Science.gov

Sample records for 4-hydroxyphenyl pyruvate dioxygenase

  1. Photosystem II-inhibitors play a limited role in sweet corn response to 4-hydroxyphenyl pyruvate dioxygenase-inhibiting herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Postemergence (POST) application of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) inhibitors in combination with a photosystem II (PSII) inhibitor, such as atrazine, is common practice in sweet corn production. Given the sensitivity of sweet corn to HPPD-inhibiting herbicides, the objective of this wo...

  2. Spectroscopic and computational studies of NTBC bound to the non-heme iron enzyme (4-hydroxyphenyl)pyruvate dioxygenase: active site contributions to drug inhibition.

    PubMed

    Neidig, Michael L; Decker, Andrea; Kavana, Michael; Moran, Graham R; Solomon, Edward I

    2005-12-01

    (4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) is an alpha-keto-acid-dependent dioxygenase which catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate as part of tyrosine catabolism. While several di- and tri-ketone alkaloids are known as inhibitors of HPPD and used commercially as herbicides, one such inhibitor, [2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC), has also been used therapeutically to treat type I tyrosinemia and alkaptonuria in humans. To gain further insight into the mechanism of inhibition by NTBC, a combination of CD/MCD spectroscopy and DFT calculations of HPPD/Fe(II)/NTBC has been performed to evaluate the contribution of the Fe(II)-NTBC bonding interaction to the high affinity of this drug for the enzyme. The results indicate that the bonding of NTBC to Fe(II) is very similar to that for HPP, both involving similar pi-backbonding interactions between NTBC/HPP and Fe(II). Combined with the result that the calculated binding energy of NTBC is, in fact, approximately 3 kcal/mol less than that for HPP, the bidentate coordination of NTBC to Fe(II) is not solely responsible for its extremely high affinity for the enzyme. Thus, the pi-stacking interactions between the aromatic rings of NTBC and two phenyalanine residues, as observed in the crystallography of the HPPD/Fe(II)/NTBC complex, appear to be responsible for the observed high affinity of drug binding.

  3. Interaction of (4-hydroxyphenyl)pyruvate dioxygenase with the specific inhibitor 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione.

    PubMed

    Kavana, Michael; Moran, Graham R

    2003-09-01

    (4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) is a non-heme Fe(II) enzyme that catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate as part of the tyrosine catabolism pathway. Inhibition of HPPD by the triketone 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC) is used to treat type I tyrosinemia, a rare but fatal defect in tyrosine catabolism. Although triketones have been used for many years as HPPD inhibitors for both medical and herbicidal purposes, the mechanism of inhibition is not well understood. The following work provides mechanistic insight into NTBC binding. The tautomeric population of NTBC in aqueous solution is dominated by a single enol as determined by NMR spectroscopy. NTBC preferentially binds to the complex of HPPD and FeII [HPPD.Fe(II)] as evidenced by a visible absorbance feature centered at 450 nm. The binding of NTBC to HPPD.Fe(II) was observed using a rapid mixing method and was shown to occur in two phases and comprise three steps. A hyperbolic dependence of the first observable process with NTBC concentration indicates a pre-equilibrium binding step followed by a limiting rate (K(1) = 1.25 +/- 0.08 mM, k(2) = 8.2 +/- 0.2 s(-1)), while the second phase (k(3) = 0.76 +/- 0.02 s(-1)) had no dependence on NTBC concentration. Neither K(1),k(2), nor k(3) was influenced by pH in the range of 6.0-8.0. Isotope effects on both k(2) and k(3) were observed when D(2)O is used as the solvent (for k(2), k(h)/k(d) = 1.3; for k(3), k(h)/k(d) = 3.2). It is therefore proposed that the bidentate association of NTBC with the active site metal ion (k(2)) precedes the Lewis acid-assisted conversion of the bound enol to the enolate (k(3)). Although the native enzyme without substrate reacts with molecular oxygen to form the oxidized holoenzyme, the HPPD.Fe(II).NTBC complex does not. When the complex is exposed to atmospheric oxygen, the absorbance feature associated with NTBC binding does not diminish over the course of 2

  4. The Bioactive Lipid 4-Hydroxyphenyl Retinamide Inhibits Flavivirus Replication

    PubMed Central

    Carocci, Margot; Hinshaw, Stephen M.; Rodgers, Mary A.; Villareal, Valerie A.; Burri, Dominique J.; Pilankatta, Rajendra; Maharaj, Natalya P.; Gack, Michaela U.; Stavale, Eric J.; Warfield, Kelly L.

    2014-01-01

    Dengue virus (DENV), a member of the Flaviviridae family, is a mosquito-borne pathogen and the cause of dengue fever. The increasing prevalence of DENV worldwide heightens the need for an effective vaccine and specific antivirals. Due to the dependence of DENV upon the lipid biosynthetic machinery of the host cell, lipid signaling and metabolism present unique opportunities for inhibiting viral replication. We screened a library of bioactive lipids and modulators of lipid metabolism and identified 4-hydroxyphenyl retinamide (4-HPR) (fenretinide) as an inhibitor of DENV in cell culture. 4-HPR inhibits the steady-state accumulation of viral genomic RNA and reduces viremia when orally administered in a murine model of DENV infection. The molecular target responsible for this antiviral activity is distinct from other known inhibitors of DENV but appears to affect other members of the Flaviviridae, including the West Nile, Modoc, and hepatitis C viruses. Although long-chain ceramides have been implicated in DENV replication, we demonstrate that DENV is insensitive to the perturbation of long-chain ceramides in mammalian cell culture and that the effect of 4-HPR on dihydroceramide homeostasis is separable from its antiviral activity. Likewise, the induction of reactive oxygen species by 4-HPR is not required for the inhibition of DENV. The inhibition of DENV in vivo by 4-HPR, combined with its well-established safety and tolerability in humans, suggests that it may be repurposed as a pan-Flaviviridae antiviral agent. This work also illustrates the utility of bioactive lipid screens for identifying critical interactions of DENV and other viral pathogens with host lipid biosynthesis, metabolism, and signal transduction. PMID:25313218

  5. Regioselective synthesis and estrogenicity of (+/-)-8-alkyl-5,7-dihydroxy-4-(4-hydroxyphenyl)-3,4-dihydrocoumarins.

    PubMed

    Roelens, Frederik; Huvaere, Kevin; Dhooge, Willem; Van Cleemput, Marjan; Comhaire, Frank; De Keukeleire, Denis

    2005-10-01

    Nine new (+/-)-8-alkyl-5,7-dihydroxy-4-(4-hydroxyphenyl)-3,4-dihydrocoumarins have been synthesized from 2,4,6-trimethoxybenzaldehyde via a short, efficient, and regioselective pathway, together with the unsubstituted analogue (+/-)-5,7-dihydroxy-4-(4-hydroxyphenyl)-3,4-dihydrocoumarin. The compounds were tested for estrogenic activity using a yeast-based estrogen screen. Weak estrogenicity was determined for seven members of the series.

  6. Synthesis and crystal structure of 3-ammonium-4-hydroxyphenyl sulfonate hemihydrate

    NASA Astrophysics Data System (ADS)

    Belhouchet, M.; Mhiri, T.

    2013-01-01

    The crystal structure of 3-ammonium-4-hydroxyphenyl sulfonate hemihydrate C6H3(NH3)(OH)SO3 · 0.5H2O is determined by single-crystal X-ray diffraction. The unit cell parameters are as follows: a = 11.2395(3), b = 10.3814(3), c = 13.7509(4) Å, β = 100.326(1)°, V = 1578.49(8) Å3, space group P21/ n, Z = 4. The crystal structure can be described us a succession of infinite corrugated layers parallel to ab plane. These layers consist of rings formed by four sulfonate molecules located around a center of symmetry. The rings are connected to each other and to water molecules via O-H...O hydrogen bonds. The structure is further stabilized by π-π interactions between phenyl rings of organic entities of successive layers.

  7. Synthesis and crystal structure of 3-ammonium-4-hydroxyphenyl sulfonate hemihydrate

    SciTech Connect

    Belhouchet, M. Mhiri, T.

    2013-01-15

    The crystal structure of 3-ammonium-4-hydroxyphenyl sulfonate hemihydrate C{sub 6}H{sub 3}(NH{sub 3})(OH)SO{sub 3} {center_dot} 0.5H{sub 2}O is determined by single-crystal X-ray diffraction. The unit cell parameters are as follows: a = 11.2395(3), b = 10.3814(3), c = 13.7509(4) A, {beta} = 100.326(1) Degree-Sign , V = 1578.49(8) A{sup 3}, space group P2{sub 1}/n, Z = 4. The crystal structure can be described us a succession of infinite corrugated layers parallel to ab plane. These layers consist of rings formed by four sulfonate molecules located around a center of symmetry. The rings are connected to each other and to water molecules via O-H...O hydrogen bonds. The structure is further stabilized by {pi}-{pi} interactions between phenyl rings of organic entities of successive layers.

  8. Antagonistic effects of sodium butyrate and N-(4-hydroxyphenyl)-retinamide on prostate cancer.

    PubMed

    Kuefer, Rainer; Genze, Felicitas; Zugmaier, Waltraud; Hautmann, Richard E; Rinnab, Ludwig; Gschwend, Juergen E; Angelmeier, Marina; Estrada, Aidee; Buechele, Berthold

    2007-03-01

    Butyrates and retinoids are promising antineoplastic agents. Here we analyzed effects of sodium butyrate and N-(4-hydroxyphenyl)-retinamide (4-HPR) on prostate cancer cells as monotherapy or in combination in vitro and in vivo. Sodium butyrate and 4-HPR induced concentration-dependent growth inhibition in prostate cancer cells in vitro. The isobologram analysis revealed that sodium butyrate and 4-HPR administered together antagonize effects of each other. For the in vivo studies, a water-soluble complex (4-HPR with a cyclodextrin) was created. A single dose of sodium butyrate and 4-HPR showed a peak level in chicken plasma within 30 minutes. Both compounds induced inhibition of proliferation and apoptosis in xenografts of the chicken chorioallantoic membrane. Analysis of the cytotoxic effects of the drugs used in combination demonstrated an antagonistic effect on inhibition of proliferation and on induction of apoptosis. Prolonged jun N-terminal kinase phosphorylation induced by sodium butyrate and 4-HPR was strongly attenuated when both compounds were used in combination. Both compounds induced inhibition of NF-kappaB. This effect was strongly antagonized in LNCaP cells when the compounds were used in combination. These results indicate that combinational therapies have to be carefully investigated due to potential antagonistic effects in the clinical setting despite promising results of a monotherapy.

  9. An improved and facile method for the synthesis of 1,1-bis(4-hydroxyphenyl)-2-phenylethylene and its derivatives

    SciTech Connect

    Shafii, B.; Atcher, R.W. |; DeSombre, E.R.

    1994-10-01

    The synthesis of 1,1-bis(4-hydroxyphenyl)-2-phenylethylene, which is of biological interest, has been reported by several authors in the past. In this article an improved method is introduced. Different (and commercially available) starting materials are adopted. Also a protective group which is easily attached and removed is used. This procedure provides milder reaction conditions and better yields while the number of steps involved in the synthesis of the compound are reduced. Furthermore, the reactions are clean and formation of byproducts which lead to poorer yields are avoided.

  10. Synthesis, crystal structure and physico-chemical properties of 3,3'-[(4-hydroxyphenyl)methyl] bis-(4-hydroxy-2H-chromen-2-one).

    PubMed

    Elenkova, Denitsa; Morgenstern, Bernd; Manolov, Ilia; Milanova, Maria

    2014-01-01

    The compound 3,3'-[(4-Hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) was synthesized by the Knoevenagel reaction. Crystals, suitable for X-ray data collection, were grown by slow evaporation from an ethanol solution. The product 3,3'-[(4-Hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) · ethanol crystallizes in the monoclinic system, space group P2(1)/n. The ultraviolet/visible absorption spectra in different solvents were recorded. Sensitivity of the compound to solvent polarity and hydrogen bonding with protic (ethanol, H(2)O) and aprotic (dimethylsulfoxide, acetonitrile) solvents was detected. Based on (1)H-NMR spectroscopy as well as on potentiometric and UV/vis titration experiments the acid dissociation constants for 3,3'-[(4-Hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) were estimated. PMID:25551711

  11. Implication of mitochondria-derived ROS and cardiolipin peroxidation in N-(4-hydroxyphenyl)retinamide-induced apoptosis

    PubMed Central

    Asumendi, A; Morales, M C; Alvarez, A; Aréchaga, J; Pérez-Yarza, G

    2002-01-01

    We have studied the effect of N-(4-hydroxyphenyl)retinamide on either malignant human leukaemia cells or normal cells and investigated its mechanism of action. We demonstrate that 4HPR induces reactive oxygen species increase on mitochondria at a target between mitochondrial respiratory chain complex I and II. Such oxidative stress causes cardiolipin peroxidation which in turn allows cytochrome c release to cytosol, caspase-3 activation and therefore apoptotic consumption. Moreover, this apoptotic pathway seems to be bcl-2/bax independent and count only on malignant cells but not normal nor activated lymphocytes. British Journal of Cancer (2002) 86, 1951–1956. doi:10.1038/sj.bjc.6600356 www.bjcancer.com © 2002 Cancer Research UK PMID:12085192

  12. Immunomodulating effect of ethyl pyruvate on nonsyngenic transplanted tumor in mice.

    PubMed

    Bogdanova, L A; Morozkova, T S; Kaledin, V I; Nikolin, V P; Popova, N A

    2013-10-01

    Indolamine-2,3-dioxygenase, a tryptophan-catabolizing enzyme, creates local conditions suppressing immune lymphocytes. Expression of this enzyme in tumors protects them from immune mechanisms, while its inhibition partially reduces tumor immunoresistance. This effect is attained by multiple subcutaneous or intraperitoneal injections of ethyl pyruvate, an indolamine-2,3-dioxygenase inhibitor. Experiments on mouse nonsyngenic tumor have demonstrated the immunomodulating effect of chronic oral ethyl pyruvate administered with drinking water.

  13. Molecular structure and density functional modelling studies of 2-[(E)-2-(4-hydroxyphenyl)ethyliminomethyl]phenol

    NASA Astrophysics Data System (ADS)

    Zeyrek, Celal Tuğrul; Koçak, Selen Bilge; Ünver, Hüseyin; Pektaş, Serhan; Başterzi, Nisan Sevin; Çelik, Ömer

    2015-11-01

    In the present work, the tautomerism in 2-[(E)-2-(4-hydroxyphenyl)ethyliminomethyl]phenol was investigated by experimental (MS, FT-IR, NMR and X-ray diffraction) and computational method [density functional theory (DFT)]. The optimized geometrical structures, atomic charges, molecular electrostatic potential (MEP), natural bond orbital (NBO) and nonlinear optical (NLO) effects of the compound have been investigated by using DFT calculations. The potential energy surface (PES) scans about three important torsion angles are performed by using B3LYP/6-311++G (d,p) level of theoretical approximation for the compound. The experimental (FT-IR) and calculated vibrational frequencies (using DFT) of the title compound have been compared. The 1H and 13C NMR chemical shift assignments have been performed using DFT. To investigate the tautomeric stability, some properties such as total energy, HOMO and LUMO energies of the compound were obtained at B3LYP and B1B95/6-311++G(d,p) level in the gas phase. The calculated results showed that the phenol-imine form of the compound was more favorite than keto-amine form. Moreover, a good correlation between experimental and theoretical data for phenol-imine form of the compound was found.

  14. SYNTHESIS OF THE FULLY PROTECTED PHOSPHORAMIDITE OF THE BENZENE-DNA ADDUCT, N2- (4-HYDROXYPHENYL)-2'-DEOXYGUANOSINE AND INCORPORATION OF THE LATER INTO DNA OLIGOMERS

    SciTech Connect

    Chenna, Ahmed; Gupta, Ramesh C.; Bonala, Radha R.; Johnson, Francis; Huang, Bo

    2008-06-09

    N2-(4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N2-(4-hydroxyphenyl)-2'-dG (N2-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N2-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N2-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.

  15. Preparation and properties of polyformals obtained from 2,2-bis(4-hydroxyphenyl)-1,1,1,3,3,3,-hexafluoropropane and dichloromethane

    SciTech Connect

    Nakamura, S.; Suzuki, Y.; Tamura, E.; Kuriki, M.; Saegusa, Y.

    1993-12-31

    Fluorine-containing aromatic polyformal and copolyformals were prepared from 2,2-bis(4-hydroxyphenyl)-1,1,1,3,3,3,-hexafluoropropane (bis-phenol AF) and/or 2,2-bis(4-hydroxyphenyl)-propane (bisphenol A) with dichloromethane. High molecular-weight polyformal and copolyformals were obtained by using NMP as solvent and in the presence of KOH. The thermal stability was lowered with increasing fluorine content. The Tg increased monotonically with fluorine content from 89{degrees}C for bisphenol A polyformal to 17{degrees}C for bisphenol AF polyformal. Bisphenol a polyformal was soluble in limited solvents, whereas bisphenol AF polyformal was soluble in a wide variety of solvents such aprotic polar solvents, aromatic solvents and chlorinated hydrocarbons.

  16. Molecular Genetic and Crystal Structural Analysis of 1-(4-Hydroxyphenyl)-Ethanol Dehydrogenase from 'Aromatoleum aromaticum' EbN1.

    PubMed

    Büsing, Imke; Höffken, H Wolfgang; Breuer, Michael; Wöhlbrand, Lars; Hauer, Bernhard; Rabus, Ralf

    2015-01-01

    The dehydrogenation of 1-(4-hydroxyphenyl)-ethanol to 4-hydroxyacetophenone represents the second reaction step during anaerobic degradation of p-ethylphenol in the denitrifying bacterium 'Aromatoleum aromaticum' EbN1. Previous proteogenomic studies identified two different proteins (ChnA and EbA309) as possible candidates for catalyzing this reaction [Wöhlbrand et al: J Bacteriol 2008;190:5699-5709]. Physiological-molecular characterization of newly generated unmarked in-frame deletion and complementation mutants allowed defining ChnA (renamed here as Hped) as the enzyme responsible for 1-(4-hydroxyphenyl)-ethanol oxidation. Hped [1-(4-hydroxyphenyl)-ethanol dehydrogenase] belongs to the 'classical' family within the short-chain alcohol dehydrogenase/reductase (SDR) superfamily. Hped was overproduced in Escherichia coli, purified and crystallized. The X-ray structures of the apo- and NAD(+)-soaked form were resolved at 1.5 and 1.1 Å, respectively, and revealed Hped as a typical homotetrameric SDR. Modeling of the substrate 4-hydroxyacetophenone (reductive direction of Hped) into the active site revealed the structural determinants of the strict (R)-specificity of Hped (Phe(187)), contrasting the (S)-specificity of previously reported 1-phenylethanol dehydrogenase (Ped; Tyr(93)) from strain EbN1 [Höffken et al: Biochemistry 2006;45:82-93]. PMID:26488297

  17. Use of 3-(4-hydroxyphenyl)propionic acid as electron donating compound in a potentiometric aflatoxin M1-immunosensor.

    PubMed

    Rameil, Steffen; Schubert, Peter; Grundmann, Peter; Dietrich, Richard; Märtlbauer, Erwin

    2010-02-19

    We developed a potentiometric aflatoxin M(1)-immunosensor which utilizes 3-(4-hydroxyphenyl)propionic acid (p-HPPA) as electron donating compound for horseradish peroxidase (HRP; EC 1.11.1.7). The assay system consists of a polypyrrole-surface-working electrode coated with a polyclonal anti-M(1) antibody (pAb-AFM(1)), a Ag/AgCl reference electrode and a HRP-aflatoxin B(1) conjugate (HRP-AFB(1) conjugate). To optimize the potentiometric measuring system p-HPPA as well as related compounds serving as electron donating compounds were compared. Also the influence of different buffer systems, varying pH and substrate concentrations on signal intensity was investigated. Our results suggest that reaction conditions that favor the formation of Pummerer's type ketones lead to an increase in signal intensity rather than formation of fluorescent dye. Comparison with commercial ready-to-use HRP electron donating compounds such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), o-phenylenediamine (OPD) or 3,3',5,5'-tetramethylbenzidine (TMB) showed that only 34%, 77% and 49% of the signal intensity of p-HPPA were reached, respectively. The optimized assay had a detection limit of 40 pg mL(-1) and allowed detection of 500 pg mL(-1) (FDA action limit) aflatoxin M(1) (AFM(1)) in pasteurized milk and UHT-milk containing 0.3-3.8% fat within 10 min without any sample treatment. The working range was between 250 and 2000 pg mL(-1) AFM(1).

  18. Benzene-derived N2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA

    SciTech Connect

    Hang, Bo; Rodriguez, Ben; Yang, Yanu; Guliaev, Anton B.; Chenna, Ahmed

    2010-06-14

    Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.

  19. Conformer-specific vibronic spectroscopy and vibronic coupling in a flexible bichromophore: Bis-(4-hydroxyphenyl)methane

    NASA Astrophysics Data System (ADS)

    Rodrigo, Chirantha P.; Müller, Christian W.; Pillsbury, Nathan R.; James, William H.; Plusquellic, David F.; Zwier, Timothy S.

    2011-04-01

    The vibronic spectroscopy of jet-cooled bis-(4-hydroxyphenyl)methane has been explored using fluorescence excitation, dispersed fluorescence (DFL), UV-UV hole-burning, UV depletion, and fluorescence-dip infrared spectroscopies. Calculations predict the presence of three nearly isoenergetic conformers that differ in the orientations of the two OH groups in the para positions on the two aromatic rings (labeled uu, dd, and ud). In practice, two conformers (labeled A and B) are observed, with S0-S1 origins at 35 184 and 35 209 cm-1, respectively. The two conformers have nearly identical vibronic spectra and hydride stretch infrared spectra. The low-frequency vibronic structure is assigned to bands involving the phenyl torsions (T and bar T), ring-flapping (R and bar R), and butterfly (β) modes. Symmetry arguments lead to a tentative assignment of the two conformers as the C2 symmetric uu and dd conformers. The S0-S2 origins are assigned to bands located 132 cm-1 above the S0-S1 origins of both conformers. DFL spectra from the S2 origin of the two conformers display extensive evidence for vibronic coupling between the two close-lying electronic states. Near-resonant coupling from the S2 origin occurs dominantly to S1 bar R^1 and S1 bar R^1 β ^1 levels, which are located -15 and +31 cm-1 from it. Unusual vibronic activity in the ring-breathing (ν1) and ring-deformation (ν6a) modes is also attributed to vibronic coupling involving these Franck-Condon active modes. A multimode vibronic coupling model is developed based on earlier theoretical descriptions of molecular dimers [Fulton and Gouterman, J. Chem. Phys. 35, 1059 (1961)] and applied here to flexible bichromophores. The model is able to account for the ring-mode activity under conditions in which the S2 origin is strongly mixed (60%/40%) with S1 overline {6a} ^1 and bar 1^1 levels. The direct extension of this model to the T /bar T and R /bar R inter-ring mode pairs is only partially successful and required some

  20. Simultaneous quantification of vortioxetine, carvedilol and its active metabolite 4-hydroxyphenyl carvedilol in rat plasma by UPLC-MS/MS: Application to their pharmacokinetic interaction study.

    PubMed

    Huang, Yi; Zheng, Shuangli; Pan, Yongyang; Li, Tao; Xu, Zhi-Sheng; Shao, Meng-Meng

    2016-09-01

    To establish a rapid and sensitive ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the determination of vortioxetine, carvedilol and its metabolite 4-hydroxyphenyl carvedilol in rat plasma. The analytes and the internal standard (diazepam) were separated on an Acquity UPLC BEH C18 chromatography column (2.1mm×50mm, 1.7μm) using gradient elution with a mobile phase of acetonitrile and 0.1% formic acid in water at a flow rate of 0.4mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode to monitor the precursor-to-product ion transitions of m/z 299.2→150.1 for vortioxetine, m/z 407.2→100.3 for carvedilol, m/z 423.2→100.1 for 4-hydroxyphenyl carvedilol and m/z 285.2→193.1 for diazepam (IS) using a positive electrospray ionization interface. The method was validated over a concentration range of 0.5-100ng/mL for vortioxetine, 0.5-1000ng/mL for carvedilol and 0.1-50ng/mL for 4-hydroxyphenyl carvedilol. Total time for each chromatograph was 3.0min. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels exhibited relative standard deviations (RSD)<11.6% and the accuracy values ranged from -12.2% to 11.3%. The analytical method was successfully applied to a pharmacokinetic interaction study of vortioxetine and carvedilol after oral administration vortioxetine and carvedilol in rats. Results suggested that the co-administration of vortioxetine and carvedilol results in a significant drug interaction in rats. PMID:27262994

  1. Synthesis and evaluation of 2-halogenated-1,1-bis(4-hydroxyphenyl)-2-(3-hydroxyphenyl)-ethylenes as potential estrogen receptor-targeted radiodiagnostic and radiotherapeutic agents.

    PubMed

    Hanson, Robert N; Tongcharoensirikul, Pakamas; Barnsley, Kelton; Ondrechen, Mary Jo; Hughes, Alun; DeSombre, Eugene R

    2015-04-01

    A series of three 1,1-bis(4-hydroxyphenyl)-2-(3-hydroxyphenyl)-ethylene derivatives was prepared and evaluated as potential estrogen receptor imaging agents. The compounds display high binding affinity compared to estradiol, with the 2-iodo and 2-bromo-derivatives expressing higher affinity than the parent 2-nonhalogenated derivative. Evaluation in immature female rats also indicate that the compounds were all full estrogenic agonists with potencies in the same order of activity (I∼Br>H). Computational analysis of the interactions between the ligands and ERα-LBD demonstrated positive contribution of halide to binding properties. In preparation for studies using the radiohalogenated analogs, the corresponding protected 2-(tributylstannyl) derivative was prepared and converted to the corresponding 2-iodo-product.

  2. Synthesis and evaluation of 2-halogenated-1,1-bis(4-hydroxyphenyl)-2-(3-hydroxyphenyl)-ethylenes as potential estrogen receptor-targeted radiodiagnostic and radiotherapeutic agents.

    PubMed

    Hanson, Robert N; Tongcharoensirikul, Pakamas; Barnsley, Kelton; Ondrechen, Mary Jo; Hughes, Alun; DeSombre, Eugene R

    2015-04-01

    A series of three 1,1-bis(4-hydroxyphenyl)-2-(3-hydroxyphenyl)-ethylene derivatives was prepared and evaluated as potential estrogen receptor imaging agents. The compounds display high binding affinity compared to estradiol, with the 2-iodo and 2-bromo-derivatives expressing higher affinity than the parent 2-nonhalogenated derivative. Evaluation in immature female rats also indicate that the compounds were all full estrogenic agonists with potencies in the same order of activity (I∼Br>H). Computational analysis of the interactions between the ligands and ERα-LBD demonstrated positive contribution of halide to binding properties. In preparation for studies using the radiohalogenated analogs, the corresponding protected 2-(tributylstannyl) derivative was prepared and converted to the corresponding 2-iodo-product. PMID:25637676

  3. Synthesis, spectroscopic and structural elucidation of 1-butyl-4-[2-(3,5-dimethoxy-4-hydroxyphenyl)ethenyl)]pyridinium chloride tetrahydrate

    NASA Astrophysics Data System (ADS)

    Koleva, B. B.; Kolev, T.; Lamshöft, M.; Mayer-Figge, H.; Sheldrick, W. S.; Spiteller, M.

    2009-12-01

    The novel chloride salt of 1-butyl-4-[2-(4-hydroxyphenyl)ethenyl)]pyridine ( 1), has been synthesized as the tetrahydrate and its structure and properties elucidated in detail spectroscopically, thermally and structurally, using single crystal X-ray diffraction, linear-polarized solid-state IR-spectroscopy, UV-spectroscopy and mass spectrometry. Quantum chemical calculations were performed with a view to supporting and explaining the experimental structural and spectroscopic data. The compound ( 1) crystallizes in triclinic P1¯ space group and its unit cell contains two independent 1-butyl-4-[2-(3,5-dimethoxy4-hydroxyphenyl)ethenyl)]pyridinium] cations, differing with respect to the butyl chain torsion angle for which values of 80.0(9)° and 173.6(3)° are observed. The cations and anions are joined into infinite layers, formed by two different dimers and including solvent molecules. Hydrogen bonds OH⋯OH 2 (2.814 Å), HOH⋯O(CH 3) (2.960 Å), OH⋯Cl (2.967 Å), HOH⋯Cl - (3.034, 3.188, 3.161 and 3.062 Å) and HOH⋯OH 2 (2.772 Å) are observed. For first time in the literature, we are reporting the crystal structure of the dye with the syring-fragment in the molecule. The spectroscopic properties of the novel compound are compared and with those of the corresponding quinoide form ( 2). Both the forms ( 1) and ( 2) are characterized by 21 and 140 nm solvatochromic effects depending of the type of the solvent. The UV-spectroscopic data in solution confirm the formation of classical H-aggregates in polar protic solvent mixture.

  4. High Stabilities of Di(1-azulenyl)(4-hydroxyphenyl)methyl Hexafluorophosphates and Polarized Properties of alpha,alpha-Di(1-azulenyl)-1,4-benzoquinone Methides.

    PubMed

    Ito, Shunji; Kikuchi, Shigeru; Kobayashi, Hiroki; Morita, Noboru; Asao, Toyonobu

    1997-04-18

    Acid-catalyzed condensation of azulenes 8a-c with 4-hydroxy- and 3,5-di-tert-butyl-4-hydroxybenzaldehyde leads to substituted di(1-azulenyl)(4-hydroxy- and 3,5-di-tert-butyl-4-hydroxyphenyl)methanes 7a- f, which are easily converted into substituted di(1-azulenyl)(4-hydroxy- and 3,5-di-tert-butyl-4-hydroxyphenyl)methyl cations 5a-f by oxidation with DDQ. The spectroscopic data are consistent with the protonated cationic structures of 5a-f. The electrochemical reduction of 5a-f showed a reversible wave at -0.74 to -0.86 V (V vs Ag/Ag(+)) upon cyclic voltammetry (CV), although 5d and 5e showed an irreversible wave at -0.79 V. The relatively high reduction potentials of 5a-f, compared with those of di(1-azulenyl)phenylmethyl cations 2a-c, exhibit the stabilization by 4-hydroxy substituents on the phenyl groups. These salts (5a-f.PF(6)(-)) bearing 4-hydroxyl groups on the phenyl rings have been converted by treatment with bases to alpha,alpha-di(1-azulenyl)-1,4-benzoquinone methides 6a-f, which revert to 5a-f.PF(6)(-) upon reprotonation with HPF(6). These quinone methides (6a-f) are highly polarized by the extreme-electrodonating properties of 1-azulenyl groups. The highly polarized properties of 6a-f reflected to the high pK(a) values of their conjugate acids (5a-c, 6.5-7.1, and 5d-f, 3.4-3.8). The strong solvatochromic effects also provide strong evidence of a large contribution of dipolar forms (6') in the ground state. The relatively low oxidation potentials of 6a-f (+0.35 to +0.47 V vs Ag/Ag(+)) reflected facile formation of phenoxy radical cations, stabilized by two 1-azulenyl groups. PMID:11671576

  5. The Nitrification Inhibitor Methyl 3-(4-Hydroxyphenyl)Propionate Modulates Root Development by Interfering with Auxin Signaling via the NO/ROS Pathway.

    PubMed

    Liu, Yangyang; Wang, Ruling; Zhang, Ping; Chen, Qi; Luo, Qiong; Zhu, Yiyong; Xu, Jin

    2016-07-01

    Methyl 3-(4-hydroxyphenyl)propionate (MHPP) is a root exudate that functions as a nitrification inhibitor and as a modulator of the root system architecture (RSA) by inhibiting primary root (PR) elongation and promoting lateral root formation. However, the mechanism underlying MHPP-mediated modulation of the RSA remains unclear. Here, we report that MHPP inhibits PR elongation in Arabidopsis (Arabidopsis thaliana) by elevating the levels of auxin expression and signaling. MHPP induces an increase in auxin levels by up-regulating auxin biosynthesis, altering the expression of auxin carriers, and promoting the degradation of the auxin/indole-3-acetic acid family of transcriptional repressors. We found that MHPP-induced nitric oxide (NO) production promoted reactive oxygen species (ROS) accumulation in root tips. Suppressing the accumulation of NO or ROS alleviated the inhibitory effect of MHPP on PR elongation by weakening auxin responses and perception and by affecting meristematic cell division potential. Genetic analysis supported the phenotype described above. Taken together, our results indicate that MHPP modulates RSA remodeling via the NO/ROS-mediated auxin response pathway in Arabidopsis. Our study also revealed that MHPP significantly induced the accumulation of glucosinolates in roots, suggesting the diverse functions of MHPP in modulating plant growth, development, and stress tolerance in plants. PMID:27217493

  6. Structural, spectral, thermal and biological studies on (E)-2-(1-(4-hydroxyphenyl)ethylidene)-N-(pyridin-2-yl)hydrazinecarbothioamide and its metal complexes

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; El-Rakhawy, E. R.

    2014-12-01

    Schiff base complexes of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), Hg(II) and U(VI)O2 with (E)-2-(1-(4-hydroxyphenyl)ethylidene)-N-(pyridin-2-yl)hydrazinecarbothioamide (H2PHAT) were synthesized and characterized by different physicochemical methods, elemental analysis, (UV-vis, IR and 1H NMR spectra) and thermal analysis (TG and DTG) techniques. Spectral data showed that H2PHAT behaves as a NS bidentate ligand through both thione sulphur or thiol sulphur and the nitrogen of the pyridine ring or azomethine nitrogen, NSN tridentate ligand through both thione sulphur or thiol sulphur, the nitrogen of the pyridine ring and azomethine nitrogen. ESR spectrum data for Cu(II) solid complex confirms the square planar state is the most fitted one for the coordinated structure. The kinetic parameters were determined for each thermal degradation stage of the complexes using Coats-Redfern and Horowitz-Metzger methods. From modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligand and their investigated complexes. The biological activity was tested against DNA showing that Cd(II), U(VI)O2, Ni(II) and Mn(II) complexes had powerful and complete degradation effect. Also, the ligand and its complexes were screened against Bacillus thuringiensis as Gram-positive bacteria and Pseudomonas aeuroginosa as Gram-negative bacteria using the inhibitory zone diameter.

  7. Solvent effects on spectrophotometric titrations and vibrational spectroscopy of 5,10,15-triphenyl-20-(4-hydroxyphenyl)porphyrin in aqueous DMF.

    PubMed

    Guo, Hongwei; Jiang, Junguang; Shi, Yingyan; Wang, Yuling; Dong, Shaojun

    2007-05-01

    The spectrophotometric titration by sodium hydroxide of 5,10,15-triphenyl-20-(4-hydroxyphenyl)porphyrin ((OH)(1)PH(2)) is studied as a function of solvent composition of DMF-H(2)O binary solvent mixture ([OH(-)]=0.04 M). Combining the structure changes of the porphyrin and the "four orbital" model of Gouterman, many features of the optical spectra of this deprotonated para-hydroxy-substituted tetraphenylporphyrin in different composition of binary solvent mixtures can be rationalized. In highly aqueous solvents, the changes of the titration curves are shown to be mainly due to hydrogen-bonding of the oxygen of the phenoxide anion group by the hydroxylic solvent, Which decreases the energy of the phenoxide anion pi orbital. Thus the phenoxide anion pi orbital cannot cross over the porphyrin pi orbital being a different HOMO. However, its energy is close to that of the porphyrin pi orbitals. As a result, in the visible region, no charge-transfer band is observed, while in the visible-near region, the Soret peak split into two components. In nonaqueous solvents, the changes are mainly attributed to further deprotonation of pyrrolic-Hs of (OH)(1)PH(2) by NaOH and coordination with two sodium ions to form the sodium complex of (OH)(1)PH(2), which turns hyperporphyrin spectra of deprotonated of phenolic-H of (OH)(1)PH(2) into three-banded spectra of regular metalloporphyrin.

  8. Structural, spectral, thermal and biological studies on (E)-2-(1-(4-hydroxyphenyl)ethylidene)-N-(pyridin-2-yl)hydrazinecarbothioamide and its metal complexes.

    PubMed

    Yousef, T A; Abu El-Reash, G M; El-Rakhawy, E R

    2014-12-10

    Schiff base complexes of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), Hg(II) and U(VI)O2 with (E)-2-(1-(4-hydroxyphenyl)ethylidene)-N-(pyridin-2-yl)hydrazinecarbothioamide (H2PHAT) were synthesized and characterized by different physicochemical methods, elemental analysis, (UV-vis, IR and (1)H NMR spectra) and thermal analysis (TG and DTG) techniques. Spectral data showed that H2PHAT behaves as a NS bidentate ligand through both thione sulphur or thiol sulphur and the nitrogen of the pyridine ring or azomethine nitrogen, NSN tridentate ligand through both thione sulphur or thiol sulphur, the nitrogen of the pyridine ring and azomethine nitrogen. ESR spectrum data for Cu(II) solid complex confirms the square planar state is the most fitted one for the coordinated structure. The kinetic parameters were determined for each thermal degradation stage of the complexes using Coats-Redfern and Horowitz-Metzger methods. From modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligand and their investigated complexes. The biological activity was tested against DNA showing that Cd(II), U(VI)O2, Ni(II) and Mn(II) complexes had powerful and complete degradation effect. Also, the ligand and its complexes were screened against Bacillus thuringiensis as Gram-positive bacteria and Pseudomonas aeuroginosa as Gram-negative bacteria using the inhibitory zone diameter.

  9. The Nitrification Inhibitor Methyl 3-(4-Hydroxyphenyl)Propionate Modulates Root Development by Interfering with Auxin Signaling via the NO/ROS Pathway.

    PubMed

    Liu, Yangyang; Wang, Ruling; Zhang, Ping; Chen, Qi; Luo, Qiong; Zhu, Yiyong; Xu, Jin

    2016-07-01

    Methyl 3-(4-hydroxyphenyl)propionate (MHPP) is a root exudate that functions as a nitrification inhibitor and as a modulator of the root system architecture (RSA) by inhibiting primary root (PR) elongation and promoting lateral root formation. However, the mechanism underlying MHPP-mediated modulation of the RSA remains unclear. Here, we report that MHPP inhibits PR elongation in Arabidopsis (Arabidopsis thaliana) by elevating the levels of auxin expression and signaling. MHPP induces an increase in auxin levels by up-regulating auxin biosynthesis, altering the expression of auxin carriers, and promoting the degradation of the auxin/indole-3-acetic acid family of transcriptional repressors. We found that MHPP-induced nitric oxide (NO) production promoted reactive oxygen species (ROS) accumulation in root tips. Suppressing the accumulation of NO or ROS alleviated the inhibitory effect of MHPP on PR elongation by weakening auxin responses and perception and by affecting meristematic cell division potential. Genetic analysis supported the phenotype described above. Taken together, our results indicate that MHPP modulates RSA remodeling via the NO/ROS-mediated auxin response pathway in Arabidopsis. Our study also revealed that MHPP significantly induced the accumulation of glucosinolates in roots, suggesting the diverse functions of MHPP in modulating plant growth, development, and stress tolerance in plants.

  10. Synthesis, spectroscopic characterization and thermal behavior of metal complexes formed with N'-(1-(4-hydroxyphenyl) ethylidene)-2-oxo-2-(phenylamino) acetohydrazide (H 3OPAH)

    NASA Astrophysics Data System (ADS)

    Ahmed, Sara F.; El-Gammal, Ola A.; El-Reash, Gaber Abu

    2011-12-01

    Complexes of Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II), Hg(II) and U(IV)O 22+ with N'-(1-(4-hydroxyphenyl) ethylidene)-2-oxo-2-(phenylamino) acetohydrazide (H 3OPAH) are reported and have been characterized by various spectroscopic techniques like IR, UV-visible, 1H NMR and ESR as well as magnetic and thermal (TG and DTA) measurements. It is found that the ligand behaves as a neutral bidentate, monoanionic tridentate or tetradentate and dianionic tetradentate. An octahedral geometry for [Mn(H 3OPAH) 2Cl 2], [Co 2(H 2OPAH) 2Cl 2(H 2O) 4] and [(UO 2) 2(HOPAH)(OAc) 2(H 2O) 2] complexes, a square planar geometry for [Cu 2(H 2OPAH)Cl 3(H 2O)]H 2O complex, a tetrahedral structure for [Cd(H 3OPAH)Cl 2], [Zn(H 3OPAH)(OAc) 2] and [Hg(H 3OPAH)Cl 2]H 2O complexes. The binuclear [Ni 2(HOPAH)Cl 2(H 2O) 2]H 2O complex contains a mixed geometry of both tetrahedral and square planar structures. The protonation constants of ligand and stepwise stability constants of its complexes at 298, 308 and 318 K as well as the thermodynamic parameters are being calculated. The bond lengths, bond angles, HOMO, LUMO and dipole moments have been calculated to confirm the geometry of the ligand and the investigated complexes. Also, thermal properties and decomposition kinetics of all compounds are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters ( Ea, A, Δ H, Δ S and Δ G) of all thermal decomposition stages have been evaluated using Coats-Redfern and Horowitz-Metzger methods.

  11. Contributions of mitogen-activated protein kinase and nuclear factor kappa B to N-(4-hydroxyphenyl)retinamide-induced apoptosis in prostate cancer cells.

    PubMed

    Shimada, Keiji; Nakamura, Mitsutoshi; Ishida, Eiwa; Kishi, Munehiro; Yonehara, Shin; Konishi, Noboru

    2002-11-01

    The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) has been shown to induce apoptosis in various types of tumors, including prostate cancer. We sought to examine the key mechanisms affecting the resistance to 4-HPR-induced apoptosis in three human prostate cancer cell lines, PC-3, DU145, and LNCaP. Concentrations of more than 40 microM 4-HPR produced apoptosis to almost the same extent in all cell lines; however, only the LNCaP line remained highly sensitive to concentrations less than 10 microM. These differing sensitivities at low concentrations correlated well with the level of constitutive activation of nuclear factor kappa B (NFkappaB) in the individual cell lines. We found that NFkappaB activation inhibited c-jun NH(2)-terminal kinase and caspase 3 activation induced by 4-HPR and that NFkappaB inhibition by the I kappa B alpha phosphorylation inhibitor compound Bay 117082 resulted in increasing sensitization of both PC-3 and DU145 lines to apoptosis induced by 4-HPR at low concentrations. Furthermore, we found that inhibition of extracellular signal-regulated kinase (ERK) enhanced the suppression of NFkappaB by 4-HPR and also resulted in sensitization to apoptosis in the DU145 cell line, in which ERK is activated constitutively. It thus appears that mitogen-activated protein kinase associated with the activity of NFkappaB plays an important role in the degree of resistance to 4-HPR-induced apoptosis in human prostate cancer cells.

  12. Combination of N-(4-hydroxyphenyl) retinamide and genistein increased apoptosis in neuroblastoma SK-N-BE2 and SH-SY5Y xenografts.

    PubMed

    Karmakar, S; Choudhury, S Roy; Banik, N L; Ray, S K

    2009-09-29

    Neuroblastoma is the childhood malignancy that mainly occurs in adrenal glands and is found also in the neck, chest, abdomen, and pelvis. New therapeutic strategies are urgently needed for successful treatment of this pediatric cancer. In this investigation, we examined efficacy of the retinoid N-(4-hydroxyphenyl) retinamide (4-HPR) and the isoflavonoid genistein (GST) alone and also in combination for controlling the growth of human malignant neuroblastoma SK-N-BE2 and SH-SY5Y xenografts in nude mice. Combination of 4-HPR and GST significantly reduced tumor volume in vivo due to overwhelming apoptosis in both neuroblastoma xenografts. Time-dependently, combination of 4-HPR and GST caused reduction in body weight, tumor weight, and tumor volume. Combination of 4-HPR and GST increased Bax:Bcl-2 ratio, mitochondrial release of Smac, downregulation of baculovirus inhibitor-of-apoptosis repeat containing (BIRC) proteins including BIRC-2 and BIRC-3, and activation of caspase-3 and apoptosis inducing factor (AIF). Further, downregulation of nuclear factor-kappa B (NF-kappaB), vascular endothelial growth factor (VEGF), and fibroblast growth factor 2 (FGF2) was also detected. In situ immunofluorescent labelings of tumor sections showed overexpression of calpain, caspase-12, and caspase-3, and also AIF in the course of apoptosis. Combination therapy increased apoptosis in the xenografts but did not induce kidney and liver toxicities in the animals. Results demonstrated that combination of 4-HPR and GST induced multiple molecular mechanisms for apoptosis and thus could be highly effective for inhibiting growth of malignant neuroblastoma in preclinical animal models.

  13. Dual effects of indoleamine 2,3-dioxygenase inhibitors on the therapeutic effects of cyclophosphamide and cycloplatam on Ehrlich ascites tumor in mice.

    PubMed

    Bogdanova, L A; Morozkova, T S; Amitina, S A; Mazhukin, D G; Nikolin, V P; Popova, N A; Kaledin, V I

    2014-08-01

    Ethyl pyruvate, an inhibitor of indoleamine 2,3-dioxygenase, slightly suppressed the growth of transplantable Ehrlich tumor in mice and significantly potentiated the therapeutic effect of cyclophosphamide. Another inhibitor amidoxime produced a similar effect. However, both ethyl pyruvate and amidoxime significantly reduced the effect of cycloplatam therapy. The observed changes can be stipulated by different effects of cyclophosphamide and cycloplatam on the subpopulations of lymphoid cells taking part in the formation of antitumor immunity and resistance to tumors.

  14. Crystal Structure of Mammalian Cysteine dioxygenase: A Novel Mononuclear Iron Center for Cysteine Thiol Oxidation

    SciTech Connect

    Simmons,C.; Liu, Q.; Huang, Q.; Hao, Q.; Begley, T.; Karplus, P.; Stipanuk, M.

    2006-01-01

    Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteinesulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or to the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5 Angstroms resolution, and these results confirm the canonical cupin {beta}-sandwich fold and the rare cysteinyl-tyrosine intramolecular crosslink (between Cys93 and Tyr157) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His86, His88, and His140) and a water molecule. Attempts to acquire a structure with bound ligand using either co-crystallization or soaks with cysteine revealed the formation of a mixed disulfide involving Cys164 near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploring the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.

  15. Toxicity to early life stages and an estrogenic effect of a bisphenol A metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene on the medaka (Oryzias latipes).

    PubMed

    Ishibashi, Hiroshi; Watanabe, Naoko; Matsumura, Naomi; Hirano, Masashi; Nagao, Yukiko; Shiratsuchi, Hideki; Kohra, Shinya; Yoshihara, Shin-Ichi; Arizono, Koji

    2005-10-01

    In a recent study, it was reported that 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a metabolite of bisphenol A (BPA; 2,2-bis(4-hydroxyphenyl)propane), showed estrogenic activity in several in vitro assays, and the estrogenic activity of MBP was higher than that of BPA. In this study, we have investigated the early life stage toxicity and estrogenic effect of MBP on medaka (Oryzias latipes). The 96-h median lethal concentration value of MBP and BPA with 24-h-old larvae was estimated to be 1,640 and 13,900 microg/l, respectively. The hatchability of fertilized eggs exposed to MBP and BPA over 14 days was significantly decreased at doses of 2,500 microg/l and 12,500 microg/l, respectively. Moreover, to compare the potency of estrogenic activity in vivo, male medaka were exposed to various concentrations of MBP and BPA for 21 days. The lowest-observed-effect concentrations of MBP and BPA for hepatic vitellogenin induction in male medaka were estimated to be 4.1 and 1,000 microg/l, respectively. These results suggest that MBP has high toxicity for early life stages of the medaka, and that the estrogenic activity of MBP was about 250-fold higher than that of BPA to male medaka.

  16. Effect of 3-(3'-tert-butyl-4'-hydroxyphenyl)propyl thiosulfonate sodium on expression of GSTP1 and NQO1 genes and protein transcription factors in BALB/c mouse liver.

    PubMed

    Shintyapina, A B; Safronova, O G; Vavilin, V A; Kandalintseva, N V; Prosenko, A E; Lyakhovich, V V

    2014-08-01

    The study examined dynamics of the effect of novel phenol antioxidant preparation 3-(3'-tertbutyl- 4'-hydroxyphenyl)propyl thiosulfonate sodium (TS-13) on expression of antioxidant protection enzymes genes GSTP1 and NQO1 and on the content of protein transcription factors NF-κB and ATF-2 in mouse liver. Expression of GSTP1 gene decreased significantly on days 4 and 7 after per os administration of TS-13 (100 mg/kg), but increased on post-administration day 14. On days 7 and 14 post-administration, expression of NQO1 gene was significantly increased. On day 7, the hepatic content of the phosphorylated form of ATF-2 and two subunits of nuclear factor NF-κB (p50, p65) decreased significantly.

  17. Synthesis and characterization of terbium(III) complexes with the biscoumarin derivative 3,3‧-[(4-hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one)

    NASA Astrophysics Data System (ADS)

    Elenkova, D.; Monov, R.; Tadjer, A.; Manolov, I.; Milanova, M.

    2016-02-01

    Complexes of Tb(III) with the biscoumarin derivative 3,3‧-[(4-hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) are synthesized by using a solution of tetraethylammonium hydroxide, [(C2H5)4N]OH, in water as deprotonating base. Elemental analysis, IR- and fluorescence spectroscopy are used to characterize the samples obtained. The complexes have good fluorescent properties and show the characteristic emission bands of the Tb(III) ion. The triplet state of the mono-deprotonated ligand H2L- was determined. The optimised geometries of the ligand and the complexes were obtained by means of molecular modelling with first principles (DFT) methods.

  18. Inhibitory Effect of 3-(4-Hydroxyphenyl)-1-(thiophen-2-yl) prop-2-en-1-one, a Chalcone Derivative on MCP-1 Expression in Macrophages via Inhibition of ROS and Akt Signaling

    PubMed Central

    Kim, Mi Jin; Kadayat, Taraman; Um, Yeon Ji; Jeong, Tae Cheon; Lee, Eung-Seok; Park, Pil-Hoon

    2015-01-01

    Chalcones (1,3-diaryl-2-propen-1-ones), a subfamily of flavonoid, are widely known to possess potent anti-inflammatory and anti-oxidant properties. In this study, we investigated the effect of 3-(4-Hydroxyphenyl)-1-(thio3-(4-Hydroxyphenyl phen-2-yl)prop-2-en-1-one (TI-I-175), a synthetic chalcone derivative, on endotoxin-induced expression of monocyte chemoattractant protein-1 (MCP-1), one of the key chemokines that regulates migration and infiltration of immune cells, and its potential mechanisms. TII-175 potently inhibited MCP-1 mRNA expression stimulated by lipopolysaccharide (LPS) in RAW 264.7 macrophages without significant effect on cell viability. Treatment of cells with TI-I-175 markedly prevented LPS-induced transcriptional activation of activator protein-1 (AP-1) as measured by luciferase reporter assay, while nuclear factor-κB (NF-κB) activity was not inhibited by TI-I-175, implying that TI-I-175 suppressed MCP-1 expression probably via regulation of AP-1. In addition, TI-I-175 treatment significantly inhibited LPS-induced Akt phosphorylation and led to a significant decrease in reactive oxygen species (ROS) production by LPS, which act as up-stream signaling events required for AP-1 activation in RAW 264.7 macrophages. Taken together, these results indicate that TI-I-175 suppresses MCP-1 gene expression in LPS-stimulated RAW 264.7 macrophages via suppression of ROS production and Akt activation. PMID:25767679

  19. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... control the activity of the complex: pyruvate dehydrogenase phosphatase turns on (activates) the complex, while pyruvate dehydrogenase ... binding protein (the PDHX gene), and pyruvate dehydrogenase phosphatase (the PDP1 gene) have been identified in people ...

  20. The Cysteine Dioxygenase Homologue from Pseudomonas aeruginosa Is a 3-Mercaptopropionate Dioxygenase*

    PubMed Central

    Tchesnokov, Egor P.; Fellner, Matthias; Siakkou, Eleni; Kleffmann, Torsten; Martin, Lois W.; Aloi, Sekotilani; Lamont, Iain L.; Wilbanks, Sigurd M.; Jameson, Guy N. L.

    2015-01-01

    Thiol dioxygenation is the initial oxidation step that commits a thiol to important catabolic or biosynthetic pathways. The reaction is catalyzed by a family of specific non-heme mononuclear iron proteins each of which is reported to react efficiently with only one substrate. This family of enzymes includes cysteine dioxygenase, cysteamine dioxygenase, mercaptosuccinate dioxygenase, and 3-mercaptopropionate dioxygenase. Using sequence alignment to infer cysteine dioxygenase activity, a cysteine dioxygenase homologue from Pseudomonas aeruginosa (p3MDO) has been identified. Mass spectrometry of P. aeruginosa under standard growth conditions showed that p3MDO is expressed in low levels, suggesting that this metabolic pathway is available to the organism. Purified recombinant p3MDO is able to oxidize both cysteine and 3-mercaptopropionic acid in vitro, with a marked preference for 3-mercaptopropionic acid. We therefore describe this enzyme as a 3-mercaptopropionate dioxygenase. Mössbauer spectroscopy suggests that substrate binding to the ferrous iron is through the thiol but indicates that each substrate could adopt different coordination geometries. Crystallographic comparison with mammalian cysteine dioxygenase shows that the overall active site geometry is conserved but suggests that the different substrate specificity can be related to replacement of an arginine by a glutamine in the active site. PMID:26272617

  1. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide

    NASA Astrophysics Data System (ADS)

    Benzon, K. B.; Varghese, Hema Tresa; Panicker, C. Yohannan; Pradhan, Kiran; Tiwary, Bipransh Kumar; Nanda, Ashis Kumar; Alsenoy, C. Van

    2015-07-01

    In this work, the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide. The computations were performed at DFT levels of theory to get the optimized geometry and vibrational frequencies of the normal modes of the title compound using Gaussian09 software. The complete vibrational assignments of frequencies were made on the basis of potential energy distribution. The calculated HOMO and LUMO energies show the chemical activity of the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The hyperpolarizability values are reported and the first hyperpolarizability of the title compound is 19.61 times that of standard NLO material urea. From the MEP plot, the negative charge covers the nitro group and the positive region is over the hydroxyl group and N-H part of the imidazole ring. The calculated 1H NMR results are in good agreement with experimental data. Molecular docking study is also reported.

  2. Structural Basis for Small Molecule NDB (N-Benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) Benzamide) as a Selective Antagonist of Farnesoid X Receptor α (FXRα) in Stabilizing the Homodimerization of the Receptor*

    PubMed Central

    Xu, Xing; Xu, Xin; Liu, Peng; Zhu, Zhi-yuan; Chen, Jing; Fu, Hai-an; Chen, Li-li; Hu, Li-hong; Shen, Xu

    2015-01-01

    Farnesoid X receptor α (FXRα) as a bile acid sensor plays potent roles in multiple metabolic processes, and its antagonist has recently revealed special interests in the treatment of metabolic disorders, although the underlying mechanisms still remain unclear. Here, we identified that the small molecule N-benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) benzamide (NDB) functioned as a selective antagonist of human FXRα (hFXRα), and the crystal structure of hFXRα ligand binding domain (hFXRα-LBD) in complex with NDB was analyzed. It was unexpectedly discovered that NDB induced rearrangements of helix 11 (H11) and helix 12 (H12, AF-2) by forming a homodimer of hFXRα-LBD, totally different from the active conformation in monomer state, and the binding details were further supported by the mutation analysis. Moreover, functional studies demonstrated that NDB effectively antagonized the GW4064-stimulated FXR/RXR interaction and FXRα target gene expression in primary mouse hepatocytes, including the small heterodimer partner (SHP) and bile-salt export pump (BSEP); meanwhile, administration of NDB to db/db mice efficiently decreased the gene expressions of phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6-pase), small heterodimer partner, and BSEP. It is expected that our first analyzed crystal structure of hFXRα-LBD·NDB will help expound the antagonistic mechanism of the receptor, and NDB may find its potential as a lead compound in anti-diabetes research. PMID:26100621

  3. Structural Basis for Small Molecule NDB (N-Benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) Benzamide) as a Selective Antagonist of Farnesoid X Receptor α (FXRα) in Stabilizing the Homodimerization of the Receptor.

    PubMed

    Xu, Xing; Xu, Xin; Liu, Peng; Zhu, Zhi-yuan; Chen, Jing; Fu, Hai-an; Chen, Li-li; Hu, Li-hong; Shen, Xu

    2015-08-01

    Farnesoid X receptor α (FXRα) as a bile acid sensor plays potent roles in multiple metabolic processes, and its antagonist has recently revealed special interests in the treatment of metabolic disorders, although the underlying mechanisms still remain unclear. Here, we identified that the small molecule N-benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) benzamide (NDB) functioned as a selective antagonist of human FXRα (hFXRα), and the crystal structure of hFXRα ligand binding domain (hFXRα-LBD) in complex with NDB was analyzed. It was unexpectedly discovered that NDB induced rearrangements of helix 11 (H11) and helix 12 (H12, AF-2) by forming a homodimer of hFXRα-LBD, totally different from the active conformation in monomer state, and the binding details were further supported by the mutation analysis. Moreover, functional studies demonstrated that NDB effectively antagonized the GW4064-stimulated FXR/RXR interaction and FXRα target gene expression in primary mouse hepatocytes, including the small heterodimer partner (SHP) and bile-salt export pump (BSEP); meanwhile, administration of NDB to db/db mice efficiently decreased the gene expressions of phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6-pase), small heterodimer partner, and BSEP. It is expected that our first analyzed crystal structure of hFXRα-LBD·NDB will help expound the antagonistic mechanism of the receptor, and NDB may find its potential as a lead compound in anti-diabetes research.

  4. Basis of pyruvate inhibition in Thiobacillus thiooxidans.

    PubMed

    Rao, G S; Berger, L R

    1970-05-01

    Addition of 10(-3)m pyruvic acid to cultures of Thiobacillus thiooxidans, at pH 2.3, results in its rapid intracellular accumulation and in the cessation of sulfur oxidation, CO(2) fixation, and oxygen consumption; at pH 7.0, pyruvate neither inhibits oxygen uptake nor accumulates appreciably intracellularly. Pyruvate does not affect CO(2) fixation in cell-free extracts. The data suggest that the cells of T. thiooxidans are passively permeable to pyruvic acid at low pH. Thus entry of pyruvic acid causes accumulation of pyruvate with a concomitant decrease in intracellular pH.

  5. 1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) Ethanone-Induced Cell Cycle Arrest in G1/G0 in HT-29 Cells Human Colon Adenocarcinoma Cells

    PubMed Central

    Lay, Ma Ma; Karsani, Saiful Anuar; Abd Malek, Sri Nurestri

    2014-01-01

    1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone (DMHE) was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry) and NMR (nuclear magnetic resonance) analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational) cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide) staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed. PMID:24451128

  6. 1-(2,6-dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone-induced cell cycle arrest in G₁/G₀ in HT-29 cells human colon adenocarcinoma cells.

    PubMed

    Lay, Ma Ma; Karsani, Saiful Anuar; Malek, Sri Nurestri Abd

    2014-01-01

    1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone (DMHE) was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry) and NMR (nuclear magnetic resonance) analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational) cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide) staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed. PMID:24451128

  7. A thermodynamic study of interaction of Ag+, Mg2+, Ca2+, and K+ cations with 4-hydroxyphenyl-2,5-bis(2-benzofuranyl)pyridine in some binary mixed non-aqueous solvents

    NASA Astrophysics Data System (ADS)

    Khoshnood, Razieh Sanavi; Hatami, Elaheh; Arefi, Donya; Maknoni, Fatemeh Zahra

    2016-02-01

    In the present work the complexation process between Ag+ and Mg2+ cations and 4-hydroxyphenyl-2,5-bis(2-benzofuranyl)pyridine (HBFPY) ligand was studied in pure dimethylformamide (DMF), ethanol (EtOH), acetonitrile (AN) and in (DMF-EtOH), (AN-EtOH) and (DMF-AN) binary mixed solvent solutions at different temperatures using the conductometric method. Also in this work the complexation reaction between Ca2+, K+ cations and HBFPY ligand, was studied in pure dimethylformamide (DMF), propanol (PrOH), 1,4-dioxane (DOX), ethanol (EtOH) and in DMF-PrOH, DMF-DOX and DMF-EtOH binary mixed solvent solutions at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complexes formed between this ligand and the studied cations is 1 : 1 [ML]. In most cases, addition of HBFPY to solutions of these cations, causes a continuous increase in the molar conductivities which indicates that the mobility of complexed cations is more than the uncomplexed ones. The stability constants of the complexes were obtained from fitting of molar conductivity curves using a computer program, GENPLOT. The stability constant of [Mg(HBFPY)]2+ complex in various neat solvents at 15°C decreases in order: EtOH > DMF > AN and the stability constant of [Ag(HBFPY)]+ complex in various neat solvents at 35°C decreases in order: DMF > EtOH. The values of standard enthalpy changes (Δ H° c ) for complexation reactions were obtained from the slope of the Van't Hoff plots and the changes in standard entropy (Δ S° c ) were calculated from the relationship Δ H° c,295.15= Δ H° c -298.15Δ S° c .

  8. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    PubMed

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  9. Spectroscopic Studies of the Catechol Dioxygenases.

    ERIC Educational Resources Information Center

    Que, Lawrence Jr.

    1985-01-01

    The catechol dioxygenases are bacterial iron-containing enzymes that catalyze the oxidative cleavage of catechols. These enzymes serve as a component of nature's mechanisms for degrading aromatic compounds in the environment. The structure and mechanistic aspects of these enzymes are described. (JN)

  10. Pyruvate: A key Nutrient in Hypersaline Environments?

    PubMed Central

    Oren, Aharon

    2015-01-01

    Some of the most commonly occurring but difficult to isolate halophilic prokaryotes, Archaea as well as Bacteria, require or prefer pyruvate as carbon and energy source. The most efficient media for the enumeration and isolation of heterotrophic prokaryotes from natural environments, from freshwater to hypersaline, including the widely used R2A agar medium, contain pyruvate as a key ingredient. Examples of pyruvate-loving halophiles are the square, extremely halophilic archaeon Haloquadratum walsbyi and the halophilic gammaproteobacterium Spiribacter salinus. However, surprisingly little is known about the availability of pyruvate in natural environments and about the way it enters the cell. Some halophilic Archaea (Halorubrum saccharovorum, Haloarcula spp.) partially convert sugars and glycerol to pyruvate and other acids (acetate, lactate) which are excreted to the medium. Pyruvate formation from glycerol was also shown during a bloom of halophilic Archaea in the Dead Sea. However, no pyruvate transporters were yet identified in the genomes of halophilic Archaea, and altogether, our understanding of pyruvate transport in the prokaryote world is very limited. Therefore, the preference for pyruvate by fastidious and often elusive halophiles and the empirically proven enhanced colony recovery on agar media containing pyruvate are still poorly understood.

  11. Pyruvate: A key Nutrient in Hypersaline Environments?

    PubMed Central

    Oren, Aharon

    2015-01-01

    Some of the most commonly occurring but difficult to isolate halophilic prokaryotes, Archaea as well as Bacteria, require or prefer pyruvate as carbon and energy source. The most efficient media for the enumeration and isolation of heterotrophic prokaryotes from natural environments, from freshwater to hypersaline, including the widely used R2A agar medium, contain pyruvate as a key ingredient. Examples of pyruvate-loving halophiles are the square, extremely halophilic archaeon Haloquadratum walsbyi and the halophilic gammaproteobacterium Spiribacter salinus. However, surprisingly little is known about the availability of pyruvate in natural environments and about the way it enters the cell. Some halophilic Archaea (Halorubrum saccharovorum, Haloarcula spp.) partially convert sugars and glycerol to pyruvate and other acids (acetate, lactate) which are excreted to the medium. Pyruvate formation from glycerol was also shown during a bloom of halophilic Archaea in the Dead Sea. However, no pyruvate transporters were yet identified in the genomes of halophilic Archaea, and altogether, our understanding of pyruvate transport in the prokaryote world is very limited. Therefore, the preference for pyruvate by fastidious and often elusive halophiles and the empirically proven enhanced colony recovery on agar media containing pyruvate are still poorly understood. PMID:27682096

  12. Characterization of Hybrid Toluate and Benzoate Dioxygenases

    PubMed Central

    Ge, Yong; Eltis, Lindsay D.

    2003-01-01

    Toluate dioxygenase of Pseudomonas putida mt-2 (TADOmt2) and benzoate dioxygenase of Acinetobacter calcoaceticus ADP1 (BADOADP1) catalyze the 1,2-dihydroxylation of different ranges of benzoates. The catalytic component of these enzymes is an oxygenase consisting of two subunits. To investigate the structural determinants of substrate specificity in these ring-hydroxylating dioxygenases, hybrid oxygenases consisting of the α subunit of one enzyme and the β subunit of the other were prepared, and their respective specificities were compared to those of the parent enzymes. Reconstituted BADOADP1 utilized four of the seven tested benzoates in the following order of apparent specificity: benzoate > 3-methylbenzoate > 3-chlorobenzoate > 2-methylbenzoate. This is a significantly narrower apparent specificity than for TADOmt2 (3-methylbenzoate > benzoate ∼ 3-chlorobenzoate > 4-methylbenzoate ∼ 4-chlorobenzoate ≫ 2-methylbenzoate ∼ 2-chlorobenzoate [Y. Ge, F. H. Vaillancourt, N. Y. Agar, and L. D. Eltis, J. Bacteriol. 184:4096-4103, 2002]). The apparent substrate specificity of the αBβT hybrid oxygenase for these benzoates corresponded to that of BADOADP1, the parent from which the α subunit originated. In contrast, the apparent substrate specificity of the αTβB hybrid oxygenase differed slightly from that of TADOmt2 (3-chlorobenzoate > 3-methylbenzoate > benzoate ∼ 4-methylbenzoate > 4-chlorobenzoate > 2-methylbenzoate > 2-chlorobenzoate). Moreover, the αTβB hybrid catalyzed the 1,6-dihydroxylation of 2-methylbenzoate, not the 1,2-dihydroxylation catalyzed by the TADOmt2 parent. Finally, the turnover of this ortho-substituted benzoate was much better coupled to O2 utilization in the hybrid than in the parent. Overall, these results support the notion that the α subunit harbors the principal determinants of specificity in ring-hydroxylating dioxygenases. However, they also demonstrate that the β subunit contributes significantly to the enzyme

  13. Characterization of hybrid toluate and benzoate dioxygenases.

    PubMed

    Ge, Yong; Eltis, Lindsay D

    2003-09-01

    Toluate dioxygenase of Pseudomonas putida mt-2 (TADO(mt2)) and benzoate dioxygenase of Acinetobacter calcoaceticus ADP1 (BADO(ADP1)) catalyze the 1,2-dihydroxylation of different ranges of benzoates. The catalytic component of these enzymes is an oxygenase consisting of two subunits. To investigate the structural determinants of substrate specificity in these ring-hydroxylating dioxygenases, hybrid oxygenases consisting of the alpha subunit of one enzyme and the beta subunit of the other were prepared, and their respective specificities were compared to those of the parent enzymes. Reconstituted BADO(ADP1) utilized four of the seven tested benzoates in the following order of apparent specificity: benzoate > 3-methylbenzoate > 3-chlorobenzoate > 2-methylbenzoate. This is a significantly narrower apparent specificity than for TADO(mt2) (3-methylbenzoate > benzoate approximately 3-chlorobenzoate > 4-methylbenzoate approximately 4-chlorobenzoate > 2-methylbenzoate approximately 2-chlorobenzoate [Y. Ge, F. H. Vaillancourt, N. Y. Agar, and L. D. Eltis, J. Bacteriol. 184:4096-4103, 2002]). The apparent substrate specificity of the alphaBbetaT hybrid oxygenase for these benzoates corresponded to that of BADO(ADP1), the parent from which the alpha subunit originated. In contrast, the apparent substrate specificity of the alphaTbetaB hybrid oxygenase differed slightly from that of TADO(mt2) (3-chlorobenzoate > 3-methylbenzoate > benzoate approximately 4-methylbenzoate > 4-chlorobenzoate > 2-methylbenzoate > 2-chlorobenzoate). Moreover, the alphaTbetaB hybrid catalyzed the 1,6-dihydroxylation of 2-methylbenzoate, not the 1,2-dihydroxylation catalyzed by the TADO(mt2) parent. Finally, the turnover of this ortho-substituted benzoate was much better coupled to O2 utilization in the hybrid than in the parent. Overall, these results support the notion that the alpha subunit harbors the principal determinants of specificity in ring-hydroxylating dioxygenases. However, they also

  14. Atmospheric measurements of pyruvic and formic acid

    NASA Technical Reports Server (NTRS)

    Andreae, Meinrat O.; Li, Shao-Meng; Talbot, Robert W.

    1987-01-01

    Pyruvic acid, a product of the atmospheric oxidation of cresols and probably of isoprene, has been determined together with formic acid in atmospheric aerosols and rain as well as in the vapor phase. Both acids are present predominantly as vapor; only about 10-20 percent of the total atmospheric pyruvate and 1-2 percent of the total formate are in the particulate phase. The concentrations of pyruvic and formic acid are highly correlated, with typical formic-to-pyruvic ratios of 10-30 in the gas phase, 20-30 in rain, and 2-10 in aerosols. The gas-phase and rain ratios are comparable to those predicted to result from isoprene oxidation. Pyruvic acid levels were similar in the eastern United States (during summer) and the Amazon Basin, suggesting that natural processes, particularly the photochemical oxidation of isoprene, could account for most of the pyruvic acid present in the atmosphere.

  15. Mitochondrial pyruvate carrier in Trypanosoma brucei.

    PubMed

    Štáfková, Jitka; Mach, Jan; Biran, Marc; Verner, Zdeněk; Bringaud, Frédéric; Tachezy, Jan

    2016-05-01

    Pyruvate is a key product of glycolysis that regulates the energy metabolism of cells. In Trypanosoma brucei, the causative agent of sleeping sickness, the fate of pyruvate varies dramatically during the parasite life cycle. In bloodstream forms, pyruvate is mainly excreted, whereas in tsetse fly forms, pyruvate is metabolized in mitochondria yielding additional ATP molecules. The character of the molecular machinery that mediates pyruvate transport across mitochondrial membrane was elusive until the recent discovery of mitochondrial pyruvate carrier (MPC) in yeast and mammals. Here, we characterized pyruvate import into mitochondrion of T. brucei. We identified mpc1 and mpc2 homologs in the T. brucei genome with attributes of MPC protein family and we demonstrated that both proteins are present in the mitochondrial membrane of the parasite. Investigations of mpc1 or mpc2 gene knock-out cells proved that T. brucei MPC1/2 proteins facilitate mitochondrial pyruvate transport. Interestingly, MPC is expressed not only in procyclic trypanosomes with fully activated mitochondria but also in bloodstream trypanosomes in which most of pyruvate is excreted. Moreover, MPC appears to be essential for bloodstream forms, supporting the recently emerging picture that the functions of mitochondria in bloodstream forms are more diverse than it was originally thought. PMID:26748989

  16. Genetics Home Reference: pyruvate kinase deficiency

    MedlinePlus

    ... National (UK) Information Centre for Metabolic Diseases National Organization for Rare Disorders (NORD): Pyruvate Kinase Deficiency Genetic Testing Registry (1 link) Pyruvate kinase deficiency of red cells Scientific articles on PubMed (1 link) PubMed OMIM (1 link) ...

  17. Biochemical analysis of Phytolacca DOPA dioxygenase.

    PubMed

    Takahashi, Kana; Yoshida, Kazuko; Yura, Kei; Ashihara, Hiroshi; Sakuta, Masaaki

    2015-05-01

    The biochemical analysis of Phytolacca americana DOPA dioxygenases (PaDOD1 and PaDOD2) was carried out. The recombinant protein of PaDOD1 catalyzed the conversion of DOPA to betalamic acid, whereas DOD activity was not detected in PaDOD2 in vitro. While the reported motif conserved in DODs from betalain-producing plants was found in PaDOD1, a single amino acid residue alteration was detected in PaDOD2. A mutated PaDOD1 protein with a change of 177 Asn to Gly showed reduced specific activity compared with PaDOD1, while DOPA dioxygenase activity was not observed for a mutated PaDOD2 protein which had its conserved motif replaced with that of PaDOD. A three-dimensional (3D) structural model of PaDOD1 and PaDOD2 showed that the conserved motif in DODs was located in the N-terminal side of a loop, which was found close to the putative active site. The difference in stability of the loop may affect the enzymatic activity of PaDOD2. PMID:26058142

  18. Biochemical analysis of Phytolacca DOPA dioxygenase.

    PubMed

    Takahashi, Kana; Yoshida, Kazuko; Yura, Kei; Ashihara, Hiroshi; Sakuta, Masaaki

    2015-05-01

    The biochemical analysis of Phytolacca americana DOPA dioxygenases (PaDOD1 and PaDOD2) was carried out. The recombinant protein of PaDOD1 catalyzed the conversion of DOPA to betalamic acid, whereas DOD activity was not detected in PaDOD2 in vitro. While the reported motif conserved in DODs from betalain-producing plants was found in PaDOD1, a single amino acid residue alteration was detected in PaDOD2. A mutated PaDOD1 protein with a change of 177 Asn to Gly showed reduced specific activity compared with PaDOD1, while DOPA dioxygenase activity was not observed for a mutated PaDOD2 protein which had its conserved motif replaced with that of PaDOD. A three-dimensional (3D) structural model of PaDOD1 and PaDOD2 showed that the conserved motif in DODs was located in the N-terminal side of a loop, which was found close to the putative active site. The difference in stability of the loop may affect the enzymatic activity of PaDOD2.

  19. Neonatal hyperbilirubinemia caused by pyruvate kinase deficiency.

    PubMed

    Hammer, S G; Lewan, R B

    1988-01-01

    We report an infant with neonatal hyperbilirubinemia due to pyruvate kinase deficiency. The initial approach involved rapid evaluation, phototherapy, and close monitoring of serum bilirubin levels. Follow-up included maintenance on folic acid, monitoring blood counts, and educating the parents about the course of pyruvate kinase deficiency, especially aplastic crisis. We suggest that the informed family practitioner can manage neonatal hyperbilirubinemia and pyruvate kinase deficiency with referrals at critical times to pediatric or surgical specialists. The practitioner must be able to recognize quickly the need for exchange transfusion for severe jaundice and for blood transfusions or splenectomy when significant anemia or aplastic crisis occurs.

  20. Heme-containing dioxygenases involved in tryptophan oxidation.

    PubMed

    Millett, Elizabeth S; Efimov, Igor; Basran, Jaswir; Handa, Sandeep; Mowat, Christopher G; Raven, Emma Lloyd

    2012-04-01

    Heme iron is often used in biology for activation of oxygen. The mechanisms of oxygen activation by heme-containing monooxygenases (the cytochrome P450s) are well known, and involve formation of a Compound I species, but information on the heme-containing dioxygenase enzymes involved in tryptophan oxidation lags far behind. In this review, we gather together information emerging recently from structural, mechanistic, spectroscopic, and computational approaches on the heme dioxygenase enzymes involved in tryptophan oxidation. We explore the subtleties that differentiate various heme enzymes from each other, and use this to piece together a developing picture for oxygen activation in this particular class of heme-containing dioxygenases.

  1. Functional response of the isolated, perfused normoxic heart to pyruvate dehydrogenase activation by dichloroacetate and pyruvate

    PubMed Central

    Jaimes, Rafael; Kuzmiak-Glancy, Sarah; Brooks, Daina M.; Swift, Luther M.; Posnack, Nikki G.; Kay, Matthew W.

    2015-01-01

    Dichloroacetate (DCA) and pyruvate activate pyruvate dehydrogenase (PDH), a key enzyme that modulates glucose oxidation and mitochondrial NADH production. Both compounds improve recovery after ischemia in isolated hearts. However, the action of DCA and pyruvate in normoxic myocardium is incompletely understood. We measured the effect of DCA and pyruvate on contraction, mitochondrial redox state, and intracellular calcium cycling in isolated rat hearts during normoxic perfusion. Normalized epicardial NADH fluorescence (nNADH) and left ventricular developed pressure (LVDP) were measured before and after administering DCA (5 mM) or pyruvate (5 mM). Optical mapping of Rhod-2AM was used to measure cytosolic calcium kinetics. DCA maximally activated PDH, increasing the ratio of active to total PDH from 0.48±0.03 to 1.03 ±0.03. Pyruvate sub-maximally activated PDH to a ratio of 0.75±0.02. DCA and pyruvate increased LVDP. When glucose was the only exogenous fuel, pyruvate increased nNADH by 21.4±2.9 % while DCA reduced nNADH by 21.4±6.1 % and elevated the incidence of premature ventricular contractions (PVCs). When lactate, pyruvate, and glucose were provided together as exogenous fuels, nNADH increased with DCA, indicating that PDH activation with glucose as the only exogenous fuel depletes PDH substrate. Calcium transient time-to-peak was shortened by DCA and pyruvate and SR calcium re-uptake was 30 % longer. DCA and pyruvate increased SR calcium load in myocyte monolayers. Overall, during normoxia when glucose is the only exogenous fuel, DCA elevates SR calcium, increases LVDP and contractility, and diminishes mitochondrial NADH. Administering DCA with plasma levels of lactate and pyruvate mitigates the drop in mitochondrial NADH and prevents PVCs. PMID:26142699

  2. [Progress in biotechnological production of pyruvic acid].

    PubMed

    Liu, Li-Ming; Li, Yin; Du, Guo-Cheng; Chen, Jian

    2002-11-01

    Pyruvate, an important organic acid, is widely used in the industries of pharmaceuticals, chemicals, agrochemicals, food additives and so on. Compared with the chemical method, biotechnological production of pyruvic acid is an alternative approach because of the low cost and high product quality. In this article, biosynthesis of pyruvate, including direct fermentative production and resting cell method as well as enzymatic method, was discussed. Furthermore, a comparison of these different methods was proposed. Since, a multi-vitamin auxotrophic strain of Torulopsis glabrata is the most competitive strain for industrial production of pyruvate, emphasis was therefore placed on the development of strains screening and fermentation optimization. Finally, some suggestions were put forward to improve the research in this field in the near future.

  3. Photochemistry of aqueous pyruvic acid.

    PubMed

    Griffith, Elizabeth C; Carpenter, Barry K; Shoemaker, Richard K; Vaida, Veronica

    2013-07-16

    The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols.

  4. Phosphorylation site on yeast pyruvate dehydrogenase complex

    SciTech Connect

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the /sup 32/P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation.

  5. Pyruvate anions neutralize peritoneal dialysate cytotoxicity.

    PubMed

    Mahiout, A; Brunkhorst, R

    1995-01-01

    A new peritoneal dialysate containing pyruvate anions was developed in order to avoid cytotoxic effect of conventional lactate-based dialysate. The dialysate has a final pH of 5.4 to 5.6 and is composed of 1.36-3.86% glucose-monohydrate; 132 mmol/l sodium; 1.75 mmol/l calcium; 0.75 mmol/l magnesium; 102 mmol/l chloride and 35 mmol/l pyruvate. For cytotoxicity testing peritoneal macrophages, and mesothelial cells (MC) were exposed to conventional lactate dialysate, and pyruvate dialysate. We investigated the O2- generation and cytokine synthesis after endotoxin stimulation in peritoneal macrophages and the proliferation of mesothelial cells of cultured human MC. After exposure to lactate dialysate O2- generation and cytokine synthesis in peritoneal macrophages and proliferation of mesothelial cells were inhibited when compared to solution containing pyruvate and the control solution. After preincubation with 3.86% glucose containing solutions, all negative effects became even more pronounced in the lactate group whereas after pre-exposure to pyruvate containing solution the toxic effects were absent. These results suggest that the acute toxic effects of commercially available peritoneal dialysates can be avoided by the use of sodium pyruvate instead of sodium lactate.

  6. 3,4-Dihydroxyphenylacetate 2,3-dioxygenase from Klebsiella pneumoniae, a Mg(2+)-containing dioxygenase involved in aromatic catabolism.

    PubMed Central

    Gibello, A; Ferrer, E; Martín, M; Garrido-Pertierra, A

    1994-01-01

    3,4-Dihydroxyphenylacetate 2,3-dioxygenase, an extradiol-ring-cleavage dioxygenase, has been purified from Klebsiella pneumoniae to homogeneity. The enzyme has an M(r) of 102,000 in its tetrameric form with an M(r) of 25,500 for each subunit. Unlike most other dioxygenases, the enzyme reported here contains Mg2+, as determined by atomic-absorption spectrophotometry and plasma emission metal analysis. The enzyme was shown to contain approx. 1 g-atom of Mg2+/mol of protein and we suggest an alpha 4 Mg2+ quaternary structure. This is the first report of a dioxygenase containing Mg2+ in its structure. Images Figure 1 PMID:8037662

  7. Structure and mechanism of mouse cysteine dioxygenase

    PubMed Central

    McCoy, Jason G.; Bailey, Lucas J.; Bitto, Eduard; Bingman, Craig A.; Aceti, David J.; Fox, Brian G.; Phillips, George N.

    2006-01-01

    Cysteine dioxygenase (CDO) catalyzes the oxidation of l-cysteine to cysteine sulfinic acid. Deficiencies in this enzyme have been linked to autoimmune diseases and neurological disorders. The x-ray crystal structure of CDO from Mus musculus was solved to a nominal resolution of 1.75 Å. The sequence is 91% identical to that of a human homolog. The structure reveals that CDO adopts the typical β-barrel fold of the cupin superfamily. The NE2 atoms of His-86, -88, and -140 provide the metal binding site. The structure further revealed a covalent linkage between the side chains of Cys-93 and Tyr-157, the cysteine of which is conserved only in eukaryotic proteins. Metal analysis showed that the recombinant enzyme contained a mixture of iron, nickel, and zinc, with increased iron content associated with increased catalytic activity. Details of the predicted active site are used to present and discuss a plausible mechanism of action for the enzyme. PMID:16492780

  8. Hemoglobin: A Nitric-Oxide Dioxygenase

    PubMed Central

    Gardner, Paul R.

    2012-01-01

    Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry. PMID:24278729

  9. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved. PMID:26588105

  10. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved.

  11. Pyruvate and Malate Transport and Oxidation in Corn Mitochondria 1

    PubMed Central

    Day, David A.; Hanson, John B.

    1977-01-01

    Pyruvate oxidation and swelling in pyruvate solutions by corn (Zea mays) mitochondria were inhibited by α-cyano-4-hydroxy-cinnamic acid, an inhibitor of pyruvate transport in animal mitochondria; however, there was no inhibition of pyruvate dehydrogenase activity, and malate and NADH oxidation were not affected. These results suggest the presence of a pyruvate−-OH− exchange transporter which supplies the mitochondrion with oxidizable substrate. Lactate appears to be transported also, but not dicarboxylate anions or inorganic phosphate. The rate of pyruvate transport was much slower than that of malate, however, and valinomycin was required to elicit appreciable swelling in potassium pyruvate. Malate oxidation contributed significantly to respiration supported by pyruvate plus malate, and malate did not act solely as a “sparker” for pyruvate oxidation. NAD+-malic enzyme activity was found in sonicated preparations, and comparison of O2 consumption with CO2 released from 1-14C-pyruvate indicated that transported malate was being converted to pyruvate, particularly as the malate to pyruvate ratio increased. The results suggest that pyruvate transport becomes limiting under conditions of high energy demand, but that rapid malate transport makes up the difference, supplying pyruvate via malic enzyme and replenishing losses of tricarboxylic acid cycle intermediates. PMID:16659908

  12. Gentisate 1,2-dioxygenase from Haloferax sp. D1227.

    PubMed

    Fu, W; Oriel, P

    1998-11-01

    Gentisate 1,2-dioxygenase from the extreme halophile Haloferax sp. D1227 (Hf. D1227) was purified using a three-step procedure. The enzyme was found to be a homotetramer of 42,000 +/- 1,000 Da subunits, with a native molecular weight of 174,000 +/- 6,000 Da. The optimal salt concentration, temperature, and pH for enzyme activity were 2 M KCl or NaCl, 45 degrees C, and pH 7.2, respectively. The gene encoding Hf. D1227 gentisate 1,2-dioxygenase was cloned, sequenced, and expressed in Haloferax volcanii. The deduced amino acid sequence exhibited a 9.2% excess acidic over basic amino acids typical of halophilic enzymes. Four novel histidine clusters and a possible extradiol dioxygenase fingerprint region were identified. PMID:9827334

  13. The Pyruvate-Tricarboxylic Acid Cycle Node

    PubMed Central

    Bücker, René; Heroven, Ann Kathrin; Becker, Judith; Dersch, Petra; Wittmann, Christoph

    2014-01-01

    Despite our increasing knowledge of the specific pathogenicity factors in bacteria, the contribution of metabolic processes to virulence is largely unknown. Here, we elucidate a tight connection between pathogenicity and core metabolism in the enteric pathogen Yersinia pseudotuberculosis by integrated transcriptome and [13C]fluxome analysis of the wild type and virulence-regulator mutants. During aerobic growth on glucose, Y. pseudotuberculosis reveals an unusual flux distribution with a high level of secreted pyruvate. The absence of the transcriptional and post-transcriptional regulators RovA, CsrA, and Crp strongly perturbs the fluxes of carbon core metabolism at the level of pyruvate metabolism and the tricarboxylic acid (TCA) cycle, and these perturbations are accompanied by transcriptional changes in the corresponding enzymes. Knock-outs of regulators of this metabolic branch point and of its central enzyme, pyruvate kinase (ΔpykF), result in mutants with significantly reduced virulence in an oral mouse infection model. In summary, our work identifies the pyruvate-TCA cycle node as a focal point for controlling the host colonization and virulence of Yersinia. PMID:25164818

  14. A mimic of the pyruvate dehydrogenase complex.

    PubMed

    Zhao, Huanyu; Breslow, Ronald

    2010-10-15

    Pyruvic acid undergo decarboxylation catalyzed by a hydrophobic thiazolium salt and reacts with a hydrophobic analog of lipoic acid to form a hydrophobic acylthioester that reacts with aniline to form acetanilide in water, but only in the presence of a hydrophobically modified polyaziridine that acts to gather the reactants just as the enzyme complex does. PMID:20826089

  15. Substrate Stereo-specificity in Tryptophan dioxygenase and Indoleamine 2,3- dioxygenase

    PubMed Central

    Capece, L.; Arrar, M.; Roitberg, A. E.; Yeh, Syun-Ru; Marti, M. A.; Estrin, D. A.

    2010-01-01

    The first and rate-limiting step of the kynurenine pathway, in which tryptophan (Trp) is converted to N-formylkynurenine is catalyzed by two heme-containing proteins, Indoleamine 2,3-dioxygenase (IDO) and Tryptophan 2,3-dioxygenase (TDO). In mammals, TDO is found exclusively in liver tissue, IDO is found ubiquitously in all tissues. IDO has become increasingly popular in pharmaceutical research as it was found to be involved in many physiological situations, including immune escape of cancer. More importantly, small-molecule inhibitors of IDO are currently utilized in cancer therapy. One of the main concerns for the design of human IDO (hIDO) inhibitors is that they should be selective enough to avoid inhibition of TDO. In this work we have used a combination of classical molecular dynamics (MD) and hybrid quantum-classical (QM/MM) methodologies to establish the structural basis that determine the differences in a) the interactions of TDO and IDO with small ligands (CO/O2) and b) the substrate stereo-specificity in hIDO and TDO. Our results indicate that the differences in small ligand bound structures of IDO and TDO arise from slight differences in the structure of the bound substrate complex. The results also show that substrate stereo-specificity of TDO is achieved by the perfect fit of L-Trp, but not D-Trp, which exhibits weaker interactions with the protein matrix-. For hIDO, the presence of multiple stable binding conformations for L/D-Trp reveal the presence of a large and dynamic active site. Taken together, our data allow determination of key interactions useful for the future design of more potent hIDO-selective inhibitors. PMID:20715188

  16. Mitochondrial pyruvate transport: a historical perspective and future research directions

    PubMed Central

    McCommis, Kyle S.; Finck, Brian N.

    2015-01-01

    Pyruvate is the end-product of glycolysis, a major substrate for oxidative metabolism, and a branching point for glucose, lactate, fatty acid and amino acid synthesis. The mitochondrial enzymes that metabolize pyruvate are physically separated from cytosolic pyruvate pools and rely on a membrane transport system to shuttle pyruvate across the impermeable inner mitochondrial membrane (IMM). Despite long-standing acceptance that transport of pyruvate into the mitochondrial matrix by a carrier-mediated process is required for the bulk of its metabolism, it has taken almost 40 years to determine the molecular identity of an IMM pyruvate carrier. Our current understanding is that two proteins, mitochondrial pyruvate carriers MPC1 and MPC2, form a hetero-oligomeric complex in the IMM to facilitate pyruvate transport. This step is required for mitochondrial pyruvate oxidation and carboxylation – critical reactions in intermediary metabolism that are dysregulated in several common diseases. The identification of these transporter constituents opens the door to the identification of novel compounds that modulate MPC activity, with potential utility for treating diabetes, cardiovascular disease, cancer, neurodegenerative diseases, and other common causes of morbidity and mortality. The purpose of the present review is to detail the historical, current and future research investigations concerning mitochondrial pyruvate transport, and discuss the possible consequences of altered pyruvate transport in various metabolic tissues. PMID:25748677

  17. DEGRADATION OF PYRUVATE BY MICROCOCCUS LACTILYTICUS II.

    PubMed Central

    McCormick, N. G.; Ordal, E. J.; Whiteley, H. R.

    1962-01-01

    McCormick, N. G. (University of Washington, Seattle), E. J. Ordal, and H. R. Whiteley. Degradation of pyruvate by Micrococcus lactilyticus. II. Studies of cofactors in the formate-exchange reaction. J. Bacteriol. 83:899–906. 1962.—Enzyme preparations from Micrococcus lactilyticus2 are rendered inactive with respect to formate exchange by treatment with charcoal or Dowex-50, by dialysis, or by fractionation with ammonium sulfate. The activity may be completely restored by a “kochsaft” preparation (BES) obtained from M. lactilyticus and partially restored by similar BES preparations from Escherichia coli and Clostridium butyricum. Diphosphothiamine is required for formate exchange but full activity cannot be restored by known cofactors. Brief exposure to increased temperatures, air, extremes of pH, and absorption with charcoal and Dowex-50 decrease the cofactor activity of BES preparations. The addition of BES preparations from E. coli and Streptococcus faecalis causes a shift in the degradation of pyruvate by extracts of M. lactilyticus from the phosphoroclastic cleavage (to acetyl phosphate and formate) to the dismutation of pyruvate (to lactate, acetate, and carbon dioxide). C. cylindrosporum was found to mediate the formate-exchange reaction; the activity of crude extracts was stimulated by M. lactilyticus and C. butyricum BES preparations. M. lactilyticus BES also increased the formate-exchange activity of extracts of E. coli. PMID:16561937

  18. Prenatal presentation of pyruvate dehydrogenase complex deficiency.

    PubMed

    Natarajan, Niranjana; Tully, Hannah M; Chapman, Teresa

    2016-08-01

    We present the case of a female infant referred for prenatal MR evaluation of ventriculomegaly, which had been attributed by the referring obstetrician to aqueductal stenosis. Fetal MR confirmed ventriculomegaly but also demonstrated cerebral volume loss and white matter abnormalities. After birth, the infant developed persistent lactic acidosis. A diagnosis of pyruvate dehydrogenase complex deficiency was made on the basis of metabolic and molecular genetic studies. Ventriculomegaly is a common referral reason for fetal MR, yet there are few published reports of the radiographic findings that accompany inborn errors of metabolism, one potentially under-recognized cause of enlarged ventricles. This case contributes to this small body of literature on the imaging features of pyruvate dehydrogenase complex deficiency by describing pre- and postnatal MR findings and key clinical details. Our report emphasizes the necessity of considering pyruvate dehydrogenase complex deficiency and other metabolic disorders as potential etiologies for fetal ventriculomegaly since prompt diagnosis may allow for early initiation of treatment and improve outcome. PMID:27026023

  19. Structure, function and regulation of pyruvate carboxylase.

    PubMed Central

    Jitrapakdee, S; Wallace, J C

    1999-01-01

    Pyruvate carboxylase (PC; EC 6.4.1.1), a member of the biotin-dependent enzyme family, catalyses the ATP-dependent carboxylation of pyruvate to oxaloacetate. PC has been found in a wide variety of prokaryotes and eukaryotes. In mammals, PC plays a crucial role in gluconeogenesis and lipogenesis, in the biosynthesis of neurotransmitter substances, and in glucose-induced insulin secretion by pancreatic islets. The reaction catalysed by PC and the physical properties of the enzyme have been studied extensively. Although no high-resolution three-dimensional structure has yet been determined by X-ray crystallography, structural studies of PC have been conducted by electron microscopy, by limited proteolysis, and by cloning and sequencing of genes and cDNA encoding the enzyme. Most well characterized forms of active PC consist of four identical subunits arranged in a tetrahedron-like structure. Each subunit contains three functional domains: the biotin carboxylation domain, the transcarboxylation domain and the biotin carboxyl carrier domain. Different physiological conditions, including diabetes, hyperthyroidism, genetic obesity and postnatal development, increase the level of PC expression through transcriptional and translational mechanisms, whereas insulin inhibits PC expression. Glucocorticoids, glucagon and catecholamines cause an increase in PC activity or in the rate of pyruvate carboxylation in the short term. Molecular defects of PC in humans have recently been associated with four point mutations within the structural region of the PC gene, namely Val145-->Ala, Arg451-->Cys, Ala610-->Thr and Met743-->Thr. PMID:10229653

  20. Transport of pyruvate into mitochondria is involved in methylmercury toxicity

    PubMed Central

    Lee, Jin-Yong; Ishida, Yosuke; Takahashi, Tsutomu; Naganuma, Akira; Hwang, Gi-Wook

    2016-01-01

    We have previously demonstrated that the overexpression of enzymes involved in the production of pyruvate, enolase 2 (Eno2) and D-lactate dehydrogenase (Dld3) renders yeast highly sensitive to methylmercury and that the promotion of intracellular pyruvate synthesis may be involved in intensifying the toxicity of methylmercury. In the present study, we showed that the addition of pyruvate to culture media in non-toxic concentrations significantly enhanced the sensitivity of yeast and human neuroblastoma cells to methylmercury. The results also suggested that methylmercury promoted the transport of pyruvate into mitochondria and that the increased pyruvate concentrations in mitochondria were involved in intensifying the toxicity of methylmercury without pyruvate being converted to acetyl-CoA. Furthermore, in human neuroblastoma cells, methylmercury treatment alone decreased the mitochondrial membrane potential, and the addition of pyruvate led to a further significant decrease. In addition, treatment with N-acetylcysteine (an antioxidant) significantly alleviated the toxicity of methylmercury and significantly inhibited the intensification of methylmercury toxicity by pyruvate. Based on these data, we hypothesize that methylmercury exerts its toxicity by raising the level of pyruvate in mitochondria and that mitochondrial dysfunction and increased levels of reactive oxygen species are involved in the action of pyruvate. PMID:26899208

  1. Preparation, crystallization and X-ray diffraction analysis to 1.5 Å resolution of rat cysteine dioxygenase, a mononuclear iron enzyme responsible for cysteine thiol oxidation

    SciTech Connect

    Simmons, Chad R.; Hao, Quan; Stipanuk, Martha H.

    2005-11-01

    Recombinant rat cysteine dioxygenase (CDO) has been expressed, purified and crystallized and X-ray diffraction data have been collected to 1.5 Å resolution. Cysteine dioxygenase (CDO; EC 1.13.11.20) is an ∼23 kDa non-heme iron metalloenzyme that is responsible for the oxidation of cysteine by O{sub 2}, yielding cysteinesulfinate. CDO catalyzes the first step in the conversion of cysteine to taurine, as well as the first step in the catabolism of cysteine to pyruvate plus sulfate. Recombinant rat CDO was heterologously expressed, purified and crystallized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The optimal CDO crystals diffracted to 1.5 Å resolution and belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 57.55, c = 123.06 Å, α = β = γ = 90°. CDO shows little homology to any other proteins; therefore, the structure of the enzyme will be determined by ab initio phasing using a selenomethionyl derivative.

  2. The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway.

    PubMed

    Furdui, C; Ragsdale, S W

    2000-09-15

    Pyruvate:ferredoxin oxidoreductase (PFOR) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and CO(2). The catalytic proficiency of this enzyme for the reverse reaction, pyruvate synthase, is poorly understood. Conversion of acetyl-CoA to pyruvate links the Wood-Ljungdahl pathway of autotrophic CO(2) fixation to the reductive tricarboxylic acid cycle, which in these autotrophic anaerobes is the stage for biosynthesis of all cellular macromolecules. The results described here demonstrate that the Clostridium thermoaceticum PFOR is a highly efficient pyruvate synthase. The Michaelis-Menten parameters for pyruvate synthesis by PFOR are: V(max) = 1.6 unit/mg (k(cat) = 3.2 s(-1)), K(m)(Acetyl-CoA) = 9 micrometer, and K(m)(CO(2)) = 2 mm. The intracellular concentrations of acetyl-CoA, CoASH, and pyruvate have been measured. The predicted rate of pyruvate synthesis at physiological concentrations of substrates clearly is sufficient to support the role of PFOR as a pyruvate synthase in vivo. Measurements of its k(cat)/K(m) values demonstrate that ferredoxin is a highly efficient electron carrier in both the oxidative and reductive reactions. On the other hand, rubredoxin is a poor substitute in the oxidative direction and is inept in donating electrons for pyruvate synthesis. PMID:10878009

  3. Pyruvate-dependent preconditioning and cardioprotection in murine myocardium.

    PubMed

    Flood, Amanda; Hack, Benjamin D; Headrick, John P

    2003-03-01

    1. Whether pyruvate inhibits or can actually initiate myocardial preconditioning is unclear and whether pyruvate provides protection via its action as a 'cosubstrate' with glucose or via alternative mechanisms also remains controversial. We examined effects of a high concentration of pyruvate (10 mmol/L) alone or with 15 mmol/L glucose in mouse hearts subjected to 20 min ischaemia and 30 min reperfusion. 2. Provision of 10 mmol/L pyruvate alone or as a cosubstrate markedly reduced ischaemic contracture and enhanced postischaemic recovery. Time to contracture was increased from approximately 3 min to over 8 min, peak contracture was reduced from 90 mmHg to less than 60 mmHg and postischaemic pressure development was also improved. Effects on contracture were independent of the presence of pyruvate during ischaemia and improved postischaemic recovery was evident with pre-ischaemic pyruvate perfusion. 3. Cardioprotection did not require the presence of pyruvate during ischaemia or reperfusion and effects of pyruvate pretreatment could be mimicked by pretreatment with 1 mmol/L dichloroacetate (DCA), an activator of pyruvate dehydrogenase. 4. Myocardial adenosine efflux and Ca2+ content were elevated (by 215 and 65%, respectively) following pretreatment with pyruvate, potentially triggering a preconditioned state. A role for adenosine A1 receptors is supported by lack of added protection with pyruvate in hearts transgenically overexpressing adenosine A1 receptors. 5. Collectively, these observations demonstrate that pre-ischaemic treatment with pyruvate or DCA provides a beneficial preconditioning-like effect in ischaemic and postischaemic myocardium. The response appears unrelated to glycolytic inhibition, but may be mediated via transient changes in adenosine levels and/or cellular Ca2+.

  4. 21 CFR 862.1650 - Pyruvate kinase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... to pyruvate kinase deficiency or of acute leukemias. (b) Classification. Class I (general...

  5. 21 CFR 862.1650 - Pyruvate kinase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... to pyruvate kinase deficiency or of acute leukemias. (b) Classification. Class I (general...

  6. 21 CFR 862.1650 - Pyruvate kinase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... to pyruvate kinase deficiency or of acute leukemias. (b) Classification. Class I (general...

  7. Liver specific pyruvate kinase in pheasants Phasianus colchicus.

    PubMed

    Guderley, H; Jacques, L

    1987-01-01

    While in chickens, the existence of a liver form of pyruvate kinase is controversial, the liver form of pyruvate kinase in pheasants, murres and puffins is electrophoretically distinct from that in muscle, brain, kidney, lung and small intestine. Although the forms in lungs, muscle, heart, brain and small intestine could not be reliably separated by electrophoresis, the functional characteristics of the lung and muscle forms of pyruvate kinase in the pheasant are distinct and can be classified as K and M isozymes respectively. Our data suggest that these birds possess at least three distinct isozymes of pyruvate kinase. PMID:3609446

  8. Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L 1

    PubMed Central

    Williams, Michael; Randall, Douglas D.

    1979-01-01

    Pyruvate dehydrogenase complex is associated with intact chloroplasts and mitochondria of 9-day-old Pisum sativum L. seedlings. The ratio of the mitochondrial complex to the chloroplast complex activities is about 3 to 1. Maximal rates observed for chloroplast pyruvate dehydrogenase complex activity ranged from 6 to 9 micromoles of NADH produced per milligram of chlorophyll per hour. Osmotic rupture of pea chloroplasts released 88% of the complex activity, indicating that chloroplast pyruvate dehydrogenase complex is a stromal complex. The pH optimum for chloroplast pyruvate dehydrogenase complex was between 7.8 and 8.2, whereas the mitochondrial pyruvate dehydrogenase complex had a pH optimum between 7.3 and 7.7. Chloroplast pyruvate dehydrogenase complex activity was specific for pyruvate, dependent upon coenzyme A and NAD and partially dependent upon Mg2+ and thiamine pyrophosphate. Chloroplast-associated pyruvate dehydrogenase complex provides a direct link between pyruvate metabolism and chloroplast fatty acid biosynthesis by providing the substrate, acetyl-CoA, necessary for membrane development in young plants. Images PMID:16661100

  9. 21 CFR 862.1650 - Pyruvate kinase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... to pyruvate kinase deficiency or of acute leukemias. (b) Classification. Class I (general...

  10. 2-[2-[4-[2-[2-[ 1,3-Dihydro- 1,1-bis (4-hydroxyphenyl)-3-oxo-5-isobenzofuranthioureidyl]ethylaminocarbonyl]ethyl]phenyl] ethylamino]-5′-N-ethylcarboxamidoadenosine (FITC-APEC): A Fluorescent Ligand For A2a-Adenosine Receptors

    PubMed Central

    McCabe, R. Tyler; Skolnick, Phil; Jacobson, Kenneth A.

    2011-01-01

    The fluorescein conjugate, FITC-APEC (2-[2-[4-[2-[2-[1,3-dihydro-l,l-bis(4-hydroxyphenyl)-3-oxo-5-isobenzofuranthioureidyl]ethylaminocarbonyl]ethyl]phenyl]ethylamino]-5′-N-ethylcarboxamidoadenosine), is a novel ligand derived from a series of functionalized congeners that act as selective A2a-adenosine receptor agonists. The binding of FITC-APEC to bovine striatal A2a,-adenosine receptors measured by fluorescence techniques was saturable and of a high affinity, with a Bmax, of 2.3 ± 0.3 pmol/mg protein and KD of 57 ± 2 nM. The KD value estimated by fluorescence was consistent with the Ki (11 ± 0.3 nM) obtained by competition studies with [3H]CGS 21680. Additionally, the Bmax, value found by FITC-APEC measurement was in agreement with Bmax, values obtained using radioligand binding. FITC-APEC exhibited rapid and reversible binding to bovine striatum. The potencies of chemically diverse A2a-adenosine receptor ligands estimated by inhibition of FITC-APEC binding were in good agreement with their potencies determined using radioligand binding techniques (r = 0.97, P = 0.0003). FITC-APEC binding was not altered by purine derivatives that do not recognize A2a-adenosine receptors. These findings demonstrate that the novel fluorescent ligand FITC-APEC can be used in the quantitative characterization of ligand binding to A2a-adenosine receptors. PMID:23772170

  11. Radical Intermediates in Monooxygenase Reactions of Rieske Dioxygenases

    PubMed Central

    Chakrabarty, Sarmistha; Austin, Rachel N.; Deng, Dayi; Groves, John T.; Lipscomb, John D.

    2009-01-01

    Rieske dioxygenases catalyze the cis-dihydroxylation of a wide range of aromatic compounds to initiate their biodegradation. The archetypal Rieske dioxygenase naphthalene 1,2-dioxygenase (NDOS) catalyzes dioxygenation of naphthalene to form (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. NDOS is composed of three proteins: a reductase, a ferredoxin, and an α3β3 oxygenase (NDO). In each α subunit, NDO contains a Rieske Fe2S2 cluster and a mononuclear iron site where substrate dihydroxylation occurs. NDOS also catalyzes monooxygenase reactions for many substrates. The mechanism of the reaction is unknown for either the mono- or di-oxygenase reactions, but has been postulated to involve either direct reaction of a structurally characterized Fe(III)-hydroperoxy intermediate or the electronically equivalent Fe(V)-oxo-hydroxo intermediate formed by O-O bond cleavage before reaction with substrate. The reaction for the former intermediate is expected to proceed through cationic intermediates while the latter is anticipated to initially form a radical intermediate. Here the monooxygenation reactions of the diagnostic probe molecules norcarane and bicyclohexane are investigated. In each case, a significant amount of the rearrangement product derived from a radical intermediate (lifetime of 11–18 ns) is observed while little or no ring expansion product from a cationic intermediate is formed. Thus, monooxygenation of these molecules appears to proceed via the Fe(V)-oxo-hydroxo intermediate. The formation of this high-valent intermediate shows that it must also be considered as a possible participant in the dioxygenation reaction, in contrast to computational studies but in accord with previous biomimetic studies. PMID:17341076

  12. A Hyperactive Cobalt-Substituted Extradiol-Cleaving Catechol Dioxygenase

    PubMed Central

    Fielding, Andrew J.; Farquhar, Erik R.

    2011-01-01

    Homoprotocatechuate (HPCA) 2,3-dioxygenase from Brevibacterium fuscum (Fe-HPCD) has an Fe(II) center in its active site that can be replaced with Mn(II) or Co(II). While Mn-HPCD exhibits steady state kinetic parameters comparable to those of Fe-HPCD, Co-HPCD behaves somewhat differently exhibiting a significantly higher KMO2 and kcat. The high activity of Co-HPCD is surprising, given that cobalt has the highest standard M(III/II) redox potential of the three metals. Comparison of the X-ray crystal structures of the resting and substrate-bound forms of Fe-, Mn-, and Co-HPCD shows that metal-substitution has no effect on the local ligand environment, the conformational integrity of the active site, or the overall protein structure, suggesting that the protein structure does not differentially tune the potential of the metal center. Analysis of the steady state kinetics of Co-HPCD suggests that the Co(II) center alters the relative rate constants for the interconversion of intermediates in the catalytic cycle but still allows the dioxygenase reaction to proceed efficiently. When compared with the kinetic data for Fe- and Mn-HPCD, these results show that dioxygenase catalysis can proceed at high rates over a wide range of metal redox potentials. This is consistent with the proposed mechanism in which the metal mediates electron transfer between the catechol substrate and O2 to form the postulated [M(II)(semiquinone)superoxo] reactive species. These kinetic differences and the spectroscopic properties of Co-HPCD provide new tools with which to explore the unique O2 activation mechanism associated with the extradiol dioxygenase family. PMID:21153851

  13. Cassava root diet induces low pyruvate levels.

    PubMed

    Golay, Van K

    2010-01-01

    The high cyanogenic-glucoside carbohydrate of the cassava root (Manihot esculenta) has special properties that make it an ideal therapeutic food for lowering nicotinamide adenine dinucleotide reduced form (NADH) and inducing Sirtuin (Sirt) gene overexpression when eaten in an exclusive mono-food diet regime. The author, using himself as the sole test subject, repeatedly induced low pyruvate levels (reflective of NADH levels) after being on the diet for 1-2 weeks at a time. The possible influences of exclusive cassava dieting on redox control and Sirtuin activation will be discussed. PMID:20462383

  14. Probes of the Catalytic Site of Cysteine Dioxygenase

    SciTech Connect

    Chai,S.; Bruyere, J.; Maroney, M.

    2006-01-01

    The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the a-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ a-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by {alpha}-ketoglutarate.

  15. Biochemical Characterization of Inducible 'Reductase' Component of Benzoate Dioxygenase and Phthalate Isomer Dioxygenases from Pseudomonas aeruginosa strain PP4.

    PubMed

    Karandikar, Rohini; Badri, Abinaya; Phale, Prashant S

    2015-09-01

    The first step involved in the degradation of phthalate isomers (phthalate, isophthalate and terephthalate) is the double hydroxylation by respective aromatic-ring hydroxylating dioxygenases. These are two component enzymes consisting of 'oxygenase' and 'reductase' components. Soil isolate Pseudomonas aeruginosa strain PP4 degrades phthalate isomers via protocatechuate and benzoate via catechol 'ortho' ring cleavage pathway. Metabolic studies suggest that strain PP4 has carbon source-specific inducible phthalate isomer dioxygenase and benzoate dioxygenase. Thus, it was of interest to study the properties of reductase components of these enzymes. Reductase activity from phthalate isomer-grown cells was 3-5-folds higher than benzoate grown cells. In-gel activity staining profile showed a reductase activity band of R f 0.56 for phthalate isomer-grown cells as compared to R f 0.73 from benzoate-grown cells. Partially purified reductase components from phthalate isomer grown cells showed K m in the range of 30-40 μM and V max = 34-48 μmol min(-1) mg(-1). However, reductase from benzoate grown cells showed K m = 49 μM and V max = 10 μmol min(-1) mg(-1). Strikingly similar molecular and kinetic properties of reductase component from phthalate isomer-grown cells suggest that probably the same reductase component is employed in three phthalate isomer dioxygenases. However, reductase component is different, with respect to kinetic properties and zymogram analysis, from benzoate-grown cells when compared to that from phthalate isomer grown cells of PP4.

  16. Phosphorylation-dephosphorylation of yeast pyruvate dehydrogenase

    SciTech Connect

    Uhlinger, D.J.; Reed, L.J.

    1986-05-01

    Pyruvate dehydrogenase complex (PDC) was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). No pyruvate dehydrogenase (PDH) kinase activity was detected at any stage of the purification. However, the purified PDC was phosphorylated and inactivated by purified PDH kinase from bovine kidney mitochondria, Mg/sup 2 +/, and (..gamma..-/sup 32/P)ATP. The protein-bound radioactivity was localized in the PDH ..cap alpha.. subunit. The phosphorylated, inactivated PDC was dephosphorylated and reactivated with purified bovine PDH phosphatase, Mg/sup 2 +/, and Ca/sup 2 +/. From a tryptic digest of phosphorylated yeast PDC a radioactive peptide was isolated by anion and reverse phase HPLC. The sequence of this tetradecapeptide is Tyr-Gly-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Thr-Tyr-Arg. This sequence is very similar to the sequence of a tryptic phosphopeptide derived from the ..cap alpha.. subunit of bovine kidney and heart PDH: Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser-Tyr-Arg.

  17. Transcriptional regulation of pyruvate dehydrogenase kinase.

    PubMed

    Jeong, Ji Yun; Jeoung, Nam Ho; Park, Keun-Gyu; Lee, In-Kyu

    2012-10-01

    The pyruvate dehydrogenase complex (PDC) activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK) isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes. PMID:23130316

  18. 21 CFR 862.1650 - Pyruvate kinase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pyruvate kinase test system. 862.1650 Section 862.1650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1650 Pyruvate kinase test system....

  19. A Novel Angular Dioxygenase Gene Cluster Encoding 3-Phenoxybenzoate 1′,2′-Dioxygenase in Sphingobium wenxiniae JZ-1

    PubMed Central

    Wang, Chenghong; Chen, Qing; Wang, Rui; Shi, Chao; Yan, Xin; Li, Shunpeng

    2014-01-01

    Sphingobium wenxiniae JZ-1 utilizes a wide range of pyrethroids and their metabolic product, 3-phenoxybenzoate, as sources of carbon and energy. A mutant JZ-1 strain, MJZ-1, defective in the degradation of 3-phenoxybenzoate was obtained by successive streaking on LB agar. Comparison of the draft genomes of strains JZ-1 and MJZ-1 revealed that a 29,366-bp DNA fragment containing a putative angular dioxygenase gene cluster (pbaA1A2B) is missing in strain MJZ-1. PbaA1, PbaA2, and PbaB share 65%, 52%, and 10% identity with the corresponding α and β subunits and the ferredoxin component of dioxin dioxygenase from Sphingomonas wittichii RW1, respectively. Complementation of pbaA1A2B in strain MJZ-1 resulted in the active 3-phenoxybenzoate 1′,2′-dioxygenase, but the enzyme activity in Escherichia coli was achieved only through the coexpression of pbaA1A2B and a glutathione reductase (GR)-type reductase gene, pbaC, indicating that the 3-phenoxybenzoate 1′,2′-dioxygenase belongs to a type IV Rieske non-heme iron aromatic ring-hydroxylating oxygenase system consisting of a hetero-oligomeric oxygenase, a [2Fe-2S]-type ferredoxin, and a GR-type reductase. The pbaC gene is not located in the immediate vicinity of pbaA1A2B. 3-Phenoxybenzoate 1′,2′-dioxygenase catalyzes the hydroxylation in the 1′ and 2′ positions of the benzene moiety of 3-phenoxybenzoate, yielding 3-hydroxybenzoate and catechol. Transcription of pbaA1A2B and pbaC was induced by 3-phenoxybenzoate, but the transcriptional level of pbaC was far less than that of pbaA1A2B, implying the possibility that PbaC may not be the only reductase that can physiologically transfer electrons to PbaA1A2B in strain JZ-1. Some GR-type reductases from other sphingomonad strains could also transfer electrons to PbaA1A2B, suggesting that PbaA1A2B has a low specificity for reductase. PMID:24747891

  20. Erythrocyte pyruvate kinase deficiency: 2015 status report

    PubMed Central

    Zanella, Alberto; Neufeld, Ellis J.; Morton, D. Holmes; Eber, Stefan; Yaish, Hassan; Glader, Bertil

    2015-01-01

    Over the last several decades, our understanding of the genetic variation, pathophysiology, and complications of the hemolytic anemia associated with red cell pyruvate kinase deficiency (PKD) has expanded. Nonetheless, there remain significant gaps in our knowledge with regard to clinical care and monitoring. Treatment remains supportive with phototherapy and/or exchange transfusion in the newborn period, regular or intermittent red cell transfusions in children and adults, and splenectomy to decrease transfusion requirements and/or anemia related symptoms. In this article, we review the clinical diversity of PKD, the current standard of treatment and for supportive care, the complications observed, and future treatment directions.Am. J. Hematol. 90:825–830, 2015. © 2015 Wiley Periodicals, Inc. PMID:26087744

  1. Conformational Dynamics and Allostery in Pyruvate Kinase.

    PubMed

    Donovan, Katherine A; Zhu, Shaolong; Liuni, Peter; Peng, Fen; Kessans, Sarah A; Wilson, Derek J; Dobson, Renwick C J

    2016-04-22

    Pyruvate kinase catalyzes the final step in glycolysis and is allosterically regulated to control flux through the pathway. Two models are proposed to explain how Escherichia coli pyruvate kinase type 1 is allosterically regulated: the "domain rotation model" suggests that both the domains within the monomer and the monomers within the tetramer reorient with respect to one another; the "rigid body reorientation model" proposes only a reorientation of the monomers within the tetramer causing rigidification of the active site. To test these hypotheses and elucidate the conformational and dynamic changes that drive allostery, we performed time-resolved electrospray ionization mass spectrometry coupled to hydrogen-deuterium exchange studies followed by mutagenic analysis to test the activation mechanism. Global exchange experiments, supported by thermostability studies, demonstrate that fructose 1,6-bisphosphate binding to the allosteric domain causes a shift toward a globally more dynamic ensemble of conformations. Mapping deuterium exchange to peptides within the enzyme highlight site-specific regions with altered conformational dynamics, many of which increase in conformational flexibility. Based upon these and mutagenic studies, we propose an allosteric mechanism whereby the binding of fructose 1,6-bisphosphate destabilizes an α-helix that bridges the allosteric and active site domains within the monomeric unit. This destabilizes the β-strands within the (β/α)8-barrel domain and the linked active site loops that are responsible for substrate binding. Our data are consistent with the domain rotation model but inconsistent with the rigid body reorientation model given the increased flexibility at the interdomain interface, and we can for the first time explain how fructose 1,6-bisphosphate affects the active site. PMID:26879751

  2. Structural Studies of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.

  3. The Bifunctional Pyruvate Decarboxylase/Pyruvate Ferredoxin Oxidoreductase from Thermococcus guaymasensis

    PubMed Central

    2014-01-01

    The hyperthermophilic archaeon Thermococcus guaymasensis produces ethanol as a metabolic end product, and an alcohol dehydrogenase (ADH) catalyzing the reduction of acetaldehyde to ethanol has been purified and characterized. However, the enzyme catalyzing the formation of acetaldehyde has not been identified. In this study an enzyme catalyzing the production of acetaldehyde from pyruvate was purified and characterized from T. guaymasensis under strictly anaerobic conditions. The enzyme had both pyruvate decarboxylase (PDC) and pyruvate ferredoxin oxidoreductase (POR) activities. It was oxygen sensitive, and the optimal temperatures were 85°C and >95°C for the PDC and POR activities, respectively. The purified enzyme had activities of 3.8 ± 0.22 U mg−1 and 20.2 ± 1.8 U mg−1, with optimal pH-values of 9.5 and 8.4 for each activity, respectively. Coenzyme A was essential for both activities, although it did not serve as a substrate for the former. Enzyme kinetic parameters were determined separately for each activity. The purified enzyme was a heterotetramer. The sequences of the genes encoding the subunits of the bifunctional PDC/POR were determined. It is predicted that all hyperthermophilic β-keto acids ferredoxin oxidoreductases are bifunctional, catalyzing the activities of nonoxidative and oxidative decarboxylation of the corresponding β-keto acids. PMID:24982594

  4. Comparative analysis of two DOPA dioxygenases from Phytolacca Americana.

    PubMed

    Takahashi, Kana; Yoshida, Kazuko; Sakuta, Masaaki

    2015-05-01

    The comparative analysis of two Phytolacca americana DOPA dioxygenases (PaDOD1 and PaDOD2) that may be involved in betalain biosynthesis was carried out. The recombinant protein of PaDOD catalyzed the conversion of DOPA to betalamic acid, whereas DOD activity was not detected in PaDOD2 in vitro. The role of DOD genes is discussed in the evolutionary context using phylogenetic analysis, suggesting that DOD might have been duplicated early in evolution and that accumulation of base substitutions could have led to the different characteristics of DODs within the betalain-producing Caryophyllales. PMID:26058141

  5. Comparative analysis of two DOPA dioxygenases from Phytolacca Americana.

    PubMed

    Takahashi, Kana; Yoshida, Kazuko; Sakuta, Masaaki

    2015-05-01

    The comparative analysis of two Phytolacca americana DOPA dioxygenases (PaDOD1 and PaDOD2) that may be involved in betalain biosynthesis was carried out. The recombinant protein of PaDOD catalyzed the conversion of DOPA to betalamic acid, whereas DOD activity was not detected in PaDOD2 in vitro. The role of DOD genes is discussed in the evolutionary context using phylogenetic analysis, suggesting that DOD might have been duplicated early in evolution and that accumulation of base substitutions could have led to the different characteristics of DODs within the betalain-producing Caryophyllales.

  6. Decarboxylation of Pyruvate to Acetaldehyde for Ethanol Production by Hyperthermophiles

    PubMed Central

    Eram, Mohammad S.; Ma, Kesen

    2013-01-01

    Pyruvate decarboxylase (PDC encoded by pdc) is a thiamine pyrophosphate (TPP)-containing enzyme responsible for the conversion of pyruvate to acetaldehyde in many mesophilic organisms. However, no pdc/PDC homolog has yet been found in fully sequenced genomes and proteomes of hyper/thermophiles. The only PDC activity reported in hyperthermophiles was a bifunctional, TPP- and CoA-dependent pyruvate ferredoxin oxidoreductase (POR)/PDC enzyme from the hyperthermophilic archaeon Pyrococcus furiosus. Another enzyme known to be involved in catalysis of acetaldehyde production from pyruvate is CoA-acetylating acetaldehyde dehydrogenase (AcDH encoded by mhpF and adhE). Pyruvate is oxidized into acetyl-CoA by either POR or pyruvate formate lyase (PFL), and AcDH catalyzes the reduction of acetyl-CoA to acetaldehyde in mesophilic organisms. AcDH is present in some mesophilic (such as clostridia) and thermophilic bacteria (e.g., Geobacillus and Thermoanaerobacter). However, no AcDH gene or protein homologs could be found in the released genomes and proteomes of hyperthermophiles. Moreover, no such activity was detectable from the cell-free extracts of different hyperthermophiles under different assay conditions. In conclusion, no commonly-known PDCs was found in hyperthermophiles. Instead of the commonly-known PDC, it appears that at least one multifunctional enzyme is responsible for catalyzing the non-oxidative decarboxylation of pyruvate to acetaldehyde in hyperthermophiles. PMID:24970182

  7. Isolation of 3-phosphohistidine from phosphorylated pyruvate, phosphate dikinase.

    PubMed Central

    Spronk, A M; Yoshida, H; Wood, H G

    1976-01-01

    Pyruvate, phosphate dikinase (EC 2-7-9-1) catalyzes formation of phosphoenolpyruvate, AMP, and inorganic pyrophosphate from pyruvate, ATP, and orthophosphate. A pyrophosphoryl and phosphoryl form of the enzyme is involved in this transfer. The [32P]phosphoryl form of pyruvate, phosphate dikinase was prepared with enzyme isolated from Bacteroides symbiosus. The [32P]phosphoryl enzyme was found to have properties corresponding to a phosphoramidate linkage and this was confirmed by isolation of 3-[32P]phosphohistidine from alkaline hydrolysates of the enzyme. The histidyl residue is considered to be the pyrophosphoryl- and phosphoryl-carrier between the three substrate sites of this enzyme. PMID:12506

  8. Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485

    SciTech Connect

    Zhou, Jilai; Olson, Daniel G.; Lanahan, Anthony A.; Tian, Liang; Murphy, Sean Jean-Loup; Lo, Jonathan; Lynd, Lee R.

    2015-09-15

    We report that Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30–70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. We found that that pyruvate ferredoxin oxidoreductase enzyme (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis.

  9. Distribution, Diversity, and Activities of Sulfur Dioxygenases in Heterotrophic Bacteria

    PubMed Central

    Liu, Honglei; Xin, Yufeng

    2014-01-01

    Sulfur oxidation by chemolithotrophic bacteria is well known; however, sulfur oxidation by heterotrophic bacteria is often ignored. Sulfur dioxygenases (SDOs) (EC 1.13.11.18) were originally found in the cell extracts of some chemolithotrophic bacteria as glutathione (GSH)-dependent sulfur dioxygenases. GSH spontaneously reacts with elemental sulfur to generate glutathione persulfide (GSSH), and SDOs oxidize GSSH to sulfite and GSH. However, SDOs have not been characterized for bacteria, including chemolithotrophs. The gene coding for human SDO (human ETHE1 [hETHE1]) in mitochondria was discovered because its mutations lead to a hereditary human disease, ethylmalonic encephalopathy. Using sequence analysis and activity assays, we discovered three subgroups of bacterial SDOs in the proteobacteria and cyanobacteria. Ten selected SDO genes were cloned and expressed in Escherichia coli, and the recombinant proteins were purified. The SDOs used Fe2+ for catalysis and displayed considerable variations in specific activities. The wide distribution of SDO genes reveals the likely source of the hETHE1 gene and highlights the potential of sulfur oxidation by heterotrophic bacteria. PMID:24389926

  10. Ferryl derivatives of human indoleamine 2,3-dioxygenase.

    PubMed

    Lu, Changyuan; Yeh, Syun-Ru

    2011-06-17

    The critical role of the ferryl intermediate in catalyzing the oxygen chemistry of monooxygenases, oxidases, or peroxidases has been known for decades. In contrast, its involvement in heme-based dioxygenases, such as human indoleamine 2,3-dioxygenase (hIDO), was not recognized until recently. In this study, H(2)O(2) was used as a surrogate to generate the ferryl intermediate of hIDO. Spectroscopic data demonstrate that the ferryl species is capable of oxidizing azinobis(3-ethylbenzothiazoline-6-sulfonic acid) but not L-Trp. Kinetic studies reveal that the conversion of the ferric enzyme to the ferryl intermediate facilitates the L-Trp binding rate by >400-fold; conversely, L-Trp binding to the enzyme retards the peroxide reaction rate by ∼9-fold, because of the significant elevation of the entropic barrier. The unfavorable entropic factor for the peroxide reaction highlights the scenario that the structure of hIDO is not optimized for utilizing H(2)O(2) as a co-substrate for oxidizing L-Trp. Titration studies show that the ferryl intermediate possesses two substrate-binding sites with a K(d) of 0.3 and 440 μM and that the electronic properties of the ferryl moiety are sensitive to the occupancy of the two substrate-binding sites. The implications of the data are discussed in the context of the structural and functional relationships of the enzyme. PMID:21502325

  11. Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775.

    PubMed

    Snoep, J L; Teixeira de Mattos, M J; Postma, P W; Neijssel, O M

    1990-01-01

    Enterococcus faecalis NCTC 775 was grown anaerobically in chemostat culture with pyruvate as the energy source. At low culture pH values, high in vivo and in vitro activities were found for both pyruvate dehydrogenase and lactate dehydrogenase. At high culture pH values the carbon flux was shifted towards pyruvate formate lyase. Some mechanisms possibly involved in this metabolic switch are discussed. In particular attention is paid to the NADH/NAD ratio (redox potential) and the fructose-1,6-bisphosphate-dependent lactate dehydrogenase activity as possible regulatory factors.

  12. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... measure pyruvic acid (an intermediate compound in the metabolism of carbohydrate) in plasma. Measurements obtained by this device are used in the evaluation of electrolyte metabolism and in the diagnosis...

  13. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... measure pyruvic acid (an intermediate compound in the metabolism of carbohydrate) in plasma. Measurements obtained by this device are used in the evaluation of electrolyte metabolism and in the diagnosis...

  14. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... measure pyruvic acid (an intermediate compound in the metabolism of carbohydrate) in plasma. Measurements obtained by this device are used in the evaluation of electrolyte metabolism and in the diagnosis...

  15. Pyruvate kinase: function, regulation and role in cancer

    PubMed Central

    Israelsen, William J.; Vander Heiden, Matthew G.

    2015-01-01

    Pyruvate kinase is an enzyme that catalyzes the conversion of phosphoenolpyruvate and ADP to pyruvate and ATP in glycolysis and plays a role in regulating cell metabolism. There are four mammalian pyruvate kinase isoforms with unique tissue expression patterns and regulatory properties. The M2 isoform of pyruvate kinase (PKM2) supports anabolic metabolism and is expressed both in cancer and normal tissue. The enzymatic activity of PKM2 is allosterically regulated by both intracellular signaling pathways and metabolites; PKM2 thus integrates signaling and metabolic inputs to modulate glucose metabolism according to the needs of the cell. Recent advances have increased our understanding of metabolic regulation by pyruvate kinase, raised new questions, and suggested the possibility of non-canonical PKM2 functions to regulate gene expression and cell cycle progression via protein-protein interactions and protein kinase activity. Here we review the structure, function, and regulation of pyruvate kinase and discuss how these properties enable regulation of PKM2 for cell proliferation and tumor growth. PMID:26277545

  16. Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids.

    PubMed

    Reid, E E; Thompson, P; Lyttle, C R; Dennis, D T

    1977-05-01

    The pyruvate dehydrogenase complex from pea (Pisum sativum L.) mitochondria was purified 23-fold by high speed centrifugation and glycerol gradient fractionation. The complex had a s(20,w) of 47.5S but this is a minimal value since the complex is unstable. The complex is specific for NAD(+) and pyruvate; NADP(+) and other keto acids give no reaction. Mg(2+), thiamine pyrophosphate, and cysteine are also required for maximal activity. The pH optimum for the complex was between 6.5 and 7.5.Continuous sucrose density gradients were used to separate castor bean (Ricinus communis L.) endosperm proplastids from mitochondria. Pyruvate dehydrogenase complex activity was found to be coincident with the proplastid peak on all of the gradients. Some separation of proplastids and mitochondria could be achieved by differential centrifugation and the ratios of the activities of the pyruvate dehydrogenase complex to succinic dehydrogenase and acetyl-CoA carboxylase to succinic dehydrogenase were consistent with both the pyruvate dehydrogenase complex and acetyl-CoA carboxylase being present in the proplastid. The proplastid fraction has to be treated with a detergent, Triton X-100, before maximal activity of the pyruvate dehydrogenase complex activity is expressed, indicating that it is bound in the organelle. The complex had a sharp pH optimum of 7.5. The complex required added Mg(2+), cysteine, and thiamine pyrophosphate for maximal activity but thiamine pyrophosphate was inhibitory at higher concentrations.

  17. Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling.

    PubMed

    McCommis, Kyle S; Chen, Zhouji; Fu, Xiaorong; McDonald, William G; Colca, Jerry R; Kletzien, Rolf F; Burgess, Shawn C; Finck, Brian N

    2015-10-01

    Pyruvate transport across the inner mitochondrial membrane is believed to be a prerequisite for gluconeogenesis in hepatocytes, which is important for the maintenance of normoglycemia during prolonged food deprivation but also contributes to hyperglycemia in diabetes. To determine the requirement for mitochondrial pyruvate import in gluconeogenesis, mice with liver-specific deletion of mitochondrial pyruvate carrier 2 (LS-Mpc2(-/-)) were generated. Loss of MPC2 impaired, but did not completely abolish, hepatocyte conversion of labeled pyruvate to TCA cycle intermediates and glucose. Unbiased metabolomic analyses of livers from fasted LS-Mpc2(-/-) mice suggested that alterations in amino acid metabolism, including pyruvate-alanine cycling, might compensate for the loss of MPC2. Indeed, inhibition of pyruvate-alanine transamination further reduced mitochondrial pyruvate metabolism and glucose production by LS-Mpc2(-/-) hepatocytes. These data demonstrate an important role for MPC2 in controlling hepatic gluconeogenesis and illuminate a compensatory mechanism for circumventing a block in mitochondrial pyruvate import.

  18. Flexibility of thiamine diphosphate revealed by kinetic crystallographic studies of the reaction of pyruvate-ferredoxin oxidoreductase with pyruvate.

    PubMed

    Cavazza, Christine; Contreras-Martel, Carlos; Pieulle, Laetitia; Chabrière, Eric; Hatchikian, E Claude; Fontecilla-Camps, Juan C

    2006-02-01

    Pyruvate-ferredoxin oxidoreductases (PFOR) are unique among thiamine pyrophosphate (ThDP)-containing enzymes in giving rise to a rather stable cofactor-based free-radical species upon the decarboxylation of their first substrate, pyruvate. We have obtained snapshots of unreacted and partially reacted (probably as a tetrahedral intermediate) pyruvate-PFOR complexes at different time intervals. We conclude that pyruvate decarboxylation involves very limited substrate-to-product movements but a significant displacement of the thiazolium moiety of ThDP. In this respect, PFOR seems to differ substantially from other ThDP-containing enzymes, such as transketolase and pyruvate decarboxylase. In addition, exposure of PFOR to oxygen in the presence of pyruvate results in significant inhibition of catalytic activity, both in solution and in the crystals. Examination of the crystal structure of inhibited PFOR suggests that the loss of activity results from oxime formation at the 4' amino substituent of the pyrimidine moiety of ThDP. PMID:16472741

  19. Effects of aerobic training on pyruvate dehydrogenase and pyruvate dehydrogenase kinase in human skeletal muscle.

    PubMed

    LeBlanc, Paul J; Peters, Sandra J; Tunstall, Rebecca J; Cameron-Smith, David; Heigenhauser, George J F

    2004-06-01

    This study examined the effects of short- and long-term aerobic training on the stable up-regulation of pyruvate dehydrogenase (PDH) and PDH kinase (PDK) in human skeletal muscle. We hypothesized that 8 weeks, but not 1 week, of aerobic training would increase total PDH (PDHt) and PDK activities compared to pretraining, and this would be detectable at the level of gene transcription (mRNA) and/or gene translation (protein). Resting muscle biopsies were taken before and after 1 and 8 weeks of aerobic cycle exercise training. PDHt and PDK activities, and their respective protein and mRNA expression, did not differ after 1 week of aerobic training. PDHt activity increased 31% after 8 weeks and this may be partially due to a 1.3-fold increase in PDH-E(1)alpha protein expression. PDK activity approximately doubled after 8 weeks of aerobic training and this was attributed to a 1.3-fold increase in PDK2 isoform protein expression. Similar to 1 week, no changes were observed at the mRNA level after 8 weeks of training. These findings suggest that aerobically trained human skeletal muscle has an increased maximal capacity to utilize carbohydrates, evident by increased PDHt, but increased metabolic control sensitivity to pyruvate through increased contribution of PDK2 to total PDK activity. PMID:15020699

  20. Ligand Migration in Human Indoleamine-2,3 Dioxygenase

    PubMed Central

    Nienhaus, Karin; Nickel, Elena; Lu, Changyuan; Yeh, Syun-Ru; Nienhaus, G. Ulrich

    2015-01-01

    Summary Human indoleamine 2,3-dioxygenase (hIDO), a monomeric heme enzyme, catalyzes the oxidative degradation of L-tryptophan (L-Trp) and other indoleamine derivatives. Its activity follows typical Michaelis–Menten behavior only for L-Trp concentrations up to 50 µM; a further increase in the concentration of L-Trp causes a decrease in the activity. This substrate inhibition of hIDO is a result of the binding of a second L-Trp molecule in an inhibitory substrate binding site of the enzyme. The molecular details of the reaction and the inhibition are not yet known. In the following, we summarize the present knowledge about this heme enzyme. PMID:21445845

  1. NADH Oxidase Activity of Indoleamine 2,3-Dioxygenase*

    PubMed Central

    Rosell, Federico I.; Kuo, Hsin H.; Mauk, A. Grant

    2011-01-01

    The heme enzyme indoleamine 2,3-dioxygenase (IDO) was found to oxidize NADH under aerobic conditions in the absence of other enzymes or reactants. This reaction led to the formation of the dioxygen adduct of IDO and supported the oxidation of Trp to N-formylkynurenine. Formation of the dioxygen adduct and oxidation of Trp were accelerated by the addition of small amounts of hydrogen peroxide, and both processes were inhibited in the presence of either superoxide dismutase or catalase. Anaerobic reaction of IDO with NADH proceeded only in the presence of a mediator (e.g. methylene blue) and resulted in formation of the ferrous form of the enzyme. We propose that trace amounts of peroxide previously proposed to occur in NADH solutions as well as solid NADH activate IDO and lead to aerobic formation of superoxide and the reactive dioxygen adduct of the enzyme. PMID:21690092

  2. INHIBITION OF INDOLEAMINE 2,3-DIOXYGENASE DOES NOT IMPEDE ORAL TOLERANCE

    EPA Science Inventory

    Rationale: Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme, regulates immune tolerance through inhibition of T-cell proliferation. Pharmacologic inhibition of IDO, which causes fetal rejection and increased tumor resistance in mice, may prove useful in cancer...

  3. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase.

    PubMed

    Arjune, Sita; Schwarz, Guenter; Belaidi, Abdel A

    2015-01-01

    Sulfur metabolism has gained increasing medical interest over the last years. In particular, cysteine dioxygenase (CDO) has been recognized as a potential marker in oncology due to its altered gene expression in various cancer types. Human CDO is a non-heme iron-dependent enzyme, which catalyzes the irreversible oxidation of cysteine to cysteine sulfinic acid, which is further metabolized to taurine or pyruvate and sulfate. Several studies have reported a unique post-translational modification of human CDO consisting of a cross-link between cysteine 93 and tyrosine 157 (Cys-Tyr), which increases catalytic efficiency in a substrate-dependent manner. However, the reaction mechanism by which the Cys-Tyr cofactor increases catalytic efficiency remains unclear. In this study, steady-state kinetics were determined for wild type CDO and two different variants being either impaired or saturated with the Cys-Tyr cofactor. Cofactor formation in CDO resulted in an approximately fivefold increase in k cat and tenfold increase in k cat/K m over the cofactor-free CDO variant. Furthermore, iron titration experiments revealed an 18-fold decrease in K d of iron upon cross-link formation. This finding suggests a structural role of the Cys-Tyr cofactor in coordinating the ferrous iron in the active site of CDO in accordance with the previously postulated reaction mechanism of human CDO. Finally, we identified product-based inhibition and α-ketoglutarate and glutarate as CDO inhibitors using a simplified well plate-based activity assay. This assay can be used for high-throughput identification of additional inhibitors, which may contribute to understand the functional importance of CDO in sulfur amino acid metabolism and related diseases.

  4. Modeling, Synthesis and Biological Evaluation of Potential Retinoid-X-Receptor (RXR) Selective Agonists: Novel Analogs of 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic Acid (Bexarotene) and (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid (CD3254)

    PubMed Central

    Jurutka, Peter W.; Kaneko, Ichiro; Yang, Joanna; Bhogal, Jaskaran S.; Swierski, Johnathon C.; Tabacaru, Christa R.; Montano, Luis A.; Huynh, Chanh C.; Jama, Rabia A.; Mahelona, Ryan D.; Sarnowski, Joseph T.; Marcus, Lisa M.; Quezada, Alexis; Lemming, Brittney; Tedesco, Maria A.; Fischer, Audra J.; Mohamed, Said A.; Ziller, Joseph W.; Ma, Ning; Gray, Geoffrey M.; van der Vaart, Arjan; Marshall, Pamela A.; Wagner, Carl E.

    2014-01-01

    Three unreported analogs of 4-[1-(3,5,5,8,8-pentamethyl-5-6-7-8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), otherwise known as bexarotene, as well as four novel analogs of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid (CD3254) are described, and evaluated for their retinoid-X-receptor (RXR)-selective agonism. Compound 1 has FDA approval as a treatment for cutaneous T-cell lymphoma (CTCL); though, treatment with 1 can elicit side-effects by disrupting other RXR-heterodimer receptor pathways. Of the 7 modeled novel compounds, all analogs stimulate RXR-regulated transcription in mammalian-2-hybrid and RXRE-mediated assays, possess comparable or elevated biological activity based on EC50 profiles, and retain similar or improved apoptotic activity in CTCL assays compared to 1. All novel compounds demonstrate selectivity for RXR and minimal crossover onto the retinoic-acid-receptor (RAR) compared to all-trans-retinoic acid, with select analogs also reducing inhibition of other RXR-dependent pathways (e.g., VDR-RXR). Our results demonstrate that further improvements in biological potency and selectivity of bexarotene can be achieved through rational drug design. PMID:24180745

  5. Metabolic Imaging in the Anesthetized Rat Brain Using Hyperpolarized [1-13C] Pyruvate and [1-13C] Ethyl Pyruvate

    PubMed Central

    Hurd, Ralph E.; Yen, Yi-Fen; Mayer, Dirk; Chen, Albert; Wilson, David; Kohler, Susan; Bok, Robert; Vigneron, Daniel; Kurhanewicz, John; Tropp, James; Spielman, Daniel; Pfefferbaum, Adolf

    2010-01-01

    Formulation, polarization, and dissolution conditions were developed to obtain a stable hyperpolarized solution of [1-13C]-ethyl pyruvate. A maximum tolerated concentration and injection rate were determined, and 13C spectroscopic imaging was used to compare the uptake of hyperpolarized [1-13C]-ethyl pyruvate relative to hyperpolarized [1-13C]-pyruvate into anesthetized rat brain. Hyperpolarized [1-13C]-ethyl pyruvate and [1-13C]-pyruvate metabolic imaging in normal brain is demonstrated and quantified in this feasibility and range-finding study. PMID:20432284

  6. Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485

    DOE PAGES

    Zhou, Jilai; Olson, Daniel G.; Lanahan, Anthony A.; Tian, Liang; Murphy, Sean Jean-Loup; Lo, Jonathan; Lynd, Lee R.

    2015-09-15

    We report that Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30–70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. We found that that pyruvate ferredoxin oxidoreductase enzymemore » (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis.« less

  7. Crystal Structure of PnpCD, a Two-subunit Hydroquinone 1,2-Dioxygenase, Reveals a Novel Structural Class of Fe2+-dependent Dioxygenases*

    PubMed Central

    Liu, Shiheng; Su, Tiantian; Zhang, Cong; Zhang, Wen-Mao; Zhu, Deyu; Su, Jing; Wei, Tiandi; Wang, Kang; Huang, Yan; Guo, Liming; Xu, Sujuan; Zhou, Ning-Yi; Gu, Lichuan

    2015-01-01

    Aerobic microorganisms have evolved a variety of pathways to degrade aromatic and heterocyclic compounds. However, only several classes of oxygenolytic fission reaction have been identified for the critical ring cleavage dioxygenases. Among them, the most well studied dioxygenases proceed via catecholic intermediates, followed by noncatecholic hydroxy-substituted aromatic carboxylic acids. Therefore, the recently reported hydroquinone 1,2-dioxygenases add to the diversity of ring cleavage reactions. Two-subunit hydroquinone 1,2-dioxygenase PnpCD, the key enzyme in the hydroquinone pathway of para-nitrophenol degradation, catalyzes the ring cleavage of hydroquinone to γ-hydroxymuconic semialdehyde. Here, we report three PnpCD structures, named apo-PnpCD, PnpCD-Fe3+, and PnpCD-Cd2+-HBN (substrate analog hydroxyenzonitrile), respectively. Structural analysis showed that both the PnpC and the C-terminal domains of PnpD comprise a conserved cupin fold, whereas PnpC cannot form a competent metal binding pocket as can PnpD cupin. Four residues of PnpD (His-256, Asn-258, Glu-262, and His-303) were observed to coordinate the iron ion. The Asn-258 coordination is particularly interesting because this coordinating residue has never been observed in the homologous cupin structures of PnpCD. Asn-258 is proposed to play a pivotal role in binding the iron prior to the enzymatic reaction, but it might lose coordination to the iron when the reaction begins. PnpD also consists of an intriguing N-terminal domain that might have functions other than nucleic acid binding in its structural homologs. In summary, PnpCD has no apparent evolutionary relationship with other iron-dependent dioxygenases and therefore defines a new structural class. The study of PnpCD might add to the understanding of the ring cleavage of dioxygenases. PMID:26304122

  8. Multiphase Chemistry of Pyruvic Acid Under Atmospherically Relevant Conditions

    NASA Astrophysics Data System (ADS)

    Vaida, V.; Monod, A.; Doussin, J. F.; Reed Harris, A. E.; Griffith, E. C.; Kroll, J. A.; Rapf, R.

    2014-12-01

    Chemistry in the natural environment proceeds in multiple phases and is subject to effects from atmospheric constituents and conditions. This presentation will use pyruvic acid as a case study to demonstrate the complexity of atmospheric multiphase chemistry. The photophysics and photochemistry of pyruvic acid proceeds on different potential energy surfaces with different reaction mechanisms, rates, and products in gas versus the aqueous phase. While the gas phase reaction generally decreases the complexity of products, the aqueous chemistry creates higher molecular weight, surface-active compounds. The studies presented involve a combination of laboratory studies that focus on the photochemistry of pyruvic acid in both the gas and aqueous phases. Further, experiments in an environmental simulation chamber (CESAM) that follow the photochemistry chemistry of pyruvic acid under atmospherically relevant conditions will be presented to highlight the effect of pressure, oxygen, relative humidity, and phase on the photochemistry of pyruvic acid. The results provide new input for atmospheric chemistry models that is required to better describe the behavior of α-keto acids in the environment.

  9. Probing alanine transaminase catalysis with hyperpolarized 13CD3-pyruvate

    NASA Astrophysics Data System (ADS)

    Barb, A. W.; Hekmatyar, S. K.; Glushka, J. N.; Prestegard, J. H.

    2013-03-01

    Hyperpolarized metabolites offer a tremendous sensitivity advantage (>104 fold) when measuring flux and enzyme activity in living tissues by magnetic resonance methods. These sensitivity gains can also be applied to mechanistic studies that impose time and metabolite concentration limitations. Here we explore the use of hyperpolarization by dissolution dynamic nuclear polarization (DNP) in mechanistic studies of alanine transaminase (ALT), a well-established biomarker of liver disease and cancer that converts pyruvate to alanine using glutamate as a nitrogen donor. A specific deuterated, 13C-enriched analog of pyruvic acid, 13C3D3-pyruvic acid, is demonstrated to have advantages in terms of detection by both direct 13C observation and indirect observation through methyl protons introduced by ALT-catalyzed H-D exchange. Exchange on injecting hyperpolarized 13C3D3-pyruvate into ALT dissolved in buffered 1H2O, combined with an experimental approach to measure proton incorporation, provided information on mechanistic details of transaminase action on a 1.5 s timescale. ALT introduced, on average, 0.8 new protons into the methyl group of the alanine produced, indicating the presence of an off-pathway enamine intermediate. The opportunities for exploiting mechanism-dependent molecular signatures as well as indirect detection of hyperpolarized 13C3-pyruvate and products in imaging applications are discussed.

  10. Evidence for a ferryl intermediate in a heme-based dioxygenase

    PubMed Central

    Lewis-Ballester, Ariel; Batabyal, Dipanwita; Egawa, Tsuyoshi; Lu, Changyuan; Lin, Yu; Marti, Marcelo A.; Capece, Luciana; Estrin, Dario A.; Yeh, Syun-Ru

    2009-01-01

    In contrast to the wide spectrum of cytochrome P450 monooxygenases, there are only 2 heme-based dioxygenases in humans: tryptophan dioxygenase (hTDO) and indoleamine 2,3-dioxygenase (hIDO). hTDO and hIDO catalyze the same oxidative ring cleavage reaction of L-tryptophan to N-formyl kynurenine, the initial and rate-limiting step of the kynurenine pathway. Despite immense interest, the mechanism by which the 2 enzymes execute the dioxygenase reaction remains elusive. Here, we report experimental evidence for a key ferryl intermediate of hIDO that supports a mechanism in which the 2 atoms of dioxygen are inserted into the substrate via a consecutive 2-step reaction. This finding introduces a paradigm shift in our understanding of the heme-based dioxygenase chemistry, which was previously believed to proceed via simultaneous incorporation of both atoms of dioxygen into the substrate. The ferryl intermediate is not observable during the hTDO reaction, highlighting the structural differences between the 2 dioxygenases, as well as the importance of stereoelectronic factors in modulating the reactions. PMID:19805032

  11. Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against Trypanosoma brucei by Targeting Pyruvate Kinase Activity

    PubMed Central

    Worku, Netsanet; Stich, August; Daugschies, Arwid; Wenzel, Iris; Kurz, Randy; Thieme, Rene; Kurz, Susanne; Birkenmeier, Gerd

    2015-01-01

    Background Human African Trypanosomiasis (HAT) also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate for the first time that the simple ester, ethyl pyruvate, comprises such properties. Results The current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0±0.29 mM). The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions. Conclusion Our results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to

  12. The preparation and properties of pyruvate kinase from yeast

    PubMed Central

    Fell, David A.; Liddle, Peter F.; Peacocke, Arthur R.; Dwek, Raymond A.

    1974-01-01

    A new method is described for the preparation of pyruvate kinase from yeast. This eliminates proteolysis during the preparation. The molecular weight of yeast pyruvate kinase is 215000, and it is composed of four subunits. Such properties of the enzyme as its extinction coefficient, cold-lability, thiol-group reactivity and binding of Mn2+ ions are compared with those previously reported for yeast pyruvate kinase prepared by different methods. The specific activity is significantly higher than previously observed, but otherwise the enzyme is similar, apart from its molecular weight and Mn2+-binding characteristics, to preparations from Saccharomyces cerevisiae obtained in this laboratory (e.g. Fell et al., 1972, and references therein) and that of C. H. Suelter (e.g. Kuczenski & Suelter, 1971, and references therein), and is different from the enzyme isolated from Saccharomyces carlsbergensis by B. Hess and his co-workers (e.g. Wieker & Hess, 1972, and references therein). ImagesFig. 2. PMID:4369339

  13. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase

    SciTech Connect

    Catalanotti, C.; Dubini, A.; Subramanian, V.; Yang, W. Q.; Magneschi, L.; Mus, F.; Seibert, M.; Posewitz, M. C.; Grossman, A. R.

    2012-02-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.

  14. /sup 14/CO/sub 2/ ratios method for detecting pyruvate carboxylation

    SciTech Connect

    Kelleher, J.K.; Bryan, B.M. III

    1985-11-15

    The pattern of oxidative metabolism of pyruvate may be assessed by comparing the steady-state /sup 14/CO/sub 2/ production from four isotopes in identical samples. The assay requires measuring the ratios of steady-state /sup 14/CO/sub 2/ production from two isotope pairs, (2-/sup 14/C)pyruvate:(3-/sup 14/C)pyruvate and (1-/sup 14/C)acetate:(2-/sup 14/C)acetate. These ratios are defined as the ''pyruvate /sup 14/CO/sub 2/ ratio'' and the ''acetate /sup 14/CO/sub 2/ ratio,'' respectively. If pyruvate is metabolized exclusively via pyruvate dehydrogenase (PDH), the two ratios will be identical. Alternatively, if any pyruvate enters the tricarboxylic acid (TCA) cycle via pyruvate carboxylation (PC), the pyruvate /sup 14/CO/sub 2/ ratio will be less than the acetate /sup 14/CO/sub 2/ ratio. If pyruvate enters the TCA cycle only through PC (with oxaloacetate and fumarate in equilibrium) the pyruvate /sup 14/CO/sub 2/ ratio will approach a value of 1.0. An equation is presented for the quantitative evaluation of pyruvate oxidation by these two pathways. We have used this method to detect relative changes in the pattern of pyruvate metabolism in rat liver mitochondria produced by exposure to 1 mM octanoyl carnitine, a compound known to alter the PC:PDH activity ratio. The major advantages of the method are (i) that it provides a sensitive method for detecting pyruvate carboxylation at physiological pyruvate concentrations and (ii) that it provides a method for distinguishing between effects on pyruvate transport and effects on pyruvate oxidation.

  15. Pyruvate dehydrogenase complex from germinating castor bean endosperm.

    PubMed

    Rapp, B J; Randall, D D

    1980-02-01

    Subcellular organelles from castor bean (Ricinus communis) endosperm were isolated on discontinuous sucrose gradients from germinating seeds which were 1 to 7 days postimbibition. Marker enzyme activities of the organelles were measured (fumarase, catalase, and triose phosphate isomerase) and the homogeneity of the organelle fractions was examined by electron microscopy. Pyruvate dehydrogenase complex activity was measured only in the mitochondrial fraction and attempts to activate or release the enzyme from the proplastid were not successful. A pathway is proposed for the most efficient use of endosperm carbon for de novo fatty acid biosynthesis that does not require the presence of the pyruvate dehydrogenase complex in the proplastid to provide acetyl-coenzymeA.

  16. Molecular evolution of bacterial indoleamine 2,3-dioxygenase.

    PubMed

    Yuasa, Hajime J; Ushigoe, Akiko; Ball, Helen J

    2011-10-01

    Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in L-Trp catabolism via the kynurenine pathway. In mammals, TDO is mainly expressed in the liver and primarily supplies nicotinamide adenine dinucleotide (NAD(+)). TDO is widely distributed from mammals to bacteria. Active IDO enzymes have been reported only in vertebrates and fungi. In mammals, IDO activity plays a significant role in the immune system while in fungal species, IDO is constitutively expressed and supplies NAD(+), like mammalian TDO. A search of genomic databases reveals that some bacterial species also have a putative IDO gene. A phylogenetic analysis clustered bacterial IDOs into two groups, group I or group II bacterial IDOs. The catalytic efficiencies of group I bacterial IDOs were very low and they are suspected not to contribute significantly to L-Trp metabolism. The bacterial species bearing the group I bacterial IDO are scattered across a few phyla and no phylogenetically close relationship is observed between them. This suggests that the group I bacterial IDOs might be acquired by horizontal gene transmission that occurred in each lineage independently. In contrast, group II bacterial IDOs showed rather high catalytic efficiency. Particularly, the enzymatic characteristics (K(m), V(max) and inhibitor selectivity) of the Gemmatimonas aurantiaca IDO are comparable to those of mammalian IDO1, although comparison of the IDO sequences does not suggest a close evolutionary relationship. In several bacteria, TDO and the kynureninase gene (kynU) are clustered on their chromosome suggesting that these genes could be transcribed in an operon. Interestingly, G. aurantiaca has no TDO, and the IDO is clustered with kynU on its chromosome. Although the G. aurantiaca also has NadA and NadB to synthesize a quinolinic acid (a precursor of NAD(+)) via the aspartate pathway, the high activity of the G. aurantiaca IDO flanking

  17. Intestinal anti-inflammatory activity of calcium pyruvate in the TNBS model of rat colitis: Comparison with ethyl pyruvate.

    PubMed

    Algieri, F; Rodriguez-Nogales, A; Garrido-Mesa, J; Camuesco, D; Vezza, T; Garrido-Mesa, N; Utrilla, P; Rodriguez-Cabezas, M E; Pischel, I; Galvez, J

    2016-03-01

    Pyruvate is a key intermediate of the carbohydrate metabolism with endogenous scavenger properties. However, it cannot be used in clinics due to its instability. Ethyl pyruvate (EP) has shown better stability as well as an antioxidant and anti-inflammatory activity. Calcium pyruvate monohydrate (CPM) is another stable pyruvate derivative that could also provide the benefits from calcium, fundamental for bone health. Considering everything, we propose CPM as a therapeutic strategy to treat diseases with an immune component in which there is also a significant dysregulation of the skeletal homeostasis. This could be applicable to inflammatory bowel disease, which is characterized by over-production of pro-inflammatory mediators, including cytokines and reactive oxygen and nitrogen metabolites that induces intestinal mucosal damage and chronic inflammation, and extra-intestinal symptoms like osteopenia and osteoporosis. The effects of CPM and EP (20, 40 and 100mg/kg) were evaluated on the trinitrobenzenesulfonic acid (TNBS) model of colitis in rats, after a 7-day oral treatment, with main focus on colonic histology and inflammatory mediators. Both pyruvates showed intestinal anti-inflammatory effects in the TNBS-induced colitis. They were evident both histologically, with a recovery of the mucosal cytoarchitecture and a reduction of the neutrophil infiltration, and through the profile of inflammatory mediators (IL-1, IL-6, IL-17, IL-23, iNOS). However, CPM appeared to be more effective than ethyl pyruvate. In conclusion, CPM exerts intestinal anti-inflammatory effect on the TNBS-induced colitis in rats, although further experiments are needed to explore its beneficial effects on bone health and osteoporosis.

  18. Preparation, Crystallization and X-ray Diffraction Analysis to 1.5 A Resolution of Rat Cysteine Dioxygenase, a Mononuclear Iron Enzyme Responsible for Cysteine Thiol Oxidation

    SciTech Connect

    Simmons,C.; Hao, Q.; Stipanuk, M.

    2005-01-01

    Cysteine dioxygenase (CDO; EC 1.13.11.20) is an {approx}23 kDa non-heme iron metalloenzyme that is responsible for the oxidation of cysteine by O2, yielding cysteinesulfinate. CDO catalyzes the first step in the conversion of cysteine to taurine, as well as the first step in the catabolism of cysteine to pyruvate plus sulfate. Recombinant rat CDO was heterologously expressed, purified and crystallized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The optimal CDO crystals diffracted to 1.5 Angstroms resolution and belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 57.55, c = 123.06 Angstrom, {alpha} = {beta} = {gamma} = 90. CDO shows little homology to any other proteins; therefore, the structure of the enzyme will be determined by ab initio phasing using a selenomethionyl derivative.

  19. Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase

    SciTech Connect

    Pantouris, Georgios; Mowat, Christopher G.

    2014-01-03

    Highlights: •∼2800 National Cancer Institute USA compounds have been screened as potential inhibitors of TDO and/or IDO. •Seven compounds with anti-tumour properties have been identified as potent inhibitors. •NSC 36398 (taxifolin, dihydroquercetin) is selective for TDO with a K{sub i} of 16 M. •This may help further our understanding of the role of TDO in cancer. -- Abstract: The involvement of tryptophan 2,3-dioxygenase (TDO) in cancer biology has recently been described, with the enzyme playing an immunomodulatory role, suppressing antitumour immune responses and promoting tumour cell survival and proliferation. This finding reinforces the need for specific inhibitors of TDO that may potentially be developed for therapeutic use. In this work we have screened ∼2800 compounds from the library of the National Cancer Institute USA and identified seven potent inhibitors of TDO with inhibition constants in the nanomolar or low micromolar range. All seven have antitumour properties, killing various cancer cell lines. For comparison, the inhibition potencies of these compounds were tested against IDO and their inhibition constants are reported. Interestingly, this work reveals that NSC 36398 (dihydroquercetin, taxifolin), with an in vitro inhibition constant of ∼16 μM, is the first TDO-selective inhibitor reported.

  20. Engineering Non-Heme Mono- and Dioxygenases for Biocatalysis

    PubMed Central

    Dror, Adi; Fishman, Ayelet

    2012-01-01

    Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts. PMID:24688652

  1. Mechanism and Substrate Recognition of 2-Hydroxyethylphosphonate Dioxygenase

    SciTech Connect

    Peck, Spencer C.; Cooke, Heather A.; Cicchillo, Robert M.; Malova, Petra; Hammerschmidt, Friedrich; Nair, Satish K.; van der Donk, Wilfred A.

    2011-09-20

    HEPD belongs to the superfamily of 2-His-1-carboxylate non-heme iron-dependent dioxygenases. It converts 2-hydroxyethylphosphonate (2-HEP) to hydroxymethylphosphonate (HMP) and formate. Previously postulated mechanisms for the reaction catalyzed by HEPD cannot explain its conversion of 1-HEP to acetylphosphate. Alternative mechanisms that involve either phosphite or methylphosphonate as intermediates, which potentially explain all experimental studies including isotope labeling experiments and use of substrate analogues, were investigated. The results of these studies reveal that these alternative mechanisms are not correct. Site-directed mutagenesis studies of Lys16, Arg90, and Tyr98 support roles of these residues in binding of 2-HEP. Mutation of Lys16 to Ala resulted in an inactive enzyme, whereas mutation of Arg90 to Ala or Tyr98 to Phe greatly decreased k{sub cat}/K{sub m,2-HEP}. Furthermore, the latter mutants could not be saturated in O{sub 2}. These results suggest that proper binding of 2-HEP is important for O{sub 2} activation and that the enzyme uses a compulsory binding order with 2-HEP binding before O{sub 2}. The Y98F mutant produces methylphosphonate as a minor side product providing indirect support for the proposal that the last step during catalysis involves a ferric hydroxide reacting with a methylphosphonate radical.

  2. Glucose metabolism in perfused skeletal muscle. Pyruvate dehydrogenase activity in starvation, diabetes and exercise.

    PubMed Central

    Hagg, S A; Taylor, S I; Ruberman, N B

    1976-01-01

    1. The interconversion of pyruvate dehydrogenase between its inactive phosphorylated and active dephosphorylated forms was studied in skeletal muscle. 2. Exercise, induced by electrical stimulation of the sciatic nerve (5/s), increased the measured activity of (active) pyruvate dehydrogenase threefold in intact anaesthetized rated within 2 min. No further increase was seen after 15 min of stimulation. 3. In the perfused rat hindquarter, (active) pyruvate dehydrogenase activity was decreased by 50% in muscle of starved and diabetic rats. Exercise produced a twofold increase in its activity in all groups; however, the relative differences between fed, starved and diabetic groups persisted. 4. Perfusion of muslce with acetoacetate (2 mM) decreased (active) pyruvate dehydrogenase activity by 50% at rest but not during exercise. 5. Whole-tissue concentrations of pyruvate and citrate, inhibitors of (active) pyruvate dehydrogenase kinase and (inactive) pyruvate dehydrogenase phosphate phosphatase respectively, were not altered by excerise. A decrease in the ATP/ADP ratio was observed, but did not appear to be sufficient to account for the increase in (active) pyruvate dehydrogenase activity. 6. The results suggest that interconversion of the phosphorylated and dephosphorylated forms of pyruvate dehydrogenase plays a major role in the regulation of pyruvate oxidation by eomparison of enzyme activity with measurements of lactate oxidation in the perfused hindquarter [see the preceding paper, Berger et al. (1976)] suggest that pyruvate oxidation is also modulated by the concentrations of substrates, cofactors and inhibitors of (active) pyruvate dehydrogenase activity. PMID:825112

  3. Leukocyte Pyruvate Kinase Expression is Reduced in Normal Human Pregnancy but not in Preeclampsia

    PubMed Central

    Xu, Yi; Madsen-Bouterse, Sally A.; Romero, Roberto; Hassan, Sonia; Mittal, Pooja; Elfline, Megan; Zhu, Aiping; Petty, Howard R.

    2010-01-01

    Problem Emerging evidence suggests that metabolism influences immune cell signaling and immunoregulation. To examine the immunoregulatory role of glycolysis in pregnancy, we evaluated the properties of pyruvate kinase in leukocytes from non-pregnant women and those with normal pregnancy and pre-eclampsia. Method of study We evaluated pyruvate kinase expression in lymphocytes and neutrophils from non-pregnant, pregnant, and pre-eclampsia patients using fluorescence microscopy and flow cytometry. Leukocyte pyruvate kinase activity and pyruvate concentrations were also evaluated. To study pyruvate’s effect on signaling, we labeled Jurkat T cells with Ca2+ dyes and measured cell responses in the presence of agents influencing intracellular pyruvate. Results The expression of pyruvate kinase is reduced in lymphocytes and neutrophils from normal pregnant women in comparison to those of non-pregnant women and pre-eclampsia patients. Similarly, the activity of pyruvate kinase and the intracellular pyruvate concentration are reduced in leukocytes of normal pregnant women in comparison to non-pregnant women and women with pre-eclampsia. Using Jurkat cells as a model of leukocyte signaling, we have shown that perturbations of intracellular pyruvate influence Ca2+ signals. Conclusion Normal pregnancy is characterized by reduced pyruvate kinase expression within lymphocytes and neutrophils. We speculate that reduced pyruvate kinase expression modifies immune cell responses due to reduced pyruvate concentrations. PMID:20560913

  4. Crystal structure of pyruvate decarboxylase from Zymobacter palmae.

    PubMed

    Buddrus, Lisa; Andrews, Emma S V; Leak, David J; Danson, Michael J; Arcus, Vickery L; Crennell, Susan J

    2016-09-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg(2+) ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and Rr.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were Rwork = 0.186 (0.271 in the highest resolution bin) and Rfree = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  5. Purification and biochemical characterization of pyruvate oxidase from Lactobacillus plantarum.

    PubMed

    Sedewitz, B; Schleifer, K H; Götz, F

    1984-10-01

    Pyruvate oxidase (EC 1.2.3.3) was isolated and characterized from Lactobacillus plantarum. The enzyme catalyzes the oxidative decarboxylation of pyruvate in the presence of phosphate and oxygen, yielding acetyl phosphate, carbon dioxide, and hydrogen peroxide. This pyruvate oxidase is a flavoprotein, with the relatively tightly bound cofactors flavin adenine dinucleotide, thiamine pyrophosphate, and a divalent metal ion, with Mn2+ being the most effective. The enzyme is only slightly inhibited by EDTA, implying that the enzyme-bound metal ion is poorly accessible to EDTA. Only under relatively drastic conditions, such as acid ammonium sulfate precipitation, could a colorless and entirely inactive apoenzyme be obtained. A partial reactivation of the enzyme was only possible by the combined addition of flavin adenine dinucleotide, thiamine pyrophosphate, and MnSO4. The enzyme has a molecular weight of ca. 260,000 and consists of four subunits with apparently identical molecular weights of 68,000. For catalytic activity the optimum pH is 5.7, and the optimum temperature is 30 degrees C. The Km values for pyruvate, phosphate, and arsenate are 0.4, 2.3, and 1.2 mM, respectively. The substrate specificity revealed that the enzyme reacts also with certain aldehydes and that phosphate can be replaced by arsenate. In addition to oxygen, several artificial compounds can function as electron acceptors.

  6. Near infrared photochemistry of pyruvic acid in aqueous solution.

    PubMed

    Larsen, Molly C; Vaida, Veronica

    2012-06-21

    Recent experimental and theoretical results have suggested that organic acids such as pyruvic acid, can be photolyzed in the ground electronic state by the excitation of the OH stretch vibrational overtone. These overtones absorb in the near-infrared and visible regions of the spectrum where the solar photons are plentiful and could provide a reaction pathway for the organic acids and alcohols that are abundant in the earth's atmosphere. In this paper the overtone initiated photochemistry of aqueous pyruvic acid is investigated by monitoring the evolution of carbon dioxide. In these experiments CO(2) is being produced by excitation in the near-infrared, between 850 nm and ∼1150 nm (11,765-8696 cm(-1)), where the second OH vibrational overtone (Δν = 3) of pyruvic acid is expected to absorb. These findings show not only that the overtone initiated photochemical decarboxylation reaction occurs but also that in the aqueous phase it occurs at a lower energy than was predicted for the overtone initiated reaction of pyruvic acid in the gas phase (13,380 cm(-1)). A quantum yield of (3.5 ± 1.0) × 10(-4) is estimated, suggesting that although this process does occur, it does so with a very low efficiency.

  7. Crystal structure of pyruvate decarboxylase from Zymobacter palmae

    PubMed Central

    Buddrus, Lisa; Andrews, Emma S. V.; Leak, David J.; Danson, Michael J.; Arcus, Vickery L.; Crennell, Susan J.

    2016-01-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg2+ ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and R r.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were R work = 0.186 (0.271 in the highest resolution bin) and R free = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  8. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pyruvic acid test system. 862.1655 Section 862.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  9. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pyruvic acid test system. 862.1655 Section 862.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  10. Substrate Oxidation by Indoleamine 2,3-Dioxygenase: EVIDENCE FOR A COMMON REACTION MECHANISM.

    PubMed

    Booth, Elizabeth S; Basran, Jaswir; Lee, Michael; Handa, Sandeep; Raven, Emma L

    2015-12-25

    The kynurenine pathway is the major route of L-tryptophan (L-Trp) catabolism in biology, leading ultimately to the formation of NAD(+). The initial and rate-limiting step of the kynurenine pathway involves oxidation of L-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237-244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of L-Trp, 1-methyl-L-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues.

  11. Evolution of the functional properties of pyruvate kinase isozymes: pyruvate kinase L from Rana pipiens.

    PubMed

    Fournier, P; Guderley, H

    1986-01-01

    The regulatory properties of type L pyruvate kinase from Rana pipiens are intermediate between those of the mammalian K and L isozymes. As with mammalian type L, the levels of the frog isozyme are affected by the animal's nutritional state. The mammalian and amphibian isozymes show similar sensitivities to fructose 1,6-bisphosphate activation and amino acid inhibition. By contrast, the frog L isozyme shares several properties of the K class: i.e. irreversible inactivation by oxidized glutathione and lack of response to a cyclic AMP stimulated phosphorylation. Furthermore, as for some mammalian K isozymes, frog type L shows a high PEP affinity and a low cooperativity of PEP binding. Insofar as the properties of this present day enzyme reflect those of its counterpart in the amphibian ancestor of higher vertebrates, our results suggest that at its first expression, the type L resembled the type K. Many important regulatory properties of the L isozyme, especially the sensitivity to phosphorylation, were acquired more recently perhaps in association with an increased importance of constant blood glucose. PMID:3489743

  12. Activation and inhibition of pyruvate carboxylase from Rhizobium etli†

    PubMed Central

    Zeczycki, Tonya N.; Menefee, Ann L.; Jitrapakdee, Sarawut; Wallace, John C.; Attwood, Paul V.; Maurice, Martin St.; Cleland, W. Wallace

    2011-01-01

    While crystallographic structures of the R. etli pyruvate carboxylase (PC) holoenzyme revealed the location and probable positioning of the essential activator, Mg2+, and non-essential activator, acetyl-CoA, an understanding of how they affect catalysis remains unclear. The current steady-state kinetic investigation indicates that both acetyl-CoA and Mg2+ assist in coupling the MgATP-dependent carboxylation of biotin in the biotin carboxylase (BC) domain with pyruvate carboxylation in the carboxyl transferase (CT) domain. Initial velocity plots of free Mg2+ vs. pyruvate were nonlinear at low concentrations of Mg2+ and a nearly complete loss of coupling between the BC and CT domain reactions was observed in the absence of acetyl-CoA. Increasing concentrations of free Mg2+ also resulted in a decrease in the Ka for acetyl-CoA. Acetyl phosphate was determined to be a suitable phosphoryl donor for the catalytic phosphorylation of MgADP, while phosphonoacetate inhibited both the phosphorylation of MgADP by carbamoyl phosphate (Ki = 0.026 mM) and pyruvate carboxylation (Ki = 2.5 mM). In conjunction with crystal structures of T882A R. etli PC mutant cocrystallized with phosphonoacetate and MgADP, computational docking studies suggest that phosphonoacetate could coordinate to one of two Mg2+ metal centers in the BC domain active site. Based on the pH profiles, inhibition studies and initial velocity patterns, possible mechanisms for the activation, regulation and coordination of catalysis between the two spatially distinct active sites in pyruvate carboxylase from R. etli by acetyl-CoA and Mg2+ are described. PMID:21958066

  13. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase.

    PubMed

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2004-10-01

    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects. PMID:15512796

  14. In vivo13C spectroscopy in the rat brain using hyperpolarized [1- 13C]pyruvate and [2- 13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Marjańska, Małgorzata; Iltis, Isabelle; Shestov, Alexander A.; Deelchand, Dinesh K.; Nelson, Christopher; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-10-01

    The low sensitivity of 13C spectroscopy can be enhanced using dynamic nuclear polarization. Detection of hyperpolarized [1- 13C]pyruvate and its metabolic products has been reported in kidney, liver, and muscle. In this work, the feasibility of measuring 13C signals of hyperpolarized 13C metabolic products in the rat brain in vivo following the injection of hyperpolarized [1- 13C]pyruvate and [2- 13C]pyruvate is investigated. Injection of [2- 13C]pyruvate led to the detection of [2- 13C]lactate, but no other downstream metabolites such as TCA cycle intermediates were detected. Injection of [1- 13C]pyruvate enabled the detection of both [1- 13C]lactate and [ 13C]bicarbonate. A metabolic model was used to fit the hyperpolarized 13C time courses obtained during infusion of [1- 13C]pyruvate and to determine the values of VPDH and VLDH.

  15. Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea.

    PubMed

    Eram, Mohammad S; Wong, Alton; Oduaran, Erica; Ma, Kesen

    2015-12-01

    Hyperthermophilic bacteria Thermotoga maritima and Thermotoga hypogea produce ethanol as a metabolic end product, which is resulted from acetaldehyde reduction catalysed by an alcohol dehydrogenase (ADH). However, the enzyme that is involved in the production of acetaldehyde from pyruvate is not well characterized. An oxygen sensitive and coenzyme A-dependent pyruvate decarboxylase (PDC) activity was found to be present in cell free extracts of T. maritima and T. hypogea. Both enzymes were purified and found to have pyruvate ferredoxin oxidoreductase (POR) activity, indicating their bifunctionality. Both PDC and POR activities from each of the purified enzymes were characterized in regards to their optimal assay conditions including pH dependency, oxygen sensitivity, thermal stability, temperature dependency and kinetic parameters. The close relatedness of the PORs that was shown by sequence analysis could be an indication of the presence of such bifunctionality in other hyperthermophilic bacteria. This is the first report of a bifunctional PDC/POR enzyme in hyperthermophilic bacteria. The PDC and the previously reported ADHs are most likely the key enzymes catalysing the production of ethanol from pyruvate in bacterial hyperthermophiles.

  16. Cloning of the two pyruvate kinase isoenzyme structural genes from Escherichia coli: the relative roles of these enzymes in pyruvate biosynthesis.

    PubMed Central

    Ponce, E; Flores, N; Martinez, A; Valle, F; Bolívar, F

    1995-01-01

    We report the cloning of the pykA and pykF genes from Escherichia coli, which code for the two pyruvate kinase isoenzymes (ATP:pyruvate 2-O-phosphotransferases; EC 2.7.1.40) in this microorganism. These genes were insertionally inactivated with antibiotic resistance markers and utilized to interrupt one or both pyk genes in the E. coli chromosome. With these constructions, we were able to study the role of these isoenzymes in pyruvate biosynthesis. PMID:7559366

  17. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR

    SciTech Connect

    Mesarch, M.B.; Nakatsu, C.H.; Nies, L.

    2000-02-01

    Benzene, toluene, xylenes, phenol, naphthalene, and biphenyl are among a group of compounds that have at least one reported pathway for biodegradation involving catechol 2,3-dioxygenase enzymes. Thus, detection of the corresponding catechol 2,3-dioxygenase genes can serve as a basis for identifying and quantifying bacteria that have these catabolic abilities. Primes that can successfully amplify a 238-bp catechol 2,3-dioxygenase gene fragment from eight different bacteria are described. The identities of the amplicons were confirmed by hybridization with a 238-bp catechol 2,3-dioxygenase probe. The detection limit was 10{sup 2} to 10{sup 3} gene copies, which was lowered to 10{sup 0} to 10{sup 1} gene copies of hybridization. Using the dioxygenase-specific primers, an increase in catechol 2,3-dioxygenase genes was detected in petroleum-amended soils. The dioxygenase genes were enumerated by competitive quantitative PCR and a 163-bp competitor that was amplified using the same primers. Target and competitor sequences had identical amplification kinetics. Potential PCR inhibitors that could coextract with DNA, nonamplifying DNA, soil factors (humics), and soil pollutants (toluene) did not impact enumeration. Therefore, this technique can be used to accurately and reproducibly quantify catechol 2,3-dioxygenase genes in complex environments such as petroleum-contaminated soil. Direct, non-cultivation-based molecular techniques for detecting and enumerating microbial pollutant-biodegrading genes in environmental samples are powerful tools for monitoring bioremediation and developing field evidence in support of natural attenuation.

  18. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression*

    PubMed Central

    Meiser, Johannes; Krämer, Lisa; Sapcariu, Sean C.; Battello, Nadia; Ghelfi, Jenny; D'Herouel, Aymeric Fouquier; Skupin, Alexander; Hiller, Karsten

    2016-01-01

    Upon stimulation with Th1 cytokines or bacterial lipopolysaccharides, resting macrophages shift their phenotype toward a pro-inflammatory state as part of the innate immune response. LPS-activated macrophages undergo profound metabolic changes to adapt to these new physiological requirements. One key step to mediate this metabolic adaptation is the stabilization of HIF1α, which leads to increased glycolysis and lactate release, as well as decreased oxygen consumption. HIF1 abundance can result in the induction of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) via phosphorylation. Therefore, it has been speculated that pyruvate oxidation through PDH is decreased in pro-inflammatory macrophages. However, to answer this open question, an in-depth analysis of this metabolic branching point was so far lacking. In this work, we applied stable isotope-assisted metabolomics techniques and demonstrate that pyruvate oxidation is maintained in mature pro-inflammatory macrophages. Glucose-derived pyruvate is oxidized via PDH to generate citrate in the mitochondria. Citrate is used for the synthesis of the antimicrobial metabolite itaconate and for lipogenesis. An increased demand for these metabolites decreases citrate oxidation through the tricarboxylic acid cycle, whereas increased glutamine uptake serves to replenish the TCA cycle. Furthermore, we found that the PDH flux is maintained by unchanged PDK1 abundance, despite the presence of HIF1. By pharmacological intervention, we demonstrate that the PDH flux is an important node for M(LPS) macrophage activation. Therefore, PDH represents a metabolic intervention point that might become a research target for translational medicine to treat chronic inflammatory diseases. PMID:26679997

  19. Metal-Dependent Function of a Mammalian Acireductone Dioxygenase.

    PubMed

    Deshpande, Aditi R; Wagenpfeil, Karina; Pochapsky, Thomas C; Petsko, Gregory A; Ringe, Dagmar

    2016-03-01

    The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella oxytoca are the only known pair of naturally occurring metalloenzymes with distinct chemical and physical properties determined solely by the identity of the divalent transition metal ion (Fe(2+) or Ni(2+)) in the active site. We now show that this dual chemistry can also occur in mammals. ARD from Mus musculus (MmARD) was studied to relate the metal ion identity and three-dimensional structure to enzyme function. The iron-containing isozyme catalyzes the cleavage of 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, which is the penultimate step in methionine salvage. The nickel-bound form of ARD catalyzes an off-pathway reaction resulting in formate, carbon monoxide (CO), and 3-(thiomethyl) propionate. Recombinant MmARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. The Fe(2+)-bound protein, which shows about 10-fold higher activity than that of others, catalyzes on-pathway chemistry, whereas the Ni(2+), Co(2+), or Mn(2+) forms exhibit off-pathway chemistry, as has been seen with ARD from Klebsiella. Thermal stability of the isozymes is strongly affected by the metal ion identity, with Ni(2+)-bound MmARD being the most stable, followed by Co(2+) and Fe(2+), and Mn(2+)-bound ARD being the least stable. Ni(2+)- and Co(2+)-bound MmARD were crystallized, and the structures of the two proteins found to be similar. Enzyme-ligand complexes provide insight into substrate binding, metal coordination, and the catalytic mechanism. PMID:26858196

  20. Reactivity of toluate dioxygenase with substituted benzoates and dioxygen.

    PubMed

    Ge, Yong; Vaillancourt, Frédéric H; Agar, Nathalie Y R; Eltis, Lindsay D

    2002-08-01

    Toluate dioxygenase (TADO) of Pseudomonas putida mt-2 catalyzes the dihydroxylation of a broad range of substituted benzoates. The two components of this enzyme were hyperexpressed and anaerobically purified. Reconstituted TADO had a specific activity of 3.8 U/mg with m-toluate, and each component had a full complement of their respective Fe(2)S(2) centers. Steady-state kinetics data obtained by using an oxygraph assay and by varying the toluate and dioxygen concentrations were analyzed by a compulsory order ternary complex mechanism. TADO had greatest specificity for m-toluate, displaying apparent parameters of KmA = 9 +/- 1 microM, k(cat) = 3.9 +/- 0.2 s(-1), and K(m)O(2) = 16 +/- 2 microM (100 mM sodium phosphate, pH 7.0; 25 degrees C), where K(m)O(2) represents the K(m) for O(2) and KmA represents the K(m) for the aromatic substrate. The enzyme utilized benzoates in the following order of specificity: m-toluate > benzoate approximately 3-chlorobenzoate > p-toluate approximately 4-chlorobenzoate > o-toluate approximately 2-chlorobenzoate. The transformation of each of the first five compounds was well coupled to O(2) utilization and yielded the corresponding 1,2-cis-dihydrodiol. In contrast, the transformation of ortho-substituted benzoates was poorly coupled to O(2) utilization, with >10 times more O(2) being consumed than benzoate. However, the apparent K(m) of TADO for these benzoates was >100 microM, indicating that they do not effectively inhibit the turnover of good substrates. PMID:12107126

  1. Reactivity of Toluate Dioxygenase with Substituted Benzoates and Dioxygen

    PubMed Central

    Ge, Yong; Vaillancourt, Frédéric H.; Agar, Nathalie Y. R.; Eltis, Lindsay D.

    2002-01-01

    Toluate dioxygenase (TADO) of Pseudomonas putida mt-2 catalyzes the dihydroxylation of a broad range of substituted benzoates. The two components of this enzyme were hyperexpressed and anaerobically purified. Reconstituted TADO had a specific activity of 3.8 U/mg with m-toluate, and each component had a full complement of their respective Fe2S2 centers. Steady-state kinetics data obtained by using an oxygraph assay and by varying the toluate and dioxygen concentrations were analyzed by a compulsory order ternary complex mechanism. TADO had greatest specificity for m-toluate, displaying apparent parameters of KmA = 9 ± 1 μM, kcat = 3.9 ± 0.2 s−1, and KmO2 = 16 ± 2 μM (100 mM sodium phosphate, pH 7.0; 25°C), where KmO2 represents the Km for O2 and KmA represents the Km for the aromatic substrate. The enzyme utilized benzoates in the following order of specificity: m-toluate > benzoate ≃ 3-chlorobenzoate > p-toluate ≃ 4-chlorobenzoate ≫ o-toluate ≃ 2-chlorobenzoate. The transformation of each of the first five compounds was well coupled to O2 utilization and yielded the corresponding 1,2-cis-dihydrodiol. In contrast, the transformation of ortho-substituted benzoates was poorly coupled to O2 utilization, with >10 times more O2 being consumed than benzoate. However, the apparent Km of TADO for these benzoates was >100 μM, indicating that they do not effectively inhibit the turnover of good substrates. PMID:12107126

  2. Characterization of the gallate dioxygenase gene: three distinct ring cleavage dioxygenases are involved in syringate degradation by Sphingomonas paucimobilis SYK-6.

    PubMed

    Kasai, Daisuke; Masai, Eiji; Miyauchi, Keisuke; Katayama, Yoshihiro; Fukuda, Masao

    2005-08-01

    Sphingomonas paucimobilis SYK-6 converts vanillate and syringate to protocatechuate (PCA) and 3-O-methylgallate (3MGA) in reactions with the tetrahydrofolate-dependent O-demethylases LigM and DesA, respectively. PCA is further degraded via the PCA 4,5-cleavage pathway, whereas 3MGA is metabolized via three distinct pathways in which PCA 4,5-dioxygenase (LigAB), 3MGA 3,4-dioxygenase (DesZ), and 3MGA O-demethylase (LigM) are involved. In the 3MGA O-demethylation pathway, LigM converts 3MGA to gallate, and the resulting gallate appears to be degraded by a dioxygenase other than LigAB or DesZ. Here, we isolated the gallate dioxygenase gene, desB, which encodes a 418-amino-acid protein with a molecular mass of 46,843 Da. The amino acid sequences of the N-terminal region (residues 1 to 285) and the C-terminal region (residues 286 to 418) of DesB exhibited ca. 40% and 27% identity with the sequences of the PCA 4,5-dioxygenase beta and alpha subunits, respectively. DesB produced in Escherichia coli was purified and was estimated to be a homodimer (86 kDa). DesB specifically attacked gallate to generate 4-oxalomesaconate as the reaction product. The K(m) for gallate and the V(max) were determined to be 66.9 +/- 9.3 microM and 42.7 +/- 2.4 U/mg, respectively. On the basis of the analysis of various SYK-6 mutants lacking the genes involved in syringate degradation, we concluded that (i) all of the three-ring cleavage dioxygenases are involved in syringate catabolism, (ii) the pathway involving LigM and DesB plays an especially important role in the growth of SYK-6 on syringate, and (iii) DesB and LigAB are involved in gallate degradation.

  3. The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases.

    PubMed

    Sun, Wanqing; Liu, Quan; Leng, Jiyan; Zheng, Yang; Li, Ji

    2015-01-15

    The regulation of mammalian myocardial carbohydrate metabolism is complex; many factors such as arterial substrate and hormone levels, coronary flow, inotropic state and the nutritional status of the tissue play a role in regulating mammalian myocardial carbohydrate metabolism. The Pyruvate Dehydrogenase Complex (PDHc), a mitochondrial matrix multienzyme complex, plays an important role in energy homeostasis in the heart by providing the link between glycolysis and the tricarboxylic acid (TCA) cycle. In TCA cycle, PDHc catalyzes the conversion of pyruvate into acetyl-CoA. This review determines that there is altered cardiac glucose in various pathophysiological states consequently causing PDC to be altered. This review further summarizes evidence for the metabolism mechanism of the heart under normal and pathological conditions including ischemia, diabetes, hypertrophy and heart failure.

  4. Pyruvate carboxylase deficiency--insights from liver transplantation.

    PubMed

    Nyhan, William L; Khanna, Ajai; Barshop, Bruce A; Naviaux, Robert K; Precht, Andrew F; Lavine, Joel E; Hart, Marquis A; Hainline, Bryan E; Wappner, Rebecca S; Nichols, Sharon; Haas, Richard H

    2002-01-01

    Pyruvate carboxylase deficiency, complex form, presents in early infancy with lethal metabolic acidosis, resulting from ketoacidosis and lactic acidemia. Renal tubular acidosis, hyperammonemia, and citrullinemia complete the picture. In an infant with this disease, large amounts of glucose ameliorated the ketoacidosis, but worsened the lactic acidosis. Orthotopic hepatic transplantation completely reversed the ketoacidosis and the renal tubular abnormality and ameliorated the lactic acidemia. Concentrations of glutamine in cerebrospinal fluid were low and did not improve with liver transplantation.

  5. Characterization of testis-specific isoenzyme of human pyruvate dehydrogenase.

    PubMed

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2006-04-01

    Pyruvate dehydrogenase (PDH), the first component of the human pyruvate dehydrogenase complex, has two isoenzymes, somatic cell-specific PDH1 and testis-specific PDH2 with 87% sequence identity in the alpha subunit of alpha(2) beta(2) PDH. The presence of functional testis-specific PDH2 is important for sperm cells generating nearly all their energy from carbohydrates via pyruvate oxidation. Kinetic and regulatory properties of recombinant human PDH2 and PDH1 were compared in this study. Site-specific phosphorylation/dephosphorylation of the three phosphorylation sites by four PDH kinases (PDK1-4) and two PDH phosphatases (PDP1-2) were investigated by substituting serines with alanine or glutamate in PDHs. PDH2 was found to be very similar to PDH1 as follows: (i) in specific activities and kinetic parameters as determined by the pyruvate dehydrogenase complex assay; (ii) in thermostability at 37 degrees C; (iii) in the mechanism of inactivation by phosphorylation of three sites; and (iv) in the phosphorylation of sites 1 and 2 by PDK3. In contrast, the differences for PDH2 were indicated as follows: (i) by a 2.4-fold increase in binding affinity for the PDH-binding domain of dihydrolipoamide acetyltransferase as measured by surface plasmon resonance; (ii) by possible involvement of Ser-264 (site 1) of PDH2 in catalysis as evident by its kinetic behavior; and (iii) by the lower activities of PDK1, PDK2, and PDK4 as well as PDP1 and PDP2 toward PDH2. These differences between PDH2 and PDH1 are less than expected from substitution of 47 amino acids in each PDH2 alpha subunit. The multiple substitutions may have compensated for any drastic alterations in PDH2 structure thereby preserving its kinetic and regulatory characteristics largely similar to that of PDH1. PMID:16436377

  6. The first step of the dioxygenation reaction carried out by tryptophan dioxygenase and indoleamine 2,3-dioxygenase as revealed by quantum mechanical/molecular mechanical studies

    PubMed Central

    Capece, Luciana; Lewis-Ballester, Ariel; Batabyal, Dipanwita; Di Russo, Natali; Estrin, Dario A.

    2015-01-01

    Tryptophan dioxygenase (TDO) and indole-amine 2,3-dioxygenase (IDO) are two heme-containing enzymes which catalyze the conversion of L-tryptophan to N-formylkynurenine (NFK). In mammals, TDO is mostly expressed in liver and is involved in controlling homeostatic serum tryptophan concentrations, whereas IDO is ubiquitous and is involved in modulating immune responses. Previous studies suggested that the first step of the dioxygenase reaction involves the deprotonation of the indoleamine group of the substrate by an evolutionarily conserved distal histidine residue in TDO and the heme-bound dioxygen in IDO. Here, we used classical molecular dynamics and hybrid quantum mechanical/molecular mechanical methods to evaluate the base-catalyzed mechanism. Our data suggest that the deprotonation of the indoleamine group of the substrate by either histidine in TDO or heme-bound dioxygen in IDO is not energetically favorable. Instead, the dioxygenase reaction can be initiated by a direct attack of heme-bound dioxygen on the C2=C3 bond of the indole ring, leading to a protein-stabilized 2,3-alkylperoxide transition state and a ferryl epoxide intermediate, which subsequently recombine to generate NFK. The novel sequential two-step oxygen addition mechanism is fully supported by our recent resonance Raman data that allowed identification of the ferryl intermediate (Lewis-Ballester et al. in Proc Natl Acad Sci USA 106:17371–17376, 2009). The results reveal the subtle differences between the TDO and IDO reactions and highlight the importance of protein matrix in modulating stereoelectronic factors for oxygen activation and the stabilization of both transition and intermediate states. PMID:20361220

  7. Impact of Perturbed Pyruvate Metabolism on Adipocyte Triglyceride Accumulation

    PubMed Central

    Si, Yaguang; Shi, Hai; Lee, Kyongbum

    2009-01-01

    This study aimed to test the hypothesis that adipocyte TG accumulation could be altered by specifically perturbing pyruvate metabolism. We treated cultured 3T3-L1 adipocytes with chemical inhibitors of lactate dehydrogenase (LDH) and pyruvate carboxylase (PC), and characterized their global effects on intermediary metabolism using metabolic flux and isotopomer analysis. Inhibiting the enzymes over several days did not alter the adipocyte differentiation program as assessed by the expression levels of peroxisome proliferator-activated receptor-γ and glycerol-3-phosphate dehydrogenase. The main metabolic effects were to up-regulate intracellular lipolysis and decrease TG accumulation. Inhibiting PC also up-regulated glycolysis. Flux estimates indicated that the reduction in TG was due to decreased de novo fatty acid synthesis. Exogenous addition of free fatty acids dose-dependently increased the cellular TG level in the inhibitor-treated adipocytes, but not in untreated control cells. The results of this study support our hypothesis regarding the critical role of pyruvate reactions in TG synthesis. PMID:19683593

  8. Phosphoenolpyruvate carboxykinase and pyruvate carboxylase in developing rat liver

    PubMed Central

    Ballard, F. J.; Hanson, R. W.

    1967-01-01

    1. Phosphoenolpyruvate carboxykinase and pyruvate carboxylase were measured in foetal, newborn and adult rat liver extracts by a radiochemical assay involving the fixation of [14C]bicarbonate. 2. Pyruvate-carboxylase activity in both foetal and adult liver occurs mainly in mitochondrial and nuclear fractions, with about 10% of the activity in the cytoplasm. 3. Similar studies of the intracellular distribution of phosphoenolpyruvate carboxykinase show that more than 90% of the activity is in the cytoplasm. However, in the 17-day foetal liver about 90% of the activity is in mitochondria and nuclei. 4. Pyruvate-carboxylase activity in both particulate and soluble fractions is very low in the 17-day foetal liver and increases to near adult levels before birth. 5. Phosphoenolpyruvate-carboxykinase activity in the soluble cell fraction increases 25-fold in the first 2 days after birth. This same enzyme in the mitochondria has considerable activity in the foetal and adult liver and is lower in the newborn. 6. Kinetic and other studies on the properties of phosphoenolpyruvate carboxykinase have shown no differences between the soluble and mitochondrial enzymes. 7. It is suggested that the appearance of the soluble phosphoenolpyruvate carboxykinase at birth initiates the rapid increase in overall gluconeogenesis at this stage. PMID:6049928

  9. Developmental changes in the pyruvate kinase isozymes of coho salmon.

    PubMed

    Guderley, H E; Cardenas, J M

    1979-04-01

    Pyruvate kinase exists as two major isozymes in coho salmon. As in mammals and birds, one form is present in the early embryo and maintains a wide tissue distribution in adults. This salmonid type K shows anodal migration during electrophoresis at pH 7.5. The appearence of functional musculature in the developing embryos. In adult animals this second form is the only pyruvate kinase in muscle. Brain, kidney, liver and gill contain primarily the type K pyruvate kinase while heart contains both major forms along with three intermediate forms which presumably constitute a hybrid set. Since there is no additional isozyme restricted to gluconeogenic tissues, we conclude that a type L isozyme has not developed in these animals. The two major isozymes are immunologically distincy. Both forms are dubject to fructose 1,6-bisphosphate activation of phosphoenolpyruvate binding, but the magnitude of the effect is small. The affinities for phosphoenolpyruvate are similar, but salmon type K has hyperbolic saturation curves with this substrate and type M has sigmoidal saturation curves. While the immunological data indicates considerable divergence in structure, the kinetic parameters of the two forms have remained relatively similar. PMID:469475

  10. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts

    PubMed Central

    Burgess, Steven J.; Taha, Hussein; Yeoman, Justin A.; Iamshanova, Oksana; Chan, Kher Xing; Boehm, Marko; Behrends, Volker; Bundy, Jacob G.; Bialek, Wojciech; Murray, James W.; Nixon, Peter J.

    2016-01-01

    Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD+-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a ‘lactate valve’ for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm. PMID:26574578

  11. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts.

    PubMed

    Burgess, Steven J; Taha, Hussein; Yeoman, Justin A; Iamshanova, Oksana; Chan, Kher Xing; Boehm, Marko; Behrends, Volker; Bundy, Jacob G; Bialek, Wojciech; Murray, James W; Nixon, Peter J

    2016-01-01

    Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD(+)-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a 'lactate valve' for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm.

  12. Biosynthesis of pyruvic acid from glucose by Blastobotrys adeninivorans.

    PubMed

    Kamzolova, Svetlana V; Morgunov, Igor G

    2016-09-01

    The ability of taxonomically different yeasts to synthesize pyruvic acid (PA) from glucose was studied. The study showed that many yeasts are able to produce PA from glucose under the condition of growth limitation by thiamine. This ability was found in the yeast Blastobotrys adeninivorans for the first time. The production (oversynthesis) of PA in this yeast can be explained by disturbance in the function of thiamine-dependent pyruvate dehydrogenase. Namely, the partial inhibition of this enzyme brings about the excretion of PA from the yeast cells. Due to incomplete inhibition of pyruvate dehydrogenase, the formation of acetyl-CoA continues, although at a lower level, maintaining the synthesis of α-ketoglutaric acid (KGA) in the tricarboxylic acid (TCA) cycle. KGA is no longer oxidized in the TCA cycle, because thiamine limitation inhibits α-ketoglutarate dehydrogenase. As a result, KGA is excreted from the yeast cells as a byproduct of PA oversynthesis. Furthermore, the increased level of KGA in the yeast cells inhibits NAD-dependent isocitrate dehydrogenase in the TCA cycle and enhances the production and excretion of citric acid, another byproduct of PA oversynthesis. During cultivation in a fermentor, the strain Blastobotrys adeninivorans VKM Y-2677 produced 43.2 g l(-1) PA from glucose with a product yield (YPA) of 0.77 g PA/g glucose. The proportion of PA to byproducts was 18:1 for KGA and 8:1 for citric acid.

  13. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts.

    PubMed

    Burgess, Steven J; Taha, Hussein; Yeoman, Justin A; Iamshanova, Oksana; Chan, Kher Xing; Boehm, Marko; Behrends, Volker; Bundy, Jacob G; Bialek, Wojciech; Murray, James W; Nixon, Peter J

    2016-01-01

    Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD(+)-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a 'lactate valve' for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm. PMID:26574578

  14. Spinach pyruvate kinase isoforms: partial purification and regulatory properties

    SciTech Connect

    Baysdorfer, C.; Bassham, J.A.

    1984-02-01

    Pyruvate kinase from spinach (Spinacea oleracea L.) leaves consists of two isoforms, separable by blue agarose chromatography. Both isoforms share similar pH profiles and substrate and alternate nucleotide K/sub m/ values. In addition, both isoforms are inhibited by oxalate and ATP and activated by AMP. The isoforms differ in their response to three key metabolites; citrate, aspartate, and glutamate. The first isoform is similar to previously reported plant pyruvate kinases in its sensitivity to citrate inhibition. The K/sub i/ for this inhibition is 1.2 millimolar citrate. The second isoform is not affected by citrate but is regulated by aspartate and glutamate. Aspartate is an activator with a K/sub a/ of 0.05 millimolar, and glutamate is an inhibitor with a K/sub i/ of 0.68 millimolar. A pyruvate kinase with these properties has not been previously reported. Based on these considerations, the authors suggest that the activity of the first isoform is regulated by respiratory metabolism. The second isoform, in contrast, may be regulated by the demand for carbon skeletons for use in ammonia assimilation.

  15. Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids: kinetics.

    PubMed

    Thompson, P; Reid, E E; Lyttle, C R; Dennis, D T

    1977-05-01

    A steady-state kinetic analysis has been performed on the pyruvate dehydrogenase complex from pea (Pisum sativum L.) mitochondria and castor bean (Ricinus communis L.) proplastids. Substrate interaction kinetics for all substrates gave parallel lines consistent with a multisite ping-pong mechanism. Product inhibition studies showed uncompetitive inhibition between acetyl-CoA and pyruvate and competitive inhibition between NADH and NAD(+), both of which are also consistent with this mechanism. In the mitochondrial complex, acetyl-CoA showed noncompetitive inhibition versus CoA which suggests that the intermediate complex is kinetically important in the lipoamide transacetylase component of this complex. In contrast, the proplastid complex showed competitive inhibition in this interaction. NADH is a noncompetitive inhibitor versus CoA in both complexes indicating that these complexes, like the mammalian complex, may have protein-protein interactions between the second and third enzymes of the complex. Since NADH also shows noncompetitive inhibition versus pyruvate, this interaction may extend to all components of the complex. Acetyl-CoA shows noncompetitive inhibition versus NAD(+) which may also be a result of interaction between the second and third enzymes of the complex. The limiting Michaelis constants for substrates and the inhibitor constants for both complexes were determined.

  16. Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling.

    PubMed

    McCommis, Kyle S; Chen, Zhouji; Fu, Xiaorong; McDonald, William G; Colca, Jerry R; Kletzien, Rolf F; Burgess, Shawn C; Finck, Brian N

    2015-10-01

    Pyruvate transport across the inner mitochondrial membrane is believed to be a prerequisite for gluconeogenesis in hepatocytes, which is important for the maintenance of normoglycemia during prolonged food deprivation but also contributes to hyperglycemia in diabetes. To determine the requirement for mitochondrial pyruvate import in gluconeogenesis, mice with liver-specific deletion of mitochondrial pyruvate carrier 2 (LS-Mpc2(-/-)) were generated. Loss of MPC2 impaired, but did not completely abolish, hepatocyte conversion of labeled pyruvate to TCA cycle intermediates and glucose. Unbiased metabolomic analyses of livers from fasted LS-Mpc2(-/-) mice suggested that alterations in amino acid metabolism, including pyruvate-alanine cycling, might compensate for the loss of MPC2. Indeed, inhibition of pyruvate-alanine transamination further reduced mitochondrial pyruvate metabolism and glucose production by LS-Mpc2(-/-) hepatocytes. These data demonstrate an important role for MPC2 in controlling hepatic gluconeogenesis and illuminate a compensatory mechanism for circumventing a block in mitochondrial pyruvate import. PMID:26344101

  17. Pyruvate ingestion for 7 days does not improve aerobic performance in well-trained individuals

    NASA Technical Reports Server (NTRS)

    Morrison, M. A.; Spriet, L. L.; Dyck, D. J.

    2000-01-01

    The purposes of the present studies were to test the hypotheses that lower dosages of oral pyruvate ingestion would increase blood pyruvate concentration and that the ingestion of a commonly recommended dosage of pyruvate (7 g) for 7 days would enhance performance during intense aerobic exercise in well-trained individuals. Nine recreationally active subjects (8 women, 1 man) consumed 7, 15, and 25 g of pyruvate and were monitored for a 4-h period to determine whether blood metabolites were altered. Pyruvate consumption failed to significantly elevate blood pyruvate, and it had no effect on indexes of carbohydrate (blood glucose, lactate) or lipid metabolism (blood glycerol, plasma free fatty acids). As a follow-up, we administered 7 g/day of either placebo or pyruvate, for a 1-wk period to seven, well-trained male cyclists (maximal oxygen consumption, 62.3 +/- 3.0 ml. kg(-1). min(-1)) in a randomized, double-blind, crossover trial. Subjects cycled at 74-80% of their maximal oxygen consumption until exhaustion. There was no difference in performance times between the two trials (placebo, 91 +/- 9 min; pyruvate, 88 +/- 8 min). Measured blood parameters (insulin, peptide C, glucose, lactate, glycerol, free fatty acids) were also unaffected. Our results indicate that oral pyruvate supplementation does not increase blood pyruvate content and does not enhance performance during intense exercise in well-trained cyclists.

  18. Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant 4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of a range of synthetic ß-triketone herbicides that are currently used commercially. Their mode of action is based on an irreversible inhibition of HPPD. Therefore, this inhibitory capacity was used to develop a whole cell colo...

  19. Phytoremediation of phenanthrene by transgenic plants transformed with a naphthalene dioxygenase system from Pseudomonas.

    PubMed

    Peng, Ri-He; Fu, Xiao-Yan; Zhao, Wei; Tian, Yong-Sheng; Zhu, Bo; Han, Hong-Juan; Xu, Jing; Yao, Quan-Hong

    2014-11-01

    Genes from microbes for degrading polycyclic aromatic hydrocarbons (PAHs) are seldom used to improve the ability of plants to remediate the pollution because the initiation of the microbial degradation of PAHs is catalyzed by a multienzyme system. In this study, for the first time, we have successfully transferred the complex naphthalene dioxygenase system of Pseudomonas into Arabidopsis and rice, the model dicot and monocot plant. As in bacteria, all four genes of the naphthalene dioxygenase system can be simultaneously expressed and assembled to an active enzyme in transgenic plants. The naphthalene dioxygenase system can develop the capacity of plants to tolerate a high concentration of phenanthrene and metabolize phenanthrene in vivo. As a result, transgenic plants showed improved uptake of phenanthrene from the environment over wild-type plants. In addition, phenanthrene concentrations in shoots and roots of transgenic plants were generally lower than that of wild type plants. Transgenic plants with a naphthalene dioxygenase system bring the promise of an efficient and environmental-friendly technology for cleaning up PAHs contaminated soil and water.

  20. Benzoate degradation by Rhodococcus opacus 1CP after dormancy: Characterization of dioxygenases involved in the process.

    PubMed

    Solyanikova, Inna P; Emelyanova, Elena V; Borzova, Oksana V; Golovleva, Ludmila A

    2016-01-01

    The process of benzoate degradation by strain Rhodococcus opacus 1CP after a five-year dormancy was investigated and its peculiarities were revealed. The strain was shown to be capable of growth on benzoate at a concentration of up to 10 g L(-1). The substrate specificity of benzoate dioxygenase (BDO) during the culture growth on a medium with a low (200-250 mg L(-1)) and high (4 g L(-1)) concentration of benzoate was assessed. BDO of R. opacus 1CP was shown to be an extremely narrow specificity enzyme. Out of 31 substituted benzoates, only with one, 3-chlorobenzoate, its activity was higher than 9% of that of benzoate. Two dioxygenases, catechol 1,2-dioxygenase (Cat 1,2-DO) and protocatechuate 3,4-dioxygenase (PCA 3,4-DO), were identified in a cell-free extract, purified and characterized. The substrate specificity of Cat 1,2-DO isolated from cells of strain 1CP after the dormancy was found to differ significantly from that of Cat 1,2-DO isolated earlier from cells of this strain grown on benzoate. By its substrate specificity, the described Cat 1,2-DO was close to the Cat 1,2-DO from strain 1CP grown on 4-methylbenzoate. Neither activity nor inhibition by protocatechuate was observed during the reaction of Cat 1,2-DO with catechol, and catechol had no inhibitory effect on the reaction of PCA 3,4-DO with protocatechuate. PMID:26669259

  1. Structures of aminophenol dioxygenase in complex with intermediate, product and inhibitor.

    PubMed

    Li, De Feng; Zhang, Jia Yue; Hou, Yan Jie; Liu, Lei; Hu, Yonglin; Liu, Shuang Jiang; Wang, Da Cheng; Liu, Wei

    2013-01-01

    Dioxygen activation by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Here, crystal structures of 2-aminophenol 1,6-dioxygenase, an enzyme that represents a minor group of extradiol dioxygenases and that catalyses the ring opening of 2-aminophenol, in complex with the lactone intermediate (4Z,6Z)-3-iminooxepin-2(3H)-one and the product 2-aminomuconic 6-semialdehyde and in complex with the suicide inhibitor 4-nitrocatechol are reported. The Fe-ligand binding schemes observed in these structures revealed some common geometrical characteristics that are shared by the published structures of extradiol dioxygenases, suggesting that enzymes that catalyse the oxidation of noncatecholic compounds are very likely to utilize a similar strategy for dioxygen activation and the fission of aromatic rings as the canonical mechanism. The Fe-ligation arrangement, however, is strikingly enantiomeric to that of all other 2-His-1-carboxylate enzymes apart from protocatechuate 4,5-dioxygenase. This structural variance leads to the generation of an uncommon O(-)-Fe(2+)-O(-) species prior to O(2) binding, which probably forms the structural basis on which APD distinguishes its specific substrate and inhibitor, which share an analogous molecular structure.

  2. Inhibition of indoleamine 2,3 dioxygenase activity by H2O2.

    PubMed

    Poljak, Anne; Grant, Ross; Austin, Chris J D; Jamie, Joanne F; Willows, Robert D; Takikawa, Osamu; Littlejohn, Tamantha K; Truscott, Roger J W; Walker, Mark J; Sachdev, Perminder; Smythe, George A

    2006-06-01

    Indoleamine 2,3-dioxygenase is the first and rate limiting enzyme of the kynurenine pathway of tryptophan metabolism, has potent effects on cell proliferation and mediates antimicrobial, antitumorogenic, and immunosuppressive effects. As a potent cytotoxic effector, the mechanisms of indoleamine 2,3-dioxygenase inhibition deserve greater attention. The work presented here represents the first systematic study exploring the mechanisms by which low levels of hydrogen peroxide (10-100 microM) inhibit indoleamine 2,3-dioxygenase in vitro. Following brief peroxide exposure both enzyme inhibition and structural changes were observed. Loss of catalysis was accompanied by oxidation of several cysteine residues to sulfinic and sulfonic acids, observed by electrospray and MALDI mass spectrometry. Enzyme activity could in part be preserved in the presence of sulfhydryl containing compounds, particularly DTT and methionine. However, these structural alterations did not prevent substrate (l-tryptophan) binding. Some enzyme activity could be recovered in the presence of thioredoxin, indicating that the inhibitory effect of H(2)O(2) is at least partially reversible in vitro. We present evidence that cysteine oxidation represents one mechanism of indoleamine 2,3-dioxygenase inhibition.

  3. Relationship between indoleamine 2,3-dioxygenase activity and lymphatic invasion propensity of colorectal carcinoma

    PubMed Central

    Engin, Atilla; Gonul, Ipek Isik; Engin, Ayse Basak; Karamercan, Ahmet; Sepici Dincel, Aylin; Dursun, Ayse

    2016-01-01

    AIM: To evaluate whether serum and tumor indoleamine 2,3-dioxygenase activities can predict lymphatic invasion (LI) or lymph node metastasis in colorectal carcinoma. METHODS: The study group consisted of 44 colorectal carcinoma patients. The patients were re-grouped according to the presence or absence of LI and lymph node metastasis. Forty-three cancer-free subjects without any metabolic disturbances were included into the control group. Serum neopterin was measured by enzyme linked immunosorbent assay. Urinary neopterin and biopterin, serum tryptophan (Trp) and kynurenine (Kyn) concentrations of all patients were determined by high performance liquid chromatography. Kyn/Trp was calculated and its correlation with serum neopterin was determined to estimate the serum indoleamine 2,3-dioxygenase activity. Tissue sections from the studied tumors were re-examined histopathologically and were stained by immunohistochemistry with indoleamine-2,3-dioxygenase antibodies. RESULTS: Neither serum nor urinary neopterin was significantly different between the patient and control groups (both P > 0.05). However, colorectal carcinoma patients showed a significant positive correlation between the serum neopterin levels and Kyn/Trp (r = 0.450, P < 0.01). Urinary biopterin was significantly higher in cancer cases (P < 0.05). Serum Kyn/Trp was significantly higher in colorectal carcinoma patients (P < 0.01). Lymphatic invasion was present in 23 of 44 patients, of which only 12 patients had lymph node metastasis. Eleven patients with LI had no lymph node metastasis. Indoleamine-2,3-dioxygenase intensity score was significantly higher in LI positive cancer group (44.56% ± 6.11%) than negative colorectal cancer patients (24.04% ± 6.90%), (P < 0.05). Indoleamine 2,3-dioxygenase expression correlated both with the presence of LI and lymph node metastasis (P < 0.01 and P < 0.05, respectively). A significant difference between the accuracy of diagnosis by using either total indoleamine-2

  4. 4-Nitrocatechol as a colorimetric probe for non-heme iron dioxygenases.

    PubMed

    Tyson, C A

    1975-03-10

    4-Nitrocatechol is examined as an active site probe for non-heme iron dioxygenases and found to be of value, particularly with those containing iron in the Fe(II) oxidation state. 4-Nitrocatechol is astrong competitive inhibitor of substrate oxygenation by protocatechuate 3,4-dioxygenase, forming a reversible complex with this enzyme, and by pyrocatechase. The number of binding sites per enzyme molecule titrated spectrophotometrically with 4-nitrocatechol agrees with results from previous studies with either the principal substrate or other analogues, as expected of an effective probe. Despite these facts and the observation that both enzymes cleave the same substrates at the same carbon-carbon bond, the optical and electron paramagnetic resonance (EPR) spectra of their 4-nitrocatechol complexes are remarkably different. The 4-nitocatechol-protocatechuate 3,4-dioxygenase optical spectra resemble that of the 4-nitrocatecholate ion shifted 20 to 30 nm to longer wavelength. Concomitant with this change the EPR signal centered at g equal 4.28 shows increased rhombicity (g values at 4.74, 4.28, and 3.74). In contrast, the spectrum of the 4-nitrocatechol-pyrocatechase complex has a maximum at the same wavelength as that of a 1:1 solution of free Fe(II) and 4-nitrocatechol in the absence of enzyme after titration of the catecholic protons with base and the g equal 4.28 EPR signal is not resolved at liquid N-2 temperature. These changes are interpreted as resulting in part from a pronounced change in the ligand fields about the irons at the active sites which in the case of protocatechuate 3,4-dioxygenase leads to enzyme inactivation. The results also are the first indication that substrate analogues change their ionization form upon complexation with Fe (III) dioxygenases. The interaction of the probe with metapyrocatechase, an Fe(III) containing dioxygenase, and with several additional oxygenases and hydroperoxidases is also briefly examined. The probe is not specific

  5. Crystal structures of alkylperoxo and anhydride intermediates in an intradiol ring-cleaving dioxygenase

    PubMed Central

    Knoot, Cory J.; Purpero, Vincent M.; Lipscomb, John D.

    2015-01-01

    Intradiol aromatic ring-cleaving dioxygenases use an active site, nonheme Fe3+ to activate O2 and catecholic substrates for reaction. The inability of Fe3+ to directly bind O2 presents a mechanistic conundrum. The reaction mechanism of protocatechuate 3,4-dioxygenase is investigated here using the alternative substrate 4-fluorocatechol. This substrate is found to slow the reaction at several steps throughout the mechanistic cycle, allowing the intermediates to be detected in solution studies. When the reaction was initiated in an enzyme crystal, it was found to halt at one of two intermediates depending on the pH of the surrounding solution. The X-ray crystal structure of the intermediate at pH 6.5 revealed the key alkylperoxo-Fe3+ species, and the anhydride-Fe3+ intermediate was found for a crystal reacted at pH 8.5. Intermediates of these types have not been structurally characterized for intradiol dioxygenases, and they validate four decades of spectroscopic, kinetic, and computational studies. In contrast to our similar in crystallo crystallographic studies of an Fe2+-containing extradiol dioxygenase, no evidence for a superoxo or peroxo intermediate preceding the alkylperoxo was found. This observation and the lack of spectroscopic evidence for an Fe2+ intermediate that could bind O2 are consistent with concerted formation of the alkylperoxo followed by Criegee rearrangement to yield the anhydride and ultimately ring-opened product. Structural comparison of the alkylperoxo intermediates from the intra- and extradiol dioxygenases provides a rationale for site specificity of ring cleavage. PMID:25548185

  6. Generation by a Widely Applicable Approach of a Hybrid Dioxygenase Showing Improved Oxidation of Polychlorobiphenyls▿ †

    PubMed Central

    Cámara, Beatriz; Seeger, Michael; González, Myriam; Standfuß-Gabisch, Christine; Kahl, Silke; Hofer, Bernd

    2007-01-01

    Recently, a sequence-based approach has been developed for the fast isolation and characterization of class II aryl-hydroxylating dioxygenase activities (S. Kahl and B. Hofer, Microbiology 149:1475-1481, 2003). It comprises the PCR amplification of segments of alpha subunit genes of unknown sequence that encode the catalytic center and their fusion with sequences of the bphA gene cluster of Burkholderia xenovorans LB400. One of the resulting chimeric enzymes, harboring the core segment of a dioxygenase from Pseudomonas sp. strain B4-Magdeburg, has now been characterized with respect to the oxidation of chlorobiphenyls (CBs). Its substrate and product specificities differed favorably from those of the parental dioxygenase of strain LB400. The hybrid possessed a higher regiospecificity and yielded less unproductive dioxygenations at meta and para carbons. It attacked ortho-, meta-, and para-chlorinated rings with comparable efficiencies. It gave significantly higher yields in ortho,meta-dioxygenation of recalcitrant congeners containing a doubly ortho-chlorinated ring. While the parental enzyme yielded mainly unproductive meta, para dioxygenation of 2,5,4′-CB, the hybrid predominantly converted this congener into an ortho,meta-dioxygenated product. The subsequent enzymes of the LB400 catabolic pathway were able to transform most of the metabolites formed by the novel dioxygenase, indicating that the substrate ranges of these biocatalysts are not adapted to that of their initial pathway enzyme. Some of the catabolites, however, were identified as problematic for further degradation. Our results demonstrate that the outlined approach can successfully be applied to obtain novel dioxygenase specificities that favorably complement or supplement known ones. PMID:17322323

  7. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria.

    PubMed

    Höfler, Saskia; Lorenz, Christin; Busch, Tjorven; Brinkkötter, Mascha; Tohge, Takayuki; Fernie, Alisdair R; Braun, Hans-Peter; Hildebrandt, Tatjana M

    2016-07-01

    Amino acid catabolism is essential for adjusting pool sizes of free amino acids and takes part in energy production as well as nutrient remobilization. The carbon skeletons are generally converted to precursors or intermediates of the tricarboxylic acid cycle. In the case of cysteine, the reduced sulfur derived from the thiol group also has to be oxidized in order to prevent accumulation to toxic concentrations. Here we present a mitochondrial sulfur catabolic pathway catalyzing the complete oxidation of l-cysteine to pyruvate and thiosulfate. After transamination to 3-mercaptopyruvate, the sulfhydryl group from l-cysteine is transferred to glutathione by sulfurtransferase 1 and oxidized to sulfite by the sulfur dioxygenase ETHE1. Sulfite is then converted to thiosulfate by addition of a second persulfide group by sulfurtransferase 1. This pathway is most relevant during early embryo development and for vegetative growth under light-limiting conditions. Characterization of a double mutant produced from Arabidopsis thaliana T-DNA insertion lines for ETHE1 and sulfurtransferase 1 revealed that an intermediate of the ETHE1 dependent pathway, most likely a persulfide, interferes with amino acid catabolism and induces early senescence. PMID:27105581

  8. Some Aspects of Yeast Anaerobic Metabolism Examined by the Inhibition of Pyruvate Decarboxylase

    NASA Astrophysics Data System (ADS)

    Martin, Earl V.

    1998-10-01

    Incubation of yeast cells with various sugars in aqueous alkaline phosphate solutions under anaerobic conditions results in the accumulation of pyruvate in the cell medium after short periods of up to 15 minutes. This accumulation of pyruvate as the end product of glycolysis results from the inhibition of pyruvate decarboxylase under the conditions. This pyruvate production can be readily measured in the cell-free medium by a spectrophotometric assay using lactic dehydrogenase and NADH. The production of pyruvate can be directly related to the ability of the yeast cells to metabolize particular carbon sources provided. Comparison of pyruvate production by yeast from a variety of common sugars, for example, provides students with a means to assess what sugars are readily utilized by this organism. An additional advantage for student laboratory studies is the availability of Sacchromyces cerevisiae at minimal cost as dry granules which are easily weighed and quickly activated.

  9. Superior Cardiac Function Via Anaplerotic Pyruvate in the Immature Swine Heart After Cardiopulmonary Bypass and Reperfusion

    SciTech Connect

    Olson, Aaron; Hyyti, Outi M.; Cohen, Gordon A.; Ning, Xue-Han; Sadilek, Martin; Isern, Nancy G.; Portman, Michael A.

    2008-12-01

    Pyruvate produces inotropic responses in the adult reperfused heart. Pyruvate oxidation and anaplerotic entry into the citric acid cycle (CAC) via carboxylation are linked to stimulation of contractile function. The goals of this study were to determine if these metabolic pathways operate and are maintained in the developing myocardium after reperfusion. Immature male swine (age 10-18 days) were subjected to cardiopulmonary bypass (CPB). Intracoronary infusion of [2]-13C-pyruvate (to achieve a final concentration of 8 mM) was given for 35 minutes starting either during weaning (Group I), after discontinuation (Group II) or without (Control) CPB. Hemodynamic data was collected. 13C NMR spectroscopy was used to determine the fraction of pyruvate entering the CAC via pyruvate carboxylation (PC) to total CAC entry (PC plus decarboxlyation via pyruvate dehydrogenase). Liquid chromatography-mass spectrometry was used to determine total glutamate enrichment.

  10. Simultaneous investigation of cardiac pyruvate dehydrogenase flux, Krebs cycle metabolism and pH, using hyperpolarized [1,2-(13)C2]pyruvate in vivo.

    PubMed

    Chen, Albert P; Hurd, Ralph E; Schroeder, Marie A; Lau, Angus Z; Gu, Yi-ping; Lam, Wilfred W; Barry, Jennifer; Tropp, James; Cunningham, Charles H

    2012-02-01

    (13)C MR spectroscopy studies performed on hearts ex vivo and in vivo following perfusion of prepolarized [1-(13)C]pyruvate have shown that changes in pyruvate dehydrogenase (PDH) flux may be monitored non-invasively. However, to allow investigation of Krebs cycle metabolism, the (13)C label must be placed on the C2 position of pyruvate. Thus, the utilization of either C1 or C2 labeled prepolarized pyruvate as a tracer can only afford a partial view of cardiac pyruvate metabolism in health and disease. If the prepolarized pyruvate molecules were labeled at both C1 and C2 positions, then it would be possible to observe the downstream metabolites that were the results of both PDH flux ((13)CO(2) and H(13)CO(3)(-)) and Krebs cycle flux ([5-(13)C]glutamate) with a single dose of the agent. Cardiac pH could also be monitored in the same experiment, but adequate SNR of the (13)CO(2) resonance may be difficult to obtain in vivo. Using an interleaved selective RF pulse acquisition scheme to improve (13)CO(2) detection, the feasibility of using dual-labeled hyperpolarized [1,2-(13)C(2)]pyruvate as a substrate for dynamic cardiac metabolic MRS studies to allow simultaneous investigation of PDH flux, Krebs cycle flux and pH, was demonstrated in vivo.

  11. Influence of pyruvate, threonine and phosphoethanolamine on activities of some acetaldehyde-producing enzymes.

    PubMed

    Gerashchenko, D; Gorenshtein, B; Pyzhik, T; Ostrovsky, Y u

    1993-07-01

    Threonine (50 mg/100 g, i.p.) leads to increased hepatic threonine aldolase activity in rats, although endogenous ethanol concentrations remain stable. After pyruvate administration (50 mg/100 g, i.p.), endogenous blood ethanol levels are raised within 30 min, but return to normal at 60 min. The activity of threonine aldolase is decreased in the liver, whereas phosphoethanolamine lyase and pyruvate dehydrogenase activities remain unchanged. Phosphoethanolamine administration (23 mg/100 g, i.p.) did not change the endogenous ethanol concentration or pyruvate dehydrogenase, threonine aldolase and phosphoethanolamine lyase activities. Pyruvate appears to be a better precursor of acetaldehyde than threonine or phosphoethanolamine.

  12. A Patient With Pyruvate Carboxylase Deficiency and Nemaline Rods on Muscle Biopsy.

    PubMed

    Unal, Ozlem; Orhan, Diclehan; Ostergaard, Elsebet; Tokatli, Aysegul; Dursun, Ali; Ozturk-Hismi, Burcu; Coskun, Turgay; Wibrand, Flemming; Kalkanoglu-Sivri, H Serap

    2013-11-01

    Nemaline rods are the pathologic hallmark of nemaline myopathy, but they have also been described as a secondary phenomenon in a variety of other disorders. Nemaline rods have not been reported in pyruvate carboxylase deficiency before. Here we present a patient with pyruvate carboxylase deficiency and nemaline rods detected on muscle biopsy. The nemaline rods may be due to cellular energy shortage and altered energy metabolism in pyruvate carboxylase deficiency, similar to that in the previously reported patients. The mechanism of nemaline rod formation may be associated with the role of pyruvate carboxylase in cellular energy pathways. PMID:22965558

  13. FORMATE—PYRUVATE EXCHANGE REACTION IN STREPTOCOCCUS FAECALIS II.

    PubMed Central

    Oster, M. O.; Wood, N. P.

    1964-01-01

    Oster, M. O. (A. & M. College of Texas, College Station), and N. P. Wood. Formate-pyruvate exchange reaction in Streptococcus faecalis. II. Reaction conditions for cell extracts. J. Bacteriol. 87:104–113. 1964.—In contrast to intact cells of Streptococcus faecalis, no stimulation of the formate-pyruvate exchange reaction was observed in cell extracts when yeast extract was added to the reaction mixture. A heated extract of Micrococcus lactilyticus, vitamin K5, ferrous sulfate, and ferrous ammonium sulfate stimulated an active exchange by protecting the system from oxygen. Tetrahydrofolate, 2,3-dimercaptopropanol, and sodium sulfide provided partial protection, whereas ascorbate, glutathione, sodium hydrosulfite, ammonium sulfide, and sodium bisulfite gave insufficient protection or were inhibitory. Oxidation-reduction (O-R) indicators were not inhibitory and were used to estimate the O-R potentials of reaction mixtures. A potential at least as negative as −125 mv was estimated to be necessary to preserve or initiate formate-pyruvate exchange activity. The reaction operated over a narrow pH range when strict anaerobic conditions were not maintained but, when the system was suitably poised, the pH range was broader. The influence of high phosphate concentrations was less under strictly anaerobic conditions, and orthophosphate could be replaced by small amounts of pyrophosphate. Effect of temperature, time, and amount of extract is presented. Addition of reduced benzyl viologen and hydrogen-saturated palladium in the buffer during 8 hr of dialysis prevented inactivation of extracts. Recovery of activity could be obtained after ammonium sulfate treatment when a combination of palladium chloride, neutral red, and hydrogen bubbling were used. PMID:14102842

  14. Molecular cloning, expression and characterization of pyridoxamine–pyruvate aminotransferase

    PubMed Central

    Yoshikane, Yu; Yokochi, Nana; Ohnishi, Kouhei; Hayashi, Hideyuki; Yagi, Toshiharu

    2006-01-01

    Pyridoxamine–pyruvate aminotransferase is a PLP (pyridoxal 5′-phosphate) (a coenzyme form of vitamin B6)-independent aminotransferase which catalyses a reversible transamination reaction between pyridoxamine and pyruvate to form pyridoxal and L-alanine. The gene encoding the enzyme has been identified, cloned and overexpressed for the first time. The mlr6806 gene on the chromosome of a symbiotic nitrogen-fixing bacterium, Mesorhizobium loti, encoded the enzyme, which consists of 393 amino acid residues. The primary sequence was identical with those of archaeal aspartate aminotransferase and rat serine–pyruvate aminotransferase, which are PLP-dependent aminotransferases. The results of fold-type analysis and the consensus amino acid residues found around the active-site lysine residue identified in the present study showed that the enzyme could be classified into class V aminotransferases of fold type I or the AT IV subfamily of the α family of the PLP-dependent enzymes. Analyses of the absorption and CD spectra of the wild-type and point-mutated enzymes showed that Lys197 was essential for the enzyme activity, and was the active-site lysine residue that corresponded to that found in the PLP-dependent aminotransferases, as had been suggested previously [Hodsdon, Kolb, Snell and Cole (1978) Biochem. J. 169, 429–432]. The Kd value for pyridoxal determined by means of CD was 100-fold lower than the Km value for it, suggesting that Schiff base formation between pyridoxal and the active-site lysine residue is partially rate determining in the catalysis of pyridoxal. The active-site structure and evolutionary aspects of the enzyme are discussed. PMID:16545075

  15. Inhibitor-bound structures of human pyruvate dehydrogenase kinase 4.

    PubMed

    Kukimoto-Niino, Mutsuko; Tokmakov, Alexander; Terada, Takaho; Ohbayashi, Naomi; Fujimoto, Takako; Gomi, Sumiko; Shiromizu, Ikuya; Kawamoto, Masaki; Matsusue, Tomokazu; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2011-09-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA. PDC activity is tightly regulated by four members of a family of pyruvate dehydrogenase kinase isoforms (PDK1-4), which phosphorylate and inactivate PDC. Recently, the development of specific inhibitors of PDK4 has become an especially important focus for the pharmaceutical management of diabetes and obesity. In this study, crystal structures of human PDK4 complexed with either AMPPNP, ADP or the inhibitor M77976 were determined. ADP-bound PDK4 has a slightly wider active-site cleft and a more disordered ATP lid compared with AMPPNP-bound PDK4, although both forms of PDK4 assume open conformations with a wider active-site cleft than that in the closed conformation of the previously reported ADP-bound PDK2 structure. M77976 binds to the ATP-binding pocket of PDK4 and causes local conformational changes with complete disordering of the ATP lid. M77976 binding also leads to a large domain rearrangement that further expands the active-site cleft of PDK4 compared with the ADP- and AMPPNP-bound forms. Biochemical analyses revealed that M77976 inhibits PDK4 with increased potency compared with the previously characterized PDK inhibitor radicicol. Thus, the present structures demonstrate for the first time the flexible and dynamic aspects of PDK4 in the open conformation and provide a basis for the development of novel inhibitors targeting the nucleotide-binding pocket of PDK4. PMID:21904029

  16. Effects of oral creatine-pyruvate supplementation in cycling performance.

    PubMed

    Van Schuylenbergh, R; Van Leemputte, M; Hespel, P

    2003-02-01

    A double-blind study was performed to evaluate the effects of oral creatine-pyruvate administration on exercise performance in well-trained cyclists. Endurance and intermittent sprint performance were evaluated before (pretest) and after (posttest) one week of creatine-pyruvate intake (Cr(pyr), 2 x 3.5 g x d-1, n = 7) or placebo (PL, n = 7). Subjects first performed a 1-hour time trial during which the workload could be adjusted at 5-min intervals. Immediately they did five 10-sec sprints interspersed by 2-min rest intervals. Tests were performed on an individual race bicycle that was mounted on an ergometer. Steady-state power production on average was about 235-245 W, which corresponded to blood lactate concentrations of 4-5 mmol x l -1 and heart rate in the range of 160-170 beats x min -1. Power outputs as well as blood lactate levels and heart rates were similar between Cr(pyr) and PL at all times. Total work performed during the 1-h trial was 872 +/- 44 KJ in PL versus 891 +/- 51 KJ in CR pyr. During the intermittent sprint test power peaked at about 800-1000 watt within 2-3 sec, decreasing by 15-20 % towards the end of each sprint. Peak and mean power outputs were similar between groups at all times. Peak lactate concentrations after the final sprint were approximately 11 mmol x l -1 in both groups during both the pretest and the posttest. It is concluded that one week of creatine-pyruvate supplementation at a rate of 7 g x d -1 does not beneficially impact on either endurance capacity or intermittent sprint performance in cyclists.

  17. Primary structure of chicken muscle pyruvate kinase mRNA.

    PubMed Central

    Lonberg, N; Gilbert, W

    1983-01-01

    We have determined the cDNA sequence corresponding to chicken muscle pyruvate kinase mRNA; the predicted coding region spans 529 amino acids and establishes the complete amino acid sequence for the vertebrate enzyme. We demonstrate that the level of mRNA for this enzyme is under developmental control and suggest a structural model for the protein kinase-mediated regulation of the mammalian liver isozyme. We report a method for the direct analysis of, and the preparation of cDNA probes from, mRNA which has been fractionated on methylmercury/agarose gels. Images PMID:6574503

  18. Resolution of brewers' yeast pyruvate decarboxylase into two isozymes.

    PubMed

    Kuo, D J; Dikdan, G; Jordan, F

    1986-03-01

    A novel purification method was developed for brewers' yeast pyruvate decarboxylase (EC 4.1.1.1) that for the first time resolved the enzyme into two isozymes on DEAE-Sephadex chromatography. The isozymes were found to be distinct according to sodium dodecyl sulfate polyacrylamide gel electrophoresis: the first one to be eluted gave rise to one band, the second to two bands. The isozymes were virtually the same so far as specific activity, KM, inhibition kinetics and irreversible binding properties by the mechanism-based inhibitor (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid are concerned. This finding resolves a longstanding controversy concerning the quaternary structure of this enzyme.

  19. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  20. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility.

    PubMed

    Zhang, Shuai; Hulver, Matthew W; McMillan, Ryan P; Cline, Mark A; Gilbert, Elizabeth R

    2014-01-01

    Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. The ability to alter substrate oxidation in response to nutritional state depends on the genetically influenced balance between oxidation and storage capacities. Competition between fatty acids and glucose for oxidation occurs at the level of the pyruvate dehydrogenase complex (PDC). The PDC is normally active in most tissues in the fed state, and suppressing PDC activity by pyruvate dehydrogenase (PDH) kinase (PDK) is crucial to maintain energy homeostasis under some extreme nutritional conditions in mammals. Conversely, inappropriate suppression of PDC activity might promote the development of metabolic diseases. This review summarizes PDKs' pivotal role in control of metabolic flexibility under various nutrient conditions and in different tissues, with emphasis on the best characterized PDK4. Understanding the regulation of PDC and PDKs and their roles in energy homeostasis could be beneficial to alleviate metabolic inflexibility and to provide possible therapies for metabolic diseases, including type 2 diabetes (T2D). PMID:24520982

  1. Pyruvate kinase M2 is a phosphotyrosine-binding protein

    SciTech Connect

    Christofk, H.R.; Vander Heiden, M.G.; Wu, N.; Asara, J.M.; Cantley, L.C.

    2008-06-03

    Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.

  2. Octomeric pyruvate-ferredoxin oxidoreductase from Desulfovibrio vulgaris.

    PubMed

    Garczarek, Florian; Dong, Ming; Typke, Dieter; Witkowska, H Ewa; Hazen, Terry C; Nogales, Eva; Biggin, Mark D; Glaeser, Robert M

    2007-07-01

    Pyruvate-ferredoxin oxidoreductatse (PFOR) carries out the central step in oxidative decarboxylation of pyruvate to acetyl-CoA. We have purified this enzyme from Desulfovibrio vulgaris Hildenborough (DvH) as part of a systematic characterization of as many multiprotein complexes as possible for this organism, and the three-dimensional structure of this enzyme has been determined by a combination of electron microscopy (EM), single particle image analysis, homology modeling and computational molecular docking. Our results show that the 1MDa DvH PFOR complex is a homo-octomer, or more precisely, a tetramer of the dimeric form of the related enzyme found in Desulfovibrio africanus (Da), with which it shares a sequence identity of 69%. Our homology model of the DvH PFOR dimer is based on the Da PFOR X-ray structure. Docking of this model into our 17A resolution EM-reconstruction of negatively stained DvH PFOR octomers strongly suggests that the difference in oligomerization state for the two species is due to the insertion of a single valine residue (Val383) within a surface loop of the DvH enzyme. This study demonstrates that the strategy of intermediate resolution EM reconstruction coupled to homology modeling and docking can be powerful enough to infer the functionality of single amino acid residues. PMID:17400475

  3. Differing roles of pyruvate dehydrogenase kinases during mouse oocyte maturation

    PubMed Central

    Hou, Xiaojing; Zhang, Liang; Han, Longsen; Ge, Juan; Ma, Rujun; Zhang, Xuesen; Moley, Kelle; Schedl, Tim; Wang, Qiang

    2015-01-01

    ABSTRACT Pyruvate dehydrogenase kinases (PDKs) modulate energy homeostasis in multiple tissues and cell types, under various nutrient conditions, through phosphorylation of the α subunit (PDHE1α, also known as PDHA1) of the pyruvate dehydrogenase (PDH) complex. However, the roles of PDKs in meiotic maturation are currently unknown. Here, by undertaking knockdown and overexpression analysis of PDK paralogs (PDK1–PDK4) in mouse oocytes, we established the site-specificity of PDKs towards the phosphorylation of three serine residues (Ser232, Ser293 and Ser300) on PDHE1α. We found that PDK3-mediated phosphorylation of Ser293-PDHE1α results in disruption of meiotic spindle morphology and chromosome alignment and decreased total ATP levels, probably through inhibition of PDH activity. Unexpectedly, we discovered that PDK1 and PDK2 promote meiotic maturation, as their knockdown disturbs the assembly of the meiotic apparatus, without significantly altering ATP content. Moreover, phosphorylation of Ser232-PDHE1α was demonstrated to mediate PDK1 and PDK2 action in meiotic maturation, possibly through a mechanism that is distinct from PDH inactivation. These findings reveal that there are divergent roles of PDKs during oocyte maturation and indicate a new mechanism controlling meiotic structure. PMID:25991547

  4. Differing roles of pyruvate dehydrogenase kinases during mouse oocyte maturation.

    PubMed

    Hou, Xiaojing; Zhang, Liang; Han, Longsen; Ge, Juan; Ma, Rujun; Zhang, Xuesen; Moley, Kelle; Schedl, Tim; Wang, Qiang

    2015-07-01

    Pyruvate dehydrogenase kinases (PDKs) modulate energy homeostasis in multiple tissues and cell types, under various nutrient conditions, through phosphorylation of the α subunit (PDHE1α, also known as PDHA1) of the pyruvate dehydrogenase (PDH) complex. However, the roles of PDKs in meiotic maturation are currently unknown. Here, by undertaking knockdown and overexpression analysis of PDK paralogs (PDK1-PDK4) in mouse oocytes, we established the site-specificity of PDKs towards the phosphorylation of three serine residues (Ser232, Ser293 and Ser300) on PDHE1α. We found that PDK3-mediated phosphorylation of Ser293-PDHE1α results in disruption of meiotic spindle morphology and chromosome alignment and decreased total ATP levels, probably through inhibition of PDH activity. Unexpectedly, we discovered that PDK1 and PDK2 promote meiotic maturation, as their knockdown disturbs the assembly of the meiotic apparatus, without significantly altering ATP content. Moreover, phosphorylation of Ser232-PDHE1α was demonstrated to mediate PDK1 and PDK2 action in meiotic maturation, possibly through a mechanism that is distinct from PDH inactivation. These findings reveal that there are divergent roles of PDKs during oocyte maturation and indicate a new mechanism controlling meiotic structure. PMID:25991547

  5. Discovery of Key Dioxygenases that Diverged the Paraherquonin and Acetoxydehydroaustin Pathways in Penicillium brasilianum.

    PubMed

    Matsuda, Yudai; Iwabuchi, Taiki; Fujimoto, Takayuki; Awakawa, Takayoshi; Nakashima, Yu; Mori, Takahiro; Zhang, Huiping; Hayashi, Fumiaki; Abe, Ikuro

    2016-09-28

    Paraherquonin (1), a fungal meroterpenoid produced by Penicillium brasilianum NBRC 6234, possesses a unique, highly congested hexacyclic molecular architecture. Here we identified the biosynthetic gene cluster of 1 (the prh cluster) and elucidated the pathway up to berkeleydione (2), which serves as the key intermediate for the biosynthesis of 1 as well as many other meroterpenoids. Interestingly, the nonheme iron and α-ketoglutarate-dependent dioxygenase PrhA constructs the cycloheptadiene moiety to afford 2 from preaustinoid A1 (6), probably via the homoallyl-homoallyl radical rearrangement. Additionally, another fungal strain, P. brasilianum MG11, which produces acetoxydehydroaustin instead of 1, was found to have a gene cluster nearly identical to the prh cluster. The dioxygenase encoded by the cluster shares 92% sequence identity with PrhA, and also accepts 6 but produces preaustinoid A3 (17) with a spiro-lactone system, generating a diverging point for the two different meroterpenoid pathways in the same species.

  6. Intermediate in the O−O Bond Cleavage Reaction of an Extradiol Dioxygenase

    SciTech Connect

    Kovaleva, Elena G.; Lipscomb, John D.

    2009-02-16

    The reactive oxy intermediate of the catalytic cycle of extradiol aromatic ring-cleaving dioxygenases is formed by binding the catecholic substrate and O{sub 2} in adjacent ligand positions of the active site metal [usually Fe(II)]. This intermediate and the following Fe(II)-alkylperoxo intermediate resulting from oxygen attack on the substrate have been previously characterized in a crystal of homoprotocatechuate 2,3-dioxygenase (HPCD). Here a subsequent intermediate in which the O-O bond is broken to yield a gem diol species is structurally characterized. This new intermediate is stabilized in the crystal by using the alternative substrate, 4-sulfonylcatechol, and the Glu323Leu variant of HPCD, which alters the crystal packing.

  7. Oxidation of nitrotoluenes by toluene dioxygenase: Evidence for a monooxygenase reaction

    SciTech Connect

    Robertson, J.B.; Spain, J.C. ); Haddock, J.D.; Gibson, D.T. )

    1992-08-01

    Pseudomonas putida F1 and Pseudomonas sp. strain JS150 initiate toluene degradation by incorporating molecular oxygen into the aromatic nucleus to form cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene. When toluene-grown cells were incubated with 2- and 3-nitrotoluene, the major products identified were 2- and 3-nitrobenzyl alcohol, respectively. The same cells oxidized 4-nitrotoluene to 2-methyl-5-nitrophenol and 3-methyl-6-nitrocatechol. Escherichia coli JM109(pDTG601), which contains the toluene dioxygenase genes from P. putida F1 under the control of the tac promoter, oxidized the isomeric nitrotoluenes to the same metabolites as those formed by P. putida F1 and Pseudomonas sp. strain JS150. These results extend the range of substrates known to be oxidized by this versatile enzyme and demonstrate for the first time that toluene dioxygenase can oxidize an aromatic methyl substituent.

  8. A two-electron shell game: Intermediates of the extradiol-cleaving catechol dioxygenases

    PubMed Central

    Fielding, Andrew J.

    2014-01-01

    Extradiol catechol ring-cleaving dioxygenases function by binding both the organic substrate and O2 at a divalent metal center in the active site. They have proven to be a particularly versatile group of enzymes with which to study the O2 activation process. Here, recent studies of homoprotocatechuate 2,3-dioxygenase (HPCD) are summarized with the objective of showing how Nature can utilize the enzyme structure and the properties of the metal and the substrate to select among many possible chemical paths to achieve both specificity and efficiency. Possible intermediates in the mechanism have been trapped by swapping active site metals, introducing active site amino acid substituted variants, and using substrates with different electron donating capacities. While each of these intermediates could form part of a viable reaction pathway, kinetic measurements significantly limit the likely candidates. Structural, kinetic, spectroscopic and computational analysis of the various intermediates shed light on how catalytic efficiency can be achieved. PMID:24615282

  9. Direct evidences on bacterial growth pattern regulating pyrene degradation pathway and genotypic dioxygenase expression.

    PubMed

    Chen, Baowei; Huang, Jinyin; Yuan, Ke; Lin, Li; Wang, Xiaowei; Yang, Lihua; Luan, Tiangang

    2016-04-15

    Pyrene degradation by Mycobacterium sp. strain A1-PYR was investigated in the presence of nutrient broth, phenanthrene and fluoranthene, respectively. Fast bacterial growth in the nutrient broth considerably enhanced pyrene degradation rate, whereas degradation efficiency per cell was substantially decreased. The addition of nutrient broth could not alter the transcription levels of all dioxygenase genotypes. In the PAH-only substrates, bacterial growth completely relied on biological conversion of PAHs into the effective carbon sources, which led to a higher degradation efficiency of pyrene per cell than the case of nutrient broth. Significant correlations were only observed between nidA-related dioxygenase expression and pyrene degradation or bacterial growth. The highest pyrene degradation rate in the presence of phenanthrene was consistent with the highest transcription level of nidA and 4,5-pyrenediol as the sole initial metabolite. This study reveals that bacterial growth requirement can invigorate degradation of PAHs by regulating metabolic pathway and genotypic enzyme expression.

  10. Comparison of fumerate-pyruvate media and beef extract media for aerobically culturing Campylobacter species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Media supplemented with fumarate, pyruvate, and a vitamin-mineral solution or with beef extract were compared for the ability to support aerobic growth of Campylobacter. Basal broth composed of tryptose, yeast extract, bicarbonate, and agar was supplemented with 30 mM fumarate, 100 mM pyruvate, and ...

  11. Renal cortical pyruvate as a potentially critical mediator of acute kidney injury.

    PubMed

    Johnson, Ali C M; Zager, Richard A

    2014-01-01

    Pyruvate is a key intermediary in both aerobic and anaerobic energy metabolisms. In addition, a burgeoning body of experimental literature indicates that it can also dramatically impact oxidant, proinflammatory, and cytoprotective pathways. In sum, these actions can confer protection against diverse forms of tissue damage. However, the fate of pyruvate during the evolution of acute kidney injury (AKI) has remained ill defined. Recent experimental studies have indicated that following either ischemic or nephrotoxic renal injury, marked and sustained pyruvate depletion results. While multiple potential mechanisms for this pyruvate loss may be involved, experimental data suggest that a loss of lactate (a dominant pyruvate precursor) and enhanced gluconeogenesis (i.e. pyruvate utilization) are involved. The importance of pyruvate depletion for AKI pathogenesis is underscored by observations that pyruvate therapy can attenuate diverse forms of experimental AKI. This protection may stem from reductions in tissue inflammation, improved anti-inflammatory defenses, and an enhanced cellular energy metabolism. The pieces of information that give rise to these conclusions are discussed in this brief report. PMID:25343836

  12. Metabolic networks to generate pyruvate, PEP and ATP from glycerol in Pseudomonas fluorescens.

    PubMed

    Alhasawi, Azhar; Thomas, Sean C; Appanna, Vasu D

    2016-04-01

    Glycerol is a major by-product of the biodiesel industry. In this study we report on the metabolic networks involved in its transformation into pyruvate, phosphoenolpyruvate (PEP) and ATP. When the nutritionally-versatile Pseudomonas fluorescens was exposed to hydrogen peroxide (H2O2) in a mineral medium with glycerol as the sole carbon source, the microbe reconfigured its metabolism to generate adenosine triphosphate (ATP) primarily via substrate-level phosphorylation (SLP). This alternative ATP-producing stratagem resulted in the synthesis of copious amounts of PEP and pyruvate. The production of these metabolites was mediated via the enhanced activities of such enzymes as pyruvate carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPC). The high energy PEP was subsequently converted into ATP with the aid of pyruvate phosphate dikinase (PPDK), phosphoenolpyruvate synthase (PEPS) and pyruvate kinase (PK) with the concomitant formation of pyruvate. The participation of the phospho-transfer enzymes like adenylate kinase (AK) and acetate kinase (ACK) ensured the efficiency of this O2-independent energy-generating machinery. The increased activity of glycerol dehydrogenase (GDH) in the stressed bacteria provided the necessary precursors to fuel this process. This H2O2-induced anaerobic life-style fortuitously evokes metabolic networks to an effective pathway that can be harnessed into the synthesis of ATP, PEP and pyruvate. The bioconversion of glycerol to pyruvate will offer interesting economic benefit. PMID:26920481

  13. Effect of bicarbonate concentration on aerobic growth of campylobacter in a fumarate-pyruvate medium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of the present study was to examine the effect of sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium. Fumarate-pyruvate broth medium was supplemented with 0.00 to 0.10% NaHCO3 and inoculated with Campylobacter coli 33559, Campyloba...

  14. Differential Resuscitative Effect of Pyruvate and its Analogues on VBNC (Viable But Non-Culturable) Salmonella

    PubMed Central

    Morishige, Yuta; Fujimori, Ko; Amano, Fumio

    2013-01-01

    An environmental isolate of Salmonella Enteritidis (SE), grown to the logarithmic phase, rapidly lost culturability by the addition of 3 mM H2O2 to cultures grown in Luria-Bertani (LB) medium; however, some H2O2-treated bacteria regained their culturability in M9 minimal medium, if sodium pyruvate was present at at least 0.3 mM. In addition, most pyruvate analogues, such as bromopyruvate or phenylpyruvate, did not show restoration activity similar to that of pyruvate, except in the case of α-ketobutyrate. Further analysis of the mechanism underlying the resuscitation by pyruvate revealed that although many of the bacteria showed respiratory activity on CTC (5-cyano-2,3-di-(p-tolyl) tetrazolium chloride) reduction with or without pyruvate, the biosynthesis of DNA and protein synthesis were quite different in the presence or absence of pyruvate, i.e., pyruvate endowed the cells with the ability to incorporate much more radio-label into precursors during the resuscitation process. These results suggest that pyruvate is one of the key molecules working in the resuscitation process by taking bacteria from the non-culturable state to the growing and colony-forming state by triggering the synthesis of macromolecules such as DNA and protein. PMID:23595023

  15. Differential resuscitative effect of pyruvate and its analogues on VBNC (viable but non-culturable) Salmonella.

    PubMed

    Morishige, Yuta; Fujimori, Ko; Amano, Fumio

    2013-01-01

    An environmental isolate of Salmonella Enteritidis (SE), grown to the logarithmic phase, rapidly lost culturability by the addition of 3 mM H2O2 to cultures grown in Luria-Bertani (LB) medium; however, some H2O2-treated bacteria regained their culturability in M9 minimal medium, if sodium pyruvate was present at at least 0.3 mM. In addition, most pyruvate analogues, such as bromopyruvate or phenylpyruvate, did not show restoration activity similar to that of pyruvate, except in the case of α-ketobutyrate. Further analysis of the mechanism underlying the resuscitation by pyruvate revealed that although many of the bacteria showed respiratory activity on CTC (5-cyano-2,3-di-(p-tolyl) tetrazolium chloride) reduction with or without pyruvate, the biosynthesis of DNA and protein synthesis were quite different in the presence or absence of pyruvate, i.e., pyruvate endowed the cells with the ability to incorporate much more radio-label into precursors during the resuscitation process. These results suggest that pyruvate is one of the key molecules working in the resuscitation process by taking bacteria from the non-culturable state to the growing and colony-forming state by triggering the synthesis of macromolecules such as DNA and protein. PMID:23595023

  16. Regulation of synthesis of pyruvate carboxylase in the photosynthetic bacterium Rhodobacter capsulatus.

    PubMed Central

    Yakunin, A F; Hallenbeck, P C

    1997-01-01

    The synthesis of pyruvate carboxylase (PC) was studied by using quantitative immunoblot analysis with an antibody raised against PC purified from Rhodobacter capsulatus and was found to vary 20-fold depending on the growth conditions. The PC content was high in cells grown on pyruvate or on carbon substrates metabolized via pyruvate (lactate, D-malate, glucose, or fructose) and low in cells grown on tricarboxylic acid (TCA) cycle intermediates or substrates metabolized without intermediate formation of pyruvate (acetate or glutamate). Under dark aerobic growth conditions with lactate as a carbon source, the PC content was approximately twofold higher than that found under light anaerobic growth conditions. The results of incubation experiments demonstrate that PC synthesis is induced by pyruvate and repressed by TCA cycle intermediates, with negative control dominating over positive control. The content of PC in R. capsulatus cells was also directly related to the growth rate in continuous cultures. The analysis of intracellular levels of pyruvate and TCA cycle intermediates in cells grown under different conditions demonstrated that the content of PC is directly proportional to the ratio between pyruvate and C4 dicarboxylates. These results suggest that the regulation of PC synthesis by oxygen and its direct correlation with growth rate may reflect effects on the balance of intracellular pyruvate and C4 dicarboxylates. Thus, this important enzyme is potentially regulated both allosterically and at the level of synthesis. PMID:9045800

  17. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    PubMed Central

    Frusciante, Sarah; Diretto, Gianfranco; Bruno, Mark; Ferrante, Paola; Pietrella, Marco; Prado-Cabrero, Alfonso; Rubio-Moraga, Angela; Beyer, Peter; Gomez-Gomez, Lourdes; Al-Babili, Salim; Giuliano, Giovanni

    2014-01-01

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope. PMID:25097262

  18. 3,4-Dihydroxyxanthone dioxygenase from Arthrobacter sp. strain GFB100.

    PubMed Central

    Chen, C M; Tomasek, P H

    1991-01-01

    Bacterial extradiol ring-fission dioxygenases play a critical role in the transformation of multiring aromatic compounds to more readily biodegradable aromatic or aliphatic intermediates. Arthrobacter sp. strain GFB100 utilizes an extradiol meta-fission dioxygenase, 3,4-dihydroxyxanthone dioxygenase (DHXD), in the catabolism of the three-ring oxygen heterocyclic compound xanthone. In this paper, we show that DHXD is a cytosolic enzyme, induced by growth on xanthone and maximally expressed during the stationary phase of growth. In addition, we characterize the DHXD activity in terms of its basic enzymological properties. 1,10-Phenanthroline and H2O2 treatments eliminated DHXD activity, indicating that the enzyme required Fe2+ ions for activity. Other divalent cations were either inhibitory or had no effect on activity. DHXD had a temperature optimum of 30 degrees C and a pH optimum of 7.0. DHXD followed typical saturation kinetics and had an apparent Km of 10 microM for 3,4-dihydroxyxanthone. The dye celestine blue served as a noncompetitive DHXD inhibitor (Ki, 5 microM). Several other structural analogs served neither as substrates nor inhibitors. DHXD was thermally labile at temperatures above 40 degrees C. The half-life for thermal DHXD inactivation was 5 min at 40 degrees C. DHXD activity was completely stable through one freeze-thaw cycle, and about 80% of the DHXD activity remained after 2 days of incubation at 0 degree C. The apparent tight binding of the Fe2+ cofactor to DHXD may be a factor contributing to the stability of this extradiol dioxygenase when it is stored. PMID:1768091

  19. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion.

    PubMed

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D; Nam, Wonwoo

    2014-02-18

    Reaction of a nonheme iron(III)-peroxo complex, [Fe(III)(14-TMC)(O2)](+), with NO(+), a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2˙(-)) + NO], affords an iron(IV)-oxo complex, [Fe(IV)(14-TMC)(O)](2+), and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [Fe(III)(14-TMC)(NO3)(F)](+).

  20. 4-Hydroxyphenylpyruvate dioxygenase inhibitors in combination with safeners: solutions for modern and sustainable agriculture.

    PubMed

    Ahrens, Hartmut; Lange, Gudrun; Müller, Thomas; Rosinger, Chris; Willms, Lothar; van Almsick, Andreas

    2013-09-01

    Inhibitors of 4-hydroxyphenylpyruvate dioxygenase (HPPD) prevent plant carotenoid pigment formation, which in turn leads to chlorophyll degradation. This "bleaching" herbicide mode of action provides weed-control products for various crops, such as rice, corn, and cereals. Combinations with suitable safeners allow the full exploitation of the potential of this compound class to selectively control major weed problems, including rapidly increasing cases of resistance against other important herbicide classes.

  1. Toluene and ethylbenzene oxidation by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4

    SciTech Connect

    Lee, K.; Gibson, D.T.

    1996-09-01

    Naphthalene dioxygenase (NDO) catalyzes the first reaction in the aerobic catabolism of naphthalene by Pseudomonas sp strain NCIB 9816-4. Studies suggest that the enzyme may oxidize aromatic hydrocarbons such as toluene and ethylbenzene at the alkyl substituents rather than the aromatic nucleus. This paper reports on multiple pathways for the oxidation of the methyl and thyl groups of toluene and ethylbenzene by NDO. 47 refs., 6 figs., 3 tabs.

  2. Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase

    PubMed Central

    Iyer, Lakshminarayan M.; Abhiman, Saraswathi; de Souza, Robson F.; Aravind, L.

    2010-01-01

    Unlike classical 2-oxoglutarate and iron-dependent dioxygenases, which include several nucleic acid modifiers, the structurally similar jumonji-related dioxygenase superfamily was only known to catalyze peptide modifications. Using comparative genomics methods, we predict that a family of jumonji-related enzymes catalyzes wybutosine hydroxylation/peroxidation at position 37 of eukaryotic tRNAPhe. Identification of this enzyme raised questions regarding the emergence of protein- and nucleic acid-modifying activities among jumonji-related domains. We addressed these with a natural classification of DSBH domains and reconstructed the precursor of the dioxygenases as a sugar-binding domain. This precursor gave rise to sugar epimerases and metal-binding sugar isomerases. The sugar isomerase active site was exapted for catalysis of oxygenation, with a radiation of these enzymes in bacteria, probably due to impetus from the primary oxygenation event in Earth’s history. 2-Oxoglutarate-dependent versions appear to have further expanded with rise of the tricarboxylic acid cycle. We identify previously under-appreciated aspects of their active site and multiple independent innovations of 2-oxoacid-binding basic residues among these superfamilies. We show that double-stranded β-helix dioxygenases diversified extensively in biosynthesis and modification of halogenated siderophores, antibiotics, peptide secondary metabolites and glycine-rich collagen-like proteins in bacteria. Jumonji-related domains diversified into three distinct lineages in bacterial secondary metabolism systems and these were precursors of the three major clades of eukaryotic enzymes. The specificity of wybutosine hydroxylase/peroxidase probably relates to the structural similarity of the modified moiety to the ancestral amino acid substrate of this superfamily. PMID:20423905

  3. Effects of alpha-adrenergic stimulation on the regulation of the pyruvate dehydrogenase complex in the perfused rat liver

    SciTech Connect

    Fisher, R.A.; Tanabe, S.; Buxton, D.B.; Olson, M.S.

    1985-08-05

    The regulation of the pyruvate dehydrogenase multienzyme complex was investigated during alpha-adrenergic stimulation with phenylephrine in the isolated perfused rat liver. The metabolic flux through the pyruvate dehydrogenase reaction was monitored by measuring the production of UCO2 from infused (1- UC) pyruvate. In livers from fed animals perfused with a low concentration of pyruvate (0.05 mM), phenylephrine infusion significantly inhibited the rate of pyruvate decarboxylation without affecting the amount of pyruvate dehydrogenase in its active form. Results show that alpha-adrenergic agonists do not exert short term regulatory effects on pyruvate dehydrogenase in the liver. Furthermore, the results suggest either that the rat liver pyruvate dehydrogenase complex is insensitive to changes in mitochondrial calcium or that changes in intramitochondrial calcium levels as a result of alpha-adrenergic stimulation are considerably less than suggested by others.

  4. The Wolbachia endosymbiont of Brugia malayi has an active pyruvate phosphate dikinase.

    PubMed

    Raverdy, Sylvine; Foster, Jeremy M; Roopenian, Erica; Carlow, Clotilde K S

    2008-08-01

    Genome analysis of the glycolytic/gluconeogenic pathway in the Wolbachia endosymbiont from the filarial parasite Brugia malayi (wBm) has revealed that wBm lacks pyruvate kinase (PK) and may instead utilize the enzyme pyruvate phosphate dikinase (PPDK; ATP:pyruvate, orthophosphate phosphotransferase, EC 2.7.9.1). PPDK catalyses the reversible conversion of AMP, PPi and phosphoenolpyruvate (PEP) into ATP, Pi and pyruvate. The glycolytic pathway of most organisms, including mammals, contains exclusively PK for the production of pyruvate from PEP. Therefore, the absence of PPDK in mammals makes the enzyme an attractive Wolbachia drug target. In the present study, we have cloned and expressed an active wBm-PPDK, thereby providing insight into the energy metabolism of the endosymbiont. Our results support the development of wBm-PPDK as a promising new drug target in an anti-symbiotic approach to controlling filarial infection.

  5. Effect of phenylpyruvate on pyruvate dehydrogenase activity in rat brain mitochondria

    PubMed Central

    Land, John M.; Clark, John B.

    1973-01-01

    1. The effects of phenylpyruvate, a metabolite produced in phenylketonuria, on the pyruvate dehydrogenase-complex activity were investigated in rat brain mitochondria. 2. Pyruvate dehydrogenase activity was measured by two methods, one measuring the release of 14CO2 from [1-14C]pyruvate and the other measuring the acetyl-CoA formed by means of the coupling enzyme, pigeon liver arylamine acetyltransferase (EC 2.3.1.5). In neither case was there significant inhibition of the pyruvate dehydrogenase complex by phenylpyruvate at concentrations below 2mm. 3. However, phenylpyruvate acted as a classical competitive inhibitor of the coupling enzyme arylamine acetyltransferase, with a Ki of 100μm. 4. It was concluded that the inhibition of pyruvate dehydrogenase by phenylpyruvate is unlikely to be a primary enzyme defect in phenylketonuria. PMID:16742815

  6. Localization of pyruvate carboxylase in organic acid-producing Aspergillus strains.

    PubMed

    Bercovitz, A; Peleg, Y; Battat, E; Rokem, J S; Goldberg, I

    1990-06-01

    The localization of pyruvate carboxylase (cytosolic or mitochondrial) was studied in nine different Aspergillus species (14 strains). In some species (A. aculeatus, A. flavus, A. foetidus, A. nidulans, A. ochraceus, and A. sojae), the pyruvate carboxylase activity could be detected only in the cytosolic fraction of the cells. Pyruvate carboxylase has been found only in the mitochondrial fraction of two strains of Aspergillus wentii. In Aspergillus oryzae and in five strains of Aspergillus niger, pyruvate carboxylase activity was detected both in the mitochondrial fraction and in the cytosol. There was no quantitative or qualitative correlation between the activities of pyruvate carboxylase in the mitochondrial and cytosolic fractions of the cells and the ability of the various Aspergillus strains to accumulate different organic acids.

  7. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium

    NASA Astrophysics Data System (ADS)

    Guo, Guang; Fang, Tingting; Wang, Chongyang; Huang, Yong; Tian, Fang; Cui, Qijia; Wang, Hui

    2015-12-01

    Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0-30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation.

  8. Purification and characterization of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3

    PubMed Central

    2011-01-01

    Hydroquinone-1,2-dioxygenase, an enzyme involved in the degradation of alkylphenols in Sphingomonas sp. strain TTNP3 was purified to apparent homogeneity. The extradiol dioxygenase catalyzed the ring fission of hydroquinone to 4-hydroxymuconic semialdehyde and the degradation of chlorinated and several alkylated hydroquinones. The activity of 1 mg of the purified enzyme with unsubstituted hydroquinone was 6.1 μmol per minute, the apparent Km 2.2 μM. ICP-MS analysis revealed an iron content of 1.4 moles per mole enzyme. The enzyme lost activity upon exposure to oxygen, but could be reactivated by Fe(II) in presence of ascorbate. SDS-PAGE analysis of the purified enzyme yielded two bands of an apparent size of 38 kDa and 19 kDa, respectively. Data from MALDI-TOF analyses of peptides of the respective bands matched with the deduced amino acid sequences of two neighboring open reading frames found in genomic DNA of Sphingomonas sp strain TTNP3. The deduced amino acid sequences showed 62% and 47% identity to the large and small subunit of hydroquinone dioxygenase from Pseudomonas fluorescens strain ACB, respectively. This heterotetrameric enzyme is the first of its kind found in a strain of the genus Sphingomonas sensu latu. PMID:21906340

  9. Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases IDOs from monotremes and marsupials.

    PubMed

    Yuasa, Hajime J; Ball, Helen J; Ho, Yuen Fern; Austin, Christopher J D; Whittington, Camilla M; Belov, Katherine; Maghzal, Ghassan J; Jermiin, Lars S; Hunt, Nicholas H

    2009-06-01

    Indoleamine 2,3-dioxygenase (IDO1) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in tryptophan catabolism via the kynurenine pathway. TDO is widely distributed in both eukaryotes and bacteria. In contrast, IDO has been found only in mammals and yeast. In 2007, a third enzyme, indoleamine 2,3-dioxygenase-2 (IDO2), was discovered. IDO2 is found not only in mammals but also in lower vertebrates. Interestingly, the K(m) value of IDO2 for L-Trp was 500-1000 fold higher than that of IDO1. In this study, we isolated both IDO1 and IDO2 cDNA from a monotreme, the platypus (Ornithorhynchus anatinus), and a marsupial, the gray short-tailed opossum (Monodelphis domestica). We characterized the recombinant proteins and those of other known IDO1/IDO2 in intact cells and a cell-free system. It was found that methylene blue may not be suitable reductant for IDO2, hence resulting in an underestimation of recombinant IDO2 activity. In intact cells, the K(m) value of IDO2 for L-Trp was estimated to be much higher than that of IDO1 and this high K(m) value appears to have been conserved during the evolution of IDO2. The protein encoded by the ancestor gene of IDO1 and IDO2 is likely to have had properties more similar to present day IDO2 than to IDO1.

  10. Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases IDOs from monotremes and marsupials.

    PubMed

    Yuasa, Hajime J; Ball, Helen J; Ho, Yuen Fern; Austin, Christopher J D; Whittington, Camilla M; Belov, Katherine; Maghzal, Ghassan J; Jermiin, Lars S; Hunt, Nicholas H

    2009-06-01

    Indoleamine 2,3-dioxygenase (IDO1) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in tryptophan catabolism via the kynurenine pathway. TDO is widely distributed in both eukaryotes and bacteria. In contrast, IDO has been found only in mammals and yeast. In 2007, a third enzyme, indoleamine 2,3-dioxygenase-2 (IDO2), was discovered. IDO2 is found not only in mammals but also in lower vertebrates. Interestingly, the Km value of IDO2 for L-Trp was 500-1000 fold higher than that of IDO1. In this study, we isolated both IDO1 and IDO2 cDNA from a monotreme, the platypus (Ornithorhynchus anatinus), and a marsupial, the gray short-tailed opossum (Monodelphis domestica). We characterized the recombinant proteins and those of other known IDO1/IDO2 in intact cells and a cell-free system. It was found that methylene blue may not be suitable reductant for IDO2, hence resulting in an underestimation of recombinant IDO2 activity. In intact cells, the Km value of IDO2 for L-Trp was estimated to be much higher than that of IDO1 and this high Km value appears to have been conserved during the evolution of IDO2. The protein encoded by the ancestor gene of IDO1 and IDO2 is likely to have had properties more similar to present day IDO2 than to IDO1.

  11. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice.

    PubMed

    Ball, Helen J; Sanchez-Perez, Angeles; Weiser, Silvia; Austin, Christopher J D; Astelbauer, Florian; Miu, Jenny; McQuillan, James A; Stocker, Roland; Jermiin, Lars S; Hunt, Nicholas H

    2007-07-01

    Indoleamine 2,3-dioxygenase (INDO) and tryptophan 2,3-dioxygenase (TDO) each catalyze the first step in the kynurenine pathway of tryptophan metabolism. We describe the discovery of another enzyme with this activity, indoleamine 2,3-dioxygenase-like protein (INDOL1), which is closely related to INDO and is expressed in mice and humans. The corresponding genes have a similar genomic structure and are situated adjacent to each other on human and mouse chromosome 8. They are likely to have arisen by gene duplication before the origin of the tetrapods. The expression of INDOL1 is highest in the mouse kidney, followed by epididymis, and liver. Expression of mouse INDOL1 was further localized to the tubular cells in the kidney and the spermatozoa. INDOL1 was assigned its name because of its structural similarity to INDO. We demonstrate that INDOL1 catalyses the conversion of tryptophan to kynurenine therefore a more appropriate nomenclature for the enzymes might be INDO-1 and INDO-2, or the more commonly-used abbreviations, IDO-1 and IDO-2. Although the two proteins have similar enzymatic activities, their different expression patterns within tissues and during malaria infection, suggests a distinct role for each protein. This identification of INDOL1 may help to explain the regulation of the diversity of physiological and patho-physiological processes in which the kynurenine pathway is involved.

  12. Characterizations of Two Bacterial Persulfide Dioxygenases of the Metallo-β-lactamase Superfamily*

    PubMed Central

    Sattler, Steven A.; Wang, Xia; Lewis, Kevin M.; DeHan, Preston J.; Park, Chung-Min; Xin, Yufeng; Liu, Honglei; Xian, Ming; Xun, Luying; Kang, ChulHee

    2015-01-01

    Persulfide dioxygenases (PDOs), also known as sulfur dioxygenases (SDOs), oxidize glutathione persulfide (GSSH) to sulfite and GSH. PDOs belong to the metallo-β-lactamase superfamily and play critical roles in animals, plants, and microorganisms, including sulfide detoxification. The structures of two PDOs from human and Arabidopsis thaliana have been reported; however, little is known about the substrate binding and catalytic mechanism. The crystal structures of two bacterial PDOs from Pseudomonas putida and Myxococcus xanthus were determined at 1.5- and 2.5-Å resolution, respectively. The structures of both PDOs were homodimers, and their metal centers and β-lactamase folds were superimposable with those of related enzymes, especially the glyoxalases II. The PDOs share similar Fe(II) coordination and a secondary coordination sphere-based hydrogen bond network that is absent in glyoxalases II, in which the corresponding residues are involved instead in coordinating a second metal ion. The crystal structure of the complex between the Pseudomonas PDO and GSH also reveals the similarity of substrate binding between it and glyoxalases II. Further analysis implicates an identical mode of substrate binding by known PDOs. Thus, the data not only reveal the differences in metal binding and coordination between the dioxygenases and the hydrolytic enzymes in the metallo-β-lactamase superfamily, but also provide detailed information on substrate binding by PDOs. PMID:26082492

  13. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium.

    PubMed

    Guo, Guang; Fang, Tingting; Wang, Chongyang; Huang, Yong; Tian, Fang; Cui, Qijia; Wang, Hui

    2015-01-01

    Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0-30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe(3+), Fe(2+), Cu(2+) and Al(3+) and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation. PMID:26621792

  14. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium

    PubMed Central

    Guo, Guang; Fang, Tingting; Wang, Chongyang; Huang, Yong; Tian, Fang; Cui, Qijia; Wang, Hui

    2015-01-01

    Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0–30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation. PMID:26621792

  15. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase.

    PubMed

    Christmas, David M; Potokar, Jp; Davies, Simon Jc

    2011-01-01

    This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan depletion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively described with a focus on the evidence linking metabolite alterations to depression. The use of immune-activated groups at high risk of depression have been used to explore these hypotheses; we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an immune activating cytokine. Findings from this work have led to novel strategies for the future development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating the cytokines which activate it, or addressing other targets in the kynurenine pathway.

  16. Expression Pattern and Clinicopathological Relevance of the Indoleamine 2,3-Dioxygenase 1/Tryptophan 2,3-Dioxygenase Protein in Colorectal Cancer.

    PubMed

    Chen, I-Chien; Lee, Kuen-Haur; Hsu, Ying-Hua; Wang, Wei-Ran; Chen, Chuan-Mu; Cheng, Ya-Wen

    2016-01-01

    Aims. Cancer cells use the indoleamine 2,3-dioxygenase 1 (IDO1) pathway to suppress the host's immune response in order to facilitate survival, growth, invasion, and metastasis of malignant cells. Higher IDO1 expression was shown to be involved in colorectal cancer (CRC) progression and to be correlated with impaired clinical outcome. However, the potential correlation between the expression of IDO1 in a CRC population with a low mutation rate of the APC gene remains unknown. Material and Methods. Tissues and blood samples were collected from 192 CRC patients. The expressions of IDO1, tryptophan 2,3-dioxygenase (TDO2), and beta-catenin proteins were analyzed by immunohistochemistry. Microsatellite instability (MSI) was determined by PCR amplification of microsatellite loci. Results. The results showed that high IDO1 or TDO2 protein expression was associated with characteristics of more aggressive phenotypes of CRC. For the first time, they also revealed a positive correlation between the abnormal expression of beta-catenin and IDO1 or TDO2 proteins in a CRC population with a low mutation rate of APC. Conclusion. We concluded that an IDO1-regulated molecular pathway led to abnormal expression of beta-catenin in the nucleus/cytoplasm of CRC patients with low mutation rate of APC, making IDO1 an interesting target for immunotherapy in CRC. PMID:27578919

  17. Expression Pattern and Clinicopathological Relevance of the Indoleamine 2,3-Dioxygenase 1/Tryptophan 2,3-Dioxygenase Protein in Colorectal Cancer

    PubMed Central

    Wang, Wei-Ran

    2016-01-01

    Aims. Cancer cells use the indoleamine 2,3-dioxygenase 1 (IDO1) pathway to suppress the host's immune response in order to facilitate survival, growth, invasion, and metastasis of malignant cells. Higher IDO1 expression was shown to be involved in colorectal cancer (CRC) progression and to be correlated with impaired clinical outcome. However, the potential correlation between the expression of IDO1 in a CRC population with a low mutation rate of the APC gene remains unknown. Material and Methods. Tissues and blood samples were collected from 192 CRC patients. The expressions of IDO1, tryptophan 2,3-dioxygenase (TDO2), and beta-catenin proteins were analyzed by immunohistochemistry. Microsatellite instability (MSI) was determined by PCR amplification of microsatellite loci. Results. The results showed that high IDO1 or TDO2 protein expression was associated with characteristics of more aggressive phenotypes of CRC. For the first time, they also revealed a positive correlation between the abnormal expression of beta-catenin and IDO1 or TDO2 proteins in a CRC population with a low mutation rate of APC. Conclusion. We concluded that an IDO1-regulated molecular pathway led to abnormal expression of beta-catenin in the nucleus/cytoplasm of CRC patients with low mutation rate of APC, making IDO1 an interesting target for immunotherapy in CRC. PMID:27578919

  18. Characterization of aryloxyalkanoate dioxygenase-12, a nonheme Fe(II)/α-ketoglutarate-dependent dioxygenase, expressed in transgenic soybean and Pseudomonas fluorescens.

    PubMed

    Griffin, Samantha L; Godbey, Jeffrie A; Oman, Trent J; Embrey, Shawna K; Karnoup, Anton; Kuppannan, Krishna; Barnett, Brian W; Lin, Gaofeng; Harpham, Nicholas V J; Juba, Amber N; Schafer, Barry W; Cicchillo, Robert M

    2013-07-10

    Aryloxyalkanoate dioxygenase-12 (AAD-12) was discovered from the soil bacterium Delftia acidovorans MC1 and is a nonheme Fe(II)/α-ketoglutarate-dependent dioxygenase, which can impart herbicide tolerance to transgenic plants by catalyzing the degradation of certain phenoxyacetate, pyridyloxyacetate, and aryloxyphenoxypropionate herbicides. (1) The development of commercial herbicide-tolerant crops, in particular AAD-12-containing soybean, has prompted the need for large quantities of the enzyme for safety testing. To accomplish this, the enzyme was produced in Pseudomonas fluorescens (Pf) and purified to near homogeneity. A small amount of AAD-12 was partially purified from transgenic soybean and through various analytical, biochemical, and in vitro activity analyses demonstrated to be equivalent to the Pf-generated enzyme. Furthermore, results from in vitro kinetic analyses using a variety of plant endogenous compounds revealed activity with trans-cinnamate and indole-3-acetic acid (IAA). The catalytic efficiencies (kcat/Km) of AAD-12 using trans-cinnamate (51.5 M(-1) s(-1)) and IAA (8.2 M(-1) s(-1)) as substrates were very poor when compared to the efficiencies of plant endogenous enzymes. The results suggest that the presence of AAD-12 in transgenic soybean would not likely have an impact on major plant metabolic pathways.

  19. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids.

    PubMed

    Mourtzakis, Marina; Saltin, Bengt; Graham, Terry; Pilegaard, Henriette

    2006-06-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44+/-1% peak oxygen consumption (mean+/-SE) until exhaustion (exhaustion at 3 h 23 min+/-11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P<0.05). PDH activity peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced (approximately 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P<0.05) was also associated with decreasing PDH activity (P<0.05) and increased PDH kinase 4 mRNA (P<0.05) during exercise and recovery. At 1 h of exercise, pyruvate production was greatest and was closely linked to glutamate, which was the predominant amino acid taken up during exercise and recovery. Alanine and glutamine were also associated with pyruvate metabolism, and they comprised approximately 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism in early exercise. PMID:16424076

  20. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model

    SciTech Connect

    Ledee, Dolena R.; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Olson, Aaron; Isern, Nancy G.; Robillard Frayne, Isabelle; Des Rosiers, Christine; Portman, Michael A.

    2015-07-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support for infants and children with postoperative cardiopulmonary failure. Nutritional support is mandatory during ECMO, although specific actions for substrates on the heart have not been delineated. Prior work shows that enhancing pyruvate oxidation promotes successful weaning from ECMO. Accordingly, we closely examined the role of prolonged systemic pyruvate supplementation in modifying metabolic parameters during the unique conditions of ventricular unloading provided by ECMO. Twelve male mixed breed Yorkshire piglets (age 30-49 days) received systemic infusion of either normal saline (Group C) or pyruvate (Group P) during ECMO for 8 hours. Over the final hour piglets received [2-13C] pyruvate, and [13C6]-L-leucine, as an indicator for oxidation and protein synthesis. A significant increase in lactate and pyruvate concentrations occurred, along with an increase in the absolute concentration of all measured CAC intermediates. Group P showed greater anaplerotic flux through pyruvate carboxylation although pyruvate oxidation relative to citrate synthase flux was similar to Group C. The groups demonstrated similar leucine fractional contributions to acetyl-CoA and fractional protein synthesis rates. Pyruvate also promoted an increase in the phosphorylation state of several nutrient sensitive enzymes, such as AMPK and ACC, and promoted O-GlcNAcylation through the hexosamine biosynthetic pathway (HBP). In conclusion, prolonged pyruvate supplementation during ECMO modified anaplerotic pyruvate flux and elicited changes in important nutrient and energy sensitive pathways, while preserving protein synthesis. Therefore, the observed results support the further study of nutritional supplementation and its downstream effects on cardiac adaptation during ventricular unloading.

  1. A biochemical and genetic study of Leishmania donovani pyruvate kinase.

    PubMed

    Sandoval, Will; Isea, Raúl; Rodriguez, Evelyn; Ramirez, Jose Luis

    2008-11-15

    Here we present a biochemical and molecular biology study of the enzyme pyruvate kinase (PYK) from the parasitic protozoa Leishmania donovani. The PYK gene was cloned, mutagenised and over expressed and its kinetic parameters determined. Like in other kinetoplastids, L. donovani PYK is allosterically stimulated by the effector fructose 2,6 biphosphate and not by fructose 1,6 biphosphate. When the putative effector binding site of L. donovani PYK was mutagenised, we obtained two mutants with extreme kinetic behavior: Lys453Leu, which retained a sigmoidal kinetics and was little affected by the effector; and His480Gln, which deployed a hyperbolic kinetics that was not changed by the addition of the effector. Molecular Dynamics (MD) studies revealed that the mutations not only altered the effector binding site of L. donovani PYK but also changed the folding of its domain C. PMID:18725273

  2. The long and winding road to the mitochondrial pyruvate carrier

    PubMed Central

    2013-01-01

    The extraction of energy and biosynthetic building blocks from fuel metabolism is a fundamental requisite for life. Through the action of cellular enzymes, complex carbon structures are broken down in reactions coupled to the production of high-energy phosphates as in ATP and GTP as well as electron carriers such as NADH and FADH2. These processes traverse across compartments inside the cell in order to access specific enzymes and environments. Pyruvate is the end product of cytosolic glycolysis and has a variety of possible fates, the major one being mitochondrial oxidation. While this metabolite has been known to cross the inner mitochondrial membrane for decades, it is only recently that proteins necessary for this activity have been identified. This review will chronicle more than 40 years of research interrogating this critical process and will discuss some of the possible implications of this discovery for cancer metabolism. PMID:24280073

  3. Parkin Regulates the Activity of Pyruvate Kinase M2*

    PubMed Central

    Liu, Kun; Li, Fanzhou; Han, Haichao; Chen, Yue; Mao, Zebin; Luo, Jianyuan; Zhao, Yingming; Zheng, Bin; Gu, Wei; Zhao, Wenhui

    2016-01-01

    Parkin, a ubiquitin E3 ligase, is mutated in most cases of autosomal recessive early onset Parkinson disease. It was discovered that Parkin is also mutated in glioblastoma and other human malignancies and that it inhibits tumor cell growth. Here, we identified pyruvate kinase M2 (PKM2) as a unique substrate for parkin through biochemical purification. We found that parkin interacts with PKM2 both in vitro and in vivo, and this interaction dramatically increases during glucose starvation. Ubiquitylation of PKM2 by parkin does not affect its stability but decreases its enzymatic activity. Parkin regulates the glycolysis pathway and affects the cell metabolism. Our studies revealed the novel important roles of parkin in tumor cell metabolism and provided new insight for therapy of Parkinson disease. PMID:26975375

  4. Light regulation of pyruvate allocation into primary and secondary carbon metabolism in plants

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Werner, C.; Wegener, F.; Meyers, K.; Abrell, L.

    2012-12-01

    While plant metabolic processes are known to exert a large influence on climate and air quality through the emission of CO2 and volatile organic compounds (VOCs), controls over the allocation of assimilated carbon to these important components of the global carbon cycle are poorly understood. In plants, pyruvate lies at the heart of carbon metabolism by acting as a key product of photosynthesis and glycolysis and as a substrate used in respiratory and secondary biosynthetic pathways (e.g. VOCs). It is now well recognized that light has a strong inhibitory effect on mitochondrial respiration and recent studies have shown this contributes to an accumulation of pyruvate. However, little is known about the impact(s) this has on biosynthetic processes including VOCs and how the different carbon atoms within pyruvate are utilized. In this study, we quantified diurnal VOC and CO2 fluxes from intact branches of a Mediterranean shrub (Halimium halimifolium) under controlled light conditions. In addition, we utilized positionally specific 13C-labeled pyruvate branch feeding together with stable isotope analysis to trace the partitioning of C1, C2, and C3 carbon atoms of pyruvate into VOCs and CO2 emissions in the light and in the dark. In the light, we found high emission rates of a large array of VOC including volatile isoprenoids, oxygenated VOCs, green leaf volatiles, aromatics, sulfides, and nitrogen containing VOCs. In addition, elevated 13C-VOC emissions were stimulated by pyruvate-2-13C and pyruvate-2,3-13C but not pyruvate-1-13C while the opposite was the case for 13CO2 emissions (respiration). Moreover, we found that in the dark, 13C-VOC emissions dramatically declined while 13CO2 emissions were strongly stimulated. Our observations suggest that in the light, H. halimifolium dedicates a high pyruvate flux through secondary biosynthetic pathways including the pyruvate dehydrogenase bypass, mevalonic acid, MEP/DOXP, shikimic acid, and fatty acid pathways, which are

  5. The Crystal Structure of Toxoplasma gondii Pyruvate Kinase 1

    SciTech Connect

    Bakszt, R.; Wernimont, A; Allali-Hassani, A; Mok, M; Hills, T; Hui, R; Pizarro, J

    2010-01-01

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two {alpha}-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  6. Pyruvate kinase deficiency in mice protects against malaria.

    PubMed

    Min-Oo, Gundula; Fortin, Anny; Tam, Mi-Fong; Nantel, André; Stevenson, Mary M; Gros, Philippe

    2003-12-01

    The global health impact of malaria is enormous, with an estimated 300-500 million clinical cases and 1 million annual deaths. In humans, initial susceptibility to infection with Plasmodium species, disease severity and ultimate outcome of malaria (self-healing or lethal) are under complex genetic control. Alleles associated with sickle cell anemia, beta-thalassemia and deficiency in glucose-6-phosphate dehydrogenase have a protective effect against malaria and may have been retained by positive selection in areas of endemic malaria. Likewise, genetic variations in erythrocyte antigens and levels of host cytokines affect type and severity of disease. A mouse model of infection with Plasmodium chabaudi was used to study the genetic component of malaria susceptibility. Segregation analyses in informative F2 crosses derived from resistant C57BL/6J and susceptible A/J, C3H and SJL strains using extent of blood stage replication of the parasite and survival as traits mapped three P. chabaudi resistance (Char) loci on chromosomes 9 (Char1), 8 (Char2) and 17 (Char3, MHC-linked). Recombinant congenic strains AcB55 and AcB61 are unusually resistant to malaria despite carrying susceptibility alleles at Char1 and Char2. Malaria resistance in AcB55 and AcB61 is associated with splenomegaly and constitutive reticulocytosis, is inherited in an autosomal recessive fashion and is controlled by a locus on chromosome 3 (Char4). Sequencing of candidate genes from the Char4 region identified a loss-of-function mutation (269T-->A, resulting in the amino acid substitution I90N) in the pyruvate kinase gene (Pklr) that underlies the malaria resistance in AcB55 and AcB61. These results suggest that pyruvate kinase deficiency may similarly protect humans against malaria. PMID:14595440

  7. Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids: regulation.

    PubMed

    Thompson, P; Reid, E E; Lyttle, C R; Dennis, D T

    1977-05-01

    The activity of the pyruvate dehydrogenase complex from pea (Pisum sativum L.) mitochondria is inhibited when MgATP is added to the reaction mixture; 50% inhibition occurs at 4 mm ATP. The inhibition does not increase with time and is higher in the more highly purified preparations. Crude preparations of the complex show a time-dependent inactivation when incubated with 7.5 mm MgATP alone but this is not found with the more highly purified complex. This inactivation does not occur at 0 C. The complex could not be reactivated by high concentrations of Mg(2+). It is suggested that a phosphorylation-dephosphorylation mechanism may occur in plants, but the phosphatase and kinase are not tightly bound to the complex and are lost on isolation. The complex does not respond in a significant manner to energy charge. The NAD(+) to NADH ratio is the principal means of regulation of the complex, NADH being competitive with NAD(+) for the dihydrolipoamide component. The CoA to acetyl-CoA ratio is not important in regulation.The castor bean (Ricinus communis L.) proplastid complex is inhibited by the addition of 2 mm MgATP to the assay mixture. The inhibition is immediate, suggesting that phosphorylation of the enzyme is not involved or must be very rapid. Incubation of the complex with 20 mm MgCl(2) causes an activation of the complex. Maximum activity is not expressed in this case for 30 minutes. A similar activation can be achieved by preincubating the complex with 1 mm pyruvate. These data suggest that the complex is not fully activated on isolation.

  8. Specific inhibition by synthetic analogs of pyruvate reveals that the pyruvate dehydrogenase reaction is essential for metabolism and viability of glioblastoma cells

    PubMed Central

    Bunik, Victoria I.; Artiukhov, Artem; Kazantsev, Alexey; Goncalves, Renata; Daloso, Danilo; Oppermann, Henry; Kulakovskaya, Elena; Lukashev, Nikolay; Fernie, Alisdair; Brand, Martin; Gaunitz, Frank

    2015-01-01

    The pyruvate dehydrogenase complex (PDHC) and its phosphorylation are considered essential for oncotransformation, but it is unclear whether cancer cells require PDHC to be functional or silenced. We used specific inhibition of PDHC by synthetic structural analogs of pyruvate to resolve this question. With isolated and intramitochondrial PDHC, acetyl phosphinate (AcPH, KiAcPH = 0.1 μM) was a much more potent competitive inhibitor than the methyl ester of acetyl phosphonate (AcPMe, KiAcPMe = 40 μM). When preincubated with the complex, AcPH also irreversibly inactivated PDHC. Pyruvate prevented, but did not reverse the inactivation. The pyruvate analogs did not significantly inhibit other 2-oxo acid dehydrogenases. Different cell lines were exposed to the inhibitors and a membrane-permeable precursor of AcPMe, dimethyl acetyl phosphonate, which did not inhibit isolated PDHC. Using an ATP-based assay, dependence of cellular viability on the concentration of the pyruvate analogs was followed. The highest toxicity of the membrane-permeable precursor suggested that the cellular action of charged AcPH and AcPMe requires monocarboxylate transporters. The relevant cell-specific transcripts extracted from Gene Expression Omnibus database indicated that cell lines with higher expression of monocarboxylate transporters and PDHC components were more sensitive to the PDHC inhibitors. Prior to a detectable antiproliferative action, AcPH significantly changed metabolic profiles of the investigated glioblastoma cell lines. We conclude that catalytic transformation of pyruvate by pyruvate dehydrogenase is essential for the metabolism and viability of glioblastoma cell lines, although metabolic heterogeneity causes different cellular sensitivities and/or abilities to cope with PDHC inhibition. PMID:26503465

  9. Pyruvic acid levels in serum and saliva: A new course for oral cancer screening?

    PubMed Central

    Bhat, Manohara A; Prasad, KVV; Trivedi, Dheeraj; Rajeev, BR; Battur, Hemanth

    2016-01-01

    Objective: Cancerous cells show increased glycolysis rate. This will increase overall levels of pyruvate as it is one of the end products of glycolysis. The present on-going study is to estimate the levels of pyruvate in saliva and serum among healthy and oral cancer subjects. Settings and Design: Hospital-based cross-sectional comparative study. Methodology: A total of 50 subjects among healthy and oral cancer subjects were selected based on clinical and histological criteria. Saliva and serum samples were collected and subjected to pyruvate level estimation using biochemical analysis. Statistical Analysis: Descriptive analysis and Mann-Whitney test were used to find the statistical difference between the two independent groups. Results: Serum pyruvic acid levels of the healthy group were 1.09 ± 0.14 and for oral cancer, it was 2.95 ± 0.59 and salivary level were 3.49 ± 0.47 and 1.32 ± 0.10 respectively. Mann-Whitney test showed statistically significant difference in serum and salivary pyruvate level in between two groups (P < 0.000 respectively). Conclusion: The present study showed noticeable variation in the level of pyruvic acid among healthy and oral cancer subjects. This generates the hypothesis that estimation of the pyruvic acid can be a new tool to screening of the cancer. PMID:27194870

  10. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    SciTech Connect

    Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won; Oh, Sang Ho; Lee, Yun-Sil; Lee, Eun-Jung; Cho, Jaeho

    2015-05-08

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.

  11. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production.

    PubMed

    Xu, Guoqiang; Hua, Qiang; Duan, Ningjun; Liu, Liming; Chen, Jian

    2012-06-01

    Metabolic engineering of Saccharomyces cerevisiae for high-yield production of carboxylic acid requires a cytosolic pyruvate pool as precursor. In this study, a novel strategy to improve pyruvate production and reduce metabolic by-products via regulating thiamine synthesis was explored. Two of the thiamine biosynthesis regulatory genes, THI2 and THI3, were disrupted in the S. cerevisiae parent strain FMME-002. The mutants FMME-002ΔTHI2 and FMME-002ΔTHI3 both exhibited an enhanced pyruvate yield. Moreover, FMME-002ΔTHI2 achieved a relatively higher pyruvate production, and the highest concentration of pyruvate was achieved when 0.04 µ m thiamine was added. Enzyme assays and fermentation profiles of the THI2-complemented strain indicated that the observed metabolic changes represented intrinsic effects of THI2 deletion on the physiology of S. cerevisiae. Under optimal C:N ratio conditions, FMME-002ΔTHI2 produced pyruvate up to 8.21 ± 0.30 g/l, whereas the ethanol titre decreased to 2.21 ± 0.24 g/l after 96 h of cultivation. These results demonstrate the possibility of improving pyruvate production by regulating thiamine synthesis in S. cerevisiae.

  12. Structural Basis for "Flip-Flop" Action of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate is a cofactor of pyruvate dehydrogenase, a component enzyme of the mitochondrial pyruvate dehydrogenase multienzyme complex that plays a major role in directing energy metabolism in the cell. This cofactor is used to cleave the C(sup alpha)-C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. In alpha(sub 2)beta(sub 2)-tetrameric human pyruvate dehydrogenase, there are two cofactor binding sites, each of them being a center of independently conducted, although highly coordinated enzymatic reactions. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites can now be understood based on the recently determined crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95A resolution. The structure of pyruvate dehydrogenase was determined using a combination of MAD phasing and molecular replacement followed by rounds of torsion-angles molecular-dynamics simulated-annealing refinement. The final pyruvate dehydrogenase structure included coordinates for all protein amino acids two cofactor molecules, two magnesium and two potassium ions, and 742 water molecules. The structure was refined to R = 0.202 and R(sub free) = 0.244. Our structural analysis of the enzyme folding and domain assembly identified a simple mechanism of this protein motion required for the conduct of catalytic action.

  13. Factors Altering Pyruvate Excretion in a Glycogen Storage Mutant of the Cyanobacterium, Synechococcus PCC7942

    PubMed Central

    Benson, Phoebe J.; Purcell-Meyerink, Diane; Hocart, Charles H.; Truong, Thy T.; James, Gabriel O.; Rourke, Loraine; Djordjevic, Michael A.; Blackburn, Susan I.; Price, G. D.

    2016-01-01

    Interest in the production of carbon commodities from photosynthetically fixed CO2 has focused attention on cyanobacteria as a target for metabolic engineering and pathway investigation. We investigated the redirection of carbon flux in the model cyanobacterial species, Synechococcus elongatus PCC 7942, under nitrogen deprivation, for optimized production of the industrially desirable compound, pyruvate. Under nitrogen limited conditions, excess carbon is naturally stored as the multi-branched polysaccharide, glycogen, but a block in glycogen synthesis, via knockout mutation in the gene encoding ADP-glucose pyrophosphorylase (glgC), results in the accumulation of the organic acids, pyruvate and 2-oxoglutarate, as overflow excretions into the extracellular media. The ΔglgC strain, under 48 h of N-deprivation was shown to excrete pyruvate for the first time in this strain. Additionally, by increasing culture pH, to pH 10, it was possible to substantially elevate excretion of pyruvate, suggesting the involvement of an unknown substrate/proton symporter for export. The ΔglgC mutant was also engineered to express foreign transporters for glucose and sucrose, and then grown photomixotrophically with exogenous organic carbon supply, as added 5 mM glucose or sucrose during N- deprivation. Under these conditions we observed a fourfold increase in extracellular pyruvate excretion when glucose was added, and a smaller increase with added sucrose. Although the magnitude of pyruvate excretion did not correlate with the capacity of the ΔglgC strain for bicarbonate-dependent photosynthetic O2 evolution, or with light intensity, there was, however, a positive correlation observed between the density of the starter culture prior to N-deprivation and the final extracellular pyruvate concentration. The factors that contribute to enhancement of pyruvate excretion are discussed, as well as consideration of whether the source of carbon for pyruvate excretion might be derived from

  14. A method for simultaneous echo planar imaging of hyperpolarized 13C pyruvate and 13C lactate

    NASA Astrophysics Data System (ADS)

    Reed, Galen D.; Larson, Peder E. Z.; von Morze, Cornelius; Bok, Robert; Lustig, Michael; Kerr, Adam B.; Pauly, John M.; Kurhanewicz, John; Vigneron, Daniel B.

    2012-04-01

    A rapid echo planar imaging sequence for dynamic imaging of [1-13C] lactate and [1-13C] pyruvate simultaneously was developed. Frequency-based separation of these metabolites was achieved by spatial shifting in the phase-encoded direction with the appropriate choice of echo spacing. Suppression of the pyruvate-hydrate and alanine resonances is achieved through an optimized spectral-spatial RF waveform. Signal sampling efficiency as a function of pyruvate and lactate excitation angle was simulated using two site exchange models. Dynamic imaging is demonstrated in a transgenic mouse model, and phantom validations of the RF pulse frequency selectivity were performed.

  15. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase[W

    PubMed Central

    Catalanotti, Claudia; Dubini, Alexandra; Subramanian, Venkataramanan; Yang, Wenqiang; Magneschi, Leonardo; Mus, Florence; Seibert, Michael; Posewitz, Matthew C.; Grossman, Arthur R.

    2012-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism. PMID:22353371

  16. Degradation of 3-O-methylgallate in Sphingomonas paucimobilis SYK-6 by pathways involving protocatechuate 4,5-dioxygenase.

    PubMed

    Kasai, Daisuke; Masai, Eiji; Katayama, Yoshihiro; Fukuda, Masao

    2007-09-01

    Sphingomonas paucimobilis SYK-6 converts vanillate and syringate to protocatechuate and 3-O-methylgallate (3MGA), respectively. 3MGA is metabolized via multiple pathways involving 3MGA 3,4-dioxygenase, protocatechuate 4,5-dioxygenase (LigAB), and gallate dioxygenase whereas protocatechuate is degraded via the protocatechuate 4,5-cleavage pathway. Here the secondary role of LigAB in syringate metabolism is investigated. The reaction product of 3MGA catalyzed by His-tagged LigAB was identified as 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate (CHMOD) and 2-pyrone-4,6-dicarboxylate (PDC), indicating that 3MGA is transformed to CHMOD and PDC by both reactions catalyzed by DesZ and LigAB. Mutant analysis revealed that the 3MGA catabolic pathways involving LigAB are functional in SYK-6.

  17. Steady-state kinetics and inhibition of anaerobically purified human homogentisate 1,2-dioxygenase.

    PubMed

    Veldhuizen, Edwin J A; Vaillancourt, Frédéric H; Whiting, Cheryl J; Hsiao, Marvin M-Y; Gingras, Geneviève; Xiao, Yufang; Tanguay, Robert M; Boukouvalas, John; Eltis, Lindsay D

    2005-03-01

    HGO (homogentisate 1,2-dioxygenase; EC 1.13.11.5) catalyses the O2-dependent cleavage of HGA (homogentisate) to maleylacetoacetate in the catabolism of tyrosine. Anaerobic purification of heterologously expressed Fe(II)-containing human HGO yielded an enzyme preparation with a specific activity of 28.3+/- 0.6 micromol x min(-1) x mg(-1) (20 mM Mes, 80 mM NaCl, pH 6.2, 25 degrees C), which is almost twice that of the most active preparation described to date. Moreover, the addition of reducing agents or other additives did not increase the specific activity, in contrast with previous reports. The apparent specificity of HGO for HGA was highest at pH 6.2 and the steady-state cleavage of HGA fit a compulsory-order ternary-complex mechanism (K(m) value of 28.6+/-6.2 microM for HGA, K(m) value of 1240+/-160 microM for O2). Free HGO was subject to inactivation in the presence of O2 and during the steady-state cleavage of HGA. Both cases involved the oxidation of the active site Fe(II). 3-Cl HGA, a potential inhibitor of HGO, and its isosteric analogue, 3-Me HGO, were synthesized. At saturating substrate concentrations, HGO cleaved 3-Me and 3-Cl HGA 10 and 100 times slower than HGA respectively. The apparent specificity of HGO for HGA was approx. two orders of magnitude higher than for either 3-Me or 3-Cl HGA. Interestingly, 3-Cl HGA inactivated HGO only twice as rapidly as HGA. This contrasts with what has been observed in mechanistically related dioxygenases, which are rapidly inactivated by chlorinated substrate analogues, such as 3-hydroxyanthranilate dioxygenase by 4-Cl 3-hydroxyanthranilate.

  18. Steady-state kinetics and inhibition of anaerobically purified human homogentisate 1,2-dioxygenase

    PubMed Central

    2004-01-01

    HGO (homogentisate 1,2-dioxygenase; EC 1.13.11.5) catalyses the O2-dependent cleavage of HGA (homogentisate) to maleylacetoacetate in the catabolism of tyrosine. Anaerobic purification of heterologously expressed Fe(II)-containing human HGO yielded an enzyme preparation with a specific activity of 28.3± 0.6 μmol·min−1·mg−1 (20 mM Mes, 80 mM NaCl, pH 6.2, 25 °C), which is almost twice that of the most active preparation described to date. Moreover, the addition of reducing agents or other additives did not increase the specific activity, in contrast with previous reports. The apparent specificity of HGO for HGA was highest at pH 6.2 and the steady-state cleavage of HGA fit a compulsory-order ternary-complex mechanism (Km value of 28.6±6.2 μM for HGA, Km value of 1240±160 μM for O2). Free HGO was subject to inactivation in the presence of O2 and during the steady-state cleavage of HGA. Both cases involved the oxidation of the active site Fe(II). 3-Cl HGA, a potential inhibitor of HGO, and its isosteric analogue, 3-Me HGO, were synthesized. At saturating substrate concentrations, HGO cleaved 3-Me and 3-Cl HGA 10 and 100 times slower than HGA respectively. The apparent specificity of HGO for HGA was approx. two orders of magnitude higher than for either 3-Me or 3-Cl HGA. Interestingly, 3-Cl HGA inactivated HGO only twice as rapidly as HGA. This contrasts with what has been observed in mechanistically related dioxygenases, which are rapidly inactivated by chlorinated substrate analogues, such as 3-hydroxyanthranilate dioxygenase by 4-Cl 3-hydroxyanthranilate. PMID:15479158

  19. Structure of the 2,4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP

    PubMed Central

    Keegan, R.; Lebedev, A.; Erskine, P.; Guo, J.; Wood, S. P.; Hopper, D. J.; Rigby, S. E. J.; Cooper, J. B.

    2014-01-01

    The enzyme 2,4′-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4′-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in the predominantly hydrophobic active-site pocket where it undergoes peroxide radical-mediated heterolysis. PMID:25195757

  20. Mechanism for catechol ring cleavage by non-heme iron intradiol dioxygenases: a hybrid DFT study.

    PubMed

    Borowski, Tomasz; Siegbahn, Per E M

    2006-10-01

    The mechanism of the catalytic reaction of protocatechuate 3,4-dioxygenase (3,4-PCD), a representative intradiol dioxygenase, was studied with the hybrid density functional method B3LYP. First, a smaller model involving only the iron first-shell ligands (His460, His462, and Tyr408) and the substrates (catechol and dioxygen) was used to probe various a priori plausible reaction mechanisms. Then, an extended model involving also the most important second-shell groups (Arg457, Gln477, and Tyr479) was used for the refinement of the preselected mechanisms. The computational results suggest that the chemical reactions constituting the catalytic cycle of intradiol dioxygenases involve: (1) binding of the substrate as a dianion, in agreement with experimental suggestions, (2) binding of dioxygen to the metal aided by an electron transfer from the substrate to O(2), (3) formation of a bridging peroxo intermediate and its conformational change, which opens the coordination site trans to His462, (4) binding of a neutral XOH ligand (H(2)O or Tyr447) at the open site, (5) proton transfer from XOH to the neighboring peroxo ligand yielding the hydroperoxo intermediate, (6) a Criegee rearrangement leading to the anhydride intermediate, and (7) hydrolysis of the anhydride to the final acyclic product. One of the most important results obtained is that the Criegee mechanism requires an in-plane orientation of the four atoms (two oxygen and two carbon atoms) mainly involved in the reaction. This orientation yields a good overlap between the two sigma orbitals involved, C-C sigma and O-O sigma, allowing an efficient electron flow between them. Another interesting result is that under some conditions, a homolytic O-O bond cleavage might compete with the Criegee rearrangement. The role of the second-shell residues and the substituent effects are also discussed.

  1. Mechanism of S-oxygenation by a cysteine dioxygenase model complex

    PubMed Central

    Sastry, G. Narahari

    2012-01-01

    In this work we present the first computational study on a biomimetic cysteine dioxygenase model complex, [FeII(LN3S)]+ where LN3S is a tetradentate ligand with a bis(imino)pyridyl scaffold and a pendant arylthiolate group. The reaction mechanism of sulfur dioxygenation with O2 was examined by density functional theory (DFT) methods, and compared to results obtained for cysteine dioxygenase. The reaction proceeds via multistate reactivity patterns on competing singlet, triplet and quintet spin state surfaces. The reaction mechanism is analogous to that found for cysteine dioxygenase enzymes [Kumar, D.; Thiel, W.; de Visser, S. P. J. Am. Chem. Soc. 2011, 133, 3869–3882], hence the computations indicate that this complex can closely mimic the enzymatic process. The catalytic mechanism starts from an iron(III)-superoxo complex and the attack of the terminal oxygen atom of the superoxo group on the sulfur atom of the ligand. Subsequently, the dioxygen bond breaks to form an iron(IV)-oxo complex with a bound sulfenato group. After reorganization the second oxygen atom is transferred to the substrate to give a sulfinic acid product. An alternative mechanism involving the direct attack of dioxygen on the sulfur, without involving any iron-oxygen intermediates, was also examined. Importantly, a significant energetic preference for dioxygen coordinating to the iron center prior to attack at sulfur was discovered and serves to elucidate the function of the metal ion in the reaction process. The computational results are in good agreement with experimental observations, and the differences and similarities of the biomimetic complex and the enzymatic CDO center are highlighted. PMID:22091701

  2. The Crystal Structure of the Ring-Hydroxylating Dioxygenase from Sphingomonas CHY-1

    SciTech Connect

    Jakoncic,J.; Jouanneau, Y.; Meyer, C.; Stojanoff, V.

    2007-01-01

    The ring-hydroxylating dioxygenase (RHD) from Sphingomonas CHY-1 is remarkable due to its ability to initiate the oxidation of a wide range of polycyclic aromatic hydrocarbons (PAHs), including PAHs containing four- and five-fused rings, known pollutants for their toxic nature. Although the terminal oxygenase from CHY-1 exhibits limited sequence similarity with well characterized RHDs from the naphthalene dioxygenase family, the crystal structure determined to 1.85 {angstrom} by molecular replacement revealed the enzyme to share the same global {alpha}{sub 3}{beta}{sub 3} structural pattern. The catalytic domain distinguishes itself from other bacterial non-heme Rieske iron oxygenases by a substantially larger hydrophobic substrate binding pocket, the largest ever reported for this type of enzyme. While residues in the proximal region close to the mononuclear iron atom are conserved, the central region of the catalytic pocket is shaped mainly by the side chains of three amino acids, Phe350, Phe404 and Leu356, which contribute to the rather uniform trapezoidal shape of the pocket. Two flexible loops, LI and LII, exposed to the solvent seem to control the substrate access to the catalytic pocket and control the pocket length. Compared with other naphthalene dioxygenases residues Leu223 and Leu226, on loop LI, are moved towards the solvent, thus elongating the catalytic pocket by at least 2 {angstrom}. An 11 {angstrom} long water channel extends from the interface between the {alpha} and {beta} subunits to the catalytic site. The comparison of these structures with other known oxygenases suggests that the broad substrate specificity presented by the CHY-1 oxygenase is primarily due to the large size and particular topology of its catalytic pocket and provided the basis for the study of its reaction mechanism.

  3. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  4. Pyruvate inhibition of the carbon dioxide fixation of the strict chemolithotroph Thiobacillus thiooxidans.

    PubMed

    Butler, R G

    1975-12-01

    A flow-through dialysis system used to decrease the concentrations of toxic organic materials excreted by Thiobacillus thiooxidans permitted an improved efficiency of carbon dioxide fixation when compared with cells taken from the usual shaken culture. The additions of various concentrations of pyruvic acid and succinic acid inhibited growth significantly. Pyruvate at a concentration of 5 X 10(-3) M completely inhibited the respiration of resting cells oxidizing sulfur. The toxicity of pyruvic acid was found to be permanent as evidenced by the inability to obtain satisfactory oxidation rates after washing the exposed cells twice in buffer. Both pyruvate (10(-3) M) and succinate (10(-3) M) inhibited carbon dioxide fixation by 84%.

  5. A Simple Experiment Demonstrating the Allosteric Regulation of Yeast Pyruvate Kinase.

    ERIC Educational Resources Information Center

    Taber, Richard L.; Campbell, Angela; Spencer, Scott

    1998-01-01

    Explains the procedures used to determine the regulatory properties of yeast pyruvate kinase. Involves a partial purification using PEG precipitation that can be done in one laboratory period with simple equipment. (DDR)

  6. Ethyl Pyruvate Combats Human Leukemia Cells but Spares Normal Blood Cells

    PubMed Central

    Kurz, Susanne; Bigl, Marina; Buchold, Martin; Thieme, Rene; Wichmann, Gunnar; Dehghani, Faramarz

    2016-01-01

    Ethyl pyruvate, a known ROS scavenger and anti-inflammatory drug was found to combat leukemia cells. Tumor cell killing was achieved by concerted action of necrosis/apoptosis induction, ATP depletion, and inhibition of glycolytic and para-glycolytic enzymes. Ethyl lactate was less harmful to leukemia cells but was found to arrest cell cycle in the G0/G1 phase. Both, ethyl pyruvate and ethyl lactate were identified as new inhibitors of GSK-3β. Despite the strong effect of ethyl pyruvate on leukemia cells, human cognate blood cells were only marginally affected. The data were compiled by immune blotting, flow cytometry, enzyme activity assay and gene array analysis. Our results inform new mechanisms of ethyl pyruvate-induced cell death, offering thereby a new treatment regime with a high therapeutic window for leukemic tumors. PMID:27579985

  7. Ethyl Pyruvate Combats Human Leukemia Cells but Spares Normal Blood Cells.

    PubMed

    Birkenmeier, Gerd; Hemdan, Nasr Y A; Kurz, Susanne; Bigl, Marina; Pieroh, Philipp; Debebe, Tewodros; Buchold, Martin; Thieme, Rene; Wichmann, Gunnar; Dehghani, Faramarz

    2016-01-01

    Ethyl pyruvate, a known ROS scavenger and anti-inflammatory drug was found to combat leukemia cells. Tumor cell killing was achieved by concerted action of necrosis/apoptosis induction, ATP depletion, and inhibition of glycolytic and para-glycolytic enzymes. Ethyl lactate was less harmful to leukemia cells but was found to arrest cell cycle in the G0/G1 phase. Both, ethyl pyruvate and ethyl lactate were identified as new inhibitors of GSK-3β. Despite the strong effect of ethyl pyruvate on leukemia cells, human cognate blood cells were only marginally affected. The data were compiled by immune blotting, flow cytometry, enzyme activity assay and gene array analysis. Our results inform new mechanisms of ethyl pyruvate-induced cell death, offering thereby a new treatment regime with a high therapeutic window for leukemic tumors. PMID:27579985

  8. Compound-Specific Isotope Analysis of Nitroaromatic Contaminant Transformations by Nitroarene Dioxygenases

    NASA Astrophysics Data System (ADS)

    Pati, Sarah G.; Kohler, Hans-Peter E.; Hofstetter, Thomas B.

    2014-05-01

    Dioxygenation is an important biochemical reaction that often initiates the mineralization of recalcitrant organic contaminants such as nitroaromatic explosives, chlorinated benzenes, and polycyclic aromatic hydrocarbons. However, to assess the extent of dioxygenation in contaminated environments is difficult because of competing transformation processes and further reactions of the dioxygenation products. Compound-specific isotope analysis (CSIA) offers a new approach to reliably quantify biodegradation initiated by dioxygenation based on changes in stable isotope ratios of the pollutant. For CSIA it is essential to know the kinetic isotope effects (KIEs) pertinent to the dioxygenation mechanism of organic contaminants. Unfortunately, the range of KIEs of such reactions is poorly constrained although many dioxygenase enzymes with a broad substrate specificity have been reported. Dioxygenase enzymes usually exhibit complex reaction kinetics involving multiple substrates and substrate-specific binding modes which makes the determination of KIEs challenging. The goal of this study was to explore the magnitude and variability of 13C-, 2H-, and 15N-KIEs for the dioxygenation of one contaminant class, that is nitroaromatic contaminants (NACs). To this end, we investigated the C, H, and N isotope fractionation during the dioxygenation of nitrobenzene (NB), 2-nitrotoluene (2-NT), and 3-nitrotoluene (3-NT) by pure cultures, E. coli clones, cell extracts, and purified enzymes. From isotope fractionations measured in the substrates and reaction products, we determined dioxygenation KIEs for different combinations of the three substrates with nitrobenzene dioxygenase (NBDO) and 2-nitrotoluene dioxygenase (2NTDO). The 13C-, 2H-, and 15N-KIEs for the dioxygenation of NB by NBDO were consistent for all experimental systems considered (i.e., Comamonas sp. Strain JS765, E. coli clones, cell extracts of E. coli clones, and purified NBDO). This observation suggests that the isotope

  9. Homogentisate 1,2 dioxygenase is expressed in human osteoarticular cells: implications in alkaptonuria.

    PubMed

    Laschi, Marcella; Tinti, Laura; Braconi, Daniela; Millucci, Lia; Ghezzi, Lorenzo; Amato, Loredana; Selvi, Enrico; Spreafico, Adriano; Bernardini, Giulia; Santucci, Annalisa

    2012-09-01

    Alkaptonuria (AKU) results from defective homogentisate1,2-dioxygenase (HGD), causing degenerative arthropathy. The deposition of ochronotic pigment in joints is so far attributed to homogentisic acid produced by the liver, circulating in the blood and accumulating locally. Human normal and AKU osteoarticular cells were tested for HGD gene expression by RT-PCR, mono- and 2D-Western blotting. HGD gene expression was revealed in chondrocytes, synoviocytes, osteoblasts. Furthermore, HGD expression was confirmed by Western blotting, that also revealed the presence of five enzymatic molecular species. Our findings indicate that AKU osteoarticular cells produce the ochronotic pigment in loco and this may strongly contribute to induction of ochronotic arthropathy.

  10. Dioxygenase- and monooxygenase-catalysed synthesis of cis-dihydrodiols, catechols, epoxides and other oxygenated products.

    PubMed

    Nolan, Louise C; O'Connor, Kevin E

    2008-11-01

    Oxidoreductases are an emerging class of biotechnologically relevant enzymes due to their regio- and stereo-specificity. The selective oxygenation of aromatic compounds by oxidoreductases has received much attention and a wide range of reactions have been documented using these enzymes from various microbial sources. This review gives an overview of various dioxygenase, monooxygenase and oxidase enzymes that have been manipulated for the synthesis of products such as cis-dihydrodiols, catechols, epoxides and other oxygenated products. The use of protein engineering and its advancement in the synthesis of recombinant enzymes is also discussed.

  11. Challenges in the Discovery of Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors.

    PubMed

    Röhrig, Ute F; Majjigapu, Somi Reddy; Vogel, Pierre; Zoete, Vincent; Michielin, Olivier

    2015-12-24

    Since the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) as an attractive target for anticancer therapy in 2003, the search for inhibitors has been intensely pursued both in academia and in pharmaceutical companies. Many novel IDO1 inhibitor scaffolds have been described, and a few potent compounds have entered clinical trials. However, a significant number of the reported compounds contain problematic functional groups, suggesting that enzyme inhibition could be the result of undesirable side reactions instead of selective binding to IDO1. Here, we describe issues in the employed experimental protocols, review and classify reported IDO1 inhibitors, and suggest different approaches for confirming viable inhibitor scaffolds.

  12. Structure of the 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP

    SciTech Connect

    Keegan, R.; Lebedev, A.; Erskine, P.; Guo, J.; Wood, S. P.; Hopper, D. J.; Rigby, S. E. J.; Cooper, J. B.

    2014-09-01

    The first X-ray structure of a 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP at a resolution of 2.2 Å is reported. This structure establishes that the enzyme adopts the cupin-fold, forming compact dimers with a pronounced hydrophobic interface between the monomers. Each monomer possesses a catalytic ferrous iron that is coordinated by three histidines (76, 78 and 114) and an additional ligand which has been putatively assigned as a carbonate, although formate and acetate are possibilities. The enzyme 2, 4′-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2, 4′-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in

  13. 13C magnetic resonance spectroscopy measurements with hyperpolarized [1‐13C] pyruvate can be used to detect the expression of transgenic pyruvate decarboxylase activity in vivo

    PubMed Central

    Dzien, Piotr; Tee, Sui‐Seng; Kettunen, Mikko I.; Lyons, Scott K.; Larkin, Timothy J.; Timm, Kerstin N.; Hu, De‐En; Wright, Alan; Rodrigues, Tiago B.; Serrao, Eva M.; Marco‐Rius, Irene; Mannion, Elizabeth; D'Santos, Paula; Kennedy, Brett W. C.

    2015-01-01

    Purpose Dissolution dynamic nuclear polarization can increase the sensitivity of the 13C magnetic resonance spectroscopy experiment by at least four orders of magnitude and offers a novel approach to the development of MRI gene reporters based on enzymes that metabolize 13C‐labeled tracers. We describe here a gene reporter based on the enzyme pyruvate decarboxylase (EC 4.1.1.1), which catalyzes the decarboxylation of pyruvate to produce acetaldehyde and carbon dioxide. Methods Pyruvate decarboxylase from Zymomonas mobilis (zmPDC) and a mutant that lacked enzyme activity were expressed using an inducible promoter in human embryonic kidney (HEK293T) cells. Enzyme activity was measured in the cells and in xenografts derived from the cells using 13C MRS measurements of the conversion of hyperpolarized [1‐13C] pyruvate to H13 CO3–. Results Induction of zmPDC expression in the cells and in the xenografts derived from them resulted in an approximately two‐fold increase in the H13 CO3–/[1‐13C] pyruvate signal ratio following intravenous injection of hyperpolarized [1‐13C] pyruvate. Conclusion We have demonstrated the feasibility of using zmPDC as an in vivo reporter gene for use with hyperpolarized 13C MRS. Magn Reson Med 76:391–401, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26388418

  14. Cloning of the rat pyruvate dehydrogenase kinase 4 gene promoter: activation of pyruvate dehydrogenase kinase 4 by the peroxisome proliferator-activated receptor gamma coactivator.

    PubMed

    Ma, Ke; Zhang, Yi; Elam, Marshall B; Cook, George A; Park, Edwards A

    2005-08-19

    The pyruvate dehydrogenase complex catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the metabolism of glucose to acetyl-CoA. Phosphorylation of pyruvate dehydrogenase by the pyruvate dehydrogenase kinases (PDK) inhibits pyruvate dehydrogenase complex activity. There are four PDK isoforms, and expression of PDK4 and PDK2 genes is elevated in starvation and diabetes, allowing glucose to be conserved while fatty acid oxidation is increased. In these studies we have investigated the transcriptional mechanisms by which the expression of the PDK4 gene is increased. The peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of genes involved in hepatic gluconeogenesis and mitochondrial fatty acid oxidation. We have found that PGC-1alpha will induce the expression of both the PDK2 and PDK4 genes in primary rat hepatocytes and ventricular myocytes. We cloned the promoter for the rat PDK4 gene. Hepatic nuclear factor 4 (HNF4), which activates many genes in the liver, will induce PDK4 expression. Although HNF4 and PGC-1alpha interact to stimulate several genes encoding gluconeogenic enzymes, the induction of PDK4 does not involve interactions of PGC-1alpha with HNF4. Using the chromatin immunoprecipitation assay, we have demonstrated that HNF4 and PGC-1alpha are associated with the PDK4 gene in vivo. Our data suggest that by inducing PDK genes PGC-1alpha will direct pyruvate away from metabolism into acetyl-CoA and toward the formation of oxaloacetate and into the gluconeogenic pathway. PMID:15967803

  15. The halophilic properties of pyruvate kinase from Vibrio costicola, a moderate halophile.

    PubMed

    de Médicis, E; Rossignol, B

    1979-12-15

    Pyruvate kinase from Vibrio costicola, a moderate halophile, appears to be adapted to functioning in the presence of salt. Its stability depends on the ionic strength of the medium. The amino acid composition resembles that of other halophilic enzymes. It is proposed that the halophilic pyruvate kinase utilizes preferentially the Mn++ cofactor which forms more stable complexes in the presence of physiological concentrations of salt.

  16. Pyruvate Incubation Enhances Glycogen Stores and Sustains Neuronal Function during Subsequent Glucose Deprivation

    PubMed Central

    Shetty, Pavan K; Sadgrove, Matthew P; Galeffi, Francesca; Turner, Dennis A.

    2011-01-01

    The use of energy substrates, such as lactate and pyruvate, has been shown to improve synaptic function when administered during glucose deprivation. In the present study, we investigatedwhether prolonged incubation with monocarboxylate (pyruvate or lactate) prior rather than duringglucose deprivation can also sustainsynaptic and metabolic function.Pyruvate pre-incubation(3-4 hr) significantly prolonged (>25 min) the tolerance of rat hippocampal slices to delayed glucose deprivation compared to control and lactate pre-incubated slices, as revealed by field excitatory post synaptic potentials (fEPSPs); pre-incubation with pyruvate alsoreduced the marked decrease in NAD(P)H fluorescence resulting from glucose deprivation. Moreover, pyruvate exposure led to enhancement of glycogen stores with time, compared to glucose alone(12 μmol/g tissue at 4 hr vs. 3.5 μmol/g tissue). Prolonged resistance to glucose deprivation following exogenous pyruvate incubation was prevented by glycogenolysis inhibitors, suggesting that enhanced glycogen mediates the delay in synaptic activity failure.The application of an adenosine A1 receptor antagonist enhanced glycogen utilization and prolonged the time to synaptic failure, further confirming this hypothesis of the importance of glycogen.Moreover, tissue levels of ATP werealso significantly maintained duringglucose deprivation in pyruvate pre-treated slices compared to control and lactate. In summary, these experiments indicate that pyruvate exposure prior to glucose deprivation significantly increased the energy buffering capacity of hippocampal slices, particularly by enhancing internal glycogen stores, delaying synaptic failure during glucose deprivation by maintaining ATP levels, and minimizing the decreasein the levels of NAD(P)H. PMID:21854850

  17. Pyruvate incubation enhances glycogen stores and sustains neuronal function during subsequent glucose deprivation.

    PubMed

    Shetty, Pavan K; Sadgrove, Matthew P; Galeffi, Francesca; Turner, Dennis A

    2012-01-01

    The use of energy substrates, such as lactate and pyruvate, has been shown to improve synaptic function when administered during glucose deprivation. In the present study, we investigated whether prolonged incubation with monocarboxylate (pyruvate or lactate) prior rather than during glucose deprivation can also sustain synaptic and metabolic function. Pyruvate pre-incubation(3-4h) significantly prolonged (>25 min) the tolerance of rat hippocampal slices to delayed glucose deprivation compared to control and lactate pre-incubated slices, as revealed by field excitatory post synaptic potentials (fEPSPs); pre-incubation with pyruvate also reduced the marked decrease in NAD(P)H fluorescence resulting from glucose deprivation. Moreover, pyruvate exposure led to the enhancement of glycogen stores with time, compared to glucose alone (12 μmol/g tissue at 4h vs. 3.5 μmol/g tissue). Prolonged resistance to glucose deprivation following exogenous pyruvate incubation was prevented by glycogenolysis inhibitors, suggesting that enhanced glycogen mediates the delay in synaptic activity failure. The application of an adenosine A1 receptor antagonist enhanced glycogen utilization and prolonged the time to synaptic failure, further confirming this hypothesis of the importance of glycogen. Moreover, tissue levels of ATP were also significantly maintained during glucose deprivation in pyruvate pretreated slices compared to control and lactate. In summary, these experiments indicate that pyruvate exposure prior to glucose deprivation significantly increased the energy buffering capacity of hippocampal slices, particularly by enhancing internal glycogen stores, delaying synaptic failure during glucose deprivation by maintaining ATP levels, and minimizing the decrease in the levels of NAD(P)H.

  18. Purification and characterization of pyruvate:NADP+ oxidoreductase in Euglena gracilis.

    PubMed

    Inui, H; Ono, K; Miyatake, K; Nakano, Y; Kitaoka, S

    1987-07-01

    Pyruvate:NADP+ oxidoreductase was homogeneously purified from crude extract of Euglena gracilis. The Mr of the enzyme was estimated to be 309,000 by gel filtration. The enzyme migrated as a single protein band with Mr of 166,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that the enzyme consists of two identical polypeptides. The absorption spectrum of the native enzyme exhibited maxima at 278, 380, and 430 nm, and a broad shoulder was observed around 480 nm; the maximum at 430 nm was eliminated by reduction of the enzyme with dithionite. Reduction of the enzyme with pyruvate and CoA and reoxidation with NADP+ were proved from changes of absorption spectra. The enzyme contained 2 molecules of FAD and 8 molecules of iron. It was also indicated that the enzyme was thiamine pyrophosphate-dependent. The enzyme was oxygen-sensitive, and the reaction was affected by the presence of oxygen. Pyruvate was the most active substrate, but the enzyme was slightly active for 2-oxobutyrate, 3-hydroxypyruvate, and oxalacetate, but not for glyoxylate and 2-oxoglutarate. The native electron acceptor was NADP+, whereas NAD+ was completely inactive. Methyl viologen, benzyl viologen, FAD, and FMN were utilized as artificial electron acceptors, whereas spinach and Clostridium ferredoxins were inactive. Pyruvate synthesis by reductive carboxylation of acetyl-CoA with NADPH as the electron donor occurred by the reverse reaction of the enzyme. The enzyme also catalyzed a pyruvate-CO2 exchange reaction and electron-transfer reaction from NADPH to other electron acceptors like methyl viologen. These results indicate that pyruvate:NADP+ oxidoreductase in E. gracilis is clearly distinct from either the pyruvate dehydrogenase multienzyme complex or pyruvate:ferredoxin oxidoreductase.

  19. A defect in pyruvate decarboxylase in a child with an intermittent movement disorder

    PubMed Central

    Blass, John P.; Avigan, Joel; Uhlendorf, B. William

    1970-01-01

    A patient with an intermittent movement disorder has been found to have an inherited defect in pyruvate decarboxylase ((2-oxo-acid carboxy-lyase, E.C. 4.1.1.1.). The patient is a 9 yr old boy who since infancy has had repeated episodes of a combined cerebellar and choreoathetoid movement disorder. He has an elevated level of pyruvic acid in his blood, an elevated urinary alanine content, and less marked elevations in blood alanine and lactate. Methods were developed to study his metabolic abnormality in dilute suspensions of white blood cells and cultured skin fibroblasts, as well as in cell-free sonicates of fibroblasts. Oxidation of pyruvic acid-1-14C and pyruvic acid-2-14C by his cells and pyruvate decarboxylase activity in sonicates of his cells were less than 20% of those in cells from control subjects. Oxidation of glutamic acid-U-14C, acetate-1-14C, and palmitate-1-14C was normal, as was incorporation of alanine-U-14C into protein. The rate of oxidation of pyruvic acid by the father's cells and the activity of pyruvate decarboxylase in the father's sonicated fibroblasts were intermediate between those of the patient and those of controls. Values for the mother were at or just below the lower limits of the ranges in controls. Kinetic data suggested the posibility of several forms of pyruvate decarboxylase in this family. Possible mechanisms relating the chemical abnormality and the clinical symptoms in this patient are discussed. PMID:4313434

  20. Isoenzyme of pyruvate kinase in proplastids from developing castor bean endosperm.

    PubMed

    De Luca, V; Dennis, D T

    1978-06-01

    Proplastids from developing castor bean (Ricinus communis) endosperm have a pyruvate kinase activity which is extremely unstable on isolation from the organelle. It can be stabilized by 20 mm 2-mercaptoethanol in 20% ethylene glycol. In contrast the soluble pyruvate kinase is stable at 60 C for 10 minutes. The two activities have different pH optima. The soluble and the proplastid activities are eluted from a diethylaminoethyl-Sephadex A-25 sievorptive column at different ionic strengths.

  1. Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis

    PubMed Central

    Zheng, Lan-yan; Itzek, Andreas; Chen, Zhi-yun; Kreth, Jens

    2011-01-01

    The objective of this study was to characterize the oxygen dependent regulation of pyruvate oxidase (SpxB) gene expression and protein production in Streptococcus sanguinis (S. sanguinis). SpxB is responsible for the generation of growth-inhibiting amounts of hydrogen peroxide (H2O2) able to antagonize cariogenic Streptococcus mutans (S. mutans). Furthermore, the ecological consequence of H2O2 production was investigated in its self-inhibiting ability towards the producing strain. Expression of spxB was determined with quantitative Real-Time RT-PCR and a fluorescent expression reporter strain. Protein abundance was investigated with FLAG epitope engineered in frame on the C-terminal end of SpxB. Self inhibition was tested with an antagonism plate assay. The expression and protein abundance decreased in cells grown under anaerobic conditions. S. sanguinis was resistant against its own produced H2O2, while cariogenic S. mutans was inhibited in its growth. The results suggest that S. sanguinis produces H2O2 as antimicrobial substance to inhibit susceptible niche competing species like S. mutans during initial biofilm formation, when oxygen availability allows for spxB expression and Spx production. PMID:21485312

  2. Phylogeny congruence analysis and isozyme classification: the pyruvate kinase system.

    PubMed

    Guderley, H; Fournier, P; Auclair, J C

    1989-09-22

    As the isozymes of pyruvate kinase (PK) are best known in rats, the characteristics of the rat isozymes are generally used to classify the PK isozymes in other species. Given the discrepancies generated by this classification by analogy, we evaluated a classification using a phylogeny congruence analysis of the compositional relatedness of vertebrate PK's. While our phylogenetic analysis confirmed the well established separation of the L and R isozymes from the K and M isozymes, its power became most evident in the identification of non-orthologous (or variant) forms of PK. Our analysis emphasized the uniqueness of chicken liver PK which cannot be classified either as a K or an L isozyme, confirmed that tumors express a variety of forms of PK, and indicated that lungs systematically express PK's which are not orthologous with PK's from other tissues. The determination of orthology by the phylogeny congruence analysis assumes that the structural data from different sources are subject to similar methodological error. However, we cannot reject the possibility that an apparent lack of orthology be due to artifacts during purification and analysis. PMID:2615396

  3. Phenotypic and Neuropathological Characterization of Fetal Pyruvate Dehydrogenase Deficiency.

    PubMed

    Pirot, Nathalie; Crahes, Marie; Adle-Biassette, Homa; Soares, Anais; Bucourt, Martine; Boutron, Audrey; Carbillon, Lionel; Mignot, Cyril; Trestard, Laetitia; Bekri, Soumeya; Laquerrière, Annie

    2016-03-01

    To distinguish pyruvate dehydrogenase deficiency (PDH) from other antenatal neurometabolic disorders thereby improving prenatal diagnosis, we describe imaging findings, clinical phenotype, and brain lesions in fetuses from 3 families with molecular characterization of this condition. Neuropathological analysis was performed in 4 autopsy cases from 3 unrelated families with subsequent biochemical and molecular confirmation of PDH complex deficiency. In 2 families there were mutations in the PDHA1 gene; in the third family there was a mutation in the PDHB gene. All fetuses displayed characteristic craniofacial dysmorphism of varying severity, absence of visceral lesions, and associated encephaloclastic and developmental supra- and infratentorial lesions. Neurodevelopmental abnormalities included microcephaly, migration abnormalities (pachygyria, polymicrogyria, periventricular nodular heterotopias), and cerebellar and brainstem hypoplasia with hypoplastic dentate nuclei and pyramidal tracts. Associated clastic lesions included asymmetric leukomalacia, reactive gliosis, large pseudocysts of germinolysis, and basal ganglia calcifications. The diagnosis of PDH deficiency should be suspected antenatally with the presence of clastic and neurodevelopmental lesions and a relatively characteristic craniofacial dysmorphism. Postmortem examination is essential for excluding other closely related entities, thereby allowing for biochemical and molecular confirmation. PMID:26865159

  4. Phosphorylation of the pyruvate dehydrogenase complex isolated from Ascaris suum

    SciTech Connect

    Thissen, J.; Komuniecki, R.

    1987-05-01

    The pyruvate dehydrogenase complex (PDC) from body wall muscle of the porcine nematode, Ascaris suum, plays a pivotal role in anaerobic mitochondrial metabolism. As in mammalian mitochondria, PDC activity is inhibited by the phosphorylation of the ..cap alpha..PDH subunit, catalyzed by an associated PDH/sub a/ kinase. However, in contrast to PDC's isolated from all other eukaryotic sources, phosphorylation decreases the mobility of the ..cap alpha..PDH subunit on SDS-PAGE and permits the separation of the phosphorylated and nonphosphorylated ..cap alpha..PDH's. Phosphorylation and the inactivation of the Ascaris PDC correspond directly, and the additional phosphorylation that occurs after complete inactivation in mammalian PDC's is not observed. The purified ascarid PDC incorporates 10 nmoles /sup 32/P/mg P. Autoradiography of the radiolabeled PDC separated by SDS-PAGE yields a band which corresponds to the phosphorylated ..cap alpha..PDH and a second, faint band which is present only during the first three minutes of PDC inactivation, intermediate between the phosphorylated and nonphosphorylated ..cap alpha..PDH subunit. Tryptic digests of the /sup 32/P-PDC yields one major phosphopeptide, when separated by HPLC, and its amino acid sequence currently is being determined.

  5. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication.

    PubMed

    Jung, Gwon-Soo; Jeon, Jae-Han; Choi, Yeon-Kyung; Jang, Se Young; Park, Soo Young; Kim, Sung-Woo; Byun, Jun-Kyu; Kim, Mi-Kyung; Lee, Sungwoo; Shin, Eui-Cheol; Lee, In-Kyu; Kang, Yu Na; Park, Keun-Gyu

    2016-01-01

    During replication, hepatitis C virus (HCV) utilizes macromolecules produced by its host cell. This process requires host cellular metabolic reprogramming to favor elevated levels of aerobic glycolysis. Therefore, we evaluated whether pyruvate dehydrogenase kinase (PDK), a mitochondrial enzyme that promotes aerobic glycolysis, can regulate HCV replication. Levels of c-Myc, hypoxia-inducible factor-1α (HIF-1α), PDK1, PDK3, glucokinase, and serine biosynthetic enzymes were compared between HCV-infected and uninfected human liver and Huh-7.5 cells infected with or without HCV. Protein and mRNA expression of c-Myc, HIF-1α, and glycolytic enzymes were significantly higher in HCV-infected human liver and hepatocytes than in uninfected controls. This increase was accompanied by upregulation of serine biosynthetic enzymes, suggesting cellular metabolism was altered toward facilitated nucleotide synthesis essential for HCV replication. JQ1, a c-Myc inhibitor, and dichloroacetate (DCA), a PDK inhibitor, decreased the expression of glycolytic and serine synthetic enzymes in HCV-infected hepatocytes, resulting in suppressed viral replication. Furthermore, when co-administered with IFN-α or ribavirin, DCA further inhibited viral replication. In summary, HCV reprograms host cell metabolism to favor glycolysis and serine biosynthesis; this is mediated, at least in part, by increased PDK activity, which provides a surplus of nucleotide precursors. Therefore, blocking PDK activity might have therapeutic benefits against HCV replication. PMID:27471054

  6. A distinct holoenzyme organization for two-subunit pyruvate carboxylase

    PubMed Central

    Choi, Philip H.; Jo, Jeanyoung; Lin, Yu-Cheng; Lin, Min-Han; Chou, Chi-Yuan; Dietrich, Lars E. P.; Tong, Liang

    2016-01-01

    Pyruvate carboxylase (PC) has important roles in metabolism and is crucial for virulence for some pathogenic bacteria. PC contains biotin carboxylase (BC), carboxyltransferase (CT) and biotin carboxyl carrier protein (BCCP) components. It is a single-chain enzyme in eukaryotes and most bacteria, and functions as a 500 kD homo-tetramer. In contrast, PC is a two-subunit enzyme in a collection of Gram-negative bacteria, with the α subunit containing the BC and the β subunit the CT and BCCP domains, and it is believed that the holoenzyme has α4β4 stoichiometry. We report here the crystal structures of a two-subunit PC from Methylobacillus flagellatus. Surprisingly, our structures reveal an α2β4 stoichiometry, and the overall architecture of the holoenzyme is strikingly different from that of the homo-tetrameric PCs. Biochemical and mutagenesis studies confirm the stoichiometry and other structural observations. Our functional studies in Pseudomonas aeruginosa show that its two-subunit PC is important for colony morphogenesis. PMID:27708276

  7. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication

    PubMed Central

    Jung, Gwon-Soo; Jeon, Jae-Han; Choi, Yeon-Kyung; Jang, Se Young; Park, Soo Young; Kim, Sung-Woo; Byun, Jun-Kyu; Kim, Mi-Kyung; Lee, Sungwoo; Shin, Eui-Cheol; Lee, In-Kyu; Kang, Yu Na; Park, Keun-Gyu

    2016-01-01

    During replication, hepatitis C virus (HCV) utilizes macromolecules produced by its host cell. This process requires host cellular metabolic reprogramming to favor elevated levels of aerobic glycolysis. Therefore, we evaluated whether pyruvate dehydrogenase kinase (PDK), a mitochondrial enzyme that promotes aerobic glycolysis, can regulate HCV replication. Levels of c-Myc, hypoxia-inducible factor-1α (HIF-1α), PDK1, PDK3, glucokinase, and serine biosynthetic enzymes were compared between HCV-infected and uninfected human liver and Huh-7.5 cells infected with or without HCV. Protein and mRNA expression of c-Myc, HIF-1α, and glycolytic enzymes were significantly higher in HCV-infected human liver and hepatocytes than in uninfected controls. This increase was accompanied by upregulation of serine biosynthetic enzymes, suggesting cellular metabolism was altered toward facilitated nucleotide synthesis essential for HCV replication. JQ1, a c-Myc inhibitor, and dichloroacetate (DCA), a PDK inhibitor, decreased the expression of glycolytic and serine synthetic enzymes in HCV-infected hepatocytes, resulting in suppressed viral replication. Furthermore, when co-administered with IFN-α or ribavirin, DCA further inhibited viral replication. In summary, HCV reprograms host cell metabolism to favor glycolysis and serine biosynthesis; this is mediated, at least in part, by increased PDK activity, which provides a surplus of nucleotide precursors. Therefore, blocking PDK activity might have therapeutic benefits against HCV replication. PMID:27471054

  8. Structures of pyruvate kinases display evolutionarily divergent allosteric strategies.

    PubMed

    Morgan, Hugh P; Zhong, Wenhe; McNae, Iain W; Michels, Paul A M; Fothergill-Gilmore, Linda A; Walkinshaw, Malcolm D

    2014-09-01

    The transition between the inactive T-state (apoenzyme) and active R-state (effector bound enzyme) of Trypanosoma cruzi pyruvate kinase (PYK) is accompanied by a symmetrical 8° rigid body rocking motion of the A- and C-domain cores in each of the four subunits, coupled with the formation of additional salt bridges across two of the four subunit interfaces. These salt bridges provide increased tetramer stability correlated with an enhanced specificity constant (k cat/S 0.5). A detailed kinetic and structural comparison between the potential drug target PYKs from the pathogenic protists T. cruzi, T. brucei and Leishmania mexicana shows that their allosteric mechanism is conserved. By contrast, a structural comparison of trypanosomatid PYKs with the evolutionarily divergent PYKs of humans and of bacteria shows that they have adopted different allosteric strategies. The underlying principle in each case is to maximize (k cat/S 0.5) by stabilizing and rigidifying the tetramer in an active R-state conformation. However, bacterial and mammalian PYKs have evolved alternative ways of locking the tetramers together. In contrast to the divergent allosteric mechanisms, the PYK active sites are highly conserved across species. Selective disruption of the varied allosteric mechanisms may therefore provide a useful approach for the design of species-specific inhibitors.

  9. Human pyruvate kinase M2: a multifunctional protein.

    PubMed

    Gupta, Vibhor; Bamezai, Rameshwar N K

    2010-11-01

    Glycolysis, a central metabolic pathway, harbors evolutionary conserved enzymes that modulate and potentially shift the cellular metabolism on requirement. Pyruvate kinase, which catalyzes the last but rate-limiting step of glycolysis, is expressed in four isozymic forms, depending on the tissue requirement. M2 isoform (PKM2) is exclusively expressed in embryonic and adult dividing/tumor cells. This tetrameric allosterically regulated isoform is intrinsically designed to downregulate its activity by subunit dissociation (into dimer), which results in partial inhibition of glycolysis at the last step. This accumulates all upstream glycolytic intermediates as an anabolic feed for synthesis of lipids and nucleic acids, whereas reassociation of PKM2 into active tetramer replenishes the normal catabolism as a feedback after cell division. In addition, involvement of this enzyme in a variety of pathways, protein-protein interactions, and nuclear transport suggests its potential to perform multiple nonglycolytic functions with diverse implications, although multidimensional role of this protein is as yet not fully explored. This review aims to provide an overview of the involvement of PKM2 in various physiological pathways with possible functional implications. PMID:20857498

  10. Pyruvate kinases of salmon: purification and comparison with the isozymes from birds and mammals.

    PubMed

    Guderley, H; Cardenas, J M

    1980-02-01

    Pyruvate kinase occurs as two major forms in coho salmon; the type M isozyme occurs primarily in muscle and heart, but type K has a more generalized tissue distribution, in parallel with the type K isozyme in other vertebrate systems. In order to assess the evolutionary relationships among the fish, avian, and mammalian isozymes of pyruvate kinase, we have purified the two isozymes from fish, have examined some of their physical properties, and have studied their immunological relationships to the avian and mammalian isozymes. Salmon type K is at least partially inactivated by antibody to bivine type L pyruvate kinase as well as by antibodies produced against chicken, bovine, and salmon type M isozymes. Salmon type M pyruvate kinase, on the other hand, is not significantly corss-reactive with the bovine type L isozyme, but is at least partially inactivated by antibodies produced against bovine or chicken type M isozymes. Mammalian type L pyruvate kinase is immunologically distinct from either mammalian type K or type M, but salmon type K has some structural features in common with all three mammalian isozymes. Thus, salmon fish type K pyruvate kinase could be similar to a primordial form that was antecedent to the three major differentiated isozymes of higher vertebrates. PMID:7373271

  11. Molecular Analyses of Pyruvate Kinase Deficient Turkish Patients from a Single Center.

    PubMed

    Unal, Sule; Gumruk, Fatma

    2015-01-01

    Erythrocyte pyruvate kinase deficiency is one of the most common causes of hereditary non-spherocytic hemolytic anemias. We investigated molecular alterations responsible for erythrocyte pyruvate kinase enzyme deficiency in four patients of the three unrelated Turkish families available from the pool of 12 patients diagnosed as having pyruvate kinase deficiency in one center. One novel missense mutation located at cDNA nt 1623 G→C (Lys541Asn), and three previously described mutations at 1456 C→T (Arg486Trp), 1528 C→T (Arg510End), and 1675 C→G (Arg559Gly) were found to be associated with erythrocyte pyruvate kinase deficiency. All four mutations affect the C-domain of the protein. The three missense mutations result in amino acid changes, which cause an alteration in interaction between subunits by changing the local distribution of charges or by local conformational change on protein structure. The Arg510End mutation causes a deletion of terminal residues of the pyruvate kinase affecting the integrity of protein. This study presents the results of first molecular study on pyruvate kinase deficiency in Turkey. PMID:25941984

  12. Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition.

    PubMed

    Diers, Anne R; Broniowska, Katarzyna A; Chang, Ching-Fang; Hogg, Neil

    2012-06-15

    Recent studies have highlighted the fact that cancer cells have an altered metabolic phenotype, and this metabolic reprogramming is required to drive the biosynthesis pathways necessary for rapid replication and proliferation. Specifically, the importance of citric acid cycle-generated intermediates in the regulation of cancer cell proliferation has been recently appreciated. One function of MCTs (monocarboxylate transporters) is to transport the citric acid cycle substrate pyruvate across the plasma membrane and into mitochondria, and inhibition of MCTs has been proposed as a therapeutic strategy to target metabolic pathways in cancer. In the present paper, we examined the effect of different metabolic substrates (glucose and pyruvate) on mitochondrial function and proliferation in breast cancer cells. We demonstrated that cancer cells proliferate more rapidly in the presence of exogenous pyruvate when compared with lactate. Pyruvate supplementation fuelled mitochondrial oxygen consumption and the reserve respiratory capacity, and this increase in mitochondrial function correlated with proliferative potential. In addition, inhibition of cellular pyruvate uptake using the MCT inhibitor α-cyano-4-hydroxycinnamic acid impaired mitochondrial respiration and decreased cell growth. These data demonstrate the importance of mitochondrial metabolism in proliferative responses and highlight a novel mechanism of action for MCT inhibitors through suppression of pyruvate-fuelled mitochondrial respiration.

  13. Structural Basis for Glycyl Radical Formation By Pyruvate Formate-Lyase Activating Enzyme

    SciTech Connect

    Vey, J.L.; Yang, J.; Li, M.; Broderick, W.E.; Broderick, J.B.; Drennan, C.L.

    2009-05-26

    Pyruvate formate-lyase activating enzyme generates a stable and catalytically essential glycyl radical on G{sup 734} of pyruvate formate-lyase via the direct, stereospecific abstraction of a hydrogen atom from pyruvate formate-lyase. The activase performs this remarkable feat by using an iron-sulfur cluster and S-adenosylmethionine (AdoMet), thus placing it among the AdoMet radical superfamily of enzymes. We report here structures of the substrate-free and substrate-bound forms of pyruvate formate-lyase-activating enzyme, the first structures of an AdoMet radical activase. To obtain the substrate-bound structure, we have used a peptide substrate, the 7-mer RVSGYAV, which contains the sequence surrounding G{sup 734}. Our structures provide fundamental insights into the interactions between the activase and the G{sup 734} loop of pyruvate formate-lyase and provide a structural basis for direct and stereospecific H atom abstraction from the buried G{sup 734}4 of pyruvate formate-lyase.

  14. Neuroprotective effect of pyruvate and oxaloacetate during pilocarpine induced status epilepticus in rats.

    PubMed

    Carvalho, Andrezza Sossai Rodrigues; Torres, Laila Brito; Persike, Daniele Suzete; Fernandes, Maria José Silva; Amado, Debora; Naffah-Mazzacoratti, Maria da Graça; Cavalheiro, Esper Abrão; da Silva, Alexandre Valotta

    2011-02-01

    Recent research data have shown that systemic administration of pyruvate and oxaloacetate causes an increased brain-to-blood glutamate efflux. Since increased release of glutamate during epileptic seizures can lead to excitotoxicity and neuronal cell death, we tested the hypothesis that glutamate scavenging mediated by pyruvate and oxaloacetate systemic administration could have a neuroprotective effect in rats subjected to status epilepticus (SE). SE was induced by a single dose of pilocarpine (350mg/kgi.p.). Thirty minutes after SE onset, a single dose of pyruvate (250mg/kgi.p.), oxaloacetate (1.4mg/kgi.p.), or both substances was administrated. Acute neuronal loss in hippocampal regions CA1 and hilus was quantitatively determined five hours after SE onset, using the optical fractionator method for stereological cell counting. Apoptotic cascade in the hippocampus was also investigated seven days after SE using caspase-1 and -3 activity assays. SE-induced neuronal loss in CA1 was completely prevented in rats treated with pyruvate plus oxaloacetate. The SE-induced caspase-1 activation was significantly reduced when rats were treated with oxaloacetate or pyruvate plus oxaloacetate. The treatment with pyruvate and oxaloacetate caused a neuroprotective effect in rats subjected to pilocarpine-induced SE.

  15. Involvement of Na+ in Active Uptake of Pyruvate in Mesophyll Chloroplasts of Some C4 Plants 1

    PubMed Central

    Ohnishi, Jun-ichi; Flügge, Ulf-Ingo; Heldt, Hans W.; Kanai, Ryuzi

    1990-01-01

    An artificial Na+ gradient across the envelope (Na+ jump) enhanced pyruvate uptake in the dark into mesophyll chloroplasts of a C4 plant, Panicum miliaceum (NAD-malic enzyme type) (J Ohnishi, R Kanai [1987] FEBS Lett 219:347). In the present study, 22Na+ and pyruvate uptake were examined in mesophyll chloroplasts of several species of C4 plants. Enhancement of pyruvate uptake by a Na+ jump in the dark was also seen in mesophyll chloroplasts of Urochloa panicoides and Panicum maximum (phosphoenolpyruvate carboxykinase types) but not in Zea mays or Sorghum bicolor (NADP-malic enzyme types). In mesophyll chloroplasts of P. miliaceum and P. maximum, pyruvate in turn enhanced Na+ uptake in the dark when added together with Na+. When flux of endogenous Na+ was measured in these mesophyll chloroplasts preincubated with 22Na+, pyruvate addition induced Na+ influx, and the extent of the pyruvate-induced Na+ influx positively correlated with that of pyruvate uptake. A Na+/H+ exchange ionophore, monensin, nullified all the above mutual effects of Na+ and pyruvate in mesophyll chloroplasts of P. miliaceum, while it accelerated Na+ uptake and increased equilibrium level of chloroplast 22Na+. Measurements of initial uptake rates of pyruvate and Na+ gave a stoichiometry close to 1:1. These results point to Na+/pyruvate cotransport into mesophyll chloroplasts of some C4 plants. PMID:16667876

  16. Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes.

    PubMed

    Boyd, Derek R; Sharma, Narain D; McMurray, Brian; Haughey, Simon A; Allen, Christopher C R; Hamilton, John T G; McRoberts, W Colin; O'Ferrall, Rory A More; Nikodinovic-Runic, Jasmina; Coulombel, Lydie A; O'Connor, Kevin E

    2012-01-28

    Asymmetric heteroatom oxidation of benzo[b]thiophenes to yield the corresponding sulfoxides was catalysed by toluene dioxygenase (TDO), naphthalene dioxygenase (NDO) and styrene monooxygenase (SMO) enzymes present in P. putida mutant and E. coli recombinant whole cells. TDO-catalysed oxidation yielded the relatively unstable benzo[b]thiophene sulfoxide; its dimerization, followed by dehydrogenation, resulted in the isolation of stable tetracyclic sulfoxides as minor products with cis-dihydrodiols being the dominant metabolites. SMO mainly catalysed the formation of enantioenriched benzo[b]thiophene sulfoxide and 2-methyl benzo[b]thiophene sulfoxides which racemized at ambient temperature. The barriers to pyramidal sulfur inversion of 2- and 3-methyl benzo[b]thiophene sulfoxide metabolites, obtained using TDO and NDO as biocatalysts, were found to be ca.: 25-27 kcal mol(-1). The absolute configurations of the benzo[b]thiophene sulfoxides were determined by ECD spectroscopy, X-ray crystallography and stereochemical correlation. A site-directed mutant E. coli strain containing an engineered form of NDO, was found to change the regioselectivity toward preferential oxidation of the thiophene ring rather than the benzene ring. PMID:22134441

  17. The metabolic and developmental roles of carotenoid cleavage dioxygenase4 from potato.

    PubMed

    Campbell, Raymond; Ducreux, Laurence J M; Morris, Wayne L; Morris, Jenny A; Suttle, Jeffrey C; Ramsay, Gavin; Bryan, Glenn J; Hedley, Pete E; Taylor, Mark A

    2010-10-01

    The factors that regulate storage organ carotenoid content remain to be fully elucidated, despite the nutritional and economic importance of this class of compound. Recent findings suggest that carotenoid pool size is determined, at least in part, by the activity of carotenoid cleavage dioxygenases. The aim of this study was to investigate whether Carotenoid Cleavage Dioxygenase4 (CCD4) activity affects potato (Solanum tuberosum) tuber carotenoid content. Microarray analysis revealed elevated expression of the potato CCD4 gene in mature tubers from white-fleshed cultivars compared with higher carotenoid yellow-fleshed tubers. The expression level of the potato CCD4 gene was down-regulated using an RNA interference (RNAi) approach in stable transgenic lines. Down-regulation in tubers resulted in an increased carotenoid content, 2- to 5-fold higher than in control plants. The increase in carotenoid content was mainly due to elevated violaxanthin content, implying that this carotenoid may act as the in vivo substrate. Although transcript level was also reduced in plant organs other than tubers, such as leaves, stems, and roots , there was no change in carotenoid content in these organs. However, carotenoid levels were elevated in flower petals from RNAi lines. As well as changes in tuber carotenoid content, tubers from RNAi lines exhibited phenotypes such as heat sprouting, formation of chain tubers, and an elongated shape. These results suggest that the product of the CCD4 reaction may be an important factor in tuber heat responses. PMID:20688977

  18. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase.

    PubMed

    Vogel, Christoph F A; Goth, Samuel R; Dong, Bin; Pessah, Isaac N; Matsumura, Fumio

    2008-10-24

    Aryl hydrocarbon receptor (AhR) activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to immune suppression associated with the induction of regulatory T cells (T(reg)) expressing the transcription factor Foxp3. The immunological mechanisms of suppression are not well understood however dendritic cells (DC) are considered a key target for AhR-mediated immune suppression. Here we show that activation of AhR by TCDD induces DC indoleamine 2,3-dioxygenase 1 (IDO1) and indoleamine 2,3-dioxygenase-like protein (IDO2). Induction of IDO1 and IDO2 was also found in lung and spleen associated with an increase of the T(reg) marker Foxp3 in spleen of TCDD-treated C57BL/6 mice, which is suppressed by inhibition of IDO. These data indicate that AhR-activation is an important signaling pathway for IDO expression and suggest a critical role of IDO in the mechanism leading to the generation of T(reg) that mediates the immune suppression through activation of AhR. PMID:18694728

  19. Pivotal role of anthranilate dioxygenase genes in the adaptation of Burkholderia multivorans ATCC 17616 in soil.

    PubMed

    Nishiyama, Eri; Ohtsubo, Yoshiyuki; Yamamoto, Yasuhiro; Nagata, Yuji; Tsuda, Masataka

    2012-05-01

    In our recent screen for soil-induced genes, the expression of andA operon (andAcAdAbAa) for anthranilate catabolism in Burkholderia multivorans ATCC 17616 was found to increase dramatically in a soil sample (Nishiyama et al., Environ Microbiol 12: 2539, 2010). The operon was preceded by andR encoding a putative transcriptional regulator for the andA operon. In this study, the andA promoter was induced by tryptophan and anthranilate in an andR-dependent manner. The andA promoter in a deletion mutant lacking tryptophan dioxygenase (one of enzymes for the catabolism of tryptophan to anthranilate) did not respond to tryptophan, indicating that not tryptophan but anthranilate is the effector of AndR. Although both anthranilate and tryptophan were under the detection levels in the soil sample, andA promoter showed higher activity in the soil sample than in a laboratory medium. Such induction required andR and was moderately dependent on the ferric uptake regulator (Fur). The proliferation ability of andAc mutant in the sterile soil was low compared with the co-incubated wild-type cells. These findings suggested that in the soil environment, anthranilate dioxygenase genes are induced by AndR and Fur, and play a pivotal role in the proliferation in the soil environment. PMID:22360670

  20. Crystal Structure of the Non-heme Iron Dioxygenase PtlH in Pentalenolactone Biosynthesis

    PubMed Central

    You, Zheng; Omura, Satoshi; Ikeda, Haruo; Cane, David E.; Jogl, Gerwald

    2010-01-01

    The non-heme iron dioxygenase PtlH from the soil organism Streptomyces avermitilis is a member of the iron(II)/α-ketoglutarate–dependent dioxygenase superfamily and catalyzes an essential reaction in the biosynthesis of the sesquiterpenoid antibiotic pentalenolactone. To investigate the structural basis for substrate recognition and catalysis, we have determined the X-ray crystal structure of PtlH in several complexes with the cofactors iron, α-ketoglutarate, and the non-reactive enantiomer of the substrate, ent-1-deoxypentalenic acid, in four different crystal forms to up to 1.31 Å resolution. The overall structure of PtlH forms a double-stranded barrel helix fold and the cofactor-binding site for iron and α-keto-glutarate is similar to other double-stranded barrel helix fold enzymes. Additional secondary structure elements that contribute to the substrate-binding site in PtlH are not conserved in other double-stranded barrel helix fold enzymes. Binding of the substrate enantiomer induces a reorganization of the monoclinic crystal lattice leading to a disorder-order transition of a C-terminal α–helix. The newly formed helix blocks the major access to the active site and effectively traps the bound substrate. Kinetic analysis of wild type and site-directed mutant proteins confirms a critical function of two arginine residues in substrate binding, while simulated docking of the enzymatic reaction product reveals the likely orientation of bound substrate. PMID:17942405

  1. Structural Insight into the Dioxygenation of Nitroarene Compounds: the Crystal Structure of Nitrobenzene Dioxygenase

    SciTech Connect

    Friemann, Rosmarie; Ivkovic-Jensen, Maja M.; Lessner, Daniel J.; Yu, Chi-Li; Gibson, David T.; Parales, Rebecca E.; Eklund, Hans; Ramaswamy, S.

    2010-07-19

    Nitroaromatic compounds are used extensively in many industrial processes and have been released into the environment where they are considered environmental pollutants. Nitroaromatic compounds, in general, are resistant to oxidative attack due to the electron-withdrawing nature of the nitro groups and the stability of the benzene ring. However, the bacterium Comamonas sp. strain JS765 can grow with nitrobenzene as a sole source of carbon, nitrogen and energy. Biodegradation is initiated by the nitrobenzene dioxygenase (NBDO) system. We have determined the structure of NBDO, which has a hetero-hexameric structure similar to that of several other Rieske non-heme iron dioxygenases. The catalytic subunit contains a Rieske iron-sulfur center and an active-site mononuclear iron atom. The structures of complexes with substrates nitrobenzene and 3-nitrotoluene reveal the structural basis for its activity with nitroarenes. The substrate pocket contains an asparagine residue that forms a hydrogen bond to the nitro-group of the substrate, and orients the substrate in relation to the active-site mononuclear iron atom, positioning the molecule for oxidation at the nitro-substituted carbon.

  2. Exploring De Novo metabolic pathways from pyruvate to propionic acid.

    PubMed

    Stine, Andrew; Zhang, Miaomin; Ro, Soo; Clendennen, Stephanie; Shelton, Michael C; Tyo, Keith E J; Broadbelt, Linda J

    2016-03-01

    Industrial biotechnology provides an efficient, sustainable solution for chemical production. However, designing biochemical pathways based solely on known reactions does not exploit its full potential. Enzymes are known to accept non-native substrates, which may allow novel, advantageous reactions. We have previously developed a computational program named Biological Network Integrated Computational Explorer (BNICE) to predict promiscuous enzyme activities and design synthetic pathways, using generalized reaction rules curated from biochemical reaction databases. Here, we use BNICE to design pathways synthesizing propionic acid from pyruvate. The currently known natural pathways produce undesirable by-products lactic acid and succinic acid, reducing their economic viability. BNICE predicted seven pathways containing four reaction steps or less, five of which avoid these by-products. Among the 16 biochemical reactions comprising these pathways, 44% were validated by literature references. More than 28% of these known reactions were not in the BNICE training dataset, showing that BNICE was able to predict novel enzyme substrates. Most of the pathways included the intermediate acrylic acid. As acrylic acid bioproduction has been well advanced, we focused on the critical step of reducing acrylic acid to propionic acid. We experimentally validated that Oye2p from Saccharomyces cerevisiae can catalyze this reaction at a slow turnover rate (10(-3) s(-1) ), which was unknown to occur with this enzyme, and is an important finding for further propionic acid metabolic engineering. These results validate BNICE as a pathway-searching tool that can predict previously unknown promiscuous enzyme activities and show that computational methods can elucidate novel biochemical pathways for industrial applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:303-311, 2016. PMID:26821575

  3. Catalysis of acetoin formation by brewers' yeast pyruvate decarboxylase isozymes.

    PubMed

    Stivers, J T; Washabaugh, M W

    1993-12-14

    Catalysis of C(alpha)-proton transfer from 2-(1-hydroxyethyl)thiamin diphosphate (HETDP) by pyruvate decarboxylase isozymes (PDC; EC 4.1.1.1) from Saccharomyces carlsbergensis was investigated by determining the steady-state kinetics of the reaction of [1-L]acetaldehyde (L = H, D, or T) to form acetoin and the primary kinetic isotope effects on the reaction. The PDC isozyme mixture and alpha 4 isozyme (alpha 4-PDC) have different steady-state kinetic parameters and isotope effects for acetoin formation in the presence and absence of the nonsubstrate allosteric effector pyruvamide: pyruvamide activation occurs by stabilization of the acetaldehyde/PDC ternary complex. The magnitudes of primary L(V/K)-type (L = D or T) isotope effects on C(alpha)-proton transfer from alpha 4-PDC-bound HETDP provide no evidence for significant breakdown of the Swain-Schaad relationship that would indicate partitioning of the putative C(alpha)-carbanion/enamine intermediate between HETDP and products. The substrate concentration dependence of the deuterium primary kinetic isotope effects provides evidence for an intrinsic isotope effect of 4.1 for C(alpha)-proton transfer from alpha 4-PDC-bound HETDP. A 1.10 +/- 0.02-fold 14C isotope discrimination against [1,2-14C]acetaldehyde in acetoin formation is inconsistent with a stepwise mechanism, in which the addition step occurs after rate-limiting formation of the C(alpha)-carbanion/enamine as a discrete enzyme-bound intermediate, and provides evidence for a concerted reaction mechanism with an important component of carbon-carbon bond formation in the transition state.

  4. The antioxidant methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate.

    PubMed

    Li, Xiang; Wang, Zhi-Gang; Chen, Hou-He; Liu, Sheng-Gao

    2014-11-01

    The title compound, C18H28O3, was prepared by the reaction of 2,6-di-tert-butylphenol with methyl acrylate under basic conditions using dimethyl sulfoxide as the promoter. The structure of this antioxidant indicates significant strain between the ortho tert-butyl substituents and the phenolic OH group. In spite of the steric crowding of the OH group, it participates in intermolecular hydrogen bonding with the ester carbonyl O atom. PMID:25370105

  5. The antioxidant methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate.

    PubMed

    Li, Xiang; Wang, Zhi-Gang; Chen, Hou-He; Liu, Sheng-Gao

    2014-11-01

    The title compound, C18H28O3, was prepared by the reaction of 2,6-di-tert-butylphenol with methyl acrylate under basic conditions using dimethyl sulfoxide as the promoter. The structure of this antioxidant indicates significant strain between the ortho tert-butyl substituents and the phenolic OH group. In spite of the steric crowding of the OH group, it participates in intermolecular hydrogen bonding with the ester carbonyl O atom.

  6. 2-Diazo-1-(4-hydroxyphenyl)ethanone: A Versatile Photochemical and Synthetic Reagenta

    PubMed Central

    Senadheera, Sanjeewa N.; Evans, Anthony S.; Toscano, John P.; Givens, Richard S.

    2014-01-01

    α-Diazo arylketones are well-known substrates for Wolff rearrangement to phenylacetic acids through a ketene intermediate by either thermal or photochemical activation. Likewise, α-substituted p-hydroxyphenacyl (pHP) esters are substrates for photo-Favorskii rerrangements to phenylacetic acids by a different pathway that purportedly involves a cyclopropanone intermediate. In this paper, we show that the photolysis of a series of α-diazo-p-hydroxyacetophenones and p-hydroxyphenacyl (pHP) α-esters both generate the identical rearranged phenylacetates as major products. Since α-diazo-p-hydroxyacetophenone (1a, pHP N2) contains all the necessary functionalities for either Wolff or Favorskii rearrangement, we were prompted to probe this intriguing mechanistic dichotomy under conditions favorable to the photo-Favorskii reangement, i.e., photolysis in hydroxylic media. An investigation of the mechanism for conversion of 1a to p-hydroxyphenyl acetic acid (4a) using time-resolved infrared (TRIR) spectroscopy clearly demonstrates the formation of a ketene intermediate that is subsequently trapped by solvent or nucleophiles. The photoreaction of 1a is quenched by oxygen and sensitized by triplet sensitizers and the quantum yields for 1a–c range from 0.19 to a robust 0.25. The lifetime of the triplet, determined by Stern-Volmer quenching, is 15 ns with a rate for appearance of 4a of k = 7,1 × 106 s−1 in aq. acetonitrile (1:1 v:v). These studies establish that the primary rearrangement pathway for 1a involves ketene formation in accordance with the photo-Wolff rearrangement. Furthermore we have also demonstrated the synthetic utility of 1a as an esterification and etherification reagent with a variety of substituted α-diazo-p-hydroxyacetophenones, using them as synthons for efficiently coupling it to acids and phenols to produce pHP protect substrates. PMID:24305682

  7. Identification of an Extradiol Dioxygenase Involved in Tetralin Biodegradation: Gene Sequence Analysis and Purification and Characterization of the Gene Product

    PubMed Central

    Andújar, Eloísa; Hernáez, María José; Kaschabek, Stefan R.; Reineke, Walter; Santero, Eduardo

    2000-01-01

    A genomic region involved in tetralin biodegradation was recently identified in Sphingomonas strain TFA. We have cloned and sequenced from this region a gene designated thnC, which codes for an extradiol dioxygenase required for tetralin utilization. Comparison to similar sequences allowed us to define a subfamily of 1,2-dihydroxynaphthalene extradiol dioxygenases, which comprises two clearly different groups, and to show that ThnC clusters within group 2 of this subfamily. 1,2-Dihydroxy-5,6,7,8-tetrahydronaphthalene was found to be the metabolite accumulated by a thnC insertion mutant. The ring cleavage product of this metabolite exhibited behavior typical of a hydroxymuconic semialdehyde toward pH-dependent changes and derivatization with ammonium to give a quinoline derivative. The gene product has been purified, and its biochemical properties have been studied. The enzyme is a decamer which requires Fe(II) for activity and shows high activity toward its substrate (Vmax, 40.5 U mg−1; Km, 18.6 μM). The enzyme shows even higher activity with 1,2-dihydroxynaphthalene and also significant activity toward 1,2-dihydroxybiphenyl or methylated catechols. The broad substrate specificity of ThnC is consistent with that exhibited by other extradiol dioxygenases of the same group within the subfamily of 1,2-dihydroxynaphthalene dioxygenases. PMID:10633115

  8. Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation

    PubMed Central

    Urszula, Guzik; Izabela, Greń; Danuta, Wojcieszyńska; Sylwia, Łabużek

    2009-01-01

    A Gram-negative bacterium, designated as strain KB2, was isolated from activated sludge and was found to utilize different aromatic substrates as sole carbon and energy source. On the basis of morphological and physiochemical characteristics and 16S rRNA gene sequence analysis, the isolated strain KB2 was identified as Stenotrophomonas maltophilia. Strain KB2 is from among different Stenotrophomonas maltophilia strains the first one described as exhibiting the activities of three types of dioxygenases depending on the structure of the inducer. The cells grown on benzoate and catechol showed mainly catechol 1,2-dioxygenase activity. The activity of 2,3-dioxygenase was detected after phenol induction. Protocatechuate 3,4-dioxygenase was found in crude cell extracts of this strain after incubation with 4-hydroxybenzoic acid, protocatechuic acid and vanillic acid. Because of broad spectrum of dioxygenases’ types that Stenotrophomonas maltophilia KB2 can exhibit, this strain appears to be very powerful and useful tool in the biotreatment of wastewaters and in soil decontamination. PMID:24031359

  9. Pyruvate stabilizes electrocardiographic and hemodynamic function in pigs recovering from cardiac arrest

    PubMed Central

    Cherry, Brandon H; Nguyen, Anh Q; Hollrah, Roger A; Williams, Arthur G; Hoxha, Besim; Olivencia-Yurvati, Albert H

    2015-01-01

    Cardiac electromechanical dysfunction may compromise recovery of patients who are initially resuscitated from cardiac arrest, and effective treatments remain elusive. Pyruvate, a natural intermediary metabolite, energy substrate, and antioxidant, has been found to protect the heart from ischemia-reperfusion injury. This study tested the hypothesis that pyruvate-enriched resuscitation restores hemodynamic, metabolic, and electrolyte homeostasis following cardiac arrest. Forty-two Yorkshire swine underwent pacing-induced ventricular fibrillation and, after 6 min pre-intervention arrest, 4 min precordial compressions followed by transthoracic countershocks. After defibrillation and recovery of spontaneous circulation, the pigs were monitored for another 4 h. Sodium pyruvate or NaCl were infused i.v. (0.1 mmol·kg−1·min−1) throughout precordial compressions and the first 60 min recovery. In 8 of the 24 NaCl-infused swine, the first countershock converted ventricular fibrillation to pulseless electrical activity unresponsive to subsequent countershocks, but only 1 of 18 pyruvate-treated swine developed pulseless electrical activity (relative risk 0.17; 95% confidence interval 0.13–0.22). Pyruvate treatment also lowered the dosage of vasoconstrictor phenylephrine required to maintain systemic arterial pressure at 15–60 min recovery, hastened clearance of excess glucose, elevated arterial bicarbonate, and raised arterial pH; these statistically significant effects persisted up to 3 h after sodium pyruvate infusion, while infusion-induced hypernatremia subsided. These results demonstrate that pyruvate-enriched resuscitation achieves electrocardiographic and hemodynamic stability in swine during the initial recovery from cardiac arrest. Such metabolically based treatment may offer an effective strategy to support cardiac electromechanical recovery immediately after cardiac arrest. PMID:26088865

  10. New Insights on the Mechanism of the K+-Independent Activity of Crenarchaeota Pyruvate Kinases

    PubMed Central

    De la Vega-Ruíz, Gustavo; Domínguez-Ramírez, Lenin; Riveros-Rosas, Héctor; Guerrero-Mendiola, Carlos; Torres-Larios, Alfredo; Hernández-Alcántara, Gloria; García-Trejo, José J.; Ramírez-Silva, Leticia

    2015-01-01

    Eukarya pyruvate kinases have glutamate at position 117 (numbered according to the rabbit muscle enzyme), whereas in Bacteria have either glutamate or lysine and in Archaea have other residues. Glutamate at this position makes pyruvate kinases K+-dependent, whereas lysine confers K+-independence because the positively charged residue substitutes for the monovalent cation charge. Interestingly, pyruvate kinases from two characterized Crenarchaeota exhibit K+-independent activity, despite having serine at the equivalent position. To better understand pyruvate kinase catalytic activity in the absence of K+ or an internal positive charge, the Thermofilum pendens pyruvate kinase (valine at the equivalent position) was characterized. The enzyme activity was K+-independent. The kinetic mechanism was random order with a rapid equilibrium, which is equal to the mechanism of the rabbit muscle enzyme in the presence of K+ or the mutant E117K in the absence of K+. Thus, the substrate binding order of the T. pendens enzyme was independent despite lacking an internal positive charge. Thermal stability studies of this enzyme showed two calorimetric transitions, one attributable to the A and C domains (Tm of 99.2°C), and the other (Tm of 105.2°C) associated with the B domain. In contrast, the rabbit muscle enzyme exhibits a single calorimetric transition (Tm of 65.2°C). The calorimetric and kinetic data indicate that the B domain of this hyperthermophilic enzyme is more stable than the rest of the protein with a conformation that induces the catalytic readiness of the enzyme. B domain interactions of pyruvate kinases that have been determined in Pyrobaculum aerophilum and modeled in T. pendens were compared with those of the rabbit muscle enzyme. The results show that intra- and interdomain interactions of the Crenarchaeota enzymes may account for their higher B domain stability. Thus the structural arrangement of the T. pendens pyruvate kinase could allow charge

  11. Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists.

    PubMed

    Rotte, C; Stejskal, F; Zhu, G; Keithly, J S; Martin, W

    2001-05-01

    Most eukaryotes perform the oxidative decarboxylation of pyruvate in mitochondria using pyruvate dehydrogenase (PDH). Eukaryotes that lack mitochondria also lack PDH, using instead the O(2)-sensitive enzyme pyruvate : ferredoxin oxidoreductase (PFO), which is localized either in the cytosol or in hydrogenosomes. The facultatively anaerobic mitochondria of the photosynthetic protist Euglena gracilis constitute a hitherto unique exception in that these mitochondria oxidize pyruvate with the O(2)-sensitive enzyme pyruvate : NADP oxidoreductase (PNO). Cloning and analysis of Euglena PNO revealed that the cDNA encodes a mitochondrial transit peptide followed by an N-terminal PFO domain that is fused to a C-terminal NADPH-cytochrome P450 reductase (CPR) domain. Two independent 5.8-kb full-size cDNAs for Euglena mitochondrial PNO were isolated; the gene was expressed in cultures supplied with 2% CO(2) in air and with 2% CO(2) in N(2). The apicomplexan Cryptosporidium parvum was also shown to encode and express the same PFO-CPR fusion, except that, unlike E. gracilis, no mitochondrial transit peptide for C. parvum PNO was found. Recombination-derived remnants of PNO are conserved in the genomes of Saccharomyces cerevisiae and Schizosaccharomyces pombe as proteins involved in sulfite reduction. Notably, Trypanosoma brucei was found to encode homologs of both PFO and all four PDH subunits. Gene organization and phylogeny revealed that eukaryotic nuclear genes for mitochondrial, hydrogenosomal, and cytosolic PFO trace to a single eubacterial acquisition. These findings suggest a common ancestry of PFO in amitochondriate protists with Euglena mitochondrial PNO and Cryptosporidium PNO. They are also consistent with the view that eukaryotic PFO domains are biochemical relics inherited from a facultatively anaerobic, eubacterial ancestor of mitochondria and hydrogenosomes.

  12. Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells.

    PubMed

    Yang, Chendong; Harrison, Crystal; Jin, Eunsook S; Chuang, David T; Sherry, A Dean; Malloy, Craig R; Merritt, Matthew E; DeBerardinis, Ralph J

    2014-02-28

    Metabolic reprogramming facilitates cancer cell growth, so quantitative metabolic flux measurements could produce useful biomarkers. However, current methods to analyze flux in vivo provide either a steady-state overview of relative activities (infusion of (13)C and analysis of extracted metabolites) or a dynamic view of a few reactions (hyperpolarized (13)C spectroscopy). Moreover, although hyperpolarization has successfully quantified pyruvate-lactate exchanges, its ability to assess mitochondrial pyruvate metabolism is unproven in cancer. Here, we combined (13)C hyperpolarization and isotopomer analysis to quantify multiple fates of pyruvate simultaneously. Two cancer cell lines with divergent pyruvate metabolism were incubated with thermally polarized [3-(13)C]pyruvate for several hours, then briefly exposed to hyperpolarized [1-(13)C]pyruvate during acquisition of NMR spectra using selective excitation to maximize detection of H[(13)C]O3(-) and [1-(13)C]lactate. Metabolites were then extracted and subjected to isotopomer analysis to determine relative rates of pathways involving [3-(13)C]pyruvate. Quantitation of hyperpolarized H[(13)C]O3(-) provided a single definitive metabolic rate, which was then used to convert relative rates derived from isotopomer analysis into quantitative fluxes. This revealed that H[(13)C]O3(-) appearance reflects activity of pyruvate dehydrogenase rather than pyruvate carboxylation followed by subsequent decarboxylation reactions. Glucose substantially altered [1-(13)C]pyruvate metabolism, enhancing exchanges with [1-(13)C]lactate and suppressing H[(13)C]O3(-) formation. Furthermore, inhibiting Akt, an oncogenic kinase that stimulates glycolysis, reversed these effects, indicating that metabolism of pyruvate by both LDH and pyruvate dehydrogenase is subject to the acute effects of oncogenic signaling on glycolysis. The data suggest that combining (13)C isotopomer analyses and dynamic hyperpolarized (13)C spectroscopy may enable

  13. Simultaneous Steady-state and Dynamic 13C NMR Can Differentiate Alternative Routes of Pyruvate Metabolism in Living Cancer Cells*

    PubMed Central

    Yang, Chendong; Harrison, Crystal; Jin, Eunsook S.; Chuang, David T.; Sherry, A. Dean; Malloy, Craig R.; Merritt, Matthew E.; DeBerardinis, Ralph J.

    2014-01-01

    Metabolic reprogramming facilitates cancer cell growth, so quantitative metabolic flux measurements could produce useful biomarkers. However, current methods to analyze flux in vivo provide either a steady-state overview of relative activities (infusion of 13C and analysis of extracted metabolites) or a dynamic view of a few reactions (hyperpolarized 13C spectroscopy). Moreover, although hyperpolarization has successfully quantified pyruvate-lactate exchanges, its ability to assess mitochondrial pyruvate metabolism is unproven in cancer. Here, we combined 13C hyperpolarization and isotopomer analysis to quantify multiple fates of pyruvate simultaneously. Two cancer cell lines with divergent pyruvate metabolism were incubated with thermally polarized [3-13C]pyruvate for several hours, then briefly exposed to hyperpolarized [1-13C]pyruvate during acquisition of NMR spectra using selective excitation to maximize detection of H[13C]O3− and [1-13C]lactate. Metabolites were then extracted and subjected to isotopomer analysis to determine relative rates of pathways involving [3-13C]pyruvate. Quantitation of hyperpolarized H[13C]O3− provided a single definitive metabolic rate, which was then used to convert relative rates derived from isotopomer analysis into quantitative fluxes. This revealed that H[13C]O3− appearance reflects activity of pyruvate dehydrogenase rather than pyruvate carboxylation followed by subsequent decarboxylation reactions. Glucose substantially altered [1-13C]pyruvate metabolism, enhancing exchanges with [1-13C]lactate and suppressing H[13C]O3− formation. Furthermore, inhibiting Akt, an oncogenic kinase that stimulates glycolysis, reversed these effects, indicating that metabolism of pyruvate by both LDH and pyruvate dehydrogenase is subject to the acute effects of oncogenic signaling on glycolysis. The data suggest that combining 13C isotopomer analyses and dynamic hyperpolarized 13C spectroscopy may enable quantitative flux measurements in

  14. Isoform switch of pyruvate kinase M1 indeed occurs but not to pyruvate kinase M2 in human tumorigenesis.

    PubMed

    Zhan, Cheng; Yan, Li; Wang, Lin; Ma, Jun; Jiang, Wei; Zhang, Yongxing; Shi, Yu; Wang, Qun

    2015-01-01

    Muscle type of pyruvate kinase (PKM) is one of the key mediators of the Warburg effect and tumor metabolism. Due to alternative splicing, there are at least 12 known isoforms of the PKM gene, of which PKM1 and PKM2 are two major isoforms with only a 23 amino acid sequenced difference but quite different characteristics and functions. It was previously thought the isoform switch from PKM1 to PKM2 resulted in high PKM2 expression in tumors, providing a great advantage to tumor cells. However, this traditional view was challenged by two recent studies; one study claimed that this isoform switch does not occur during the Warburg effect; the other study asserted that the isoform switch is tissue-specific. Here, we re-analyzed the RNA sequencing data of 25 types of human tumors from The Cancer Genome Atlas Data Portal, and confirmed that PKM2 was the major isoform in the tumors and was highly elevated in addition to the entire PKM gene. We further demonstrated that the expression level of PKM1 significantly declined even though there was substantially increased expression of the entire PKM gene. The proportion of PKM1 in total transcript variants also significantly declined in tumors but the proportion of PKM2 did not change accordingly. Therefore, we conclude that the isoform switch of PKM1 does indeed occur, but it switches to other isoforms rather than PKM2. Considering the change in the expression levels of PKM1, PKM2 and the entire PKM gene, we propose that the upregulation of PKM2 is primarily due to elevated transcriptional levels of the entire PKM gene, instead of the isoform switch.

  15. Efficient production and secretion of pyruvate from Halomonas sp. KM-1 under aerobic conditions.

    PubMed

    Kawata, Yoshikazu; Nishimura, Taku; Matsushita, Isao; Tsubota, Jun

    2016-03-01

    The alkaliphilic, halophilic bacterium Halomonas sp. KM-1 can utilize both hexose and pentose sugars for the intracellular storage of bioplastic poly-(R)-3-hydroxybutyric acid (PHB) under aerobic conditions. In this study, we investigated the effects of the sodium nitrate concentration on PHB accumulation in the KM-1 strain. Unexpectedly, we observed the secretion of pyruvate, a central intermediate in carbon- and energy-metabolism processes in all organisms; therefore, pyruvate is widely used as a starting material in the industrial biosynthesis of pharmaceuticals and is employed for the production of crop-protection agents, polymers, cosmetics, and food additives. We then further analyzed pyruvate productivity following changes in culture temperature and the buffer concentration. In 48-h batch-cultivation experiments, we found that wild-type Halomonas sp. KM-1 secreted 63.3 g/L pyruvate at a rate of 1.32 g/(L·h), comparable to the results of former studies using mutant and recombinant microorganisms. Thus, these data provided important insights into the production of pyruvate using this novel strain.

  16. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.

    PubMed

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E; Rhee, Kyu Y; Jacobs, William R; Berney, Michael; Blanchard, John S

    2016-03-25

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb.

  17. Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells.

    PubMed

    Lam, Wing Y; Becker, Amy M; Kennerly, Krista M; Wong, Rachel; Curtis, Jonathan D; Llufrio, Elizabeth M; McCommis, Kyle S; Fahrmann, Johannes; Pizzato, Hannah A; Nunley, Ryan M; Lee, Jieun; Wolfgang, Michael J; Patti, Gary J; Finck, Brian N; Pearce, Erika L; Bhattacharya, Deepta

    2016-07-19

    Durable antibody production after vaccination or infection is mediated by long-lived plasma cells (LLPCs). Pathways that specifically allow LLPCs to persist remain unknown. Through bioenergetic profiling, we found that human and mouse LLPCs could robustly engage pyruvate-dependent respiration, whereas their short-lived counterparts could not. LLPCs took up more glucose than did short-lived plasma cells (SLPCs) in vivo, and this glucose was essential for the generation of pyruvate. Glucose was primarily used to glycosylate antibodies, but glycolysis could be promoted by stimuli such as low ATP levels and the resultant pyruvate used for respiration by LLPCs. Deletion of Mpc2, which encodes an essential component of the mitochondrial pyruvate carrier, led to a progressive loss of LLPCs and of vaccine-specific antibodies in vivo. Thus, glucose uptake and mitochondrial pyruvate import prevent bioenergetic crises and allow LLPCs to persist. Immunizations that maximize these plasma cell metabolic properties might thus provide enduring antibody-mediated immunity. PMID:27396958

  18. Requirement for the Mitochondrial Pyruvate Carrier in Mammalian Development Revealed by a Hypomorphic Allelic Series.

    PubMed

    Bowman, Caitlyn E; Zhao, Liang; Hartung, Thomas; Wolfgang, Michael J

    2016-08-01

    Glucose and oxygen are two of the most important molecules transferred from mother to fetus during eutherian pregnancy, and the metabolic fates of these nutrients converge at the transport and metabolism of pyruvate in mitochondria. Pyruvate enters the mitochondrial matrix through the mitochondrial pyruvate carrier (MPC), a complex in the inner mitochondrial membrane that consists of two essential components, MPC1 and MPC2. Here, we define the requirement for mitochondrial pyruvate metabolism during development with a progressive allelic series of Mpc1 deficiency in mouse. Mpc1 deletion was homozygous lethal in midgestation, but Mpc1 hypomorphs and tissue-specific deletion of Mpc1 presented as early perinatal lethality. The allelic series demonstrated that graded suppression of MPC resulted in dose-dependent metabolic and transcriptional changes. Steady-state metabolomics analysis of brain and liver from Mpc1 hypomorphic embryos identified compensatory changes in amino acid and lipid metabolism. Flux assays in Mpc1-deficient embryonic fibroblasts also reflected these changes, including a dramatic increase in mitochondrial alanine utilization. The mitochondrial alanine transaminase GPT2 was found to be necessary and sufficient for increased alanine flux upon MPC inhibition. These data show that impaired mitochondrial pyruvate transport results in biosynthetic deficiencies that can be mitigated in part by alternative anaplerotic substrates in utero. PMID:27215380

  19. Homology modeling and in silico site directed mutagenesis of pyruvate ferredoxin oxidoreductase from Clostridium thermocellum.

    PubMed

    Saranyah, Kannuchamy; Kalva, Sukesh; Mukund, Nisha; Singh, Sanjeev Kumar; Saleena, Lilly M

    2015-01-01

    Pyruvate ferredoxin oxidoreductase is the crucial enzyme that involves in bioethanol synthesis pathway of Clostridium thermocellum. It is an ethanologenic organism but has been investigated less on its enzyme structure. The amino acid sequence of Pyruvate ferredoxin oxidoreductase was derived from UNIPROT and the screened crystal structure was taken as the template for homology modeling using MODELLER 9V11. The model was loop refined and was validated using RMSD, ProSA and PROCHECK. The docking and per residue interaction studies were carried out to elucidate the interaction energies of amino acid residues with pyruvate. To enhance the binding of pyruvate with the enzyme, mutation studies were carried out by replacing Thr31 as it had a less interaction energy. Out of 10 mutants, T31N, T31Q and T31G were selected using potential energy and the residual energy calculations. Five nanoseconds explicit MD simulations were run for apo, wild type and mutants T31N, T31Q and T31G using Desmond. RMSD, RMSF, distance plots and H-bonds analysis proved T31G to be a favorable mutant for binding of pyruvate. Thus, modeling PFOR would help in profound understanding of its structural clefts and mutation studies would aid in improving the enzyme efficiency. PMID:26369404

  20. Utilization of Lactate Isomers by Propionibacterium freudenreichii subsp. shermanii: Regulatory Role for Intracellular Pyruvate

    PubMed Central

    Crow, Vaughan L.

    1986-01-01

    Five strains of Propionibacterium freudenreichii subsp. shermanii utilized the l-(+) isomer of lactate at a faster rate than they did the d-(−) isomer when grown with a mixture of lactate isomers under a variety of conditions. ATCC 9614, grown anaerobically in defined medium containing 160 mM dl-lactate, utilized only 4 and 15% of the d-(−)-lactate by the time 50 and 90%, respectively, of the l-(+)-lactate was used. The intracellular pyruvate concentration was high (>100 mM) in the initial stages of lactate utilization, when either dl-lactate or the l-(+) isomer was the starting substrate. The concentration of this intermediate dropped during dl-lactate fermentation such that when only d-(−)-lactate remained, the concentration was <20 mM. When only the d-(−) isomer was initially present, a similar relatively low concentration of intracellular pyruvate was present, even at the start of lactate utilization. The NAD+-independent lactate dehydrogenase activities in extracts showed different kinetic properties with regard to pyruvate inhibition, depending upon the lactate isomer present. Pyruvate gave a competitive inhibitor pattern with l-(+)-lactate and a mixed-type inhibitor pattern with d-(−)-lactate. It is suggested that these properties of the lactate dehydrogenases and the intracellular pyruvate concentrations explain the preferential use of the l-(+) isomer. PMID:16347134

  1. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury.

    PubMed

    Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won; Oh, Sang Ho; Lee, Yun-Sil; Lee, Eun-Jung; Cho, Jaeho

    2015-05-01

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. PMID:25797627

  2. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2.

    PubMed

    Contractor, Tanupriya; Harris, Chris R

    2012-01-15

    In cancer cells, the aberrant conversion of pyruvate into lactate instead of acetyl-CoA in the presence of oxygen is known as the Warburg effect. The consequences and mechanisms of this metabolic peculiarity are incompletely understood. Here we report that p53 status is a key determinant of the Warburg effect. Wild-type p53 expression decreased levels of pyruvate dehydrogenase kinase-2 (Pdk2) and the product of its activity, the inactive form of the pyruvate dehydrogenase complex (P-Pdc), both of which are key regulators of pyruvate metabolism. Decreased levels of Pdk2 and P-Pdc in turn promoted conversion of pyruvate into acetyl-CoA instead of lactate. Thus, wild-type p53 limited lactate production in cancer cells unless Pdk2 could be elevated. Together, our results established that wild-type p53 prevents manifestation of the Warburg effect by controlling Pdk2. These findings elucidate a new mechanism by which p53 suppresses tumorigenesis acting at the level of cancer cell metabolism. PMID:22123926

  3. Targeting Tumor Metabolism for Cancer Treatment: Is Pyruvate Dehydrogenase Kinases (PDKs) a Viable Anticancer Target?

    PubMed Central

    Zhang, Wen; Zhang, Shao-Lin; Hu, Xiaohui; Tam, Kin Yip

    2015-01-01

    Cancer remains a lethal threat to global lives. Development of novel anticancer therapeutics is still a challenge to scientists in the field of biomedicine. In cancer cells, the metabolic features are significantly different from those of normal ones, which are hallmarks of several malignancies. Recent studies brought atypical cellular metabolism, such as aerobic glycolysis or the Warburg effect, into the scientific limelight. Targeting these altered metabolic pathways in cancer cells presents a promising therapeutic strategy. Pyruvate dehydrogenase kinases (PDKs), key enzymes in the pathway of glucose metabolism, could inactivate the pyruvate dehydrogenase complex (PDC) by phosphorylating it and preserving the substrates pyruvate, lactate and alanine for gluconeogenesis. Overexpression of PDKs could block the oxidative decarboxylation of pyruvate to satisfy high oxygen demand in cancer cells, while inhibition of PDKs could upregulate the activity of PDC and rectify the balance between the demand and supply of oxygen, which could lead to cancer cell death. Thus, inhibitors targeting PDKs represent a promising strategy for cancer treatment by acting on glycolytic tumors while showing minimal side effects on the oxidative healthy organs. This review considers the role of PDKs as regulator of PDC that catalyzes the oxidative decarboxylation of pyruvate in mitochondrion. It is concluded that PDKs are solid therapeutic targets. Inhibition of PDKs could be an attractive therapeutic approach for the development of anti-cancer drugs. PMID:26681918

  4. Efficient production and secretion of pyruvate from Halomonas sp. KM-1 under aerobic conditions.

    PubMed

    Kawata, Yoshikazu; Nishimura, Taku; Matsushita, Isao; Tsubota, Jun

    2016-03-01

    The alkaliphilic, halophilic bacterium Halomonas sp. KM-1 can utilize both hexose and pentose sugars for the intracellular storage of bioplastic poly-(R)-3-hydroxybutyric acid (PHB) under aerobic conditions. In this study, we investigated the effects of the sodium nitrate concentration on PHB accumulation in the KM-1 strain. Unexpectedly, we observed the secretion of pyruvate, a central intermediate in carbon- and energy-metabolism processes in all organisms; therefore, pyruvate is widely used as a starting material in the industrial biosynthesis of pharmaceuticals and is employed for the production of crop-protection agents, polymers, cosmetics, and food additives. We then further analyzed pyruvate productivity following changes in culture temperature and the buffer concentration. In 48-h batch-cultivation experiments, we found that wild-type Halomonas sp. KM-1 secreted 63.3 g/L pyruvate at a rate of 1.32 g/(L·h), comparable to the results of former studies using mutant and recombinant microorganisms. Thus, these data provided important insights into the production of pyruvate using this novel strain. PMID:26989057

  5. Exogenous Mg-ATP induces a large inhibition of pyruvate kinase in intact rat hepatocytes.

    PubMed

    Ichai, C; El-Mir, M Y; Nogueira, V; Piquet, M A; Chauvin, C; Fontaine, E; Leverve, X M

    2001-03-01

    Mg-ATP infusion in vivo has been reported to be beneficial both to organ function and survival rate in various models of shock. Moreover, a large variety of metabolic effects has been shown to occur in several tissues due to purinergic receptor activation. In the present work we studied the effects of exogenous Mg-ATP in rat liver cells perifused with dihydroxyacetone to investigate simultaneously gluconeogenetic and glycolytic pathways. We found a significant effect on oxidative phosphorylation as characterized by a decrease in oxygen consumption rate and in the cellular ATP-to-ADP ratio associated with an increase in lactate-to-pyruvate ratio. In addition, exogenous Mg-ATP induced rapid and reversible inhibition of both gluconeogenesis and glycolysis. The main effect on gluconeogenesis was located at the level of the fructose cycle, whereas the decrease in glycolysis was due to a strong inhibition of pyruvate kinase. Although pyruvate kinase inhibition induced by exogenous Mg-ATP was allosteric when assessed in vitro after enzyme extraction, we found a large decrease in the apparent maximal velocity when kinetics were assessed in vivo in intact perifused hepatocytes. This newly described short-term regulation of pyruvate kinase occurs only in the intact cell and may open new potentials for the pharmacological regulation of pyruvate kinase in vivo. PMID:11104754

  6. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.

    PubMed

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E; Rhee, Kyu Y; Jacobs, William R; Berney, Michael; Blanchard, John S

    2016-03-25

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb. PMID:26858255

  7. Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism.

    PubMed

    Perry, Rachel J; Borders, Candace B; Cline, Gary W; Zhang, Xian-Man; Alves, Tiago C; Petersen, Kitt Falk; Rothman, Douglas L; Kibbey, Richard G; Shulman, Gerald I

    2016-06-01

    In mammals, pyruvate kinase (PK) plays a key role in regulating the balance between glycolysis and gluconeogenesis; however, in vivo regulation of PK flux by gluconeogenic hormones and substrates is poorly understood. To this end, we developed a novel NMR-liquid chromatography/tandem-mass spectrometry (LC-MS/MS) method to directly assess pyruvate cycling relative to mitochondrial pyruvate metabolism (VPyr-Cyc/VMito) in vivo using [3-(13)C]lactate as a tracer. Using this approach, VPyr-Cyc/VMito was only 6% in overnight fasted rats. In contrast, when propionate was infused simultaneously at doses previously used as a tracer, it increased VPyr-Cyc/VMito by 20-30-fold, increased hepatic TCA metabolite concentrations 2-3-fold, and increased endogenous glucose production rates by 20-100%. The physiologic stimuli, glucagon and epinephrine, both increased hepatic glucose production, but only glucagon suppressed VPyr-Cyc/VMito These data show that under fasting conditions, when hepatic gluconeogenesis is stimulated, pyruvate recycling is relatively low in liver compared with VMito flux and that liver metabolism, in particular pyruvate cycling, is sensitive to propionate making it an unsuitable tracer to assess hepatic glycolytic, gluconeogenic, and mitochondrial metabolism in vivo. PMID:27002151

  8. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases.

    PubMed

    Xu, Wei; Yang, Hui; Liu, Ying; Yang, Ying; Wang, Ping; Kim, Se-Hee; Ito, Shinsuke; Yang, Chen; Wang, Pu; Xiao, Meng-Tao; Liu, Li-xia; Jiang, Wen-qing; Liu, Jing; Zhang, Jin-ye; Wang, Bin; Frye, Stephen; Zhang, Yi; Xu, Yan-hui; Lei, Qun-ying; Guan, Kun-Liang; Zhao, Shi-min; Xiong, Yue

    2011-01-18

    IDH1 and IDH2 mutations occur frequently in gliomas and acute myeloid leukemia, leading to simultaneous loss and gain of activities in the production of α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2-HG), respectively. Here we demonstrate that 2-HG is a competitive inhibitor of multiple α-KG-dependent dioxygenases, including histone demethylases and the TET family of 5-methlycytosine (5mC) hydroxylases. 2-HG occupies the same space as α-KG does in the active site of histone demethylases. Ectopic expression of tumor-derived IDH1 and IDH2 mutants inhibits histone demethylation and 5mC hydroxylation. In glioma, IDH1 mutations are associated with increased histone methylation and decreased 5-hydroxylmethylcytosine (5hmC). Hence, tumor-derived IDH1 and IDH2 mutations reduce α-KG and accumulate an α-KG antagonist, 2-HG, leading to genome-wide histone and DNA methylation alterations.

  9. Thiosemicarbazide, a fragment with promising indolamine-2,3-dioxygenase (IDO) inhibition properties.

    PubMed

    Serra, Silvia; Moineaux, Laurence; Vancraeynest, Christelle; Masereel, Bernard; Wouters, Johan; Pochet, Lionel; Frédérick, Raphaël

    2014-07-23

    With the aim to explore the interest of the thiosemicarbazide scaffold for the inhibition of the indoleamine 2,3-dioxygenase (IDO), a promising therapeutic target for anticancer immunotherapy, a series of 32 phenylthiosemicarbazide derivatives was prepared and their IDO inhibition evaluated. Our study demonstrated that among these derivatives, compound 14 characterized with a 4-cyanophenyl group on the thiosemicarbazide was the more potent IDO inhibitor in this series being endowed with an IC50 of 1.2 μM. The SAR depicted showed that substitution in the 3- and 4-position relative to the phenylthiosemicarbazide are very promising whereas substitution in the 2-position always leads to less potent or inactive derivatives. In fact the study highlighted a novel interesting scaffold for IDO inhibition for further development.

  10. Homogentisate 1,2 Dioxygenase is Expressed in Human Osteoarticular Cells: Implications in Alkaptonuria

    PubMed Central

    Laschi, Marcella; Tinti, Laura; Braconi, Daniela; Millucci, Lia; Ghezzi, Lorenzo; Amato, Loredana; Selvi, Enrico; Spreafico, Adriano; Bernardini, Giulia; Santucci, Annalisa

    2012-01-01

    Alkaptonuria (AKU) results from defective homogentisate1,2-dioxygenase (HGD), causing degenerative arthropathy. The deposition of ochronotic pigment in joints is so far attributed to homogentisic acid produced by the liver, circulating in the blood and accumulating locally. Human normal and AKU osteoarticular cells were tested for HGD gene expression by RT-PCR, mono- and 2D-Western blotting. HGD gene expression was revealed in chondrocytes, synoviocytes, osteoblasts. Furthermore, HGD expression was confirmed by Western blotting, that also revealed the presence of five enzymatic molecular species. Our findings indicate that AKU osteoarticular cells produce the ochronotic pigment in loco and this may strongly contribute to induction of ochronotic arthropathy. J. Cell. Physiol. 227: 3254–3257, 2012. © 2011 Wiley Periodicals, Inc. PMID:22105303

  11. Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism

    PubMed Central

    Farrow, Scott C.; Facchini, Peter J.

    2014-01-01

    Oxidative enzymes catalyze many different reactions in plant metabolism. Among this suite of enzymes are the 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs). Cytochromes P450 (CYPs) as often considered the most versatile oxidative enzymes in nature, but the diversity and complexity of reactions catalyzed by 2-ODDs is superior to the CYPs. The list of oxidative reactions catalyzed by 2-ODDs includes hydroxylations, demethylations, desaturations, ring closure, ring cleavage, epimerization, rearrangement, halogenation, and demethylenation. Furthermore, recent work, including the discovery of 2-ODDs involved in epigenetic regulation, and others catalyzing several characteristic steps in specialized metabolic pathways, support the argument that 2-ODDs are among the most versatile and important oxidizing biological catalysts. In this review, we survey and summarize the pertinent literature with a focus on several key reactions catalyzed by 2-ODDs, and discuss the significance and impact of these enzymes in plant metabolism. PMID:25346740

  12. Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) in patients with tyrosinemia type III.

    PubMed

    Rüetschi, U; Cerone, R; Pérez-Cerda, C; Schiaffino, M C; Standing, S; Ugarte, M; Holme, E

    2000-06-01

    Tyrosinemia type III (OMIM 276710) is an autosomal recessive disorder caused by the deficiency of 4-hydroxyphenylpyruvate dioxygenase (HPD), the second enzyme in the tyrosine catabolic pathway. The enzyme deficiency results in an accumulation and increased excretion of tyrosine and phenolic metabolites. Only a few cases with the disorder have been described, and the clinical spectrum of the disorder is unknown. Reported patients have presented with mental retardation or neurological symptoms or have been picked up by neonatal screening. We have identified four presumed pathogenic mutations (two missense and two nonsense mutations) in the HPD gene in three unrelated families encompassing four homozygous individuals and one compound heterozygous individual with tyrosinemia type III. Furthermore, a number of polymorphic mutations have been identified in the HPD gene. No correlation of the severity of the mutation and enzyme deficiency and mental function has been found; neither do the recorded tyrosine levels correlate with the clinical phenotype.

  13. Modified CAROTENOID CLEAVAGE DIOXYGENASE8 expression correlates with altered branching in kiwifruit (Actinidia chinensis).

    PubMed

    Ledger, Susan E; Janssen, Bart J; Karunairetnam, Sakuntala; Wang, Tianchi; Snowden, Kimberley C

    2010-11-01

    • CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes have been demonstrated to play an integral role in the control of branch development in model plants, including Arabidopsis, pea (Pisum sativum), petunia (Petunia hybrida) and rice (Oryza sativa). • Actinidia chinensis is a woody perennial plant grown for commercial production of kiwifruit. CCD7 and CCD8 genes were isolated from A. chinensis and these genes are predominantly expressed in the roots of kiwifruit. AcCCD7 and AcCCD8 were able to complement the corresponding Arabidopsis mutants max3 and max4. The function of AcCCD8 in branch development was determined in transgenic kiwifruit plants containing an RNAi construct for AcCCD8. • Reduction in expression of AcCCD8 correlated with an increase in branch development and delayed leaf senescence. • The CCD pathway for control of branch development is conserved across a wide range of species, including kiwifruit, a woody perennial.

  14. Modeling non-linear kinetics of hyperpolarized [1-(13)C] pyruvate in the crystalloid-perfused rat heart.

    PubMed

    Mariotti, E; Orton, M R; Eerbeek, O; Ashruf, J F; Zuurbier, C J; Southworth, R; Eykyn, T R

    2016-04-01

    Hyperpolarized (13)C MR measurements have the potential to display non-linear kinetics. We have developed an approach to describe possible non-first-order kinetics of hyperpolarized [1-(13)C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass of the hyperpolarized signal. Simultaneous fitting to a second-order model for conversion of [1-(13)C] pyruvate to bicarbonate, lactate and alanine was well described in the isolated rat heart perfused with Krebs buffer containing glucose as sole energy substrate, or glucose supplemented with pyruvate. Second-order modeling yielded significantly improved fits of pyruvate-bicarbonate kinetics compared with the more traditionally used first-order model and suggested time-dependent decreases in pyruvate-bicarbonate flux. Second-order modeling gave time-dependent changes in forward and reverse reaction kinetics of pyruvate-lactate exchange and pyruvate-alanine exchange in both groups of hearts during the infusion of pyruvate; however, the fits were not significantly improved with respect to a traditional first-order model. The mechanism giving rise to second-order pyruvate dehydrogenase (PDH) kinetics was explored experimentally using surface fluorescence measurements of nicotinamide adenine dinucleotide reduced form (NADH) performed under the same conditions, demonstrating a significant increase of NADH during pyruvate infusion. This suggests a simultaneous depletion of available mitochondrial NAD(+) (the cofactor for PDH), consistent with the non-linear nature of the kinetics. NADH levels returned to baseline following cessation of the pyruvate infusion, suggesting this to be a transient effect. PMID:26777799

  15. Pyruvate dehydrogenase kinase isoform 2 activity limited and further inhibited by slowing down the rate of dissociation of ADP.

    PubMed

    Bao, Haiying; Kasten, Shane A; Yan, Xiaohua; Roche, Thomas E

    2004-10-26

    Pyruvate dehydrogenase kinase 2 (PDK2) activity is enhanced by the dihydrolipoyl acetyltransferase core (E2 60mer) that binds PDK2 and a large number of its pyruvate dehydrogenase (E1) substrate. With E2-activated PDK2, K(+) at approximately 90 mM and Cl(-) at approximately 60 mM decreased the K(m) of PDK2 for ATP and competitive K(i) for ADP by approximately 3-fold and enhanced pyruvate inhibition. Comparing PDK2 catalysis +/- E2, E2 increased the K(m) of PDK2 for ATP by nearly 8-fold (from 5 to 39 microM), increased k(cat) by approximately 4-fold, and decreased the requirement for E1 by at least 400-fold. ATP binding, measured by a cold-trapping technique, occurred at two active sites with a K(d) of 5 microM, which equals the K(m) and K(d) of PDK2 for ATP measured in the absence of E2. During E2-aided catalysis, PDK2 had approximately 3 times more ADP than ATP bound at its active site, and the pyruvate analogue, dichloroacetate, led to 16-fold more ADP than ATP being bound (no added ADP). Pyruvate functioned as an uncompetitive inhibitor versus ATP, and inclusion of ADP transformed pyruvate inhibition to noncompetitive. At high pyruvate levels, pyruvate was a partial inhibitor but also induced substrate inhibition at high ATP levels. Our results indicate that, at physiological salt levels, ADP dissociation is a limiting step in E2-activated PDK2 catalysis, that PDK2.[ADP or ATP].pyruvate complexes form, and that PDK2.ATP.pyruvate.E1 reacts with PDK2.ADP.pyruvate accumulating. PMID:15491150

  16. Characterization of a Naphthalene Dioxygenase Endowed with an Exceptionally Broad Substrate Specificity Toward Polycyclic Aromatic Hydrocarbons

    SciTech Connect

    Jouanneau,Y.; Meyer, C.; Jakoncic, J.; Stojanoff, V.; Gaillard, J.

    2006-01-01

    In Sphingomonas CHY-1, a single ring-hydroxylating dioxygenase is responsible for the initial attack of a range of polycyclic aromatic hydrocarbons (PAHs) composed of up to five rings. The components of this enzyme were separately purified and characterized. The oxygenase component (ht-PhnI) was shown to contain one Rieske-type [2Fe-2S] cluster and one mononuclear Fe center per {alpha} subunit, based on EPR measurements and iron assay. Steady-state kinetic measurements revealed that the enzyme had a relatively low apparent Michaelis constant for naphthalene (K{sub m} = 0.92 {+-} 0.15 {mu}M) and an apparent specificity constant of 2.0 {+-} 0.3 M{sup -1} s{sup -1}. Naphthalene was converted to the corresponding 1,2-dihydrodiol with stoichiometric oxidation of NADH. On the other hand, the oxidation of eight other PAHs occurred at slower rates and with coupling efficiencies that decreased with the enzyme reaction rate. Uncoupling was associated with hydrogen peroxide formation, which is potentially deleterious to cells and might inhibit PAH degradation. In single turnover reactions, ht-PhnI alone catalyzed PAH hydroxylation at a faster rate in the presence of organic solvent, suggesting that the transfer of substrate to the active site is a limiting factor. The four-ring PAHs chrysene and benz[a]anthracene were subjected to a double ring-dihydroxylation, giving rise to the formation of a significant proportion of bis-cis-dihydrodiols. In addition, the dihydroxylation of benz[a]anthracene yielded three dihydrodiols, the enzyme showing a preference for carbons in positions 1,2 and 10,11. This is the first characterization of a dioxygenase able to dihydroxylate PAHs made up of four and five rings.

  17. Nitrosyl hydride (HNO) replaces dioxygen in nitroxygenase activity of manganese quercetin dioxygenase

    PubMed Central

    Kumar, Murugaeson R.; Zapata, Adrian; Ramirez, Alejandro J.; Bowen, Sara K.; Francisco, Wilson A.; Farmer, Patrick J.

    2011-01-01

    Quercetin dioxygenase (QDO) catalyzes the oxidation of the flavonol quercetin with dioxygen, cleaving the central heterocyclic ring and releasing CO. The QDO from Bacillus subtilis is unusual in that it has been shown to be active with several divalent metal cofactors such as Fe, Mn, and Co. Previous comparison of the catalytic activities suggest that Mn(II) is the preferred cofactor for this enzyme. We herein report the unprecedented substitution of nitrosyl hydride (HNO) for dioxygen in the activity of Mn-QDO, resulting in the incorporation of both N and O atoms into the product. Turnover is demonstrated by consumption of quercetin and other related substrates under anaerobic conditions in the presence of HNO-releasing compounds and the enzyme. As with dioxygenase activity, a nonenzymatic base-catalyzed reaction of quercetin with HNO is observed above pH 7, but no enhancement of this basal reactivity is found upon addition of divalent metal salts. Unique and regioselective N-containing products (14N/15N) have been characterized by MS analysis for both the enzymatic and nonenzymatic reactions. Of the several metallo-QDO enzymes examined for nitroxygenase activity under anaerobic condition, only the Mn(II) is active; the Fe(II) and Co(II) substituted enzymes show little or no activity. This result represents an enzymatic catalysis which we denote nitroxygenase activity; the unique reactivity of the Mn-QDO suggests a metal-mediated electron transfer mechanism rather than metal activation of the substrate’s inherent base-catalyzed reactivity. PMID:22084064

  18. Role of indoleamine 2,3-dioxygenase in health and disease.

    PubMed

    Yeung, Amanda W S; Terentis, Andrew C; King, Nicholas J C; Thomas, Shane R

    2015-10-01

    IDO1 (indoleamine 2,3-dioxygenase 1) is a member of a unique class of mammalian haem dioxygenases that catalyse the oxidative catabolism of the least-abundant essential amino acid, L-Trp (L-tryptophan), along the kynurenine pathway. Significant increases in knowledge have been recently gained with respect to understanding the fundamental biochemistry of IDO1 including its catalytic reaction mechanism, the scope of enzyme reactions it catalyses, the biochemical mechanisms controlling IDO1 expression and enzyme activity, and the discovery of enzyme inhibitors. Major advances in understanding the roles of IDO1 in physiology and disease have also been realised. IDO1 is recognised as a prominent immune regulatory enzyme capable of modulating immune cell activation status and phenotype via several molecular mechanisms including enzyme-dependent deprivation of L-Trp and its conversion into the aryl hydrocarbon receptor ligand kynurenine and other bioactive kynurenine pathway metabolites, or non-enzymatic cell signalling actions involving tyrosine phosphorylation of IDO1. Through these different modes of biochemical signalling, IDO1 regulates certain physiological functions (e.g. pregnancy) and modulates the pathogenesis and severity of diverse conditions including chronic inflammation, infectious disease, allergic and autoimmune disorders, transplantation, neuropathology and cancer. In the present review, we detail the current understanding of IDO1's catalytic actions and the biochemical mechanisms regulating IDO1 expression and activity. We also discuss the biological functions of IDO1 with a focus on the enzyme's immune-modulatory function, its medical implications in diverse pathological settings and its utility as a therapeutic target. PMID:26186743

  19. Functional Metagenomics of a Biostimulated Petroleum-Contaminated Soil Reveals an Extraordinary Diversity of Extradiol Dioxygenases.

    PubMed

    Terrón-González, Laura; Martín-Cabello, Guadalupe; Ferrer, Manuel; Santero, Eduardo

    2016-04-01

    A metagenomic library of a petroleum-contaminated soil was constructed in a fosmid vector that allowed heterologous expression of metagenomic DNA. The library, consisting of 6.5 Gb of metagenomic DNA, was screened for extradiol dioxygenase (Edo) activity using catechol and 2,3-dihydroxybiphenyl as the substrates. Fifty-eight independent clones encoding extradiol dioxygenase activity were identified. Forty-one different Edo-encoding genes were identified. The population of Edo genes was not dominated by a particular gene or by highly similar genes; rather, the genes had an even distribution and high diversity. Phylogenetic analyses revealed that most of the genes could not be ascribed to previously defined subfamilies of Edos. Rather, the Edo genes led to the definition of 10 new subfamilies of type I Edos. Phylogenetic analysis of type II enzymes defined 7 families, 2 of which harbored the type II Edos that were found in this work. Particularly striking was the diversity found in family I.3 Edos; 15 out of the 17 sequences assigned to this family belonged to 7 newly defined subfamilies. A strong bias was found that depended on the substrate used for the screening: catechol mainly led to the detection of Edos belonging to the I.2 family, while 2,3-dihydroxybiphenyl led to the detection of most other Edos. Members of the I.2 family showed a clear substrate preference for monocyclic substrates, while those from the I.3 family showed a broader substrate range and high activity toward 2,3-dihydroxybiphenyl. This metagenomic analysis has substantially increased our knowledge of the existing biodiversity of Edos. PMID:26896130

  20. The phylogenetic distribution of a transposable dioxygenase from the Niagara River watershed.

    PubMed

    Nakatsu, C H; Fulthorpe, R R; Holland, B A; Peel, M C; Wyndham, R C

    1995-10-01

    Horizontal gene transfer in the Bacteria has been demonstrated to occur under natural conditions. The ecological impact of gene transfer events depends on the new genetic material being expressed in recipient organisms, and on natural selection processes operating on these recipients. The phylogenetic distribution of cbaAB genes for chlorobenzoate 3,4-(4,5)-dioxygenase, which are carried within Tn5271 on the IncP beta plasmid pBRC60, was investigated using isolates from freshwater microcosms and from the Niagara River watershed. The latter included isolates from surface water, groundwater and bioremediation reactor samples. The cbaAB genes have become integrated, through interspecific transfer, primarily into species of the beta Proteobacteria (44/48 isolates). Only four isolates, identified as Pseudomonas fluorescens (3/48) and Xanthomonas maltophilia (1/48), belonged to the gamma Proteobacteria, despite the observation that pBRC60 was capable of mobilizing these genes into a wide range of beta and gamma Proteobacteria in the laboratory. The natural host range correlated with the distribution of the meta-ring-fission pathway for metabolism of protocatechuates formed when the cbaAB genes were expressed (45/48 isolates). We proposed the hypothesis that natural selection has favoured recipients that successfully integrate the activity of the transferred dioxygenase with the conserved meta ring-fission pathway. The hypothesis was tested by transferring a plasmid construct containing the cbaAB genes into type strains representative of the beta and gamma Proteobacteria. The concept of applying mobile catabolic genes to probe the phylogenetic distribution of compatible degradative pathways is discussed. PMID:7582167

  1. Functional Metagenomics of a Biostimulated Petroleum-Contaminated Soil Reveals an Extraordinary Diversity of Extradiol Dioxygenases

    PubMed Central

    Terrón-González, Laura; Martín-Cabello, Guadalupe; Ferrer, Manuel

    2016-01-01

    A metagenomic library of a petroleum-contaminated soil was constructed in a fosmid vector that allowed heterologous expression of metagenomic DNA. The library, consisting of 6.5 Gb of metagenomic DNA, was screened for extradiol dioxygenase (Edo) activity using catechol and 2,3-dihydroxybiphenyl as the substrates. Fifty-eight independent clones encoding extradiol dioxygenase activity were identified. Forty-one different Edo-encoding genes were identified. The population of Edo genes was not dominated by a particular gene or by highly similar genes; rather, the genes had an even distribution and high diversity. Phylogenetic analyses revealed that most of the genes could not be ascribed to previously defined subfamilies of Edos. Rather, the Edo genes led to the definition of 10 new subfamilies of type I Edos. Phylogenetic analysis of type II enzymes defined 7 families, 2 of which harbored the type II Edos that were found in this work. Particularly striking was the diversity found in family I.3 Edos; 15 out of the 17 sequences assigned to this family belonged to 7 newly defined subfamilies. A strong bias was found that depended on the substrate used for the screening: catechol mainly led to the detection of Edos belonging to the I.2 family, while 2,3-dihydroxybiphenyl led to the detection of most other Edos. Members of the I.2 family showed a clear substrate preference for monocyclic substrates, while those from the I.3 family showed a broader substrate range and high activity toward 2,3-dihydroxybiphenyl. This metagenomic analysis has substantially increased our knowledge of the existing biodiversity of Edos. PMID:26896130

  2. Functional Metagenomics of a Biostimulated Petroleum-Contaminated Soil Reveals an Extraordinary Diversity of Extradiol Dioxygenases.

    PubMed

    Terrón-González, Laura; Martín-Cabello, Guadalupe; Ferrer, Manuel; Santero, Eduardo

    2016-04-01

    A metagenomic library of a petroleum-contaminated soil was constructed in a fosmid vector that allowed heterologous expression of metagenomic DNA. The library, consisting of 6.5 Gb of metagenomic DNA, was screened for extradiol dioxygenase (Edo) activity using catechol and 2,3-dihydroxybiphenyl as the substrates. Fifty-eight independent clones encoding extradiol dioxygenase activity were identified. Forty-one different Edo-encoding genes were identified. The population of Edo genes was not dominated by a particular gene or by highly similar genes; rather, the genes had an even distribution and high diversity. Phylogenetic analyses revealed that most of the genes could not be ascribed to previously defined subfamilies of Edos. Rather, the Edo genes led to the definition of 10 new subfamilies of type I Edos. Phylogenetic analysis of type II enzymes defined 7 families, 2 of which harbored the type II Edos that were found in this work. Particularly striking was the diversity found in family I.3 Edos; 15 out of the 17 sequences assigned to this family belonged to 7 newly defined subfamilies. A strong bias was found that depended on the substrate used for the screening: catechol mainly led to the detection of Edos belonging to the I.2 family, while 2,3-dihydroxybiphenyl led to the detection of most other Edos. Members of the I.2 family showed a clear substrate preference for monocyclic substrates, while those from the I.3 family showed a broader substrate range and high activity toward 2,3-dihydroxybiphenyl. This metagenomic analysis has substantially increased our knowledge of the existing biodiversity of Edos.

  3. Linolenate 9R-dioxygenase and allene oxide synthase activities of Lasiodiplodia theobromae.

    PubMed

    Jernerén, Fredrik; Eng, Felipe; Hamberg, Mats; Oliw, Ernst H

    2012-01-01

    Jasmonic acid (JA) is synthesized from linolenic acid (18:3n-3) by sequential action of 13-lipoxygenase, allene oxide synthase (AOS), and allene oxide cyclase. The fungus Lasiodiplodia theobromae can produce large amounts of JA and was recently reported to form the JA precursor 12-oxophytodienoic acid. The objective of our study was to characterize the fatty acid dioxygenase activities of this fungus. Two strains of L. theobromae with low JA secretion (~0.2 mg/L medium) oxygenated 18:3n-3 to 5,8-dihydroxy-9Z,12Z,15Z-octadecatrienoic acid as well as 9R-hydroperoxy-10E,12Z,15Z-octadecatrienoic acid, which was metabolized by an AOS activity into 9-hydroxy-10-oxo-12Z,15Z-octadecadienoic acid. Analogous conversions were observed with linoleic acid (18:2n-6). Studies using [11S-(2)H]18:2n-6 revealed that the putative 9R-dioxygenase catalyzed stereospecific removal of the 11R hydrogen followed by suprafacial attack of dioxygen at C-9. Mycelia from these strains of L. theobromae contained 18:2n-6 as the major polyunsaturated acid but lacked 18:3n-3. A third strain with a high secretion of JA (~200 mg/L) contained 18:3n-3 as a major fatty acid and produced 5,8-dihydroxy-9Z,12Z,15Z-octadecatrienoic acid from added 18:3n-3. This strain also lacked the JA biosynthetic enzymes present in higher plants. PMID:22048860

  4. Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms

    PubMed Central

    Debebe, Tewodros; Krüger, Monika; Huse, Klaus; Kacza, Johannes; Mühlberg, Katja; König, Brigitte; Birkenmeier, Gerd

    2016-01-01

    The microbiota has a strong influence on health and disease in humans. A causative shift favoring pathobionts is strongly linked to diseases. Therefore, anti-microbial agents selectively targeting potential pathogens as well as their biofilms are urgently demanded. Here we demonstrate the impact of ethyl pyruvate, so far known as ROS scavenger and anti-inflammatory agent, on planktonic microbes and biofilms. Ethyl pyruvate combats preferably the growth of pathobionts belonging to bacteria and fungi independent of the genera and prevailing drug resistance. Surprisingly, this anti-microbial agent preserves symbionts like Lactobacillus species. Moreover, ethyl pyruvate prevents the formation of biofilms and promotes matured biofilms dissolution. This potentially new anti-microbial and anti-biofilm agent could have a tremendous positive impact on human, veterinary medicine and technical industry as well. PMID:27658257

  5. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport.

    PubMed

    Yang, Chendong; Ko, Bookyung; Hensley, Christopher T; Jiang, Lei; Wasti, Ajla T; Kim, Jiyeon; Sudderth, Jessica; Calvaruso, Maria Antonietta; Lumata, Lloyd; Mitsche, Matthew; Rutter, Jared; Merritt, Matthew E; DeBerardinis, Ralph J

    2014-11-01

    Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and reroutes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria.

  6. Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway.

    PubMed

    Mayr, Johannes A; Freisinger, Peter; Schlachter, Kurt; Rolinski, Boris; Zimmermann, Franz A; Scheffner, Thomas; Haack, Tobias B; Koch, Johannes; Ahting, Uwe; Prokisch, Holger; Sperl, Wolfgang

    2011-12-01

    Thiamine pyrophosphate (TPP) is an essential cofactor of the cytosolic transketolase and of three mitochondrial enzymes involved in the oxidative decarboxylation of either pyruvate, α-ketoglutarate or branched chain amino acids. Thiamine is taken up by specific transporters into the cell and converted to the active TPP by thiamine pyrophosphokinase (TPK) in the cytosol from where it can be transported into mitochondria. Here, we report five individuals from three families presenting with variable degrees of ataxia, psychomotor retardation, progressive dystonia, and lactic acidosis. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate but normal pyruvate dehydrogenase complex activity in the presence of excess TPP. A reduced concentration of TPP was found in the muscle and blood. Mutation analysis of TPK1 uncovered three missense, one splice-site, and one frameshift mutation resulting in decreased TPK protein levels.

  7. In vitro protection by pyruvate against cadmium-induced cytotoxicity in hippocampal HT-22 cells.

    PubMed

    Poteet, Ethan; Winters, Ali; Xie, Luokun; Ryou, Myoung-Gwi; Liu, Ran; Yang, Shao-Hua

    2014-08-01

    Cadmium is a toxic metal with no biological function in higher-order mammals. Humans are exposed to cadmium environmental contamination and the mechanism underlying the cadmium's cytotoxicity is unclear. To better understand this mechanism, we employed murine hippocampal HT-22 cells to test the in vitro effects of cadmium toxicity. Our study indicated that cadmium inhibits both mitochondria oxidative phosphorylation and glycolysis. In turn, this causes depolarization of mitochondrial membrane potential, increase of superoxide production and decrease of ATP generation. Furthermore, we demonstrated that the detrimental action of cadmium in bioenergetics could be mitigated by pyruvate, an intermediate metabolic product. Pyruvate decreased superoxide production, maintained mitochondrial membrane potential, restored glycolysis, mitigated the decrease in cellular ATP and attenuated cadmium cytotoxicity. Our study provides the first evidence that pyruvate might offer promising therapy for cadmium poisoning.

  8. Moya moya syndrome in a child with pyruvate kinase deficiency and combined prothrombotic factors.

    PubMed

    Skardoutsou, Angeliki; Voudris, Konstantinos A; Mastroyianni, Sotiria; Vagiakou, Eleni; Magoufis, George; Koukoutsakis, Peter

    2007-04-01

    A 13-year-old Greek girl with pyruvate kinase deficiency and moya moya angiographic pattern is reported. She also had raised serum lipoprotein (a) concentration and was homozygous for the C677T mutation of the methylenetetrahydrofolate reductase gene. She presented with neonatal onset of anemia, hemolytic and aplastic crises, especially during infections, stroke, and also progressive motor and mental deterioration. A digital cranial angiography at 13 years revealed the typical angiographic findings of moya moya angiopathy. This is likely the first patient with pyruvate kinase deficiency and moya moya syndrome and also the combination of elevated serum lipoprotein (a) concentration and the C677T mutation of the methylenetetrahydrofolate reductase gene to be reported. In patients with pyruvate kinase deficiency and moya moya syndrome, a search for raised serum lipoprotein (a) concentrations and the C677T mutation of the methylenetetrahydrofolate reductase gene should be considered.

  9. Formation of indigo and related compounds from indolecarboxylic acids by aromatic acid-degrading bacteria: chromogenic reactions for cloning genes encoding dioxygenases that act on aromatic acids.

    PubMed Central

    Eaton, R W; Chapman, P J

    1995-01-01

    The p-cumate-degrading strain Pseudomonas putida F1 and the m- and p-toluate-degrading strain P. putida mt-2 transform indole-2-carboxylate and indole-3-carboxylate to colored products identified here as indigo, indirubin, and isatin. A mechanism by which these products could be formed spontaneously following dioxygenase-catalyzed dihydroxylation of the indolecarboxylates is proposed. Indolecarboxylates were employed as chromogenic substrates for identifying recombinant bacteria carrying genes encoding p-cumate dioxygenase and toluate dioxygenase. Dioxygenase gene-carrying bacteria could be readily distinguished as dark green-blue colonies among other colorless recombinant Escherichia coli colonies on selective agar plates containing either indole-2-carboxylate or indole-3-carboxylate. PMID:7592495

  10. [Effect of pyruvate, threonine, and phosphoethanolamine on acetaldehyde metabolism in rats with toxic liver injury].

    PubMed

    Pron'ko, P S; Satanovskaia, V I; Gorenshteĭn, B I; Kuz'mich, A B; Pyzhik, T N

    2002-01-01

    Pyruvate dehydrogenase, threonine aldolase and phosphoethanolamine lyase can produce acetaldehyde during normal metabolism. We studied the effect of loading with the substrates of these enzymes (pyruvate, 500 mg/kg, i.p., threonine 500 mg/kg, i.p., and phosphoethanolamine, 230 mg/kg, i.p.) on the blood concentrations of endogenous acetaldehyde and ethanol and the activities of enzymes producing and oxidizing acetaldehyde in the liver of normal rats and rats with liver injury provoked by chronic carbon tetrachloride (CCl4) treatment (0.2 ml i.p. per rat, 2 times a week during 4 weeks). Blood was collected before the treatment and then 30 min and 1 h following the administration of the substrates to intact and CCl4-treated rats. Endogenous acetaldehyde and ethanol were determined by headspace GC. The CCl4 treatment resulted in decreased liver alcohol dehydrogenase and aldehyde dehydrogenase activities and a significant elevation of liver endogenous ehtanol and a clear tendency to enhance blood acetaldehyde levels. Pyruvate increased blood endogenous acetaldehyde in CCl4-treated animals and endogenous ethanol--in the control group of animals. Threonine elevated endogenous acetaldehyde in normal rats. Phosphoethanolamine increased endogenous ethanol in the intact and CCl4 groups. At the same time, in CCl4-treated rats pyruvate administration increased the liver pyruvate dehydrogenase, threonine decreased threonine aldolase, whereas phosphoethanolamine decreased phosphoethanolamine lyase. Thus, the CCl4 effect on blood endogenous acetaldehyde and ethanol may be mediated through decreased liver ALDH and ADH activities. Liver injury promotes the accumulation of acetaldehyde, derived from physiological sources, including the degration of pyruvate and threonine by decreased acetaldehyde oxidation.

  11. Pyruvate and Metabolic Flexibility: Illuminating a Path Toward Selective Cancer Therapies.

    PubMed

    Olson, Kristofor A; Schell, John C; Rutter, Jared

    2016-03-01

    Dysregulated metabolism is an emerging hallmark of cancer, and there is abundant interest in developing therapies to selectively target these aberrant metabolic phenotypes. Sitting at the decision-point between mitochondrial carbohydrate oxidation and aerobic glycolysis (i.e., the 'Warburg effect'), the synthesis and consumption of pyruvate is tightly controlled and is often differentially regulated in cancer cells. This review examines recent efforts toward understanding and targeting mitochondrial pyruvate metabolism, and addresses some of the successes, pitfalls, and significant challenges of metabolic therapy to date. PMID:26873641

  12. Chronic Pyruvate Supplementation Increases Exploratory Activity and Brain Energy Reserves in Young and Middle-Aged Mice

    PubMed Central

    Koivisto, Hennariikka; Leinonen, Henri; Puurula, Mari; Hafez, Hani Sayed; Barrera, Glenda Alquicer; Stridh, Malin H.; Waagepetersen, Helle S.; Tiainen, Mika; Soininen, Pasi; Zilberter, Yuri; Tanila, Heikki

    2016-01-01

    Numerous studies have reported neuroprotective effects of pyruvate when given in systemic injections. Impaired glucose uptake and metabolism are found in Alzheimer’s disease (AD) and in AD mouse models. We tested whether dietary pyruvate supplementation is able to provide added energy supply to brain and thereby attenuate aging- or AD-related cognitive impairment. Mice received ~800 mg/kg/day Na-pyruvate in their chow for 2–6 months. In middle-aged wild-type mice and in 6.5-month-old APP/PS1 mice, pyruvate facilitated spatial learning and increased exploration of a novel odor. However, in passive avoidance task for fear memory, the treatment group was clearly impaired. Independent of age, long-term pyruvate increased explorative behavior, which likely explains the paradoxical impairment in passive avoidance. We also assessed pyruvate effects on body weight, muscle force, and endurance, and found no effects. Metabolic postmortem assays revealed increased energy compounds in nuclear magnetic resonance spectroscopy as well as increased brain glycogen storages in the pyruvate group. Pyruvate supplementation may counteract aging-related behavioral impairment, but its beneficial effect seems related to increased explorative activity rather than direct memory enhancement. PMID:27014054

  13. Effects of pyruvate dehydrogenase subunits overexpression on the α-ketoglutarate production in Yarrowia lipolytica WSH-Z06.

    PubMed

    Guo, Hongwei; Madzak, Catherine; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-08-01

    Yarrowia lipolytica WSH-Z06 harbours a promising capability to oversynthesize α-ketoglutarate (α-KG). Its wide utilization is hampered by the formation of high concentrations of pyruvate. In this study, a metabolic strategy for the overexpression of the α and β subunits of pyruvate dehydrogenase E1, E2 and E3 components was designed to reduce the accumulation of pyruvate. Elevated expression level of α subunit of E1 component improved the α-KG production and reduced the pyruvate accumulation. Due to a reduction in the acetyl-CoA supply, neither the growth of cells nor the synthesis of α-KG was restrained by the overexpression of β subunit of E1, E2 and E3 components. Furthermore, via the overexpression of these thiamine pyrophosphate (TPP)-binding subunits, the dependency of pyruvate dehydrogenase on thiamine was diminished in strains T1 and T2, in which α and β subunits of E1 component were separately overexpressed. In these two recombinant strains, the accumulation of pyruvate was insensitive to variations in exogenous thiamine. The results suggest that α-KG production can be enhanced by altering the dependence on TPP of pyruvate dehydrogenase and that the competition for the cofactor can be switched to ketoglutarate dehydrogenase via separate overexpression of the TPP-binding subunits of pyruvate dehydrogenase. The results presented here provided new clue to improve α-KG production.

  14. Reduction of nicotinamide adenine dinucleotide by pyruvate:lipoate oxidoreductase in anaerobic, dark-grown Rhodospirillum rubrum mutant C.

    PubMed Central

    Gorrell, T E; Uffen, R L

    1978-01-01

    Cell extracts from fermentatively grown Rhodospirillum rubrum reduced about 80 nmol of nicotinamide adenine dinucleotide (NAD) per mg of protein per min under anaerobic conditions with sodium pyruvate. The reaction was specific for pyruvate and NAD; NAD phosphate was not reduced. Results indicated that pyruvate-linked NAD reduction occurred via pyruvate:lipoate oxidoreductase. The reaction required catalytic amounts of both coenzyme A and thiamine pyrophosphate. Addition of sodium arsenite inhibited enzyme activity by 90%. Pyruvate:lipoate oxidoreductase was the only system detected in anaerobic, dark-grown R. rubrum cell extracts which operated to produce reduced NAD. The low activity of the enzyme system suggested that it was not quantitatively important in ATP formation. PMID:207677

  15. Crystallization and preliminary X-ray analysis of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter nitroguajacolicus Rü61a: a cofactor-devoid dioxygenase of the α/β-hydrolase-fold superfamily

    SciTech Connect

    Steiner, Roberto A.; Frerichs-Deeken, Ursula; Fetzner, Susanne

    2007-05-01

    Preliminary crystallographic data are reported for 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) from A. nitroguajacolicus Rü61a. 1H-3-Hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) is a cofactor-devoid dioxygenase that is involved in the anthranilate pathway of quinaldine degradation. HOD has been proposed to belong to the α/β-hydrolase-fold superfamily of enzymes. N-terminally His{sub 6}-tagged HOD has been crystallized by the hanging-drop vapour-diffusion method using sodium/potassium tartrate as a precipitant and CuCl{sub 2} as an additive. The structure was solved by the single anomalous dispersion (SAD) technique using data collected to 3.5 Å resolution at the Cu absorption peak wavelength. The crystals belong to the primitive tetragonal space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 153.788, c = 120.872 Å.

  16. Underestimation of pyruvic acid concentrations by fructose and cysteine in 2,4-dinitrophenylhydrazine-mediated onion pungency test.

    PubMed

    Yoo, Kil Sun; Lee, Eun Jin; Patil, Bhimanagouda S

    2011-10-01

    Onion pungency has been routinely measured by determining pyruvic acid concentration in onion juice by reacting with 2,4-dinitrophenylhydrazine (DNPH) since 1961. However, the absorbency of the color adduct of the reaction rapidly decreased in onion samples as compared to that of the pyruvic acid standards, resulting in underestimations of the pyruvic acid concentrations. By measuring the absorbency at 1 min, we have demonstrated that accuracy could be substantially improved. As a continuation, the causes of degradation of the color adduct after the reaction and pyruvic acid itself before the reaction were examined in this study. Alliinase action in juice (fresh or cooked) and bulb colors did not influence the degradation. Some organic acids indigenously found in onion, such as ascorbic acid, proline, and glutamic acid, did not reduce the absorbency. However, fructose within the onion juice or supplemented caused the degradation of the color adduct, whereas sucrose and glucose had a lesser effect. Degradation rates increased proportionally as fructose concentrations increased up to 70 mg/mL. Cysteine was found to degrade the pyruvic acid itself before the pyruvic acid could react with DNPH. Approximately 90% of the pyruvic acid was degraded after 60 min in samples of 7 mM pyruvic acid supplemented with 10 mg/mL cysteine. Spectral comparisons of onion juice containing fructose naturally and pyruvic acid solution with supplemented fructose indicated identical patterns and confirmed that the color-adduct degradation was caused by fructose. Our study elucidated that fructose, a major sugar in onion juice, caused the degradation of color adduct in the onion pungency test and resulted in underestimation of the pyruvic acid concentration.

  17. Characterization of recombinant Beta vulgaris 4,5-DOPA-extradiol-dioxygenase active in the biosynthesis of betalains.

    PubMed

    Gandía-Herrero, Fernando; García-Carmona, Francisco

    2012-07-01

    Betalains are water-soluble pigments with high antiradical capacity which bestow bright colors to flowers, fruits and other parts of most plants of the order Caryophyllales. The formation of the structural unit of all betalains, betalamic acid from the precursor amino acid 4,5-dihydroxyphenylalanine is catalyzed by the enzyme 4,5-DOPA-extradiol-dioxygenase followed by intramolecular cyclization of the 4,5-secodopa intermediate. This paper describes the purification and the molecular and functional characterization of an active 4,5-DOPA-extradiol-dioxygenase from the best-known source of betalains-Beta vulgaris-after heterologous expression in Escherichia coli. The enzyme is a monomeric protein with a molecular mass of 32 kDa characterized by chromatography, electrophoresis and MALDI-TOF analysis. Enzyme kinetic properties are characterized in the production of betalamic acid, the structural, chromophoric and bioactive unit of plant pigment betalains.

  18. Isotope effect studies of the pyruvate-dependent histidine decarboxylase from Lactobacillus 30a

    SciTech Connect

    Abell, L.M.; O'Leary, M.H.

    1988-08-09

    The decarboxylation of histidine by the pyruvate-dependent histidine decarboxylase of Lactobacillus 30 a shows a carbon isotope effect k/sup 12//k/sup 13/ = 1.0334 +/- 0.0005 and a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9799 +/- 0.0006 at pH 4.8, 37/sup 0/C. The carbon isotope effect is slightly increased by deuteriation of the substrate and slightly decreased in D/sub 2/O. The observed nitrogen isotope effect indicates that the imine nitrogen in the substrate-Schiff base intermediate complex is ordinarily protonated, and the pH dependence of the carbon isotope effect indicates that both protonated and unprotonated forms of this intermediate are capable of undergoing decarboxylation. As with the pyridoxal 5'-phosphate dependent enzyme, Schiff base formation and decarboxylation are jointly rate-limiting, with the intermediate histidine-pyruvate Schiff base showing a decarboxylation/Schiff base hydrolysis ratio of 0.5-1.0 at pH 4.8. The decarboxylation transition state is more reactant-like for the pyruvate-dependent enzyme than for the pyridoxal 5'-phosphate dependent enzyme. These studies find no particular energetic or catalytic advantage to the use of pyridoxal 5'-phosphate over covalently bound pyruvate in catalysis of the decarboxylation of histidine.

  19. Atmospheric Implications of Aqueous Solvation on the Photochemistry of Pyruvic Acid

    NASA Astrophysics Data System (ADS)

    Reed Harris, A. E.; Ervens, B.; Shoemaker, R.; Kroll, J. A.; Rapf, R.; Griffith, E. C.; Monod, A.; Vaida, V.

    2014-12-01

    Formation of aerosol from organic compounds is under investigation in order to better predict the overall radiative forcing from atmospheric aerosols and their influence on global climate. One possible formation pathway for secondary organic aerosol (SOA), which is now becoming more widely accepted, is from bulk aqueous photoreactions in atmospheric particles that create low volatility compounds. These products may remain particulate upon droplet evaporation, increasing SOA mass in the atmosphere. SOA formed in this manner may account for some of the discrepancy between measured and predicted amounts of SOA. This presentation will describe the photochemistry of pyruvic acid, an α-keto acid found in the atmosphere, in aqueous solutions representative of solutes in fogs, clouds, and wet aerosols. Solvation of pyruvic acid in water changes the photodissociation mechanism and products from that of the gas phase. The photoproducts from the aqueous phase are higher in molecular weight and therefore possible SOA precursors. Further, these polymers partition to the surface of water and are expected to modify the the surface properties of atmospheric aerosols that determine the kinetics of water uptake. The reaction mechanism of pyruvic acid as a function of its environment and concentration will be presented along with the kinetics obtained for the photochemistry in aqueous solution. These results are used as input in an atmospheric model to evaluate the atmospheric consequences of solvation of pyruvic acid on its atmospheric reactivity and its role as a global sink.

  20. The mitochondrial pyruvate carrier in health and disease: To carry or not to carry?

    PubMed

    Bender, Tom; Martinou, Jean-Claude

    2016-10-01

    Mitochondria play a key role in energy metabolism, hosting the machinery for oxidative phosphorylation, the most efficient cellular pathway for generating ATP. A major checkpoint in this process is the transport of pyruvate produced by cytosolic glycolysis into the mitochondrial matrix, which is accomplished by the recently identified mitochondrial pyruvate carrier (MPC). As the gatekeeper for pyruvate entry into mitochondria, the MPC is thought to be of fundamental importance in establishing the metabolic programming of a cell. This is especially relevant in the context of the aerobic glycolysis, also known as the Warburg effect, which is a hallmark in many types of cancer, and MPC loss of function promotes cancer growth. Moreover, mitochondrial pyruvate uptake is needed for efficient hepatic gluconeogenesis and the regulation of blood glucose levels. In this review we discuss recent advances in our knowledge of the MPC, and we argue that it may offer a promising target in diseases like cancer and type 2 diabetes. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.

  1. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    PubMed Central

    Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  2. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    PubMed

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-01

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion. PMID:24675076

  3. L-Tryptophan catabolism by Rubrivivax benzoatilyticus JA2 occurs through indole 3-pyruvic acid pathway.

    PubMed

    Kumavath, Ranjith N; Ramana, Ch V; Sasikala, Ch

    2010-09-01

    Rubrivivax benzoatilyticus JA2 utilizes L: -tryptophan as the sole source of nitrogen for growth, and it has a doubling time of approximately 11 h (compared to 8 h with ammonium chloride). With cell free extracts in the presence of 2-oxoglutarate, indole-3-pyruvic acid, indole-3-acetaldehyde, indole-3-acetic acid, isatin, benzaldehyde, gallic acid and pyrogallol were identified using high performance liquid chromatography (HPLC) and liquid chromatography-mass spectroscopy (LC-MS) analysis. The conversion of L: -tryptophan into indole 3-pyruvic acid and glutamate by an enzyme aminotransferase was confirmed and the catabolism of indole-3-pyruvic acid via side chain oxidation followed by ring oxidation, gallic acid and pyrogallol were confirmed as metabolites. In addition, the proposed pathway sequential conversion of indole-3-pyruvic acid to the end product of pyrogallol was identified, including an enzymatic step that would convert isatin to benzaldehyde by an enzyme yet to be identified. At this stage of the study, the enzyme tryptophan aminotransferase in R. benzoatilyticus JA2 was demonstrated.

  4. Sunlight-initiated chemistry of aqueous pyruvic acid: building complexity in the origin of life.

    PubMed

    Griffith, Elizabeth C; Shoemaker, Richard K; Vaida, Veronica

    2013-10-01

    Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.

  5. Pyruvate decarboxylase from Pisum sativum. Properties, nucleotide and amino acid sequences.

    PubMed

    Mücke, U; Wohlfarth, T; Fiedler, U; Bäumlein, H; Rücknagel, K P; König, S

    1996-04-15

    To study the molecular structure and function of pyruvate decarboxylase (PDC) from plants the protein was isolated from pea seeds and partially characterised. The active enzyme which occurs in the form of higher oligomers consists of two different subunits appearing in SDS/PAGE and mass spectroscopy experiments. For further experiments, like X-ray crystallography, it was necessary to elucidate the protein sequence. Partial cDNA clones encoding pyruvate decarboxylase from seeds of Pisum sativum cv. Miko have been obtained by means of polymerase chain reaction techniques. The first sequences were found using degenerate oligonucleotide primers designated according to conserved amino acid sequences of known pyruvate decarboxylases. The missing parts of one cDNA were amplified applying the 3'- and 5'-rapid amplification of cDNA ends systems. The amino acid sequence deduced from the entire cDNA sequence displays strong similarity to pyruvate decarboxylases from other organisms, especially from plants. A molecular mass of 64 kDa was calculated for this protein correlating with estimations for the smaller subunit of the oligomeric enzyme. The PCR experiments led to at least three different clones representing the middle part of the PDC cDNA indicating the existence of three isozymes. Two of these isoforms could be confirmed on the protein level by sequencing tryptic peptides. Only anaerobically treated roots showed a positive signal for PDC mRNA in Northern analysis although the cDNA from imbibed seeds was successfully used for PCR.

  6. NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting

    PubMed Central

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T.; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L. Felipe

    2015-01-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K+ as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4+, a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4+ with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4+ and in the somatosensory cortex of anesthetized mice in response to i.v. NH4+. Unexpectedly, NH4+ had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4+ diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4+ is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4+ behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes. PMID:26286989

  7. A case of severe pyruvate kinase deficiency in a primigravida: successful outcome

    PubMed Central

    Mohamed, Sahar; Sivarajah, Kenga; Chakravarti, Seema

    2013-01-01

    Pyruvate kinase deficiency (PKD) is a rare non-spherocytic type of haemolytic anaemia. During pregnancy, women with severe PKD are at increased risk of infection, thrombosis, hypertension, fetal growth restriction and anaemia. Management of such cases requires close collaboration between a haematologist and an obstetrician. We report a case of severe PKD in pregnancy with good maternal and fetal outcome.

  8. Pyruvate dose response studies targeting the vital signs following hemorrhagic shock

    PubMed Central

    Sharma, Pushpa; Vyacheslav, Makler; Carissa, Chalut; Vanessa, Rodriguez; Bodo, Mike

    2015-01-01

    Objectives: To determine the optimal effective dose of sodium pyruvate in maintaining the vital signs following hemorrhagic shock (HS) in rats. Materials and Methods: Anesthetized, male Sprague-Dawley rats underwent computer-controlled HS for 30 minute followed by fluid resuscitation with either hypertonic saline, or sodium pyruvate solutions of 0.5 M, 1.0 M, 2.0 M, and 4.0 M at a rate of 5ml/kg/h (60 minute) and subsequent blood infusion (60 minute). The results were compared with sham and non- resuscitated groups. The animals were continuously monitored for mean arterial pressure, systolic and diastolic pressure, heart rate, pulse pressure, temperature, shock index and Kerdo index (KI). Results: The Sham group remained stable throughout the experiment. Non-resuscitated HS animals did not survive for the entire experiment due to non-viable vital signs and poor shock and KI. All fluids were effective in normalizing the vital signs when shed blood was used adjunctively. Sodium pyruvate 2.0 M was most effective, and 4.0 M solution was least effective in improving the vital signs after HS. Conclusions: Future studies should be directed to use 2.0 M sodium pyruvate adjuvant for resuscitation on multiorgan failure and survival rate in HS. PMID:26229300

  9. Control of rat mammary-gland pyruvate dehydrogenase by insulin and prolactin.

    PubMed Central

    Field, B; Coore, H G

    1976-01-01

    Withdrawal of prolactin or of insulin from the circulation of lactating rats leads, within 3h, to increased inactivation by phosphorylation of mammary-gland pyruvate dehydrogenase. Prolactin may act by priming the tissue to respond directly to normal concentrations of circulating insulin and by this means be responsible for the increased activation of the enzyme during the course of normal lactation. PMID:133680

  10. Catalytic and regulatory properties of muscle pyruvate kinase from Cancer magister.

    PubMed

    Guderley, H; Hochachka, P W

    1980-06-01

    Despite the marked changes that crustacean muscle undergoes during the molt cycle, pyruvate kinase is present as the same form throughout the molt cycle. This pyruvate kinase was subject to feed-forward activation by fructose-1, 6 bisphosphate (FBP) as well as feed-back inhibition by MgATP. The enzyme showed a high affinity for phosphoenolpyruvate (Km = 0.1 mM) but showed no cooperativity in substrate binding. The addition of 0.05 mM FBP reduced the PEP Km to 0.05 mM. MgATP inhibition showed a Ki of 1.8 mM versus PEP. The inhibition due to MgATP could be reversed by FBP. Various other compounds inhibited the enzyme, including citrate, alpha-ketoglutarate, tryptophan, and malate, although at rather high levels. Measurements of the reversal of this pyruvate kinase, taken together with the low levels of phosphoenolpyruvate carboxykinase and pyruvate carboxylase, predict only minimal levels of gluconeogenic flux in crustacean muscle. PMID:7462968

  11. Pyruvate blocks blood-brain barrier disruption, lymphocyte infiltration and immune response in excitotoxic brain injury

    PubMed Central

    Ryu, Jae K; McLarnon, James G

    2016-01-01

    The effects of pyruvate, the end metabolite of glycolysis, on blood-brain barrier (BBB) impairment and immune reactivity were examined in the quinolinic acid (QA)-injected rat striatum. Extensive disruption of BBB was observed at 7 d post QA-injection as demonstrated by increased immunohistochemical staining using antibody against immunoglobulin G (IgG). Animals receiving pyruvate administration (500 mg/kg) with QA-injection exhibited reduced lgG immunoreactivity (by 45%) relative to QA alone. QA intrastriatal injection also resulted in marked increases in the number of infiltrating T-lymphocytes (by 70-fold) and expression of major histocompatibility complex (MHC-class II) (by 45-fold) relative to unlesioned control. Treatment with pyruvate significantly reduced infiltration of T-cells (by 68%) and MHC class II expression (by 48%) induced by QA. These results indicate that QA injection into rat striatum leads to impairment in BBB function with pyruvate administration reducing immune response and BBB leakiness in excitotoxic injury. PMID:27073744

  12. Sunlight-initiated Chemistry of Aqueous Pyruvic Acid: Building Complexity in the Origin of Life

    NASA Astrophysics Data System (ADS)

    Griffith, Elizabeth C.; Shoemaker, Richard K.; Vaida, Veronica

    2013-10-01

    Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.

  13. Unexpected Discovery of Dichloroacetate Derived Adenosine Triphosphate Competitors Targeting Pyruvate Dehydrogenase Kinase To Inhibit Cancer Proliferation.

    PubMed

    Zhang, Shao-Lin; Hu, Xiaohui; Zhang, Wen; Tam, Kin Yip

    2016-04-14

    Pyruvate dehydrogenase kinases (PDKs) have recently emerged as an attractive target for cancer therapy. Herein, we prepared a series of compounds derived from dichloroacetate (DCA) which inhibited cancer cells proliferation. For the first time, we have successfully developed DCA derived inhibitors that preferentially bind to the adenosine triphosphate (ATP) pocket of PDK isoform 1 (PDK1).

  14. NH4(+) triggers the release of astrocytic lactate via mitochondrial pyruvate shunting.

    PubMed

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L Felipe

    2015-09-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K(+) as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4(+), a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4(+) with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4(+) and in the somatosensory cortex of anesthetized mice in response to i.v. NH4(+). Unexpectedly, NH4(+) had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4(+) diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4(+) is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4(+) behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes. PMID:26286989

  15. [The important role of vitamins in the over-production of pyruvic acid].

    PubMed

    Li, Y; Chen, J; Lun, S; Rui, X

    2000-10-01

    The effect of nicotinic acid, thiamine, pyridoxine, biotin and riboflavin on the production of pyruvic acid by Torulopsis glabrata WSH-IP303 with glucose as carbon source and NH4Cl as sole nitrogen source was investigated. By using orthogonal experiment method, thiamine was confirmed to be the most important factor affecting the production of pyruvic acid. Based on a certain concentration range of thiamine (0.01-0.015 mg/L), glucose consumption rate can be enhanced by increasing the concentration of nicotinic acid. When the concentration of nicotinic acid, thiamine, pyridoxine, biotin and riboflavin were 8, 0.015, 0.4, 0.04 and 0.1 mg/L, respectively, the concentration and yield to glucose of pyruvic acid reached 52.4 g/L and 0.525 g/g at 48 h in flask culture, respectively. Batch culture was conducted in a 2.5 L fermentor with initial glucose concentration of 120 g/L. By adopting the optimal concentration combination of vitamins, the concentration and yield to glucose of pyruvic acid reached 69.4 g/L and 0.593 g/g at 57.5 h, which were increased by 32.4% and 13% than the best results in flask culture, respectively. PMID:12548766

  16. 13C-NMR analysis of Aspergillus mutants disturbed in pyruvate metabolism.

    PubMed

    Dijkema, C; Visser, J

    1987-12-10

    The metabolic consequences of two defects in pyruvate metabolism of the hyphal fungus Aspergillus nidulans have been investigated by natural abundance 13C-NMR spectroscopy. A pyruvate dehydrogenase complex (pdh) mutant, grown on acetate, accumulates alanine upon starvation which is derived from mannitol reserves. The L-alanine level increases further upon incubation with the non-permissive substrate D-glucose. L-Glutamate is absent from these spectra as it is required both for the transamination of pyruvate and as a reaction on an impaired energy metabolism in such a pdh-deficient strain. A pyruvate carboxylase (pyc) mutant, grown upon acetate, only starts to accumulate alanine after a long incubation period with D-glucose, due to the long-lasting presence of phosphoenolpyruvate carboxykinase and malic enzyme, which are both induced by growth on acetate. When this strain is grown on D-fructose and L-glutamate, alanine also accumulates within 3 h upon transfer to D-glucose.

  17. Synaptic vesicle-bound pyruvate kinase can support vesicular glutamate uptake

    PubMed Central

    Ishida, Atsuhiko; Noda, Yasuko; Ueda, Tetsufumi

    2008-01-01

    Glucose metabolism is essential for normal brain function and plays a vital role in synaptic transmission. Recent evidence suggests that ATP synthesized locally by glycolysis, particularly via glyceraldehyde 3-phosphate dehydrogenase/3-phosphoglycerate kinase, is critical for synaptic transmission. We present evidence that ATP generated by synaptic vesicle-associated pyruvate kinase is harnessed to transport glutamate into synaptic vesicles. Isolated synaptic vesicles incorporated [3H]glutamate in the presence of phosphoenolpyruvate (PEP) and ADP. Pyruvate kinase activators and inhibitors stimulated and reduced PEP/ADP-dependent glutamate uptake, respectively. Membrane potential was also formed in the presence of pyruvate kinase activators. “ATP-trapping” experiments using hexokinase and glucose suggest that ATP produced by vesicle-associated pyruvate kinase is more readily used than exogenously added ATP. Other neurotransmitters such as GABA, dopamine, and serotonin were also taken up into crude synaptic vesicles in a PEP/ADP-dependent manner. The possibility that ATP locally generated by glycolysis supports vesicular accumulation of neurotransmitters is discussed. PMID:18751889

  18. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet.

    PubMed

    Vanderperre, Benoît; Herzig, Sébastien; Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-05-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  19. Pyruvate neutralizes peritoneal dialysate cytotoxicity: maintained integrity and proliferation of cultured human mesothelial cells.

    PubMed

    Brunkhorst, R; Mahiout, A

    1995-07-01

    Toxic effects of commercially available peritoneal dialysate (PD) fluid include damage to mesothelial cells (MC), causing a severely disturbed proliferation of cultured MC. We investigated the injury to the cell membrane (by release of lactate dehydrogenase, LDH), the proliferation (by cell counts and by 3H-thymidine incorporation), and optional the cytokine generation (by IL-1 receptor-antagonist production, IL-1 ra) of cultured human MC during the 48 hours after a 30 minute exposure to PD containing either 35 mmol/liter sodium lactate or sodium pyruvate. All solutions had a pH of 5.2 to 5.6 and were composed as standard PD. Glucose contents of 1.36 and 3.86 mmol/liter were tested. After exposure to the lactate-PD containing 1.36% glucose, LDH activity was increased by more than 30%, proliferation of MC was inhibited by more than 30%, and IL-1 ra production was reduced significantly when compared to pyruvate-PD and the control solution. After preincubation with 3.86% glucose containing PD, all negative effects became even more pronounced in the lactate group whereas the MC maintained their integrity, rate of proliferation and IL-1 ra release after pre-exposure to pyruvate containing PD. These results suggest that the acute toxic effects of commercially available PD on the integrity, proliferation and IL-1 ra production of MC can be avoided by the use of sodium pyruvate instead of sodium lactate.

  20. THE ROLE OF 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE IN ENHANCEMENT OF SOLID-PHASE ELECTRON TRANSFER BY SHEWANELLA ONEIDENSIS MR-1

    SciTech Connect

    Turick, C; Amy Ekechukwu, A

    2007-06-01

    While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane-associated c-type cytochromes and redox active electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. In this study, we determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione (2-(2-chloro-4-methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates, with which MR-1 reduces hydrous ferric oxide, were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E{sup o}{prime}) of S. oneidensis MR-1. Based on this work, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in Shewanella oneidensis.

  1. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs: Arg- and Gln-type Bacterial CDO Homologs

    SciTech Connect

    Driggers, Camden M.; Hartman, Steven J.; Karplus, P. Andrew

    2015-01-01

    In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ~15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg-type” enzymes) and some having a Gln substituted for this Arg (“Gln-type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg-type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln-type” CDO homolog of uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron-bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln-type” CDO enzymes, we conclude that the “Gln-type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3-mercaptopropionate dioxygenases.

  2. The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily

    PubMed Central

    Sanchez-Pulido, Luis; Andrade-Navarro, Miguel A

    2007-01-01

    Background Genetic variants in the FTO (fat mass and obesity associated) gene have been associated with an increased risk of obesity. However, the function of its protein product has not been experimentally studied and previously reported sequence similarity analyses suggested the absence of homologs in existing protein databases. Here, we present the first detailed computational analysis of the sequence and predicted structure of the protein encoded by FTO. Results We performed a sequence similarity search using the human FTO protein as query and then generated a profile using the multiple sequence alignment of the homologous sequences. Profile-to-sequence and profile-to-profile based comparisons identified remote homologs of the non-heme dioxygenase family. Conclusion Our analysis suggests that human FTO is a member of the non-heme dioxygenase (Fe(II)- and 2-oxoglutarate-dependent dioxygenases) superfamily. Amino acid conservation patterns support this hypothesis and indicate that both 2-oxoglutarate and iron should be important for FTO function. This computational prediction of the function of FTO should suggest further steps for its experimental characterization and help to formulate hypothesis about the mechanisms by which it relates to obesity in humans. PMID:17996046

  3. An aryl dioxygenase shows remarkable double dioxygenation capacity for diverse bis-aryl compounds, provided they are carbocyclic.

    PubMed

    Overwin, Heike; González, Myriam; Méndez, Valentina; Seeger, Michael; Wray, Victor; Hofer, Bernd

    2016-09-01

    The bacterial dioxygenation of mono- or polycyclic aromatic compounds is an intensely studied field. However, only in a few cases has the repeated dioxygenation of a substrate possessing more than a single aromatic ring been described. We previously characterized the aryl-hydroxylating dioxygenase BphA-B4h, an artificial hybrid of the dioxygenases of the biphenyl degraders Burkholderia xenovorans LB400 and Pseudomonas sp. strain B4-Magdeburg, which contains the active site of the latter enzyme, as an exceptionally powerful biocatalyst. We now show that this dioxygenase possesses a remarkable capacity for the double dioxygenation of various bicyclic aromatic compounds, provided that they are carbocyclic. Two groups of biphenyl analogues were examined: series A compounds containing one heterocyclic aromatic ring and series B compounds containing two homocyclic aromatic rings. Whereas all of the seven partially heterocyclic biphenyl analogues were solely dioxygenated in the homocyclic ring, four of the six carbocyclic bis-aryls were converted into ortho,meta-hydroxylated bis-dihydrodiols. Potential reasons for failure of heterocyclic dioxygenations are discussed. The obtained bis-dihydrodiols may, as we also show here, be enzymatically re-aromatized to yield the corresponding tetraphenols. This opens a way to a range of new polyphenolic products, a class of compounds known to exert multiple biological activities. Several of the obtained compounds are novel molecules. PMID:27147529

  4. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs: Arg- and Gln-type Bacterial CDO Homologs

    DOE PAGES

    Driggers, Camden M.; Hartman, Steven J.; Karplus, P. Andrew

    2015-01-01

    In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ~15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg-type” enzymes) and some having a Gln substituted for this Arg (“Gln-type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg-type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln-type” CDO homolog ofmore » uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron-bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln-type” CDO enzymes, we conclude that the “Gln-type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3-mercaptopropionate dioxygenases.« less

  5. Crystallization and preliminary crystallographic analysis of 2-aminophenol 1,6-dioxygenase complexed with substrate and with an inhibitor

    PubMed Central

    Li, De-Feng; Zhang, Jia-Yue; Hou, Yanjie; Liu, Lei; Liu, Shuang-Jiang; Liu, Wei

    2012-01-01

    Dioxygen activation implemented by nonhaem FeII enzymes containing the 2-­His-1-carboxylate facial triad has been extensively studied in recent years. Extradiol dioxygenase is the archetypal member of this superfamily and catalyzes the oxygenolytic ring opening of catechol analogues. Here, the crystallization and preliminary X-ray analysis of 2-aminophenol 1,6-dioxygenase, an enzyme representing a minor subset of extradiol dioxygenases that catalyze the fission of 2-aminophenol rather than catecholic compounds, is reported. Crystals of the holoenzyme with FeII and of complexes with the substrate 2-aminophenol and the suicide inhibitor 4-nitrocatechol were grown using the cocrystallization method under the same conditions as used for the crystallization of the apoenzyme. The crystals belonged to space group C2 and diffracted to 2.3–2.7 Å resolution; the crystal that diffracted to the highest resolution had unit-cell parameters a = 270.24, b = 48.39, c = 108.55 Å, β = 109.57°. All X-ray data sets collected from diffraction-quality crystals were suitable for structure determination. PMID:23143244

  6. Crystallization and preliminary crystallographic analysis of 2-aminophenol 1,6-dioxygenase complexed with substrate and with an inhibitor.

    PubMed

    Li, De-Feng; Zhang, Jia-Yue; Hou, Yanjie; Liu, Lei; Liu, Shuang-Jiang; Liu, Wei

    2012-11-01

    Dioxygen activation implemented by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Extradiol dioxygenase is the archetypal member of this superfamily and catalyzes the oxygenolytic ring opening of catechol analogues. Here, the crystallization and preliminary X-ray analysis of 2-aminophenol 1,6-dioxygenase, an enzyme representing a minor subset of extradiol dioxygenases that catalyze the fission of 2-aminophenol rather than catecholic compounds, is reported. Crystals of the holoenzyme with FeII and of complexes with the substrate 2-aminophenol and the suicide inhibitor 4-nitrocatechol were grown using the cocrystallization method under the same conditions as used for the crystallization of the apoenzyme. The crystals belonged to space group C2 and diffracted to 2.3-2.7 Å resolution; the crystal that diffracted to the highest resolution had unit-cell parameters a=270.24, b=48.39, c=108.55 Å, β=109.57°. All X-ray data sets collected from diffraction-quality crystals were suitable for structure determination.

  7. The Role of 4-Hydroxyphenylpyruvate Dioxygenase in Enhancement of Solid-Phase Electron Transfer by Shewanella oneidensis MR-1

    SciTech Connect

    Turick, Charles E.; Beliaev, Alex S.; Zakrajsek, Brian A.; Reardon, Catherine L.; Lowy, Daniel A.; Poppy, Tara E.; Maloney, Andrea; Ekechukwu, Amy A.

    2009-05-01

    ABSTRACT - While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane associated c-type cytochromes and electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of the tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. We determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione ([2-(2- chloro- 4- methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA, which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates at which MR-1 reduces hydrous ferric oxide were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E°') of S. oneidensis MR-1. Based on our findings, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in S. oneidensis MR-1.

  8. An aryl dioxygenase shows remarkable double dioxygenation capacity for diverse bis-aryl compounds, provided they are carbocyclic.

    PubMed

    Overwin, Heike; González, Myriam; Méndez, Valentina; Seeger, Michael; Wray, Victor; Hofer, Bernd

    2016-09-01

    The bacterial dioxygenation of mono- or polycyclic aromatic compounds is an intensely studied field. However, only in a few cases has the repeated dioxygenation of a substrate possessing more than a single aromatic ring been described. We previously characterized the aryl-hydroxylating dioxygenase BphA-B4h, an artificial hybrid of the dioxygenases of the biphenyl degraders Burkholderia xenovorans LB400 and Pseudomonas sp. strain B4-Magdeburg, which contains the active site of the latter enzyme, as an exceptionally powerful biocatalyst. We now show that this dioxygenase possesses a remarkable capacity for the double dioxygenation of various bicyclic aromatic compounds, provided that they are carbocyclic. Two groups of biphenyl analogues were examined: series A compounds containing one heterocyclic aromatic ring and series B compounds containing two homocyclic aromatic rings. Whereas all of the seven partially heterocyclic biphenyl analogues were solely dioxygenated in the homocyclic ring, four of the six carbocyclic bis-aryls were converted into ortho,meta-hydroxylated bis-dihydrodiols. Potential reasons for failure of heterocyclic dioxygenations are discussed. The obtained bis-dihydrodiols may, as we also show here, be enzymatically re-aromatized to yield the corresponding tetraphenols. This opens a way to a range of new polyphenolic products, a class of compounds known to exert multiple biological activities. Several of the obtained compounds are novel molecules.

  9. Fum3p, a 2-ketoglutarate-dependent dioxygenase required for C-5 hydroxylation of fumonisins in Fusarium verticillioides.

    PubMed

    Ding, Yousong; Bojja, Ravi S; Du, Liangcheng

    2004-04-01

    Fumonisins are polyketide-derived mycotoxins produced by several agriculturally important Fusarium species. The B series fumonisins, FB(1), FB(2), FB(3), and FB(4), are fumonisins produced by wild-type Fusarium verticillioides strains, differing in the number and location of hydroxyl groups attached to the carbon backbone. We characterized the protein encoded by FUM3, a gene in the fumonisin biosynthetic gene cluster. The 33-kDa FUM3 protein (Fum3p) was heterologously expressed and purified from Saccharomyces cerevisiae. Yeast cells expressing the Fum3p converted FB(3) to FB(1), indicating that Fum3p catalyzes the C-5 hydroxylation of fumonisins. This result was verified by assaying the activity of Fum3p purified from yeast cells. The C-5 hydroxylase activity of purified Fum3p required 2-ketoglutarate, Fe(2+), ascorbic acid, and catalase, all of which are required for 2-ketoglutarate-dependent dioxygenases. The protein also contains two His motifs that are highly conserved in this family of dioxygenases. Thus, Fum3p is a 2-ketoglutarate-dependent dioxygenase required for the addition of the C-5 hydroxyl group of fumonisins.

  10. Cysteinyl peptides labeled by dibromobutanedione in reaction with rabbit muscle pyruvate kinase.

    PubMed Central

    Vollmer, S. H.; Colman, R. F.

    1992-01-01

    The bifunctional reagent 1,4-dibromobutanedione (DBBD) reacts covalently with pyruvate kinase from rabbit muscle to cause inactivation of the enzyme at a rate that is linearly dependent on the reagent concentration, giving a second order rate constant of 444 min-1 M-1. The individual substrates phosphoenolpyruvate (with KCl), ADP, or ATP in the presence of divalent metal cation provide marked protection against inactivation suggesting that reaction occurs in the region of the active site. The limited incorporation of DBBD into pyruvate kinase was measured by reduction of the carbonyl groups of the enzyme-bound reagent using [3H]NaBH4. When pyruvate kinase was reacted with 120 microM DBBD at pH 7.0 for 50 min in the absence of protectants, 1.8 mol of tritium/mol of subunit was incorporated, whereas in the presence of phosphoenolpyruvate with KCl, only 1.0 mol of tritium was incorporated per mole of subunit. Modified peptides were isolated from tryptic digests of pyruvate kinase. Reaction of enzyme in the presence of substrate (showing no activity loss) yielded a single peptide, Asn-Ile-X1-Lys, where X1 corresponds to Cys164 of the known amino acid sequence of muscle pyruvate kinase. In the absence of protectants, reaction for 10 min (when the enzyme retained substantial activity) yielded Asn-Ile-X1-Lys as the major labeled peptide, whereas reaction for 50 min (when the enzyme was 88% inactivated) yielded predominantly Asn-Ile-X1-Lys cross-linked to X2-Asp-Glu-Asn-Ile-Leu-Trp-Leu-Asp-Tyr-Lys, where X2 corresponds to Cys151. Because activity loss correlates with the appearance of the cross-linked peptides but not with formation of Asn-Ile-X1-Lys, inactivation is likely caused by the reaction leading to the cross-link between Cys151 and Cys164. The distance between the alpha-carbons of these residues in the crystal structure is 15.5 A, whereas only 12.0 A can be spanned by the two side chains linked by a dioxobutyl group, suggesting either that pyruvate kinase

  11. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    PubMed

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  12. Low-temperature NMR characterization of reaction of sodium pyruvate with hydrogen peroxide.

    PubMed

    Asmus, Christopher; Mozziconacci, Olivier; Schöneich, Christian

    2015-02-12

    It was proposed that the reaction of sodium pyruvate and H2O2 generates the intermediate 2-hydroperoxy-2-hydroxypropanoate, which converts into acetate, CO2, and H2O ( Aleksankin et al. Kernenergie 1962 , 5 , 362 - 365 ). These conclusions were based on the products generated in (18)O-enriched water and H2O2 reacting with pyruvic acid at room temperature; however, the lifetime of 2-hydroperoxy-2-hydroxypropanoate at room temperature is too short for direct spectroscopic observation. Therefore, we applied the combination of low-temperature and (13)C NMR techniques to verify, for the first time, the formation of 2-deuteroperoxy-2-deuteroxypropanoate in mixtures of D2O and methanol-d4 and to monitor directly each species involved in the reaction between D2O2 and (13)C-enriched pyruvate. Our NMR results confirm the formation of 2-deuteroperoxy-2-deuteroxypropanoate, where the respective chemical shifts are supported by density functional theory (DFT) calculations. At near-neutral apparent pD (pD*) and -35 °C, the formation of 2-deuteroperoxy-2-deuteroxypropanoate occurred with k = 2.43 × 10(-3) dm(3)·mol(-1)·s(-1). The subsequent decomposition of 2-deuteroperoxy-2-deuteroxypropanoate into acetate, CO2, and D2O occurred with k = 2.58 × 10(-4) s(-1) at -35 °C. In order to provide a full kinetic analysis, we also monitored the equilibrium of pyruvate and methanol with the hemiacetal (2-deuteroxy-2-methoxypropanoate). The kinetics for the reaction of sodium pyruvate and D2O2 were fitted by taking into account all these equilibria and species.

  13. Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression.

    PubMed

    Zhang, Yi; Ma, Ke; Sadana, Prabodh; Chowdhury, Farhana; Gaillard, Stephanie; Wang, Fang; McDonnell, Donald P; Unterman, Terry G; Elam, Marshall B; Park, Edwards A

    2006-12-29

    The pyruvate dehydrogenase complex (PDC) catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the oxidation of glucose to acetyl-CoA. Phosphorylation of PDC by the pyruvate dehydrogenase kinases (PDK2 and PDK4) inhibits PDC activity. Expression of the PDK genes is elevated in diabetes, leading to the decreased oxidation of pyruvate to acetyl-CoA. In these studies we have investigated the transcriptional regulation of the PDK4 gene by the estrogen-related receptors (ERRalpha and ERRgamma). The ERRs are orphan nuclear receptors whose physiological roles include the induction of fatty acid oxidation in heart and muscle. Previously, we found that the peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of PDK4. Here we report that ERRalpha and ERRgamma stimulate the PDK4 gene in hepatoma cells, suggesting a novel role for ERRs in controlling pyruvate metabolism. In addition, both ERR isoforms recruit PGC-1alpha to the PDK4 promoter. Insulin, which decreases the expression of the PDK4 gene, inhibits the induction of PDK4 by ERRalpha and ERRgamma. The forkhead transcription factor (FoxO1) binds the PDK4 gene and contributes to the induction of PDK4 by ERRs and PGC-1alpha. Insulin suppresses PDK4 expression in part through the dissociation of FoxO1 and PGC-1alpha from the PDK4 promoter. Our data demonstrate a key role for the ERRs in the induction of hepatic PDK4 gene expression. PMID:17079227

  14. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells.

    PubMed

    Abbot, Emily L; McCormack, James G; Reynet, Christine; Hassall, David G; Buchan, Kevin W; Yeaman, Stephen J

    2005-06-01

    The pyruvate dehydrogenase complex occupies a central and strategic position in muscle intermediary metabolism and is primarily regulated by phosphorylation/dephosphorylation. The identification of multiple isoforms of pyruvate dehydrogenase kinase (PDK1-4) and pyruvate dehydrogenase phosphatase (PDP1-2) has raised intriguing new possibilities for chronic pyruvate dehydrogenase complex control. Experiments to date suggest that PDK4 is the major isoenzyme responsible for changes in pyruvate dehydrogenase complex activity in response to various different metabolic conditions. Using a cultured human skeletal muscle cell model system, we found that expression of both PDK2 and PDK4 mRNA is upregulated in response to glucose deprivation and fatty acid supplementation, the effects of which are reversed by insulin treatment. In addition, insulin directly downregulates PDK2 and PDK4 mRNA transcript abundance via a phosphatidylinositol 3-kinase-dependent pathway, which may involve glycogen synthase kinase-3 but does not utilize the mammalian target of rapamycin or mitogen-activated protein kinase signalling pathways. In order to further elucidate the regulation of PDK, the role of the peroxisome proliferators-activated receptors (PPAR) was investigated using highly potent subtype selective agonists. PPARalpha and PPARdelta agonists were found to specifically upregulate PDK4 mRNA expression, whereas PPARgamma activation selectively decreased PDK2 mRNA transcript abundance. PDP1 mRNA expression was unaffected by all conditions analysed. These results suggest that in human muscle, hormonal and nutritional conditions may control PDK2 and PDK4 mRNA expression via a common signalling mechanism. In addition, PPARs appear to independently regulate specific PDK isoform transcipt levels, which are likely to impart important metabolic mediation of fuel utilization by the muscle. PMID:15955060

  15. Binding specificity of serum amyloid P component for the pyruvate acetal of galactose

    PubMed Central

    1984-01-01

    Serum amyloid P component (SAP) is a normal plasma protein that is of interest because of its presence in amyloid deposits, its presence in normal human glomerular basement membrane, and its stable evolutionary conservation. It has calcium-dependent ligand-binding specificity for amyloid fibrils, fibronectin (Fn), C4-binding protein (C4bp), and agarose. Although the binding to agarose, a linear galactan hydrocolloid derived from some marine algae, is unlikely per se to be related to the physiological function of SAP, it does provide a model system in which to explore the precise ligand requirements of SAP. We report here that the amount of SAP from human, mouse, and plaice (Pleuronectes platessa L.) serum able to bind to agarose from different sources reflect precisely their pyruvate content. Methylation with diazomethane of the carboxyl groups in the pyruvate moiety of agarose completely abolishes SAP binding to agarose. The pyruvate in agarose exists as the 4,6-pyruvate acetal of beta-D-galactopyranose. We have therefore synthesized this galactoside, using a novel procedure, established its structure by analysis of its nuclear magnetic resonance spectra, and shown that it completely inhibits all known calcium- dependent binding reactions of SAP. The R isomer of the cyclic acetal, methyl 4,6-O-(1-carboxyethylidene)-beta-D-galactopyranoside (MO beta DG) was effective at millimolar concentration and was more potent than its noncyclic analogue, while pyruvate, D-galactose, and methyl beta-D- galactopyranoside were without effect. The autologous protein ligands of SAP presumably, therefore express a structural determinant(s) that stereochemically resembles MO beta DG. Availability of this specific, well-characterized, low molecular weight ligand for SAP should facilitate further investigation of the function of SAP and its role in physiological and pathophysiological processes. PMID:6707579

  16. /sup 13/C NMR study of effects of fasting and diabetes on the metabolism of pyruvate in the tricarboxylic acid cycle and of the utilization of pyruvate and ethanol in lipogenesis in perfused rat liver

    SciTech Connect

    Cohen, S.M.

    1987-01-27

    /sup 13/C NMR has been used to study the competition of pyruvate dehydrogenase with pyruvate carboxylase for entry of pyruvate into the tricarboxylic acid (TCA) cycle in perfused liver from streptozotocin-diabetic and normal donor rats. The relative proportion of pyruvate entering the TCA cycle by these two routes was estimated from the /sup 13/C enrichments at the individual carbons of glutamate when (3-/sup 13/C)alanine was the only exogenous substrate present. In this way, the proportion of pyruvate entering by the pyruvate dehydrogenase route relative to the pyruvate carboxylase route was determined to be 1:1.2 +/- 0.1 in liver from fed controls, 1:7.7 +/- 2 in liver from 24-fasted controls, and 1:2.6 +/- 0.3 in diabetic liver. Pursuant to this observation that conversion of pyruvate to acetyl coenzyme A (acetyl-CoA) was greatest in perfused liver from fed controls, the incorporation of /sup 13/C label into fatty acids was monitored in this liver preparation. With the exception of the repeating methylene carbons, fatty acyl carbons labeled by (1-/sup 13/C)acetyl-CoA (from (2-/sup 13/C)pyruvate) gave rise to resonances distinguishable on the basis of chemical shift from those observed when label was introduced by (3-/sup 13/C)alanine plus (2-/sup 13/C)ethanol, which are converted to (2-/sup 13/C)acetyl-CoA. Thus, measurement of /sup 13/C enrichment at several specific sites in the fatty acyl chains in time-resolved spectra of perfused liver offers a novel way of monitoring the kinetics of the biosynthesis of fatty acids. In addition to obtaining the rate of lipogenesis, it was possible to distinguish the contributions of chain elongation from those of the de novo synthesis pathway and to estimate the average chain length of the /sup 13/C-labeled fatty acids produced.

  17. Interactions between Pyruvate and Lactate Metabolism in Propionibacterium freudenreichii subsp. shermanii: In Vivo 13C Nuclear Magnetic Resonance Studies

    PubMed Central

    Deborde, Catherine; Boyaval, Patrick

    2000-01-01

    In vivo 13C nuclear magnetic resonance spectroscopy was used to elucidate the pathways and the regulation of pyruvate metabolism and pyruvate-lactate cometabolism noninvasively in living-cell suspensions of Propionibacterium freudenreichii subsp. shermanii. The most important result of this work concerns the modification of fluxes of pyruvate metabolism induced by the presence of lactate. Pyruvate was temporarily converted to lactate and alanine; the flux to acetate synthesis was maintained, but the flux to propionate synthesis was increased; and the reverse flux of the first part of the Wood-Werkman cycle, up to acetate synthesis, was decreased. Pyruvate was consumed at apparent initial rates of 148 and 90 μmol · min−1 · g−1 (cell dry weight) when it was the sole substrate or cometabolized with lactate, respectively. Lactate was consumed at an apparent initial rate of 157 μmol · min−1 · g−1 when it was cometabolized with pyruvate. P. shermanii used several pathways, namely, the Wood-Werkman cycle, synthesis of acetate and CO2, succinate synthesis, gluconeogenesis, the tricarboxylic acid cycle, and alanine synthesis, to manage its pyruvate pool sharply. In both types of experiments, acetate synthesis and the Wood-Werkman cycle were the metabolic pathways used most. PMID:10788375

  18. Inhibition of mitochondrial pyruvate transport by zaprinast causes massive accumulation of aspartate at the expense of glutamate in the retina.

    PubMed

    Du, Jianhai; Cleghorn, Whitney M; Contreras, Laura; Lindsay, Ken; Rountree, Austin M; Chertov, Andrei O; Turner, Sally J; Sahaboglu, Ayse; Linton, Jonathan; Sadilek, Martin; Satrústegui, Jorgina; Sweet, Ian R; Paquet-Durand, François; Hurley, James B

    2013-12-13

    Transport of pyruvate into mitochondria by the mitochondrial pyruvate carrier is crucial for complete oxidation of glucose and for biosynthesis of amino acids and lipids. Zaprinast is a well known phosphodiesterase inhibitor and lead compound for sildenafil. We found Zaprinast alters the metabolomic profile of mitochondrial intermediates and amino acids in retina and brain. This metabolic effect of Zaprinast does not depend on inhibition of phosphodiesterase activity. By providing (13)C-labeled glucose and glutamine as fuels, we found that the metabolic profile of the Zaprinast effect is nearly identical to that of inhibitors of the mitochondrial pyruvate carrier. Both stimulate oxidation of glutamate and massive accumulation of aspartate. Moreover, Zaprinast inhibits pyruvate-driven O2 consumption in brain mitochondria and blocks mitochondrial pyruvate carrier in liver mitochondria. Inactivation of the aspartate glutamate carrier in retina does not attenuate the metabolic effect of Zaprinast. Our results show that Zaprinast is a potent inhibitor of mitochondrial pyruvate carrier activity, and this action causes aspartate to accumulate at the expense of glutamate. Our findings show that Zaprinast is a specific mitochondrial pyruvate carrier (MPC) inhibitor and may help to elucidate the roles of MPC in amino acid metabolism and hypoglycemia.

  19. Inhibition of Mitochondrial Pyruvate Transport by Zaprinast Causes Massive Accumulation of Aspartate at the Expense of Glutamate in the Retina*

    PubMed Central

    Du, Jianhai; Cleghorn, Whitney M.; Contreras, Laura; Lindsay, Ken; Rountree, Austin M.; Chertov, Andrei O.; Turner, Sally J.; Sahaboglu, Ayse; Linton, Jonathan; Sadilek, Martin; Satrústegui, Jorgina; Sweet, Ian R.; Paquet-Durand, François; Hurley, James B.

    2013-01-01

    Transport of pyruvate into mitochondria by the mitochondrial pyruvate carrier is crucial for complete oxidation of glucose and for biosynthesis of amino acids and lipids. Zaprinast is a well known phosphodiesterase inhibitor and lead compound for sildenafil. We found Zaprinast alters the metabolomic profile of mitochondrial intermediates and amino acids in retina and brain. This metabolic effect of Zaprinast does not depend on inhibition of phosphodiesterase activity. By providing 13C-labeled glucose and glutamine as fuels, we found that the metabolic profile of the Zaprinast effect is nearly identical to that of inhibitors of the mitochondrial pyruvate carrier. Both stimulate oxidation of glutamate and massive accumulation of aspartate. Moreover, Zaprinast inhibits pyruvate-driven O2 consumption in brain mitochondria and blocks mitochondrial pyruvate carrier in liver mitochondria. Inactivation of the aspartate glutamate carrier in retina does not attenuate the metabolic effect of Zaprinast. Our results show that Zaprinast is a potent inhibitor of mitochondrial pyruvate carrier activity, and this action causes aspartate to accumulate at the expense of glutamate. Our findings show that Zaprinast is a specific mitochondrial pyruvate carrier (MPC) inhibitor and may help to elucidate the roles of MPC in amino acid metabolism and hypoglycemia. PMID:24187136

  20. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions.

    PubMed

    Pinchuk, Grigoriy E; Geydebrekht, Oleg V; Hill, Eric A; Reed, Jennifer L; Konopka, Allan E; Beliaev, Alexander S; Fredrickson, Jim K

    2011-12-01

    Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of a wide range of electron acceptors. Here, we quantitatively assessed the lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor-limited growth on lactate with O(2), lactate with fumarate, and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensable for growth, the respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions, S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the tricarboxylic acid (TCA) cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under conditions of O(2) limitation but was required for anaerobic growth, likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as an electron donor and an electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by a recently described new type of oxidative NAD(P)H-independent d-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by the generation of proton motive force.

  1. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase activities in plant mitochondria: interaction via a common coenzyme a pool.

    PubMed

    Dry, I B; Wiskich, J T

    1987-08-15

    2-Oxoglutarate (2-OG)-dependent O2 uptake by washed or purified turnip (Brassica rapa L.) and pea (Pisum sativum L. cv. Massey Gem) leaf mitochondria, in the presence of malonate, was inhibited between 65 and 90% by micromolar levels of pyruvate. The inhibition was not observed in the absence of malonate and was reversed by alpha-cyano-4-hydroxycinnamic acid. The inhibition was also reversed by oxaloacetate or by malate, but not by any other tricarboxylic acid cycle intermediates. The stimulation of O2 uptake by oxaloacetate was half maximal at 8-9 microM and was transient, indicating its action was not mediated through the complete metabolic removal of pyruvate. Pyruvate had not effect on 2-OG oxidation under conditions in which pyruvate dehydrogenase was not active, indicating that pyruvate metabolism, rather than pyruvate itself, was responsible for producing the inhibition of 2-OG oxidation. Similar results were obtained with detergent-treated mitochondrial extracts with the exception that the inhibition of 2-OG oxidation by pyruvate could also be reversed by coenzyme A. The results suggest that pyruvate inhibits 2-oxoglutarate oxidation, in intact plant mitochondria, by sequestering intramitochondrial CoA as acetyl-CoA and, in the absence of citrate synthase activity, reduces the amount of free coenzyme A available for 2-oxoglutarate dehydrogenase. These results indicate that pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase share a common CoA pool within plant mitochondria and that the turnover of the acyl-CoA product of one enzyme will dramatically influence the activity of the other.

  2. Pyruvate Oxidoreductases Involved in Glycolytic Anaerobic Metabolism of Polychaetes from the Continental Shelf off Central-South Chile

    NASA Astrophysics Data System (ADS)

    González, R. R.; Quiñones, R. A.

    2000-10-01

    The presence of low oxygen conditions in extensive areas of the continental shelf off central-south Chile has important effects on the biochemical adaptations of the organisms living in this ecosystem. Polychaetes assemblages cohabit on the shelf with an extensively distributed prokaryotic community made up of giant filamentous sulfur bacteria (mainly Thioploca sp.). The aim of this research was to characterize the pyruvate oxidoreductases enzymes involved in the biochemical adaptation of these benthic polychaetes. Nine polychaete species ( Paraprionospio pinnata, Nephtys ferruginea, Glycera americana, Haploscoloplos sp., Lumbrineris composita, Sigambra bassi, Aricidea pigmentata , Cossura chilensis, and Pectinaria chilensis) were assayed for lactic dehydrogenase (LDH), octopine dehydrogenase (OPDH), strombine dehydrogenase (STRDH) and alanopine dehydrogenase (ALPDH). Each species had a characteristic number of the pyruvate oxidoreductases assayed ranging from 4 in Paraprionospio pinnata to 1 in Pectinaria chilensis . The pyruvate saturation curves obtained for the enzymes from all species analysed, except L. composita, suggest that NADH can be oxidized at different rates depending on the amino acid used in the reaction with pyruvate. Our results indicate that organisms having more that one pyruvate oxidoreductase present a greater metabolic capacity to cope with functional and environmental hypoxia because these enzymes would better regulate the pyruvate consumption rate during the transition period. Thus, the dominance of Paraprionospio pinnata in the study area and its worldwide distribution is consistent with its higher number of pyruvate oxidoreductases with different pyruvate consumption rates involved in anaerobic metabolism. Finally, a positive allometric relationship was found between body size and the specific activity of ALPDH, STRDH, and maximum pyruvate oxidoreductase specific activity. This latter result suggests a positive scaling of the specific

  3. Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

    SciTech Connect

    Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Reed, Jennifer L.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.

    2011-12-01

    Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of wide range of electron acceptors. Here, we quantitatively assessed lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor limited growth on lactate with O2; lactate with fumarate; and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensible for growth, respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the TCA cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under O2 limitation but was required for anaerobic growth likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as electron donor and electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by recently described new type of oxidative NAD(P)H independent D-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by proton motive force generation.

  4. Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

    SciTech Connect

    Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Reed, Jennifer L.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.

    2011-12-30

    Shewanella oneidensis MR-1 is a facultative anaerobe growing by coupling organic matter oxidation to reduction of wide range of electron acceptors. Here we quantitatively assessed lactate and pyruvate metabolism of these bacteria under three distinct conditions: electron acceptor limited growth on lactate with O2 and fumarate, and pyruvate fermentation, which does not sustain growth but allows cells to survive for prolonged period. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of all ATP needed for growth depending on the electron acceptor nature and availability. While being indispensible for growth, respiration of fumarate does not contribute much to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions S. oneidensis MR-1 carried out incomplete substrate oxidation, and TCA cycle did not contribute significantly to substrate oxidation. Pyruvate dehydrogenase reaction was not involved in lactate metabolism under O2 limitation, however was important for anaerobic growth probably supplying reducing equivalents for biosynthesis. Unexpectedly, obtained results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination between substrate-level phosphorylation and a respiratory process, where pyruvate serves as electron donor and electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by recently described new type of oxidative NAD(P)H independent D-lactate dehydrogenase (Dld-II). Based on involved enzymes localization we hypothesize that pyruvate reduction coupled to formate oxidation may be accompanied by proton motive force generation.

  5. Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols

    SciTech Connect

    Bartels, I.; Knackmuss, H.J.; Reineke, W.

    1984-03-01

    The inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-chloro- and 3-fluorocatechol and the iron-chelating agent Tiron (catechol-3,5-disulfonate) was studied. Whereas inactivation by Tiron is an oxygen-independent and mostly reversible process, inactivation by the 3-halocatechols was only observed in the presence of oxygen and was largely irreversible. The rate constants for inactivation (K/sub 2/) were 1.62 x 10/sup -3/ sec/sup -1/ for 3-chlorocatechol and 2.38 x 10/sup -3/ sec/sup -1/ for 3-fluorocatechol. The inhibitor constants (K/sub i/) were 23 ..mu..M for 3-chlorocatechol and 17 ..mu..M for 3-fluorocatechol. The kinetic data for 3-fluorocatechol could only be obtained in the presence of 2-mercaptoethanol. Besides inactivated enzyme, some 2-hydroxyhexa-2,4-dienoic acid as the actual suicide product of meta-cleavage. A side product of 3-fluorocatechol cleavage is a yellow compound with the spectral characteristics of a 2-hydroxy-6-oxohexa-2,4-dienoci acid indicating 1,6-cleavage. Rates of inactivation by 3-fluorocatechol were reduced in the presence of superoxide dismutase, catalase, formate, and mannitol, which implies that superoxide anion, hydrogen peroxide, and hydroxyl radical exhibit additional inactivation. 64 references.

  6. Characterization of the Role of β-Carotene 9,10-Dioxygenase in Macular Pigment Metabolism*

    PubMed Central

    Babino, Darwin; Palczewski, Grzegorz; Widjaja-Adhi, M. Airanthi K.; Kiser, Philip D.; Golczak, Marcin; von Lintig, Johannes

    2015-01-01

    A family of enzymes collectively referred to as carotenoid cleavage oxygenases is responsible for oxidative conversion of carotenoids into apocarotenoids, including retinoids (vitamin A and its derivatives). A member of this family, the β-carotene 9,10-dioxygenase (BCO2), converts xanthophylls to rosafluene and ionones. Animals deficient in BCO2 highlight the critical role of the enzyme in carotenoid clearance as accumulation of these compounds occur in tissues. Inactivation of the enzyme by a four-amino acid-long insertion has recently been proposed to underlie xanthophyll concentration in the macula of the primate retina. Here, we focused on comparing the properties of primate and murine BCO2s. We demonstrate that the enzymes display a conserved structural fold and subcellular localization. Low temperature expression and detergent choice significantly affected binding and turnover rates of the recombinant enzymes with various xanthophyll substrates, including the unique macula pigment meso-zeaxanthin. Mice with genetically disrupted carotenoid cleavage oxygenases displayed adipose tissue rather than eye-specific accumulation of supplemented carotenoids. Studies in a human hepatic cell line revealed that BCO2 is expressed as an oxidative stress-induced gene. Our studies provide evidence that the enzymatic function of BCO2 is conserved in primates and link regulation of BCO2 gene expression with oxidative stress that can be caused by excessive carotenoid supplementation. PMID:26307071

  7. Cysteine dioxygenase type 1 promotes adipogenesis via interaction with peroxisome proliferator-activated receptor gamma

    SciTech Connect

    Deng, Peng; Chen, Yi; Ji, Ning; Lin, Yunfeng; Yuan, Quan; Ye, Ling; Chen, Qianming

    2015-02-27

    Mammalian cysteine dioxygenase type 1 (CDO1) is an essential enzyme for taurine biosynthesis and the biodegradation of toxic cysteine. As previously suggested, Cdo1 may be a marker of liposarcoma progression and adipogenic differentiation, but the role of Cdo1 in adipogenesis has yet been reported. In this study, we found that the expression of Cdo1 is dramatically elevated during adipogenic differentiation of 3T3-L1 pre-adipocytes and mouse bone marrow-derived mesenchymal stem cells (mBMSCs). Conversely, knockdown of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation in 3T3-L1 cells and mBMSCs. Mechanistically, we found Cdo1 interacted with Pparγ in response to adipogenic stimulus. Further, depletion of Cdo1 reduced the recruitment of Pparγ to the promoters of C/EBPα and Fabp4. Collectively, our finding indicates that Cdo1 may be a co-activator of Pparγ in adipogenesis, and may contribute to the development of disease associated with excessive adipose tissue. - Highlights: • Cdo1expression is highly up-regulated during adipogenic differentiation of 3T3-L1 and mBMSCs. • Depletion of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation. • Cdo1interacts with Pparγ during adipogenesis. • Knockdown of Cdo1 inhibited Pparγ binding to the promoters of C/EBPα and Fabp4.

  8. Inhibition of indoleamine 2,3-dioxygenase activity accelerates skin wound healing.

    PubMed

    Ito, Hiroyasu; Ando, Tatsuya; Ogiso, Hideyuki; Arioka, Yuko; Saito, Kuniaki; Seishima, Mitsuru

    2015-06-01

    Skin wound healing is a complex process involving several stages that include inflammation, proliferation, and remodeling. In the inflammatory phase, pro-inflammatory cytokines and chemokines are induced at the wound site and, they contribute to the development of wound healing. These cytokines also induce indoleamine 2,3-dioxygenase (IDO1) activity; this is the rate-limiting and first enzyme in the l-tryptophan (TRP)-l-kynurenine (KYN) pathway. This study examined the effect of IDO1 on the process of skin wound healing. The expression of the Ido1 mRNA was enhanced after creating a wound in wild-type (WT) mice. TRP concentration was simultaneously reduced at the wound site. The rate of wound healing in IDO1 knockout (IDO-KO) mice was significantly higher than that in WT mice. 1-Methyl-dl-tryptophan (1-MT), a potent inhibitor of IDO1, increased the rate of wound healing in WT mice. The administration of TRP accelerated wound healing in vivo and in an in vitro experimental model, whereas the rate of wound healing was not affected by the administration of KYN. The present study identifies the role of IDO1 in skin wound healing, and indicates that the local administration of 1-MT or TRP may provide an effective strategy for accelerating wound healing.

  9. Computational Study of Catalytic Reaction of Quercetin 2,4-Dioxygenase.

    PubMed

    Saito, Toru; Kawakami, Takashi; Yamanaka, Shusuke; Okumura, Mitsutaka

    2015-06-11

    We present a quantum mechanics/molecular mechanics (QM/MM) and QM-only study on the oxidative ring-cleaving reaction of quercetin catalyzed by quercetin 2,4-dioxygenase (2,4-QD). 2,4-QD has a mononuclear type 2 copper center and incorporates two oxygen atoms at C2 and C4 positions of the substrate. It has not been clear whether dioxygen reacts with a copper ion or a substrate radical as the first step. We have found that dioxygen is more likely to bind to a Cu(2+) ion, involving the dissociation of the substrate from the copper ion. Then a Cu(2+)-alkylperoxo complex can be generated. Comparison of geometry and stability between QM-only and QM/MM results strongly indicates that steric effects of the protein environment contribute to maintain the orientation of the substrate dissociated from the copper center. The present QM/MM results also highlight that a prior rearrangement of the Cu(2+)-alkylperoxo complex and a subsequent hydrogen bond switching assisted by the movement of Glu73 can facilitate formation of an endoperoxide intermediate selectively. PMID:25990020

  10. Substrate Recognition and Catalysis by the Cofactor-Independent Dioxygenase DpgC+

    SciTech Connect

    Fielding,E.; Widboom, P.; Bruner, S.

    2007-01-01

    The enzyme DpgC belongs to a small class of oxygenases not dependent on accessory cofactors for activity. DpgC is in the biosynthetic pathway for the nonproteinogenic amino acid 3, 5-dihydroxyphenylglycine in actinomycetes bacteria responsible for the production of the vancomycin/teicoplanin family of antibiotic natural products. The X-ray structure of DpgC confirmed the absence of cofactors and defined a novel hydrophobic dioxygen binding pocket adjacent to a bound substrate analogue. In this paper, the role specific amino acids play in substrate recognition and catalysis is examined through biochemical and structural characterization of site-specific enzyme mutations and alternate substrates. The results establish the importance of three amino acids, Arg254, Glu299, and Glu189, in the chemistry of DpgC. Arg254 and Glu189 join to form a specific contact with one of the phenolic hydroxyls of the substrate, and this interaction plays a key role in both substrate recognition and catalysis. The X-ray crystal structure of Arg254Lys was determined to address the role this residue plays in the chemistry. In addition, characterization of alternate substrate analogues demonstrates the presence and position of phenol groups are necessary for both enzyme recognition and downstream oxidation chemistry. Overall, this work defines the mechanism of substrate recognition and specificity by the cofactor-independent dioxygenase DpgC.

  11. Antiparasitic and antiproliferative effects of indoleamine 2,3-dioxygenase enzyme expression in human fibroblasts.

    PubMed Central

    Gupta, S L; Carlin, J M; Pyati, P; Dai, W; Pfefferkorn, E R; Murphy, M J

    1994-01-01

    Studies were carried out to evaluate the proposed role of indoleamine 2,3-dioxygenase (INDO) induction in the antimicrobial and antiproliferative effects of gamma interferon (IFN-gamma) in human fibroblasts. The INDO cDNA coding region was cloned in the pMEP4 expression vector, containing the metallothionein (MTII) promoter in the sense (+ve) or the antisense (-ve) orientation. Human fibroblasts (GM637) stably transfected with the sense construct expressed INDO activity after treatment with CdCl2 or ZnSO4, but cells transfected with the antisense construct did not. The growth of Chlamydia psittaci was strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+ or Zn2+. The inhibition correlated with the level of INDO activity induced and could be reversed by the addition of excess tryptophan to the medium. The growth of Toxoplasma gondii was also strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+. Expression of Cd(2+)-induced INDO activity also inhibited thymidine incorporation and led to cytotoxicity in INDO +ve cells but not in INDO -ve cells. Thus, the induction of INDO activity by IFN-gamma may be an important factor in the antimicrobial and antiproliferative effects of IFN-gamma in human fibroblasts. Images PMID:8188349

  12. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase

    PubMed Central

    Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M.; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M.; Fuchs, Dietmar; Stuppner, Hermann

    2013-01-01

    Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells in vitro methanol and ethylacetate seed extracts were prepared from cold pressed seed cakes of C. tinctorius and three lignan derivatives, trachelogenin, arctigenin and matairesinol were isolated. The influence on tryptophan breakdown was investigated in peripheral blood mononuclear cells (PBMCs). Effects were compared to neopterin production in the same cellular assay. Both seed extracts suppressed tryptophan breakdown in stimulated PBMC. The three structurally closely related isolates exerted differing suppressive activity on PBMC: arctigenin (IC50 26.5 μM) and trachelogenin (IC50 of 57.4 μM) showed higher activity than matairesinol (IC50 >200 μM) to inhibit tryptophan breakdown. Effects on neopterin production were similar albeit generally less strong. Data show an immunosuppressive property of compounds which slows down IDO activity. The in vitro results support the view that some of the anti-inflammatory, anti-cancer and antidepressant properties of C. tinctorius lignans might relate to their suppressive influence on tryptophan breakdown. PMID:23867649

  13. Characterization of Bacillus thuringiensis l-Isoleucine Dioxygenase for Production of Useful Amino Acids▿†

    PubMed Central

    Hibi, Makoto; Kawashima, Takashi; Kodera, Tomohiro; Smirnov, Sergey V.; Sokolov, Pavel M.; Sugiyama, Masakazu; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2011-01-01

    We determined the enzymatic characteristics of an industrially important biocatalyst, α-ketoglutarate-dependent l-isoleucine dioxygenase (IDO), which was found to be the enzyme responsible for the generation of (2S,3R,4S)-4-hydroxyisoleucine in Bacillus thuringiensis 2e2. Depending on the amino acid used as the substrate, IDO catalyzed three different types of oxidation reactions: hydroxylation, dehydrogenation, and sulfoxidation. IDO stereoselectively hydroxylated several hydrophobic aliphatic l-amino acids, as well as l-isoleucine, and produced (S)-3-hydroxy-l-allo-isoleucine, 4-hydroxy-l-leucine, (S)-4-hydroxy-l-norvaline, 4-hydroxy-l-norleucine, and 5-hydroxy-l-norleucine. The IDO reaction product of l-isoleucine, (2S,3R,4S)-4-hydroxyisoleucine, was again reacted with IDO and dehydrogenated into (2S,3R)-2-amino-3-methyl-4-ketopentanoate, which is also a metabolite found in B. thuringiensis 2e2. Interestingly, IDO catalyzed the sulfoxidation of some sulfur-containing l-amino acids and generated l-methionine sulfoxide and l-ethionine sulfoxide. Consequently, the effective production of various modified amino acids would be possible using IDO as the biocatalyst. PMID:21821743

  14. Characterization of Bacillus thuringiensis L-isoleucine dioxygenase for production of useful amino acids.

    PubMed

    Hibi, Makoto; Kawashima, Takashi; Kodera, Tomohiro; Smirnov, Sergey V; Sokolov, Pavel M; Sugiyama, Masakazu; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2011-10-01

    We determined the enzymatic characteristics of an industrially important biocatalyst, α-ketoglutarate-dependent l-isoleucine dioxygenase (IDO), which was found to be the enzyme responsible for the generation of (2S,3R,4S)-4-hydroxyisoleucine in Bacillus thuringiensis 2e2. Depending on the amino acid used as the substrate, IDO catalyzed three different types of oxidation reactions: hydroxylation, dehydrogenation, and sulfoxidation. IDO stereoselectively hydroxylated several hydrophobic aliphatic l-amino acids, as well as l-isoleucine, and produced (S)-3-hydroxy-l-allo-isoleucine, 4-hydroxy-l-leucine, (S)-4-hydroxy-l-norvaline, 4-hydroxy-l-norleucine, and 5-hydroxy-l-norleucine. The IDO reaction product of l-isoleucine, (2S,3R,4S)-4-hydroxyisoleucine, was again reacted with IDO and dehydrogenated into (2S,3R)-2-amino-3-methyl-4-ketopentanoate, which is also a metabolite found in B. thuringiensis 2e2. Interestingly, IDO catalyzed the sulfoxidation of some sulfur-containing l-amino acids and generated l-methionine sulfoxide and l-ethionine sulfoxide. Consequently, the effective production of various modified amino acids would be possible using IDO as the biocatalyst. PMID:21821743

  15. Indoleamine 2,3-dioxygenase (IDO) downregulates the cell surface expression of the CD4 molecule.

    PubMed

    Huang, Guanyou; Zeng, Yaoying; Liang, Peiyan; Zhou, Congrong; Zhao, Shuyun; Huang, Xiuyan; Wu, Lingfei; He, Xianhui

    2012-01-01

    Indoleamine 2,3-dioxygenase (IDO) has been implicated in preventing the fetus from undergoing maternal T cell-mediated immune responses, yet the mechanism underlying these kinds of IDO-mediated immune responses has not been fully elucidated. Since the CD4 molecule plays a central role in the onset and regulation of antigen-specific immune responses, and T cell is sensitive in the absence of tryptophan, we hypothesize that IDO may reduce cell surface CD4 expression. To test this hypothesis, an adenoviral vector-based construct IDO-EGFP was generated and the effect of IDO-EGFP on CD4 expression was determined on recombinant adenoviral infected C8166 and MT-2 cells, by flow cytometry and/or Western blot analysis. The results revealed a significant downregulation of cell membrane CD4 in pAd-IDOEGFP infected cells when compared to that of mock-infected cells or infection with empty vector pAd-EGFP. Further experiments disclosed that either an addition of tryptophan or IDO inhibitor could partly restore CD4 expression in pAd-IDOEGFP infected C8166 cells. Our findings suggest that downregulation of CD4 by IDO might be one of the mechanisms through which IDO regulates T cell-mediated immune responses.

  16. Indoleamine 2,3-dioxygenase (IDO) induced by Leishmania infection of human dendritic cells.

    PubMed

    Donovan, M J; Tripathi, V; Favila, M A; Geraci, N S; Lange, M C; Ballhorn, W; McDowell, M A

    2012-10-01

    Dendritic cells (DC) play a pivotal role in regulating immunity, establishing immunologically privileged tissue microenvironments and maintaining homoeostasis. It is becoming increasingly clear that one key mechanism that mediates many DC functions is production of the immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO). For pathogens that cause chronic infection, exploitation of host DCs is a solution to establish and persist within a host. Leishmania parasites cause a range of clinical manifestations, all involving chronic infection, and are proficient at avoiding immune responses. We demonstrate here that infection of human myeloid-derived DC with L. major and L. donovani induces IDO expression using a mechanism that involves autocrine or paracrine stimulation with a DC-secreted factor. Leishmania-induced IDO suppresses allogeneic and tetanus toxoid-specific lymphocyte proliferation, an inhibition that is reversed with the IDO inhibitor, 1-methyl tryptophan (1-MT). Furthermore, IDO expression by human DC does not require live Leishmania infection, as parasite lysates also up-regulate IDO mRNA production. Our data suggest that one mechanism Leishmania parasites utilize to circumvent immune clearance may be to promote the induction of IDO among host DC within the infection microenvironment.

  17. Isolation and expression analysis of two DOPA dioxygenases in Phytolacca americana.

    PubMed

    Takahashi, Kana; Takamura, Eri; Sakuta, Masaaki

    2009-01-01

    Betacyanins and anthocyanins, two main red flower pigments, never occur together in the same plant. Although the anthocyanin biosynthetic pathway has been well analyzed, the biosynthetic genes and the regulatory mechanism of the betacyanin biosynthesis are still obscure. We cloned two cDNAs of DOPA dioxygenase from Phytolacca americana, PaDOD1 and PaDOD2, that may be involved in the betalain biosynthesis. The deduced amino acid sequence of PaDOD1 and PaDOD2 showed approximately 80% homology to each other. The promoter regions of PaDOD1 and PaDOD2 were isolated by inverse PCR and analyzed using PLACE database. Some putative MYB, bHLH, and environmental stress-responsive transcription factor binding sites were detected in the PaDOD1 and PaDOD2 promoter regions. Expression patterns of PaDOD1 and PaDOD2 in suspension cultures of P. americana were investigated by semiquantitative RT-PCR. The transcripts of PaDODs were found in both betacyanin-producing red cells and non-betacyanin-producing white cells, suggesting that not only the expression of DOD, but also the supplementation of DOPA might be a regulatory step for the betalain biosynthesis in P. americana.

  18. The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression and Autoimmunity

    PubMed Central

    Mbongue, Jacques C.; Nicholas, Dequina A.; Torrez, Timothy W.; Kim, Nan-Sun; Firek, Anthony F.; Langridge, William H.R.

    2015-01-01

    Indoleamine 2, 3-dioxygenase (IDO) is the first and rate limiting catabolic enzyme in the degradation pathway of the essential amino acid tryptophan. By cleaving the aromatic indole ring of tryptophan, IDO initiates the production of a variety of tryptophan degradation products called “kynurenines” that are known to exert important immuno-regulatory functions. Because tryptophan must be supplied in the diet, regulation of tryptophan catabolism may exert profound effects by activating or inhibiting metabolism and immune responses. Important for survival, the regulation of IDO biosynthesis and its activity in cells of the immune system can critically alter their responses to immunological insults, such as infection, autoimmunity and cancer. In this review, we assess how IDO-mediated catabolism of tryptophan can modulate the immune system to arrest inflammation, suppress immunity to cancer and inhibit allergy, autoimmunity and the rejection of transplanted tissues. Finally, we examine how vaccines may enhance immune suppression of autoimmunity through the upregulation of IDO biosynthesis in human dendritic cells. PMID:26378585

  19. Niacin metabolism and indoleamine 2,3-dioxygenase activation in malnourished patients with flaky paint dermatosis.

    PubMed

    Maltos, André Luiz; Portari, Guilherme Vannucchi; Moraes, Giselle Vanessa; Monteiro, Marina Casteli Rodrigues; Vannucchi, Helio; da Cunha, Daniel Ferreira

    2015-06-01

    Flaky paint dermatosis, characterized by extensive, often bilateral areas of flaking and pigmentation, mostly in sun unexposed areas is considered a feature of kwashiorkor in both children and adults, and must be differentiated from other dermatosis, including chapped and xerotica skin, and pellagra. In this case series we provide evidence that malnourished patients with flaky paint dermatosis and infection/inflammation shown laboratory data suggestive of indoleamine 2,3-dioxygenase (IDO) activation, besides decreased urinary excretion of N1-methylnicotinamide (N1 MN), a marker of pellagra. We study nine adult patients showing flaky paint dermatosis and clinical features of infection or inflammation, and increased serum C-reactive protein, characteristic of the presence of acute phase response syndrome. As a group, they had low or deficient urinary N1 MN excretion (0.52 ± 0.39 mg/g creatinine) compatible with pellagra. They also showed low serum tryptophan levels (<29 μmol/L) and a serum kynurenine/tryptophan ratio higher than 0.04, suggesting increased IDO expression and increase in the tryptophan oxidation. Findings suggest that some patients with flaky paint dermatosis showed laboratory data suggestive of IDO activation, besides decreased N1 MN urinary excretion. Taken together, the data support the idea that flaky paint dermatosis could be a skin manifestation of niacin deficiency.

  20. Isolation and Functional Characterization of Carotenoid Cleavage Dioxygenase-1 from Laurus nobilis L. (Bay Laurel) Fruits.

    PubMed

    Yahyaa, Mosaab; Berim, Anna; Isaacson, Tal; Marzouk, Sally; Bar, Einat; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Ibdah, Mwafaq

    2015-09-23

    Bay laurel (Laurus nobilis L.) is an agriculturally important tree used in food, drugs, and the cosmetics industry. Many of the health beneficial properties of bay laurel are due to volatile terpene metabolites that they contain, including various norisoprenoids. Despite their importance, little is known about the norisoprenoid biosynthesis in Laurus nobilis fruits. We found that the volatile norisoprenoids 6-methyl-5-hepten-2-one, pseudoionone, and β-ionone accumulated in Laurus nobilis fruits in a pattern reflecting their carotenoid content. A full-length cDNA encoding a potential carotenoid cleavage dioxygenase (LnCCD1) was isolated. The LnCCD1 gene was overexpressed in Escherichia coli, and recombinant protein was assayed for its cleavage activity with an array of carotenoid substrates. The LnCCD1 protein was able to cleave a variety of carotenoids at the 9,10 (9',10') and 5,6 (5',6') positions to produce 6-methyl-5-hepten-2-one, pseudoionone, β-ionone, and α-ionone. Our results suggest a role for LnCCD1 in Laurus nobilis fruit flavor biosynthesis. PMID:26359684

  1. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase.

    PubMed

    Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M; Fuchs, Dietmar; Stuppner, Hermann

    2013-10-15

    Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells in vitro methanol and ethylacetate seed extracts were prepared from cold pressed seed cakes of C. tinctorius and three lignan derivatives, trachelogenin, arctigenin and matairesinol were isolated. The influence on tryptophan breakdown was investigated in peripheral blood mononuclear cells (PBMCs). Effects were compared to neopterin production in the same cellular assay. Both seed extracts suppressed tryptophan breakdown in stimulated PBMC. The three structurally closely related isolates exerted differing suppressive activity on PBMC: arctigenin (IC50 26.5μM) and trachelogenin (IC50 of 57.4μM) showed higher activity than matairesinol (IC50 >200μM) to inhibit tryptophan breakdown. Effects on neopterin production were similar albeit generally less strong. Data show an immunosuppressive property of compounds which slows down IDO activity. The in vitro results support the view that some of the anti-inflammatory, anticancer and antidepressant properties of C. tinctorius lignans might relate to their suppressive influence on tryptophan breakdown.

  2. Modulation of invariant natural killer T cell cytokine responses by indoleamine 2,3-dioxygenase

    PubMed Central

    Molano, Alberto; Illarionov, Petr A.; Besra, Gurdyal S.; Putterman, Chaim; Porcelli, Steven A.

    2008-01-01

    1. SUMMARY The intracellular enzyme indoleamine 2,3-dioxygenase (IDO), which degrades the rare and essential aminoacid tryptophan and converts it into a series of biologically active catabolites, has been linked to the regulation of immune tolerance by specific dendritic cell subsets, and to the downmodulation of exacerbated immune responses. Although the immunoregulatory effects of IDO may be in part due to generalized suppression of cell proliferation caused by tryptophan starvation, there is also evidence that tryptophan catabolites could be directly responsible for some of the observed effects. In this report, we investigated the consequences of IDO activity, particularly with regard to the effects of tryptophan-derived catabolites, on the cytokine responses of activated invariant natural killer T (iNKT) cells, a specialized T cell subset known to have immunoregulatory properties. Our results showed that pharmacologic inhibition of IDO skewed cytokine responses of iNKT cells towards a Th1 profile. In contrast, the presence at low micromolar concentrations of the tryptophan catabolites L-kynurenine, 3-hydroxy-kynurenine, or 3-hydroxy-anthranilic acid shifted the cytokine balance towards a Th2 pattern. These findings have implications for our current understanding of immunoregulation, and the mechanisms by which iNKT cells participate in the modulation of immune responses. PMID:18272236

  3. Indoleamine-2,3-dioxygenase (IDO) metabolic activity is detrimental for cervical cancer patient survival

    PubMed Central

    Ferns, Debbie M; Kema, Ido P; Buist, Marrije R; Nijman, Hans W; Kenter, Gemma G; Jordanova, Ekaterina S

    2015-01-01

    The expression of the immunomodulating enzyme indoleamine-2,3-dioxygenase (IDO) suppresses T-lymphocyte function, thus correlating with poor survival in a variety of cancer patients. IDO degrades the essential amino acid tryptophan leading to immunosuppressive kynurenines production. In the present study, concentrations of tryptophan, 3-hydroxykynurenine, and kynurenine were measured in pre-treatment serum samples of 251 cervical cancer patients by a mass-spectrometric method (XLC-MS/MS) and IDO activity determined by the kynurenine/tryptophan (Kyn/Trp) ratio. A low concentration of tryptophan was found to be significantly associated with tumors greater than 4 cm and lymph node metastatic spread. Furthermore, significant positive correlations were found between high concentrations of the tryptophan metabolites kynurenine and 3-hydroxykynurenine and advanced disease stage (FIGO >IIA) and lymph node metastases. High levels of kynurenine were further associated with parametrial invasion and tumor size. A high Kyn/Trp ratio was related to lymph node metastasis, FIGO stage, tumor size, parametrial invasion and poor disease-specific survival. These results suggest that IDO activation is linked to poor clinicopathological parameters and worse survival in cervical cancer, warranting the use of IDO inhibitors in future clinical trials. PMID:25949879

  4. Salmonella overcomes tumor immune tolerance by inhibition of tumor indoleamine 2, 3-dioxygenase 1 expression

    PubMed Central

    Kuan, Yu-Diao; Lee, Che-Hsin

    2016-01-01

    Over the past decades, Salmonella has been proven capable of inhibiting tumor growth. It can specifically target tumors and due to its facultative anaerobic property, can be more penetrative than other drug therapies. However, the molecular mechanism by which Salmonella inhibits tumor growth is still incompletely known. The antitumor therapeutic effect mediated by Salmonella is associated with an inflammatory immune response at the tumor site and a T cell-dependent immune response. Many tumors have been proven to have a high expression of indoleamine 2, 3-dioxygenase 1 (IDO), which is a rate-limiting enzyme that catalyzes tryptophan to kynurenine, thus causing immune tolerance within the tumor microenvironment. With decreased expression of IDO, increased immune response can be observed, which might be helpful when developing cancer immunotherapy. The expression of IDO was decreased after tumor cells were infected with Salmonella. In addition, Western blot analysis showed that the expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and phospho-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells were decreased after Salmonella infection. In conclusion, our results indicate that Salmonella inhibits IDO expression and plays a crucial role in anti-tumor therapy, which might be a promising strategy combined with other cancer treatments. PMID:26517244

  5. Dioxygenase-like reactivity of an isolable superoxo-nickel(II) complex.

    PubMed

    Company, Anna; Yao, Shenglai; Ray, Kallol; Driess, Matthias

    2010-08-16

    Although O(2) activation by metals such as iron and copper has been a matter of intensive research in the last decades, this type of chemistry for nickel systems is still in its infancy. Moreover, studies regarding the oxidizing ability of the resulting "Ni(n)-O(2)" species towards exogenous substrates are scarce. In this work, we report on the reactivity of an isolable and thermally stable mononuclear superoxo-nickel compound [Ni(II)(beta-diketiminato)(O(2))] (1) towards different types of organic substrates. In addition, we have been able to prove that the beta-diketiminato ligand can undergo partial intramolecular oxidation due to close proximity between the isopropyl groups of the beta-diketiminato-aryl and the superoxo subunits. Compound 1 performs hydrogen-atom abstraction from O-H and N-H groups and most importantly it shows an unprecedented dioxygenase-like reactivity in the oxidation of 2,4,6-tri-tert-butylphenol. The latter reaction most likely occurs through the mediation of a putative [Ni(III)-oxo] intermediate, affording an unprecedented oxidation product of the phenol that incorporates two oxygen atoms from a single O(2) subunit. Results presented herein provide evidence of the striking oxidizing ability of dioxygen-nickel species and further support the viability to use such systems as oxidation catalysts analogous to its heavy metal congener, palladium.

  6. The key role of water in the dioxygenase function of Escherichia coli flavohemoglobin.

    PubMed

    Ferreiro, Dardo N; Boechi, Leonardo; Estrin, Darío A; Martí, Marcelo A

    2013-02-01

    Flavohemoglobins (FHbs) are members of the globin superfamily, widely distributed among prokaryotes and eukaryotes that have been shown to carry out nitric oxide dioxygenase (NOD) activity. In prokaryotes, such as Escherichia coli, NOD activity is a defence mechanism against the NO release by the macrophages of the hosts' immune system during infection. Because of that, FHbs have been studied thoroughly and several drugs have been developed in an effort to fight infectious processes. Nevertheless, the protein's structural determinants involved in the NOD activity are still poorly understood. In this context, the aim of the present work is to unravel the molecular basis of FHbs structural dynamics-to-function relationship using state of the art computer simulation tools. In an effort to fulfill this goal, we studied three key processes that determine NOD activity, namely i) ligand migration into the active site ii) stabilization of the coordinated oxygen and iii) intra-protein electron transfer (ET). Our results allowed us to determine key factors related to all three processes like the presence of a long hydrophobic tunnel for ligand migration, the presence of a water mediated hydrogen bond to stabilize the coordinated oxygen and therefore achieve a high affinity, and the best possible ET paths between the FAD and the heme, where water molecules play an important role. Taken together the presented results close an important gap in our understanding of the wide and diverse globin structural-functional relationships.

  7. Niacin metabolism and indoleamine 2,3-dioxygenase activation in malnourished patients with flaky paint dermatosis.

    PubMed

    Maltos, André Luiz; Portari, Guilherme Vannucchi; Moraes, Giselle Vanessa; Monteiro, Marina Casteli Rodrigues; Vannucchi, Helio; da Cunha, Daniel Ferreira

    2015-06-01

    Flaky paint dermatosis, characterized by extensive, often bilateral areas of flaking and pigmentation, mostly in sun unexposed areas is considered a feature of kwashiorkor in both children and adults, and must be differentiated from other dermatosis, including chapped and xerotica skin, and pellagra. In this case series we provide evidence that malnourished patients with flaky paint dermatosis and infection/inflammation shown laboratory data suggestive of indoleamine 2,3-dioxygenase (IDO) activation, besides decreased urinary excretion of N1-methylnicotinamide (N1 MN), a marker of pellagra. We study nine adult patients showing flaky paint dermatosis and clinical features of infection or inflammation, and increased serum C-reactive protein, characteristic of the presence of acute phase response syndrome. As a group, they had low or deficient urinary N1 MN excretion (0.52 ± 0.39 mg/g creatinine) compatible with pellagra. They also showed low serum tryptophan levels (<29 μmol/L) and a serum kynurenine/tryptophan ratio higher than 0.04, suggesting increased IDO expression and increase in the tryptophan oxidation. Findings suggest that some patients with flaky paint dermatosis showed laboratory data suggestive of IDO activation, besides decreased N1 MN urinary excretion. Taken together, the data support the idea that flaky paint dermatosis could be a skin manifestation of niacin deficiency. PMID:25933499

  8. Expression and post-translational modification of human 4-hydroxy-phenylpyruvate dioxygenase.

    PubMed

    Aarenstrup, Lene; Falch, Anne Marie; Jakobsen, Kirsten K; Neve, Søren; Henriksen L, Linda Ø; Tommerup, Niels; Leffers, Henrik; Kristiansen, Karsten

    2002-01-01

    4-hydroxyphenylpyruvate dioxygenase (HPD) (EC 1.13.11.27) is a key enzyme involved in tyrosine catabolism. Congenital HPD deficiency is a rare, relatively benign condition known as hereditary type III tyrosinemia. The severe type I tyrosinemia, caused by a deficiency of fumarylacetoacetate hydrolase which functions downstream of HPD in the tyrosine degradation pathway, is often associated with decreased expression of HPD, and interestingly, inhibition of HPD activity seems to ameliorate the clinical symptoms of type I tyrosinemia. The HPD gene was previously mapped to the chromosomal region 12q24-->qter. In the present study high-resolution chromosome mapping localized the HPD gene to 12q24.31. DNase I footprinting, revealed that four regions of the HPD promoter were protected by rat liver nuclear proteins. Computer-assisted analyses suggested that these elements might bind Sp1/AP2, HNF4, HNF3/CREB, and C/EBP, respectively. In transient transfection experiments, the proximal 271bp of the promoter conferred basal transcriptional activation in human Chang cells. Sequences in intron 1 were able to enhance the activity of this basal promoter. Finally, vaccinia virus-based expression provided evidence that HPD is subject to phosphorylation, and furthermore, allowed mapping of the HPD protein in the human keratinocyte 2D database.

  9. Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria.

    PubMed

    Tomoeda, K; Awata, H; Matsuura, T; Matsuda, I; Ploechl, E; Milovac, T; Boneh, A; Scott, C R; Danks, D M; Endo, F

    2000-11-01

    The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction of 4-hydroxyphenylpyruvic acid to homogentisic acid in the tyrosine catabolism pathway. A deficiency in the catalytic activity of HPD may lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been postulated that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of 'hawkinsin,' may also be a result of HPD deficiency. Hawkinsin is a sulfur amino acid identified as (2-l-cystein-S-yl, 4-dihydroxycyclohex-5-en-1-yl)acetic acid. Patients with hawkinsinuria excrete this metabolite in their urine throughout their life, although symptoms of metabolic acidosis and tyrosinemia improve in the first year of life. We performed analyses of the HPD gene in a patient with tyrosinemia type III and two unrelated patients with hawkinsinuria. A homozygous missense mutation predicting an Ala to Val change at codon 268 (A268V) in the HPD gene was found in the patient with tyrosinemia type III. A heterozygous missense mutation predicting an Ala to Thr change at codon 33 (A33T) was found in the same HPD gene in the two patients with hawkinsinuria. These findings support the hypothesis that alterations in the structure and activity of HPD are causally related to two different metabolic disorders, tyrosinemia type III and hawkinsinuria.

  10. Tissue distribution, intracellular localization and proteolytic processing of rat 4-hydroxyphenylpyruvate dioxygenase.

    PubMed

    Neve, Søren; Aarenstrup, Lene; Tornehave, Ditte; Rahbek-Nielsen, Henrik; Corydon, Thomas Juhl; Roepstorff, Peter; Kristiansen, Karsten

    2003-01-01

    4-hydroxyphenylpyruvate dioxygenase (HPD) is an important enzyme involved in tyrosine catabolism. HPD was shown to be identical to a protein named the F-antigen, exploited by immunologists because of its unique immunological properties. Congenital HPD deficiency is a rare, relatively benign condition known as hereditary type III tyrosinemia. Decreased expression of HPD is often observed in association with the severe type I tyrosinemia, and interestingly, inhibition of HPD activity seems to ameliorate the clinical symptoms of type I tyrosinemia. In this study we present a comprehensive analysis of tissue specific expression and intracellular localization of HPD in the rat. By combined use of in situ hybridization and immunohistochemistry we confirm previously known sites of expression in liver and kidney. In addition, we show that HPD is abundantly expressed in neurons in the cortex, cerebellum and hippocampus. By using immunoelectron microscopy and confocal laser scanning microscopy, we provide evidence that HPD contrary to earlier assumptions specifically localizes to membranes of the endoplasmic reticulum and the Golgi apparatus. Detailed mass spectrometric analyses of HPD purified from rat liver revealed N-terminal and C-terminal processing of HPD, and expression of recombinant HPD suggested that C-terminal processing enhances the enzymatic activity.

  11. Indoleamine-2,3-dioxygenase elevated in tumor-initiating cells is suppressed by mitocans.

    PubMed

    Stapelberg, Michael; Zobalova, Renata; Nguyen, Maria Nga; Walker, Tom; Stantic, Marina; Goodwin, Jacob; Pasdar, Elham Alizadeh; Thai, Thuan; Prokopova, Katerina; Yan, Bing; Hall, Susan; de Pennington, Nicholas; Thomas, Shane R; Grant, Gary; Stursa, Jan; Bajzikova, Martina; Meedeniya, Adrian C B; Truksa, Jaroslav; Ralph, Stephen J; Ansorge, Olaf; Dong, Lan-Feng; Neuzil, Jiri

    2014-02-01

    Tumor-initiating cells (TICs) often survive therapy and give rise to second-line tumors. We tested the plausibility of sphere cultures as models of TICs. Microarray data and microRNA data analysis confirmed the validity of spheres as models of TICs for breast and prostate cancer as well as mesothelioma cell lines. Microarray data analysis revealed the Trp pathway as the only pathway upregulated significantly in all types of studied TICs, with increased levels of indoleamine-2,3-dioxygenase-1 (IDO1), the rate-limiting enzyme of Trp metabolism along the kynurenine pathway. All types of TICs also expressed higher levels of the Trp uptake system consisting of CD98 and LAT1 with functional consequences. IDO1 expression was regulated via both transcriptional and posttranscriptional mechanisms, depending on the cancer type. Serial transplantation of TICs in mice resulted in gradually increased IDO1. Mitocans, represented by α-tocopheryl succinate and mitochondrially targeted vitamin E succinate (MitoVES), suppressed IDO1 in TICs. MitoVES suppressed IDO1 in TICs with functional mitochondrial complex II, involving transcriptional and posttranscriptional mechanisms. IDO1 increase and its suppression by VE analogues were replicated in TICs from primary human glioblastomas. Our work indicates that IDO1 is increased in TICs and that mitocans suppress the protein. PMID:24145120

  12. Computational Study of Catalytic Reaction of Quercetin 2,4-Dioxygenase.

    PubMed

    Saito, Toru; Kawakami, Takashi; Yamanaka, Shusuke; Okumura, Mitsutaka

    2015-06-11

    We present a quantum mechanics/molecular mechanics (QM/MM) and QM-only study on the oxidative ring-cleaving reaction of quercetin catalyzed by quercetin 2,4-dioxygenase (2,4-QD). 2,4-QD has a mononuclear type 2 copper center and incorporates two oxygen atoms at C2 and C4 positions of the substrate. It has not been clear whether dioxygen reacts with a copper ion or a substrate radical as the first step. We have found that dioxygen is more likely to bind to a Cu(2+) ion, involving the dissociation of the substrate from the copper ion. Then a Cu(2+)-alkylperoxo complex can be generated. Comparison of geometry and stability between QM-only and QM/MM results strongly indicates that steric effects of the protein environment contribute to maintain the orientation of the substrate dissociated from the copper center. The present QM/MM results also highlight that a prior rearrangement of the Cu(2+)-alkylperoxo complex and a subsequent hydrogen bond switching assisted by the movement of Glu73 can facilitate formation of an endoperoxide intermediate selectively.

  13. Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana

    PubMed Central

    Rodríguez-Ávila, N. L.; Narváez-Zapata, J. A.; Ramírez-Benítez, J. E.; Aguilar-Espinosa, M. L.; Rivera-Madrid, R.

    2011-01-01

    Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes involved in the biosynthesis of a broad diversity of secondary metabolites known as apocarotenoids. In plants, CCDs are part of a genetic family with members which cleave specific double bonds of carotenoid molecules. CCDs are involved in the production of diverse and important metabolites such as vitamin A and abscisic acid (ABA). Bixa orellana L. is the main source of the natural pigment annatto or bixin, an apocarotenoid accumulated in large quantities in its seeds. Bixin biosynthesis has been studied and the involvement of a CCD has been confirmed in vitro. However, the CCD genes involved in the biosynthesis of the wide variety of apocarotenoids found in this plant have not been well documented. In this study, a new CCD1 gene member (BoCCD1) was identified and its expression was charaterized in different plant tissues of B. orellana plantlets and adult plants. The BoCCD1 sequence showed high homology with plant CCD1s involved mainly in the cleavage of carotenoids in several sites to generate multiple apocarotenoid products. Here, the expression profiles of the BoCCD1 gene were analysed and discussed in relation to total carotenoids and other important apocarotenoids such as bixin. PMID:21813796

  14. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase.

    PubMed

    Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M; Fuchs, Dietmar; Stuppner, Hermann

    2013-10-15

    Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells in vitro methanol and ethylacetate seed extracts were prepared from cold pressed seed cakes of C. tinctorius and three lignan derivatives, trachelogenin, arctigenin and matairesinol were isolated. The influence on tryptophan breakdown was investigated in peripheral blood mononuclear cells (PBMCs). Effects were compared to neopterin production in the same cellular assay. Both seed extracts suppressed tryptophan breakdown in stimulated PBMC. The three structurally closely related isolates exerted differing suppressive activity on PBMC: arctigenin (IC50 26.5μM) and trachelogenin (IC50 of 57.4μM) showed higher activity than matairesinol (IC50 >200μM) to inhibit tryptophan breakdown. Effects on neopterin production were similar albeit generally less strong. Data show an immunosuppressive property of compounds which slows down IDO activity. The in vitro results support the view that some of the anti-inflammatory, anticancer and antidepressant properties of C. tinctorius lignans might relate to their suppressive influence on tryptophan breakdown. PMID:23867649

  15. Reaction mechanism of cobalt-substituted homoprotocatechuate 2,3-dioxygenase: a QM/MM study.

    PubMed

    Cao, Lili; Dong, Geng; Lai, Wenzhen

    2015-04-01

    The reaction mechanisms of cobalt-substituted homoprotocatechuate 2,3-dioxygenase (Co-HPCD) with electron-rich substrate homoprotocatechuate (HPCA) and electron-poor substrate 4-nitrocatechol (4NC) were investigated by quantum mechanical/molecular mechanical (QM/MM) calculations. Our results demonstrated that the Co-O2 adducts has doublet ground state with a Co(III)-O2(•-) character when 4NC was used as the substrate, in good agreement with the EPR spectroscopic experiment. The reactive oxygen species is the doublet Co(III)-O2(•-) for Co-HPCD/4NC and the quartet SQ(•↑)-Co(II)-O2(•-↓) species for Co-HPCD/HPCA, indicating that the substrate plays important roles in the dioxygen activation by Co-HPCD. B3LYP was found to overestimate the rate-limiting barriers in Co-HPCD. TPSSh predicts barriers of 21.5 versus 12.0 kcal/mol for Co-HPCD/4NC versus Co-HPCD/HPCA, which is consistent with the fact that the rate of the reaction is decreased when the substrate was changed from HPCA to 4NC.

  16. Molecular cloning and characterization of 4-hydroxyphenylpyruvate dioxygenase gene from Lactuca sativa.

    PubMed

    Ren, Weiwei; Zhao, Lingxia; Zhang, Lida; Wang, Yuliang; Cui, Lijie; Tang, Yueli; Sun, Xiaofen; Tang, Kexuan

    2011-07-01

    Vitamin E has been found to be associated with an important antioxidant property in mammals and plants. In photosynthetic organisms, the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD; E.C. 1.13.11.27) plays an important role in the vitamin E biosynthetic pathway. The full-length cDNA encoding HPPD was isolated from Lactuca sativa L. by rapid amplification of cDNA ends (RACE). The cDNA, designated as LsHPPD, was 1743 base pairs (bp) long containing an open reading frame (ORF) of 1338 bp encoding a protein of 446 amino acids. Sequence analysis indicated that LsHPPD shared high identity with HPPD from Medicago truncatula L. Real-time fluorescent quantitative PCR (qPCR) analysis revealed that LsHPPD was preferentially expressed in mature leaves compared with other tissues and that the LsHPPD expression was sensitive to high light and drought stress treatments. Transient expression of LsHPPD via agroinfiltration resulted in 12-fold increase in LsHPPD mRNA expression level and 4-fold enhancement in α-tocopherol content compared with the negative control. A decrease in chlorophyll content and inhibition of photosystem II were observed during stress treatments and agroinfiltration.

  17. Toluene dioxygenase expression correlates with trichloroethylene degradation capacity in Pseudomonas putida F1 cultures.

    PubMed

    Liu, Jianbo; Amemiya, Takashi; Chang, Qing; Qian, Yi; Itoh, Kiminori

    2012-09-01

    Trichloroethylene (TCE) is extensively used in commercial applications, despite its risk to human health via soil and groundwater contamination. The stability of TCE, which is a useful characteristic for commercial application, makes it difficult to remove it from the environment. Numerous studies have demonstrated that TCE can be effectively removed from the environment using bioremediation. Pseudomonas putida F1 is capable of degrading TCE into less hazardous byproducts via the toluene dioxygenase pathway (TOD). Unfortunately, these bioremediation systems are not self-sustaining, as the degradation capacity declines over time. Fortunately, the replacement of metabolic co-factors is sufficient in many cases to maintain effective TCE degradation. Thus, monitoring systems must be developed to predict when TCE degradation rates are likely to decline. Herein, we show evidence that tod expression levels correlate with the ability of P. putida F1 to metabolize TCE in the presence of toluene. Furthermore, the presence of toluene improves the replication of P. putida F1, even when TCE is present at high concentration. These findings may be applied to real world applications to decide when the bioremediation system requires supplementation with aromatic substrates, in order to maintain maximum TCE removal capacity.

  18. Salmonella overcomes tumor immune tolerance by inhibition of tumor indoleamine 2, 3-dioxygenase 1 expression.

    PubMed

    Kuan, Yu-Diao; Lee, Che-Hsin

    2016-01-01

    Over the past decades, Salmonella has been proven capable of inhibiting tumor growth. It can specifically target tumors and due to its facultative anaerobic property, can be more penetrative than other drug therapies. However, the molecular mechanism by which Salmonella inhibits tumor growth is still incompletely known. The antitumor therapeutic effect mediated by Salmonella is associated with an inflammatory immune response at the tumor site and a T cell-dependent immune response. Many tumors have been proven to have a high expression of indoleamine 2, 3-dioxygenase 1 (IDO), which is a rate-limiting enzyme that catalyzes tryptophan to kynurenine, thus causing immune tolerance within the tumor microenvironment. With decreased expression of IDO, increased immune response can be observed, which might be helpful when developing cancer immunotherapy. The expression of IDO was decreased after tumor cells were infected with Salmonella. In addition, Western blot analysis showed that the expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and phospho-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells were decreased after Salmonella infection. In conclusion, our results indicate that Salmonella inhibits IDO expression and plays a crucial role in anti-tumor therapy, which might be a promising strategy combined with other cancer treatments.

  19. Genomewide Analysis of Carotenoid Cleavage Dioxygenases in Unicellular and Filamentous Cyanobacteria

    PubMed Central

    Cui, Hongli; Wang, Yinchu; Qin, Song

    2012-01-01

    Carotenoid cleavage dioxygenases (CCDs) are a group of enzymes that catalyze the oxidative cleavage steps from carotenoids to various carotenoid cleavage products. Some ccd genes have been identified and encoded enzymes functionally characterized in many higher plants, but little in cyanobacteria. We performed a comparative analysis of ccd sequences and explored their distribution, classification, phylogeny, evolution, and structure among 37 cyanobacteria. Totally 61 putative ccd sequences were identified, which are abundant in Acaryochloris marina MBIC 11017, filamentous N2-fixing cyanobacteria, and unicellular cyanobacterial Cyanothece. According to phylogenetic trees of 16S rDNA and CCD, nced and ccd8 genes occur later than the divergence of ccd7, apco, and ccd1. All CCD enzymes share conserved basic structure domains constituted by a single loop formed with seven β-strands and one helix. In this paper, a general framework of sequence-function-evolution connection for the ccd has been revealed, which may provide new insight for functional investigation. PMID:22474409

  20. Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana.

    PubMed

    Rodríguez-Ávila, N L; Narváez-Zapata, J A; Ramírez-Benítez, J E; Aguilar-Espinosa, M L; Rivera-Madrid, R

    2011-11-01

    Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes involved in the biosynthesis of a broad diversity of secondary metabolites known as apocarotenoids. In plants, CCDs are part of a genetic family with members which cleave specific double bonds of carotenoid molecules. CCDs are involved in the production of diverse and important metabolites such as vitamin A and abscisic acid (ABA). Bixa orellana L. is the main source of the natural pigment annatto or bixin, an apocarotenoid accumulated in large quantities in its seeds. Bixin biosynthesis has been studied and the involvement of a CCD has been confirmed in vitro. However, the CCD genes involved in the biosynthesis of the wide variety of apocarotenoids found in this plant have not been well documented. In this study, a new CCD1 gene member (BoCCD1) was identified and its expression was charaterized in different plant tissues of B. orellana plantlets and adult plants. The BoCCD1 sequence showed high homology with plant CCD1s involved mainly in the cleavage of carotenoids in several sites to generate multiple apocarotenoid products. Here, the expression profiles of the BoCCD1 gene were analysed and discussed in relation to total carotenoids and other important apocarotenoids such as bixin. PMID:21813796

  1. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites

    PubMed Central

    Breda, Carlo; Sathyasaikumar, Korrapati V.; Sograte Idrissi, Shama; Notarangelo, Francesca M.; Estranero, Jasper G.; Moore, Gareth G. L.; Green, Edward W.; Kyriacou, Charalambos P.; Schwarcz, Robert; Giorgini, Flaviano

    2016-01-01

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway—kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP—the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington’s disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer’s and Parkinson’s disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits. PMID:27114543

  2. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites.

    PubMed

    Breda, Carlo; Sathyasaikumar, Korrapati V; Sograte Idrissi, Shama; Notarangelo, Francesca M; Estranero, Jasper G; Moore, Gareth G L; Green, Edward W; Kyriacou, Charalambos P; Schwarcz, Robert; Giorgini, Flaviano

    2016-05-10

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway-kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP-the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington's disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer's and Parkinson's disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits. PMID:27114543

  3. Indoleamine 2,3 dioxygenase and regulation of T cell immunity

    SciTech Connect

    Mellor, Andrew . E-mail: amellor@mcg.edu

    2005-12-09

    Regulation of adaptive immune responses is critically important to allow the adaptive immune system to eradicate infections while causing minimal collateral damage to infected tissues, as well as preventing autoimmune disease mediated by self-reactive lymphocytes. Tumors and pathogens that cause persistent infections can subvert immunoregulatory processes to protect themselves from destruction by T cells, to the detriment of patients. A growing body of evidence supports the hypothesis that specialized subsets of dendritic cells expressing indoleamine 2,3 dioxygenase (IDO), which catalyzes oxidative catabolism of tryptophan, play critical roles in regulation of T cell-mediated immune responses. IDO-dependent T cell suppression by dendritic cells suggests that biochemical changes due to tryptophan catabolism have profound effects on T cell proliferation, differentiation, effector functions, and viability. This has critical implications for immunotherapeutic manipulations designed for patients with cancer and chronic infectious diseases. In this review, I focus on dendritic cells that can express IDO, and which acquire potent T cell regulatory functions as a consequence.

  4. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis.

    PubMed

    López-Ráez, Juan A; Fernández, Iván; García, Juan M; Berrio, Estefanía; Bonfante, Paola; Walter, Michael H; Pozo, María J

    2015-01-01

    Apocarotenoids are a class of compounds that play important roles in nature. In recent years, a prominent role for these compounds in arbuscular mycorrhizal (AM) symbiosis has been shown. They are derived from carotenoids by the action of the carotenoid cleavage dioxygenase (CCD) enzyme family. In the present study, using tomato as a model, the spatio-temporal expression pattern of the CCD genes during AM symbiosis establishment and functioning was investigated. In addition, the levels of the apocarotenoids strigolactones (SLs), C13 α-ionol and C14 mycorradicin (C13/C14) derivatives were analyzed. The results suggest an increase in SLs promoted by the presence of the AM fungus at the early stages of the interaction, which correlated with an induction of the SL biosynthesis gene SlCCD7. At later stages, induction of SlCCD7 and SlCCD1 expression in arbusculated cells promoted the production of C13/C14 apocarotenoid derivatives. We show here that the biosynthesis of apocarotenoids during AM symbiosis is finely regulated throughout the entire process at the gene expression level, and that CCD7 constitutes a key player in this regulation. Once the symbiosis is established, apocarotenoid flux would be turned towards the production of C13/C14 derivatives, thus reducing SL biosynthesis and maintaining a functional symbiosis.

  5. Indoleamine 2,3-dioxygenase: First evidence of expression in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Cortés, Jimena; Alvarez, Claudio; Santana, Paula; Torres, Elisa; Mercado, Luis

    2016-12-01

    The role of enzymes as active antimicrobial agents of the innate immunity in teleost fish is proposed in diverse works. Secretion of Indoleamine 2,3-dioxygenase (IDO) has been described in higher vertebrates; it degrades l-tryptophan in extracellular environments associated mainly with mucosal organs. The effect of IDO on decreasing amino acid concentration may inhibit the growth of potential pathogens. In fish the study of this molecule is still. Here we report the identification of an Onchorhyncus mykiss IDO homologue (OmIDO). IDO was cloned, sequenced, and the primary structure shows conservation of key functional sites. The constitutive expression is altered when the fish is challenged with LPS as a pathogen-associated molecular pattern (PAMPs). Up-regulation of IDO was shown preferentially in the fish's mucosal cells. In order to obtain evidence of a possible regulation mechanism, an in vitro cell model was used for to show that OmIDO is induced by rIFN. These study has identified a Indoleamine 2,3-dyoxigenase in O. mykiss will contribute to expands our knowledge of the function this protein in fish immune response. These findings allow to propose the use of OmIDO as a molecular indicator of strength of the animal's immune response and wellbeing.

  6. Expression Profile of Carotenoid Cleavage Dioxygenase Genes in Summer Squash (Cucurbita pepo L.).

    PubMed

    González-Verdejo, Clara I; Obrero, Ángeles; Román, Belén; Gómez, Pedro

    2015-06-01

    Carotenoids are important dietary components that can be found in vegetable crops. The accumulation of these compounds in fruit and vegetables is altered by the activity of carotenoid cleavage dioxygenases (CCDs) enzymes that produce their degradation. The aim of this work was to study the possible implication of CCD genes in preventing carotenoid storage in the horticultural crop summer squash (Cucurbita pepo L.). The relationship between the presence of these compounds and gene expression for CCDs was studied in three varieties showing different peel and flesh colour. Expression analysis for the CCD genes CpNCED1, CpNCED2, CpNCED3, CpNCED9, CpCCD1, CpCCD4a, CpCCD4b and CpCCD8 was carried out on different organs and at several fruit developmental stages. The results showed that the CpCCD4a and CpCCD4b genes were highly expressed in the variety with lowest carotenoid content suggesting a putative role in carotenoid accumulation pattern in summer squash fruit.

  7. Functional expression of a valencene dioxygenase from Pleurotus sapidus in E. coli.

    PubMed

    Zelena, Kateryna; Krings, Ulrich; Berger, Ralf G

    2012-03-01

    Valencene dioxygenase (ValOx) from the edible basidiomycete Pleurotus sapidus converted the sesquiterpene (+)-valencene to the valuable grapefruit flavour (+)-nootkatone and to nootkatols through intermediate hydroperoxides. Expression of the enzyme was carried out in the cytosol and periplasm of Escherichia coli. The heterologous production led to high yields of inclusion bodies. The poor yield of soluble recombinant protein was improved by various strategies including cold shock expression, chaperone co-expression, and employment of mutant E. coli strains. Up to 60 mg of the biologically active, soluble ValOx was produced by cold shock under control of the cspA promoter at 8 °C in the BL21(DE3)Star strain and co-expression of the E. coli trigger factor. The recombinant enzyme, purified using the N-terminal His tag, showed the catalytic properties of the wild-type enzyme, as was confirmed by the LC-MS analysis of hydroperoxide intermediates and GC-MS analysis of the volatile products. PMID:22264428

  8. Negative Impact of Hypoxia on Tryptophan 2,3-Dioxygenase Function

    PubMed Central

    Elbers, Frank; Woite, Claudia; Antoni, Valentina; Stein, Sara; Funakoshi, Hiroshi; Nakamura, Toshikazu; Schares, Gereon; Däubener, Walter

    2016-01-01

    Tryptophan is an essential amino acid for hosts and pathogens. The liver enzyme tryptophan 2,3-dioxygenase (TDO) provokes, by its ability to degrade tryptophan to N-formylkynurenine, the precursor of the immune-relevant kynurenines, direct and indirect antimicrobial and immunoregulatory states. Up to now these TDO-mediated broad-spectrum effector functions have never been observed under hypoxia in vitro, although physiologic oxygen concentrations in liver tissue are low, especially in case of infection. Here we analysed recombinant expressed human TDO and ex vivo murine TDO functions under different oxygen conditions and show that TDO-induced restrictions of clinically relevant pathogens (bacteria, parasites) and of T cell proliferation are abrogated under hypoxic conditions. We pinpointed the loss of TDO efficiency to the reduction of TDO activity, since cell survival and TDO protein levels were unaffected. In conclusion, the potent antimicrobial as well as immunoregulatory effects of TDO were substantially impaired under hypoxic conditions that pathophysiologically occur in vivo. This might be detrimental for the appropriate host immune response towards relevant pathogens. PMID:27563172

  9. Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"

    NASA Astrophysics Data System (ADS)

    Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.

    2015-01-01

    Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified

  10. How do components of real cloud water affect aqueous pyruvate oxidation?

    NASA Astrophysics Data System (ADS)

    Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.

    2014-06-01

    Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified

  11. Re-evaluation of dioxygenase gene phylogeny for the development and validation of a quantitative assay for environmental aromatic hydrocarbon degraders

    PubMed Central

    Meynet, Paola; Head, Ian M.; Werner, David; Davenport, Russell J.

    2015-01-01

    Rieske non-heme iron oxygenases enzymes have been widely studied, as they catalyse essential reactions initiating the bacterial degradation of organic compounds, for instance aromatic hydrocarbons. The genes encoding these enzymes offer a potential target for studying aromatic hydrocarbon-degrading organisms in the environment. However, previously reported primer sets that target dioxygenase gene sequences or the common conserved Rieske centre of aromatics dioxygenases have limited specificity and/or target non-dioxygenase genes. In this work, an extensive database of dioxygenase α-subunit gene sequences was constructed, and primer sets targeting the conserved Rieske centre were developed. The high specificity of the primers was confirmed by polymerase chain reaction analysis, agarose gel electrophoresis and sequencing. Quantitative polymerase chain reaction (qPCR) assays were also developed and optimized, following MIQE guidelines (Minimum Information for Publication of Quantitative Real-Time PCR Experiments). Comparison of the qPCR quantification of dioxygenases in spiked sediment samples and in pure cultures demonstrated an underestimation of the Ct value, and the requirement for a correction factor at gene abundances below 108 gene copies per g of sediment. Externally validated qPCR provides a valuable tool to monitor aromatic hydrocarbon degrader population abundances at contaminated sites. PMID:25944871

  12. Chlorocatechols Substituted at Positions 4 and 5 Are Substrates of the Broad-Spectrum Chlorocatechol 1,2-Dioxygenase of Pseudomonas chlororaphis RW71

    PubMed Central

    Potrawfke, Thomas; Armengaud, Jean; Wittich, Rolf-Michael

    2001-01-01

    The nucleotide sequence of a 10,528-bp region comprising the chlorocatechol pathway gene cluster tetRtetCDEF of the 1,2,3,4-tetrachlorobenzene via the tetrachlorocatechol-mineralizing bacterium Pseudomonas chlororaphis RW71 (T. Potrawfke, K. N. Timmis, and R.-M. Wittich, Appl. Environ. Microbiol. 64:3798–3806, 1998) was analyzed. The chlorocatechol 1,2-dioxygenase gene tetC was cloned and overexpressed in Escherichia coli. The recombinant gene product was purified, and the α,α-homodimeric TetC was characterized. Electron paramagnetic resonance measurements confirmed the presence of a high-spin-state Fe(III) atom per monomer in the holoprotein. The productive transformation by purified TetC of chlorocatechols bearing chlorine atoms in positions 4 and 5 provided strong evidence for a significantly broadened substrate spectrum of this dioxygenase compared with other chlorocatechol dioxygenases. The conversion of 4,5-dichloro- or tetrachlorocatechol, in the presence of catechol, displayed strong competitive inhibition of catechol turnover. 3-Chlorocatechol, however, was simultaneously transformed, with a rate similar to that of the 4,5-halogenated catechols, indicating similar specificity constants. These novel characteristics of TetC thus differ significantly from results obtained from hitherto analyzed catechol 1,2-dioxygenases and chlorocatechol 1,2-dioxygenases. PMID:11208799

  13. Structural Basis for Flip-Flop Action of Thiamin Pyrophosphate-dependent Enzymes Revealed by Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa M.; Korotchkina, Lioubov G.; Dominiak, Paulina M.; Sidhu, Sukdeep; Patel, Mulchand S.

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate, is a cofactor of enzymes performing catalysis in pathways of energy production. In alpha (sub 2) beta (sub 2)-heterotetrameric human pyruvate dehydrogenase, this cofactor is used to cleave the C(sup alpha) -C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites has not yet been understood. To understand the mechanism of action of this enzyme, we determined the crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95-Angstrom resolution. We propose a model for the flip-flop action of this enzyme through a concerted approximately 2-Angstrom shuttle-like motion of its heterodimers. Similarity of thiamin pyrophosphate binding in human pyruvate dehydrogenase with functionally related enzymes suggests that this newly defined shuttle-like motion of domains is common to the family of thiamin pyrophosphate-dependent enzymes.

  14. Effects of fasting on serial measurements of hyperpolarized [1-(13) C]pyruvate metabolism in tumors.

    PubMed

    Serrao, Eva M; Rodrigues, Tiago B; Gallagher, Ferdia A; Kettunen, Mikko I; Kennedy, Brett W C; Vowler, Sarah L; Burling, Keith A; Brindle, Kevin M

    2016-08-01

    Imaging of the metabolism of hyperpolarized [1-(13) C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of (13) C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non-fasted animals. The fasted state showed lower intra-individual variability, although the [1-(13) C]lactate/[1-(13) C]pyruvate signal ratio was significantly greater in fasted than in non-fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of (13) C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:27309986

  15. Effects of fasting on serial measurements of hyperpolarized [1‐13C]pyruvate metabolism in tumors

    PubMed Central

    Serrao, Eva M.; Rodrigues, Tiago B.; Gallagher, Ferdia A.; Kettunen, Mikko I.; Kennedy, Brett W. C.; Vowler, Sarah L.; Burling, Keith A.

    2016-01-01

    Imaging of the metabolism of hyperpolarized [1‐13C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of 13C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non‐fasted animals. The fasted state showed lower intra‐individual variability, although the [1‐13C]lactate/[1‐13C]pyruvate signal ratio was significantly greater in fasted than in non‐fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of 13C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:27309986

  16. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg Effect and colon cancer cell growth

    PubMed Central

    Schell, John C.; Olson, Kristofor A.; Jiang, Lei; Hawkins, Amy J.; Van Vranken, Jonathan G.; Xie, Jianxin; Egnatchik, Robert A.; Earl, Espen G.; Deberardinis, Ralph J.; Rutter, Jared

    2014-01-01

    Summary Cancer cells are typically subject to profound metabolic alterations, including the Warburg effect wherein cancer cells oxidize a decreased fraction of the pyruvate generated from glycolysis. We show herein that the mitochondrial pyruvate carrier (MPC), composed of the products of the MPC1 and MPC2 genes, modulates fractional pyruvate oxidation. MPC1 is deleted or underexpressed in multiple cancers and correlates with poor prognosis. Cancer cells re-expressing MPC1 and MPC2 display increased mitochondrial pyruvate oxidation, with no changes in cell growth in adherent culture. MPC re-expression exerted profound effects in anchorage-independent growth conditions, however, including impaired colony formation in soft agar, spheroid formation, and xenograft growth. We also observed a decrease in markers of stemness and traced the growth effects of MPC expression to the stem cell compartment. We propose that reduced MPC activity is an important aspect of cancer metabolism, perhaps through altering the maintenance and fate of stem cells. PMID:25458841

  17. Effects of recombinant monokines on hepatic pyruvate dehydrogenase, pyruvate dehydrogenase kinase, lipogenesis de novo and plasma triacylglycerols. Abolition by prior fasting.

    PubMed Central

    Blackham, M; Cesar, D; Park, O J; Vary, T C; Wu, K; Kaempfer, S; Shackleton, C H; Hellerstein, M K

    1992-01-01

    1. The effects of recombinant human tumour necrosis factor alpha (TNF) and murine interleukin-1 alpha (IL-1) on the activation state of the hepatic pyruvate dehydrogenase complex (PDHa), the activity of mitochondrial PDH kinase, hepatic lipogenesis de novo and plasma triacylglycerol (TG) concentrations were studied. 2. Monokine effects depended upon prior nutritional state. In rats fasted for 20 h or 45 h before monokine administration and refeeding (orally or with intravenous glucose), PDHa, TG and hepatic lipogenesis were not increased. In rats fed ad libitum, treatment with TNF plus IL-1 increased the contribution of hepatic lipogenesis to circulating TG to 550% of control values (P = 0.03) and plasma TG concentrations to 159% (P = 0.02), whereas PDHa increased slightly to 120% (P = 0.02) and liver glycogen content fell to 45.8% (P = 0.05) of control values. 3. Intrinsic hepatic PDH kinase activity was not changed by monokine treatment in rats fed ad libitum. 4. The increased lipogenesis de novo showed no correlation (r2 = 0.05, not significant) with hepatic PDHa in individual animals fed ad libitum. 5. In conclusion, these results suggest that monokines increase pyruvate flux through hepatic PDH in vivo in rats fed ad libitum primarily by mechanisms other than covalent modification of PDH. Prior nutritional status exerts a permissive effect for monokine stimulation of PDHa and lipogenesis, consistent with a substrate-mediated action, but the mechanism of this permissive effect remains uncertain. PMID:1599392

  18. One-year monitoring of meta-cleavage dioxygenase gene expression and microbial community dynamics reveals the relevance of subfamily I.2.C extradiol dioxygenases in hypoxic, BTEX-contaminated groundwater.

    PubMed

    Táncsics, András; Farkas, Milán; Szoboszlay, Sándor; Szabó, István; Kukolya, József; Vajna, Balázs; Kovács, Balázs; Benedek, Tibor; Kriszt, Balázs

    2013-07-01

    Aromatic hydrocarbons including benzene, toluene, ethyl-benzene, and xylene (BTEX) are frequent contaminants of groundwater, the major drinking water resource. Bioremediation is the only sustainable process to clean up these environments. Microbial degradation of BTEX compounds occurs rapidly under aerobic conditions but, in subsurface environments, the availability of oxygen is commonly restricted. Even so, the microaerobic degradation of aromatic compounds is still poorly understood. Hence, the dynamics of a bacterial community and the expression of meta-cleavage dioxygenase genes, with particular emphasis on subfamily I.2.C extradiol dioxygenase genes, were assessed over a 13-month period in a hypoxic, aromatic hydrocarbon-contaminated shallow groundwater by using sequence-aided terminal-restriction fragment length polymorphism (T-RFLP) and single-nucleotide primer extension (SNuPE), respectively. The bacterial 16S rRNA fingerprinting revealed the predominance of members of Rhodoferax, Azoarcus, Pseudomonas, and unknown bacteria related to Rhodocyclaceae. It was observed that mRNA transcripts of subfamily I.2.C extradiol dioxygenase genes were detected constantly over the monitoring period, and the detected sequences clustered into six distinct clusters. In order to reveal changes in the expression of these clusters over the monitoring period a SNuPE assay was developed. This quasi fingerprinting of functional gene expression provided the opportunity to link the investigated function to specific microbial populations. The results obtained can improve our understanding of aromatic hydrocarbon degradation under oxygen limitation and may benefit bioremediation research by demonstrating the usefulness of SNuPE for the monitoring of microbial populations involved in degradation process.

  19. n-Octyl gallate as inhibitor of pyruvate carboxylation and lactate gluconeogenesis.

    PubMed

    Eler, Gabrielle Jacklin; Santos, Israel Souza; de Moraes, Amarilis Giaretta; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2015-04-01

    The alkyl gallates are found in several natural and industrial products. In the latter products, these compounds are added mainly for preventing oxidation. In the present work, the potencies of methyl gallate, n-propyl gallate, n-pentyl gallate, and n-octyl gallate as inhibitors of pyruvate carboxylation and lactate gluconeogenesis were evaluated. Experiments were done with isolated mitochondria and the isolated perfused rat liver. The potency of the gallic acid esters as inhibitors of pyruvate carboxylation in isolated mitochondria obeyed the following decreasing sequence: n-octyl gallate > n-pentyl gallate > n-propyl gallate > methyl gallate. A similar sequence of decreasing potency for lactate gluconeogenesis inhibition in the perfused liver was found in terms of the portal venous concentration. Both actions correlate with the lipophilicity of the compounds. The effects are harmful at high concentrations. At appropriate concentrations, however, octyl gallate should act therapeutically because its inhibitory action on gluconeogenesis will contribute further to its proposed antihyperglycemic effects.

  20. Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases.

    PubMed

    Sugden, Mary C; Holness, Mark J

    2006-07-01

    The mechanisms that control mammalian pyruvate dehydrogenase complex (PDC) activity include its phosphorylation (inactivation) by a family of pyruvate dehydrogenase kinases (PDKs 1 - 4). Here we review new developments in the regulation of the activities and expression of the PDKs, in particular PDK2 and PDK4, in relation to glucose and lipid homeostasis. This review describes recent advances relating to the acute and long-term modes of regulation of the PDKs, with particular emphasis on the regulatory roles of nuclear receptors including peroxisome proliferator-activated receptor (PPAR) alpha and Liver X receptor (LXR), PPAR gamma coactivator alpha (PGC-1alpha) and insulin, and the impact of changes in PDK activity and expression in glucose and lipid homeostasis. Since PDK4 may assist in lipid clearance when there is an imbalance between lipid delivery and oxidation, it may represent an attractive target for interventions aimed at rectifying abnormal lipid as well as glucose homeostasis in disease states. PMID:17132539

  1. Pro-haloacetate Nanoparticles for Efficient Cancer Therapy via Pyruvate Dehydrogenase Kinase Modulation.

    PubMed

    Misra, Santosh K; Ye, Mao; Ostadhossein, Fatemeh; Pan, Dipanjan

    2016-01-01

    Anticancer agents based on haloacetic acids are developed for inhibition of pyruvate dehydrogenase kinase (PDK), an enzyme responsible for reversing the suppression of mitochondria-dependent apoptosis. Through molecular docking studies mono- and dihaloacetates are identified as potent PDK2 binders and matched their efficiency with dichloroacetic acid. In silico screening directed their conversion to phospholipid prodrugs, which were subsequently self-assembled to pro-haloacetate nanoparticles. Following a thorough physico-chemical characterization, the functional activity of these novel agents was established in wide ranges of human cancer cell lines in vitro and in vivo in rodents. Results indicated that the newly explored PDK modulators can act as efficient agent for cancer regression. A Pyruvate dehydrogenase (PDH) assay mechanistically confirmed that these agents trigger their activity through the mitochondria-dependent apoptosis. PMID:27323896

  2. Pro-haloacetate Nanoparticles for Efficient Cancer Therapy via Pyruvate Dehydrogenase Kinase Modulation

    NASA Astrophysics Data System (ADS)

    Misra, Santosh K.; Ye, Mao; Ostadhossein, Fatemeh; Pan, Dipanjan

    2016-06-01

    Anticancer agents based on haloacetic acids are developed for inhibition of pyruvate dehydrogenase kinase (PDK), an enzyme responsible for reversing the suppression of mitochondria-dependent apoptosis. Through molecular docking studies mono- and dihaloacetates are identified as potent PDK2 binders and matched their efficiency with dichloroacetic acid. In silico screening directed their conversion to phospholipid prodrugs, which were subsequently self-assembled to pro-haloacetate nanoparticles. Following a thorough physico-chemical characterization, the functional activity of these novel agents was established in wide ranges of human cancer cell lines in vitro and in vivo in rodents. Results indicated that the newly explored PDK modulators can act as efficient agent for cancer regression. A Pyruvate dehydrogenase (PDH) assay mechanistically confirmed that these agents trigger their activity through the mitochondria-dependent apoptosis.

  3. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    SciTech Connect

    Savkur, Rajesh S.; Bramlett, Kelli S.; Michael, Laura F.; Burris, Thomas P. . E-mail: burris_thomas_p@lilly.com

    2005-04-01

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression.

  4. Ethyl Pyruvate Prevents Methyglyoxal-Induced Retinal Vascular Injury in Rats

    PubMed Central

    Kim, Junghyun; Lee, Yun Mi; Kim, Chan-Sik; Sohn, Eunjin; Jo, Kyuhyung; Shin, So Dam; Kim, Jin Sook

    2013-01-01

    Pyruvate is an endogenous antioxidant substance. The aim of this study was to investigate the protective effects of ethyl pyruvate (EP) on retinal vascular injury in diabetic retinopathy. To investigate the protective effect of EP on vascular cell apoptosis and blood-retinal barrier (BRB) breakage, we have used intravitreally methylglyoxal-(MGO-) injected rat eyes. Apoptosis of the retinal vascular cell that was stimulated by the intravitreal injection of MGO was evidently attenuated by the EP treatment. EP exerts inhibitory effect on MGO-induced vascular cell apoptosis by blocking oxidative injury. In addition, EP treatment prevented MGO-induced BRB breakage and the degradation of occludin, an important tight junction protein. These observations suggest that EP acts through an antioxidant mechanism to protect against oxidative stress-induced apoptosis in retinal vessels. PMID:23671872

  5. Reconciling diabetes management and the ketogenic diet in a child with pyruvate dehydrogenase deficiency.

    PubMed

    Henwood, Maria J; Thornton, Paul S; Preis, Christina M; Chee, Clare; Grimberg, Adda

    2006-05-01

    A 4-year-old girl with pyruvate dehydrogenase deficiency, static encephalopathy, and seizure disorder treated with the ketogenic diet presented in severe diabetic ketoacidosis. Pyruvate dehydrogenase deficiency is a rare genetic defect of mitochondrial energy metabolism that leads to inefficient glucose use and lactic acidosis. The ketogenic diet provides the brain with an alternate fuel source, but its implementation opposes traditional diabetes management. Faced with this therapeutic dilemma, we aimed to maintain ketosis without compromising safety to optimize neurologic function and quality of life. This is the first report, to our knowledge, of a child simultaneously treated with the ketogenic diet and exogenous insulin. A 28-month follow-up revealed excellent glycemic control, improved activity level, significant developmental achievements, and, perhaps most striking, catch-up linear growth from < 5th percentile to the 50th percentile. Her progress to date indicates that diabetes does not preclude use of the ketogenic diet.

  6. Eimeria tenella contains a pyrophosphate-dependent phosphofructokinase and a pyruvate kinase with unusual allosteric regulators.

    PubMed

    Denton, H; Thong, K W; Coombs, G H

    1994-01-01

    Sporozoites and unsporulated oocysts of Eimeria tenella were shown to contain a pyrophosphate-dependent phosphofructokinase (PPi-PFK) but apparently lack an ATP-specific activity. The PPi-PFK resembles those that occur in a number of other protists in being reversible and not subject to metabolic control. In contrast, the ADP-utilising pyruvate kinase, present in two developmental stages of the parasite, exhibited strong positive cooperativity with respect to its substrate, phosphoenolpyruvate, and was shown to be allosterically activated by glucose 6-phosphate, fructose 6-phosphate and AMP. It is suggested that the PPi-PFK represents an adaptation of the parasite towards life in an environment containing only low concentrations of oxygen and that the unusual allosteric regulation of pyruvate kinase evolved to compensate for glycolysis not being controlled at the PPi-PFK step.

  7. Pro-haloacetate Nanoparticles for Efficient Cancer Therapy via Pyruvate Dehydrogenase Kinase Modulation

    PubMed Central

    Misra, Santosh K.; Ye, Mao; Ostadhossein, Fatemeh; Pan, Dipanjan

    2016-01-01

    Anticancer agents based on haloacetic acids are developed for inhibition of pyruvate dehydrogenase kinase (PDK), an enzyme responsible for reversing the suppression of mitochondria-dependent apoptosis. Through molecular docking studies mono- and dihaloacetates are identified as potent PDK2 binders and matched their efficiency with dichloroacetic acid. In silico screening directed their conversion to phospholipid prodrugs, which were subsequently self-assembled to pro-haloacetate nanoparticles. Following a thorough physico-chemical characterization, the functional activity of these novel agents was established in wide ranges of human cancer cell lines in vitro and in vivo in rodents. Results indicated that the newly explored PDK modulators can act as efficient agent for cancer regression. A Pyruvate dehydrogenase (PDH) assay mechanistically confirmed that these agents trigger their activity through the mitochondria-dependent apoptosis. PMID:27323896

  8. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    SciTech Connect

    Castro, Miguel E.; Molina, Roberto C.; Diaz, Waldo A.; Pradenas, Gonzalo A.; Vasquez, Claudio C.

    2009-02-27

    Potassium tellurite (K{sub 2}TeO{sub 3}) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  9. Multi-band frequency encoding method for metabolic imaging with hyperpolarized [1- 13C]pyruvate

    NASA Astrophysics Data System (ADS)

    von Morze, Cornelius; Reed, Galen; Shin, Peter; Larson, Peder E. Z.; Hu, Simon; Bok, Robert; Vigneron, Daniel B.

    2011-08-01

    A new method was developed for simultaneous spatial localization and spectral separation of multiple compounds based on a single echo, by designing the acquisition to place individual compounds in separate frequency encoding bands. This method was specially designed for rapid and robust metabolic imaging of hyperpolarized 13C substrates and their metabolic products, and was investigated in phantom studies and studies in normal mice and transgenic models of prostate cancer to provide rapid metabolic imaging of hyperpolarized [1- 13C]pyruvate and its metabolic products [1- 13C]lactate and [1- 13C]alanine at spatial resolutions up to 3 mm in-plane. Elevated pyruvate and lactate signals in the vicinity of prostatic tissues were observed in transgenic tumor mice. The multi-band frequency encoding technique enabled rapid metabolic imaging of hyperpolarized 13C compounds with important advantages over prior approaches, including less complicated acquisition and reconstruction methods.

  10. Enzyme mechanisms for pyruvate-to-lactate flux attenuation: a study of Sherpas, Quechuas, and hummingbirds.

    PubMed

    Hochachka, P W; Stanley, C; McKenzie, D C; Villena, A; Monge, C

    1992-10-01

    During incremental exercise to fatigue under hypobaric hypoxia, Andean Quechua natives form and accumulate less plasma lactate than do lowlanders under similar conditions. This phenomenon of low lactate accumulation despite hypobaric hypoxia, first discovered some half century ago, is known in Quechuas to be largely unaffected by acute exposure to hypoxia or by acclimatization to sea level conditions. Earlier Nuclear Magnetic Resonance (NMR) spectroscopy and metabolic biochemistry studies suggest that closer coupling of energy demand and energy supply in Quechuas allows given changes in work rate with relatively modest changes in muscle adenylate and phosphagen concentrations, thus tempering the activation of glycolytic flux to pyruvate--a coarse control mechanism operating at the level of overall pathway flux. Later studies of enzyme activities in skeletal muscles of Quechuas and of Sherpas have identified a finely-tuned control mechanism which by adaptive modifications of a few key enzymes apparently serves to specifically attenuate pyruvate flux to lactate.

  11. A rate-determining proton relay in the pyruvate kinase reaction

    SciTech Connect

    Rose, I.A.; Kuo, D.J.; Warms, J.V.B. )

    1991-01-22

    This study ascribes the large steady-state D{sub 2}O isotope effect on k{sub cat} of pyruvate kinase (PEP + ADP {yields} pyruvate + ATP) to the reprotonation of the product form of the enzyme for use in forming pyruvate. Previous tritium trapping experiments with muscle pyruvate kinase showed that the proton used for ketonization of enolpyruvate is derived from an enzyme pool that contains three kinetically equivalent hydrogens that could be trapped in a nontritiated chase medium by high levels of ADP and PEP. The exchange of this pool with the medium was rapid in the free enzyme prior to addition of PEP, and apparently much less in the completed complex. The present study shows that the competition constant, K{sub 1/2}, is decreased by {approximately}5-fold in D{sub 2}O, the same effect seen on k{sub cat} under conditions where k{sub cat}/K{sub m}, measured in the steady state, is not changed. The common effect of D{sub 2}O on k{sub cat} in the steady state and k{sub off}{sup T} in pulse/chase suggests that the forward reaction rate is determined by hydrogen transfer to the enzyme. Further evidence indicates that the kinetically important proton in question is the proton used for ketonization of enolpyruvate, the substrate proton. With Co, roughly three T of the pool can be trapped. With Mg, only one T can be trapped from the same pulse solution at the highest concentrations of PEP. Apparently two positions, possibly from a bound water molecule, are rapidly exchanged with water of the chase. The inference that lysine NH{sub 3{sup +}} is the proton donor group on the basis of the three T trapped is open to question by evidence that one or two of these come from relay positions.

  12. Synechococcus sp. strain PCC 7002 nifJ mutant lacking pyruvate:ferredoxin oxidoreductase.

    PubMed

    McNeely, Kelsey; Xu, Yu; Ananyev, Gennady; Bennette, Nicholas; Bryant, Donald A; Dismukes, G Charles

    2011-04-01

    The nifJ gene codes for pyruvate:ferredoxin oxidoreductase (PFOR), which reduces ferredoxin during fermentative catabolism of pyruvate to acetyl-coenzyme A (acetyl-CoA). A nifJ knockout mutant was constructed that lacks one of two pathways for the oxidation of pyruvate in the cyanobacterium Synechococcus sp. strain PCC 7002. Remarkably, the photoautotrophic growth rate of this mutant increased by 20% relative to the wild-type (WT) rate under conditions of light-dark cycling. This result is attributed to an increase in the quantum yield of photosystem II (PSII) charge separation as measured by photosynthetic electron turnover efficiency determined using fast-repetition-rate fluorometry (F(v)/F(m)). During autofermentation, the excretion of acetate and lactate products by nifJ mutant cells decreased 2-fold and 1.2-fold, respectively. Although nifJ cells displayed higher in vitro hydrogenase activity than WT cells, H(2) production in vivo was 1.3-fold lower than the WT level. Inhibition of acetate-CoA ligase and pyruvate dehydrogenase complex by glycerol eliminated acetate production, with a resulting loss of reductant and a 3-fold decrease in H(2) production by nifJ cells compared to WT cells. Continuous electrochemical detection of dissolved H(2) revealed two temporally resolved phases of H(2) production during autofermentation, a minor first phase and a major second phase. The first phase was attributed to reduction of ferredoxin, because its level decreased 2-fold in nifJ cells. The second phase was attributed to glycolytic NADH production and decreased 20% in nifJ cells. Measurement of the intracellular NADH/NAD(+) ratio revealed that the reductant generated by PFOR contributing to the first phase of H(2) production was not in equilibrium with bulk NADH/NAD(+) and that the second phase corresponded to the equilibrium NADH-mediated process. PMID:21317262

  13. Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury.

    PubMed

    Moro, Nobuhiro; Ghavim, Sima S; Harris, Neil G; Hovda, David A; Sutton, Richard L

    2016-07-01

    Experimental traumatic brain injury (TBI) is known to produce an acute increase in cerebral glucose utilization, followed rapidly by a generalized cerebral metabolic depression. The current studies determined effects of single or multiple treatments with sodium pyruvate (SP; 1000mg/kg, i.p.) or ethyl pyruvate (EP; 40mg/kg, i.p.) on cerebral glucose metabolism and neuronal injury in rats with unilateral controlled cortical impact (CCI) injury. In Experiment 1 a single treatment was given immediately after CCI. SP significantly improved glucose metabolism in 3 of 13 brain regions while EP improved metabolism in 7 regions compared to saline-treated controls at 24h post-injury. Both SP and EP produced equivalent and significant reductions in dead/dying neurons in cortex and hippocampus at 24h post-CCI. In Experiment 2 SP or EP were administered immediately (time 0) and at 1, 3 and 6h post-CCI. Multiple SP treatments also significantly attenuated TBI-induced reductions in cerebral glucose metabolism (in 4 brain regions) 24h post-CCI, as did multiple injections of EP (in 4 regions). The four pyruvate treatments produced significant neuroprotection in cortex and hippocampus 1day after CCI, similar to that found with a single SP or EP treatment. Thus, early administration of pyruvate compounds enhanced cerebral glucose metabolism and neuronal survival, with 40mg/kg of EP being as effective as 1000mg/kg of SP, and multiple treatments within 6h of injury did not improve upon outcomes seen following a single treatment. PMID:27059390

  14. The electrochemical investigation of the catalytic power of pyruvate decarboxylase and its coenzyme.

    PubMed

    Bell, Patrick; Hoyt, Kathryn; Shabangi, Masangu

    2006-05-01

    The change in the energy barriers for the heterogeneous reduction of pyruvate decarboxylase (PDC) relative to its coenzyme, thiamin pyrophosphate (ThPP), was determined experimentally using square wave voltammetry (SWV) to be 5.3 kcal/mol. These results are in agreement with those of reaction rate acceleration provided by thiamin-dependent decarboxylases relative to their coenzyme as determined kinetically based on the pK(a) suppression by the enzyme environment.

  15. Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1.

    PubMed

    van Lis, Robert; Baffert, Carole; Couté, Yohann; Nitschke, Wolfgang; Atteia, Ariane

    2013-01-01

    Eukaryotic algae have long been known to live in anoxic environments, but interest in their anaerobic energy metabolism has only recently gained momentum, largely due to their utility in biofuel production. Chlamydomonas reinhardtii figures remarkably in this respect, because it efficiently produces hydrogen and its genome harbors many genes for anaerobic metabolic routes. Central to anaerobic energy metabolism in many unicellular eukaryotes (protists) is pyruvate:ferredoxin oxidoreductase (PFO), which decarboxylates pyruvate and forms acetyl-coenzyme A with concomitant reduction of low-potential ferredoxins or flavodoxins. Here, we report the biochemical properties of the homodimeric PFO of C. reinhardtii expressed in Escherichia coli. Electron paramagnetic resonance spectroscopy of the recombinant enzyme (Cr-rPFO) showed three distinct [4Fe-4S] iron-sulfur clusters and a thiamine pyrophosphate radical upon reduction by pyruvate. Purified Cr-rPFO exhibits a specific decarboxylase activity of 12 µmol pyruvate min⁻¹ mg⁻¹ protein using benzyl viologen as electron acceptor. Despite the fact that the enzyme is very oxygen sensitive, it localizes to the chloroplast. Among the six known chloroplast ferredoxins (FDX1-FDX6) in C. reinhardtii, FDX1 and FDX2 were the most efficient electron acceptors from Cr-rPFO, with comparable apparent K(m) values of approximately 4 µm. As revealed by immunoblotting, anaerobic conditions that lead to the induction of CrPFO did not increase levels of either FDX1 or FDX2. FDX1, being by far the most abundant ferredoxin, is thus likely the partner of PFO in C. reinhardtii. This finding postulates a direct link between CrPFO and hydrogenase and provides new opportunities to better study and engineer hydrogen production in this protist.

  16. Malic Acid Production by Saccharomyces cerevisiae: Engineering of Pyruvate Carboxylation, Oxaloacetate Reduction, and Malate Export▿ †

    PubMed Central

    Zelle, Rintze M.; de Hulster, Erik; van Winden, Wouter A.; de Waard, Pieter; Dijkema, Cor; Winkler, Aaron A.; Geertman, Jan-Maarten A.; van Dijken, Johannes P.; Pronk, Jack T.; van Maris, Antonius J. A.

    2008-01-01

    Malic acid is a potential biomass-derivable “building block” for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO2-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)−1. A previously engineered glucose-tolerant, C2-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter−1 at a malate yield of 0.42 mol (mol glucose)−1. Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on 13C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved. PMID:18344340

  17. Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1.

    PubMed

    van Lis, Robert; Baffert, Carole; Couté, Yohann; Nitschke, Wolfgang; Atteia, Ariane

    2013-01-01

    Eukaryotic algae have long been known to live in anoxic environments, but interest in their anaerobic energy metabolism has only recently gained momentum, largely due to their utility in biofuel production. Chlamydomonas reinhardtii figures remarkably in this respect, because it efficiently produces hydrogen and its genome harbors many genes for anaerobic metabolic routes. Central to anaerobic energy metabolism in many unicellular eukaryotes (protists) is pyruvate:ferredoxin oxidoreductase (PFO), which decarboxylates pyruvate and forms acetyl-coenzyme A with concomitant reduction of low-potential ferredoxins or flavodoxins. Here, we report the biochemical properties of the homodimeric PFO of C. reinhardtii expressed in Escherichia coli. Electron paramagnetic resonance spectroscopy of the recombinant enzyme (Cr-rPFO) showed three distinct [4Fe-4S] iron-sulfur clusters and a thiamine pyrophosphate radical upon reduction by pyruvate. Purified Cr-rPFO exhibits a specific decarboxylase activity of 12 µmol pyruvate min⁻¹ mg⁻¹ protein using benzyl viologen as electron acceptor. Despite the fact that the enzyme is very oxygen sensitive, it localizes to the chloroplast. Among the six known chloroplast ferredoxins (FDX1-FDX6) in C. reinhardtii, FDX1 and FDX2 were the most efficient electron acceptors from Cr-rPFO, with comparable apparent K(m) values of approximately 4 µm. As revealed by immunoblotting, anaerobic conditions that lead to the induction of CrPFO did not increase levels of either FDX1 or FDX2. FDX1, being by far the most abundant ferredoxin, is thus likely the partner of PFO in C. reinhardtii. This finding postulates a direct link between CrPFO and hydrogenase and provides new opportunities to better study and engineer hydrogen production in this protist. PMID:23154536

  18. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export.

    PubMed

    Zelle, Rintze M; de Hulster, Erik; van Winden, Wouter A; de Waard, Pieter; Dijkema, Cor; Winkler, Aaron A; Geertman, Jan-Maarten A; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2008-05-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO(2)-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)(-1). A previously engineered glucose-tolerant, C(2)-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter(-1) at a malate yield of 0.42 mol (mol glucose)(-1). Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on (13)C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved.

  19. Acute porcine renal metabolic effect of endogastric soft drink administration assessed with hyperpolarized [1‐13c]pyruvate

    PubMed Central

    Hansen, Esben Søvsø Szocska; Kjærgaard, Uffe; Bertelsen, Lotte Bonde; Ringgaard, Steffen; Stødkilde‐Jørgensen, Hans

    2015-01-01

    Purpose Our aim was to determine the quantitative reproducibility of metabolic breakdown products in the kidney following intravenous injection of hyperpolarized [1‐13C]pyruvate and secondly to investigate the metabolic effect on the pyruvate metabolism of oral sucrose load using dissolution dynamic nuclear polarization. By this technique, metabolic alterations in several different metabolic related diseases and their metabolic treatment responses can be accessed. Methods In four healthy pigs the lactate‐to‐pyruvate, alanine‐to‐pyruvate and bicarbonate‐to‐pyruvate ratio was measured following administration of regular cola and consecutive injections of hyperpolarized [1‐13C]pyruvate four times within an hour. Results The overall lactate‐to‐pyruvate metabolic profile changed significantly over one hour following an acute sucrose load leading to a significant rise in blood glucose. Conclusion The reproducibility of hyperpolarized magnetic resonance spectroscopy in the healthy pig kidney demonstrated a repeatability of more than 94% for all metabolites and, furthermore, that the pyruvate to lactate conversion and the blood glucose level is elevated following endogastric sucrose administration. Magn Reson Med 74:558–563, 2015. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. PMID:26014387

  20. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage.

    PubMed

    Boyko, Matthew; Melamed, Israel; Gruenbaum, Benjamin Fredrick; Gruenbaum, Shaun Evan; Ohayon, Sharon; Leibowitz, Akiva; Brotfain, Evgeny; Shapira, Yoram; Zlotnik, Alexander

    2012-07-01

    Blood glutamate scavengers have been shown to effectively reduce blood glutamate concentrations and improve neurological outcome after traumatic brain injury and stroke in rats. This study investigates the efficacy of blood glutamate scavengers oxaloacetate and pyruvate in the treatment of subarachnoid hemorrhage (SAH) in rats. Isotonic saline, 250 mg/kg oxaloacetate, or 125 mg/kg pyruvate was injected intravenously in 60 rats, 60 minutes after induction of SAH at a rate of 0.1 ml/100 g/min for 30 minutes. There were 20 additional rats that were used as a sham-operated group. Blood samples were collected at baseline and 90 minutes after SAH. Neurological performance was assessed at 24 h after SAH. In half of the rats, glutamate concentrations in the cerebrospinal fluid were measured 24 h after SAH. For the remaining half, the blood brain barrier permeability in the frontal and parieto-occipital lobes was measured 48 h after SAH. Blood glutamate levels were reduced in rats treated with oxaloacetate or pyruvate at 90 minutes after SAH (p < 0.001). Cerebrospinal fluid glutamate was reduced in rats treated with pyruvate (p < 0.05). Neurological performance was significantly improved in rats treated with oxaloacetate (p < 0.05) or pyruvate (p < 0.01). The breakdown of the blood brain barrier was reduced in the frontal lobe in rats treated with pyruvate (p < 0.05) and in the parieto-occipital lobes in rats treated with either pyruvate (p < 0.01) or oxaloacetate (p < 0.01). This study demonstrates the effectiveness of blood glutamate scavengers oxaloacetate and pyruvate as a therapeutic neuroprotective strategy in a rat model of SAH. PMID:22711471

  1. Measurement of the acute metabolic response to hypoxia in rat tumours in vivo using magnetic resonance spectroscopy and hyperpolarised pyruvate

    PubMed Central

    Bluff, Joanne E.; Reynolds, Steven; Metcalf, Stephen; Alizadeh, Tooba; Kazan, Samira M.; Bucur, Adriana; Wholey, Emily G.; Bibby, Becky A.S.; Williams, Leigh; Paley, Martyn N.; Tozer, Gillian M.

    2015-01-01

    Purpose To estimate the rate constant for pyruvate to lactate conversion in tumours in response to a hypoxic challenge, using hyperpolarised 13C1-pyruvate and magnetic resonance spectroscopy. Methods and materials Hypoxic inspired gas was used to manipulate rat P22 fibrosarcoma oxygen tension (pO2), confirmed by luminescence decay of oxygen-sensitive probes. Hyperpolarised 13C1-pyruvate was injected into the femoral vein of anaesthetised rats and slice-localised 13C magnetic resonance (MR) spectra acquired. Spectral integral versus time curves for pyruvate and lactate were fitted to a precursor-product model to estimate the rate constant for tumour conversion of pyruvate to lactate (kpl). Mean arterial blood pressure (MABP) and oxygen tension (ArtpO2) were monitored. Pyruvate and lactate concentrations were measured in freeze-clamped tumours. Results MABP, ArtpO2 and tumour pO2 decreased significantly during hypoxia. kpl increased significantly (p < 0.01) from 0.029 ± 0.002 s−1 to 0.049 ± 0.006 s−1 (mean ± SEM) when animals breathing air were switched to hypoxic conditions, whereas pyruvate and lactate concentrations were minimally affected by hypoxia. Both ArtpO2 and MABP influenced the estimate of kpl, with a strong negative correlation between kpl and the product of ArtpO2 and MABP under hypoxia. Conclusion The rate constant for pyruvate to lactate conversion, kpl, responds significantly to a rapid reduction in tumour oxygenation. PMID:25824978

  2. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage.

    PubMed

    Boyko, Matthew; Melamed, Israel; Gruenbaum, Benjamin Fredrick; Gruenbaum, Shaun Evan; Ohayon, Sharon; Leibowitz, Akiva; Brotfain, Evgeny; Shapira, Yoram; Zlotnik, Alexander

    2012-07-01

    Blood glutamate scavengers have been shown to effectively reduce blood glutamate concentrations and improve neurological outcome after traumatic brain injury and stroke in rats. This study investigates the efficacy of blood glutamate scavengers oxaloacetate and pyruvate in the treatment of subarachnoid hemorrhage (SAH) in rats. Isotonic saline, 250 mg/kg oxaloacetate, or 125 mg/kg pyruvate was injected intravenously in 60 rats, 60 minutes after induction of SAH at a rate of 0.1 ml/100 g/min for 30 minutes. There were 20 additional rats that were used as a sham-operated group. Blood samples were collected at baseline and 90 minutes after SAH. Neurological performance was assessed at 24 h after SAH. In half of the rats, glutamate concentrations in the cerebrospinal fluid were measured 24 h after SAH. For the remaining half, the blood brain barrier permeability in the frontal and parieto-occipital lobes was measured 48 h after SAH. Blood glutamate levels were reduced in rats treated with oxaloacetate or pyruvate at 90 minutes after SAH (p < 0.001). Cerebrospinal fluid glutamate was reduced in rats treated with pyruvate (p < 0.05). Neurological performance was significantly improved in rats treated with oxaloacetate (p < 0.05) or pyruvate (p < 0.01). The breakdown of the blood brain barrier was reduced in the frontal lobe in rats treated with pyruvate (p < 0.05) and in the parieto-occipital lobes in rats treated with either pyruvate (p < 0.01) or oxaloacetate (p < 0.01). This study demonstrates the effectiveness of blood glutamate scavengers oxaloacetate and pyruvate as a therapeutic neuroprotective strategy in a rat model of SAH.

  3. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells.

    PubMed

    McFate, Thomas; Mohyeldin, Ahmed; Lu, Huasheng; Thakar, Jay; Henriques, Jeremy; Halim, Nader D; Wu, Hong; Schell, Michael J; Tsang, Tsz Mon; Teahan, Orla; Zhou, Shaoyu; Califano, Joseph A; Jeoung, Nam Ho; Harris, Robert A; Verma, Ajay

    2008-08-15

    High lactate generation and low glucose oxidation, despite normal oxygen conditions, are commonly seen in cancer cells and tumors. Historically known as the Warburg effect, this altered metabolic phenotype has long been correlated with malignant progression and poor clinical outcome. However, the mechanistic relationship between altered glucose metabolism and malignancy remains poorly understood. Here we show that inhibition of pyruvate dehydrogenase complex (PDC) activity contributes to the Warburg metabolic and malignant phenotype in human head and neck squamous cell carcinoma. PDC inhibition occurs via enhanced expression of pyruvate dehydrogenase kinase-1 (PDK-1), which results in inhibitory phosphorylation of the pyruvate dehydrogenase alpha (PDHalpha) subunit. We also demonstrate that PDC inhibition in cancer cells is associated with normoxic stabilization of the malignancy-promoting transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) by glycolytic metabolites. Knockdown of PDK-1 via short hairpin RNA lowers PDHalpha phosphorylation, restores PDC activity, reverts the Warburg metabolic phenotype, decreases normoxic HIF-1alpha expression, lowers hypoxic cell survival, decreases invasiveness, and inhibits tumor growth. PDK-1 is an HIF-1-regulated gene, and these data suggest that the buildup of glycolytic metabolites, resulting from high PDK-1 expression, may in turn promote HIF-1 activation, thus sustaining a feed-forward loop for malignant progression. In addition to providing anabolic support for cancer cells, altered fuel metabolism thus supports a malignant phenotype. Correction of metabolic abnormalities offers unique opportunities for cancer treatment and may potentially synergize with other cancer therapies. PMID:18541534

  4. Pyruvate Kinase M2 Regulates Gene Transcription by Acting as A Protein Kinase

    PubMed Central

    Gao, Xueliang; Wang, Haizhen; Jenny, J. Yang; Liu, Xiaowei; Liu, Zhi-Ren

    2012-01-01

    Summary Pyruvate kinase isoform M2 (PKM2) is a glycolysis enzyme catalyzing conversion of phosphoenolpyruvate (PEP) to pyruvate with transferring a phosphate from PEP to ADP. We report here that PKM2 localizes to the cell nucleus. The levels of nuclear PKM2 correlate with cell proliferation. PKM2 activates transcription of MEK5 by phosphorylating stat3 at Y705. In vitro phosphorylation assays show that PKM2 is a protein kinase using PEP as phosphate donor. ADP competes with the protein substrate binding, indicating that the substrate may bind to the ADP site of PKM2. Our experiments suggest that PKM2 dimer is an active protein kinase, while the tetramer is an active pyruvate kinase. Expression a PKM2 mutant that exists as a dimer promotes cell proliferation, indicating that protein kinase activity of PKM2 plays a role in promoting cell proliferation. Our study reveals an important link between metabolism alteration and gene expression during tumor transformation and progression. PMID:22306293

  5. Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans.

    PubMed

    Peters, Björn; Junker, Anja; Brauer, Katharina; Mühlthaler, Bernadette; Kostner, David; Mientus, Markus; Liebl, Wolfgang; Ehrenreich, Armin

    2013-03-01

    Gluconobacter oxydans, a biotechnologically relevant species which incompletely oxidizes a large variety of carbohydrates, alcohols, and related compounds, contains a gene for pyruvate decarboxylase (PDC). This enzyme is found only in very few species of bacteria where it is normally involved in anaerobic ethanol formation via acetaldehyde. In order to clarify the role of PDC in the strictly oxidative metabolism of acetic acid bacteria, we developed a markerless in-frame deletion system for strain G. oxydans 621H which uses 5-fluorouracil together with a plasmid-encoded uracil phosphoribosyltransferase as counter selection method and used this technique to delete the PDC gene (GOX1081) of G. oxydans 621H. The PDC deletion mutant accumulated large amounts of pyruvate but almost no acetate during growth on D-mannitol, D-fructose or in the presence of L-lactate. This suggested that in G. oxydans acetate formation occurs by decarboxylation of pyruvate and subsequent oxidation of acetaldehyde to acetate. This observation and the efficiency of the markerless deletion system were confirmed by constructing deletion mutants of two acetaldehyde dehydrogenases (GOX1122 and GOX2018) and of the acetyl-CoA-synthetase (GOX0412). Acetate formation during growth of these mutants on mannitol did not differ significantly from the wild-type strain.

  6. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain

    NASA Astrophysics Data System (ADS)

    Mintun, Mark A.; Vlassenko, Andrei G.; Rundle, Melissa M.; Raichle, Marcus E.

    2004-01-01

    The factors regulating cerebral blood flow (CBF) changes in physiological activation remain the subject of great interest and debate. Recent experimental studies suggest that an increase in cytosolic NADH mediates increased blood flow in the working brain. Lactate injection should elevate NADH levels by increasing the lactate/pyruvate ratio, which is in near equilibrium with the NADH/NAD+ ratio. We studied CBF responses to bolus lactate injection at rest and in visual stimulation by using positron-emission tomography in seven healthy volunteers. Bolus lactate injection augmented the CBF response to visual stimulation by 38-53% in regions of the visual cortex but had no effect on the resting CBF or the whole-brain CBF. These lactate-induced CBF increases correlated with elevations in plasma lactate/pyruvate ratios and in plasma lactate levels but not with plasma pyruvate levels. Our observations support the hypothesis that an increase in the NADH/NAD+ ratio activates signaling pathways to selectively increase CBF in the physiologically stimulated brain regions.

  7. The pentose phosphate pathway and pyruvate carboxylation after neonatal hypoxic-ischemic brain injury.

    PubMed

    Brekke, Eva M F; Morken, Tora S; Widerøe, Marius; Håberg, Asta K; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-04-01

    The neonatal brain is vulnerable to oxidative stress, and the pentose phosphate pathway (PPP) may be of particular importance to limit the injury. Furthermore, in the neonatal brain, neurons depend on de novo synthesis of neurotransmitters via pyruvate carboxylase (PC) in astrocytes to increase neurotransmitter pools. In the adult brain, PPP activity increases in response to various injuries while pyruvate carboxylation is reduced after ischemia. However, little is known about the response of these pathways after neonatal hypoxia-ischemia (HI). To this end, 7-day-old rats were subjected to unilateral carotid artery ligation followed by hypoxia. Animals were injected with [1,2-(13)C]glucose during the recovery phase and extracts of cerebral hemispheres ipsi- and contralateral to the operation were analyzed using (1)H- and (13)C-NMR (nuclear magnetic resonance) spectroscopy and high-performance liquid chromatography (HPLC). After HI, glucose levels were increased and there was evidence of mitochondrial hypometabolism in both hemispheres. Moreover, metabolism via PPP was reduced bilaterally. Ipsilateral glucose metabolism via PC was reduced, but PC activity was relatively preserved compared with glucose metabolism via pyruvate dehydrogenase. The observed reduction in PPP activity after HI may contribute to the increased susceptibility of the neonatal brain to oxidative stress.

  8. Properties and mechanism of action of pyruvate, phosphate dikinase from leaves

    PubMed Central

    Andrews, T. J.; Hatch, M. D.

    1969-01-01

    1. Sugar-cane leaf pyruvate,Pi dikinase was prepared free of enzymes that would interfere with studies on the stoicheiometry and mechanism of the reaction it catalyses. The reaction was unequivocally shown to involve the conversion of equimolar amounts of pyruvate, ATP and Pi into phosphoenolpyruvate, AMP and PPi. 2. The purified enzyme was stable at pH8·3 only if stored at about 20° in the presence of Mg2+ and a thiol-reducing reagent, care being taken to prevent the oxidation of the thiol. 3. The apparent Michaelis constants for phosphoenolpyruvate and PPi were 0·11mm and 0·04mm respectively and that for AMP was less than 4μm. 4. At pH8·3 the initial velocity of the reaction was about 6 times as fast in the direction towards phosphoenolpyruvate synthesis as in the reverse direction. 5. With the exception of ATP, all the products of the reaction in both directions were inhibitory. 6. The phosphate groups of PPi were derived from Pi and from the terminal phosphate of ATP. 7. Isotope-exchange studies indicated that the reaction proceeds in the following steps: Enzyme+ATP+Pi ⇌ Enzyme–P+AMP+PPi Enzyme–P+pyruvate ⇌ Enzyme+phosphoenolpyruvate PMID:5810041

  9. Pulsed electron paramagnetic resonance experiments identify the paramagnetic intermediates in the pyruvate ferredoxin oxidoreductase catalytic cycle.

    PubMed

    Astashkin, Andrei V; Seravalli, Javier; Mansoorabadi, Steven O; Reed, George H; Ragsdale, Stephen W

    2006-03-29

    Pyruvate ferredoxin oxidoreductase (PFOR) is central to the anaerobic metabolism of many bacteria and amitochondriate eukaryotes. PFOR contains thiamine pyrophosphate (TPP) and three [4Fe-4S] clusters, which link pyruvate oxidation to reduction of ferredoxin. In the PFOR reaction, TPP reacts with pyruvate to form lactyl-TPP, which undergoes decarboxylation to form a hydroxyethyl-TPP (HE-TPP) intermediate. One electron is then transferred from HE-TPP to one of the three [4Fe-4S] clusters to form an HE-TPP radical and a [4Fe-4S]1+ intermediate. Pulsed EPR methods have been used to measure the distance between the HE-TPP radical and the [4Fe-4S]1+ cluster to which it is coupled. Computational analysis including the PFOR crystal structure and the spin distribution in the HE-TPP radical and in the reduced [4Fe-4S] cluster demonstrates that the distance between the HE-TPP radical and the medial cluster B matches the experimentally determined dipolar interaction, while one of the other two clusters is too close and the other is too far away. These results clearly demonstrate that it is the medial cluster (cluster B) that is reduced. Thus, rapid electron transfer occurs through the electron-transfer chain, which leaves an oxidized proximal cluster poised to accept an electron from the HE-TPP radical in the subsequent reaction step. PMID:16551078

  10. Genetic inactivation of pyruvate dehydrogenase kinases improves hepatic insulin resistance induced diabetes.

    PubMed

    Tao, Rongya; Xiong, Xiwen; Harris, Robert A; White, Morris F; Dong, Xiaocheng C

    2013-01-01

    Pyruvate dehydrogenase kinases (PDK1-4) play a critical role in the inhibition of the mitochondrial pyruvate dehydrogenase complex especially when blood glucose levels are low and pyruvate can be conserved for gluconeogenesis. Under diabetic conditions, the Pdk genes, particularly Pdk4, are often induced, and the elevation of the Pdk4 gene expression has been implicated in the increased gluconeogenesis in the liver and the decreased glucose utilization in the peripheral tissues. However, there is no direct evidence yet to show to what extent that the dysregulation of hepatic Pdk genes attributes to hyperglycemia and insulin resistance in vivo. To address this question, we crossed Pdk2 or Pdk4 null mice with a diabetic model that is deficient in hepatic insulin receptor substrates 1 and 2 (Irs1/2). Metabolic analyses reveal that deletion of the Pdk4 gene had better improvement in hyperglycemia and glucose tolerance than knockout of the Pdk2 gene whereas the Pdk2 gene deletion showed better insulin tolerance as compared to the Pdk4 gene inactivation on the Irs1/2 knockout genetic background. To examine the specific hepatic effects of Pdks on diabetes, we also knocked down the Pdk2 or Pdk4 gene using specific shRNAs. The data also indicate that the Pdk4 gene knockdown led to better glucose tolerance than the Pdk2 gene knockdown. In conclusion, our data suggest that hepatic Pdk4 may be critically involved in the pathogenesis of diabetes. PMID:23940800

  11. Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer.

    PubMed

    Roche, T E; Hiromasa, Y

    2007-04-01

    The fraction of pyruvate dehydrogenase complex (PDC) in the active form is reduced by the activities of dedicated PD kinase isozymes (PDK1, PDK2, PDK3 and PDK4). Via binding to the inner lipoyl domain (L2) of the dihydrolipoyl acetyltransferase (E2 60mer), PDK rapidly access their E2-bound PD substrate. The E2-enhanced activity of the widely distributed PDK2 is limited by dissociation of ADP from its C-terminal catalytic domain, and this is further slowed by pyruvate binding to the N-terminal regulatory (R) domain. Via the reverse of the PDC reaction, NADH and acetyl-CoA reductively acetylate lipoyl group of L2, which binds to the R domain and stimulates PDK2 activity by speeding up ADP dissociation. Activation of PDC by synthetic PDK inhibitors binding at the pyruvate or lipoyl binding sites decreased damage during heart ischemia and lowered blood glucose in insulin-resistant animals. PDC activation also triggers apoptosis in cancer cells that selectively convert glucose to lactate. PMID:17310282

  12. Structure-guided development of specific pyruvate dehydrogenase kinase inhibitors targeting the ATP-binding pocket.

    PubMed

    Tso, Shih-Chia; Qi, Xiangbing; Gui, Wen-Jun; Wu, Cheng-Yang; Chuang, Jacinta L; Wernstedt-Asterholm, Ingrid; Morlock, Lorraine K; Owens, Kyle R; Scherer, Philipp E; Williams, Noelle S; Tambar, Uttam K; Wynn, R Max; Chuang, David T

    2014-02-14

    Pyruvate dehydrogenase kinase isoforms (PDKs 1-4) negatively regulate activity of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation. PDK isoforms are up-regulated in obesity, diabetes, heart failure, and cancer and are potential therapeutic targets for these important human diseases. Here, we employed a structure-guided design to convert a known Hsp90 inhibitor to a series of highly specific PDK inhibitors, based on structural conservation in the ATP-binding pocket. The key step involved the substitution of a carbonyl group in the parent compound with a sulfonyl in the PDK inhibitors. The final compound of this series, 2-[(2,4-dihydroxyphenyl)sulfonyl]isoindoline-4,6-diol, designated PS10, inhibits all four PDK isoforms with IC50 = 0.8 μM for PDK2. The administration of PS10 (70 mg/kg) to diet-induced obese mice significantly augments pyruvate dehydrogenase complex activity with reduced phosphorylation in different tissues. Prolonged PS10 treatments result in improved glucose tolerance and notably lessened hepatic steatosis in the mouse model. The results support the pharmacological approach of targeting PDK to control both glucose and fat levels in obesity and type 2 diabetes. PMID:24356970

  13. Purification and characterisation of pyruvate decarboxylase from pea seeds (Pisum sativum cv. Miko).

    PubMed

    Mücke, U; König, S; Hübner, G

    1995-02-01

    Pyruvate decarboxylase (PDC) was purified from pea seeds. The catalytically active holoenzyme is an oligomer of two types of subunits with molecular masses of about 65 kDa and 68 kDa, respectively. The active enzyme is a mixture of tetramers, octamers and even higher oligomers. These differences in the quaternary structure compared with PDC from yeast (tetramer) do not result in a different kinetic behaviour. The activity of pea PDC as well as that of yeast PDC is regulated by its substrate pyruvate resulting in a sigmoid shape of the v/S-plot. At the optimum pH of 6.0 a S0.5-value of 1 mM pyruvate is found that increases with rising pH and increasing concentrations of phosphate. The substrate analogue activator pyruvamide activates the enzyme resulting in a hyperbolic v/S-plot. The stability of PDC from pea seeds in solution is about one order of magnitude higher than that of yeast PDC. Despite the described similarities of the two enzymes no significant cross reactivity of the anti-pea PDC antibody with the enzyme from yeast occurs. PMID:7794525

  14. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor.

    PubMed

    Matsuda, Shun; Adachi, Jun; Ihara, Masaru; Tanuma, Nobuhiro; Shima, Hiroshi; Kakizuka, Akira; Ikura, Masae; Ikura, Tsuyoshi; Matsuda, Tomonari

    2016-01-29

    Pyruvate kinase M2 (PKM2) and pyruvate dehydrogenase complex (PDC) regulate production of acetyl-CoA, which functions as an acetyl donor in diverse enzymatic reactions, including histone acetylation. However, the mechanism by which the acetyl-CoA required for histone acetylation is ensured in a gene context-dependent manner is not clear. Here we show that PKM2, the E2 subunit of PDC and histone acetyltransferase p300 constitute a complex on chromatin with arylhydrocarbon receptor (AhR), a transcription factor associated with xenobiotic metabolism. All of these factors are recruited to the enhancer of AhR-target genes, in an AhR-dependent manner. PKM2 contributes to enhancement of transcription of cytochrome P450 1A1 (CYP1A1), an AhR-target gene, acetylation at lysine 9 of histone H3 at the CYP1A1 enhancer. Site-directed mutagenesis of PKM2 indicates that this enhancement of histone acetylation requires the pyruvate kinase activity of the enzyme. Furthermore, we reveal that PDC activity is present in nuclei. Based on these findings, we propose a local acetyl-CoA production system in which PKM2 and PDC locally supply acetyl-CoA to p300 from abundant PEP for histone acetylation at the gene enhancer, and our data suggest that PKM2 sensitizes AhR-mediated detoxification in actively proliferating cells such as cancer and fetal cells.

  15. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

    SciTech Connect

    Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.; Jiang, Jian-Kang; Boxer, Matthew B.; Hong, Bum Soo; Tempel, Wolfram; Dimov, Svetoslav; Shen, Min; Jha, Abhishek; Yang, Hua; Mattaini, Katherine R.; Metallo, Christian M.; Fiske, Brian P.; Courtney, Kevin D.; Malstrom, Scott; Khan, Tahsin M.; Kung, Charles; Skoumbourdis, Amanda P.; Veith, Henrike; Southall, Noel; Walsh, Martin J.; Brimacombe, Kyle R.; Leister, William; Lunt, Sophia Y.; Johnson, Zachary R.; Yen, Katharine E.; Kunii, Kaiko; Davidson, Shawn M.; Christofk, Heather R.; Austin, Christopher P.; Inglese, James; Harris, Marian H.; Asara, John M.; Stephanopoulos, Gregory; Salituro, Francesco G.; Jin, Shengfang; Dang, Lenny; Auld, Douglas S.; Park, Hee-Won; Cantley, Lewis C.; Thomas, Craig J.; Vander Heiden, Matthew G.

    2012-08-26

    Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. The interaction of PKM2 with phosphotyrosine-containing proteins inhibits enzyme activity and increases the availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small-molecule PKM2 activators inhibits the growth of xenograft tumors. Structural studies reveal that small-molecule activators bind PKM2 at the subunit interaction interface, a site that is distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. This data supports the notion that small-molecule activation of PKM2 can interfere with anabolic metabolism.

  16. Direct measurement of backflux between oxaloacetate and fumarate following pyruvate carboxylation.

    PubMed

    Brekke, Eva; Walls, Anne B; Nørfeldt, Lasse; Schousboe, Arne; Waagepetersen, Helle S; Sonnewald, Ursula

    2012-01-01

    Pyruvate carboxylation (PC) is thought to be the major anaplerotic reaction for the tricarboxylic acid cycle and is necessary for de novo synthesis of amino acid neurotransmitters. In the brain, the main enzyme involved is pyruvate carboxylase, which is predominantly located in astrocytes. Carboxylation leads to the formation of oxaloacetate, which condenses with acetyl coenzyme A to form citrate. However, oxaloacetate may also be converted to malate and fumarate before being regenerated. This pathway is termed the oxaloacetate-fumarate-flux or backflux. Carbon isotope-based methods for quantification of activity of PC lead to underestimation when backflux is not taken into account and critical errors have been made in the interpretation of results from metabolic studies. This study was conducted to establish the degree of backflux after PC in cerebellar and neocortical astrocytes. Astrocyte cultures from cerebellum or neocortex were incubated with either [3-(13) C] or [2-(13) C]glucose, and extracts were analyzed using mass spectrometry or nuclear magnetic resonance spectroscopy. Substantial PC compared with pyruvate dehydrogenase activity was observed, and extensive backflux was demonstrated in both types of astrocytes. The extent of backflux varied between the metabolites, reaffirming that metabolism is highly compartmentalized. By applying our calculations to published data, we demonstrate the existence of backflux in vivo in cat, rat, mouse, and human brain. Thus, backflux should be taken into account when calculating the magnitude of PC to allow for a more precise evaluation of cerebral metabolism.

  17. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor

    PubMed Central

    Matsuda, Shun; Adachi, Jun; Ihara, Masaru; Tanuma, Nobuhiro; Shima, Hiroshi; Kakizuka, Akira; Ikura, Masae; Ikura, Tsuyoshi; Matsuda, Tomonari

    2016-01-01

    Pyruvate kinase M2 (PKM2) and pyruvate dehydrogenase complex (PDC) regulate production of acetyl-CoA, which functions as an acetyl donor in diverse enzymatic reactions, including histone acetylation. However, the mechanism by which the acetyl-CoA required for histone acetylation is ensured in a gene context-dependent manner is not clear. Here we show that PKM2, the E2 subunit of PDC and histone acetyltransferase p300 constitute a complex on chromatin with arylhydrocarbon receptor (AhR), a transcription factor associated with xenobiotic metabolism. All of these factors are recruited to the enhancer of AhR-target genes, in an AhR-dependent manner. PKM2 contributes to enhancement of transcription of cytochrome P450 1A1 (CYP1A1), an AhR-target gene, acetylation at lysine 9 of histone H3 at the CYP1A1 enhancer. Site-directed mutagenesis of PKM2 indicates that this enhancement of histone acetylation requires the pyruvate kinase activity of the enzyme. Furthermore, we reveal that PDC activity is present in nuclei. Based on these findings, we propose a local acetyl-CoA production system in which PKM2 and PDC locally supply acetyl-CoA to p300 from abundant PEP for histone acetylation at the gene enhancer, and our data suggest that PKM2 sensitizes AhR-mediated detoxification in actively proliferating cells such as cancer and fetal cells. PMID:26405201

  18. A nonsense mutation in the 4-hydroxyphenylpyruvic acid dioxygenase gene (Hpd) causes skipping of the constitutive exon and hypertyrosinemia in mouse strain III.

    PubMed

    Endo, F; Awata, H; Katoh, H; Matsuda, I

    1995-01-01

    4-Hydroxyphenylpyruvic acid dioxygenase (HPD; EC 1.13.11.27) is an important enzyme in tyrosine catabolism in most organisms. Decreased activity of 4-hydroxyphenylpyruvic acid dioxygenase in the liver of mouse strain III is associated with tyrosinemia. We report a nucleotide substitution that generates a termination codon in exon 7 of the 4-hydroxyphenylpyruvic acid dioxygenase gene in III mice. This mutation is associated with partial exon skipping, and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Mouse strain III is a model for human tyrosinemia type 3 (McKusick 276710), and this strain together with recently established models for tyrosinemia type 1 will facilitate studies of hereditary tyrosinemias.