellent discrimination between well-controlled occupational levels and environmental levels from diet and smoking, allowing haemoglobin adduct measurement to be used to determine even low level exposures. Due to the complexity of the current methodology, new techniques would be useful in making haemoglobin adducts more widely applicable.

  5. Oxidation and glycolytic cleavage of etheno and propano DNA base adducts.

    PubMed

    Knutson, Charles G; Rubinson, Emily H; Akingbade, Dapo; Anderson, Carolyn S; Stec, Donald F; Petrova, Katya V; Kozekov, Ivan D; Guengerich, F Peter; Rizzo, Carmelo J; Marnett, Lawrence J

    2009-02-03

    Non-invasive strategies for the analysis of endogenous DNA damage are of interest for the purpose of monitoring genomic exposure to biologically produced chemicals. We have focused our research on the biological processing of DNA adducts and how this may impact the observed products in biological matrixes. Preliminary research has revealed that pyrimidopurinone DNA adducts are subject to enzymatic oxidation in vitro and in vivo and that base adducts are better substrates for oxidation than the corresponding 2'-deoxynucleosides. We tested the possibility that structurally similar exocyclic base adducts may be good candidates for enzymatic oxidation in vitro. We investigated the in vitro oxidation of several endogenously occurring etheno adducts [1,N(2)-epsilon-guanine (1,N(2)-epsilon-Gua), N(2),3-epsilon-Gua, heptanone-1,N(2)-epsilon-Gua, 1,N(6)-epsilon-adenine (1,N(6)-epsilon-Ade), and 3,N(4)-epsilon-cytosine (3,N(4)-epsilon-Cyt)] and their corresponding 2'-deoxynucleosides. Both 1,N(2)-epsilon-Gua and heptanone-1,N(2)-epsilon-Gua were substrates for enzymatic oxidation in rat liver cytosol; heteronuclear NMR experiments revealed that oxidation occurred on the imidazole ring of each substrate. In contrast, the partially or fully saturated pyrimidopurinone analogues [i.e., 5,6-dihydro-M(1)G and 1,N(2)-propanoguanine (PGua)] and their 2'-deoxynucleoside derivatives were not oxidized. The 2'-deoxynucleoside adducts, 1,N(2)-epsilon-dG and 1,N(6)-epsilon-dA, underwent glycolytic cleavage in rat liver cytosol. Together, these data suggest that multiple exocyclic adducts undergo oxidation and glycolytic cleavage in vitro in rat liver cytosol, in some instances in succession. These multiple pathways of biotransformation produce an array of products. Thus, the biotransformation of exocyclic adducts may lead to an additional class of biomarkers suitable for use in animal and human studies.

  6. Estrogen-DNA Adducts as Novel Biomarkers for Ovarian Cancer Risk and for Use in Prevention

    DTIC Science & Technology

    2013-03-01

    the association between ovarian cancer and (1) imbalances in estrogen metabolism that lead to higher levels of estrogen-DNA adducts in urine and/or (2...provides a measure of the imbalance 6 of estrogen metabolism in a person. A high ratio indicates that the person’s estrogen metabolism is...polymorphisms and risk of hormonal cancers. The estrogen quinone resulting from CYP1B1 activity may proceed to adduct formation in the presence of

  7. [Mass spectrometric analysis of polycyclic aromatic hydrocarbons adducted to DNA]. Final report

    SciTech Connect

    Barofsky, D.F.

    1992-12-31

    Studies described herein sought and to synthesize PAH-adducted residues of DNA to serve as models for carrying out the mass spectrometric studies; to construct and test a high performance, pulsed ion bombardment, time-of-flight (TOF) mass spectrometer; to initiate an investigation of the efficacy of using thin wire sample holders to increase sensitivity and focused ion beam bombardment to increase ion yield and ion transmission; and to initiate an investigation of sensitivity enhancing matrices for PAH-adducted DNA.

  8. Synthesis of a major mitomycin C DNA adduct via a triaminomitosene.

    PubMed

    Champeil, Elise; Paz, Manuel M; Lukasiewicz, Elaan; Kong, Wan S; Watson, Stephanie; Sapse, Anne-Marie

    2012-12-01

    We report here the synthesis of two amino precursors for the production of mitomycin C and 10-decarbamoylmitomycin C DNA adducts with opposite stereochemistry at C-1. The triamino mitosene precursors were synthesized in 5 steps from mitomycin C. In addition synthesis of the major mitomycin C-DNA adduct has been accomplished via coupling of a triaminomitosene with 2-fluoro-O(6)-(2-p-nitrophenylethyl)deoxyinosine followed by deprotection at the N(2) and O(6) positions.

  9. Cytochrome P450 system expression and DNA adduct formation in the liver of Zacco platypus following waterborne benzo(a)pyrene exposure: implications for biomarker determination.

    PubMed

    Lee, Jin Wuk; Kim, Yong Hwa; Yoon, Seokjoo; Lee, Sung Kyu

    2014-09-01

    Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that causes mutations and tumor formation. Zacco platypus is a sentinel species that is suitable for monitoring aquatic environments. We studied cytochrome P450 system (CYP system) expression and DNA adduct formation in the liver of Z. platypus following waterborne exposure to BaP. The results showed both dose and time dependency. The significant induction levels of CYP system mRNA and protein reached maximums at 2 days and 14 days, respectively, and hepatosomatic index was maximally induced at 4 days during 14 days BaP exposure. DNA adduct formation was significantly induced compared to corresponding controls (t-test, p < 0.01) after 4 days of exposure in 100 μg/L BaP. These results indicate that the only use of mRNA expression level of CYP system as a biomarker make us underestimate prolonged toxicity (4-14 days) of BaP and the only use of protein expression level of CYP system make us underestimate acute toxicity (1-2 days) of BaP. Therefore, we suggests that a combinational use of the mRNA expression level and protein expression level of CYP system, hepatosomatic index is a useful biomarker in risk assessment of waterborne BaP exposure. In addition, DNA adduct formation was a useful biomarker in risk assessment of waterborne BaP exposure at 4 days. CYP1A was a more sensitive biomarker than CYP reductase for BaP exposure when considering both the mRNA and protein level. Furthermore, our results show that Z. platypus is a useful species for assessing the risk of waterborne BaP exposure.

  10. Oligomerization and Membrane-binding Properties of Covalent Adducts Formed by the Interaction of α-Synuclein with the Toxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL).

    PubMed

    Follmer, Cristian; Coelho-Cerqueira, Eduardo; Yatabe-Franco, Danilo Y; Araujo, Gabriel D T; Pinheiro, Anderson S; Domont, Gilberto B; Eliezer, David

    2015-11-13

    Oxidative deamination of dopamine produces the highly toxic aldehyde 3,4-dihydroxyphenylacetaldehyde (DOPAL), enhanced production of which is found in post-mortem brains of Parkinson disease patients. When injected into the substantia nigra of rat brains, DOPAL causes the loss of dopaminergic neurons accompanied by the accumulation of potentially toxic oligomers of the presynaptic protein α-synuclein (aS), potentially explaining the synergistic toxicity described for dopamine metabolism and aS aggregation. In this work, we demonstrate that DOPAL interacts with aS via formation of Schiff-base and Michael-addition adducts with Lys residues, in addition to causing oxidation of Met residues to Met-sulfoxide. DOPAL modification leads to the formation of small aS oligomers that may be cross-linked by DOPAL. Both monomeric and oligomeric DOPAL adducts potently inhibit the formation of mature amyloid fibrils by unmodified aS. The binding of aS to either lipid vesicles or detergent micelles, which results in a gain of α-helix structure in its N-terminal lipid-binding domain, protects the protein against DOPAL adduct formation and, consequently, inhibits DOPAL-induced aS oligomerization. Functionally, aS-DOPAL monomer exhibits a reduced affinity for small unilamellar vesicles with lipid composition similar to synaptic vesicles, in addition to diminished membrane-induced α-helical content in comparison with the unmodified protein. These results suggest that DOPAL could compromise the functionality of aS, even in the absence of protein oligomerization, by affecting the interaction of aS with lipid membranes and hence its role in the regulation of synaptic vesicle traffic in neurons.

  11. Oligomerization and Membrane-binding Properties of Covalent Adducts Formed by the Interaction of α-Synuclein with the Toxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL)*

    PubMed Central

    Follmer, Cristian; Coelho-Cerqueira, Eduardo; Yatabe-Franco, Danilo Y.; Araujo, Gabriel D. T.; Pinheiro, Anderson S.; Domont, Gilberto B.; Eliezer, David

    2015-01-01

    Oxidative deamination of dopamine produces the highly toxic aldehyde 3,4-dihydroxyphenylacetaldehyde (DOPAL), enhanced production of which is found in post-mortem brains of Parkinson disease patients. When injected into the substantia nigra of rat brains, DOPAL causes the loss of dopaminergic neurons accompanied by the accumulation of potentially toxic oligomers of the presynaptic protein α-synuclein (aS), potentially explaining the synergistic toxicity described for dopamine metabolism and aS aggregation. In this work, we demonstrate that DOPAL interacts with aS via formation of Schiff-base and Michael-addition adducts with Lys residues, in addition to causing oxidation of Met residues to Met-sulfoxide. DOPAL modification leads to the formation of small aS oligomers that may be cross-linked by DOPAL. Both monomeric and oligomeric DOPAL adducts potently inhibit the formation of mature amyloid fibrils by unmodified aS. The binding of aS to either lipid vesicles or detergent micelles, which results in a gain of α-helix structure in its N-terminal lipid-binding domain, protects the protein against DOPAL adduct formation and, consequently, inhibits DOPAL-induced aS oligomerization. Functionally, aS-DOPAL monomer exhibits a reduced affinity for small unilamellar vesicles with lipid composition similar to synaptic vesicles, in addition to diminished membrane-induced α-helical content in comparison with the unmodified protein. These results suggest that DOPAL could compromise the functionality of aS, even in the absence of protein oligomerization, by affecting the interaction of aS with lipid membranes and hence its role in the regulation of synaptic vesicle traffic in neurons. PMID:26381411

  12. Correlation of mutagenic potencies of various petroleum oils and oil coal tar mixtures with DNA adduct levels in vitro.

    PubMed

    Reddy, M V; Blackburn, G R; Schreiner, C A; Mackerer, C R

    1997-08-01

    An in vitro system was utilized to measure DNA adduct-forming ability of petroleum oils and oil coal tar mixtures to define correlations between DNA adduct levels and their mutagenic potencies. The system consisted of reaction of dimethyl sulfoxide extracts of oils with calf thymus DNA in the presence of Aroclor-induced hamster liver microsomes for 30 min. Following DNA extraction, DNA adducts were measured by the nuclease P1-enhanced postlabeling assay coupled with two-dimensional polyethyleneimine (PEI)-cellulose TLC. Thin layer plates showed putative aromatic DNA adducts, with levels ranging from 60 to 1400 adducts per 10(9) DNA nucleotides. TLC mobilities suggested adducts to be aromatic compounds containing 4 or more rings. A good correlation (coefficient of correlation = 0.91) was observed between DNA adduct levels and Salmonella mutagenicity for 19 oils. All 19 samples tested produced DNA adducts. To expedite the TLC procedure, adducts were resolved by one-dimensional TLC and the radioactivity measured using a mechanical scanner. Results were comparable to those obtained by two-dimensional TLC and quantification after scraping. Our data show that the in vitro incubation system coupled with the postlabeling adduct assay is a useful screening method to identify mutagenic and potentially carcinogenic oils.

  13. The use of an artificial nucleotide for polymerase-based recognition of carcinogenic O6-alkylguanine DNA adducts

    PubMed Central

    Wyss, Laura A.; Nilforoushan, Arman; Williams, David M.; Marx, Andreas; Sturla, Shana J.

    2016-01-01

    Enzymatic approaches for locating alkylation adducts at single-base resolution in DNA could enable new technologies for understanding carcinogenesis and supporting personalized chemotherapy. Artificial nucleotides that specifically pair with alkylated bases offer a possible strategy for recognition and amplification of adducted DNA, and adduct-templated incorporation of an artificial nucleotide has been demonstrated for a model DNA adduct O6-benzylguanine by a DNA polymerase. In this study, DNA adducts of biological relevance, O6-methylguanine (O6-MeG) and O6-carboxymethylguanine (O6-CMG), were characterized to be effective templates for the incorporation of benzimidazole-derived 2′-deoxynucleoside-5′-O-triphosphates (BenziTP and BIMTP) by an engineered KlenTaq DNA polymerase. The enzyme catalyzed specific incorporation of the artificial nucleotide Benzi opposite adducts, with up to 150-fold higher catalytic efficiency for O6-MeG over guanine in the template. Furthermore, addition of artificial nucleotide Benzi was required for full-length DNA synthesis during bypass of O6-CMG. Selective incorporation of the artificial nucleotide opposite an O6-alkylguanine DNA adduct was verified using a novel 2′,3′-dideoxy derivative of BenziTP. The strategy was used to recognize adducts in the presence of excess unmodified DNA. The specific processing of BenziTP opposite biologically relevant O6-alkylguanine adducts is characterized herein as a basis for potential future DNA adduct sequencing technologies. PMID:27378785

  14. Detection and characterization of DNA adducts formed from metabolites of the fungicide ortho-phenylphenol.

    PubMed

    Zhao, Shouxun; Narang, Amarjit; Gierthy, John; Eadon, George

    2002-05-22

    The significance of DNA adduction in ortho-phenylphenol-induced carcinogenesis remains unclear. Establishing adduct structures may contribute to resolving this issue. The chemical structures of the DNA adduction products resulting from the in vitro reaction of phenylbenzoquinone, the putative ultimate carcinogenic metabolite of the fungicide/disinfectant ortho-phenylphenol, are reported here. Three isomeric adducts that resulted from reaction of deoxyguanosine were characterized by UV, LC-ESI-MS, and MS/MS, and 1D and 2D COSY-NMR spectroscopy. The proposed mechanism of product formation is nucleophilic attack by the deoxyguanosine exocyclic amine nitrogen on an electrophilic quinone carbon, followed by stabilization through enolization. Another nucleophilic attack forms a five-membered ring, which aromatizes by dehydration to form the final product. Adducts were also characterized from deoxyadenosine and deoxycytidine, although conversions were at least 10 times lower. Structures are also proposed for these products. Cell culture studies confirmed that HepG2 cells incubated with phenylbenzoquinone at concentrations associated with cytotoxicity form the same DNA adducts.

  15. Malondialdehyde–Deoxyguanosine Adducts among Workers of a Thai Industrial Estate and Nearby Residents

    PubMed Central

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Ceppi, Marcello; Sangrajrang, Suleeporn; Piro, Sara; Boffetta, Paolo

    2010-01-01

    Background Humans living near industrial point emissions can experience high levels of exposures to air pollutants. Map Ta Phut Industrial Estate in Thailand is the location of the largest steel, oil refinery, and petrochemical factory complexes in Southeast Asia. Air pollution is an important source of oxidative stress and reactive oxygen species, which interact with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. Objective We measured the levels of malondialdehyde–deoxyguanosine (dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in petrochemical workers, nearby residents, and subjects living in a control district without proximity to industrial sources. Design We conducted a cross-sectional study to compare the prevalence of malondialdehyde-dG adducts in groups of subjects experiencing various degrees of air pollution. Results The multivariate regression analysis shows that the adduct levels were associated with occupational and environmental exposures to air pollution. The highest adduct level was observed in the steel factory workers. In addition, the formation of DNA damage tended to be associated with tobacco smoking, but without reaching statistical significance. A nonsignificant increase in DNA adducts was observed after 4–6 years of employment among the petrochemical complexes. Conclusions Air pollution emitted from the Map Ta Phut Industrial Estate complexes was associated with increased adduct levels in petrochemical workers and nearby residents. Considering the mutagenic potential of DNA lesions in the carcinogenic process, we recommend measures aimed at reducing the levels of air pollution. PMID:20056580

  16. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    PubMed Central

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N-nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O6-alkylguanine DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects. PMID:21234336

  17. Formation of dopamine adducts derived from brain polyunsaturated fatty acids: mechanism for Parkinson disease.

    PubMed

    Liu, Xuebo; Yamada, Naruomi; Maruyama, Wakako; Osawa, Toshihiko

    2008-12-12

    Oxidative stress appears to be directly involved in the pathogenesis of the neurodegeneration of dopaminergic systems in Parkinson disease. In this study, we formed four dopamine modification adducts derived from docosahexaenoic acid (C22:6/omega-3) and arachidonic acid (C18:4/omega-6), which are known as the major polyunsaturated fatty acids in the brain. Upon incubation of dopamine with fatty acid hydroperoxides and an in vivo experiment using rat brain tissue, all four dopamine adducts were detected. Furthermore, hexanoyl dopamine (HED), an arachidonic acid-derived adduct, caused severe cytotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells, whereas the other adducts were only slightly affected. The HED-induced cell death was found to include apoptosis, which also seems to be mediated by reactive oxygen species generation and mitochondrial abnormality. Additionally, the experiments using monoamine transporter inhibitor and mouse embryonic fibroblast NIH-3T3 cells that lack the monoamine transporter indicate that the HED-induced cytotoxicity might specially occur in the neuronal cells. These data suggest that the formation of the docosahexaenoic acid- and arachidonic acid-derived dopamine adducts in vitro and in vivo, and HED, the arachidonic acid-derived dopamine modification adduct, which caused selective cytotoxicity of neuronal cells, may indicate a novel mechanism responsible for the pathogenesis in Parkinson disease.

  18. Cigarette smoke-induced DNA adducts in the respiratory and nonrespiratory tissues of rats

    SciTech Connect

    Gairola, C.G.; Gupta, R.C. )

    1991-01-01

    Formation of DNA adducts is regarded as an essential initial step in the process of chemical carcinogenesis. To determine how chronic exposure to cigarette smoke affects the distribution of DNA adducts in selected respiratory and nonrespiratory tissues. The authors exposed male Sprague-Dawley rats daily to fresh mainstream smoke from the Univ. of Kentucky reference cigarettes (2R1) in a nose-only exposure system for 32 weeks. Blood carboxyhemoglobin, total particulate matter (TPM) intake, and pulmonary aryl hydrocarbon hydroxylase values indicated effective exposure of animals to cigarette smoke. DNA was extracted from three respiratory (larynx, trachea, and lung) and three nonrespiratory (liver, heart, and bladder) tissues and analyzed for DNA adducts by the {sup 32}P-postlabeling assay under conditions capable of detecting low levels of diverse aromatic/hydrophobic adducts. Data showed that the total DNA adducts in the lung, heart, and trachea, and larynx were increased by 10- to 20-fold in the smoke-exposed group. These data suggest selective formation of DNA adducts in the tissues.

  19. Single Molecule Study on Incorporation Efficiency of DPO4 and Klenow Fragment to BPDE Adduct

    NASA Astrophysics Data System (ADS)

    Song, Lu; Yeh, Yin; Balhorn, Rod; Cosman, Monique

    2009-03-01

    DNA synthesis involving high fidelity A-family polymerases such as Klenow fragment is blocked by DNA adducts, while Y-family DNA polymerases such as Dpo4 can bypass the DNA adducts to resume DNA synthesis. So understanding the functional relationship between A-family and Y-family DNA polymerases in DNA replication and the mechanism of bypassing DNA adducts is of great help to explain the cause of mutagenesis. We introduce a flow cell on modified surface to study the incorporation efficiency of Dpo4 and Klenow fragments to benzo[a]pyrene-diol-epoxide (BPDE) adduct at single molecule level. Specifically, we anchor the labeled DNA onto the modified surface with adduct site open for nucleotide incorporation and flow the polymerases and labeled nucleotides into flow cell. With Total Internal Reflection Fluorescence Microscopy (TIRFM) we identify the incorporation of the nucleotides onto the anchored DNA template by identifying the co-localization of the template position and that of the labeled nucleotide. We further quantify the signal densities of the images obtained from the two different polymerases, thus examining whether incorporation reactions have been executed and quantifying the incorporation efficiency of the polymerases. We can also identify, on the specific adduct site, which nucleotide, if any, is incorporated by each of the two polymerases.

  20. Reaction of epichlorohydrin with adenosine, 2'-deoxyadenosine and calf thymus DNA: identification of adducts.

    PubMed

    Sund, Pernilla; Kronberg, Leif

    2006-06-01

    Epichlorohydrin (a probable human carcinogen) was allowed to react with adenosine and the adducts were characterized by NMR and UV spectroscopy, and mass spectrometry. The adduct initially formed was 1-(3-chloro-2-hydroxypropyl)-adenosine, which subsequently ring closures to 1,N(6)-(2-hydroxypropyl)-adenosine at neutral and basic conditions. At acid conditions, the N-1 adduct undergoes a slow deamination to yield 1-(3-chloro-2-hydroxypropyl)-inosine. Minor adducts identified were 7-(3-chloro-2-hydroxypropyl)-adenosine and 3-(3-chloro-2-hydroxypropyl)-adenosine which are easily deglycosylated, and an adduct where the epichlorohydrin residue was attached to the sugar moiety of adenosine. A diadduct, 1,N(6)-(2-hydroxypropyl)-N(6)-(3-chloro-2-hydroxypropyl)-adenosine was also identified. The reaction of epichlorohydrin with calf thymus DNA gave 1,N(6)-(2-hydroxypropyl)-deoxyadenosine and 3-(3-chloro-2-hydroxypropyl)-adenine (major adduct).

  1. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    DOE PAGES

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N -nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O 6more » -alkylguanine DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.« less

  2. Implications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis.

    PubMed

    Balbo, Silvia; Brooks, Philip J

    2015-01-01

    Among various potential mechanisms that could explain alcohol carcinogenicity, the metabolism of ethanol to acetaldehyde represents an obvious possible mechanism, at least in some tissues. The fundamental principle of genotoxic carcinogenesis is the formation of mutagenic DNA adducts in proliferating cells. If not repaired, these adducts can result in mutations during DNA replication, which are passed on to cells during mitosis. Consistent with a genotoxic mechanism, acetaldehyde does react with DNA to form a variety of different types of DNA adducts. In this chapter we will focus more specifically on N2-ethylidene-deoxyguanosine (N2-ethylidene-dG), the major DNA adduct formed from the reaction of acetaldehyde with DNA and specifically highlight recent data on the measurement of this DNA adduct in the human body after alcohol exposure. Because results are of particular biological relevance for alcohol-related cancer of the upper aerodigestive tract (UADT), we will also discuss the histology and cytology of the UADT, with the goal of placing the adduct data in the relevant cellular context for mechanistic interpretation. Furthermore, we will discuss the sources and concentrations of acetaldehyde and ethanol in different cell types during alcohol consumption in humans. Finally, in the last part of the chapter, we will critically evaluate the concept of carcinogenic levels of acetaldehyde, which has been raised in the literature, and discuss how data from acetaldehyde genotoxicity are and can be utilized in physiologically based models to evaluate exposure risk.

  3. Benzo(a)pyrene-albumin adducts in humans exposed to polycyclic aromatic hydrocarbons in an industrial area of Poland.

    PubMed Central

    Kure, E H; Andreassen, A; Ovrebø, S; Grzybowska, E; Fiala, Z; Strózyk, M; Chorazy, M; Haugen, A

    1997-01-01

    OBJECTIVES: The interaction of benzo(a)pyrene with serum albumin was measured in an attempt to identify the actual exposure and to evaluate albumin adduct measurements as biomarkers for exposure monitoring. METHODS: Benzo(a)pyrene-diol-epoxide (BPDE)-albumin adducts were measured by competitive enzyme linked immunosorbent assay (ELISA) in plasma of coke oven plant workers from three plants and from people living in a highly industrialised area of Silesia in Poland. Due to the high air concentrations of polycyclic aromatic hydrocarbons (PAHs) in this area, a control group was selected from a rural non-industrialised area in Poland. Breathing zone air measurements of PAHs were collected from some of the participants. RESULTS: Coke oven plant workers and non-occupationally exposed people had similar concentrations of albumin adducts whereas the rural controls were significantly lower (2.74 fmol adducts/microgram albumin (SEM 0.124)). The mean concentration of BPDE-albumin adduct in plasma of both the occupational and the environmental groups were significantly higher in the summer samples (4.34 fmol adducts/microgram albumin (SEM 0.335) and 4.55 fmol adducts/microgram albumin (SEM 0.296), respectively) than in the winter samples (3.06 fmol adducts/microgram albumin (SEM 0.187) and 3.04 fmol adducts/microgram albumin (SEM 0.184), respectively) even though the air measurements showed higher concentrations of PAHs in the winter. The statistical analysis did not show any effects of air exposures on concentrations of BPDE-albumin adduct. CONCLUSIONS: A multiple regression analysis of the measured concentrations of BPDE-albumin adducts for all the groups, during both seasons, indicates that occupational exposures do not contribute significantly to the formation of adducts. In general, the concentrations of albumin adducts found vary within relatively small limits for the two seasons and between the various groups of participants. No extreme differences were found. PMID

  4. Persistence of benzo[a]pyrene--DNA adducts in hematopoietic tissues and blood of the mummichog, Fundulus heteroclitus.

    PubMed

    Rose, W L; French, B L; Reichert, W L; Faisal, M

    2001-05-01

    The formation and persistence of benzo[a]pyrene (B[a]P)-DNA adducts were investigated in blood, liver and two hematopoietic tissues (anterior kidney and spleen) of the mummichog (Fundulus heteroclitus). Fish were injected with a single, sublethal dose of B[a]P (12 mg/kg body weight) and sampled from 8 to 96 days post-injection. 32P-Postlabeling analysis and storage phosphor imaging were used to resolve and quantify hydrophobic DNA adducts. One major DNA adduct was present in each of the examined tissues at all sampling times. This adduct had similar chromatographic characteristics to those of the adduct standard, 7R,8S,9S-trihydroxy-10S-(N(2)-deoxyguanosyl-3'-phosphate)-7,8,9,10-tetrahydro-benzo[a]pyrene (B[a]PDE-dG). Minor DNA adduct spots, representing less than 2% of the total DNA adducts, were observed in some liver, anterior kidney and spleen samples for up to 32 days post-injection. The B[a]P-DNA adducts reached maximal levels at 32 days post-injection and persisted for at least 96 days in all examined tissues. B[a]P-DNA adduct levels were significantly higher in the liver and anterior kidney than in the spleen from 16 to 96 days (P<0.001), although liver and anterior kidney DNA adduct levels were not significantly different at any time. This is the first controlled study to demonstrate the formation and persistence of B[a]P-DNA adducts in hematopoietic tissues and blood of fishes exposed to the prototypical polycyclic aromatic hydrocarbon, B[a]P. Although persistent DNA adducts are generally recognized as potential initiators of carcinogenic processes, adducts in these vital tissues may also lead to disruption of physiological functions such defense mechanisms and hematopoiesis.

  5. Site-specific excision repair of 1-nitrosopyrene-induced DNA adducts at the nucleotide level in the HPRT gene of human fibroblasts: effect of adduct conformation on the pattern of site-specific repair.

    PubMed Central

    Wei, D; Maher, V M; McCormick, J J

    1996-01-01

    Studies showing that different types of DNA adducts are repaired in human cells at different rates suggest that DNA adduct conformation is the major determinant of the rate of nucleotide excision repair. However, recent studies of repair of cyclobutane pyrimidine dimers or benzo[a]pyrene diol epoxide (BPDE)-induced adducts at the nucleotide level in DNA of normal human fibroblasts indicate that the rate of repair of the same adduct at different nucleotide positions can vary up to 10-fold, suggesting an important role for local DNA conformation. To see if site-specific DNA repair is a common phenomenon for bulky DNA adducts, we determined the rate of repair of 1-nitrosopyrene (1-NOP)-induced adducts in exon 3 of the hypoxanthine phosphoribosyltransferase gene at the nucleotide level using ligation-mediated PCR. To distinguish between the contributions of adduct conformation and local DNA conformation to the rate of repair, we compared the results obtained with 1-NOP with those we obtained previously using BPDE. The principal DNA adduct formed by either agent involves guanine. We found that rates of repair of 1-NOP-induced adducts also varied significantly at the nucleotide level, but the pattern of site-specific repair differed from that of BPDE-induced adducts at the same guanine positions in the same region of DNA. The average rate of excision repair of 1-NOP adducts in exon 3 was two to three times faster than that of BPDE adducts, but at particular nucleotides the rate was slower or faster than that of BPDE adducts or, in some cases, equal to that of BPDE adducts. These results indicate that the contribution of the local DNA conformation to the rate of repair at a particular nucleotide position depends upon the specific DNA adduct involved. However, the data also indicate that the conformation of the DNA adduct is not the only factor contributing to the rate of repair at different nucleotide positions. Instead, the rate of repair at a particular nucleotide

  6. Haemoglobin adducts of aromatic amines: diamines and polyaromatic amines.

    PubMed

    Sabbioni, G; Beyerbach, A

    2000-07-21

    Aromatic amines and nitroarenes are important antioxidants and intermediates in the synthesis of dyes, pesticides and plastics. In the present paper we introduce methods for the synthesis of deuterated standards: 3-[2H8]aminofluoranthene, 3,3'-dimethyl-[2H4]benzidine, [2H4]benzidine, N'-acetyl-[2H4]benzidine, 2,4-[2H6]toluenediamine, 2,6-[2H6]toluenediamine. These standards have been used for the quantification of haemoglobin adducts of diamines and polyaromatic amines. Haemoglobin was hydrolysed in 0.1 M sodium hydroxide and the hydrolysate extracted with dichloromethane. The extracts were derivatised with heptafluorobutyric anhydride and analysed by GC-MS with negative chemical ionisation. In one run up to 15 aromatic amines can be determined: 6-aminochrysene, 3-aminofluoranthene, 2-aminofluorene, 1-aminopyrene, benzidine, 3,3'-dichlorobenzidine, 3,3'-dimethoxybenzidine, 3,3'-dimethylbenzidine, 3,3'-methylenedianiline, 4,4'-methylenedianiline, N'-acetyl-benzidine, N'-acetyl-4,4'-methylenedianiline, 4,4'-methylene bis(2-chloroaniline), 2,4-toluenediamine and 2,6-toluenediamine.

  7. Cellulose based hybrid hydroxylated adducts for polyurethane foams

    NASA Astrophysics Data System (ADS)

    De Pisapia, Laura; Verdolotti, Letizia; Di Mauro, Eduardo; Di Maio, Ernesto; Lavorgna, Marino; Iannace, Salvatore

    2012-07-01

    Hybrid flexible polyurethane foams (HPU) were synthesized by using a hybrid hydroxilated adduct (HHA) based on renewable resources. In particular the HHA was obtained by dispersing cellulose wastes in colloidal silica at room temperature, pressure and humidity. The colloidal silica was selected for its ability of modifying the cellulose structure, by inducing a certain "destructurization" of the crystalline phase, in order to allow cellulose to react with di-isocyanate for the final synthesis of the polyurethane foam. In fact, cellulose-polysilicate complexes are engaged in the reaction with the isocyanate groups. This study provides evidence of the effects of the colloidal silica on the cellulose structure, namely, a reduction of the microfiber cellulose diameter and the formation of hydrogen bonds between the polysilicate functional groups and the hydroxyl groups of the cellulose, as assessed by IR spectroscopy and solid state NMR. The HHA was added to a conventional polyol in different percentages (between 5 and 20%) to synthesize HPU in presence of catalysts, silicone surfactant and diphenylmethane diisocyanate (MDI). The mixture was expanded in a mold and cured for two hours at room temperature. Thermal analysis, optical microscopy and mechanical tests were performed on the foams. The results highlighted an improvement of thermal stability and a decrease of the cell size with respect neat polyurethane foam. Mechanical tests showed an improvement of the elastic modulus and of the damping properties with increasing HHA amount.

  8. Effects of the co-carcinogen catechol on benzo(a)pyrene metabolism and DNA adduct formation in mouse skin

    SciTech Connect

    Melikian, A.A.; Leszczynska, J.M.; Hecht, S.S.; Hoffmann, D.

    1986-01-01

    We have studied the effects of the co-carcinogen catechol (1,2-dihydroxybenzene) on the metabolic activation of (/sup 3/H) benzo(a)pyrene (BaP) in mouse skin, in vivo and on the binding of BaP metabolites to DNA and protein at intervals from 0.5-24 h. Upon topical application of 0.015 mg (/sup 3/H)BaP and 0.25 or 0.5 mg catechol per mouse, catechol had little effect on the total amount of (/sup 3/H)BaP metabolized in mouse skin, but it affected the relative proportions of (/sup 3/H)BaP metabolites. Catechol (0.5 mg/mouse) decreased the proportion of water-soluble (/sup 3/H)BaP metabolites, ethyl acetate-soluble polar metabolites and quinones, but doubled the levels of unconjugated 3-hydroxy-BaP at all measured intervals after treatment. Catechol also caused a small increase in the levels of trans-7,8-dihydroxy-7,8-dihydroBaP and trans-9,10-dihydroxy-9,10-dihydroBaP 0.5 h after treatment. Two hours after treatment, the levels of these metabolites subsided to those of the controls. Catechol did not affect the levels of glutathione conjugates of BaP. However, it caused a decrease in glucuronide and sulphate conjugate formation from BaP. Catechol caused an approximately 2-fold increase in the formation of anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydroBaP (BPDE) DNA adducts and elevated the ratio of anti-syn-BPDE-DNA adducts 1.6 to 2.9-fold. Catechol treatment increased the radioactivity associated with epidermal proteins after (/sup 3/H)BaP application. Because catechol increased levels of 3-hydroxyBaP, we considered the possibility that 3-hydroxyBaP might enhance the tumor initiating activities of BaP or BPDE in mouse skin; a bioassay demonstrated that this was not the case. The results of this study indicate that one important effect of catechol related to its co-carcinogenicity is its ability to enhance formation of anti-BPDE-DNA adducts in mouse skin.

  9. Mutagenicity and DNA adduct formation by the urban air pollutant 2-nitrobenzanthrone.

    PubMed

    Arlt, Volker M; Glatt, Hansruedi; Gamboa da Costa, Gonçalo; Reynisson, Jóhannes; Takamura-Enya, Takeji; Phillips, David H

    2007-08-01

    2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. The highest mutagenic activity of 2-NBA tested in Salmonella typhimurium was exhibited in strain TA1538-hSULT1A1 expressing human sulfotransferase (SULT) 1A1. 2-NBA also induced mutations in Chinese hamster lung V79 cells expressing human N-acetyltransferase 2 or SULT1A1, but no mutagenicity was observed in the parental cell line. DNA adduct formation in vitro was examined in different human cell lines by thin-layer chromatography (32)P-postlabeling. Whereas 3-NBA formed characteristic DNA adducts in lung A549, liver HepG2, colon HCT116, and breast MCF-7 cells, 2-NBA-derived DNA adducts were only observed in A549 and HepG2 cells, indicating differences in the bioactivation of each isomer. The pattern of 2-NBA-derived DNA adducts in both cell lines consisted of a cluster of up to five adducts. In HepG2 cells DNA binding by 2-NBA was up to 14-fold lower than by 3-NBA. DNA adduct formation of 2-NBA was also investigated in vivo in Wistar rats treated with a single dose of 2, 10, or 100 mg/kg body weight (bw). No DNA adduct formation was detected at doses of up to 10 mg/kg bw 2-NBA, even though 3-NBA induced DNA adducts at a dose of 2 mg/kg bw. Only after administration of one high dose of 100 mg/kg bw 2-NBA was a low level of DNA adduct formation detected, and then only in lung tissue. Density functional theory calculations for both NBAs revealed that the nitrenium ion of the 3-isomer is considerably more stable ( approximately 10 kcal/mol) than that of the 2-isomer, providing a possible explanation for the large differences in DNA adduct formation and mutagenicity between 2- and 3-NBA.

  10. Studies on DNA adduction with heterocyclic amines by accelerator mass spectrometry: a new technique for tracing isotope-labelled DNA adduction.

    PubMed

    Turteltaub, K W; Vogel, J S; Frantz, C E; Fultz, E

    1993-01-01

    DNA adduction in rodents at doses equivalent to human dietary exposure (10(4)-10(6)-fold lower than laboratory studies) is being studied using accelerator mass spectrometry (AMS). AMS is a nuclear physics technique for detection of cosmogenic isotopes and has been used for specifically selecting and counting 14C. Using AMS, DNA adducts are detectable at levels of 1-10 adducts/10(12) nucleotides following acute and chronic dosing regimes with 14C-labelled carcinogens. The adduct detection limit has been imposed by the natural abundance of 14C in the samples and animal-to-animal variation. AMS is also being coupled to HPLC, multidimensional TLC and radio-immunoassay. In addition, AMS's great sensitivity makes it useful for demonstrating that drugs and chemicals do not bind to DNA. The use of AMS, however, is limited to situations where radiolabelled agents can be used. The data suggest that AMS is extremely useful in obtaining quantitative data on the effects of carcinogens on DNA at the low doses common for actual human exposures and may be useful in human studies.

  11. Small-scale purification of butyrylcholinesterase from human plasma and implementation of a μLC-UV/ESI MS/MS method to detect its organophosphorus adducts.

    PubMed

    John, Harald; Breyer, Felicitas; Schmidt, Christian; Mizaikoff, Boris; Worek, Franz; Thiermann, Horst

    2015-10-01

    Human butyrylcholinesterase (hBChE) is a serine hydrolase (EC 3.1.1.8) present in all mammalian tissues and the bloodstream. Similar to acetylcholinesterase, the enzyme reacts with organophosphorus compounds (OP) like nerve agents or pesticides that cause enzyme inhibition (BChE adducts). These adducts represent valuable biomarkers for analytical verification of OP exposure. For establishment of these mass spectrometry based methods sufficient amounts of hBChE in high purity are required. Unfortunately, commercial lots are of inappropriate purity thus favouring in-house isolation. Therefore, we developed a small scale procedure to isolate hBChE from citrate plasma. After precipitation by polyethylene glycol (8% w/v and 20% w/v PEG 6000) hBChE was purified from plasma by four consecutive chromatographic steps including anion exchange, affinity extraction and size exclusion. Protein elution was monitored on-line by UV-absorbance (280 nm) followed by continuous fractionation for off-line analysis of (1) hBChE enzyme activity by Ellman assay, (2) protein purity by gel electrophoresis, and (3) protein identity by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Numerous major impurities separated from hBChE were identified. The purified material was used for in vitro incubation with diverse OP to establish a μ-liquid chromatography-ultra violet detection/electrospray ionization tandem-mass spectrometric method (μLC-UV/ESI MS/MS) for detection of hBChE adducts suitable for verification analysis. Analytical data for diverse OP pesticides including deuterated analogues as well as G- and V-type nerve agents and their precursor are summarized. This method was successfully applied to plasma samples provided by the Organisation for the Prohibition of Chemical Weapons (OPCW) for the 4th Biomedical Exercise.

  12. Increase in Mrp1 expression and 4-hydroxy-2-nonenal adduction in heart tissue of Adriamycin-treated C57BL/6 mice.

    PubMed

    Jungsuwadee, Paiboon; Cole, Marsha P; Sultana, Rukhsana; Joshi, Gurujaj; Tangpong, Jitbanjong; Butterfield, D Allan; St Clair, Daret K; Vore, Mary

    2006-11-01

    Multidrug resistance-associated protein 1 (MRP1) mediates the ATP-dependent efflux of endobiotics and xenobiotics, including estradiol 17-(beta-d-glucuronide), leukotriene C(4), and the reduced glutathione conjugate of 4-hydroxy-2-nonenal (HNE), a highly reactive product of lipid peroxidation. Adriamycin is an effective cancer chemotherapeutic drug whose use is limited by cardiotoxicity. Adriamycin induces oxidative stress and production of HNE in cardiac tissue, which may contribute to cardiomyopathy. We investigated the role of Mrp1 in Adriamycin-induced oxidative stress in cardiac tissue. Mice were treated with Adriamycin (20 mg/kg, i.p.), and heart homogenate and sarcolemma membranes were assayed for Mrp1 expression and ATP-dependent transport activity. Expression of Mrp1 was increased at 6 and 24 hours after Adriamycin treatment compared with saline treatment. HNE-adducted proteins were significantly increased (P < 0.001) in the homogenates at 6 hours after Adriamycin treatment and accumulated further with time; HNE adduction of a 190-kDa protein was evident 3 days after Adriamycin treatment. Mrp1 was localized predominately in sarcolemma as shown by confocal and Western blot analysis. Sarcolemma membrane vesicles transported leukotriene C(4) with a K(m) and V(max) of 51.8 nmol/L and 94.1 pmol/min/mg, respectively, and MK571 (10 micromol/L) inhibited the transport activity by 65%. Exposure of HEK(Mrp1) membranes to HNE (10 micromol/L) significantly decreased the V(max) for estradiol 17-(beta-d-glucuronide) transport by 50%. These results show that expression of Mrp1 in the mouse heart is localized predominantly in sarcolemma. Adriamycin treatment increased Mrp1 expression and HNE adduction of Mrp1. Cardiac Mrp1 may play a role in protecting the heart from Adriamycin-induced cardiomyopathy by effluxing HNE conjugates.

  13. Molecular mechanics and antibody binding in the structural analysis of polycyclic aromatic hydrocarbon-diol-epoxide--DNA adducts.

    PubMed

    Weston, A; Newman, M J; Mann, D L; Brooks, B R

    1990-05-01

    Analysis of polycyclic aromatic hydrocarbon (PAH)-DNA adducts using monoclonal antibodies raised against DNA that had been modified with (+-)-r-7-,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene in an enzyme-linked immunosorbent assay, as well as analysis using human serum antibodies and antibodies raised in laboratory animals, have suggested the presence on these adducts of both common and unique immunological epitopes. The molecular mechanics studies reported here establish a model for the analysis of PAH-DNA adducts through the identification of energetically favored binding conformations and they further reveal structural alterations in DNA due to the presence of carcinogen adducts. The data explain the antibody reactivity patterns by defining different molecular presenting surfaces that are available for antibody binding. The preferred orientation of the aromatic portions of the adducts, which align either 3' or 5' in the minor groove, were found to be correlated with antibody reactivity patterns. Examination of the topographical characteristics of the adducts facilitated correlation of adduct-antibody recognition and adduct presenting surface. Significant differences were found between benzo[a]pyrene-diol-epoxide (BPDE)-DNA adducts, which align 5' in the minor groove, and benz[a]anthracene-diol-epoxide (BADE)-DNA and dibenz[a,c]anthracene-diol-epoxide-DNA adducts, which align 3' within the minor groove. Chrysene-diol-epoxide-DNA adducts were found to have only a weak preference for 5' alignment and therefore share topographical characteristics with both BPDE-DNA and BADE-DNA adducts.

  14. Synthesis of an oligodeoxyribonucleotide adduct of mitomycin C by the postoligomerization method via a triamino mitosene.

    PubMed

    Champeil, Elise; Paz, Manuel M; Ladwa, Sweta; Clement, Cristina C; Zatorski, Andrzej; Tomasz, Maria

    2008-07-23

    The cancer chemotherapeutic agent mitomycin C (MC) alkylates and cross-links DNA monofunctionally and bifunctionally in vivo and in vitro, forming six major MC-deoxyguanosine adducts of known structures. The synthesis of one of the monoadducts (8) by the postoligomerization method was accomplished both on the nucleoside and oligonucleotide levels, the latter resulting in the site-specific placement of 8 in a 12-mer oligodeoxyribonucleotide 26. This is the first application of this method to the synthesis of a DNA adduct of a complex natural product. Preparation of the requisite selectively protected triaminomitosenes 14 and 24 commenced with removal of the 10-carbamoyl group from MC, followed by reductive conversion to 10-decarbamoyl-2,7-diaminomitosene 10. This substance was transformed to 14 or 24 in several steps. Both were successfully coupled to the 2-fluoro-O(6)-(2-trimethylsilylethyl)deoxyinosine residue of the 12-mer oligonucleotide. The N(2)-phenylacetyl protecting group of 14 after its coupling to the 12-mer oligonucleotide could not be removed by penicillinamidase as expected. Nevertheless, the Teoc protecting group of 24 after coupling to the 12-mer oligonucleotide was removed by treatment with ZnBr2 to give the adducted oligonucleotide 26. However, phenylacetyl group removal was successful on the nucleoside-level synthesis of adduct 8. Proof of the structure of the synthetic nucleoside adduct included HPLC coelution and identical spectral properties with a natural sample, and (1)H NMR. Structure proof of the adducted oligonucleotide 26 was provided by enzymatic digestion to nucleosides and authentic adduct 8, as well as MS and MS/MS analysis.

  15. Evaluation of serum estrogen-DNA adducts as potential biomarkers for breast cancer risk.

    PubMed

    Pruthi, Sandhya; Yang, Li; Sandhu, Nicole P; Ingle, James N; Beseler, Cheryl L; Suman, Vera J; Cavalieri, Ercole L; Rogan, Eleanor G

    2012-10-01

    This study was conducted to determine whether the ratio of estrogen-DNA adducts to their respective metabolites and conjugates in serum differed between women with early-onset breast cancer and those with average or high risk of developing breast cancer. Serum samples from women at average risk (n=63) or high risk (n=80) for breast cancer (using Gail model) and women newly diagnosed with early breast cancer (n=79) were analyzed using UPLC-MS/MS. Adduct ratios were statistically compared among the three groups, and the Area Under the Receiver Operating Characteristic Curve (AUC) was used to identify a diagnostic cut-off point. The median adduct ratio in the average-risk group was significantly lower than that of both the high-risk group and the breast cancer group (p values<0.0001), and provided good discrimination between those at average versus high risk of breast cancer (AUC=0.84, 95% CI 0.77-0.90). Sensitivity and specificity were maximized at an adduct ratio of 77. For women in the same age and BMI group, the odds of being at high risk for breast cancer was 8.03 (95% CI 3.46-18.7) times higher for those with a ratio of at least 77 compared to those with a ratio less than 77. The likelihood of being at high risk for breast cancer was significantly increased for those with a high adduct ratio relative to those with a low adduct ratio. These findings suggest that estrogen-DNA adducts deserve further study as potential biomarkers for risk of developing breast cancer.

  16. Protective effects of selenium against DNA adducts formation in Inuit environmentally exposed to PCBs

    PubMed Central

    Ravoori, Srivani; Srinivasan, Cidambi; Pereg, Daria; Robertson, Larry W; Ayotte, Pierre; Gupta, Ramesh C

    2012-01-01

    Dietary habits that expose populations to potential toxicants as well as protective agents simultaneously is a realistic scenario where a meaningful assessment of the interactions and net benefit or damage can be made. A group of Inuit from Salluit, Northern Canada are exposed to high levels of PCBs and selenium, both present in the Inuit traditional foods such as blubber from sea mammals and fatty fish. Blood samples were collected from 83 Inuit, 22–70 years old. Blood selenium and PCB levels were determined previously and ranged from 227 to 2,069 µg/L and 1.7 to 143 µg/L, respectively. DNA isolated from white blood cells were analyzed by modified 32P-postlabeling adductomics technology that detects a multitude of highly polar to lipophilic adducts. The levels of 8-oxodG adducts ranged from 470 to 7,400 adducts/109 nucleotides. Other as yet unidentified polar adducts showed a 30 to 800–fold inter-individual variability. Adduct levels were negatively associated with PCB and selenium levels. The subjects were classified into high and low ratio groups, with respect to selenium/PCB. In the high ratio group, the coefficient of selenium is significantly negatively correlated with 8-oxodG (r = −0.38, p = 0.014) and total adducts (r = −0.41, p = 0.009) while there was no correlation within the low selenium/PCB group. This study suggests increasing selenium has mitigating effect in reducing DNA adducts and therefore, possible negative effects of PCB were not rendered. A protective effect of selenium is highlighted. PMID:19735942

  17. DNA adducts of antitumor trans-[PtCl2 (E-imino ether)2].

    PubMed Central

    Brabec, V; Vrána, O; Nováková, O; Kleinwächter, V; Intini, F P; Coluccia, M; Natile, G

    1996-01-01

    It has been shown recently that some analogues of clinically ineffective trans-diamminedichloroplatinum (II) (transplatin) exhibit antitumor activity. This finding has inverted the empirical structure-antitumor activity relationships delineated for platinum(II) complexes, according to which only the cis geometry of leaving ligands in the bifunctional platinum complexes is therapeutically active. As a result, interactions of trans platinum compounds with DNA, which is the main pharmacological target of platinum anticancer drugs, are of great interest. The present paper describes the DNA binding of antitumor trans-[PtCl(2)(E-imino ether)(2)] complex (trans-EE) in a cell-free medium, which has been investigated using three experimental approaches. They involve thiourea as a probe of monofunctional DNA adducts of platinum (II) complexes with two leaving ligands in the trans configuration, ethidium bromide as a probe for distinguishing between monofunctional and bifunctional DNA adducts of platinum complexes and HPLC analysis of the platinated DNA enzymatically digested to nucleosides. The results show that bifunctional trans-EE preferentially forms monofunctional adducts at guanine residues in double-helical DNA even when DNA is incubated with the platinum complex for a relatively long time (48 h at 37 degrees C in 10 mM NaCIO(4). It implies that antitumor trans-EE modifies DNA in a different way than clinically ineffective transplatin, which forms prevalent amount of bifunctional DNA adducts after 48 h. This result has been interpreted to mean that the major adduct of trans-EE, occurring in DNA even after long reaction times, is a monofunctional adduct in which the reactivity of the second leaving group is markedly reduced. It has been suggested that the different properties of the adducts formed on DNA by transplatin and trans-EE are relevant to their distinct clinical efficacy. PMID:8628659

  18. The analysis of DNA adducts: The transition from 32P-postlabeling to mass spectrometry

    PubMed Central

    Klaene, Joshua J.; Sharma, Vaneet K.; Glick, James; Vouros, Paul

    2012-01-01

    The technique of 32P-postlabeling, which was introduced in 1982 for the analysis of DNA adducts, has long been the method of choice for in vivo studies because of its high sensitivity as it requires only <10 μg DNA to achieve the detection of 1 adduct in 1010 normal bases. 32P-postlabeling has therefore been utilized in numerous human and animal studies of DNA adduct formation. Like all techniques 32P-postlabeling does have several disadvantages including the use of radioactive phosphorus, lack of internal standards, and perhaps most significantly does not provide any structural information for positive identification of unknown adducts, a shortcoming that could significantly hamper progress in the field. Structural methods have since been developed to allow for positive identification of DNA adducts, but to this day, the same level of sensitivity and low sample requirements provided by 32P-postlabeling have not been matched. In this mini review we will discuss the 32P-postlabeling method and chronicle the transition to mass spectrometry via the hyphenation of gas chromatography, capillary electrophoresis, and ultimately liquid chromatography which, some 30 years later, is only just starting to approach the sensitivity and low sample requirements of 32P-postlabeling. This paper focuses on the detection of bulky carcinogen-DNA adducts, with no mention of oxidative damage or small alkylating agents. This is because the 32P-postlabeling assay is most compatible with bulky DNA adducts. This will also allow a more comprehensive focus on a subject that has been our particular interest since 1990. PMID:22960573

  19. Development of Polyclonal Antibodies for the Detection of Styrene Oxide Modified Proteins

    PubMed Central

    Yuan, Wei; Chung, Jouku; Gee, Shirley; Hammock, Bruce D.; Zheng, Jiang

    2008-01-01

    Styrene is widely used as one of the most important industrial materials for the production of synthetic rubbers, plastic, insulation, fiberglass, and automobile parts. Inhaled styrene has been reported to produce respiratory toxicity in humans and animals. Styrene oxide, a reactive metabolite of styrene formed via cytochrome P450 enzymes, has been reported to form covalent bonds with proteins, such as albumin and hemoglobin. Among all of the amino acids, cysteine is the most reactive amino acid to be modified by electrophilic species. The purpose of this study is to develop polyclonal antibodies for the detection of styrene oxide cysteinyl protein adducts. Two immunogens were designed, synthesized, and used to induce polyclonal antibodies in rabbits. Immune responses were observed from the raised antibodies by antiserum dilution tests. Competitive ELISA demonstrated that the resulting antibodies specifically recognized the styrene oxide-derived N-acetylcysteine adduct. Western blot results showed that the antibodies recognize styrene oxide-modified albumin. The binding was found to depend on the amount of protein adducts blotted and hapten loading in protein adducts. No cross reaction was observed from the native protein. Competitive Western blots further indicated that these antibodies specifically recognized styrene oxide cysteinyl–protein adducts. Immunoblots revealed the presence of several bands at a molecular weight ranging from 50 to 80 kDa in rat nasal mucosa treated with styrene. In conclusion, we successfully raised polyclonal antibodies to detect styrene oxide-derived protein/cysteine adducts. PMID:17266334

  20. Theoretical characterization of dihydrogen adducts with halide anions

    SciTech Connect

    Vitillo, Jenny G.; Damin, Alessandro; Zecchina, Adriano; Ricchiardi, Gabriele

    2006-06-14

    The interaction between a hydrogen molecule and the halide anions F{sup -}, Cl{sup -}, Br{sup -}, and I{sup -} has been studied at different levels of theory and with different basis sets. The most stable configurations of the complexes have a linear geometry, while the t-shaped complexes are saddle points on the potential energy surface, opposite to what is observed for alkali cations. An electrostatic analysis conducted on the resulting adducts has highlighted the predominance of the electrostatic term in the complexation energy and, in particular, of the quadrupole- and dipole-polarizability dependent contributions. Another striking difference with respect to the positive ions, is the fact that although the binding energies have similar values (ranging between 25 and 3 kJ/mol for F{sup -} and I{sup -}, respectively), the vibrational shift of the {nu}-tilde{sub H-H} and in general the perturbation of the hydrogen molecule in complexes are much greater in the complexes with anions ({delta}{nu}-tilde{sub H-H} ranges between -720 and -65 cm{sup -1}). Another difference with respect to the interaction with cations is a larger charge transfer from the anion to the hydrogen molecule. The {delta}{nu}-tilde is the result of the cooperative role of the electrostatics and of the charge transfer in the interaction. The correlation between binding energies and vibrational shift is far from linear, contrary to what is observed for cation complexes, in accordance with the higher polarizability and dynamic polarizability of the molecule along the molecular axis. The observed correlation may be valuable in the interpretation of spectra and thermodynamic properties of adsorbed H{sub 2} in storage materials.

  1. DNA adducts as a dosimeter for risk estimation

    SciTech Connect

    Belinsky, S.A.; White, C.M.; Devereux, T.R.; Anderson, M.W.

    1987-12-01

    The dose response for O/sup 6/-methylguanine (O/sup 6/MG) formation and cytotoxicity was determined in lung and nasal mucosa from Fischer 344 rats during multiple dose administration of the tobacco-specific nitrosamine 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK). O/sup 6/MG accumulated in the lung following treatment for 12 days with doses of NNK from 0.3 to 100 mgkgday. The dose response for NNK was nonlinear; the O/sup 6/MG-to-dose ratio, an index of alkylation efficiency, increased dramatically as the dose of carcinogen decreased. These data suggest that low- and high-K/sub m/ pathways may exist for activation to NNK to a methylating agent. Marked differences in O/sup 6/MG concentration were observed in specific lung cell populations. The presence of a high-affinity pathway in the Clara cell for activation of NNK may contribute to the potent carcinogenicity observed following low-dose exposure to this tobacco-specific carcinogen. The dose response for O/sup 6/MG formation differed considerably between the respiratory and olfactory mucosa from the nasal passages of the rat. These studies suggest that a low K/sub m/ pathway for NNK activation is also present in the nose and that this pathway is localized predominantly in the respiratory region. These data suggest that both the formation of promutagenic adducts and cell proliferation secondary to toxicity are required for the induction of neoplasia by NNK within the nose.

  2. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    NASA Astrophysics Data System (ADS)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  3. Use of LC-MS/MS and stable isotopes to differentiate hydroxymethyl and methyl DNA adducts from formaldehyde and nitrosodimethylamine.

    PubMed

    Lu, Kun; Craft, Sessaly; Nakamura, Jun; Moeller, Benjamin C; Swenberg, James A

    2012-03-19

    Formaldehyde is a known human and animal carcinogen that forms DNA adducts, and causes mutations. While there is widespread exposure to formaldehyde in the environment, formaldehyde is also an essential biochemical in all living cells. The presence of both endogenous and exogenous sources of formaldehyde makes it difficult to develop exposure-specific DNA biomarkers. Furthermore, chemicals such as nitrosodimethylamine form one mole of formaldehyde for every mole of methylating agent, raising questions about potential cocarcinogenesis. Formaldehyde-induced hydroxymethyl DNA adducts are not stable and need to be reduced to stable methyl adducts for detection, which adds another layer of complexity to identifying the origins of these adducts. In this study, highly sensitive mass spectrometry methods and isotope labeled compounds were used to differentiate between endogenous and exogenous hydroxymethyl and methyl DNA adducts. We demonstrate that N(2)-hydroxymethyl-dG is the primary DNA adduct formed in cells following formaldehyde exposure. In addition, we show that alkylating agents induce methyl adducts at N(2)-dG and N(6)-dA positions, which are identical to the reduced forms of hydroxymethyl adducts arising from formaldehyde. The use of highly sensitive LC-MS/MS and isotope labeled compounds for exposure solves these challenges and provides mechanistic insights on the formation and role of these DNA adducts.

  4. Comparison of EMG activity on abdominal muscles during plank exercise with unilateral and bilateral additional isometric hip adduction.

    PubMed

    Kim, Soo-Yong; Kang, Min-Hyeok; Kim, Eui-Ryong; Jung, In-Gui; Seo, Eun-Young; Oh, Jae-Seop

    2016-10-01

    The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (p<0.05). Bilateral IO, EO, and left RA muscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (p<0.05). These findings suggest that additional isometric hip adduction during the plank exercise could be a useful method to enhance abdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction.

  5. Quantitation of cis-diamminedichloroplatinum II (cisplatin)-DNA-intrastrand adducts in testicular and ovarian cancer patients receiving cisplatin chemotherapy.

    PubMed

    Reed, E; Yuspa, S H; Zwelling, L A; Ozols, R F; Poirier, M C

    1986-02-01

    The antitumor activity of cis-diamminedichloroplatinum II (cisplatin) is believed to be related to its covalent interaction with DNA where a major DNA binding product is an intrastrand N7-bidentate adduct on adjacent deoxyguanosines. A novel immunoassay was used to quantitate this adduct in buffy coat DNA from testicular and ovarian cancer patients undergoing cisplatin therapy. 44 out of 120 samples taken from 45 cisplatin patients had detectable cisplatin-DNA adducts. No adducts were detected in 18 samples of DNA taken from normal controls, patients on other chemotherapy, or patients before treatment. The quantity of measurable adducts increased as a function of cumulative dose of cisplatin. This was observed both during repeated daily infusion of the drug and over long-term, repeated 21-28 d cycles of administration. These results suggested that adduct removal is slow even though the tissue has a relatively rapid turnover. Patients receiving cisplatin for the first time on 56-d cycles, and those given high doses of cisplatin as a "salvage" regimen, did not accumulate adducts as rapidly as patients on first time chemotherapy on 21- or 28-d cycles. Disease response data, evaluated for 33 cisplatin-treated patients, showed a positive correlation between the formation of DNA adducts and response to drug therapy. However, more data will be required to confirm this relationship. These data show that specific immunological probes can readily be applied to quantitate DNA adducts in patients undergoing cancer chemotherapy.

  6. Formation of metal-ion adducts and evidence for surface-catalyzed ionization in electrospray analysis of pharmaceuticals and pesticides

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.

    2002-01-01

    The formation of metal ion adducts in liquid chromatography/mass spectrometry positive-ion electrospray analysis of pharmaceuticals and pesticides was investigated. The evidence of surface-catalyzed ionization in the electrospray analysis was also studied. Both positive and negative ion mass spectrometry were used for the analysis of the products. It was found that the sodium adducts formed in the analysis included single, double, and triple sodium adducts. Adduction was found to occur by attachment of the metal ion to carboxyl, carbonyl and aromatic pi electrons of the molecule.

  7. DNA adduct formation in precision-cut rat liver and lung slices exposed to benzo[a]pyrene.

    PubMed

    Harrigan, Jeanine A; Vezina, Chad M; McGarrigle, Barbara P; Ersing, Noreen; Box, Harold C; Maccubbin, Alexander E; Olson, James R

    2004-02-01

    Chemical-DNA adducts provide an integrated measure of exposure, absorption, bioactivation, detoxification, and DNA repair following exposure to a genotoxic agent. Benzo[a]pyrene (BaP), a prototypical polycyclic aromatic hydrocarbon (PAH), can be bioactivated by cytochrome P-450s (CYPs) and epoxide hydrolase to genotoxic metabolites which form covalent adducts with DNA. In this study, we utilized precision-cut rat liver and lung slices exposed to BaP to investigate tissue-specific differences in chemical absorption and formation of DNA adducts. To investigate the contribution of bioactivating CYPs (such as CYP1A1 and CYP1B1) on the formation of BaP-DNA adducts, animals were also pretreated in vivo with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) prior to in vitro incubation of tissue slices with BaP. Furthermore, the tissue distribution of BaP and BaP-DNA adduct levels from in vivo studies were compared with those from the in vitro tissue slice experiments. The results indicate a time- and concentration-dependent increase in tissue-associated BaP following exposure of rat liver and lung tissue slices to BaP in vitro, with generally higher levels of BaP retained in lung tissue. Furthermore, rat liver and lung slices metabolized BaP to reactive intermediates that formed covalent adducts with DNA. Total BaP-DNA adducts increased with concentration and incubation time. Adduct levels (fmol adduct/microg DNA) in lung slices were greater than liver at all doses. Liver slices contained one major and two minor adducts, while lung slices contained two major and 3 minor adducts. The tissue-specific qualitative profile of these adducts in tissue slices was similar to that observed from in vivo studies, further validating the use of this model. Pretreatment of animals with TCDD prior to in vitro incubation with BaP potentiated the levels of DNA adduct formation. TCDD pretreatment altered the adduct distribution in lung but not in liver slices. Together, the results

  8. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  9. Diaphragm Abnormalities in Patients with End-Stage Heart Failure: NADPH Oxidase Upregulation and Protein Oxidation

    PubMed Central

    Ahn, Bumsoo; Coblentz, Philip D.; Beharry, Adam W.; Patel, Nikhil; Judge, Andrew R.; Moylan, Jennifer. S.; Hoopes, Charles W.; Bonnell, Mark R.; Ferreira, Leonardo F.

    2017-01-01

    Patients with heart failure (HF) have diaphragm abnormalities that contribute to disease morbidity and mortality. Studies in animals suggest that reactive oxygen species (ROS) cause diaphragm abnormalities in HF. However, the effects of HF on ROS sources, antioxidant enzymes, and protein oxidation in the diaphragm of humans is unknown. NAD(P)H oxidase, especially the Nox2 isoform, is an important source of ROS in the diaphragm. Our main hypothesis was that diaphragm from patients with HF have heightened Nox2 expression and p47phox phosphorylation (marker of enzyme activation) that is associated with elevated protein oxidation. We collected diaphragm biopsies from patients with HF and brain-dead organ donors (controls). Diaphragm mRNA levels of Nox2 subunits were increased 2.5–4.6-fold over controls (p < 0.05). Patients also had increased protein levels of Nox2 subunits (p47phox, p22phox, and p67phox) and total p47phox phosphorylation, while phospho-to-total p47phox levels were unchanged. The antioxidant enzyme catalase was increased in patients, whereas glutathione peroxidase and superoxide dismutases were unchanged. Among markers of protein oxidation, carbonyls were increased by ~40% (p < 0.05) and 4-hydroxynonenal and 3-nitrotyrosines were unchanged in patients with HF. Overall, our findings suggest that Nox2 is an important source of ROS in the diaphragm of patients with HF and increases in levels of antioxidant enzymes are not sufficient to maintain normal redox homeostasis. The net outcome is elevated diaphragm protein oxidation that has been shown to cause weakness in animals. PMID:28119629

  10. Investigating the adduct formation of organic mercury species with carbonic anhydrase and hemoglobin from human red blood cell hemolysate by means of LC/ESI-TOF-MS and LC/ICP-MS.

    PubMed

    Hogeback, Jens; Schwarzer, Miriam; Wehe, Christoph A; Sperling, Michael; Karst, Uwe

    2016-01-01

    The interaction of mercury species with human erythrocytes is studied to investigate possible high molecular binding partners for mercury species. Human blood hemolysate was spiked with methylmercury and investigated by means of liquid chromatography (LC) coupled to electrospray ionization time of flight mass spectrometry (ESI-ToF-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Beside adduct formation of mercury species with hemoglobin, the main compound of the erythrocytes, mercury binding to the enzyme carbonic anhydrase was revealed. Due to an enzymatic digest of the protein-mercury adduct, the binding site at the free thiol group of the protein was identified. These results indicate that carbonic anhydrase might play a role in mercury toxicity.

  11. Cisplatin intrastrand adducts sensitize DNA to base damage by hydrated electrons.

    PubMed

    Behmand, B; Wagner, J R; Sanche, L; Hunting, D J

    2014-05-08

    The oligonucleotide TTTTTGTGTTT with or without a cisplatin adduct was reacted with hydrated electrons generated by ionizing radiation. Hydroxyl radicals were quenched with ethylenediaminetetraacetic acid (EDTA), and the solutions were bubbled with wet nitrogen to eliminate oxygen, a scavenger of hydrated electrons. Prior to irradiation, the structure of the initial cisplatin adduct was identified by mass spectrometry as G-cisplatin-G. Radiation damage to DNA bases was quantified by high-performance liquid chromatography (HPLC), after enzymatic digestion of the TTTTTGTGTTT-cisplatin complex to deoxyribonucleosides. The masses of the platinum adducts following digestion and separation by HPLC were measured by mass spectrometry. Our results demonstrate that hydrated electrons induce damage to thymines as well as detachment of the cisplatin moiety from both guanines in the oligonucleotide. This detachment regenerates both unmodified guanine and damaged guanine, in equimolar amounts. At 1000 Gy, a net average of 2.5 thymines and 1 guanine are damaged for each platinum lost from the oligonucleotide. Given the extensive base damage that occurs for each cisplatin adduct lost, it is clear that, prior to undergoing detachment, these adducts must catalyze several cycles of reactions of hydrated electrons with DNA bases. It is likely that a single reaction leads to the loss of the cisplatin adduct and the damage observed on the guanine base; however, the damage to the thymine bases must require the continued presence of the cisplatin adduct, acting as a catalyst. To our knowledge, this is the first time that platinum-DNA adducts have been shown to have catalytic activity. We propose two pathways for the interaction of hydrated electrons with TTTTTGTGTTT-cisplatin: (1) the hydrated electron is initially captured by a thymine base and transferred by base to base electron hopping to the guanine site, where the cisplatin moiety detaches from the oligonucleotide via dissociative

  12. DNA adduct formation by o-phenylphenol metabolite in vivo and in vitro.

    PubMed

    Ushiyama, K; Nagai, F; Nakagawa, A; Kano, I

    1992-08-01

    [U-14C]o-Phenylphenol (OPP) was found to bind covalently to calf thymus DNA during a 60 min incubation in the presence of microsomes, but not in their absence, indicating that metabolic conversion of the parent compound, OPP, to an activated form is essential. Postlabeling analysis with bladder DNA of rats fed a diet containing 2% OPP for 13 weeks revealed one major adduct on TLC. In an in vitro postlabeling experiment with calf thymus DNA, both of the major metabolites of OPP, phenylhydroquinone (PHQ) and phenylbenzoquinone (PBQ), formed adducts, but no adducts were observed with OPP. The chemical structure responsible for adduct formation is thought to be the PHQ semiquinone radical intermediate formed during interconversion between PHQ and PBQ. When the oligonucleotides, pd(A)12-18, pd(C)12-18, pd(G)12-18 and pd(T)12-18, were used in vitro, only pd(G)12-18 gave TLC-detectable adducts on treatment with PHQ and PBQ. The covalent binding appears to be rather specific to guanine residues. These results suggest that covalent binding of the OPP metabolite is one of the underlying events in OPP-induced carcinogenesis in rats.

  13. 32P-postlabeling analysis of non-radioactive aromatic carcinogen--DNA adducts.

    PubMed

    Gupta, R C; Reddy, M V; Randerath, K

    1982-01-01

    A newly developed enzymatic 32P-postlabeling method was applied to the analysis of DNA's containing non-radioactive arylamine, arylamide, and polycyclic aromatic hydrocarbon adducts. DNA reacted in vitro with N-hydroxy-2-amino-fluorene, N-acetoxy-2-acetylaminofluorene, and 7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, respectively, as well as DNA preparations from the liver of rats treated with N-hydroxy-2-acetylaminofluorene and benzo[a]pyrene, respectively, were enzymatically digested to deoxyribonucleoside 3'-monophosphates, which were then converted to [5'-32P]deoxyribonucleoside 3',5'-bisphosphates by T4 polynucleotide kinase-catalyzed [32P]phosphate transfer from [gamma-32P]ATP. The 32P-labeled nucleotides were resolved by anion-exchange t.l.c. on polyethyleneimine-cellulose and detected by autoradiography. Aromatic adduct nucleotides were found to be retained at the origin in aqueous electrolyte solutions, but to migrate as distinct spots in solvents containing 7-8.5 M urea. Advantage was taken of this observation to remove 32P-labeled normal DNA nucleotides from adduct nucleotides. This purification enabled the detection of a single adduct in 10(7)-10(8) normal nucleotides. The method appears applicable to the ultrasensitive detection of a large number of carcinogen--DNA adducts of diverse structure without requiring radioactive carcinogens or specific antibodies.

  14. Screening of hydrophobic DNA adducts in flounder (Platichthys flesus) from the Baltic Sea.

    PubMed

    Malmström, C; Konn, M; Bogovski, S; Lang, T; Lönnström, L-G; Bylund, G

    2009-12-01

    Neoplasia and other histopathological lesions in flounder (Platichthys flesus) liver have been investigated in several European sea areas, including the Baltic Sea. Several studies have been able to link neoplasm epizootics in fish with the exposure to genotoxins such as polycyclic aromatic hydrocarbons (PAHs). The level of hydrophobic DNA adducts in tissue DNA reflects the exposure of the organism to PAHs. Using hydrophobic DNA adduct levels as biomarkers, possible PAH exposure was assessed in flounder from 10 different sites in the Baltic Sea, collected during the years 1995-1997. The results show that the overall levels of hepatic DNA adducts were low and, in general, the chromatograms appeared clean. The highest levels of DNA adducts were found at two sites in the southern Baltic Sea. There were no statistically significant differences in adduct levels between the sites. Our results indicate that flounder from studied off shore sites of the Baltic Sea had not been exposed to a greater extent to large polycyclic hydrophobic hydrocarbons in their environment.

  15. The localization of DMPO spin adducts of OH in endothelial cells exposed to hydrogen peroxide.

    PubMed

    Kaneko, M; Kodama, M; Inoue, F

    1995-11-01

    Examination by electron spin resonance (ESR) spectroscopy revealed the localization of 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) spin adducts of hydroxyl radicals (.OH) produced by bovine endothelial cells exposed to hydrogen peroxide. Addition of 10 mM chromium oxalate, a line-broadening agent, to the reaction mixture virtually abolished the signal of DMPO-OH spin adducts. Moreover, the spin adducts were recovered in the filtrated fraction of the cell suspension. We, therefore, concluded that the location of DMPO-OH due to .OH radicals produced by endothelial cells was extracellular. Contrastingly, the site of formation of DMPO-OH was confirmed to be intracellular by the effect of Desferal, an iron chelator, and the effect of poly(ethylene glycol), an extracellular scavenger of OH radicals, as previously reported. The DMPO-OH adducts in the cell suspension mixture were degraded by a cyanide sensitive pathway and they were apparently more unstable than in the extracellular fraction. The initial amount of DMPO-OH adducts formed in endothelial cells could potentially be monitored by the DMPO-OH signals in the extracellular reaction mixture better than those in the cell suspension mixture.

  16. DNA isolation and sample preparation for quantification of adduct levels by accelerator mass spectrometry.

    PubMed

    Dingley, Karen H; Ubick, Esther A; Vogel, John S; Ognibene, Ted J; Malfatti, Michael A; Kulp, Kristen; Haack, Kurt W

    2014-01-01

    Accelerator mass spectrometry (AMS) is a highly sensitive technique used for the quantification of adducts following exposure to carbon-14- or tritium-labeled chemicals, with detection limits in the range of one adduct per 10(11)-10(12) nucleotides. The protocol described in this chapter provides an optimal method for isolating and preparing DNA samples to measure isotope-labeled DNA adducts by AMS. When preparing samples, special precautions must be taken to avoid cross-contamination of isotope among samples and produce a sample that is compatible with AMS. The DNA isolation method described is based upon digestion of tissue with proteinase K, followed by extraction of DNA using Qiagen isolation columns. The extracted DNA is precipitated with isopropanol, washed repeatedly with 70 % ethanol to remove salt, and then dissolved in water. DNA samples are then converted to graphite or titanium hydride and the isotope content measured by AMS to quantify adduct levels. This method has been used to reliably generate good yields of uncontaminated, pure DNA from animal and human tissues for analysis of adduct levels.

  17. Lewis acid-base adducts: a quantitative Raman analysis of formamide and dimethylsulfoxide mixtures.

    PubMed

    Alves, Wagner A; Antunes, Octavio A C

    2007-07-01

    Raman spectra of pure liquid dimethylsulfoxide (DMSO) and of binary mixtures of formamide (FA) and DMSO in different compositions were obtained. The vibrations involving the SO functional group in the band envelope at ca. 1050 cm(-1) of pure liquid DMSO are assigned to monomers, dimers and higher aggregates of DMSO. The appearance of a new band at 1024 cm(-1), whose intensity shows large dependence on the FA concentration, is assigned to a FA-DMSO adduct. This has been possible due to the two H-bond donor sites of FA and the strong donor character of DMSO that become the environment propitious for the donor-acceptor reaction. Quantitative analysis performed in the SO stretching region in the binary mixtures gives a 1:1 stoichiometry in this adduct in the limit of infinite dilution. This proportion is in full agreement with our previous determination for the FA-ACN adduct. The experimental evidence of the 1:1 FA-DMSO adduct is presented for the first time using Raman spectroscopy. The results described here open new possibilities to study the acid-base reactions nature of FA adducts.

  18. Lewis acid-base adducts: A quantitative Raman analysis of formamide and dimethylsulfoxide mixtures

    NASA Astrophysics Data System (ADS)

    Alves, Wagner A.; Antunes, Octavio A. C.

    2007-07-01

    Raman spectra of pure liquid dimethylsulfoxide (DMSO) and of binary mixtures of formamide (FA) and DMSO in different compositions were obtained. The vibrations involving the SO functional group in the band envelope at ca. 1050 cm -1 of pure liquid DMSO are assigned to monomers, dimers and higher aggregates of DMSO. The appearance of a new band at 1024 cm -1, whose intensity shows large dependence on the FA concentration, is assigned to a FA-DMSO adduct. This has been possible due to the two H-bond donor sites of FA and the strong donor character of DMSO that become the environment propitious for the donor-acceptor reaction. Quantitative analysis performed in the SO stretching region in the binary mixtures gives a 1:1 stoichiometry in this adduct in the limit of infinite dilution. This proportion is in full agreement with our previous determination for the FA-ACN adduct. The experimental evidence of the 1:1 FA-DMSO adduct is presented for the first time using Raman spectroscopy. The results described here open new possibilities to study the acid-base reactions nature of FA adducts.

  19. Thymine photodimer formation in DNA hairpins. Unusual conformations favor (6 - 4) vs. (2 + 2) adducts.

    PubMed

    Hariharan, Mahesh; Siegmund, Karsten; Saurel, Clifton; McCullagh, Martin; Schatz, George C; Lewis, Frederick D

    2014-02-01

    The photochemical reactions of eleven synthetic DNA hairpins possessing a single TT step either in a base-paired stem or in a hexanucleotide linker have been investigated. The major reaction products have been identified as the cis-syn (2 + 2) adduct and the (6 - 4) adduct on the basis of their spectroscopic properties including 1D and 2D NMR spectra, UV spectra and stability or instability to photochemical cleavage. Product quantum yields and ratios determined by HPLC analysis allow the behaviour of the eleven hairpins to be placed into three groups: Group I in which the (2 + 2) adduct is the major product, as is usually the case for DNA, Group II in which comparable amounts of (2 + 2) and (6 - 4) adducts are formed, and Group III in which the major product is the (6 - 4) adduct. The latter behaviour is without precedent in natural or synthetic DNA and appears to be related to the highly fluxional structures of the hairpin reactants. Molecular dynamics simulation of ground state conformations provides quantum yields and product ratios calculated using a single parameter model that are in reasonable agreement with most of the experimental results. Factors which may influence the observed product ratios are discussed.

  20. Rhodium-catalyzed formation of stereocontrolled trisubstituted alkenes from Baylis-Hillman adducts.

    PubMed

    Gendrineau, Thomas; Demoulin, Nicolas; Navarre, Laure; Genet, Jean-Pierre; Darses, Sylvain

    2009-01-01

    Efficient and general conditions for the formation of stereodefined trisubstituted alkenes by using the rhodium-catalyzed reaction of unactivated Baylis-Hillman adducts with either organoboronic acids or potassium trifluoro(organo)borates are reported (see scheme).We report here efficient and general conditions for the formation of stereodefined trisubstituted alkenes using the rhodium-catalyzed reaction of unactivated Baylis-Hillman adducts with either organoboronic acids and potassium trifluoro(organo)borates. The use of the [{Rh(cod)OH}(2)] precursor gave very fast coupling reactions under low catalyst loading, very mild reaction conditions (from room temperature up to 50 degrees C) and without the need of additional phosphane ligands. Based on the new reaction conditions, the reaction, originally limited to Baylis-Hillman adducts derived from esters, could be extended to a large variety of Baylis-Hillman adducts, bearing either keto, cyano or amido functionalities. Moreover, the reaction of Baylis-Hillman adducts bearing esters functionality was improved and could be conducted at lower temperature using lower catalyst loading.

  1. Metabolic stability of superoxide adducts derived from newly developed cyclic nitrone spin traps.

    PubMed

    Bézière, Nicolas; Hardy, Micael; Poulhès, Florent; Karoui, Hakim; Tordo, Paul; Ouari, Olivier; Frapart, Yves-Michel; Rockenbauer, Antal; Boucher, Jean-Luc; Mansuy, Daniel; Peyrot, Fabienne

    2014-02-01

    Reactive oxygen species are by-products of aerobic metabolism involved in the onset and evolution of various pathological conditions. Among them, the superoxide radical is of special interest as the origin of several damaging species such as H2O2, hydroxyl radical, or peroxynitrite (ONOO(-)). Spin trapping coupled with ESR is a method of choice to characterize these species in chemical and biological systems and the metabolic stability of the spin adducts derived from reaction of superoxide and hydroxyl radicals with nitrones is the main limit to the in vivo application of the method. Recently, new cyclic nitrones bearing a triphenylphosphonium or permethylated β-cyclodextrin moiety have been synthesized and their spin adducts demonstrated increased stability in buffer. In this article, we studied the stability of the superoxide adducts of four new cyclic nitrones in the presence of liver subcellular fractions and biologically relevant reductants using an original setup combining a stopped-flow device and an ESR spectrometer. The kinetics of disappearance of the spin adducts were analyzed using an appropriate simulation program. Our results highlight the interest of the new spin trapping agents CD-DEPMPO and CD-DIPPMPO for specific detection of superoxide with high stability of the superoxide adducts in the presence of liver microsomes.

  2. Serine Protease Catalysis: A Computational Study of Tetrahedral Intermediates and Inhibitory Adducts.

    PubMed

    Ngo, Phong D; Mansoorabadi, Steven O; Frey, Perry A

    2016-08-04

    Peptide boronic acids and peptidyl trifluoromethyl ketones (TFKs) inhibit serine proteases by forming monoanionic, tetrahedral adducts to serine in the active sites. Investigators regard these adducts as analogs of monoanionic, tetrahedral intermediates. Density functional theory (DFT) calculations and fractional charge analysis show that tetrahedral adducts of model peptidyl TFKs are structurally and electrostatically very similar to corresponding tetrahedral intermediates. In contrast, the DFT calculations show the structures and electrostatic properties of analogous peptide boronate adducts to be significantly different. The peptide boronates display highly electrostatically positive boron, with correspondingly negative ligands in the tetrahedra. In addition, the computed boron-oxygen and boron-carbon bond lengths in peptide boronates (which are identical or very similar to the corresponding bonds in a peptide boronate adduct of α-lytic protease determined by X-ray crystallography at subangstrom resolution) are significantly longer than the corresponding bond lengths in model tetrahedral intermediates. Since protease-peptidyl TFKs incorporate low-barrier hydrogen bonds (LBHBs) between an active site histidine and aspartate, while the protease-peptide boronates do not, these data complement the spectroscopic and chemical evidence for the participation of LBHBs in catalysis by serine proteases. Moreover, while the potency of these classes of inhibitors can be correlated to the structures of the peptide moieties, the present results indicate that the strength of their bonds to serine contribute significantly to their inhibitory properties.

  3. Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease.

    PubMed

    Di Domenico, Fabio; Pupo, Gilda; Tramutola, Antonella; Giorgi, Alessandra; Schininà, Maria Eugenia; Coccia, Raffaella; Head, Elizabeth; Butterfield, D Allan; Perluigi, Marzia

    2014-06-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS.

  4. Protein

    MedlinePlus

    ... Search for: Harvard T.H. Chan School of Public Health Email People Departments Calendar Careers Give my.harvard ... Nutrition Source Harvard T.H. Chan School of Public Health > The Nutrition Source > What Should I Eat? > Protein ...

  5. Protein

    MedlinePlus

    ... Go lean with protein. • Choose lean meats and poultry. Lean beef cuts include round steaks (top loin, ... main dishes. • Use nuts to replace meat or poultry, not in addition to meat or poultry (i. ...

  6. The metabolic activation and nucleic acid adducts of naturally-occurring carcinogens: recent results with ethyl carbamate and the spice flavors safrole and estragole.

    PubMed Central

    Miller, J. A.; Miller, E. C.

    1983-01-01

    A small (approximately 30) but varied group of organic and inorganic compounds appear to be carcinogenic in both humans and experimental animals. A much larger number and wider variety of chemical carcinogens, primarily synthetic organic compounds, are known for experimental animals. These agents include a small (approximately 30) and varied group of metabolites of green plants and fungi. Many more of these carcinogens must exist in the living world. As with the synthetic carcinogens, the majority of these naturally occurring carcinogens are procarcinogens that require metabolic conversion into reactive electrophilic and mutagenic ultimate carcinogens. These strong electrophiles combine covalently and non-enzymatically with nucleophilic sites in DNAs, RNAs, proteins, and small molecules in target tissues. One or more of the DNA adducts appear to initiate carcinogenesis in an irreversible manner. The subsequent promotion step leading to gross tumours may be completed by further administration of carcinogen or by treatment with non-carcinogenic promoters. Roles for the RNA and protein adducts in the carcinogenic process have not been excluded. Recent data on the metabolic activation and reactivity in vivo of the naturally occurring carcinogens ethyl carbamate and certain of the alkenylbenzene spice flavours are illustrative of these principles. These agents can initiate the carcinogenic process in male mouse liver with small doses given prior to weaning. Subsequent growth of the liver and male hormonal factors appear to function as promoters leading to gross hepatic tumors after one year. Reactive electrophilic metabolites of ethyl carbamate and of safrole and estragole and their nucleic acid adducts formed during initiation in mouse liver have been characterized. PMID:6191767

  7. Formation and persistence of novel benzo(a)pyrene adducts in rat lung, liver, and peripheral blood lymphocyte DNA

    SciTech Connect

    Ross, J.; Nelson, G.; Kligerman, A.; Erexson, G.; Bryant, M.; Earley, K.; Gupta, R.; Nesnow, S. )

    1990-08-15

    Male CD rats were injected with single i.p. doses of benzo(a)pyrene (B(a)P), and peripheral blood lymphocytes (PBLs), livers, and lungs were removed at various times after administration. DNA adducts were analyzed in each tissue by 32P postlabeling with nuclease P1 enhancement. Sister chromatid exchange frequencies were concomitantly measured in cultured whole blood. B(a)P-DNA adducts were observed in all three tissues from animals sacrificed between 1 and 56 days after injection. Maximal adduction levels occurred at about 4 days after administration, followed by a gradual loss of adducts over the period examined. The apparent half-lives of total DNA adducts were 15 days in liver, 17 days in PBLs, and 22 days in lung. Induced sister chromatid exchanges were linearly related to the amount of DNA adducts remaining in the PBLs at the time of harvest up to 56 days and were significantly elevated above concurrent controls up to 14 days. One of the major adducts found in each tissue was N2-(10 beta-(7 beta,8 alpha,9 alpha-trihydroxy-7,8,9,10-tetrahydrobenzo(a) pyrene)yl)deoxyguanosine. An additional novel major adduct was found in the liver DNA and is derived from the further metabolism of B(a)P-trans-7,8-dihydrodiol. A second major novel B(a)P adduct was found in the DNA of lung tissues and accounts for about 40% of the total adducts present. Experimental evidence suggests that this adduct is derived from a metabolic pathway that includes the formation of 9-hydroxy-B(a)P.

  8. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    PubMed Central

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; Fitzpatrick, Anthony J.; Morgan, Grace G.; McDonald, Aidan R.

    2015-01-01

    High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidising reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are sparse, meaning there is a dearth in the understanding of such oxidants. In this study, a monoanionic NiII-bicarbonate complex was found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (~95%). Electronic absorption, electronic paramagnetic resonance and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = ½), square planar NiIII-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-ditertbutylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. PMID:25612563

  9. Atomic-Resolution Structure of an N(5) Flavin Adduct in D-Arginine Dehydrogenase

    SciTech Connect

    Fu, Guoxing; Yuan, Hongling; Wang, Siming; Gadda, Giovanni; Weber, Irene T.

    2011-09-06

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 {angstrom} atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct.

  10. The influence of antagonist muscle electrical stimulation on maximal hip adduction force

    PubMed Central

    Nakano, Sota; Wada, Chikamune

    2016-01-01

    [Purpose] The aim of this study was to determine whether electrical stimulation of the tensor fascia lata muscle decreases voluntary maximum resistance to passive abduction motion in participants without disease of the central nervous system. [Subjects] The participants were 16 healthy men. [Methods] The hip joint was moved from 10° adduction to 0° adduction with an angular velocity of 7°/s. During the passive leg motion, the subject was asked to resist the motion with maximum force. Two experimental conditions were prepared: (1) electrical stimulation provided to the tensor fascia lata muscle during the passive motion; and (2) no electrical stimulation provided. [Results] The force was 10.2 ± 3.5 kgf with electrical stimulation and 12.2 ± 3.8 kgf without electrical stimulation. [Conclusion] The results suggested that the maximum hip adduction force decreased in participants because of electrical stimulation of the tensor fascia lata muscle. PMID:26957742

  11. Rotational Investigation of the Adducts of Formic Acid with Alcohols, Ethers and Esters

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Spada, Lorenzo; Li, Weixing; Caminati, Walther

    2016-06-01

    Mixtures of formic acid with methyl alcohol, with isopropyl alcohol, with tert-butyl alcohol, with dimethylether and with isopropylformiate have been supersonically expanded as pulsed jets. The obtained cool plumes have been analyzed by Fourier transform microwave spectroscopy. It has been possible to assign the rotational spectra of the 1:1 adducts of formic acid with tert-butyl alcohol, with dimethyl ether and with isopropylformiate. The conformational shapes and geometries of these adducts, as well as the topologies of their itermolecular hydrogen bonds will be presented. An explanation is given of the failure of the assignments of the rotational spectra of the adducts of formic acid with methyl alcohol and isopropyl alcohol.

  12. Spectral characterization of environment-sensitive adducts of interleukin-1 beta.

    PubMed

    Epps, D E; Yem, A W; Fisher, J F; McGee, J E; Paslay, J W; Deibel, M R

    1992-02-15

    We have determined the fluorescence properties of two covalently attached acrylodan derivatives of recombinant human interleukin-1 beta, namely the Cys-8 and Lys-103 adducts. The emission and excitation maxima indicated the presence of two operationally distinct conformers for each probe. The iodide quenching and the kinetics of fluorescence changes associated with guanidinium chloride-induced denaturation show that each covalent adduct exists both in hydrated and dehydrated environments. Furthermore, fluorescence changes associated with the binding of the adducts to a recombinant soluble murine receptor indicated that only the conformers with the label in the hydrophobic environment are competent toward the soluble murine interleukin receptor and that the hydrated and dehydrated conformers are in a dynamic equilibrium on the time scale of the binding experiments.

  13. Solvent effect on the adduct formation of methyltrioxorhenium (MTO) and pyridine: enthalpy and entropy contributions.

    PubMed

    Nabavizadeh, S Masoud; Akbari, Alireza; Rashidi, Mehdi

    2005-07-21

    1:1 adduct formation between methyltrioxorhenium (MTO) and pyridine in different solvents (n-hexane, benzene, chloroform, ethyl acetate, dichloromethane and acetone) was studied using spectrophotometric techniques. The formation constants were determined from the absorbance change of the adduct versus pyridine concentration. The values of the formation constants vary from 114.5 to 752.5 L mol(-1) at T= 20 degrees C depending on the dielectric constant of the solvent (epsilon(r) = 1.89-20.7). Enthalpy and entropy changes during the adduct formation reactions were determined from van't Hoff plots. The measured enthalpy change of -37.0 to -22.2 kJ mol(-1) depends on epsilon(r), which is explained by Onsager's reaction field theory. The measured entropy change ranges from -71.2 to -36.6 J K(-1) mol(-1), and the dependence on the solvent is discussed in terms of the solvation effect.

  14. Inhibition of norovirus 3CL protease by bisulfite adducts of transition state inhibitors.

    PubMed

    Mandadapu, Sivakoteswara Rao; Gunnam, Mallikarjuna Reddy; Tiew, Kok-Chuan; Uy, Roxanne Adeline Z; Prior, Allan M; Alliston, Kevin R; Hua, Duy H; Kim, Yunjeong; Chang, Kyeong-Ok; Groutas, William C

    2013-01-01

    Noroviruses are the most common cause of acute viral gastroenteritis, accounting for >21 million cases annually in the US alone. Norovirus infections constitute an important health problem for which there are no specific antiviral therapeutics or vaccines. In this study, a series of bisulfite adducts derived from representative transition state inhibitors (dipeptidyl aldehydes and α-ketoamides) was synthesized and shown to exhibit anti-norovirus activity in a cell-based replicon system. The ED(50) of the most effective inhibitor was 60 nM. This study demonstrates for the first time the utilization of bisulfite adducts of transition state inhibitors in the inhibition of norovirus 3C-like protease in vitro and in a cell-based replicon system. The approach described herein can be extended to the synthesis of the bisulfite adducts of other classes of transition state inhibitors of serine and cysteine proteases, such as α-ketoheterocycles and α-ketoesters.

  15. A novel organo-zeolite adduct for environmental applications: sorption of phenol.

    PubMed

    Leone, V; Canzano, S; Iovino, P; Salvestrini, S; Capasso, S

    2013-04-01

    A novel organo-zeolite adduct has been synthesized by sorbing humic acids (HA) onto zeolitic tuff and then heating the resulting complex at 330°C for 1.5h. Desorption tests showed that this procedure effectively immobilized HA on the tuff. The crystal structure of the zeolitic tuff and the chemical structure of HA were not altered during the preparation. Phenol sorption analysis demonstrated that the HA-zeolite adduct had good sorbing properties; moreover, the sorbed amount markedly decreased with increased ionic strength. These results point to prospective application of the HA-zeolite adduct as a low-cost and environmentally friendly sorbent for water purification from phenol and possibly other neutral organic pollutants.

  16. Synthesis of Mitomycin C and Decarbamoylmitomycin C N(2) deoxyguanosine-adducts.

    PubMed

    Champeil, Elise; Cheng, Shu-Yuan; Huang, Bik Tzu; Conchero-Guisan, Marta; Martinez, Thibaut; Paz, Manuel M; Sapse, Anne-Marie

    2016-04-01

    Mitomycin C (MC) and Decarbamoylmitomycin C (DMC) - a derivative of MC lacking the carbamate on C10 - are DNA alkylating agents. Their cytotoxicity is attributed to their ability to generate DNA monoadducts as well as intrastrand and interstrand cross-links (ICLs). The major monoadducts generated by MC and DMC in tumor cells have opposite stereochemistry at carbon one of the guanine-mitosene bond: trans (or alpha) for MC and cis (or beta) for DMC. We hypothesize that local disruptions of DNA structure from trans or cis adducts are responsible for the different biochemical responses produced by MC and DMC. Access to DNA substrates bearing cis and trans MC/DMC lesions is essential to verify this hypothesis. Synthetic oligonucleotides bearing trans lesions can be obtained by bio-mimetic methods. However, this approach does not yield cis adducts. This report presents the first chemical synthesis of a cis mitosene DNA adduct. We also examined the stereopreference exhibited by the two drugs at the mononucleotide level by analyzing the formation of cis and trans adducts in the reaction of deoxyguanosine with MC or DMC using a variety of activation conditions. In addition, we performed Density Functional Theory calculations to evaluate the energies of these reactions. Direct alkylation under autocatalytic or bifunctional conditions yielded preferentially alpha adducts with both MC and DMC. DFT calculations showed that under bifunctional activation, the thermodynamically favored adducts are alpha, trans, for MC and beta, cis, for DMC. This suggests that the duplex DNA structure may stabilize/oriente the activated pro-drugs so that, with DMC, formation of the thermodynamically favored beta products are possible in a cellular environment.

  17. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome.

    PubMed

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.

  18. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome

    PubMed Central

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo. PMID:26559182

  19. Conformational evaluation of DNA-carcinogen adducts using semi-empirical potential energy calculations

    SciTech Connect

    Verna, L.K.

    1992-01-01

    The covalent attachment of an aromatic amine to guanine C8 can produce a conformational change within the DNA molecule. This conformational change is likely to influence the altered DNA's biological capacity. The author used semi-empirical potential energy calculations to evaluate conformational patterns of DNA-aromatic amine adducts using the series: aniline, 4-aminobiphenyl, 2-aminofluorene and 1-aminopyrene. An exhaustive search was made of the conformational space for carcinogen modified two-base sequences. Information was incorporated into single stranded modified trimers. Modified strands were incorporated in duplex trimers. Nine-base modified duplexes were constructed and evaluated. This procedure produced distinctly different patterns for each aromatic amine investigated. It was apparent that the base sequence in which the carcinogen modification was found was crucial to the conformational change produced. At the dimer level, aniline allows both syn and anti guanine orientations at the carcinogen modification site. There were base-base and base-carcinogen stacked states, suggesting a flexible adduct easily able to assume many conformations. 4-Aminobiphenyl attachment resulted in low energy base-carcinogen stacked states, and a guanine torsion predominantly in a low syn orientation. The flexibility of this adduct was greatly reduced from that of the aniline adduct. 2-Aminofluorene adducts assumed more of a conformational mix. The major portion was base-base stacked with modified guanine anti, with a portion with base-carcinogen stacking and guanine syn or low syn. 1-Aminopyrene adducts were inflexible. The majority assumed a base-carcinogen stack with guanine syn. The conformational profiles of large modified pieces provided details of a unique low energy wedge conformation, in which aminofluorene, particularly, was able to fit into the minor groove with very little helix distortion.

  20. Kinetics of DNA adduct formation in the oral cavity after drinking alcohol

    PubMed Central

    Balbo, Silvia; Meng, Lei; Bliss, Robin L.; Jensen, Joni A.; Hatsukami, Dorothy K.; Hecht, Stephen S.

    2012-01-01

    Background Alcohol consumption is one of the top-10 risks for the worldwide burden of disease and an established cause of head and neck cancer as well as cancer at other sites. Acetaldehyde, the major metabolite of ethanol, reacts with DNA to produce adducts, which are critical in the carcinogenic process and can serve as biomarkers of exposure and possibly of disease risk. Acetaldehyde associated with alcohol consumption is considered “carcinogenic to humans”. We have previously developed the technology to quantify acetaldehyde-DNA adducts in human tissues, but there are no studies in the literature defining the formation and removal of acetaldehyde-DNA adducts in people who consumed alcohol. Methods We investigated levels of N2-ethylidene-dGuo, the major DNA adduct of acetaldehyde, in DNA from human oral cells at several time points after consumption of increasing alcohol doses. Ten healthy non-smokers were dosed once a week for three weeks. Mouthwash samples were collected before and at several time points after the dose. N2-Ethylidene-dGuo was measured as its NaBH3CN reduction product N2-ethyl-dGuo by LC-ESI-MS/MS. Results N2-ethylidene-dGuo levels increased as much as 100-fold from baseline within 4h after each dose for all subjects and in a dose responsive manner (p = 0.001). Conclusion These results demonstrate an effect of alcohol on oral cell DNA adduct formation, strongly supporting the key role of acetaldehyde in head and neck cancer caused by alcohol drinking. Impact Our results provide some of the first conclusive evidence linking exposure to a lifestyle carcinogen and kinetics of DNA adduct formation in humans. PMID:22301829