Science.gov

Sample records for 4-mass tethered system

  1. Tethered satellite system

    NASA Technical Reports Server (NTRS)

    Sisson, J.

    1986-01-01

    A reusable system is to be developed to enable a variety of scientific investigations to be accomplished from the shuttle, considering the use of a tethered system with manual or automated control, deployment of a satellite toward or away from the Earth, up to 100 km, and conducting or nonconducting tether. Experiments and scientific investigations are to be performed using the tether system for applications such as magnetometry, electrodynamics, atmospheric science, and chemical release. A program is being implemented as a cooperative U.S./Italian activity. The proposed systems, investigations, and the program are charted and briefly discussed.

  2. Tether crawler system

    NASA Technical Reports Server (NTRS)

    Swanson, Frank R.

    1986-01-01

    A crawler system is designed to move a low-g/variable-g laboratory module along a tether between the Space Station and an attached space platform. An analysis is made of the effects of control law parameter change on the displacement, velocity, and acceleration of the crawler system. The control law is then modified by the addition of a constant-velocity section and the values of distance traveled, velocity, and acceleration are analyzed as a function of time. The power and torque equations are derived for a crawler system moving along a tether in orbit and numerical values of power and torque required for each prescribed movement are calculated versus time for four different cases using the control laws. A two-step control sequence is selected to permit initial location along the tether by distance traveled, followed by a vernier movement to reach the final desired constant net acceleration level. The components for the control system are identified and arranged in a block disgram configuration. The support subsystems are also identified. The sections were integrated to develop a procedure for the determination of crawler system performance requirements and the initial design of tether crawler systems.

  3. Tether Transportation System Study

    NASA Technical Reports Server (NTRS)

    Bangham, M. E.; Lorenzini, E.; Vestal, L.

    1998-01-01

    The projected traffic to geostationary earth orbit (GEO) is expected to increase over the next few decades. At the same time, the cost of delivering payloads from the Earth's surface to low earth orbit (LEO) is projected to decrease, thanks in part to the Reusable Launch Vehicle (RLV). A comparable reduction in the cost of delivering payloads from LEO to GEO is sought. The use of in-space tethers, eliminating the requirement for traditional chemical upper stages and thereby reducing the launch mass, has been identified as such an alternative. Spinning tethers are excellent kinetic energy storage devices for providing the large delta vee's required for LEO to GEO transfer. A single-stage system for transferring payloads from LEO to GEO was proposed some years ago. The study results presented here contain the first detailed analyses of this proposal, its extension to a two-stage system, and the likely implementation of the operational system.

  4. Near Space Environments: Tethering Systems

    NASA Technical Reports Server (NTRS)

    Lucht, Nolan R.

    2013-01-01

    Near Space Environments, the Rocket University (Rocket U) program dealing with high altitude balloons carrying payloads into the upper earth atmosphere is the field of my project. The tethering from balloon to payload is the specific system I am responsible for. The tethering system includes, the lines that tie the payload to the balloon, as well as, lines that connect payloads together, if they are needed, as well as how to sever the tether to release payloads from the balloon. My objective is to design a tethering system that will carry a payload to any desired altitude and then sever by command at any given point during flight.

  5. Electrodynamic tether system study

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose of this program is to define an Electrodynamic Tether System (ETS) that could be erected from the space station and/or platforms to function as an energy storage device. A schematic representation of the ETS concept mounted on the space station is presented. In addition to the hardware design and configuration efforts, studies are also documented involving simulations of the Earth's magnetic fields and the effects this has on overall system efficiency calculations. Also discussed are some preliminary computer simulations of orbit perturbations caused by the cyclic/night operations of the ETS. System cost estimates, an outline for future development testing for the ETS system, and conclusions and recommendations are also provided.

  6. Tethered Satellite System control system design

    NASA Technical Reports Server (NTRS)

    Tomlin, Donald D.; Mowery, David K.; Bodley, Carl S.

    1989-01-01

    This paper discusses the control aspects of the Tethered Satellite System mission. The deployer controls system uses length-error and tension-error feedback to control in-plane libration, length, and length rate. The satellite's reaction control system is used to augment tether tension, control rates and attitude about the tether axis, and to damp in-plane and out-of-plane libration. The orbiter's reaction control system is also used to control in-plane and out-of-plane libration. Results of simulations are presented for the flight portion of the Tethered Satellite System mission.

  7. The investigation of tethered satellite system dynamics

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1984-01-01

    Tethered satellite system (TSS) dynamics were studied. The dynamic response of the TSS during the entire stationkeeping phase for the first electrodynamic mission was investigated. An out of plane swing amplitude and the tether's bowing were observed. The dynamics of the slack tether was studied and computer code, SLACK2, was improved both in capabilities and computational speed. Speed hazard related to tether breakage or plasma contactor failure was examined. Preliminary values of the potential difference after the failure and of the drop of the electric field along the tether axis have been computed. The update of the satellite rotational dynamics model is initiated.

  8. Tethered Satellite System Contingency Investigation Board

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether

  9. The investigation of tethered satellite system dynamics

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1985-01-01

    A progress report is presented that deals with three major topics related to Tethered Satellite System Dynamics. The SAO rotational dynamics computer code was updated. The program is now suitable to deal with inclined orbits. The output has been also modified in order to show the satellite Euler angles referred to the rotating orbital frame. The three-dimensional high resolution computer program SLACK3 was developed. The code simulates the three-dimensional dynamics of a tether going slack taking into account the effect produced by boom rotations. Preliminary simulations on the three-dimensional dynamics of a recoiling slack tether are shown in this report. A program to evaluate the electric potential around a severed tether is immersed in a plasma. The potential is computed on a three-dimensional grid axially symmetric with respect to the tether longitudinal axis. The electric potential variations due to the plasma are presently under investigation.

  10. Dynamics and control of multibody tethered systems

    NASA Astrophysics Data System (ADS)

    Kalantzis, S.; Modi, V. J.; Pradhan, S.; Misra, A. K.

    The equations of motion for a multibody tethered satellite system in a three dimensional Keplerian orbit are derived. The model considers a multi-satellite system connected in series by flexible tethers. Both tethers and subsatellites are free to undergo three dimensional attitude motion, together with longitudinal and transverse vibration for the tether. The elastic deformations of the tethers are discretized using the assumed-mode method. In addition, the tether attachment points to the subsatellites are kept arbitrary and time varying, with deployment and retrieval degrees of freedom. The governing equations of motion are derived using an Order ( N) Lagrangian formulation. Next, two independent controllers, i.e. an attitude and vibration controller, are designed to regulate the rigid and flexible motion present in the system, excited from various maneuvres performed during the course of a mission. The former controller utilizes the thrusters and momentum-wheels located on the rigid satellites with a control algorithm based on the feedback linearization technique. On the other hand, the latter is designed using the robust linear quadratic Gaussian-loop transfer recovery method actuating the variable tether attachment point, or offset position. Both controllers are successful in suppressing unwanted disturbances in the system in a acceptable amount of time.

  11. The space station tethered elevator system

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.

    1989-01-01

    The optimized conceptual engineering design of a space station tethered elevator is presented. The elevator is an unmanned mobile structure which operates on a ten kilometer tether spanning the distance between the Space Station and a tethered platform. Elevator capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The potential uses, parameters, and evolution of the spacecraft design are discussed. Engineering development of the tethered elevator is the result of work conducted in the following areas: structural configurations; robotics, drive mechanisms; and power generation and transmission systems. The structural configuration of the elevator is presented. The structure supports, houses, and protects all systems on board the elevator. The implementation of robotics on board the elevator is discussed. Elevator robotics allow for the deployment, retrieval, and manipulation of tethered objects. Robotic manipulators also aid in hooking the elevator on a tether. Critical to the operation of the tethered elevator is the design of its drive mechanisms, which are discussed. Two drivers, located internal to the elevator, propel the vehicle along a tether. These modular components consist of endless toothed belts, shunt-wound motors, regenerative power braking, and computer controlled linear actuators. The designs of self-sufficient power generation and transmission systems are reviewed. Thorough research indicates all components of the elevator will operate under power provided by fuel cells. The fuel cell systems will power the vehicle at seven kilowatts continuously and twelve kilowatts maximally. A set of secondary fuel cells provides redundancy in the unlikely event of a primary system failure. Power storage exists in the form of Nickel-Hydrogen batteries capable of powering the elevator under maximum loads.

  12. Membrane Tethering Complexes in the Endosomal System

    PubMed Central

    Spang, Anne

    2016-01-01

    Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is facilitated by the Golgi associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, proteins that may be part of novel tethering complexes have been recently identified. Thus, it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic. PMID:27243003

  13. Membrane Tethering Complexes in the Endosomal System.

    PubMed

    Spang, Anne

    2016-01-01

    Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is facilitated by the Golgi associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, proteins that may be part of novel tethering complexes have been recently identified. Thus, it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic. PMID:27243003

  14. Tether deployment monitoring system, phase 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An operational Tether Deployment Monitoring System (TEDEMS) was constructed that would show system functionality in a terrestrial environment. The principle function of the TEDEMS system is the launching and attachment of reflective targets onto the tether during its deployment. These targets would be tracked with a radar antenna that was pointed towards the targets by a positioning system. A spring powered launcher for the targets was designed and fabricated. An instrumentation platform and launcher were also developed. These modules are relatively heavy and will influence tether deployment scenarios, unless they are released with a velocity and trajectory closely matching that of the tether. Owing to the tracking range limitations encountered during field trails of the Radar system, final TEDEMS system integration was not completed. The major module not finished was the system control computer. The lack of this device prevented any subsystem testing or field trials to be conducted. Other items only partially complete were the instrumentation platform launcher and modules and the radar target launcher. The work completed and the tests performed suggest that the proposed system continues to be a feasible approach to tether monitoring, although additional effort is still necessary to increase the range at which modules can be detected. The equipment completed and tested, to the extent stated, is available to NASA for use on any future program that requires tether tracking capability.

  15. Tether dynamics and control results for tethered satellite system's initial flight

    NASA Astrophysics Data System (ADS)

    Chapel, Jim D.; Flanders, Howard

    The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.

  16. Tethered Satellite System (TSS) core equipment

    NASA Technical Reports Server (NTRS)

    Bonifazi, C.

    1986-01-01

    To date, three Tethered Satellite System (TSS) missions of the Italian provided scientific satellite orbiting in the ionosphere connected to U.S. Space Shuttle is foreseen. The first mission will use an electrically conductive tether of 20 km deployed upward from the orbiter flying at 300 km altitude. This mission will allow investigation of the TSS electrodynamic interaction with the ionosphere due to the high voltage induced across the two terminators of the system during its motion throughout the geomagnetic field. The second mission will use a dielectric tether of 100 km deployed downward from the Orbiter flying at 230 km altitude. Tethered-vehicle access to altitude as low as 120 to 150 km from the Orbiter would permit direct long term observation of phenomena in the lower thermosphere and determination of other dynamical physical processes. The third mission would use the same configuration of the first electrodynamic mission with the complete Core Equipment. Study of power generation by tethered systems would be possible by operating the Core Equipment in the inverted current mode. This mode of operation would allow ion current collection upon the TSS satellite by controlling its potential with respect to the ambient ionospheric plasma. The main requirements of the Core Equipment configuration to date foreseen for the first TSS electrodynamic mission is described. Besides the Core Equipment purposes, its hardware and operational sub-modes of operation are described.

  17. Tethered Lubricants for Small Systems

    SciTech Connect

    Lynden A. Archer

    2006-01-09

    The objective of this research project is two-fold. First, to fundamentally understand friction and relaxation dynamics of polymer chains near surfaces; and second, to develop novel self-lubricated substrates suitable for MEMS devices. During the three-year performance period of this study the PI and his students have shown using theory and experiments that systematic introduction of disorder into tethered lubricant coatings (e.g. by using self-assembled monolayer (SAM) mixtures or SAMs with nonlinear, branched architectures) can be used to significantly reduce the friction coefficient of a surface. They have also developed a simple procedure based on dielectric spectroscopy for quantifying the effect of surface disorder on molecular relaxation in lubricant coatings. Details of research accomplishments in each area of the project are described in the body of the report.

  18. The first mission of the Tethered Satellite System

    NASA Technical Reports Server (NTRS)

    Powers, C. Blake (Editor); Shea, Charlotte; Mcmahan, Tracy

    1992-01-01

    The era of space-age tethered operations moves toward reality with the launch of Tethered Satellite System-1 (TSS-1). The primary objective of this mission is to demonstrate the technology of long tethered systems in space and to demonstrate, through scientific investigations, that such systems are useful for research.

  19. Tethered Forth system for FPGA applications

    NASA Astrophysics Data System (ADS)

    Goździkowski, Paweł; Zabołotny, Wojciech M.

    2013-10-01

    This paper presents the tethered Forth system dedicated for testing and debugging of FPGA based electronic systems. Use of the Forth language allows to interactively develop and run complex testing or debugging routines. The solution is based on a small, 16-bit soft core CPU, used to implement the Forth Virtual Machine. Thanks to the use of the tethered Forth model it is possible to minimize usage of the internal RAM memory in the FPGA. The function of the intelligent terminal, which is an essential part of the tethered Forth system, may be fulfilled by the standard PC computer or by the smartphone. System is implemented in Python (the software for intelligent terminal), and in VHDL (the IP core for FPGA), so it can be easily ported to different hardware platforms. The connection between the terminal and FPGA may be established and disconnected many times without disturbing the state of the FPGA based system. The presented system has been verified in the hardware, and may be used as a tool for debugging, testing and even implementing of control algorithms for FPGA based systems.

  20. Shuttle/tethered satellite system conceptual design study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.

  1. GTOSS: Generalized Tethered Object Simulation System

    NASA Technical Reports Server (NTRS)

    Lang, David D.

    1987-01-01

    GTOSS represents a tether analysis complex which is described by addressing its family of modules. TOSS is a portable software subsystem specifically designed to be introduced into the environment of any existing vehicle dynamics simulation to add the capability of simulating multiple interacting objects (via multiple tethers). These objects may interact with each other as well as with the vehicle into whose environment TOSS is introduced. GTOSS is a stand alone tethered system analysis program, representing an example of TOSS having been married to a host simulation. RTOSS is the Results Data Base (RDB) subsystem designed to archive TOSS simulation results for future display processing. DTOSS is a display post processors designed to utilize the RDB. DTOSS extracts data from the RDB for multi-page printed time history displays. CTOSS is similar to DTOSS, but is designed to create ASCII plot files. The same time history data formats provided for DTOSS (for printing) are available via CTOSS for plotting. How these and other modules interact with each other is discussed.

  2. Orbital Propagation of Momentum Exchange Tether Systems

    NASA Technical Reports Server (NTRS)

    Westerhoff, John

    2002-01-01

    An advanced concept in in-space transportation currently being studied is the Momentum-Exchange/Electrodynamic Reboost Tether System (MXER). The system acts as a large momentum wheel, imparting a Av to a payload in low earth orbit (LEO) at the expense of its own orbital energy. After throwing a payload, the system reboosts itself using an electrodynamic tether to push against Earth's magnetic field and brings itself back up to an operational orbit to prepare for the next payload. The ability to reboost itself allows for continued reuse of the system without the expenditure of propellants. Considering the cost of lifting propellant from the ,ground to LEO to do the same Av boost at $10000 per pound, the system cuts the launch cost of the payload dramatically, and subsequently, the MXER system pays for itself after a small number of missions.1 One of the technical hurdles to be overcome with the MXER concept is the rendezvous maneuver. The rendezvous window for the capture of the payload is on the order of a few seconds, as opposed to traditional docking maneuvers, which can take as long ets necessary to complete a precise docking. The payload, therefore, must be able to match its orbit to meet up with the capture device on the end of the tether at a specific time and location in the future. In order to be able to determine that location, the MXER system must be numerically propagated forward in time to predict where the capture device will be at that instant. It should be kept in mind that the propagation computation must be done faster than real-time. This study focuses on the efforts to find and/or build the tools necessary to numerically propagate the motion of the MXER system as accurately as possible.

  3. Gravity gradient determination with tethered systems

    NASA Technical Reports Server (NTRS)

    Kalaghan, P. M.; Colombo, G.

    1978-01-01

    A detailed investigation of the Earth's gravity field is needed for application to modern solid earth and oceanic investigations. The use of gravity gradiometers presents a technique to measure the intermediate wavelength components of the gravity field. One configuration of a gradiometer involves a tethered pair of masses orbiting the Earth and stabilized by vertical gravity gradient of the earth. A mesurement of the tension in such a system, called the DUMBBELL system is described. It allows the determination of the vertical gradient of the anomalous component of the Earth's gravtiy field. Preliminary analysis of the dynamics, mechanization, expected signal levels and noise environment indicates that the Dumbbell system is feasible.

  4. Control Scheme of Tether Drag Deorbit System in Orbital Plane

    NASA Astrophysics Data System (ADS)

    Cui, Wei-Dong; Sun, Liang; Zhao, Guo-Wei

    In this paper, based on a dumbbell model of tethered satellite, a tension control scheme and a thrust control scheme of tether drag deorbit system in orbital plane are respectively proposed. In the tension control scheme, the tether tension can be measured by tension sensor and controlled by adjusting the tether length with a certain windlass mechanism, so that the librational angles could track the expected value; meanwhile, the tether could come back to the initial value. Because of the windlass mechanism, the slackness of tether can be avoided. In the thrust control scheme, the tether drag deorbit system is with a short tether in orbital maneuvering and the thrust acceleration imposed on the base satellite can be adjusted to avoid the slackness of tether and damp out the librational angles; besides, it is required that the regulation value of thrust acceleration meets with accuracy trajectory in practical engineering. Afterwards, a reasonable deorbit case of an abandoned GEO satellite is studied, in which the control of base satellite is considered; then, the advantages and disadvantages of two control schemes are analyzed and an improved control strategy is given. Numerical simulation results indicate that the slackness of tether can be eliminated and the librational angles are damped out according to the designed controllers, and the stability of the attitude of abandoned satellite is also guaranteed during flight. The proposed control schemes are feasible, which is useful for the flight safety.

  5. Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory

    2013-01-01

    Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.

  6. The investigation of tethered satellite system dynamics

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1985-01-01

    The tether control law to retrieve the satellite was modified in order to have a smooth retrieval trajectory of the satellite that minimizes the thruster activation. The satellite thrusters were added to the rotational dynamics computer code and a preliminary control logic was implemented to simulate them during the retrieval maneuver. The high resolution computer code for modelling the three dimensional dynamics of untensioned tether, SLACK3, was made fully operative and a set of computer simulations of possible tether breakages was run. The distribution of the electric field around an electrodynamic tether in vacuo severed at some length from the shuttle was computed with a three dimensional electrodynamic computer code.

  7. Project 'VOLCANO': Electronics of tethered satellite system

    NASA Astrophysics Data System (ADS)

    Savich, N. A.

    The main goal of the 'VOLCANO' project developed jointly by the Institute of Radio Engineering and Electronics and space concern 'ENERGIA' is experimental investigation of the current-voltage characteristics of the 'Collector-Boom-Emitter' system simulating the long Tethered Satellite System (TSS) in the real space flight conditions on the transport ship 'PROGRESS'. These measurements will allow scientists to determine the attainable current values for different combinations of collectors and emitters (passive metallic sphere, thermocathode, hollow cathodes and show up some prospects of active TSS. The report is concerned with the concept, purpose and tasks of the project, the planned set up of the measurement equipment on the 'PROGRESS' ship and in the container extended on the deployable 100 m long boom end.

  8. Tethered satellite systems - Technology of the future? Results of the study 'Long-term applications of tethered systems in orbit' (LASSO)

    NASA Astrophysics Data System (ADS)

    Seboldt, Wolfgang

    1992-08-01

    Possible future applications of tethered satellite systems are examined. The physics of electrodynamic tether systems is reviewed and the use of such tethers in energy provision and propulsion is addressed. The uses of electrically nonconducting tethers in geophysical studies and research of the sun, microgravity, aerothermodynamics, and meteorology and their possible role in space transport are considered.

  9. Multi-Tethered Space-Based Interferometers: Particle System Model

    NASA Technical Reports Server (NTRS)

    Gates, Stephen S.

    2001-01-01

    Dynamics models are presented for a class of space-based interferometers comprised of multiple component bodies, interconnected in various arrangements, by low-mass flexible tethers of variable length. The tethered constellations are to perform coordinated rotational scanning accompanied by baseline dimensional changes, as well as spin axis realignments and spin-up/spin-down maneuvers. The mechanical idealization is a system of N point masses interconnected by massless tethers of variable length. Both extensible and inextensible tethers are considered. Expressions for system angular and linear momenta are developed. The unrestricted nonlinear motion equations are derived via Lagranges equations. Rheonomic constraints are introduced to allow prescribed motion of any degrees of freedom, and the associated physical forces are determined. The linearized equations of motion are obtained for the steady rotation of a system with extensible tethers of constant unstrained length.

  10. Combination Solar Sail and Electrodynamic Tether Propulsion System

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L. (Inventor); Matloff, Gregory L. (Inventor)

    2003-01-01

    A propulsion system for a spacecraft includes a solar sail system and an electrodynamic tether system is presented. The solar sail system is used to generate propulsion to propel the spacecraft through space using solar photons and the electrodynamic tether system is used to generate propulsion to steer the spacecraft into orbit and to perform orbital maneuvers around a planet using the planet's magnetic field. The electrodynamic tether system can also be used to generate power for the spacecraft using the planet's magnetic field.

  11. Operational complexities of real tether systems in space

    NASA Technical Reports Server (NTRS)

    Hoffman, Jeffrey A.

    1989-01-01

    Some of the major operational concerns that have to be addressed in planning a real tether mission, such as the TTS-1 mission, which is due to fly on the Space Shuttle in the early 1990's, are discussed. Specifically, several operational hazards, such as the tether reel overtorque and the loss of tether system control, are considered from the viewpoint of flight crew, who must be able to detect the presence of a problem and to determine the corrective action to be taken. Various safety measures are discussed.

  12. On tethered sample and mooring systems near irregular asteroids

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Shan, Jinjun

    2014-10-01

    A tethered asteroid sample and mooring system is investigated in this paper. In this system the spacecraft is moored to the surface of an irregular asteroid such as 216 Kleopatra by using a rocket-propelled anchor with a cable. The rocket-propelled anchor is a kind of space penetrator, which can inject into asteroids at high speeds generated by its own rocket engine. It can be used to explore the interior structure of asteroids, and it can also be used as a sample collector. When the sampling mission is done, the sample can be pulled back to the spacecraft with the anchor. Using this method, the spacecraft can be kept in a safe region in which it cannot be trapped by the gravitational field of the asteroid. This work is concerned with the dynamics of the tethered system near irregular asteroids. First, a shape model and gravitational field model of irregular asteroids are built. Then, the configuration and the stability of the tethered system are investigated, and the quasi-periodic motion near the equilibrium point of the tethered system is analyzed. Finally, the non-uniform density distribution of the asteroids is considered. The deployment process and the oscillation of the tethered system in the uncertain asteroid gravity field are simulated using the Monte Carlo method. The feasibility of the tethered asteroid sample and mooring system is proved.

  13. The investigation of tethered satellite system dynamics

    NASA Technical Reports Server (NTRS)

    Lorenzini, E. C.

    1986-01-01

    The analysis of the rotational dynamics of the satellite was focused on the rotational amplitude increase of the satellite, with respect to the tether, during retrieval. The dependence of the rotational amplitude upon the tether tension variation to the power 1/4 was thoroughly investigated. The damping of rotational oscillations achievable by reel control was also quantified while an alternative solution that makes use of a lever arm attached with a universal joint to the satellite was proposed. Comparison simulations between the Smithsonian Astrophysical Observatory and the Martin Marietta (MMA) computer code of reteival maneuvers were also carried out. The agreement between the two, completely independent, codes was extremely close, demonstrating the reliability of the models. The slack tether dynamics during reel jams was analytically investigated in order to identify the limits of applicability of the SLACK3 computer code to this particular case. Test runs with SLACK3 were also carried out.

  14. Tethering Complexes in the Arabidopsis Endomembrane System

    PubMed Central

    Vukašinović, Nemanja; Žárský, Viktor

    2016-01-01

    Targeting of endomembrane transport containers is of the utmost importance for proper land plant growth and development. Given the immobility of plant cells, localized membrane vesicle secretion and recycling are amongst the main processes guiding proper cell, tissue and whole plant morphogenesis. Cell wall biogenesis and modification are dependent on vectorial membrane traffic, not only during normal development, but also in stress responses and in plant defense against pathogens and/or symbiosis. It is surprising how little we know about these processes in plants, from small GTPase regulation to the tethering complexes that act as their effectors. Tethering factors are single proteins or protein complexes mediating first contact between the target membrane and arriving membrane vesicles. In this review we focus on the tethering complexes of the best-studied plant model—Arabidopsis thaliana. Genome-based predictions indicate the presence of all major tethering complexes in plants that are known from a hypothetical last eukaryotic common ancestor (LECA). The evolutionary multiplication of paralogs of plant tethering complex subunits has produced the massively expanded EXO70 family, indicating a subfunctionalization of the terminal exocytosis machinery in land plants. Interpretation of loss of function (LOF) mutant phenotypes has to consider that related, yet clearly functionally-specific complexes often share some common core subunits. It is therefore impossible to conclude with clarity which version of the complex is responsible for the phenotypic deviations observed. Experimental interest in the analysis of plant tethering complexes is growing and we hope to contribute with this review by attracting even more attention to this fascinating field of plant cell biology. PMID:27243010

  15. Tethering Complexes in the Arabidopsis Endomembrane System.

    PubMed

    Vukašinović, Nemanja; Žárský, Viktor

    2016-01-01

    Targeting of endomembrane transport containers is of the utmost importance for proper land plant growth and development. Given the immobility of plant cells, localized membrane vesicle secretion and recycling are amongst the main processes guiding proper cell, tissue and whole plant morphogenesis. Cell wall biogenesis and modification are dependent on vectorial membrane traffic, not only during normal development, but also in stress responses and in plant defense against pathogens and/or symbiosis. It is surprising how little we know about these processes in plants, from small GTPase regulation to the tethering complexes that act as their effectors. Tethering factors are single proteins or protein complexes mediating first contact between the target membrane and arriving membrane vesicles. In this review we focus on the tethering complexes of the best-studied plant model-Arabidopsis thaliana. Genome-based predictions indicate the presence of all major tethering complexes in plants that are known from a hypothetical last eukaryotic common ancestor (LECA). The evolutionary multiplication of paralogs of plant tethering complex subunits has produced the massively expanded EXO70 family, indicating a subfunctionalization of the terminal exocytosis machinery in land plants. Interpretation of loss of function (LOF) mutant phenotypes has to consider that related, yet clearly functionally-specific complexes often share some common core subunits. It is therefore impossible to conclude with clarity which version of the complex is responsible for the phenotypic deviations observed. Experimental interest in the analysis of plant tethering complexes is growing and we hope to contribute with this review by attracting even more attention to this fascinating field of plant cell biology. PMID:27243010

  16. Dynamics and stability of spinning flexible space tether systems

    NASA Astrophysics Data System (ADS)

    Tyc, George

    This dissertation focuses on a detailed dynamical investigation of a previously unexplored tether configuration that involves a spinning two-body tethered system with flexible appendages on each end-body where the spin axis is nominally aligned along the tether. The original motivation for this work came after the flight of the first Canadian sub-orbital tether mission OEDIPUS-A in 1989 which employed this spinning tethered configuration. To everyone's surprise, one of the end-bodies was observed to exhibit a rapid divergence of its nutation angle. It was clear after this flight that there were some fundamental mechanisms associated with the interaction between the tether and the end-body that were not fully understood at that time. Hence, a Tether Dynamics Experiment (TDE) was formed and became a formal part of the scientific agenda for the follow-on mission OEDIPUS-C which flew in 1995. This dissertation describes the work that was conducted as part of the TDE and involves: theoretical investigations into the dynamics of this spinning tethered flexible body system; ground testing to validate the models and establish the tether properties; application of the models to develop a stabilization approach for OEDIPUS-C, and comparisons between theory and flight data from both OEDIPUS-A and OEDIPUS-C. Nonlinear equations of motion are developed for a spinning tethered system where the tether could be either spinning with the end-bodies or attached to small de-spun platforms on the end-bodies. Since the tether used for the OEDIPUS missions is not a string, as is often assumed, but rather a wire that has some bending stiffness, albeit small, the tether bending was also taken into account in the formulation. Two sets of ground tests are described that were used to validate the stability conditions and gain confidence in the mathematical models. One set involved hanging a body by a tether and spinning at different speeds to investigate the end-body stability. The other set

  17. Shuttle-tethered satellite system definition study extension

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A system requirements definition and configuration study (Phase B) of the Tethered Satellite System (TSS) was conducted during the period 14 November 1977 to 27 February 1979. Subsequently a study extension was conducted during the period 13 June 1979 to 30 June 1980, for the purpose of refining the requirements identified during the main phase of the study, and studying in some detail the implications of accommodating various types of scientific experiments on the initial verification flight mission. An executive overview is given of the Tethered Satellite System definition developed during the study. The results of specific study tasks undertaken in the extension phase of the study are reported. Feasibility of the Tethered Satellite System has been established with reasonable confidence and the groundwork laid for proceeding with hardware design for the verification mission.

  18. Interactions of a tethered satellite system with the ionosphere

    NASA Technical Reports Server (NTRS)

    Grossi, M. D.; Colombo, G.

    1978-01-01

    The Tethered Satellite System will be the first large structure deployed in space. It will react strongly with the magneto-ionic medium of the Earth's ionosphere and will thus be valuable experimental tool. Experiments planned for the structure are discussed. Emphasis is placed on the structures ability to excite a large variety of wave phenomena in the ionosphere using its electromotive force.

  19. Numerical and Experimental Approaches on the Motion of a Tethered System

    NASA Astrophysics Data System (ADS)

    Takehara, Shoichiro; Terumichi, Yoshiaki; Nohmi, Masahiro; Sogabe, Kiyoshi

    In the present paper, the motion of a tethered system with large deformation and large displacement is discussed. In general, a tether is a cable or a wire rope, and a tethered system consists of a tether and the equipment attached to the tether. A tethered subsatellite in space is an example of a tethered system. In the present study, a tethered system consisting of a very flexible body (the tether) and a rigid body at one end is considered as the analytical model. A flexible body in planer motion is described using the Absolute Nodal Coordinate Formulation. Using this formulation, the motion of a flexible body with large deformation, rotation and translation can be expressed with the accuracy of rigid body motion. The combination of the flexible body motion and the rigid body motion is performed, and their interaction is discussed. Experiments are performed to investigate the fundamental motion of the tethered system and to evaluate the validity of the numerical formulation. Experiments were conducted using a steel tether and a rubber tether in gravity space. In addition, an experiment of the motion of the tethered system with a rigid body in microgravity space was conducted.

  20. The tethered satellite system for low density aerothermodynamics studies

    NASA Technical Reports Server (NTRS)

    Carlomagno, Giovanni M.; De Luca, Luigi; Siemers, P. M., III; Wood, George M., Jr.

    1986-01-01

    The feasibility of the operation of the Tethered Satellite System (TSS) as a continuous open wind tunnel for low-density aerothermodynamic studies (applicable to the design of hypersonic space vehicles including STARFAC, AOTV, and ERV) is considered. The Shuttle Continuous Open Wind Tunnel (SCOWT) program, for the study of the energy and momentum transfer between the tethered satellite and its environmental medium during the TSS/2 mission, is described. Instrumentation and TSS design requirements to meet SCOWT objectives are also considered. SCOWT will provide information on the gasdynamic processes occurring downstream of the bow wave standing in front of the TS, the chemistry and physics of the upper atmosphere related to satellite aerothermodynamics, and TSS's overall experimental envelope of operation.

  1. Tethered Vehicle Control and Tracking System

    NASA Technical Reports Server (NTRS)

    North, David D. (Inventor); Aull, Mark J. (Inventor)

    2014-01-01

    A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.

  2. Operator's Manual for SHEBA Powered Tether Balloon System

    NASA Technical Reports Server (NTRS)

    Lappen, Cara-Lyn; Randall, David A.

    1998-01-01

    The Surface Heat and Energy Budget of the Arctic (SHEBA) was an intensive field project which took place in the Arctic Ocean from October 1997 through October 1998. Its purpose was to measure as many facets of the Arctic environment as possible so that we would be able to better understand the interaction between the ice, atmosphere, and ocean and their interactions with global climate. One aspect of the atmospheric field component was launching tethered balloons to monitor the profiles of temperature, wind, pressure, and humidity, as well as examine the vertical structure of cloud droplet sizes and distributions. The tethered balloon that we used was one specially designed for use in freezing climates by SPEC Corporation in Boulder, Colorado. A special winch that was able to withstand Arctic temperature and weather became necessary when the testing of simple winch systems used in warmer climates failed under these extreme conditions. The purpose of this manual is to acquaint any new user to the powered tethered balloon system deployed at the The Surface Heat and Energy Budget of the Arctic (SHEBA ice camp. It includes a description of the preparations necessary to get ready for a launch, the mechanics of the actual launch, and an account of the proper procedure for taking down the equipment when finished. It will also include tips on how to minimize potential equipment failures, some trouble shooting, and some safety ideas. This manual is designed so that new operators can use the system with minimal previous training. At the end of this manual, the reader will find a quick checklist.

  3. Future geodesy missions: Tethered systems and formation flying

    NASA Astrophysics Data System (ADS)

    Fontdecaba, Jordi; Sanjurjo, Manuel; Pelaez, Jesus; Metris, Gilles; Exertier, Pierre

    Recent gravity field determination missions have shown the possibility of improving our Earth knowledge from space. GRACE has helped to the determination of temporal variations of low and mean degrees of the field while GOCE will improve the precision in the determination of higher degrees. But there is still some needs for geophysics which are not satisfied by these missions. Two areas where improvements must be done are (i) perenniality of the observations, and (ii) determination of temporal variations of higher degrees of the gravity field. These improvements can be achieved thanks to new measurement technologies with higher precision, but also using new observables. Historically, space determination of the gravity field has been done observing the perturbations of the orbit of the satellites. More recently, GRACE has introduced the use of satellite-tosatellite ranging. Goce will use onboard gradiometry. The authors have explored the possibilities of two new technologies for the determination of the gravity field: (i) tethered systems, and (ii) formation flying for all kind of configurations (not just leader-follower). To analyze the possibilities of these technologies, we obtain the covariance matrix of the coefficients of the gravity field for the different observables. This can be done providing some very reasonable hypothesis are accepted. This matrix contains a lot of information concerning the behavior of the observable. In order to obtain the matrix, we use the so-called lumped coefficients approach. We have used this method for three observables (i) tethered systems, (ii) formation flying and (iii) gradiometry (for comparison purposes). Tethers appear as a very long base gradiometers, with very interesting properties, but also very challenging from a technological point of view. One of the major advantages of the tethered systems is their multitask design. Indeed, the same cable can be used for propulsion purposes in some phases of the mission, and for

  4. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  5. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  6. Configuration maintaining control of three-body ring tethered system based on thrust compensation

    NASA Astrophysics Data System (ADS)

    Huang, Panfeng; Liu, Binbin; Zhang, Fan

    2016-06-01

    Space multi-tethered systems have shown broad prospects in remote observation missions. This paper mainly focuses on the dynamics and configuration maintaining control of space spinning three-body ring tethered system for such mission. Firstly, we establish the spinning dynamic model of the three-body ring tethered system considering the elasticity of the tether using Newton-Euler method, and then validate the suitability of this model by numerical simulation. Subsequently, LP (Likins-Pringle) initial equilibrium conditions for the tethered system are derived based on rigid body's equilibrium theory. Simulation results show that tether slack, snapping and interaction between the tethers exist in the three-body ring system, and its' configuration can not be maintained without control. Finally, a control strategy based on thrust compensation, namely thrust to simulate tether compression under LP initial equilibrium conditions is designed to solve the configuration maintaining control problem. Control effects are verified by numerical simulation compared with uncontrolled situation. Simulation results show that the configuration of the three-body ring tethered system could maintain under this active control strategy.

  7. Electrodynamic Tether

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L. (Inventor); Ballance, Judy L. (Inventor); Welzyn, Kenneth J. (Inventor); Vaughn, Jason A. (Inventor); Lorenzini, Enrico (Inventor); Schuler, Peter S. (Inventor)

    2006-01-01

    A tether system for providing thrust to or power subsystems of an artificial satellite in a low earth orbit. The tether has three main sections, an insulated section connected to the satellite, a conducting section connected to the insulating section for drawing in and releasing electrons from the space plasma and a non-conducting section for providing a tension to the other sections of the tether. An oxygen resistant coating is applied to the bare wire of the conducting section as well as the insulated wires of the insulated section that prevents breakdown during tether operations in the space plasma. The insulated and bare wire sections also surround a high tensile flexible polymer core to prevent any debris from breaking the tether during use.

  8. Dynamics of a Tether System Connected to an Irregularly Shaped Celestial Body

    NASA Astrophysics Data System (ADS)

    Jalali Mashayekhi, Mohammad; Misra, Arun K.; Keshmiri, Mehdi

    2016-09-01

    The problem of pendular oscillations of a tether attached to an irregularly shaped celestial body is studied in this paper. The dynamic analysis of the system is performed by examining the phase plane trajectories. The effect of the tether length as well as the higher order terms in the gravitational potential of the celestial body on the tether dynamics is investigated. It is demonstrated that consideration of the finite size of the celestial body can have significant effects on the tether dynamics, while the effect of the asphericity of the celestial body on the tether dynamics is negligible. This study is of practical relevance for asteroid deflection using tethers, as well as for the development of space elevators on small planets/moons.

  9. The effects of tethering rear -facing child restraint systems on ATD responses.

    PubMed

    Manary, Miriam A; Reed, Matthew P; Klinich, Kathleen D; Ritchie, Nichole L; Schneider, Lawrence W

    2006-01-01

    A series of sled tests was performed to analyze the responses of an anthropomorphic test device (ATD), particularly neck forces, when rear-facing child restraint systems (CRS) are tethered. Nominally identical rear-facing CRS were tested in four tether conditions: untethered, tethered down to the floor, tethered down to the bottom of the vehicle seat, and tethered rearward to a point above the back of the vehicle seat. The CRABI 12MO ATD with head, upper neck, and chest instrumentation was used in all tests. The tests were conducted using the ECE R44.02 test bench. Both frontal and rear impacts were performed and each condition was repeated for a total of 16 sled tests. Motions of the CRS and ATD were recorded using high-speed digital video (1000 fps). The highest ATD accelerations, forces, and moments were observed during the primary impact of a frontal test, rather than on rebound. The loads observed during rebound from frontal impact were similar in magnitude to the peak loads collected during rear impact. The four tethering geometries produced distinct loading patterns. The lowest HIC, neck forces, and chest accelerations in both impact directions were observed with the rearward tether. The upper neck moment data did not show a clear trend relative to tethering geometry. ATD and CRS motions were best controlled in frontal impact by the rearward tethering geometry while the motions in rear impact were best controlled by tethering to the floor. The data show a potential benefit in both frontal and rear impacts of tethering rear-facing CRS to a point above the vehicle seatback. PMID:16968650

  10. Tethered Satellite System (TSS-1R)-Post Flight (STS-75) Engineering Performance Report

    NASA Technical Reports Server (NTRS)

    Lavoie, Anthony R.

    1996-01-01

    The first mission of the Tethered Satellite deployer was flown onboard Atlantis in 1992 during the Space Transportation System (STS) flight STS-46. Due to a mechanical interference with the level wind mechanism the satellite was only Deployed to 256 m rather than the planned 20,000 m. Other problems were also experienced during the STS-46 flight and several modifications were made to the Deployer and Satellite. STS-75 was a reflight of the Tethered Satellite System 1 (TSS-1) designated as Tethered Satellite System 1 Reflight (TSS-1 R) onboard Columbia. As on STS-46, the TSS payload consisted of the Deployer, the Satellite, 3 cargo bay mounted experiments: Shuttle Electrodynamic Tether System (SETS), Shuttle Potential and Return Electron Experiment (SPREE), Deployer Core Equipment (DCORE) 4 Satellite mounted experiments: Research on Electrodynamics Tether Effects (RETE), Research on Orbital Plasma Electrodynamics (ROPE), Satellite Core Instruments (SCORE), Tether Magnetic Field Experiment (TEMAG) and an aft flight deck camera: Tether Optical Phenomena Experiment (TOP). Following successful pre-launch, launch and pre-deployment orbital operations, the Deployer deployed the Tethered Satellite to 19,695 m at which point the tether broke within the Satellite Deployment Boom (SDB). The planned length for On-Station I (OST1) was 20,700 m The Satellite flew away from the Orbiter with the tether attached. The satellite was "safed" and placed in a limited power mode via the RF link. The Satellite was contacted periodically during overflights of ground stations. Cargo bay science activities continued for the period of time allocated to TSS-1 R operations.

  11. A Magnetic Bumper-Tether System Using ZFC Y123

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad; Obot, Victor; Liu, Jianxiong; Arndt, G. D.

    1996-01-01

    We consider the use of magnetic forces in a bumper system, to soften docking procedures. We investigate a system which exhibits no magnetic field except during the docking process, which, if desired, can automatically tether two craft together, and which provides lateral stability during docking. A system composed of zero field cooled Y(1.7)Ba2Cu3O(7-delta) (Y123) tiles and electromagnets is proposed. The Y123 high temperature superconductor (HTS) is mounted on one craft, and the electromagnet on the other. Results of small prototype laboratory experiments are reported. The electromagnet has, for convenience, been replaced by a permanent SmCo ferromagnet in these measurements. When the two craft approach, a mirror image of the ferromagnet is induced in the Y123, and a repulsive bumper force, F(sub B), results. F(sub B) is velocity dependent, and increases with v. For presently available HTS materials, bumper pressure of approx. 3.7 N/cm(exp 2) is achieved using SmCo. This extrapolates to approx. 18 N/cm(exp 2) for an electromagnet, or a force of up to 20 tons for a 1 m(exp 2) system. After reaching a minimum distance of approach, the two colliding craft begin to separate. However, the consequent change of SmCo magnetic field at the Y123 results in a reversal of current in the Y123 so that the Y123 is attractive to the SmCo. The attractive (tether) force, F(sub T), is a function of R = B(sub Fe)/B(sub t, max), where B(sub Fe) is the field at the surface of the ferromagnet, and B(sub t, max) is the maximum trapped field of the Y123, i.e., the trapped field in the so-called critical state. For R greater than or equal to 2, F(sub T) saturates at a value comparable to F(sub B). For a range of initial approach velocities the two craft are tethered following the bumper sequence. Most of the kinetic energy of the collision is first converted to magnetic field energy in the Y123, and then into heat via the creep mechanism. About 15% of the work done against magnetic forces

  12. Current collection and current closure in the Tethered Satellite System

    NASA Technical Reports Server (NTRS)

    Drobot, Adam; Satyanarayana, P.; Chang, Chia-Lie; Tsang, Kang; Papadopoulos, Dennis

    1991-01-01

    Current collection and closure-path modeling are examined analytically with respect to the Tethered Satellite System (TSS). A particle-in cell code is compared with a one-dimensional unmagnetized fluid code to model the behavior of a positively charged satellite in the ionosphere. The morphology of the sheath and the sheath-region processes are thus examined, and the influence of ions leaving the sheath region is found to cause the attraction of an electron current that is 40 times greater than the steady state value. The enhancement is transient and enhances the acceleration of the electrons in the sheath. A set of modified MHD equations, including those for ion inertia, quasineutrality, and electron drift, is employed to model TSS current closure. Whistler modes are found to exist and can be excited as the TSS passes through the ionosphere. Important conclusions include a significant fluctuation level in the steady state sheath, an ion void which affects the electron population, and some long-lived electrons trapped in the settled sheath with respect to two directions.

  13. Electrodynamic Bare Tether Systems as a Thruster for the Momentum-Exchange/Electrodynamic Reboost(MXER)Project

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Gallagher, D. L.

    2006-01-01

    The concept of electrodynamic tether propulsion has a number of attractive features and has been widely discussed for different applications. Different system designs have been proposed and compared during the last 10 years. In spite of this, the choice of proper design for any particular mission is a unique problem. Such characteristics of tether performance as system acceleration, efficiency, etc., should be calculated and compared on the basis of the known capability of a tether to collect electrical current. We discuss the choice of parameters for circular and tape tethers with regard to the Momentum-Exchange/Electrodynamic Reboost (MXER) tether project.

  14. Design Concept for a Reusable/Propellantless MXER Tether Space Transportation System

    NASA Technical Reports Server (NTRS)

    McCandless, B., II; Kustas, F. m.; Marshall, L. S.; Lytle, W. B.; Hansen, N. P.

    2005-01-01

    The Momentum Exchange/Electrodynamic Reboost (MXER) tether facility is a transformational concept that significantly reduces the fuel requirements (and associated costs) in transferring payloads above low earth orbit (LEO). Facility reboost is accomplished without propellant by driving current against a voltage created by a conducting tether's interaction with the Earth's magnetic field (electrodynamic reboost). This system can be used for transferring a variety of payloads (scientific, cargo, and human space vehicles) to multiple destinations including geosynchronous transfer orbit, the Moon or Mars. MXER technology advancement requires development in two key areas: survivable, high tensile strength non-conducting tethers and reliable, lightweight payload catch/release mechanisms. Fundamental requirements associated with the MXER non-conducting strength tether and catch mechanism designs will be presented. Key requirements for the tether design include high specific-strength (tensile strength/material density), material survivability to the space environment (atomic oxygen and ultraviolet radiation), and structural survivability to micrometeoroid/orbital debris (MM/OD) impacts. The driving mechanism key,gequirements include low mass-to-capture-volume ratio, positional and velocity error tolerance, and operational reliability. Preliminary tether and catch mechanism design criteria are presented, which have been used as guidelines to "screen" and down-select initial concepts. Candidate tether materials and protective coatings are summarized along with their performance in simulated space environments (e.g., oxygen plasma, thermal cycling). A candidate catch mechanism design concept is presented along with examples of demonstration hardware.

  15. The use of the Tethered Satellite System to perform low density aerothermodynamics studies

    NASA Technical Reports Server (NTRS)

    Carlomagno, Giovanni M.; De Luca, Luigi; Siemers, Paul M.; Wood, George M., Jr.

    1988-01-01

    The Tethered Satellite System (TSS) is a cooperative space system development activity being carried out by USA and Italy. Within TSS, the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) concept has the potential to provide access to vast portions of the upper atmosphere for the purpose of atmospheric and aerothermodynamic research. The implementation of this capability will push Tether System (TS) state of the art to its limits; the primary problems being tether/satellite drag, heating, tension control, deployment/retrieval control. In this paper parametric studies are accomplished to assess some of these problems and to delineate the tradeoffs available to missions design to meet the engineering constraints. The utilization of aerodynamic rather than spherical shapes - (TSS) - as well as elementary satellite thrusting and lift are included in the present study.

  16. The use of the tethered satellite system to perform low density aerothermodynamics studies

    NASA Technical Reports Server (NTRS)

    Carlomagno, Giovanni M.; Deluca, Luigi; Siemers, Paul M.; Wood, George M., Jr.

    1988-01-01

    The Tethered Satellite System (TSS) is a cooperative space system development activity of the U.S.A. and Italy. It is comprised of the Tether Satellite (TS) and the deployer. Within TSS, the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) concept has the potential to provide access to vast portions of the upper atmosphere for atmospheric and aerothermodynamic research. The feasibility and capability of the TSS to operate as a continuous open wind tunnel and to perform low density aerothermodynamic studies are investigated. This is accomplished through a modified version of the TS simulation program (SKYHOOK). The results indicate that STARFAC concept is both feasible and practical. The TS can go below 100 km but, if thrust is used, large velocity variation (delta V) maneuvers and an attitude control are required; if a satellite lift is considered, large tether tension is produced and an attitude control is required.

  17. On dynamical formulations of a tethered satellite system with mass transport

    NASA Astrophysics Data System (ADS)

    Liu, F. C.

    1985-01-01

    Two satellites connected by a long flexible tether along the earth radial direction comprise a stable equilibrium state. This paper deals with formulations of in-plane motion of the tether connected satellites with a third mass transporting from one satellite to the other. Systems of equations of motion formulated by two methods, Lagrange equations and D'Alembert's Principle, are presented and methods for numerical solutions are proposed. Initial conditions for inward and outward transfers are derived.

  18. Tethering a new technology

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.; Candidi, Maurizio

    1993-01-01

    In a tethered-satellite system, two satellites travelling in different orbits are forced to circle the earth in the same time period. The lower satellite is dragged by the tether to a higher orbital speed, while the upper one tends to move higher. This generates a tension which maintains the system in a stable configuration; the tether is aligned with a radius projecting outward from the earth's center. Such a system has been demonstrated by the TSS-1 tethered satellite carried by the Space Shuttle's STS-46 mission. The dynamic and the electrodynamic behavior of the system at long tether lengths were not, however, evaluated due to system malfunctions.

  19. Electrodynamic Propulsion System Tether Experiment (T-REX)

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Fujii, H. A.; Sanmartin, J. R.

    2010-01-01

    A Japanese-led international team is developing a suborbital test of orbital-motion-limited (OML) bare wire anode current collection for application to electrodynamic tether (EDT) propulsion. The tether is a tape with a width of 25 mm, thickness of 0.05 mm, and is 300 m in length. This will be the first space test of OML theory. The mission will launch in the summer of 2010 using an S520 Sounding Rocket. During ascent, and above approximately 100 km in attitude, the tape tether will be deployed at a rate of approximately8 m/s. Once deployed, the tape tether will serve as an anode, collecting ionospheric electrons. The electrons will be expelled into space by a hollow cathode device, thereby completing the circuit and allowing current to flow. The total amount of current collected will be used to assess the validity of OML theory. This paper will describe the objectives of the proposed mission, the technologies to be employed, and the application of the results to future space missions using EDTs for propulsion or power generation

  20. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    The use is studied of tether systems to improve the lowest possible steady gravity level on the Space Station. Particular emphasis is placed by the microgravity community on the achievement of high quality microgravity conditions. The tether capability is explored for active control of the center of gravity and the analysis of possible tethered configurations.

  1. Developing Capture Mechanisms and High-Fidelity Dynamic Models for the MXER Tether System

    NASA Technical Reports Server (NTRS)

    Canfield, Steven L.

    2007-01-01

    A team consisting of collaborators from Tennessee Technological University (TTU), Marshall Space Flight Center, BD Systems, and the University of Delaware (herein called the TTU team) conducted specific research and development activities in MXER tether systems during the base period of May 15, 2004 through September 30, 2006 under contract number NNM04AB13C. The team addressed two primary topics related to the MXER tether system: 1) Development of validated high-fidelity dynamic models of an elastic rotating tether and 2) development of feasible mechanisms to enable reliable rendezvous and capture. This contractor report will describe in detail the activities that were performed during the base period of this cycle-2 MXER tether activity and will summarize the results of this funded activity. The primary deliverables of this project were the quad trap, a robust capture mechanism proposed, developed, tested, and demonstrated with a high degree of feasibility and the detailed development of a validated high-fidelity elastic tether dynamic model provided through multiple formulations.

  2. Tether electrical characteristics design report

    SciTech Connect

    Lucas, J.H.

    1989-03-24

    The design of a tether system for use in electric and magnetic fields requires an analysis of the equivalent electrical circuit of the baboon and tether. The response of this equivalent circuit to an electric or magnetic field is dependent on the connection of the tether system to the baboon. The tether will be designed so that the currents induced in the tethered baboon are approximately the same as those induce in an untethered baboon. 6 figs., 3 tabs.

  3. Qualification and In-Flight Demonstration of a European Tether Deployment and Momentum Transfer System on YES2

    NASA Astrophysics Data System (ADS)

    Kruijff, M.; van der Heide, E. J.

    2008-08-01

    This paper highlights the design, qualification and mission performance of a comprehensive tethered momentum transfer technology on ESA's second Young Engineers' Satellite (YES2), aiming specifically on the tether deployer. The deployer is designed with a broad range of near-term tether applications in mind and therefore opens up novel possibilities e.g. small satellite missions. The system contains the following critical elements. The tether, including features to enhance safety, wound up in controlled manner onto a spool core; optical deployment sensors and electronics; a "barberpole" friction brake controlled by a stepper motor; and a triple cutter system. A spring-based ejection system and, on the subsatellite side, a timer/release system facilitate the stagings required for accurate tethered momentum transfer. In addition a small, 6 kg re-entry capsule was developed with 1 kg scientific payload and parachute system. On September 25th, 2007, YES2 deployed a 32 km tether in orbit and gathered a wealth of data. This paper aims to provide an overview of the design, qualification and flight performance of the tether deployer hardware. This performance is compared to the design and from this can be concluded a suitability of the hardware for tether deployment and tethered momentum transfer.

  4. The optimal control for the tethered system formed by an asteroid and a solar sail

    NASA Astrophysics Data System (ADS)

    Gao, Youtao; Wu, Jingyun

    2016-02-01

    This paper focuses on a method of changing the orbit of an asteroid by attaching a solar sail to the asteroid. First, the dynamic model of the tethered system is derived. Legendre pseudospectral method is then used to discretize the system, and the sequence of two quadratic programming is utilized to obtain the optimal control law. Simulation results show that the tethered solar sail can efficiently change the asteroid's orbit. Moreover, the problem of the tether twining around the asteroid caused by the relative orbit motion between the solar sail and the asteroid can be avoided. Finally, the effectiveness of altering an asteroid's orbit by different solar sails is analyzed. Simulation results show that when the area of the solar sail is 106 m2, the asteroid can be deflected at 1.227 × 108 m by the solar sail after about 20 years, which is better than the effect of a gravitational tractor.

  5. Tether fundamentals

    NASA Technical Reports Server (NTRS)

    Carroll, J. A.

    1986-01-01

    Some fundamental aspects of tethers are presented and briefly discussed. The effects of gravity gradients, dumbbell libration in circular orbits, tether control strategies and impact hazards for tethers are among those fundamentals. Also considered are aerodynamic drag, constraints in momentum transfer applications and constraints with permanently deployed tethers. The theoretical feasibility of these concepts are reviewed.

  6. Tether applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    For a range of tether lengths, end masses, and orbits, tether deployment concepts were defined and/or analyzed from the Orbiter for steady state/dynamic and up/down deployments and from circular/elliptical orbits. Orbits were defined and/or analyzed for end mass releasing concepts with steady state and dynamic releases taking into account tether and end mass motion before and after release. For a range of tether lengths, end masses, and orbits, tether retrieving or disposing concepts were defined and/or analyzed for both reusable and disposable tethers. Tether programs were installed or updated on the MSFC VAX 11/780 computer.

  7. Downward-deployed tethered satellite systems, measurement techniques, and instrumentation - A review

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.; Melfi, Leonard T., Jr.; Upchurch, Billy T.; Wood, George M., Jr.

    1992-01-01

    This paper describes a number of scheduled and proposed Shuttle-based downward-deployed tethered satellite systems (TSSs) the purpose of which is to determine the structure of the lower thermosphere and to measure the atmospheric and aerodynamic effects in the vicinity of the satellite, the aerothermodynamic effects on the satellite's surface, and the dynamics of the tether and its endmass, the satellite. The instruments for the downward-deployed tethered missions will include mass spectrometers and other density sensors, plasma instrumentation, optical spectrophotometers, magnetometers, and instrumentation to measure the effects on satellite surface (such as the surface temperature, heat transfer, and pressure; gas adsorption on surfaces, chemistry with other gas molecules and surface material, and desorption from the surface; and surface charging).

  8. In-Space Transportation with Tethers

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico; Estes, Robert D.; Cosmo, Mario L.

    1998-01-01

    The annual report covers the research conducted on the following topics related to the use of spaceborne tethers for in-space transportation: ProSEDS tether modeling (current collection analyses, influence of a varying tether temperature); proSEDS mission analysis and system dynamics (tether thermal model, thermo-electro-dynamics integrated simulations); proSEDS-tether development and testing (tether requirements, deployment test plan, tether properties testing, deployment tests); and tethers for reboosting the space-based laser (mission analysis, tether system preliminary design, evaluation of attitude constraints).

  9. MSFC MXER Tether Study

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Alexander, Reginald; Bonometti, Joseph; Chapman, Jack; Garza, Lucas; Glaese, John; Glasgow, Shaun; Guendel, Herb; Houston, Vance; Johnson, Paul

    2003-01-01

    This viewgraph presentation provides an overview of the proposed Momentum-eXchange/Electrodynamic Reboost (MXER) space hardware system. The tether system would be position cart-wheeling cables above the Earth and then, rotating like a giant sling, would capture spacecraft or payloads from space shuttles in low Earth orbits and launch them into higher orbits. This study focuses on system validation and structural design issues for MXER. Topics examined include: tether facility design, ED tether system, payload capture/catch mechanism, payload accomodations assembly (PAA), PAA rendezvous capability, and PAA capability to correct tether misthrows.

  10. Evaluation of surgery for the tethered cord syndrome using a new grading system.

    PubMed

    Kirollos, R W; Van Hille, P T

    1996-06-01

    A new grading system is presented to assess the degree of untethering achieved at surgery for the 'tethered cord syndrome' based on intraoperative observation at the end of the procedure. Various pathophysiological mechanisms responsible for the 'tethered cord syndrome', as well as possible factors causing retethering were considered in developing this grading system. In Grade I the cord is considered to be fully untethered and the factors potentially responsible for retethering are eliminated, in Grade II partial untethering is performed and in Grade III untethering is unsuccessful. This grading system was used to assess the results of 22 consecutive operations performed to release a tethered cord between June 1991 and February 1995. The tethering factors encountered at surgery were: spinal lipoma in 14, diastematomyelia in five, a tight filum terminale in 10 and intradural adhesions in three instances. The grade of untethering was correlated with the type of pathology encountered, postoperative results, and whether previous surgery was performed or not. Previous surgery was found not to affect the rate of subsequent successful untethering. PMID:8799535

  11. Study of the triple-mass Tethered Satellite System under aerodynamic drag and J2 perturbations

    NASA Astrophysics Data System (ADS)

    Razzaghi, Pourya; Assadian, Nima

    2015-11-01

    The dynamics of multi-tethered satellite formations consisting of three masses are studied in this paper. The triple-mass triple-tethered satellite system is modeled under the low Earth orbit perturbations of drag and Earth's oblateness and its equilibrium conditions are derived. It is modeled as three equal end-masses connected by a uniform-mass straight tether. The lengths of tethers are supposed to be constant and in this manner the angles of the plane consisting the masses are taken as the state variables of the system. The governing equations of motion are derived using Lagrangian approach. The aerodynamic drag perturbation is expressed as an external non-conservative force and the Earth oblateness (J2 perturbation) is considered as a term of potential energy. The equilibrium conditions of this system are found and their stability is investigated through the linear stability theory. Then, the results are verified by using a nonlinear simulation for three types of equilibrium conditions.

  12. Applications of a dynamic tethering system to enable the deep space cam jointed observation bot

    NASA Astrophysics Data System (ADS)

    Leake, Skye; McGuire, Thomas; Parsons, Michael; Hirsch, Michael P.; Straub, Jeremy

    2016-05-01

    A device capable of creating tethers for use with spacecraft that are made from a diverse material palette could serve many functions. These functions include supporting applications such as data transfer, power generation, and resource collection. Applications that are currently being considered include use in a system for orientation, data transfer, and power delivery and use as part of a free-moving camera system which would be used in proximity to a spacecraft for capturing images and video for promotional and preforming diagnostic and "self-check" operations. Materials that have been considered for use in such a tethering device have different physical attributes in order to facilitate supporting the widest possible degree of applications for use in scientific, remote sensing, power generation, and electromagnetic applications methods for the parent spacecraft. Physical properties that have been considered include: rigidity, conductivity, heat dissipation, and opacity. The proposed dynamic tethering system would be driven by 3D printing technologies. This prospective application of 3D printing remains relatively unexplored. This provides great opportunities for knowledge expansion and the development of dynamic tethers for use capturing video footage and pictures, and for other scientific endeavors.

  13. Tethered subsatellite study

    NASA Technical Reports Server (NTRS)

    Baker, W. P.; Dunkin, J. A.; Galaboff, Z. J.; Johnston, K. D.; Kissel, R. R.; Rheinfurth, M. H.; Siebel, M. P. L.

    1976-01-01

    The results are presented of studies performed relating to the feasibility of deploying a subsatellite from the shuttle by means of a tether. The dynamics, the control laws, the aerodynamics, the heating, and some communication considerations of the tethered subsatellite system are considered. Nothing was found that prohibits the use of a subsatellite joined to the shuttle by a long (100 km) tether. More detailed studies directed at specific applications are recommended.

  14. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins

    PubMed Central

    Koumandou, V Lila; Dacks, Joel B; Coulson, Richard MR; Field, Mark C

    2007-01-01

    Background In membrane trafficking, the mechanisms ensuring vesicle fusion specificity remain to be fully elucidated. Early models proposed that specificity was encoded entirely by SNARE proteins; more recent models include contributions from Rab proteins, Syntaxin-binding (SM) proteins and tethering factors. Most information on membrane trafficking derives from an evolutionarily narrow sampling of model organisms. However, considering factors from a wider diversity of eukaryotes can provide both functional information on core systems and insight into the evolutionary history of the trafficking machinery. For example, the major Qa/syntaxin SNARE families are present in most eukaryotic genomes and likely each evolved via gene duplication from a single ancestral syntaxin before the existing eukaryotic groups diversified. This pattern is also likely for Rabs and various other components of the membrane trafficking machinery. Results We performed comparative genomic and phylogenetic analyses, when relevant, on the SM proteins and components of the tethering complexes, both thought to contribute to vesicle fusion specificity. Despite evidence suggestive of secondary losses amongst many lineages, the tethering complexes are well represented across the eukaryotes, suggesting an origin predating the radiation of eukaryotic lineages. Further, whilst we detect distant sequence relations between GARP, COG, exocyst and DSL1 components, these similarities most likely reflect convergent evolution of similar secondary structural elements. No similarity is found between the TRAPP and HOPS complexes and the other tethering factors. Overall, our data favour independent origins for the various tethering complexes. The taxa examined possess at least one homologue of each of the four SM protein families; since the four monophyletic families each encompass a wide diversity of eukaryotes, the SM protein families very likely evolved before the last common eukaryotic ancestor (LCEA

  15. Applications of Tethers in Space, Volume 2

    NASA Technical Reports Server (NTRS)

    Cron, A. C. (Compiler)

    1985-01-01

    Topics discussed include tethered satellites, tether deployment, satellite systems, science applications, electrodynamic interactions, transportation applications, artificial gravity, constellations, and technology and testing.

  16. Conductive Tether Coating for Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Schuler, Pete

    2000-01-01

    The Propulsive Small Expendable Deployer System (ProSEDS), which is an on-orbit demonstration of the propulsion capabilities of electrodynamic tethers in space, is a secondary payload on a Delta 11 unmanned expendable booster. The ProSEDS tether consists of a 5 km bare electrodynamic tether and a 1 0-km non-conductive leader tether. Near the Delta 11, 160 m of the conductive tether is insulated to prevent plasma electron collection from the plasma contactor and for other science requirements. The remainder of the 5-km conductive tether is coated with a new conductive coating to collect plasma electrons. A bare metal tether easily collects electrons from the plasma, but thermal concerns preclude this design. A highly emissive conductive polymer developed by Triton Systems, Inc. has been optimized for both conductivity and thermo-optical properties. The current design for the ProSEDS conductive tether is seven individually coated strands of 28 AWG aluminum wire, coated with an atomic oxygen-resistant conductive polymer composed of a mixture of COR (Colorless Oxygen Resistant) and polyanaline (PANI) known as C-COR (Conductive-Colorless Oxygen Resistant). The conductive-coated wire strands are cold-welded to individually coated strands of the insulated tether. The insulated tether is coated with 1 mil of polyimide and an atomic oxygen resistant polymer TOR-BP. The insulated tether must stand off the entire voltage of the tether (1 200 V) at various times during the mission. All seven wires are twisted around a Kevlar-29 core using the Hi-wire design. Extensive testing has been performed at the Marshall Space Flight Center to qualify both the conductive coating and insulating coating for use on the ProSEDS tether. The conductive coating has been exposed to a plasma to verify the coatings ability to collect electrons from the space plasma from 0 to 1500 V, and to verify the coatings ability to collect electrons after atomic oxygen exposure. The insulated coating has been

  17. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  18. UAH/NASA Workshop on The Uses of a Tethered Satellite System

    NASA Technical Reports Server (NTRS)

    Wu, S. T. (Editor)

    1978-01-01

    Potential applications of the system are categorized into four areas: geological applications, atmospheric applications, electrodynamics and plasma studies, and technology applications. The multiple-use tethered system with feedback control, will be capable of supporting a payload or satellite suspended from the Shuttle cargo bay, at distances up to 100 kilometers from the Shuttle. Experiments proposed include: geomagnetic mapping, lower atmospheric measurements, ionospheric interactions with large space structures, solar wind transport, and magnetohydrodynamic measurements.

  19. Decentralized adaptive sliding mode control for beam synchronization of tethered InSAR system

    NASA Astrophysics Data System (ADS)

    Zhang, Jinxiu; Zhang, Zhigang; Wu, Baolin

    2016-10-01

    Beam synchronization problem of tethered interferometric synthetic aperture radar (InSAR) is addressed in this paper. Two antennas of the system are carried by separate satellites connected through a tether to obtain a preferable baseline. A Total Zero Doppler Steering (TZDS) is implemented to mother-satellite to cancel the residual Doppler. Subsequently attitude reference trajectories for the two satellites are generated to achieve the beam synchronization and TZDS. Thereafter, a decentralized adaptive sliding mode control law is proposed to track these reference trajectories in the presence of model uncertainties and external disturbances. Finally, the stability of closed-loop system is proved by the corollary of Barbalat's Lemma. Simulation results show the proposed control law is effective to achieve beam synchronization of the system.

  20. Experimental verification of chaotic control of an underactuated tethered satellite system

    NASA Astrophysics Data System (ADS)

    Pang, Zhaojun; Jin, Dongping

    2016-03-01

    This paper studies chaotic control of a tethered satellite system (TSS) driven only by a momentum-exchange device during its attitude adjustment. In dealing with such the underactuated system, an extended time-delay autosynchronization (ETDAS) is employed to stabilize the chaotic motion to a periodic motion. To obtain the control domains of the ETDAS method, a stability analysis of the controlled tethered satellite system in elliptical orbit is implemented. According to the principle of dynamic similarity, then, ground-based experiment setups are proposed and designed to emulate the in-plane motions of the TSS. Representative experiments are presented to demonstrate the effectiveness of the ETDAS scheme in controlling the chaotic motion of the underactuated TSS.

  1. Shuttle-tethered satellite system definition study. Volume 1: Executive study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Tethered Satellite System has great prospects for extending orbital operations capability of the Space Transportation System to science, applications, and technology projects not otherwise attainable. The system will installed in the Shuttle Orbiter and will have the capability to deploy a captive satellite up to 100 km away from the Orbiter. Control and retrieval of the satellite are accomplished by means of a tether line connecting the satellite and the cargo bay mounted equipment in the Orbiter. At low satellite altitudes, the system will permit investigations of a duration that could not be pursued with sounding rockets of free-flying spacecraft. The propose of the Shuttle/Tethered Satellite System Definition Study was to produce the preliminary design, preliminary specifications, gross program plans, and program cost estimate for a 1982 operational verification flight. This was accomplished during a fifteen month effort under by the NASA George C. Marshall Space Flight Center (MSFC). The MSFC Phase 1 and related studies demonstrated the feasibility of the system and served as a starting point for the Phase 2 definition study.

  2. Multibody dynamics driving GNC and system design in tethered nets for active debris removal

    NASA Astrophysics Data System (ADS)

    Benvenuto, Riccardo; Lavagna, Michèle; Salvi, Samuele

    2016-07-01

    Debris removal in Earth orbits is an urgent issue to be faced for space exploitation durability. Among different techniques, tethered-nets present appealing benefits and some open points to fix. Former and latter are discussed in the paper, supported by the exploitation of a multibody dynamics tool. With respect to other proposed capture mechanisms, tethered-net solutions are characterised by a safer capturing distance, a passive angular momentum damping effect and the highest flexibility to unknown shape, material and attitude of the target to interface with. They also allow not considering the centre of gravity alignment with thrust axis as a constraint, as it is for any rigid link solution. Furthermore, the introduction of a closing thread around the net perimeter ensures safer and more reliable grasping and holding. In the paper, a six degrees of freedom multibody dynamics simulator is presented: it was developed at Politecnico di Milano - Department of Aerospace Science and Technologies - and it is able to describe the orbital and attitude dynamics of tethered-nets systems and end-bodies during different phases, with great flexibility in dealing with different topologies and configurations. Critical phases as impact and wrapping are analysed by simulation to address the tethered-stack controllability. It is shown how the role of contact modelling is fundamental to describe the coupled dynamics: it is demonstrated, as a major novel contribution, how friction between the net and a tumbling target allows reducing its angular motion, stabilizing the system and allowing safer towing operations. Moreover, the so-called tethered space tug is analysed: after capture, the two objects, one passive and one active, are connected by the tethered-net flexible link, the motion of the system being excited by the active spacecraft thrusters. The critical modes prevention during this phase, by means of a closed-loop control synthesis is shown. Finally, the connection between

  3. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Information on the Tethered Gravity Laboratory on the International Space Station is given in viewgraph form. Topics covered include active control, low gravity processes identification, systems analysis, tether interfaces with the Laboratory, elevator and payload configurations, elevator subsystems, and accelerometer technology requirements.

  4. Dynamics of a flexible tethered satellite system utilising various materials for coplanar and non-coplanar models

    NASA Astrophysics Data System (ADS)

    Hong, Aaron Aw Teik; Varatharajoo, Renuganth

    2015-08-01

    This paper discusses the development of mathematical models for a flexible tethered satellite system (TSS) in both planar and co-planar states. The flexible tethered satellite system consists of three rigid bodies with two flexible tethers, each connecting two rigid bodies with one located in the centre and serving as the mothership. The TSS motion includes tether deformations, rotational dynamics, and orbital mechanics. The three materials that are possible to be used for a space tether are tungsten wire, Spectra-2000, and diamond; it should be noted that the diamond used here is in a form of a nanotube thread. The tether will undergo a spinning motion as well in the motorised option. In addition, the air drag perturbation is also considered since the entire TSS is flown around the Low Earth Orbit (LEO), where the air-drag perturbation is dominant. A survival analysis was then performed for planar and non-coplanar models in order to establish a dynamic performance envelope with respect to the tether's tension at different altitudes under the air-drag perturbation. The proposed models were treated numerically and analysed accordingly. Then a comparison study between the coplanar and non-coplanar models were conducted and the difference in their performances was observed and discussed. Although all materials have their own safe operation boundaries, the flexible TSS using tungsten shows a better dynamic performance than the other TSS options in a non-coplanar model.

  5. Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems.

    PubMed

    Davidson, Peter; Burgoyne, Chris; Hunt, Hugh; Causier, Matt

    2012-09-13

    The Royal Society report 'Geoengineering the Climate' identified solar radiation management using albedo-enhancing aerosols injected into the stratosphere as the most affordable and effective option for geoengineering, but did not consider in any detail the options for delivery. This paper provides outline engineering analyses of the options, both for batch-delivery processes, following up on previous work for artillery shells, missiles, aircraft and free-flying balloons, as well as a more lengthy analysis of continuous-delivery systems that require a pipe connected to the ground and supported at a height of 20 km, either by a tower or by a tethered balloon. Towers are shown not to be practical, but a tethered balloon delivery system, with high-pressure pumping, appears to have much lower operating and capital costs than all other delivery options. Instead of transporting sulphuric acid mist precursors, such a system could also be used to transport slurries of high refractive index particles such as coated titanium dioxide. The use of such particles would allow useful experiments on opacity, coagulation and atmospheric chemistry at modest rates so as not to perturb regional or global climatic conditions, thus reducing scale-up risks. Criteria for particle choice are discussed, including the need to minimize or prevent ozone destruction. The paper estimates the time scales and relatively modest costs required if a tethered balloon system were to be introduced in a measured way with testing and development work proceeding over three decades, rather than in an emergency. The manufacture of a tether capable of sustaining the high tensions and internal pressures needed, as well as strong winds, is a significant challenge, as is the development of the necessary pumping and dispersion technologies. The greatest challenge may be the manufacture and launch of very large balloons, but means have been identified to significantly reduce the size of such balloons or aerostats.

  6. Constrained tension control of a tethered space-tug system with only length measurement

    NASA Astrophysics Data System (ADS)

    Wen, Hao; Zhu, Zheng H.; Jin, Dongping; Hu, Haiyan

    2016-02-01

    The paper presents a tension control law to stabilize the motions of a Tethered Space-Tug system during its deorbiting process by regulating the tension in the tether. The tension control law is designed on a basis of two straightforward ideas, i.e., the potential energy shaping and the damping injection. The law is expressed in an analytical feedback form in terms of only the tether length without the need of the feedback of full state information. Meanwhile, the requirements of measuring velocities are removed with the aid of a dynamic extension technique based on the feedback interconnection of Euler-Lagrange systems. The positive and bounded tension constraint is taken into consideration explicitly by including a pair of special saturation terms in the feedback control law. The relative motions of the space-tug and the debris are described with respect to a local non-inertial orbital frame of reference, whereas the orbital motion equations of the system are formulated in terms of the modified equinoctial elements of the orbit. Finally, the effectiveness of the proposed scheme is demonstrated via numerical case studies.

  7. A tethering system for direct measurement of cardiovascular function in the caged baboon

    NASA Technical Reports Server (NTRS)

    Byrd, L. D.

    1979-01-01

    A device suitable for the continuous measurement of physiological activity in large, conscious monkeys has permitted the direct recording of systemic arterial blood pressure and heart rate in caged baboons. The device comprises a lightweight fiberglass backpack, retained in place on the baboon by a thoracic elastic band and shoulder straps, and a flexible stainless steel tether connecting the pack to an electrocannular slip-ring in the top center of the baboon's cage. A chronically indwelling arterial catheter inserted retrograde into the abdominal aorta via the internal iliac artery and connected to a small pressure transducer on the pack provides direct measurement of blood pressure and heart rate. Body fluids can be sampled or drugs administered via an indwelling catheter in the inferior vena cava. Electrical and fluid connections between the fiberglass pack and recording and infusion equipment located outside the cage pass through the flexible tether and remain protected from the subject. The reliability of the tethering system has been demonstrated in physiological, pharmacological, and behavioral experiments with baboons.

  8. All-out Test in Tethered Canoe System can Determine Anaerobic Parameters of Elite Kayakers.

    PubMed

    Messias, L H D; Ferrari, H G; Sousa, F A B; Dos Reis, I G M; Serra, C C S; Gobatto, C A; Manchado-Gobatto, F B

    2015-10-01

    The aims of this study were to use a specific all-out 30-sec tethered test to determine the anaerobic parameters in elite kayakers and verify the relationship between these results and sports performance. Twelve elite slalom kayakers were evaluated. The tethered canoe system was created and used for the all-out 30-sec test application. Measurements of peak force, mean force, minimum force, fatigue index and impulse were performed. Performance evaluation was determined by measuring the time of race in a simulated race containing 24 gates on a white-water course. Blood was collected (25-µl) for analysis of lactate concentration at rest and at 2, 4, 6, 8 and 10-min intervals after both the all-out test and the simulated race. The Pearson product moment correlation shows a inverse and significant relationship of peak force, mean force and impulse with time of race. Blood lactate concentrations after the all-out test and the simulated race peak at same time (4 min). Additionally, no interaction was visualized between time and all-out test/simulated race for blood lactate concentrations (P <0.365). These results suggest a relationship between the parameters of the all-out test and performance. Thus, the tethered canoe system is a useful tool for determining parameters that could be used in training control of slalom kayakers.

  9. Establishing a Dynamics Performance Envelope of a Flexible Tethered Satellite System for Planar and Non-Coplanar Models.

    NASA Astrophysics Data System (ADS)

    Teik Hong, Aaron Aw; Varatharajoo, Renuganth

    A Tethered Satellite System (TSS) can be considered as a flexible in-orbit system. However, TSS is typically modelled as a rigid tethered system due to the complexity of its mathematical treatments. In this paper, mathematical models for a flexible tethered satellite system in both planar and co-planar states are developed. The flexible tethered satellite system consists of three rigid bodies with two flexible tethers each connecting two rigid bodies with one located in the centre serving as the mothership. The TSS motion includes tether deformations, rotational dynamics, and orbital mechanics. Three materials (e.g., tungsten wire, Spectra-2000, and diamond) that are commonly used for the tether are proposed as the reference materials; and it should be noted that the tether will undergo a spinning motion as well in the motorized option. In addition, the air drag perturbation is also considered since the entire TSS is flown around Low Earth Orbit (LEO), whereby the air-drag perturbation is dominant. A comprehensive analysis was performed for planar and non-coplanar models in order to establish a dynamics performance envelope with respect to the tether’s tension at different altitudes and air-drag. Bubnov-Galerkin method was employed in order to linearize the non-linear governing equations of elastic vibrations; and once the modal coordinates were obtained, they were substituted according to the equations corresponding to the energy conservation principle. Further, Lagrangian dynamics was utilized to establish the equations of motion of the entire TSS based on the chosen generalized coordinates. The proposed models were treated numerically and analysed accordingly. Then, a comparison study between the coplanar and non-coplanar models was done and the differences in their performances were observed and discussed. Although all materials have their own safe operation boundaries, the flexible TSS using Diamond shows a better dynamics performance than the other TSS

  10. Why Not Space Tethers?

    NASA Technical Reports Server (NTRS)

    Stone, Noble H.

    2007-01-01

    The Tethered Satellite System Space Shuttle missions, TSS-1 in 1993 and TSS-1R in 1996, were the height of space tether technology development. Since NASA's investment of some $200M and two Shuttle missions in those two pioneering missions, there have been several smaller tether flight experiments, but interest in this promising technology has waned within NASA as well as the DOD agencies. This is curious in view of the unique capabilities of space tether systems and the fact that they have been flight validated and shown to perform as, or better than, expected in earth orbit. While it is true that the TSS-1, TSS-1R and SEDS-2 missions experienced technical difficulties, the causes of these early developmental problems are now known to be design or materials flaws that are (1) unrelated to the basic viability of space tether technology, and (2) they are readily corrected. The purpose of this paper is to review the dynamic and electrodynamic fundamentals of space tethers and the unique capabilities they afford (that are enabling to certain types of space missions); to elucidate the nature, cause, and solution of the early developmental problems; and to provide an update on progress made in development of the technology. Finally, it is shown that (1) all problems experienced during early development of the technology now have solutions; and (2) the technology has been matured by advances made in strength and robustness of tether materials, high voltage engineering in the space environment, tether health and status monitoring, and the elimination of the broken tether hazard. In view of this, it is inexplicable why this flight-validated technology has not been utilized in the past decade, considering the powerful and unique capabilities that space tethers can afford that are, not only required to carryout, otherwise, unobtainable missions, but can also greatly reduce the cost of certain on-going space operations.

  11. An Automated System for Measuring Microphysical and Radiative Cloud Characteristics from a Tethered Balloon

    SciTech Connect

    Dr. Paul Lawson

    2004-03-15

    OAK-B135 The rate of climate change in polar regions is now felt to be a harbinger of possible global warming. Long-lived, relatively thin stratus clouds play a predominant role in transmitting solar radiation and trapping long wave radiation emitted from open water and melt ponds. In situ measurements of microphysical and radiative properties of Arctic and Antarctic stratus clouds are needed to validate retrievals from remote measurements and simulations using numerical models. While research aircraft can collect comprehensive microphysical and radiative data in clouds, the duration of these aircraft is relatively short (up to about 12 hours). During the course of the Phase II research, a tethered balloon system was developed that supports miniaturized meteorological, microphysical and radiation sensors that can collect data in stratus clouds for days at a time. The tethered balloon system uses a 43 cubic meter balloon to loft a 17 kg sensor package to altitudes u p to 2 km. Power is supplied to the instrument package via two copper conductors in the custom tether. Meteorological, microphysical and radiation data are recorded by the sensor package. Meteorological measurements include pressure, temperature, humidity, wind speed and wind direction. Radiation measurements are made using a 4-pi radiometer that measures actinic flux at 500 and 800 nm. Position is recorded using a GPS receiver. Microphysical data are obtained using a miniaturized version of an airborne cloud particle imager (CPI). The miniaturized CPI measures the size distribution of water drops and ice crystals from 9 microns to 1.4 mm. Data are recorded onboard the sensor package and also telemetered via a 802.11b wireless communications link. Command signals can also be sent to the computer in the sensor package via the wireless link. In the event of a broken tether, a GMRS radio link to the balloon package is used to heat a wire that burns 15 cm opening in the top of the balloon. The balloon and

  12. The stabilization interval system of a tethered descent underwater vehicle

    NASA Astrophysics Data System (ADS)

    Gayvoronskiy, S. A.; Ezangina, T.; Khozhaev, I.; Efimov, S. V.

    2016-04-01

    To damp the vertical oscillations of a descent submersible caused by dusting the control system utilizing a shock-absorbing hoist located on the submersible was developed. A robust proportional-plus-integral action controller was included in the control loop to ensure acceptable dynamic properties of the system by interval variations of the module mass, the rope length, the equivalent value of stiffness of a spring linkage and the equivalent value of damping factor of the spring linkage. A parametric synthesis of the controller was carried out on the basis of the robust expansion of the coefficient method of the quality rating estimation. The system operability was confirmed by the results of the digital simulation parameters

  13. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1990-01-01

    The scope of the study is to investigate ways of controlling the microgravity environment of the International Space Station by means of a tethered system. Four main study tasks were performed. First, researchers analyzed the utilization of the tether systems to improve the lowest possible steady gravity level on the Space Station and the tether capability to actively control the center of gravity position in order to compensate for activities that would upset the mass distribution of the Station. The purpose of the second task was to evaluate the whole of the experiments performable in a variable gravity environment and the related beneficial residual accelerations, both for pure and applied research in the fields of fluid, materials, and life science, so as to assess the relevance of a variable g-level laboratory. The third task involves the Tethered Variable Gravity Laboratory. The use of the facility that would crawl along a deployed tether and expose experiments to varying intensities of reduced gravity is discussed. Last, a study performed on the Attitude Tether Stabilizer concept is discussed. The stabilization effect of ballast masses tethered to the Space Station was investigated as a means of assisting the attitude control system of the Station.

  14. 3-dimensional current collection model. [Of Tethered Satellite System 1

    SciTech Connect

    Hwang, Kai-Shen; Shiah, A.; Wu, S.T.; Stone, N. Alabama, University, Huntsvilll NASA, Marshall Space Flight Center, Huntsville, Ae )

    1992-07-01

    A three-dimensional, time dependent current collection model of a satellite has been developed for the TSS-1 system. The system has been simulated particularly for the Research of Plasma Electrodynamics (ROPE) experiment. The Maxwellian distributed particles with the geomagnetic field effects are applied in this numerical simulation. The preliminary results indicate that a ring current is observed surrounding the satellite in the equatorial plane. This ring current is found between the plasma sheath and the satellite surface and is oscillating with a time scale of approximately 1 microsec. This is equivalent to the electron plasma frequency. An hour glass shape of electron distribution was observed when the viewing direction is perpendicular to the equatorial plane. This result is consistent with previous findings from Linson (1969) and Antoniades et al. (1990). Electrons that are absorbed by the satellite are limited from the background ionosphere as indicated by Parker and Murphy (1967). 6 refs.

  15. Feasibility Study of Space Based Solar Power to Tethered Aerostat Systems

    NASA Technical Reports Server (NTRS)

    Blank, Stephen J.; Leete, Stephen J.; Jaffe, Paul

    2013-01-01

    The feasibility of two-stage Space-Based Solar Power to Tethered Aerostat to Earth (SSP-TA) system architectures that offer significant advantages over conventional single stage space-to-earth architectures is being studied. There have been many proposals for the transmission of solar power collected in space to the surface of the earth so that solar energy could provide a major part of the electric power requirements on earth. There are, however, serious difficulties in implementing the single stage space-based solar power systems that have been previously studied. These difficulties arise due to: i) the cost of transporting the components needed for the extremely large microwave transmit beaming aperture into space orbit, ii) the even larger collection apertures required on earth, iii) the potential radiation hazard to personnel and equipment on earth, and iv) a lack of flexibility in location of the collection station on the earth. Two candidate system architectures are described here to overcome these difficulties. In both cases a two-stage space to tethered aerostat to earth transmission system (SSP-TA) is proposed. The use of high altitude tethered aerostats (or powered airships) avoids the effects of attenuation of EM energy propagating through the earth s lower atmosphere. This allows the use of beaming frequencies to be chosen from the range of high millimeter (THz) to near-infra-red (NIR) to the visible. This has the potential for: i) greatly reduced transportation costs to space, ii) much smaller receiver collection apertures and ground stations, iii) elimination of the potential radiation hazard to personnel and equipment on earth, and iv) ease in transportation and flexibility in location of the collection station on the earth. A preliminary comparison of system performance and efficiencies is presented.

  16. Tethered Lubricants

    SciTech Connect

    Archer, Lynden

    2010-09-15

    We have performed extensive experimental and theoretical studies of interfacial friction, relaxation dynamics, and thermodynamics of polymer chains tethered to points, planes, and particles. A key result from our tribology studies using lateral force microscopy (LFM) measurements of polydisperse brushes of linear and branched chains densely grafted to planar substrates is that there are exceedingly low friction coefficients for these systems. Specific project achievements include: (1) Synthesis of three-tiered lubricant films containing controlled amounts of free and pendent PDMS chains, and investigated the effect of their molecular weight and volume fraction on interfacial friction. (2.) Detailed studies of a family of hairy particles termed nanoscale organic hybrid materials (NOHMs) and demonstration of their use as lubricants.

  17. Multiple degree-of-freedom tracking for attitude control of an experimental system on tether-stabilized platform

    NASA Astrophysics Data System (ADS)

    Angrilli, Francesco; Baglioni, Pietro; Bianchini, Gianandrea; da Forno, Roberto; Fanti, Giulio; Mozzi, Massimo

    1991-08-01

    A study has been conducted about attitude control and pointing of an optical instrument (a Schmidt-type telescope) connected to the space station via a tether 2 to 10 km long, mounted on a platform. The tether plays a multifunctional role, including elastic suspension and data and power transmission. It will insulate the platform from dynamic noise, light, and other pollution from the space station. Furthermore, stabilization and active attitude control will be achieved by moving the attachment point of the tether with respect to the platform itself. A bi- dimensional model of this system has been realized and tested in the laboratory. The measurement and control concept that works on the basis of a computer vision system is discussed. The system is used to stabilize a platform floating on an air table attached to a fixed point through a tether, via a closed loop position control circuit. This is achieved through a CCD camera (768 X 512 pixels), an image processing software, and a dc motor with encoder which controls the attitude of the platform moving its attachment point. The tracking function is realized via a multiple windows technique using an algorithm based on the linearized equations of motion of the platform. The performance of the overall system is presented. An analysis of system characteristics with respect to a real application is carried out. In particular, the possibility of achieving stabilization and active attitude control of such a system by moving the attach point of the tether has been investigated.

  18. Avionics Tether Operations Control

    NASA Technical Reports Server (NTRS)

    Glaese, John R.

    2001-01-01

    The activities described in this Final Report were authorized and performed under Purchase Order Number H32835D, issued as part of NASA contract number NAS8-00114. The period of performance of this PO was from March 1 to September 30, 2001. The primary work activity was the continued development and updating of the tether dynamic simulation tools GTOSS (Generalized Tethered Object System Simulation) and TSSIM (Tethered Satellite System) and use of these and other tools in the analysis of various tether dynamics problems. Several updated versions of GTOSS were delivered during the period of performance by the author of the simulation, Lang Associates' David Lang. These updates had mainly to do with updated documentation and an updated coordinate system definition to the J2000 standards. This Final Report is organized by the months in which the activities described were performed. The following sections review the Statement of Work (SOW) and activities performed to satisfy it.

  19. System engineering study of electrodynamic tether as a spaceborne generator and radiator of electromagnetic waves in the ULF/ELF frequency band

    NASA Technical Reports Server (NTRS)

    Estes, R. D.; Grossi, M. D.; Lorenzini, E. C.

    1986-01-01

    The transmission and generation by orbiting tethered satellite systems of information carrying electromagnetic waves in the ULF/ELF frequency band to the Earth at suitably high signal intensities was examined and the system maintaining these intensities in their orbits for long periods of time without excessive onboard power requirements was investigated. The injection quantity power into electromagnetic waves as a function of system parameters such as tether length and orbital height was estimated. The basic equations needed to evaluate alternataing current tethered systems for external energy requirements are presented. The energy equations to tethered systems with various lengths, tether resistances, and radiation resistances, operating at different current values are applied. Radiation resistance as a function of tether length and orbital height is discussed. It is found that ULF/ELF continuously radiating systems could be maintained in orbit with moderate power requirements. The effect of tether length on the power going into electromagnetic waves and whether a single or dual tether system is preferable for the self-driven mode is discussed. It is concluded that the single tether system is preferable over the dual system.

  20. Effects of aerodynamic lift on the stability of tethered subsatellite system

    NASA Astrophysics Data System (ADS)

    Keshmiri, Mehdi; Misra, Arun K.

    Dynamics and stability of a two-body tethered system are investigated considering the aerodynamic lift on the subsatellite in addition to he aerodynamic drag. The Free Molecular Flow Model is used to calculate the aerodynamic forces on the subsatellite. Equilibrium configurations of the system are obtained numerically. Equations of motion are linearized analytically about the equilibrium configuration through a symbolic manipulation language, Maple V., and stability behavior of small oscillations about the equilibrium configuration is analyzed. An extensive parametric study is done to understand the effect of aerodynamic forces (lift and drag) on the stability of the uncontrolled system. It is shown that the stability behavior changes significantly if the subsatellite is changed from a body with no lift to a body with lift. Hence, an unstable system with a spherical subsatellite can be stabilized if aerodynamic surfaces are appropriately added. It is concluded that consideration of the aerodynamic lifting forces in addition to the aerodynamic drag forces on the subsatellite is indispensible for proper design of a tethered subsatellite system deployed in a low-altitude orbit.

  1. Advantages of using an elliptically-orbiting tethered-dumbbell system for a satellite transfer to geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Kyroudis, G. A.; Conway, B. A.

    1986-08-01

    This paper examines the use of an elliptically-orbiting tethered-dumbbell (Space Shuttle-satellite) system for satellite transfer to geosynchronous altitude. The two-dimensional rigid body equations of motion are derived using a Lagrangian method. Integration of these equations yields the system states, from tether deployment through payload release. These states are used to predict the Delta V savings (compared to a Hohmann transfer) when the payload is given a 'forward swing zero libration' release, that is, the payload is released on a forward swing when the libration angle is instantaneously zero. By varying the predeployment true anomaly, the 'forward swing zero libration' is caused to occur nearly simultaneously with periapse passage, resulting in maximum Delta V savings. The system deployment velocity and tether length were also varied to observe their effect on Delta V savings.

  2. Tether Transport System Study Summary Performed under Contract to Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Vonderwell, Dan; Bangham, Mike; Dionne, Heather; Fleming, Beth; Klus, Bill; Herring, Karmel; Suggs, Elton; Walker, Larry; Lorenzini, Enrico; Cosmo, Mario L.; Kaiser, Markus; Vestal, Linda; Johnson, Les; Carrington, Connie

    1998-01-01

    The main rationale for this study is to reduce the mission cost of transporting payloads to GEO. A two stage tether transport system was proposed for boosting payloads from LEO to GTO/GEO. The feasibility of the concept is addressed from the point of view of orbital mechanics and other principles of physics. The report presents the results of an engineering analysis that defines the system, major elements and subsystems, and assesses the feasibility (i.e., the technology readiness level) of designing and developing the system. Results indicate that significant cost savings can be realized over traditional upper stages within a few launches. Certain key technical issues, such as payload rendezvous and capture, need to be addressed in future studies. Advancements in certain technology areas, such as power generation and highly efficient propulsion systems, will have significant effects on the overall system design.

  3. Effect of the finite size of an asteroid on its deflection using a tether-ballast system

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Mohammad J.; Misra, Arun K.

    2016-07-01

    Potentially hazardous near-Earth objects which can impose a significant threat on life on the planet have generated a lot of interest in the study of various asteroid deflection strategies. There are numerous asteroid deflection techniques suggested and discussed in the literature. This paper is focused on one of the non-destructive asteroid deflection strategies by attaching a long tether-ballast system to the asteroid. In the existing literature on this technique, very simplified models of the asteroid-tether-ballast system including a point mass model of the asteroid have been used. In this paper, the dynamical effect of using a finite size asteroid model on the asteroid deflection achieved is analyzed in detail. It has been shown that considering the finite size of the asteroid, instead of the point mass approximation, can have significant influence on the deflection predicted. Furthermore the effect of the tether-deployment stage, which is an essential part of any realistic asteroid deflection mission, on the predicted deflection is studied in this paper. Finally the effect of cutting the tether on the deflection achieved is analyzed and it has been shown that depending on the orbital properties of the asteroid as well as its size and rotational rate, cutting the tether at an appropriate time can increase the deflection achieved. Several numerical examples have been used in this paper to elaborate on the proposed technique and to quantitatively analyze the effect of different parameters on the asteroid deflection.

  4. Numerical simulations of the electrodynamic interactions between the Tethered-Satellite-System and space plasma

    NASA Technical Reports Server (NTRS)

    Vashi, Bharat I.

    1992-01-01

    The first Tethered-Satellite-System (TSS-1), scheduled for a flight in late 1992, is expected to provide relevant information related to the concept of generating an emf in a 20-km-long (or longer) conducting wire. This paper presents numerical simulations of the electrodynamic interactions between the TSS system and space plasma, using a 2D and 3D models of the system. The 2D case code simulates the motion of a long cylinder past a plasma, which is composed of electrons and H(+) ions. The system is solved by allowing the plasma to flow past the cylinder with an imposed magnetic field. The more complex 3D case is considered to study the dynamics in great detail. Results of 2D simulation show that the interaction of a satellite with plasma flowing perpendicularly to the magnetic field results in an enhancement in the current collection.

  5. Method of Deployment of a Space Tethered System Aligned to the Local Vertical

    NASA Astrophysics Data System (ADS)

    Zakrzhevskii, A. E.

    2016-09-01

    The object of this research is a space tether of two bodies connected by a flexible massless string. The research objective is the development and theoretical justification of a novel approach to the solution of the problem of deployment of the space tether in a circular orbit with its alignment to the local vertical. The approach is based on use of the theorem on the angular momentum change. It allows developing the open-loop control of the tether length that provides desired change of the angular momentum of the tether under the effect of the gravitational torque to the value, which corresponds to the angular momentum of the deployed tether aligned to the local vertical. The given example of application of the approach to a case of deployment of a tether demonstrates the simplicity of use of the method in practice, and also the method of validation of the mathematical model.

  6. Proceedings of a Workshop on the Applications of Tethers in Space, Volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Project overview; tether deployment; satellite system description; tether fundamentals; science applications; electrodynamic interactions; transportation; artificial gravity; and constellations; were described.

  7. Adaptive sliding mode controller based on super-twist observer for tethered satellite system

    NASA Astrophysics Data System (ADS)

    Keshtkar, Sajjad; Poznyak, Alexander

    2016-09-01

    In this work, the sliding mode control based on the super-twist observer is presented. The parameters of the controller as well as the observer are admitted to be time-varying and depending on available current measurements. In view of that, the considered controller is referred to as an adaptive one. It is shown that the deviations of the generated state estimates from real state values together with a distance of the closed-loop system trajectories to a desired sliding surface reach a μ-zone around the origin in finite time. The application of the suggested controller is illustrated for the orientation of a tethered satellite system in a required position.

  8. Dynamics of variable-length tethers with application to tethered satellite deployment

    NASA Astrophysics Data System (ADS)

    Tang, J. L.; Ren, G. X.; Zhu, W. D.; Ren, H.

    2011-08-01

    The dynamics of variable-length tethers are studied using a flexible multibody dynamics method. The governing equations of the tethers are derived using a new, hybrid Eulerian and Lagrangian framework, by which the mass flow at a boundary of a tether and the length variation of a tether element are accounted for. The variable-length tether element based on the absolute nodal coordinate formulation is developed to simulate the deployment of satellite tethers. The coupled dynamic equations of tethers and satellites are obtained using the Lagrangian multiplier method. Several tethered satellite systems involving large displacements, rotations, and deformations are numerically simulated, where the tethers are released from several meters to about 1 km. A control strategy is proposed to avoid slackness of the tethers during deployment. The accuracy of the modeling and solution procedures was validated on an elevator model.

  9. The effects of a realistic hollow cathode plasma contactor model on the simulation of bare electrodynamic tether systems

    NASA Astrophysics Data System (ADS)

    Blash, Derek M.

    The region known as Low-Earth Orbit (LEO) has become populated with artificial satellites and space debris since humanities initial venture into the region. This has turned LEO into a hazardous region. Since LEO is very valuable to many different countries, there has been a push to prevent further buildup and talk of even deorbiting spent satellites and debris already in LEO. One of the more attractive concepts available for deorbiting debris and spent satellites is a Bare Electrodynamic Tether (BET). A BET is a propellantless propulsion technique in which two objects are joined together by a thin conducting material. When these tethered objects are placed in LEO, the tether sweeps across the magnetic field lines of the Earth and induces an electromotive force (emf) along the tether. Current from the space plasma is collected on the bare tether under the action of the induced emf, and this current interacts with the Earth's magnetic field to create a drag force that can be used to deorbit spent satellites and space debris. A Plasma Contactor (PC) is used to close the electrical circuit between the BET and the ionospheric plasma. The PC requires a voltage and, depending on the device, a gas flow to emit electrons through a plasma bridge to the ionospheric plasma. The PC also can require a plasma discharge electrode and a heater to condition the PC for operation. These parameters as well as the PC performance are required to build an accurate simulation of a PC and, therefore, a BET deorbiting system. This thesis focuses on the development, validation, and implementation of a simulation tool to model the effects of a realistic hollow cathode PC system model on a BET deorbit system.

  10. SPARCL: a high-altitude tethered balloon-based optical space-to-ground communication system

    NASA Astrophysics Data System (ADS)

    Badesha, Surjit S.

    2002-12-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has conducted a feasibility study to determine if a high altitude (20 km) tethered balloon-based space-to-ground optical communication system is a feasible concept. To support this effort, a detailed concept definition was developed and associated issues were identified and analyzed systematically. Of all the adverse atmospheric phenomena, cloud coverage was identified as the most prohibitive obstacle for a space-to-ground optical communication link. However, by placing a receiver on a balloon at a 20 km altitude, the proposed high altitude system avoids virtually all atmospheric effects. A practical notional scenario was developed (i.e. surveillance and/or reconnaissance of a regional conflict) involving end-to-end optical communication architecture to identify system elements, system level requirements, and to quantify realistic data rate requirements. Analysis of the proposed space-to-ground communication elements indicates that while significant development is required, the system is technically feasible and is a very cost effective 24/7solution.

  11. Proposed tethered unmanned aerial system for the detection of pollution entering the Chesapeake Bay area

    NASA Astrophysics Data System (ADS)

    Goodman, J.; McKay, J.; Evans, W.; Gadsden, S. Andrew

    2016-05-01

    This paper is based on a proposed unmanned aerial system platform that is to be outfitted with high-resolution sensors. The proposed system is to be tethered to a moveable ground station, which may be a research vessel or some form of ground vehicle (e.g., car, truck, or rover). The sensors include, at a minimum: camera, infrared sensor, thermal, normalized difference vegetation index (NDVI) camera, global positioning system (GPS), and a light-based radar (LIDAR). The purpose of this paper is to provide an overview of existing methods for pollution detection of failing septic systems, and to introduce the proposed system. Future work will look at the high-resolution data from the sensors and integrating the data through a process called information fusion. Typically, this process is done using the popular and well-published Kalman filter (or its nonlinear formulations, such as the extended Kalman filter). However, future work will look at using a new type of strategy based on variable structure estimation for the information fusion portion of the data processing. It is hypothesized that fusing data from the thermal and NDVI sensors will be more accurate and reliable for a multitude of applications, including the detection of pollution entering the Chesapeake Bay area.

  12. Space Tethers: Design Criteria

    NASA Technical Reports Server (NTRS)

    Tomlin, D. D.; Faile, G. C.; Hayashida, K. B.; Frost, C. L.; Wagner, C. Y.; Mitchell, M. L.; Vaughn, J. A.; Galuska, M. J.

    1997-01-01

    This document is prepared to provide a systematic process for the selection of tethers for space applications. Criteria arc provided for determining the strength requirement for tether missions and for mission success from tether severing due to micrometeoroids and orbital debris particle impacts. Background information of materials for use in space tethers is provided, including electricity-conducting tethers. Dynamic considerations for tether selection is also provided. Safety, quality, and reliability considerations are provided for a tether project.

  13. Applications of Tethers in Space, Volume 1

    NASA Technical Reports Server (NTRS)

    Cron, A. C. (Compiler)

    1985-01-01

    The tethered satellite system is described including tether fundamentals. Applications of very long tethers in space to a broad spectrum of future space missions are explored. Topics covered include: science, transportation, constellations, artificial gravity, technology and test, and electrodynamic interactions. Recommendations to NASA are included.

  14. New Tether Ozonesonde System Developed for Uintah Basin Ozone Study in February, 2012

    NASA Astrophysics Data System (ADS)

    Johnson, B. J.; Cullis, P.; Wendell, J.; Hall, E.; Jordan, A.; Albee, R.; Schnell, R. C.

    2012-12-01

    NOAA/ESRL/GMD participated in the February, 2012 UINTAH basin air quality campaign to measure ozone concentrations from surface to 300 meters above ground level. The study region, southwest of Vernal, Utah, is an active oil and gas production and exploration area. During the previous winter in 2011, an air quality study led by state and local agencies and Utah State University measured very high ozone at several sites, exceeding 140 ppbv centered near Ouray, Utah under shallow boundary layer with surface snow-cover conditions. The high ozone conditions never developed during the 2012 campaign. The weather remained dry and warm with typical ozone mixing rations ranging from 20 to 60 ppbv. In order to provide near continuous ozone profiles without consuming a balloon and ozonesonde for each sounding, a tether system was developed by the Global Monitoring Division based upon a motorized deep sea fishing rod and reel with 50 pound line. The lightweight system was shown to be rugged and reliable and capable of conducting an ascending and descending profile to 300 m within 90 minutes. Communication software and data loggers continuously monitor the radiosonde pressure to control the ascent/descent rates and altitude. The system can operate unmanned as it will ascend, descend and hold an altitude as controlled from a laptop computer located up to 30 m distant.

  15. Radar cross-section measurements and simulation of a tethered satellite. The small expendable deployer system end-mass payload

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Fralick, Dion T.; Vedeler, Erik

    1995-01-01

    The first Small Expendable Deployer System (SEDS-1), a tethered satellite system, was developed by NASA and launched March 29, 1993 as a secondary payload on a United State Air Force (USAF) Delta-2 launch vehicle. The SEDS-1 successfully deployed an instrumented end-mass payload (EMP) on a 20-km nonconducting tether from the second stage of the Delta 2. This paper describes the effort of NASA Langley Research Center's Antenna and Microwave Research Branch to provide assistance to the SEDS Investigators Working Group (IWG) in determining EMP dynamics by analyzing the mission radar skin track data. The radar cross section measurements taken and simulations done for this study are described and comparisons of the measured data with the simulated data for the EMP at 6 GHz are presented.

  16. Orbital Injection of the SEDSAT Satellite: Tethered Systems Dynamics and Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Ruiz, Manuel; Pelaez, Jesus

    1996-01-01

    This report deals with the following topics which are all related to the orbital injection of the SEDSAT satellite: Dynamics and Stability of Tether Oscillations after the First Cut. The dynamics of the tether after the first cut (i.e., without the Shuttle attached to it) is investigated. The tether oscillations with the free end are analyzed in order to assess the stability of the rectilinear configuration in between the two tether cuts; analysis of Unstable Modes. The unstable modes that appear for high libration angles are further investigated in order to determine their occurrences and the possible transition from bound librations to rotations; Orbital Release Strategies for SEDSAT. A parametric analysis of the orbital decay rate of the SEDSAT satellite after the two tether cuts has been carried out as a function of the following free parameters: libration amplitude at the end of deployment, deviation angle from LV at the first cut, and orbital anomaly at the second cut. The values of these parameters that provide a minimum orbital decay rate of the satellite (after the two cuts) have been computed; and Dynamics and Control of SEDSAT. The deployment control law has been modified to cope with the new ejection velocity of the satellite from the Shuttle cargo bay. New reference profiles have been derived as well as new control parameters. Timing errors at the satellite release as a function of the variations of the initial conditions and the tension model parameters have been estimated for the modified control law.

  17. BOU: Development of a low-cost tethered balloon sensing system for monitoring the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Picos, Rodrigo; Lopez-Grifol, Alvaro; Martinez-Villagrassa, Daniel; Simó, Gemma; Wenger, Burkhard; Dünnermann, Jens; Jiménez, Maria Antonia; Cuxart, Joan

    2016-04-01

    The study of the atmospheric boundary layer, the lowest part of the atmosphere, and the processes that occur therein often requires the observation of vertical profiles of the main meteorological variables, i.e. air temperature and humidity, wind vector and barometric pressure. In particular, when the interest is focused on the air-surface interactions, a high vertical resolution over the first 500 m is required for the observations to describe the physical processes that occur immediately above the surface. Typically, these needs are covered with the use of captive balloons, which are helium-filled balloons tethered to a winch on the ground and a sensor package suspended a short distance below the balloon. Since the commercial version of such instrumental platforms are scarce and expensive, a new low-cost device has been developed in the last years: BOU (tethered Balloon sonde OWL-UIB). In this paper, we focus on the sensor package and data acquisition system part, that is able to fulfill the low-cost requirements. The system uses a low-cost Arduino Mega board as the processor, and stores all the data in a SD card, though an RF connection is also possible but more unreliable. The system has been configured to sample temperature, humidity, air pressure, wind speed, having also a magnetometer and an accelerometer. Sampling time was 1 second, though it was possible to set it faster. It is worth mentioning that the system is easily reconfigurable, and more sensors can be added. The system is powered by a Polymer battery of 1800mA , allowing the system to run continously for more than 6 hours. The temperature is acquired using three different sensors (a HYT 271 calibrated sensor with an accuracy of ±0.2 °C, plus the internal temperature sensors of the wind and pressure sensors, with accuracies around ±0.5 °C). The humidity is also sensed using the calibrated HYT 271 sensor, which features an accuracy of ±1.8%. Air pressure is sensed using a BMP080 sensor, which

  18. Tethered Spinal Cord Syndrome

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Tethered Spinal Cord Syndrome Information Page Table of Contents (click to ... being done? Clinical Trials Organizations What is Tethered Spinal Cord Syndrome? Tethered spinal cord syndrome is a neurological ...

  19. The role of tethers on space station

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. (Editor)

    1985-01-01

    The results of research and development that addressed the usefulness of tether applications in space, particularly for space station are described. A well organized and structured effort of considerable magnitude involving NASA, industry and academia have defined the engineering and technological requirements of space tethers and their broad range of economic and operational benefits. The work directed by seven NASA Field Centers is consolidated and structured to cover the general and specific roles of tethers in space as they apply to NASA's planned space station. This is followed by a description of tether systems and operations. A summary of NASA's plans for tether applications in space for years to come is given.

  20. Characterization of the Thermotoga maritima Chemotaxis Methylation System that Lacks Methyltransferase CheR:MCP Tethering

    PubMed Central

    Perez, Eduardo; Stock, Ann M.

    2013-01-01

    Summary Sensory adaptation in bacterial chemotaxis is mediated by covalent modifications of specific glutamate and glutamine residues within the cytoplasmic domains of methyl-accepting proteins (MCPs). In Escherichia coli and Salmonella enterica, efficient methylation of MCPs depends on the localization of methyltransferase CheR to MCP clusters through an interaction between the CheR β-subdomain and a pentapeptide sequence (NWETF or NWESF) at the C terminus of the MCP. In vitro methylation analyses utilizing S. enterica and Thermotoga maritima CheR proteins and MCPs indicate that MCP methylation in T. maritima occurs independently of a pentapeptide-binding motif. Kinetic and binding measurements demonstrate that despite efficient methylation, the interaction between T. maritima CheR and T. maritima MCPs is of relatively low affinity. Comparative protein sequence analyses of CheR β-subdomains from organisms having MCPs that contain and/or lack pentapeptide-binding motifs identified key similarities and differences in residue conservation, suggesting the existence of two distinct classes of CheR proteins: pentapeptide-dependent and pentapeptide-independent methyltransferases. Analysis of MCP C-terminal ends showed that only ~10% of MCPs contain a putative C-terminal binding motif, the majority of which are restricted to the different proteobacteria classes (α, β, γ, δ). These findings suggest that tethering of CheR to MCPs is a relatively recent event in evolution and that the pentapeptide-independent methylation system is more common than the well characterized pentapeptide-dependent methylation system. PMID:17163981

  1. The dynamic phenomena of a tethered satellite: NASA's first Tethered Satellite Mission, TSS-1

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Mowery, D. K.; Tomlin, D. D.

    1993-01-01

    The tethered satellite system (TSS) was envisioned as a means of extending a satellite from its base (space shuttle, space station, space platform) into a lower or higher altitude in order to more efficiently acquire data and perform science experiments. This is accomplished by attaching the satellite to a tether, deploying it, then reeling it in. When its mission is completed, the satellite can be returned to its base for reuse. If the tether contains a conductor, it can also be used as a means to generate and flow current to and from the satellite to the base. When current is flowed, the tether interacts with the Earth's magnetic field, deflecting the tether. When the current flows in one direction, the system becomes a propulsive system that can be used to boost the orbiting system. In the other direction, it is a power generating system. Pulsing the current sets up a dynamic oscillation in the tether, which can upset the satellite attitude and preclude docking. A basic problem occurs around 400-m tether length, during satellite retrieval when the satellite's pendulous (rotational) mode gets in resonance with the first lateral tether string mode. The problem's magnitude is determined by the amount of skiprope present coming into this resonance condition. This paper deals with the tethered satellite, its dynamic phenomena, and how the resulting problems were solved for the first tethered satellite mission (TSS-1). Proposals for improvements for future tethered satellite missions are included. Results from the first tethered satellite flight are summarized.

  2. Nucleolus-tethering system (NoTS) reveals that assembly of photobodies follows a self-organization model.

    PubMed

    Liu, Yin; Liu, Qi; Yan, Qingqing; Shi, Leilei; Fang, Yuda

    2014-04-01

    Protein-protein interactions play essential roles in regulating many biological processes. At the cellular level, many proteins form nuclear foci known as nuclear bodies in which many components interact with each other. Photobodies are nuclear bodies containing proteins for light-signaling pathways in plants. What initiates the formation of photobodies is poorly understood. Here we develop a nucleolar marker protein nucleolin2 (Nuc2)-based method called the nucleolus-tethering system (NoTS) by artificially tethering a protein of interest to the nucleolus to analyze the initiation of photobodies. A candidate initiator is evaluated by visualizing whether a protein fused with Nuc2 forms body-like structures at the periphery of the nucleolus, and other components are recruited to the de novo-formed bodies. The interaction between two proteins can also be revealed through relocation and recruitment of interacting proteins to the nucleolus. Using the NoTS, we test the interactions among components in photobodies. In addition, we demonstrate that components of photobodies such as CONSTITUTIVELY PHOTOMORPHOGENIC 1, photoreceptors, and transcription factors tethered to the nucleolus have the capacity to form body-like structures at the periphery of the nucleolus, which contain other components of photobodies, suggesting a self-organization model for the biogenesis of photobodies.

  3. Study of tethered satellite active attitude control

    NASA Technical Reports Server (NTRS)

    Colombo, G.

    1982-01-01

    Existing software was adapted for the study of tethered subsatellite rotational dynamics, an analytic solution for a stable configuration of a tethered subsatellite was developed, the analytic and numerical integrator (computer) solutions for this "test case' was compared in a two mass tether model program (DUMBEL), the existing multiple mass tether model (SKYHOOK) was modified to include subsatellite rotational dynamics, the analytic "test case,' was verified, and the use of the SKYHOOK rotational dynamics capability with a computer run showing the effect of a single off axis thruster on the behavior of the subsatellite was demonstrated. Subroutines for specific attitude control systems are developed and applied to the study of the behavior of the tethered subsatellite under realistic on orbit conditions. The effect of all tether "inputs,' including pendular oscillations, air drag, and electrodynamic interactions, on the dynamic behavior of the tether are included.

  4. Tether Technology Interchange Meeting

    NASA Technical Reports Server (NTRS)

    Harrison, James K. (Compiler)

    1998-01-01

    This is a compilation of 25 papers presented at a tether technical interchange meeting in Huntsville, AL, on September 9-10, 1997. After each presentation, a technical discussion was held to clarify and expand the salient points. A wide range of subjects was covered including tether dynamics, electrodynamics, space power generation, plasma physics, ionospheric physics, towing tethers, tethered reentry schemes, and future tether missions.

  5. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors.

    PubMed

    Fried, Eric S; Luchan, Joshua; Gilchrist, M Lane

    2016-04-12

    Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays.

  6. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors.

    PubMed

    Fried, Eric S; Luchan, Joshua; Gilchrist, M Lane

    2016-04-12

    Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays. PMID:26972467

  7. Development of the Flight Tether for ProSEDS

    NASA Technical Reports Server (NTRS)

    Curtis, Leslie; Vaughn, Jason; Welzyn, Ken; Carroll, Joe; Brown, Norman S. (Technical Monitor)

    2002-01-01

    The Propulsive Small Expendable Deployer System (ProSEDS) space experiment will demonstrate the use of an electrodynamic tether propulsion system to generate thrust in space by decreasing the orbital altitude of a Delta 11 Expendable Launch Vehicle second stage. ProSEDS will use the flight-proven Small Expendable Deployer System to deploy a newly designed and developed tether which will provide tether generated drag thrust of approx. 0.4 N. The development and production of very long tethers with specific properties for performance and survivability will be required to enable future tether missions. The ProSEDS tether design and the development process may provide some lessons learned for these future missions. The ProSEDS system requirements drove the design of the tether to have three different sections of tether each serving a specialized purpose. The tether is a total of 15 kilometers long: 10 kilometers of a non-conductive Dyneema lead tether; 5 km of CCOR conductive coated wire; and 220 meters of insulated wire with a protective Kevlar overbraid. Production and joining of long tether lengths involved many development efforts. Extensive testing of tether materials including ground deployment of the full-length ProSEDS tether was conducted to validate the tether design and performance before flight.

  8. Selected tether applications in space: Phase 2

    NASA Technical Reports Server (NTRS)

    Thorsen, M. H.; Lippy, L. J.

    1985-01-01

    System characteristics and design requirements are assessed for tether deployment. Criteria are established for comparing alternate concepts for: (1) deployment of 220 klb space shuttle from the space station; (2) tether assisted launch of a 20,000 lb payload to geosynchronous orbit; (3) placement of the 20,000 lb AXAF into 320 nmi orbit via orbiter; (4) retrieval of 20,000 lb AXAF from 205 nmi circular orbit for maintenance and reboost to 320 nmi; and (5) tethered OMV rendezvous and retrieval of OTV returning from a geosynchronous mission. Tether deployment systems and technical issues are discussed.

  9. Space Station Reboost with Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Vas, Irwin E.; Kelly, Thomas J.; Scarl, Ethan A.

    1999-01-01

    This paper presents the results of a study of an electrodynamic tether system to reboost the International Space Station (ISS). One recommendation is to use a partially bare tether for electron collection. Locations are suggested as to where the tether system is to be attached at the space station. The effects of the tether system on the microgravity environment may actually be beneficial, because the system can neutralize aerodrag during quiescent periods and, if deployed from a movable boom, can permit optimization of laboratory positioning with respect to acceleration contours. Alternative approaches to tether deployment and retrieval are discussed. It is shown that a relatively short tether system, 7 km long, operating at a power level of 5 kW could provide cumulative savings or over a billion dollars during a 10-year period ending in 2012. This savings is the direct result of a reduction in the number or nights that would otherwise be required to deliver propellant for reboost, with larger cost savings for higher tether usage. In addition to economic considerations, an electrodynamic tether promises a practical backup system that could ensure ISS survival in the event of an (otherwise) catastrophic delay in propellant delivery.

  10. Selected Tether Applications Cost Model

    NASA Technical Reports Server (NTRS)

    Keeley, Michael G.

    1988-01-01

    Diverse cost-estimating techniques and data combined into single program. Selected Tether Applications Cost Model (STACOM 1.0) is interactive accounting software tool providing means for combining several independent cost-estimating programs into fully-integrated mathematical model capable of assessing costs, analyzing benefits, providing file-handling utilities, and putting out information in text and graphical forms to screen, printer, or plotter. Program based on Lotus 1-2-3, version 2.0. Developed to provide clear, concise traceability and visibility into methodology and rationale for estimating costs and benefits of operations of Space Station tether deployer system.

  11. Tethered body problems and relative motion orbit determination

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.; Wolf, H.

    1972-01-01

    Selected problems dealing with orbiting tethered body systems have been studied. In addition, a relative motion orbit determination program was developed. Results from these tasks are described and discussed. The expected tethered body motions were examined, analytically, to ascertain what influence would be played by the physical parameters of the tether, the gravity gradient and orbit eccentricity. After separating the motion modes these influences were determined; and, subsequently, the effects of oscillations and/or rotations, on tether force, were described. A study was undertaken, by examining tether motions, to see what type of control actions would be needed to accurately place a mass particle at a prescribed position relative to a main vehicle. Other applications for tethers were studied. Principally these were concerned with the producing of low-level gee forces by means of stabilized tether configurations; and, the initiation of free transfer trajectories from tether supported vehicle relative positions.

  12. Polymeric Coatings for Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Kamenetzky, Rachel R.; Finckenor, Miria M.; Schuler, Peter

    2000-01-01

    Two polymeric coatings have been developed for the Propulsive Small Expendable Deployer System (ProSEDS) mission. ProSEDS is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster scheduled for launch in August 2000. A 5-km conductive tether is attached to the Delta 11 second stage and collects current from the low Earth orbit (LEO) plasma to facilitate de-orbit of the spent stage. The conductive tether is attached to a 10-km non-conductive tether, the other end of which is attached to an endmass containing several scientific instruments. A bare metal tether would have the best conductivity but thermal concerns preclude this design. A conductive polymer developed by Triton Systems has been optimized for conductivity and thermo-optical properties. The current design for the ProSEDS conductive tether is seven strands of 28 AWG aluminum wire individually coated with 8.7 micrometers (0.35 mil) of an atomic oxygen-resistant conductive polymer composed of a mixture of 87% Clear Oxygen-Resistant polymer (COR) and 13% polyanaline (PANi), wrapped around a braided Kevlar (TM) 49 core. Extensive testing has been performed at the Marshall Space Flight Center (MSFC) to qualify this material for flight on ProSEDS. Atomic oxygen exposure was performed, with solar absorptance and infrared emittance measured before and after exposure. Conductivity was measured before and after atomic oxygen exposure. High voltage tests, up to 1500 V, of the current collecting ability of the COR/PANi have been completed. Approximately 160 meters of the conductive tether closest to the Delta 11 second stage is insulated to prevent any electron reconnection to the tether from the plasma contactor. The insulation is composed of polyimide overcoated with TOR-BP, another polymeric coating developed by Triton for this mission. TOR-BP acts as both insulator

  13. Method and apparatus for advancing tethers

    DOEpatents

    Zollinger, W.T.

    1998-06-02

    A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel. 9 figs.

  14. Method and apparatus for advancing tethers

    DOEpatents

    Zollinger, W. Thor

    1998-01-01

    A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel.

  15. Dynamics analysis of electrodynamic satellite tethers. Equations of motion and numerical solution algorithms for the tether

    NASA Technical Reports Server (NTRS)

    Nacozy, P. E.

    1984-01-01

    The equations of motion are developed for a perfectly flexible, inelastic tether with a satellite at its extremity. The tether is attached to a space vehicle in orbit. The tether is allowed to possess electrical conductivity. A numerical solution algorithm to provide the motion of the tether and satellite system is presented. The resulting differential equations can be solved by various existing standard numerical integration computer programs. The resulting differential equations allow the introduction of approximations that can lead to analytical, approximate general solutions. The differential equations allow more dynamical insight of the motion.

  16. Tethering sockets and wrenches

    NASA Technical Reports Server (NTRS)

    Johnson, E. P.

    1990-01-01

    The tethering of sockets and wrenches was accomplished to improve the safety of working over motor segments. To accomplish the tethering of the sockets to the ratchets, a special design was implemented in which a groove was machined into each socket. Each socket was then fitted with a snap ring that can spin around the machined groove. The snap ring is tethered to the handle of the ratchet. All open end wrenches are also tethered to the ratchet or to the operator, depending upon the type. Tests were run to ensure that the modified tools meet torque requirements. The design was subsequently approved by Space Safety.

  17. Space Tethers Programmatic Infusion Opportunities

    NASA Technical Reports Server (NTRS)

    Bonometti, J. A.; Frame, K. L.

    2005-01-01

    Programmatic opportunities abound for space Cables, Stringers and Tethers, justified by the tremendous performance advantages that these technologies offer and the rather wide gaps that must be filled by the NASA Exploration program, if the "sustainability goal" is to be met. A definition and characterization of the three categories are presented along with examples. A logical review of exploration requirements shows how each class can be infused throughout the program, from small experimental efforts to large system deployments. The economics of tethers in transportation is considered along with the impact of stringers for structural members. There is an array of synergistic methodologies that interlace their fabrication, implementation and operations. Cables, stringers and tethers can enhance a wide range of other space systems and technologies, including power storage, formation flying, instrumentation, docking mechanisms and long-life space components. The existing tether (i.e., MXER) program's accomplishments are considered consistent with NASA's new vision and can readily conform to requirements-driven technology development.

  18. Study of certain tether safety issues. Continuation of investigation of electrodynamic stabilization and control of long orbiting tethers, volume 1

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Grossi, M. D.; Arnold, D.

    1982-01-01

    The behavior of long tethers (10-100 km) in space are addressed under two failure situations with potential safety impact: instantaneous jamming of the reel controlling the tether during deployment and cutting of the tether due to a meteor strike or other similar phenomena. Dual and multiple mass point models were used in the SAO SKYHOOK program to determine this behavior. The results of the program runs were verified analytically or by comparison with previously verified results. The study included the effects of tether damping and air drag where appropriate. Most runs were done with the tether system undamped since we believe this best represents the true behavior of the tether. Means for controlling undesirable behavior of the tether, such as viscous dampers in the subsatellite, were also studied.

  19. Tethers in space handbook

    NASA Technical Reports Server (NTRS)

    Reese, T. G.; Baracat, W. A.; Butner, C. L.

    1986-01-01

    The handbook provides a list and description of ongoing tether programs. This includes the joint U.S.-Italy demonstration project, and individual U.S. and Italian studies and demonstration programs. An overview of the current activity level and areas of emphasis in this emerging field is provided. The fundamental physical principles behind the proposed tether applications are addressed. Four basic concepts of gravity gradient, rotation, momentum exchange, and electrodynamics are discussed. Information extracted from literature, which supplements and enhances the tether applications is also presented. A bibliography is appended.

  20. Applications of Tethers in Space

    NASA Technical Reports Server (NTRS)

    Cron, A. C.

    1985-01-01

    The proceedings of the first workshop on applications of tethers in space are summarized. The workshop gathered personalities from industry, academic institutions and government to discuss the relatively new area of applied technology of very long tethers in space to a broad spectrum of future space missions. A large number of tethered concepts and configurations was presented covering electrodynamic interaction tethers, tethered transportation through angular momentum exchange, tethered constellations, low gravity utilization, applicable technology, and tethered test facilities. Specific recommendations were made to NASA in each area.

  1. Morpheus Tether Test #13

    NASA Video Gallery

    Morpheus conducts another tethered test, May 2, 2012. Morpheus is a full spacecraft and rocket-powered lander, which demonstrates new green technology, as well as an autonomous landing and hazard d...

  2. Morpheus Tether Test #10

    NASA Video Gallery

    Morpheus conducts another tethered test, April 5, 2012. Morpheus is a full spacecraft and rocket-powered lander, which demonstrates new green technology, as well as an autonomous landing and hazard...

  3. Morpheus Tether Test #11

    NASA Video Gallery

    Morpheus conducts another tethered test, April 11, 2012. Morpheus is a full spacecraft and rocket-powered lander, which demonstrates new green technology, as well as an autonomous landing and hazar...

  4. Morpheus Tether Test #12

    NASA Video Gallery

    Morpheus conducts another tethered test, April 18, 2012. Morpheus is a full spacecraft and rocket-powered lander, which demonstrates new green technology, as well as an autonomous landing and hazar...

  5. Morpheus Tether Test #15

    NASA Video Gallery

    Morpheus conducts another tethered test, May 10, 2012. Morpheus is a full spacecraft and rocket-powered lander, which demonstrates new green technology, as well as an autonomous landing and hazard ...

  6. Morpheus Tether Test #14

    NASA Video Gallery

    Morpheus conducts another tethered test, May 8, 2012. Morpheus is a full spacecraft and rocket-powered lander, which demonstrates new green technology, as well as an autonomous landing and hazard d...

  7. Morpheus Tether Test #17

    NASA Video Gallery

    Morpheus conducts another tethered test, June 18, 2012. Morpheus is a full spacecraft and rocket-powered lander, which demonstrates new green technology, as well as an autonomous landing and hazard...

  8. Morpheus Tether Test #16

    NASA Video Gallery

    Morpheus conducts another tethered test, June 11, 2012. Morpheus is a full spacecraft and rocket-powered lander, which demonstrates new green technology, as well as an autonomous landing and hazard...

  9. Morpheus Tether Test #22

    NASA Video Gallery

    Morpheus conducts another tethered test, June 6, 2013. Morpheus is a full spacecraft and rocket-powered lander, which demonstrates new green technology, as well as an autonomous landing and hazard ...

  10. Morpheus Tether Test #20

    NASA Video Gallery

    Morpheus conducts another tethered test, August 3, 2012. Morpheus is a full spacecraft and rocket-powered lander, which demonstrates new green technology, as well as an autonomous landing and hazar...

  11. Morpheus Tether Test #9

    NASA Video Gallery

    Morpheus conducts another tethered test, March 16, 2012. Morpheus is a full spacecraft and rocket-powered lander, which demonstrates new green technology, as well as an autonomous landing and hazar...

  12. Cellular adhesion and dynamic membrane tether extraction

    NASA Astrophysics Data System (ADS)

    Nowak, Sarah; Chou, Tom

    2009-03-01

    We consider the energetics and dynamics of pulling a ligand bound to an integral membrane receptor. Deformation of the cell membrane and cytoskeleton is considered as the ligand is pulled. We assume that deformation of the cytoskeleton obeys Hook's law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. Depending on the pulling velocity and force, a membrane tether of varying length may form before the receptor-ligand bond breaks. We study the probability of tether formation and the mean tether length at the moment of ligand detachment as a function of system parameters. This problem is applicable to AFM studies of cellular adhesion molecules, and to the biological problem of leukocyte rolling.

  13. Tether Deployer And Brake

    NASA Technical Reports Server (NTRS)

    Carroll, Joseph A.; Alexander, Charles M.

    1993-01-01

    Design concept promises speed, control, and reliability. Scheme for deploying tether provides for fast, free, and snagless payout and fast, dependable braking. Developed for small, expendable tethers in outer space, scheme also useful in laying transoceanic cables, deploying guidance wires to torpedoes and missiles, paying out rescue lines from ship to ship via rockets, deploying antenna wires, releasing communication and power cables to sonobuoys and expendable bathythermographs, and in reeling out lines from fishing rods.

  14. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Astrophysics Data System (ADS)

    Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Estes, Robert D.; Grossi, Mario D.

    1994-05-01

    This final report covers nine years of research on future tether applications and on the actual flights of the Small Expendable Deployment System (SEDS). Topics covered include: (1) a description of numerical codes used to simulate the orbital and attitude dynamics of tethered systems during station keeping and deployment maneuvers; (2) a comparison of various tethered system simulators; (3) dynamics analysis, conceptual design, potential applications and propagation of disturbances and isolation from noise of a variable gravity/microgravity laboratory tethered to the Space Station; (4) stability of a tethered space centrifuge; (5) various proposed two-dimensional tethered structures for low Earth orbit for use as planar array antennas; (6) tethered high gain antennas; (7) numerical calculation of the electromagnetic wave field on the Earth's surface on an electrodynamically tethered satellite; (8) reentry of tethered capsules; (9) deployment dynamics of SEDS-1; (10) analysis of SEDS-1 flight data; and (11) dynamics and control of SEDS-2.

  15. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Estes, Robert D.; Grossi, Mario D.

    1994-01-01

    This final report covers nine years of research on future tether applications and on the actual flights of the Small Expendable Deployment System (SEDS). Topics covered include: (1) a description of numerical codes used to simulate the orbital and attitude dynamics of tethered systems during station keeping and deployment maneuvers; (2) a comparison of various tethered system simulators; (3) dynamics analysis, conceptual design, potential applications and propagation of disturbances and isolation from noise of a variable gravity/microgravity laboratory tethered to the Space Station; (4) stability of a tethered space centrifuge; (5) various proposed two-dimensional tethered structures for low Earth orbit for use as planar array antennas; (6) tethered high gain antennas; (7) numerical calculation of the electromagnetic wave field on the Earth's surface on an electrodynamically tethered satellite; (8) reentry of tethered capsules; (9) deployment dynamics of SEDS-1; (10) analysis of SEDS-1 flight data; and (11) dynamics and control of SEDS-2.

  16. Tethers in Space Handbook

    NASA Technical Reports Server (NTRS)

    Cosmo, M. L. (Editor); Lorenzini, E. C. (Editor)

    1997-01-01

    A new edition of the Tethers in Space Handbook was needed after the last edition published in 1989. Tether-related activities have been quite busy in the 90's. We have had the flights of TSSI and TSSI-R, SEDS-1 and -2, PMG, TIPS and OEDIPUS. In less than three years there have been one international Conference on Tethers in Space, held in Washington DC, and three workshops, held at ESA/Estec in the Netherlands, at ISAS in Japan and at the University of Michigan, Ann Harbor. The community has grown and we finally have real flight data to compare our models with. The life of spaceborne tethers has not been always easy and we got our dose of setbacks, but we feel pretty optimistic for the future. We are just stepping out of the pioneering stage to start to use tethers for space science and technological applications. As we are writing this handbook TiPs, a NRL tether project is flying above our heads. There is no emphasis in affirming that as of today spacebome tethers are a reality and their potential is far from being fully appreciated. Consequently, a large amount of new information had to be incorporated into this new edition. The general structure of the handbook has been left mostly unchanged. The past editors have set a style which we have not felt needed change. The section on the flights has been enriched with information on the scientific results. The categories of the applications have not been modified, and in some cases we have mentioned the existence of related flight data. We felt that the section contributed by Joe Carroll, called Tether Data, should be maintained as it was, being a "classic" and still very accurate and not at all obsolete. We have introduced a new chapter entitled Space Science and Tethers since flight experience has shown that tethers can complement other space-based investigations. The bibliography has been updated. Due to the great production in the last few years %e had to restrict our search to works published in refereed journal

  17. Formation Flying of Tethered and Nontethered Spacecraft

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.

    2005-01-01

    A paper discusses the effect of the dynamic interaction taking place within a formation composed of a rigid and a deformable vehicle, and presents the concept of two or more tethered spacecraft flying in formation with one or more separated free-flying spacecraft. Although progress toward formation flight of nontethered spacecraft has already been achieved, the document cites potential advantages of tethering, including less consumption of fuel to maintain formation, very high dynamic stability of a rotating tethered formation, and intrinsically passive gravity-gradient stabilization. The document presents a theoretical analysis of the dynamics of a system comprising one free-flying spacecraft and two tethered spacecraft in orbit, as a prototype of more complex systems. The spacecraft are modeled as rigid bodies and the tether as a mass-less spring with structural viscous damping. Included in the analysis is a study of the feasibility of a centralized control system for maintaining a required formation in low Earth orbit. A numerical simulation of a retargeting maneuver is reported to show that even if the additional internal dynamics of the system caused by flexibility is considered, high pointing precision can be achieved if a fictitious rigid frame is used to track the tethered system, and it should be possible to position the spacecraft with centimeter accuracy and to orient the formation within arc seconds of the desired direction also in the presence of low Earth orbit environmental perturbations. The results of the study demonstrate that the concept is feasible in Earth orbit and point the way to further study of these hybrid tethered and free-flying systems for related applications in orbit around other Solar System bodies.

  18. Research on the tether assisted observation of an asteroid

    NASA Astrophysics Data System (ADS)

    Zhong, Rui; Wang, Yue

    2016-06-01

    The exploration of asteroids attracts much attention due to its potential in both scientific research and engineering application. However, the observation of an asteroid is a difficult task as the gravitational attraction of the asteroid is limited and complex. This paper proposes a concept of keeping probes in hovering above the asteroid by space tethers. The dynamics of a tethered probe attached to the surface of an asteroid is analyzed and the equations of motion are derived using Lagrange's equation. Then the equilibrium points of the dynamic system are calculated. The equilibrium tether libration angles are determined by the tether length and tether attaching location, while subjected to the constraint of positive tether tension. Afterwards, the stability of the equilibrium points are studied based on Lyapunov's theory. The variation of the equilibrium points with respect to the tether attaching location is numerically analyzed in the scenarios of different tether lengths. A parametric study of the stability of the equilibrium points is also provided. Finally, the dynamic behavior of a tethered probe perturbed from the equilibrium states is simulated to verify the proposed tether assisted technology for the observation of the asteroid.

  19. System noise analysis of the dumbbell tethered satellite for gravity-gradient measurements

    NASA Technical Reports Server (NTRS)

    Colombo, G.

    1979-01-01

    An analysis of the dumbbell gravity gradiometer concept for measuring short wavelength variations in the earth's gravity gradient is presented. Variations in the gradient are recorded by measuring tension variations in a vertically stabilized satellite consisting of heavy masses connected by a long wire or rod. Tension noise arises from the excitation of various mechanical oscillations of the system. The principal noise sources that were identified are fluctuations in atmospheric drag heating and drag force resulting from density variations and winds. Approximate analytical expressions are presented for the tension noise as a function of the system design parameters for various possible configurations. Computer simulations using numerical integration were performed to study the tension noise for several sample cases. Three designs consistent with Shuttle launch capabilities are discussed.

  20. Phase 3 study of selected tether applications in space, mid-term review

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics addressed include: guidelines for the Space Transportation System (STS) payload deployer design; mini-orbital maneuvering vehicle (MOMV) design: shuttle tether deployer systems (STEDS); cost modeling; tethered platform analysis; fuel savings analysis; and STEDS control simulation.

  1. Tethered to work: A family systems approach linking mobile device use to turnover intentions.

    PubMed

    Ferguson, Merideth; Carlson, Dawn; Boswell, Wendy; Whitten, Dwayne; Butts, Marcus M; Kacmar, K Michele Micki

    2016-04-01

    We examined the use of a mobile device for work during family time (mWork) to determine the role that it plays in employee turnover intentions. Using a sample of 344 job incumbents and their spouses, we propose a family systems model of turnover and examine 2 paths through which we expect mWork to relate to turnover intentions: the job incumbent and the spouse. From the job incumbent, we found that the job incumbent's mWork associated with greater work-to-family conflict and burnout, and lower organizational commitment. From the spouse, we found that incumbent mWork and greater work-to-family conflict associated with increased resentment by the spouse and lower spousal commitment to the job incumbent's organization. Both of these paths played a role in predicting job incumbent turnover intentions. We discuss implications and opportunities for future research on mWork for integrating work and family into employee turnover intentions.

  2. Connection system. [insuring against loss of a tool component without using multiple tethers

    NASA Technical Reports Server (NTRS)

    Mccandless, B., II (Inventor)

    1984-01-01

    A mechanical connection system comprises a first body defining a receptable and a second body defining a pin matingly receivable in the receptacle by relative movement in a first directional mode. A primary latch is engagable between the two bodies to retain the pin in the receptacle. The primary latch is reciprocable in a second directional mode transverse to the first directional mode. A lock member carried by one of the bodies is operatively associated with the primary latch and movable, transverse to the second directional mode, between a locking position maintaining engagement of the primary latch and a releasing position permitting release of the primary latch. The lock includes an operator portion engagable to move the lock member from its locking position to its releasing position. The operator is located internally of the first body. An actuator is selectivity insertable into and disengagable from the first body. The actuator is movable relative to the first body when it is inserted for engagement with and operation of the operator.

  3. GRASP: A Multitasking Tether.

    PubMed

    Rabouille, Catherine; Linstedt, Adam D

    2016-01-01

    Originally identified as Golgi stacking factors in vitro, the Golgi reassembly stacking protein (GRASP) family has been shown to act as membrane tethers with multiple cellular roles. As an update to previous comprehensive reviews of the GRASP family (Giuliani et al., 2011; Vinke et al., 2011; Jarvela and Linstedt, 2012), we outline here the latest findings concerning their diverse roles. New insights into the mechanics of GRASP-mediated tethering come from recent crystal structures. The models of how GRASP65 and GRASP55 tether membranes relate directly to their role in Golgi ribbon formation in mammalian cells and the unlinking of the ribbon at the onset of mitosis. However, it is also clear that GRASPs act outside the Golgi with roles at the ER and ER exit sites (ERES). Furthermore, the proteins of this family display other roles upon cellular stress, especially in mediating unconventional secretion of both transmembrane proteins (Golgi bypass) and cytoplasmic proteins (through secretory autophagosomes).

  4. GRASP: A Multitasking Tether.

    PubMed

    Rabouille, Catherine; Linstedt, Adam D

    2016-01-01

    Originally identified as Golgi stacking factors in vitro, the Golgi reassembly stacking protein (GRASP) family has been shown to act as membrane tethers with multiple cellular roles. As an update to previous comprehensive reviews of the GRASP family (Giuliani et al., 2011; Vinke et al., 2011; Jarvela and Linstedt, 2012), we outline here the latest findings concerning their diverse roles. New insights into the mechanics of GRASP-mediated tethering come from recent crystal structures. The models of how GRASP65 and GRASP55 tether membranes relate directly to their role in Golgi ribbon formation in mammalian cells and the unlinking of the ribbon at the onset of mitosis. However, it is also clear that GRASPs act outside the Golgi with roles at the ER and ER exit sites (ERES). Furthermore, the proteins of this family display other roles upon cellular stress, especially in mediating unconventional secretion of both transmembrane proteins (Golgi bypass) and cytoplasmic proteins (through secretory autophagosomes). PMID:26858948

  5. GRASP: A Multitasking Tether

    PubMed Central

    Rabouille, Catherine; Linstedt, Adam D.

    2016-01-01

    Originally identified as Golgi stacking factors in vitro, the Golgi reassembly stacking protein (GRASP) family has been shown to act as membrane tethers with multiple cellular roles. As an update to previous comprehensive reviews of the GRASP family (Giuliani et al., 2011; Vinke et al., 2011; Jarvela and Linstedt, 2012), we outline here the latest findings concerning their diverse roles. New insights into the mechanics of GRASP-mediated tethering come from recent crystal structures. The models of how GRASP65 and GRASP55 tether membranes relate directly to their role in Golgi ribbon formation in mammalian cells and the unlinking of the ribbon at the onset of mitosis. However, it is also clear that GRASPs act outside the Golgi with roles at the ER and ER exit sites (ERES). Furthermore, the proteins of this family display other roles upon cellular stress, especially in mediating unconventional secretion of both transmembrane proteins (Golgi bypass) and cytoplasmic proteins (through secretory autophagosomes). PMID:26858948

  6. Benefits of tether momentum transfer to Space Station operations

    NASA Technical Reports Server (NTRS)

    Woodis, W. R.; Vanpelt, J. M.

    1986-01-01

    A full solar cycle (1994-2004) is analyzed to study tether and nontether Space Station operations. The Space Station yearly altitude variation for the two approaches are investigated; it is observed that the optimum tether approach provides greater benefits that the nontether approach due to the cargon weight gain associated with the preferred low altitudes of the optimum variable altitude tether approach. The advantages provided by the combining a variable altitude/OTV launch approach are discussed. The baseline and tethered Shuttle deployments are compared and the design and capabilities of the deployer system are examined.

  7. Tether Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The proceedings of the conference are presented. The objective was to provide a forum for the discussion of the structure and status of existing computer programs which are used to simulate the dynamics of a variety of tether applications in space. A major topic was different simulation models and the process of validating them. Guidance on future work in these areas was obtained from a panel discussion; the panel was composed of resource and technical managers and dynamic analysts in the tether field. The conclusions of this panel are also presented.

  8. SEDS Tether M/OD Damage Analyses

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.; Hill, S. A.

    1997-01-01

    The Small Expendable Deployer System (SEDS) was designed to deploy an endmass at the end of a 20-km-long tether which acts as an upper stage rocket, and the threats from the meteoroid and orbital debris (M/OD) particle environments on SEDS components are important issues for the safety and success of any SEDS mission. However, the possibility of severing the tether due to M/OD particle impacts is an even more serious concern, since the SEDS tether has a relatively large exposed area to the M/OD environments although its diameter is quite small. The threats from the M/OD environments became a very important issue for the third SEDS mission, since the project office proposed using the shuttle orbiter as a launch platform instead of the second stage of a Delta II expendable rocket, which was used for the first two SEDS missions. A series of hyper-velocity impact tests were performed at the Johnson Space Center and Arnold Engineering Development Center to help determine the critical particle sizes required to sever the tether. The computer hydrodynamic code or hydrocode called CTH, developed by the Sandia National Laboratories, was also used to simulate the damage on the SEDS tether caused by both the orbital debris and test particle impacts. The CTH hydrocode simulation results provided the much needed information to help determine the critical particle sizes required to sever the tether. The M/OD particle sizes required to sever the tether were estimated to be less than 0.1 cm in diameter from these studies, and these size particles are more abundant in low-Earth orbit than larger size particles. Finally, the authors performed the M/OD damage analyses for the three SEDS missions; i.e., SEDS-1, -2, and -3 missions, by using the information obtained from the hypervelocity impact test and hydrocode simulations results.

  9. System engineering study of electrodynamic tether as a spaceborne generator and radiator of electromagnetic waves in the ULF/ELF frequency band

    NASA Technical Reports Server (NTRS)

    Estes, Robert D.

    1987-01-01

    An electrodynamic tether deployed from a satellite in low-Earth orbit can perform, if properly instrumented, as a partially self-powered generator of electromagnetic waves in the ULF/ELF band, potentially at power levels high enough to be of practical use. Two basic problems are examined. The first is that of the level of wave power that the system can be expected to generate in the ULF/ELF radiation band. The second major question is whether an electrodynamic tethered satellite system for transmitting waves can be made partially self-powering so that power requirements for drag compensation can be met within economical constraints of mass, cost, and complexity. The theoretical developments and the system applications study are presented. The basic design criteria, the drag-compensation method, the effects on the propagation paths from orbit to Earth surface of high-altitude nuclear debris patches, and the estimate of masses and sizes are covered. An outline of recommended analytical work, to be performed as a follow-on to the present study, is contained.

  10. The PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  11. Tension waves in tethered satellite cables

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1984-01-01

    A one-degree-of-freedom simulation of the Tethered Satellite System (TSS) was programmed using a distributed system model of the tether based on the one-dimensional wave equation. This model represents the time varying tension profile along the tether as the sum of two traveling waves of tension moving in opposite directions. A control loop was devised which combines a deployment rate command with the measured tension at the deployer to produce a smooth, stable rate of deployment of the subsatellite. Simulation results show a buildup of periodic bursts of high frequency oscillation in tension. This report covers the mathematical modelling and simulation results and explains the reason for the observed oscillations. The design of a possible vibration damping device is discussed.

  12. Coordinated coupling control of tethered space robot using releasing characteristics of space tether

    NASA Astrophysics Data System (ADS)

    Huang, Panfeng; Zhang, Fan; Xu, Xiudong; Meng, Zhongjie; Liu, Zhengxiong; Hu, Yongxin

    2016-04-01

    Tethered space robot (TSR) is a new concept of space robot, which is released from the platform satellite, and retrieved via connected tether after space debris capture. In this paper, we propose a new coordinate control scheme for optimal trajectory and attitude tracking, and use releasing motor torque to instead the tension force, since it is difficult to track in practical. Firstly, the 6-DOF dynamics model of TSR is derived, in which the dynamics of tether releasing system is taken into account. Then, we propose and design the coordinated coupled controller, which is composed of a 6-DOF sliding mode controller and a PD controller tether's releasing. Thrust is treated as control input of the 6-DOF sliding mode controller to control the in-plane and out-of-plane angle of the tether and attitude angles of the TSR. The torque of releasing motor is used as input of PD controller, which controls the length rate of space tether. After the verification of the control scheme, finally, the simulation experiment is presented in order to validate the effectiveness of this control method. The results show that TSR can track the optimal approaching trajectory accurately. Simultaneously, the attitude angles can be changed to the desired attitude angles in control period, and the terminal accuracy is ±0.3°.

  13. Electrodynamic tethers for energy conversion

    NASA Technical Reports Server (NTRS)

    Nobles, W.

    1986-01-01

    Conductive tethers have been proposed as a new method for converting orbital mechanical energy into electrical power for use on-board a satellite (generator mode) or conversely (motor mode) as a method of providing electric propulsion using electrical energy from the satellite. The operating characteristics of such systems are functionally dependent on orbit altitude and inclination. Effects of these relationships are examined to determine acceptable regions of application. To identify system design considerations, a specific set of system performance goals and requirements are selected. The case selected is for a 25 kW auxiliary power system for use on Space Station. Appropriate system design considerations are developed, and the resulting system is described.

  14. Input shaped large thrust maneuver with a tethered debris object

    NASA Astrophysics Data System (ADS)

    Jasper, Lee; Schaub, Hanspeter

    2014-03-01

    In order to reduce the debris population in LEO, remediation is necessary. An active debris removal method is explored that utilizes fuel reserves on a recently launched upper stage to rendezvous with, and tether to, debris. The system's tethered dynamics are explored using a discretized tether model attached to six degree of freedom end bodies. The thrust output is shaped to remove the spectral energy at the natural frequencies of the tether, significantly reducing the post-burn relative motion between the vehicles. The sensitivity of the input shaping performance due to imperfect knowledge of the debris mass demonstrates that a double notch spanning multiple frequencies around the first mode is necessary to be robust to unknown debris mass. On-orbit simulations show that input shaping helps the tethered system achieve smooth oscillations about a gravity gradient alignment, reducing collision likelihood.

  15. Input Shaped Large Thrust Maneuver with a Tethered Debris Object

    NASA Astrophysics Data System (ADS)

    Jasper, L.; Schaub, H.

    2013-08-01

    In order to reduce the debris population in LEO, remediation is necessary. An active debris removal method is explored that utilizes fuel reserves on a recently launched upper stage to rendezvous with, and tether to, debris. The system's tethered dynamics are explored using a discretized tether model attached to six degree of freedom end bodies. The thrust output is shaped to remove the spectral energy at the natural frequencies of the tether, significantly reducing the post-burn relative motion between the vehicles. The sensitivity of the input shaping performance due to imperfect knowledge of the debris mass demonstrates that a double notch spanning multiple frequencies around the first mode is necessary to be robust to unknown debris mass. On-orbit simulations show that input shaping helps the tethered system achieve smooth oscillations about a gravity gradient alignment, reducing collision likelihood.

  16. Spatial orbital tether constructions

    NASA Astrophysics Data System (ADS)

    Kogan, A. Yu.

    2016-09-01

    This paper is concerned with the problem of shape-retaining spatial tether configurations in a circular Keplerian orbit. Sufficient conditions of shape retention are described, which are imposed on the geometry of the structure, distribution of mass in the nodes, and parameters of rotation. The paper also mentions classes of structures with different properties of symmetry and motion, as well as specific examples of shaperetaining structures.

  17. The Tethered Moon

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Lupu, Roxana Elena; Dubrovolskis, A. R.

    2014-01-01

    that the Moon's orbit evolves is limited by the modest radiative cooling rate of Earth's atmosphere, which in effect tethers the Moon to the Earth. Consequently the Moon's orbit evolves orders of magnitude more slowly than in conventional models. Slow orbital evolution promotes capture by orbital resonances that may have been important in the Earth-Moon system

  18. Are all multisubunit tethering complexes bona fide tethers?

    PubMed

    Brunet, Stephanie; Sacher, Michael

    2014-11-01

    Since the late 1990s, a number of multisubunit tethering complexes (MTCs) have been described that function in membrane trafficking events: TRAPP I, TRAPP II, TRAPP III, COG, HOPS, CORVET, Dsl1, GARP and exocyst. On the basis of structural and sequence similarities, they have been categorized as complexes associated with tethering containing helical rods (CATCHR) (Dsl1, COG, GARP and exocyst) or non-CATCHR (TRAPP I, II and III, HOPS and CORVET) complexes (Yu IM, Hughson FM. Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 2010;26:137-156). Both acronyms (CATCHR and MTC) imply these complexes tether opposing membranes to facilitate fusion. The main question we will address is: have these complexes been formally demonstrated to function as tethers? If the answer is no, then is it premature or even correct to refer to them as tethers? In this commentary, we will argue that the vast majority of MTCs have not been demonstrated to act as a tether. We propose that a distinction between the terms tether and tethering factor be considered to address this issue. PMID:25048641

  19. Investigation of electrodynamic stabilization and control of long orbiting tethers

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Arnold, D.

    1984-01-01

    The state-of-the-art in tether modelling among participants in the Tethered Satellite System (TSS) Program, the slack tether and its behavior, and certain advanced applications of the tether to problems in orbital mechanics are identified. The features and applications of the TSS software set are reviewed. Modelling the slack tether analytically with as many as 50 mass points and the application of this new model to a study of the behavior of a broken tether near the Shuttle are described. A reel control algorithm developed by SAO and examples of its use are described, including an example which also demonstrates the use of the tether in transferring a heavy payload from a low-orbiting Shuttle to a high circular orbit. Capture of a low-orbiting payload by a Space Station in high circular orbit is described. Energy transfer within a dumbbell-type spacecraft by cyclical reeling operations or gravitational effects on the natural elasticity of the connecting tether, it is shown, can circularize the orbit of the spacecraft.

  20. Modeling and Simulation of a Tethered Harpoon for Comet Sampling

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.

    2014-01-01

    This paper describes the development of a dynamic model and simulation results of a tethered harpoon for comet sampling. This model and simulation was done in order to carry out an initial sensitivity analysis for key design parameters of the tethered system. The harpoon would contain a canister which would collect a sample of soil from a cometary surface. Both a spring ejected canister and a tethered canister are considered. To arrive in close proximity of the spacecraft at the end of its trajectory so it could be captured, the free-flying canister would need to be ejected at the right time and with the proper impulse, while the tethered canister must be recovered by properly retrieving the tether at a rate that would avoid an excessive amplitude of oscillatory behavior during the retrieval. The paper describes the model of the tether dynamics and harpoon penetration physics. The simulations indicate that, without the tether, the canister would still reach the spacecraft for collection, that the tether retrieval of the canister would be achievable with reasonable fuel consumption, and that the canister amplitude upon retrieval would be insensitive to variations in vertical velocity dispersion.

  1. Guidebook for analysis of tether applications

    NASA Technical Reports Server (NTRS)

    Carroll, J. A.

    1985-01-01

    This guidebook is intended as a tool to facilitate initial analyses of proposed tether applications in space. Topics disscussed include: orbit and orbit transfer equations; orbital perturbations; aerodynamic drag; thermal balance; micrometeoroids; gravity gradient effects; tether control strategies; momentum transfer; orbit transfer by tethered release/rendezvous; impact hazards for tethers; electrodynamic tether principles; and electrodynamic libration control issues.

  2. The Tethered Moon

    NASA Astrophysics Data System (ADS)

    Zahnle, Kevin; Lupu, R.; Fegley, B.; Marley, M.; Sleep, N.; Dobrovolskis, A.

    2013-10-01

    Cosmic collisions between terrestrial planets resemble somewhat the life cycle of the phoenix: worlds collide, are consumed in flame, and after the debris has cleared, shiny new worlds emerge aglow with possibilities. And glow they do, for they are molten. How brightly they glow, and for how long, is determined by their atmospheres, and by their moons. stop. It is well known that the atmosphere's thermal blanketing effect prevents a magma ocean from cooling rapidly. Several models have considered thick H2O-CO2 atmospheres over cooling magma oceans. These models address how the magma ocean freezes, how long it takes to freeze, and how, when, and what is degassed. stop. The atmosphere over a magmasphere is very hot and so contains the geochemical volatiles that can evaporate from a magma ocean, such as sulfur, alkalis and halogens, in addition to H2O and CO2. We compute 1-D non-gray radiative-convective atmospheric structure models that include all the molecular and atomic opacity sources that would be present in equilibrium over a magma ocean. We use these to compute cooling rates for hot post-giant-impact terrestrial planets. Our model is in excellent asymptotic agreement with two recent independent calculations of the runaway greenhouse limit for H2O-CO2 atmosphere. For cooling of the magma ocean itself, we use parameterizations recommended by Solomatov. stop. Tidal heating of the Earth by the Moon is important, because it is a big term, and because it occurs mostly in mantle materials that are just beginning to freeze, which frustrates freezing. The Moon is entwined with Earth by a negative feedback between thermal blanketing and tidal heating that comes from the temperature-dependent viscosity of the magma ocean. Because of this feedback, the rate that the Moon's orbit evolves is limited by the modest radiative cooling rate of Earth's atmosphere, which in effect tethers the Moon to the Earth. Consequently the Moon's orbit evolves orders of magnitude more slowly

  3. Electrodynamic Tethers for Novel LEO Missions

    NASA Technical Reports Server (NTRS)

    Kantner, Michael; Hoyt, Robert; Scardera, Michael; Johnson, Charles

    2011-01-01

    The exponential increase of launch system size - and cost - with deltaV makes missions requiring large total impulse cost prohibitive. Northrop Grumman and partners have matured a fundamentally different method for generating propulsion using electrodynamic tethers (EDTs) that escapes the limitations of the rocket equation. With essentially unlimited delta V, we can perform new classes of missions that are currently unaffordable or unfeasible.

  4. Enhanced Tethered-Particle Motion Analysis Reveals Viscous Effects

    PubMed Central

    Kumar, Sandip; Manzo, Carlo; Zurla, Chiara; Ucuncuoglu, Suleyman; Finzi, Laura; Dunlap, David

    2014-01-01

    Tethered-particle motion experiments do not require expensive or technically complex hardware, and increasing numbers of researchers are adopting this methodology to investigate the topological effects of agents that act on the tethering polymer or the characteristics of the polymer itself. These investigations depend on accurate measurement and interpretation of changes in the effective length of the tethering polymer (often DNA). However, the bead size, tether length, and buffer affect the confined diffusion of the bead in this experimental system. To evaluate the effects of these factors, improved measurements to calibrate the two-dimensional range of motion (excursion) versus DNA length were carried out. Microspheres of 160 or 240 nm in radius were tethered by DNA molecules ranging from 225 to 3477 basepairs in length in aqueous buffers containing 100 mM potassium glutamate and 8 mM MgCl2 or 10 mM Tris-HCl and 200 mM KCl, with or without 0.5% Tween added to the buffer, and the motion was recorded. Different buffers altered the excursion of beads on identical DNA tethers. Buffer with only 10 mM NaCl and >5 mM magnesium greatly reduced excursion. Glycerol added to increase viscosity slowed confined diffusion of the tethered beads but did not change excursion. The confined-diffusion coefficients for all tethered beads were smaller than those expected for freely diffusing beads and decreased for shorter tethers. Tethered-particle motion is a sensitive framework for diffusion experiments in which small beads on long leashes most closely resemble freely diffusing, untethered beads. PMID:24461015

  5. Manipulating assembly of nanoparticles by polymer tethers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenli; Horsch, Mark; Iacovella, Christopher; Glotzer, Sharon

    2006-03-01

    A major challenge in nanoscience and nanotechnology is the ability to control and guide the self-assembly of nano building blocks into target structures in a predictable way. In this talk, we use molecular simulation to show how polymer tethers can be used to manipulate the assembly of nanoparticles into various one-dimensional, two-dimensional, and three-dimensional structures. We present results on the self-assembly of polymer-tethered nanospheres, nanorods, and more exotic shapes, and present temperature versus concentration phase diagrams for the nanosphere and nanorod systems. For polymer-tethered nanorods we predict tetragonally perforated lamellar and honeycomb phases, which have been observed experimentally but have not been predicted by any previous theory. We also predict a new phase---a racemic mixture of hexagonally ordered chiral cylinders that self-assemble from these achiral building blocks. For the system of polymer-tethered nanospheres we predict that in contrast to flexible amphiphiles, the nanospheres are locally ordered and there is an increase in the local ordering with an increase in concentration or relative nanoparticle diameter. [1] Zhang, Mark A. Horsch, Monica H. Lamm, and Sharon C. Glotzer, Nano Lett., 3(10), 1341-1346, 2003. [2] Mark A. Horsch, Zhenli Zhang and Sharon C. Glotzer, Phys. Rev. Lett., 95(5), 056106, 2005. [3] Christopher R. Iacovella, Mark A. Horsch, Zhenli Zhang and Sharon C. Glotzer, Langmuir, 21(21), 9488, 2005.

  6. Impact of tether cutting on onboard navigation during the Tethered Satellite Mission-1

    NASA Astrophysics Data System (ADS)

    Pirker, Dana M.

    1989-10-01

    The first Tethered Satellite System mission (TSS-1) is manifested for Shuttle Flight STS-44 in January of 1991. The TSS mission presents a new challenge to engineers, requiring advanced guidance, navigation and control concepts. Current NASA flight rules require that the navigational state of the Orbiter at deorbit burn be known to an accuracy of 20 nautical miles. Response of the Shuttle crew to this contingency may involve cutting the tether prior to a complete retrieval. The degradation of the navigational state accuracy as modelled by Shuttle navigation system is examined. Responses to the loss of communication scenario are proposed for two cases. The first case examines navigational performance during a nominal attitude profile. The second case is identical to the first, with the inclusion of modelled tether electrodynamical forces. Comparisons of trajectories propagated from the onboard navigational state vector and a reference ephemeris state vector were performed, with the tether cut simulated at various points during the mission. Additionally, updates to the onboard navigational state via ground uplinks were provided prior to the assumed loss of communication. Through these comparisons, the onboard navigation state error was determined. Alternative responses result from efforts to minimize this error during the various phases of TSS-1 deployment. These results demonstrated existing NASA flight rules could be violated by cutting the tether, and suggests reponses to a loss of communications contingency to maintain a more accurate navigational state.

  7. Changes in Polymeric Tether Properties Due to Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Vaughn, Jason A.; Watts, Edward W.

    2003-01-01

    The Propulsive Small Expendable Deployer System (ProSEDS) mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster. A 5-km conductive tether is attached to the Delta II second stage and collects current fiom the low Earth orbit (LEO) plasma to facilitate de-orbit of the spent stage. The conductive tether is attached to a 10-km non-conductive tether, which is then attached to an endmass containing several scientific instruments. Atomic oxygen (AO) erodes most organic materials. As the orbit of the Delta II second stage decas, the AO flux (atoms/sq cm sec) increases. A nominal AO fluence of 1 x l0(exp 21) atoms/sq cm was agreed upon by the investigators as an adequate level for evaluating the performance of the tether materials. A test series was performed to determine the effect of atomic oxygen (AO) on the mechanical integrity and possible strength loss of ProSEDS tether materials. The tether materials in this study were Dyneema, an ultra-high molecular weight polyethylene material used as the non-conducting portion of the ProSEDS tether, and the Kevlar core strength fiber used in the conductive tether. Samples of Dyneema and Kevlar were exposed to various levels of atomic oxygen up to 1.07 x 10(exp 21) atoms/sq cm in the Marshall Space Flight Center Atomic Oxygen Beam Facility (AOBF). Changes in mass were noted after AO exposure. The tethers were then tensile-tested until failure. AO affected both the Dyneema and Kevlar tether material strength. Dyneema exposed to 1.07 x 10(exp 21) atoms/sq cm of atomic oxygen failed due to normal handling when removed fiom the AOBF and was not tensile-tested. Another test series was performed to determine the effect of AO on the electrical properties of the ProSEDS conductive tether. The conductive tether consists of seven individually coated strands of 28 AWG 1350

  8. Several Developments in Space Tethers

    NASA Technical Reports Server (NTRS)

    Santangelo, Andrew; Sturmfels, Rich; Rothwell, Neal

    2007-01-01

    Five reports address different aspects of development of tethers to be deployed from spacecraft in orbit around the Earth. The first report discusses proposed optoelectronic tracking of retroreflective objects located at intervals or of retroreflective coats along the entire length of a tether to measure lateral motions. The second report describes digitally controlled spooling machinery that retracts or extends a tape tether at controlled speed and tension in the spool isolated from uncontrolled tension on the outside. The third report discusses part of this machinery that pivots to accommodate misalignments between the deployed and spooled portions of the tether and contains rollers used to exert tension and speed control. The fourth report discusses aspects of designs of proposed electrodynamic tethers, which would be electrically conductive and would interact with the magnetic field of the Earth to exert forces to modify orbits of deploying spacecraft. The fifth report discusses electrical aspects of designs of electrodynamic tape tethers, including the use of solar cells or motional electromagnetic force to generate currents in tethers and the use of electron emitters and electron and ion collectors at opposite ends of tethers to make electrical contact with the thin plasma in surrounding space.

  9. Tethered float liquid level sensor

    DOEpatents

    Daily, III, William Dean

    2016-09-06

    An apparatus for sensing the level of a liquid includes a float, a tether attached to the float, a pulley attached to the tether, a rotation sensor connected to the pulley that senses vertical movement of said float and senses the level of the liquid.

  10. Elastic-Tether Suits for Artificial Gravity and Exercise

    NASA Technical Reports Server (NTRS)

    Torrance, Paul; Biesinger, Paul; Rybicki, Daniel D.

    2005-01-01

    Body suits harnessed to systems of elastic tethers have been proposed as means of approximating the effects of normal Earth gravitation on crewmembers of spacecraft in flight to help preserve the crewmembers physical fitness. The suits could also be used on Earth to increase effective gravitational loads for purposes of athletic training. The suit according to the proposal would include numerous small tether-attachment fixtures distributed over its outer surface so as to distribute the artificial gravitational force as nearly evenly as possible over the wearer s body. Elastic tethers would be connected between these fixtures and a single attachment fixture on a main elastic tether that would be anchored to a fixture on or under a floor. This fixture might include multiple pulleys to make the effective length of the main tether great enough that normal motions of the wearer cause no more than acceptably small variations in the total artificial gravitational force. Among the problems in designing the suit would be equalizing the load in the shoulder area and keeping tethers out of the way below the knees to prevent tripping. The solution would likely include running tethers through rings on the sides. Body suits with a weight or water ballast system are also proposed for very slight spinning space-station scenarios, in which cases the proposed body suits will easily be able to provide the equivalency of a 1-G or even greater load.

  11. Theory and Modeling in Support of Tether

    NASA Technical Reports Server (NTRS)

    Chang, C. L.; Bergeron, G.; Drobot, A. D.; Papadopoulos, K.; Riyopoulos, S.; Szuszczewicz, E.

    1999-01-01

    This final report summarizes the work performed by SAIC's Applied Physics Operation on the modeling and support of Tethered Satellite System missions (TSS-1 and TSS-1R). The SAIC team, known to be Theory and Modeling in Support of Tether (TMST) investigation, was one of the original twelve teams selected in July, 1985 for the first TSS mission. The accomplishments described in this report cover the period December 19, 1985 to September 31, 1999 and are the result of a continuous effort aimed at supporting the TSS missions in the following major areas. During the contract period, the SAIC's TMST investigation acted to: Participate in the planning and the execution on both of the TSS missions; Provide scientific understanding on the issues involved in the electrodynamic tether system operation prior to the TSS missions; Predict ionospheric conditions encountered during the re-flight mission (TSS-lR) based on realtime global ionosounde data; Perform post mission analyses to enhance our understanding on the TSS results. Specifically, we have 1) constructed and improved current collection models and enhanced our understanding on the current-voltage data; 2) investigated the effects of neutral gas in the current collection processes; 3) conducted laboratory experiments to study the discharge phenomena during and after tether-break; and 4) perform numerical simulations to understand data collected by plasma instruments SPES onboard the TSS satellite; Design and produce multi-media CD that highlights TSS mission achievements and convey the knowledge of the tether technology to the general public. Along with discussions of this work, a list of publications and presentations derived from the TMST investigation spanning the reporting period is compiled.

  12. Cell Cytoskeleton and Tether Extraction

    PubMed Central

    Pontes, B.; Viana, N.B.; Salgado, L.T.; Farina, M.; Neto, V. Moura; Nussenzveig, H.M.

    2011-01-01

    We perform a detailed investigation of the force × deformation curve in tether extraction from 3T3 cells by optical tweezers. Contrary to conventional wisdom about tethers extracted from cells, we find that actin filaments are present within them, so that a revised theory of tether pulling from cells is called for. We also measure steady and maximum tether force values significantly higher than previously published ones for 3T3 cells. Possible explanations for these differences are investigated. Further experimental support of the theory of force barriers for membrane tube extension is obtained. The potential of studies on tether pulling force × deformation for retrieving information on membrane-cytoskeleton interaction is emphasized. PMID:21723813

  13. TESSX: A Mission for Space Exploration with Tethers

    NASA Technical Reports Server (NTRS)

    Cosmo, Mario L.; Lorenzini, Enrico C.; Gramer, Daniel J.; Hoffman, John H.; Mazzoleni, Andre P.

    2005-01-01

    Tethers offer significant potential for substantially increasing payload mass fraction, increasing spacecraft lifetime, enhancing long-term space travel, and enabling the understanding and development of gravity-dependent technologies required for Moon and Mars exploration. The development of the Tether Electrodynamic Spin-up and Survivability Experiment (TESSX) will support applications relevant to NASA's new exploration initiative, including: artificial gravity generation, formation flying, electrodynamic propulsion, momentum exchange, and multi-amp current collection and emission. Under the broad term TESSX, we are currently evaluating several different tether system configurations and operational modes. The initial results of this work are presented, including hardware development, orbital dynamics simulations, and electrodynamics design and analysis.

  14. Spin augmented deployment and retrieval of tethered artificial gravity spacecraft

    NASA Astrophysics Data System (ADS)

    Stoen, Jeffrey Donald

    The dynamics and control of a tethered centrifuge during constant spin deployment and retrieval of the tether is investigated. First, a simple two segment tether model is used to demonstrate that tangential thrusters on the end bodies can maintain a constant centrifuge spin rate and provide the control action necessary to damp lateral oscillations of the tether. An LQR controller is devised to create a balanced control scheme that provides such coordination between actuators as is required to produce a comfortable environment for occupants of the centrifuge. Next, the stability of motions of the tether end bodies is studied to assess effects of varying the body's mass properties and the position of the tether attachment joint. Finally, an improved, multi-segment model of the tether is employed to deal with limitations due to imperfect monitoring of the state of the system and difficulties in delivering accurate thrust levels. We construct a Kalman filter to furnish both estimates for the unknown states and smoothing of noisy measurements of sensed states.

  15. Selected tether applications in space: An analysis of five selected concepts

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Ground rules and assumptions; operations; orbit considerations/dynamics; tether system design and dynamics; functional requirements; hardware concepts; and safety factors are examined for five scenarios: tethered effected separation of an Earth bound shuttle from the space station; tether effected orbit boost of a spacecraft (AXAF) into its operational orbit from the shuttle; an operational science/technology platform tether deployed from space station; a tether mediated rendezvous involving an OMV tether deployed from space station to rendezvous with an aerobraked OTV returning to geosynchronous orbit from a payload delivery mission; and an electrodynamic tether used in a dual motor/generator mode to serve as the primary energy storage facility for space station.

  16. Orbital Winch for High-Strength, Space-Survivable Tethers

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert; Barnes, Ian; Slostad, Jeffrey; Frank, Scott

    2010-01-01

    An Orbital Winch mechanism enables high-load, multi-line tethers to be deployed and retracted without rotating the spool on which the tether is wound. To minimize damage to the tether and the wound package during retraction or deployment under load, it can incorporate a Tension Management Module that reduces the infeed tension by a factor of 15 through the use of a powered capstan with guide rollers. This design eliminates the need for rotating high-voltage electrical connections in tether systems that use propellantless electro-dynamic propulsion. It can also eliminate the need for rotating optical connections in applications where the tether contains optical fibers. This winch design was developed to deploy a 15-km-long, 15-kg high-strength Hoytether structure incorporating conductive wires as part of the MXER-1 demonstration mission concept. Two slewing rings that orbit around the tether spool, combined with translation of one of the slewing rings back and forth along the spool axis to traverse the wind point, enables the winch to wind the tether. Variations of the traverse motion of the slewing ring can accomplish level winds and conical pirn winds. By removing the non-traversing slewing ring, and adding an actuated guide arm, the winch can manage rapid, low-drag deployment of a tether off the end of a pirn-wound spool, followed by controlled retraction and rewinding, in a manner very similar to a spin-casting reel. The winch requires at least two motor driver controller units to coordinate the action of two stepper motors to accomplish tether deployment or retraction.

  17. Development of Polymer Coatings for the ProSEDS Tether

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Kamenetsky, Rachel R.; Finckenor, Miria; Wright, Ken

    2000-01-01

    The ProSEDS mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta 11 unmanned, expendable booster. A 5 km conductive tether is attached to the deployer baseplate on the Delta 11 second stage and collects current from the low Earth orbit (LEO) plasma to facilitate de-orbit of the Delta II second stage. The conductive tether is attached to a 10-15 km non-conductive tether, which in turn is attached to an endmass. A bare metal tether would have the best conductivity but thermal concerns preclude this design. A conductive polymer developed by Triton Systems has been optimized for optimum conductivity and thermo-optical properties. The current design for the ProSEDS conductive tether is seven individually coated strands of 28 AWG aluminum wire, coated with 12.7 micrometers (0.5 mil) atomic oxygen-resistant conductive polymer composed of a mixture of COR and PANi, wrapped around a braided Kevlar 29 core. Extensive testing has been performed at the Marshall Space Flight Center to qualify this material for flight on ProSEDS. Atomic oxygen exposure has been performed, with solar absorptance and infrared emittance measured before and after exposure. Plasma chamber tests have been completed, as well as tether deployment tests. Also developed for the ProSEDS mission was the insulating polymer TOR-BP. Approximately 200 meters of the conductive tether closest to the Delta II second stage is insulated to prevent any electron reconnection to the tether from the plasma contactor. The insulating material is TOR-BP with a dielectric strength of TBD.

  18. The PROPEL Electrodynamic Tether Mission and Connecting to the Ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian; Bilen, Sven; Hoyt, Rob; Stone,Nobie; Vaughn, Jason; Fuhrhop, Keith; Krause, Linda; Khazanov, George; Johnson, Les

    2012-01-01

    The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA's Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: "Propulsion using Electrodynamics". The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques.

  19. Tethered catalysts for the hydration of carbon dioxide

    SciTech Connect

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  20. Introduction of luminescent rhenium(I), ruthenium(II), iridium(III) and rhodium(III) systems into rhodamine-tethered ligands for the construction of bichromophoric chemosensors.

    PubMed

    Wang, Chunyan; Lam, Ho-Chuen; Zhu, Nianyong; Wong, Keith Man-Chung

    2015-09-14

    Several classes of luminescent transition metal complexes, including rhenium(I) tricarbonyl diimine, ruthenium(II) diimine, cyclometallated iridium(III) and rhodium(III) diimine, as well as ruthenium(II) and iridium(III) terpyridine systems, tethered with rhodamine moieties, have been synthesized and characterized. The X-ray crystal structure of one cyclometallated rhodium(III) diimine (11) with a rhodamine pendant was determined. Most of the complexes were found to exhibit emission in fluid solution at room temperature. Depending on the nature of the transition metal system, the emission origin was mainly assigned to be derived from the triplet excited state of the metal-to-ligand charge transfer ((3)MLCT) or the intraligand ((3)IL) transition. The cation-binding properties of these complexes toward various cations were investigated by electronic absorption and emission spectroscopy. Some of them were found to exhibit new low-energy absorption and emission bands, attributed to the ring opening of the rhodamine moiety, with high selectivity and/or high sensitivity for various cations, in agreement with sensing and spectroscopic behaviours of the rhodamine derivative. Depending on the nature of the transition metal centres, the chelating ligands as well as the linker to the rhodamine derivative, different sensing properties in terms of selectivity, sensitivity and binding stability, could be obtained.

  1. Elastic issues and vibration reduction in a tethered deorbiting mission

    NASA Astrophysics Data System (ADS)

    Sabatini, Marco; Gasbarri, Paolo; Palmerini, Giovanni B.

    2016-05-01

    Recently proposed mission concepts involving harpoons or nets to capture and de-orbit debris represent an interesting application of the tethered systems, where the orbiting bodies are connected by a flexible link. These systems present a complex behavior, as flexible characteristics combine with orbital dynamics. The focus of the paper is on the dynamic behavior of the tethered system in the final phase of the de-orbiting mission, when a powerful apogee motor is used to change the debris orbit. The thrust action introduces significant issues, as elastic waves propagate along the tether, and the relevant oscillations couple with the orbital dynamics. Input shaping techniques are proposed to limit or cancel these oscillations. However, the performance of these techniques drops when non-ideal scenarios are considered. In particular, an initially slack tether is a serious issue that must be solved if acceptably low oscillations of the tether are to be obtained. Three strategies are proposed and discussed in this paper to remove the slack condition: a natural drift of the chaser by means of a single impulse, a controlled maneuver for precisely adjusting the relative distance between chaser spacecraft and debris, and a retrieval mechanism for changing the tether length.

  2. Emerging Insights into the Roles of Membrane Tethers from Analysis of Whole Organisms: The Tip of an Iceberg?

    PubMed Central

    Toh, Wei Hong; Gleeson, Paul A.

    2016-01-01

    Membrane tethers have been identified throughout different compartments of the endomembrane system. It is now well established that a number of membrane tethers mediate docking of membrane carriers in anterograde and retrograde transport and in regulating the organization of membrane compartments. Much of our information on membrane tethers have been obtained from the analysis of individual membrane tethers in cultured cells. In the future it will be important to better appreciate the network of interactions mediated by tethers and the potential co-ordination of their collective functions in vivo. There are now a number of studies which have analyzed membrane tethers in tissues and organisms which are providing new insights into the role of this class of membrane protein at the physiological level. Here we review recent advances in the understanding of the function of membrane tethers from knock outs (or knock downs) in whole organisms and from mutations in tethers associated with disease. PMID:26973835

  3. High voltage characteristics of the electrodynamic tether and the generation of power and propulsion

    NASA Technical Reports Server (NTRS)

    Williamson, P. R.

    1986-01-01

    The Tethered Satellite System (TSS) will deploy and retrieve a satellite from the Space Shuttle orbiter with a tether of up to 100 km in length attached between the satellite and the orbiter. The characteristics of the TSS which are related to high voltages, electrical currents, energy storage, power, and the generation of plasma waves are described. A number of specific features of the tether system of importance in assessing the operational characteristics of the electrodynamic TSS are identified.

  4. Brownian motion of tethered nanowires.

    PubMed

    Ota, Sadao; Li, Tongcang; Li, Yimin; Ye, Ziliang; Labno, Anna; Yin, Xiaobo; Alam, Mohammad-Reza; Zhang, Xiang

    2014-05-01

    Brownian motion of slender particles near a boundary is ubiquitous in biological systems and in nanomaterial assembly, but the complex hydrodynamic interaction in those systems is still poorly understood. Here, we report experimental and computational studies of the Brownian motion of silicon nanowires tethered on a substrate. An optical interference method enabled direct observation of microscopic rotations of the slender bodies in three dimensions with high angular and temporal resolutions. This quantitative observation revealed anisotropic and angle-dependent hydrodynamic wall effects: rotational diffusivity in inclined and azimuth directions follows different power laws as a function of the length, ∼ L(-2.5) and ∼ L(-3), respectively, and is more hindered for smaller inclined angles. In parallel, we developed an implicit simulation technique that takes the complex wire-wall hydrodynamic interactions into account efficiently, the result of which agreed well with the experimentally observed angle-dependent diffusion. The demonstrated techniques provide a platform for studying the microrheology of soft condensed matters, such as colloidal and biological systems near interfaces, and exploring the optimal self-assembly conditions of nanostructures. PMID:25353883

  5. Tethered nuclear power for the Space Station

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1985-01-01

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  6. In-Space Transportation with Tethers

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.

    1999-01-01

    Any analysis of electrodynamic tethers for Space Station applications will soon arrive at the conclusion that currents on the order of 10 A are required. For power generation, we have to foresee needs of several kilowatts even for an emergency backup system. For reboost, we need thrust forces on the order of a Newton, due to the large aerodynamic drag of the Station. In addition, we are restricted by the need to keep perturbations to the Station environment to a minimum. Very long tethers are ruled out by this condition, as they would move the system's center of gravity too much and pose additional operational problems when the Station is docking with other spacecraft. It is easy to show that "standard" tether systems, such as TSS-1, which rely on a large spherical surface to collect electron current from the ionosphere, are unsuitable for ISS applications. A study conducted by MSFC into the possible use of the TSS - 1/R system on the Space Station came to the conclusion that it did not make sense. A quick calculation, using the 10 A benchmark, shows why. TSS-LR collected I A, while the satellite was biased to 1.5 kV. This was twice what had been predicted. Even so, the current collected by the satellite was observed to increase only as the square root of the bias voltage. Thus, to achieve 10 A with the TSS-1 system under the same (daytime) conditions would require a bias voltage of 150 kV, or a tether length of over 850 km! Going to a larger surface would help some, but there is a strong law of diminishing returns for that route. Even if very large spheres were to be allowed (say of 8 m radius), which might achieve useful power levels during optimal conditions of daytime plasma densities with a tether 10 km long, they would suffer from the other Achilles heel of passive spherical collectors: a strong drop in the current (and power goes as the square of the current), as the low plasma densities are encountered during the third of the orbit which is in the Earth

  7. Electrodynamic Tethers for Reboost of the International Space Station

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Herrmann, Melody; Vas, Irwin; Estes, Bob

    1999-01-01

    The International Space Station (ISS) will require periodic reboost due to atmospheric aerodynamic drag. This is nominally achieved through the use of thruster firings by the attached Progress M spacecraft. Many Progress flights to the ISS are required annually. Electrodynamic tethers provide an attractive alternative in that they can provide periodic reboost or continuous drag cancellation using no consumables, propellant nor conventional propulsion elements. The system could also serve as an emergency backup reboost system used only in the event resupply and reboost are delayed for some reason. The system also has direct application to spacecraft and upper stage propulsion. Electrodynamic tethers have been demonstrated in space previously with the Plasma Motor Generator (PMG) experiment and the Tethered Satellite System (TSS-IR). The advanced electrodynamic tether proposed for ISS reboost has significant advantages over previous systems in that hi-her thrust is achievable with significantly shorter tethers and without the need for an active current collection device, hence making the system simpler and much less expensive.

  8. Applications of Tethers in Space: Workshop Proceedings, Volume 2

    NASA Technical Reports Server (NTRS)

    Baracat, W. A. (Compiler)

    1986-01-01

    Topics addressed include: tethered orbital transfer vehicle operations, Centaur and Shuttle tether technology; tethered constellations, gravitational effects; Shuttle continuous open wind tunnel; optimal control laws, electrodynamic tether technology; and space station facilities.

  9. Analysis of The Interaction of Space Tethers with Catalogued Space Objects

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph (Technical Monitor); Hoyt, Robert; Buller, Jason

    2005-01-01

    The potential for collisions or close passes with other space objects presents a significant issue for many space tether applications, representing a potential risk both to the integrity of the tether system and t o the safety of other spacecraft. Potential collisions between tethers and other space objects may be possible to avoid if close encounters can be predicted with sufficient precision and advance notice. In order to provide a method for predicting the frequency with which a tether must be maneuvered to avoid collisions, and to provide a resource for accurate close-encounter prediction during tether flight experiments, we have developed a software tool that compares the trajectory of a tether object with that of all of the objects in the NORAD space catalogue. In this paper we describe the models and algorithms used in this tool, and discuss results of test cases conducted to predict the close-encounter frequency of a tether systems ranging from a short nanosatellite-based tether experiment to a hundred-kilometer long MXER tether system.

  10. Orbital transfer and release of tethered payloads. Continuation of investigation of electrodynamic stabilization and control of long orbiting tethers Martinez-Sanchez, Manuel

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Grossi, M. D.; Arnold, D.

    1983-01-01

    The effect of reeling operations on the orbital altitude of the tether system and the development of control laws to minimize tether rebound upon payload release were studied. The use of the tether for LEO/GEO payload orbital transfer was also investigated. It was concluded that (1) reeling operations can contribute a significant amount of energy to the orbit of the system and should be considered in orbit calculations and predictions, (2) deployment of payloads, even very large payloads, using tethers is a practical and fully stable operation, (3) tether augmented LEO/GEO transfer operations yield useful payload gains under the practical constraint of fixed size OTV's, and (4) orbit to orbit satellite retrieval is limited by useful revisit times to orbital inclinations of less than forty-five degrees.

  11. International Space Station Electrodynamic Tether Reboost Study

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Herrmann, M.

    1998-01-01

    The International Space Station (ISS) will require periodic reboost due to atmospheric aerodynamic drag. This is nominally achieved through the use of thruster firings by the attached Progress M spacecraft. Many Progress flights to the ISS are required annually. Electrodynamic tethers provide an attractive alternative in that they can provide periodic reboost or continuous drag cancellation using no consumables, propellant, nor conventional propulsion elements. The system could also serve as an emergency backup reboost system used only in the event resupply and reboost are delayed for some reason.

  12. Dynamic Analysis of Capture Devices for Momentum Exchange with Tethers

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    2002-01-01

    One of the significant challenges in developing a momentum exchange / electrodynamic reboost tether system is in the analysis and design of the capture device and its effects on the overall dynamics of the system. The goal of this work is to develop appropriate tether momentum exchange models that can simulate and evaluate the requirements of such a system, and be used to create specifications on the design of a capture device. This report briefly describes dynamic model development, simulation of the momentum exchange process, evaluation of dynamic effects of errors in the momentum exchange process, and the development of guidelines in selecting dynamic properties in the design of a capture device.

  13. Ground-Based Experiment of Current Collection to Bare Tether in High-Speed and High-Density Plasma Generated by Hall Thrusters

    SciTech Connect

    Kohori, Tatsuya; Ikeda, Tomoyuki; Shimizu, Masaharu; Takagi, Hiroki; Yamada, Minetsugu; Tahara, Hirokazu

    2008-12-31

    Bare-tether systems are one of the greatest-efficiency electrodynamic tethered systems. The system with an uninsulated portion of the metallic tether itself to collect electrons from the space plasma is operated as a thruster or a power generator on a satellite. Ground-based experiments were carried out to understand phenomena of electron collection by a bare tether in space. Metallic tether samples were exposed to a simulating Low-Earth-Orbit plasma flow as varying tether sample diameter and length, and plasma velocity. A magnetic field was also applied. The normalized collection current increased with normalized tether sample potential. The tether sample diameter did not influence the normalized collection current characteristics although an increase in tether sample length decreased the normalized collection current in this experiment. The collection current characteristics were independent of plasma velocity under meso-thermal conditions. The existence of magnetic field raised the collection current because of the three-dimensional current collection effect at the edge of a tether sample under the magnetic field. Although the existence of magnetic field may raise the collection current, the effect will be small with a long tether. Accordingly, the dependence of tether diameter and length, plasma velocity and magnetic field on collection current characteristics of a bare tether in space might be small. The collection current may not exceed the OML current.

  14. Numerical Simulation of Tethered Underwater Kites for Power Generation

    NASA Astrophysics Data System (ADS)

    Ghasemi, Amirmahdi; Olinger, David; Tryggvason, Gretar

    2015-11-01

    An emerging renewable energy technology, tethered undersea kites (TUSK), which is used to extract hydrokinetic energy from ocean and tidal currents, is studied. TUSK systems consist of a rigid-winged ``kite,'' or glider, moving in an ocean current which is connected by tethers to a floating buoy on the ocean surface. The TUSK kite is a current speed enhancement device since the kite can move in high-speed, cross-current motion at 4-6 times the current velocity, thus producing more power than conventional marine turbines. A computational simulation is developed to simulate the dynamic motion of an underwater kite and extendable tether. A two-step projection method within a finite volume formulation, along with an Open MP acceleration method, is employed to solve the Navier-Stokes equations. An immersed boundary method is incorporated to model the fluid-structure interaction of the rigid kite (with NACA 0012 airfoil shape in 2D and NACA 0021 airfoil shape in 3D simulations) and the fluid flow. PID control methods are used to adjust the kite angle of attack during power (tether reel-out) and retraction (reel-in) phases. Two baseline simulations (for kite motions in two and three dimensions) are studied, and system power output, flow field vorticity, tether tension, and hydrodynamic coefficients (lift and drag) for the kite are determined. The simulated power output shows good agreement with established theoretical results for a kite moving in two-dimensions.

  15. Dynamics and control of the Space Station based tethered payload

    NASA Astrophysics Data System (ADS)

    Lakshmanan, P. K.; Modi, V. J.; Misra, A. K.

    A mathematical model is proposed here for studying the dynamics of the Tethered Satellite System (TSS) that consists of a plate-type Space Station from which a tether supported subsatellite is deployed or retrieved. The rigid body dynamics of the tether, subsatellite and Space Station are analyzed accounting for the mass of the tether as well as a three-dimensional offset of its point of attachment. Controllability of the linearized equations is established numerically and a comparative study of three different control strategies conducted. The strategies employ thrusters, tension in the tether line or motion of the offset of the attachment to achieve control of the system subjected to a relatively large initial disturbance. Results suggest that, in the stationkeeping mode, the tension control strategy damps a given disturbance in the shortest time, however, at an expense of the energy. On the other hand, the offset control proves to be the most efficient in terms of energy consumption, but now the response to disturbance persists over a long duration.

  16. Electrodynamic Tether Propulsion and Power Generation at Jupiter

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Johnson, L.; Moore, J.; Bagenal, F.

    1998-01-01

    The results of a study performed to evaluate the feasibility and merits of using an electrodynamic tether for propulsion and power generation for a spacecraft in the Jovian system are presented. The environment of the Jovian system has properties which are particularly favorable for utilization of an electrodynamic tether. Specifically, the planet has a strong magnetic field and the mass of the planet dictates high orbital velocities which, when combined with the planet's rapid rotation rate, can produce very large relative velocities between the magnetic field and the spacecraft. In a circular orbit close to the planet, tether propulsive forces are found to be as high as 50 N and power levels as high as 1 MW.

  17. Electrodynamic Tether as a Thruster for LEO Mission Applications

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V; Krivorutsky, E. N.; Johnson, L.

    2006-01-01

    Electrodynamic tether propulsion has a number of attractive features and has been widely discussed for different low earth orbit applications. Despite the commonality of application, the choice of the proper design for any particular mission is a unique problem. The flight trajectory, duration, available power and voltage, and drag force should be taken into consideration with other mission requirements. Characteristics of tether performance such as system acceleration and electrical efficiency should be calculated and assessed based on the system's capability to collect electrical current. We discuss the choice of parameters for circular, tape, and grid-sphere tether anodes and their applicability to International Space Station (ISS) reboost and Momentum Exchange Electrodynamic Reboost (MXER) applications.

  18. Tethered Pyrotechnic Apparatus for Acquiring a Ground Sample

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Zimmerman, Wayne; Wu, Jiunn Jenq; Badescu, Mircea; Sherrit, Stewart

    2009-01-01

    A proposed alternative design for the balloon-borne ground-sampling system described in the immediately preceding article would not rely on free fall to drive a harpoonlike sample-collecting device into the ground. Instead, the harpoon-like sample-collecting device would be a pyrotechnically driven, tethered projectile. The apparatus would include a tripod that would be tethered to the gondola. A gun for shooting the projectile into the ground would be mounted at the apex of the tripod. The gun would include an electronic trigger circuit, a chamber at the breech end containing a pyrotechnic charge, and a barrel. A sabot would be placed in the barrel just below the pyrotechnic charge, and the tethered projectile would be placed in the barrel just below the sabot. The tripod feet would be equipped with contact sensors connected to the trigger circuit. In operation, the tripod would be lowered to the ground on its tether. Once contact with the ground was detected by the sensors on all three tripod feet, the trigger circuit would fire the pyrotechnic charge to drive the projectile into the ground. (Requiring contact among all three tripod feet and the ground would ensure that the projectile would be fired into the ground, rather than up toward the gondola or the balloon.) The tethered projectile would then be reeled back up to the gondola for analysis of the sample.

  19. Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite

    NASA Technical Reports Server (NTRS)

    Gullahorn, G. E.

    1984-01-01

    The effects of a tethered satellite system's internal dynamics on the subsatellite were calculated including both overall motions (libration and attitude oscillations) and internal tether oscillations. The SKYHOOK tether simulation program was modified to operate with atmospheric density variations and to output quantities of interest. Techniques and software for analyzing the results were developed including noise spectral analysis. A program was begun for computing a stable configuration of a tether system subject to air drag. These configurations will be of use as initial conditions for SKYHOOK and, through linearized analysis, directly for stability and dynamical studies. A case study in which the subsatellite traverses an atmospheric density enhancement confirmed some theoretical calculations, and pointed out some aspects of the interaction with the tether system dynamics.

  20. Cluster filtering/control of bending/torsional vibrations of a tape tether using smart-film sensors/actuators

    NASA Astrophysics Data System (ADS)

    Kojima, Hirohisa; Kunugi, Kouta; Trivailo, Pavel M.

    2016-06-01

    Tape tethers show great promise for application in space debris removal because they possess a large collecting area, which is crucial for the collection of electrons from a plasma environment in space. Tape tethers are therefore preferred over string tethers in electrodynamic tethered systems (EDTS), which operate based on the Lorentz force derived from the interaction between the electric current on the tether and the Earth's magnetic field. Vibrations of the tether may disturb the attitude of the mother satellite and the subsatellite, and are difficult to damp in space because the damping would be minimal owing to the almost zero drag force in space. Due to their relatively large width, tape tethers experience torsional deformation and therefore cannot be treated as a string tether. If torsional deformation of tape tethers is not avoided, the advantage of tape tethers as the materials for EDT systems will be deteriorated. Point-type sensors and actuators are usually used to sense and control vibrations. However, it is difficult to apply such sensors and actuators to tape tethers because of the substantial length of the tether as well as the need for a deployment mechanism, such as a reel. In order to overcome the difficulties related to vibrations, the use of smart-film sensors and actuators for sensing and controlling vibrations of tape tethers is considered in this study. In a previous study, we presented an application of smart film for sensing vibrations of tape tethers, but the actuation of tape tethers using smart-film actuators has not yet been reported. In the present paper, we mathematically derive suitable configurations of smart-film attachment to a tape tether for cluster filtering and actuation of bending and torsional vibrations of the tape tether, and carried out cluster actuation experiments. The experimental results reveal that the bending and torsional vibrations of a tape tether can be reduced by cluster actuation control based on direct

  1. Analytical investigation of the dynamics of tethered constellations in earth orbit

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.; Gullahorn, Gordon E.; Estes, Robert D.

    1988-01-01

    This Quarterly Report on Tethering in Earth Orbit deals with three topics: (1) Investigation of the propagation of longitudinal and transverse waves along the upper tether. Specifically, the upper tether is modeled as three massive platforms connected by two perfectly elastic continua (tether segments). The tether attachment point to the station is assumed to vibrate both longitudinally and transversely at a given frequency. Longitudinal and transverse waves propagate along the tethers affecting the acceleration levels at the elevator and at the upper platform. The displacement and acceleration frequency-response functions at the elevator and at the upper platform are computed for both longitudinal and transverse waves. An analysis to optimize the damping time of the longitudinal dampers is also carried out in order to select optimal parameters. The analytical evaluation of the performance of tuned vs. detuned longitudinal dampers is also part of this analysis. (2) The use of the Shuttle primary Reaction Control System (RCS) thrusters for blowing away a recoiling broken tether is discussed. A microcomputer system was set up to support this operation. (3) Most of the effort in the tether plasma physics study was devoted to software development. A particle simulation code has been integrated into the Macintosh II computer system and will be utilized for studying the physics of hollow cathodes.

  2. Optimal control of a spinning double-pyramid Earth-pointing tethered formation

    NASA Astrophysics Data System (ADS)

    Williams, Paul

    2009-06-01

    The dynamics and control of a tethered satellite formation for Earth-pointing observation missions is considered. For most practical applications in Earth orbit, a tether formation must be spinning in order to maintain tension in the tethers. It is possible to obtain periodic spinning solutions for a triangular formation whose initial conditions are close to the orbit normal. However, these solutions contain significant deviations of the satellites on a sphere relative to the desired Earth-pointing configuration. To maintain a plane of satellites spinning normal to the orbit plane, it is necessary to utilize "anchors". Such a configuration resembles a double-pyramid. In this paper, control of a double-pyramid tethered formation is studied. The equations of motion are derived in a floating orbital coordinate system for the general case of an elliptic reference orbit. The motion of the satellites is derived assuming inelastic tethers that can vary in length in a controlled manner. Cartesian coordinates in a rotating reference frame attached to the desired spin frame provide a simple means of expressing the equations of motion, together with a set of constraint equations for the tether tensions. Periodic optimal control theory is applied to the system to determine sets of controlled periodic trajectories by varying the lengths of all interconnecting tethers (nine in total), as well as retrieval and simple reconfiguration trajectories. A modal analysis of the system is also performed using a lumped mass representation of the tethers.

  3. Tethered balloon-based measurements of meteorological variables and aerosols

    NASA Technical Reports Server (NTRS)

    Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.

    1976-01-01

    Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.

  4. Mesoscale modeling and computer simulation of tethered nanorod "shape amphiphile" assemblies

    NASA Astrophysics Data System (ADS)

    Horsch, Mark A.

    The goal of this thesis is to elucidate the parameters that strongly influence the self-assembled morphologies formed by tethered nanoparticle, "shape amphiphiles". Minimal models are developed which capture the geometry and rigidity of the particles, the immiscibility between the particle and tether, and the tether connectivity and flexibility. This work focuses on the self-assembly of tethered rods a class of shape amphiphile where the rigid block is rod-like. The work presented here demonstrates that in addition to forming micelles, cylinders, bicontinuous, and sheet-like morphologies additional local ordering arises due to the geometry or anisotropy of the rigid block. For example, at high concentrations tethered rods are observed to form monolayer smectic morphologies when the solvent is good for the tether and poor for the rod, while, mono-tethered spheres self-assemble into bilayer structures. The number of tethers also influences the self-assembly. For example, di-tethered spheres self-assemble into monolayers in contrast to the bilayers formed when only a single tether is attached to the sphere. For the tethered rods in selective solvent, our simulations predict several novel phases. In the case of end-tethered rods, a novel hexagonally arranged chiral cylinder morphology was observed. Other morphologies such as the tetragonally perforated and hexagonally perforated lamellar phases were observed. These phases have been observed in experimental rod coil copolymers but have not been previously predicted by simulation or theory. In the case of side-tethered rods several novel phases have been identified in this work including rectangular centered stepped ribbons, and bilayer phases, one with P2 symmetry and the other with Cmm symmetry, are predicted. Of particular interest may be the orientation of the rods in the stepped ribbon phase, wherein the long axis of the rod is parallel to the major axis of the ribbon. For end-tethered rods in a neat system two

  5. Command Generation and Control of Momentum Exchange Electrodynamic Reboost Tethered Satellite

    NASA Technical Reports Server (NTRS)

    Robertson, Michael J.

    2005-01-01

    The research completed for this NASA Graduate Student Research Program Fellowship sought to enhance the current state-of-the-art dynamic models and control laws for Momentum Exchange Electrodynamic Reboost satellite systems by utilizing command generation, specifically Input Shaping. The precise control of tethered spacecraft with flexible appendages is extremely difficult. The complexity is magnified many times when the satellite must interact with other satellites as in a momentum exchange via a tether. The Momentum Exchange Electronic Reboost Tether (MXER) concept encapsulates all of these challenging tasks [l]. Input Shaping is a command generation technique that allows flexible spacecraft to move without inducing residual vibration [2], limit transient deflection [3] and utilize fuel-efficient actuation [4]. Input shaping is implemented by convolving a sequence of impulses, known as the input shaper, with a desired system command to produce a shaped input that is then used to drive the system. This process is demonstrated in Figure 1. The shaped command is then use to drive the system without residual vibration while meeting many other performance specifications. The completed work developed tether control algorithms for retrieval. A simple model of the tether response has been developed and command shaping was implemented to minimize unwanted dynamics. A model of a flexible electrodynamic tether has been developed to investigate the tether s response during reboost. Command shaping techniques have been developed to eliminate the tether oscillations and reduce the tether s deflection to pre-specified levels during reboost. Additionally, a model for the spin-up of a tethered system was developed. This model was used in determining the parameters for optimization the resulting angular velocity.

  6. Modeling of tape tether vibration and vibration sensing using smart film sensors

    NASA Astrophysics Data System (ADS)

    Kunugi, Kouta; Kojima, Hirohisa; Trivailo, Pavel M.

    2015-02-01

    Tape-tethered satellite systems use long and flexible tape tethers, the bending and torsional vibrations of which affect the positions and attitude of attached satellites and climbers. Owing to the distribution characteristics of a tape tether, ordinary point sensors and actuators cannot be used easily to control the vibrations. Other types of sensors and actuators are required for this purpose. The flexibility and deformability of smart materials make them particularly suitable for integration into a tape-tethered system. Thus, in this paper, we propose a method for modeling the bending and torsional vibrations of a tape tether, and report our investigation into the feasibility of using smart film sensors to distinguish between the two vibration types. We formulate equations of motion for the tape tether using multibody dynamics techniques, and perform numerical simulations to study the behavior of the bending and torsional vibrations. The results of our experiments show that the bending and torsional vibrations of a tape tether can be measured using smart film sensors attached to the tether.

  7. Experimental demonstration of offset control with an application to the tethered payload

    NASA Astrophysics Data System (ADS)

    Modi, V. J.; Lakshmanan, P. K.; Misra, A. K.; Picha, R. J.; Chan, S.; Vakil, S.

    1989-05-01

    A control law for tethered satellite systems was proposed that uses a boom-trolley arrangement that allows the point of attachment of the tether to be moved in three orthogonal directions. This means that the position, velocity and acceleration of the tether attachment point, become specified quantities in the dynamical formulation. The accelerations are integrated along each axis to obtain the corresponding velocities and positions. A tethered satellite system model was developed to demonstrate the offset control strategy in real time. A variety of tether configurations, retrieval rates, and initial conditions were employed to systematically test the controller's effectiveness. Even at large initial conditions the controller proved very successful in bringing the tether to its equilibrium configuration. This clearly demonstrated the robustness of the control algorithm. The effectiveness increased as the tether length diminished which makes it particularly attractive in situations where other controllers have limitations. It is expected that a hybrid control strategy with thruster/tension control at large tether lengths followed by offset control near the platform end during the final stages of retrieval would be most effective.

  8. Jupiter, Tether, and Lenz's Law

    NASA Technical Reports Server (NTRS)

    Lee, Russell

    1999-01-01

    Jupiter has a large, complex, and intense magnetic field that is thought to arise from electrical currents in the rapidly spinning metallic hydrogen interior. The strong magnetic field can induce currents when the conductive tether is directed toward or away from Jupiter. The currents can be stored and used for both propulsion and power generation. Therefore, our spacecraft might be able to visit several Jovian moons or maintain in the orbit around Jupiter. In our future space traveling, we also can use this technical skill to travel to other planets without any fuel. First-year physics textbooks describe Lenz's Law in which current is induced in a conductor moving through a stationary magnetic field. A demonstration of induced current in a stationary conductor and moving magnetic field is described, which may have space-tether application.

  9. Cell Protrusions and Tethers: A Unified Approach

    PubMed Central

    Pospieszalska, Maria K.; Lasiecka, Irena; Ley, Klaus

    2011-01-01

    Low pulling forces applied locally to cell surface membranes produce viscoelastic cell surface protrusions. As the force increases, the membrane can locally separate from the cytoskeleton and a tether forms. Tethers can grow to great lengths exceeding the cell diameter. The protrusion-to-tether transition is known as the crossover. Here we propose a unified approach to protrusions and tethers providing, to our knowledge, new insights into their biomechanics. We derive a necessary and sufficient condition for a crossover to occur, a formula for predicting the crossover time, conditions for a tether to establish a dynamic equilibrium (characterized by constant nonzero pulling force and tether extension rate), a general formula for the tether material after crossover, and a general modeling method for tether pulling experiments. We introduce two general protrusion parameters, the spring constant and effective viscosity, valid before and after crossover. Their first estimates for neutrophils are 50 pN μm−1 and 9 pN s μm−1, respectively. The tether elongation after crossover is described as elongation of a viscoelastic-like material with a nonlinearly decaying spring (NLDs-viscoelastic material). Our model correctly describes the results of the published protrusion and tether pulling experiments, suggesting that it is universally applicable to such experiments. PMID:21463583

  10. Two-Way Tether Gun

    NASA Technical Reports Server (NTRS)

    Sanger, George F.

    1994-01-01

    Safety-tether device enables crewmembers on spacecraft to retrieve crewmember drifting away from spacecraft. Alternatively, drifting crewmember who carries device uses it to grasp and return to spacecraft. Also used on Earth. For example, rescuer on vessel or pier uses it to retrieve and haul drowning or unconscious person to safety; drifting person or rescuer in water uses it to grasp and hold onto support.

  11. Practicality of using a Tether for electrodynamic reboost of the International Space Station

    NASA Astrophysics Data System (ADS)

    Blumer, John H.; Donahue, Benjamin B.; Bangham, Michal E.

    2001-02-01

    ElectroDynamic (ED) Tethers can generate continuous low thrust in a low Earth orbit. An induced current running through the length of the tether reacts with the geomagnetic field to produce thrust. The amount of thrust scales with tether length and current. The International Space Station (ISS) requires periodic reboost to maintain an approximately circular orbit above the Earth. The baseline reboost method is a traditional bi-propellant rocket thruster and tankage system which must to be refueled via Soyuz/Progress or other launch vehicle. The estimated propellant costs associated with keeping ISS in the designated orbit over a 10-year life have been extremely high. The ED Tether would draw energy from the renewable ISS Solar Array electrical power system. Propulsion requirements for ISS vary depending on solar wind and other conditions. It is projected that a ED Tether could provide the majority of the required reboost thrust for ISS for a nominal solar year. For above nominal solar wind years the ISS would have to use the rocket reboost system, but at a greatly reduced level. Thus resulting in substantial cost savings, via the reduction in the number of Earth-to-orbit launch vehicle flights to the ISS that must bring reboost propellant. However, the purposes of this paper is to further previous research on an ISS ED Tether and examine the operational and technical issues working against using a ED Tether on ISS. Issues such as Shuttle rendezvous and flight path concerns raise serious safety concerns and restrictions on tether use. Tether issues such as tether librations and off angle thrust raise concerns about impacts to microgravity payloads and the long-term effect on ISS orbital path and inclination. Operational issues such as peak power available to an ED Tether and allowable duty cycle may impose severe restrictions on tether design and ultimately limit the practicality of an ED Tether on ISS. Thus while at first glance the cost numbers appear to be

  12. Label-free measurements of membrane tether thickness using optical tweezers combined with SLIM

    NASA Astrophysics Data System (ADS)

    Sarshar, Mohammad; Wong, Winson T.; Anvari, Bahman

    2015-03-01

    Various cellular activities such as motility, division, and endocytosis involve a change in the cell shape. The mechanical interactions between the cell membrane and cytoskeleton play an important role in regulating changes in the cell shape. Tether formation from cell membranes provides a technique to characterize the mechanical properties of cell membranes and membrane-cytoskeleton interactions. Accurate measurement of the nano-scale tether diameter is relevant to quantification of membrane tension, bending modulus, and adhesion energy of the membrane-cytoskeleton structure. We have integrated optical tweezers with quantitative phase imaging, based on spatial light interference microscopy (SLIM), to simultaneously form tethers from HEK-293 cells and measure their diameters. Tether thickness along the illumination axis was measured using the quantitative phase map of the sample, and the refractive index (RI) mismatch between the sample and the surrounding media. The RI of the tethers ranged from 1.354 to 1.368 (cell culture medium RI=1.337). Our SLIM imaging system provided a 38 nm resolution in tether thickness measurements. Tether diameter fluctuations of <100 nm were resolved on tethers that ranged between 600-900 nm in diameter. Our integrated platform also provides the ability to simultaneously manipulate and image cell organelles in a non-contact and marker-free manner at nanometer spatial resolution.

  13. Diffusive transport of molecular cargo tethered to a DNA origami platform.

    PubMed

    Kopperger, Enzo; Pirzer, Tobias; Simmel, Friedrich C

    2015-04-01

    Fast and efficient transport of molecular cargoes along tracks or on supramolecular platforms is an important prerequisite for the development of future nanorobotic systems and assembly lines. Here, we study the diffusive transport of DNA cargo strands bound to a supramolecular DNA origami structure via an extended tether arm. For short distances (on the order of a few nanometers), transport from a start to a target site is found to be less efficient than for direct transfer without tether. For distances on the scale of the origami platform itself, however, cargo transfer mediated by a rigid tether arm occurs very fast and robust, whereas a more flexible, hinged tether is found to be considerably less efficient. Our results suggest diffusive motion on a molecular tether as a highly efficient mechanism for fast transfer of cargoes over long distances.

  14. Dynamics and stability of a tethered centrifuge in low earth orbit

    NASA Technical Reports Server (NTRS)

    Quadrelli, B. M.; Lorenzini, E. C.

    1992-01-01

    The three-dimensional attitude dynamics of a spaceborne tethered centrifuge for artificial gravity experiments in low earth orbit is analyzed using two different methods. First, the tethered centrifuge is modeled as a dumbbell with a straight viscoelastic tether, point tip-masses, and sophisticated environmental models such as nonspherical gravity, thermal perturbations, and a dynamic atmospheric model. The motion of the centrifuge during spin-up, de-spin, and steady-rotation is then simulated. Second, a continuum model of the tether is developed for analyzing the stability of lateral tether oscillations. Results indicate that the maximum fluctuation about the 1-g radial acceleration level is less than 0.001 g; the time required for spin-up and de-spin is less than one orbit; and lateral oscillations are stable for any practical values of the system parameters.

  15. Space Environmental Effects on Coated Tether Materials

    NASA Technical Reports Server (NTRS)

    Gittemeier, Keith A.; Hawk, Clark W.; Finckenor, Miria M.; Watts, Ed

    2005-01-01

    The University of Alabama in Huntsville s Propulsion Research Center has teamed with NASA's Marshall Space Flight Center (MSFC) to research the effects of atomic oxygen (AO) bombardment on coated tether materials. Tethers Unlimited Inc. has provided several candidate tether materials with various coatings for AO exposure in MSFC s Atomic Oxygen Beam Facility. Additional samples were exposed to ultraviolet (UV) radiation at MSFC. AO erodes most organic materials, and ultraviolet radiation embrittles polymers. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings, such as polyhedral oligomeric silsesquioxane (POSS) or metallization. Both TUI's Multi-Application Survivable Tether (MAST) Experiment and Marshall Space Flight Center s Momentum Exchange Electrodynamic Reboost (MXER) programs will benefit from this research by helping to determine tether materials and coatings that give the longest life with the lowest mass penalty.

  16. Atomic Oxygen Effects on Coated Tether Materials

    NASA Technical Reports Server (NTRS)

    Gittemeier, Keith A.; Hawk, Clark W.; Finckenor, Miria M.; Watts, Ed

    2005-01-01

    The University of Alabama in Huntsville s Propulsion Research Center has teamed with NASA's Marshall Space Flight Center (MSFC) to research the effects of atomic oxygen (AO) bombardment on coated tether materials. Tethers Unlimited Inc. has provided several candidate tether materials with various coatings for (AO) exposure in MSFC's Atomic Oxygen Beam Facility. Additional samples were exposed to ultraviolet (UV) radiation at MSFC. AO erodes most organic materials, and ultraviolet radiation embrittles polymers. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings, such as Photosil or metallization. Both TUI's Multi-Application Survivable Tether (MAST) Experiment and Marshall Space Flight Center's Momentum Exchange Electrodynamic Reboost (MXER) programs will benefit from this research by helping to determine tether materials and coatings that give the longest life with the lowest mass penalty.

  17. Simulated Space Environment Effects on Tether Materials with Protective Coatings

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Watts, Ed

    2005-01-01

    Atomic oxygen (AO) erodes most organic materials. and ultraviolet radiation embrittles polymers. A previous study indicated untreated polymers such as ultra-high molecular weight polyethylene (UHMWPE) are severely degraded when exposed to AO. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings. Three coating systems were evaluated for their ability to protect the underlying material from AO erosion. The first coating system is the Photosil surface modification process which incorporates silicon-containing functional groups into the top micron of an organic material. The Photosil process has had favorable results with polyurethane- and epoxy-based thermal control coatings . The second coating system is metallization, in this case nickel. The third coating system is silsesquioxane. The Marshall Space Flight Center Atomic Oxygen Beam Facility (AOBF) was used to simulate low Earth orbit AO of 5 eV energy. In addition, some tether samples were exposed to ultraviolet radiation then evaluated for any changes in mechanical strength. Tether missions, such as a momentum-exchange/electrodynamic reboost (MXER) tether, may benefit from this research.

  18. The Science and Applications Tethered Platform (SATP) project

    NASA Technical Reports Server (NTRS)

    Merlina, P.

    1986-01-01

    The capabilities of tether systems in orbit are going to be demonstrated by the first planned flights of the Tethered Satellite System (TSS). These test flights will investigate the properties of tether systems as low altitude atmospheric research facilities and as electric power generators. Studies are being conducted with the purpose of testing a variety of concepts and approaches. A comparative analysis of results will allow the choosing of the most promising ideas for further development. The broad range of applications presently under study include applications in electrodynamics, transportation, microgravity in addition to basic research. The SATP project definition study is now about midway through its first phase. The analyses conducted have led to an appraisal of users interest in the project and to a deeper understanding of the problems associated with large, long-lived tether systems in space. In addition, two specialized platform designs, devoted to microgravity and precise pointing applications, are being studied because of their potential usefulness and the promise of technical feasibility.

  19. Tethers as Debris: Hydrocode Simulation of Impacts of Polymer Tether Fragments on Aluminum Plates

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.

    2003-01-01

    Tethers promise to find use in a variety of space applications. Despite being narrow objects, their great lengths result in them having large total areas. Consequently, tethers are very susceptible to being severed by orbital debris. Extensive work has been done designing tethers that resist severs by small debris objects, in order to lengthen their working lives. It is from this perspective that most recent work has considered the tether - debris question. The potential of intact tethers, or severed tether fragments, as debris, to pose a significant collision risk to other spacecraft has been less well studied. Understanding the consequences of such collisions is important in assessing the risks tethers pose to other spacecraft. This paper discusses the damage that polymer tethers may produce on aluminum plates, as revealed by hypervelocity impact simulations using the SPHC hydrodynamic code.

  20. Hyperbolic Injection Issues for MXER Tethers

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk

    2003-01-01

    Momentum-exchange/electrodynamic reboost (MXER) tether technology is currently being pursued to dramatically lower the launch mass and cost of interplanetary scientific spacecraft. A spacecraft boosted from LEO to a high-energy orbit by a MXER tether has most of the orbital energy it needs to escape the Earth's gravity well. However, the final targeting of the spacecraft to its eventual trajectory, and some of the unique issues brought on by the tether boost, are the subjects of this paper.

  1. Tethered Communication Satellites

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1986-01-01

    Report describes concept for placing several communication satellites in geostationary orbit without taking up more space than assigned to single satellite. Proposed scheme eases orbital crowding more economically than space platforms. Concept requires minimal redesign of existing satellites and accommodates many satellites in just one orbital slot. System much lighter in weight than geostationary platform and easier and more economical to transport.

  2. The constitutive equation for membrane tether extraction.

    PubMed

    Chen, Yong; Yao, Da-Kang; Shao, Jin-Yu

    2010-12-01

    Membrane tethers or nanotubes play a critical role in a variety of cellular and subcellular processes such as leukocyte rolling and intercellular mass transport. The current constitutive equations that describe the relationship between the pulling force and the tether velocity during tether extraction have serious limitations. In this article, we propose a new phenomenological constitutive equation that captures all known characteristics of nanotube formation, including nonlinearity, nonzero threshold force, and possible negative tether velocity. We used tether extraction from endothelial cells as a prototype to illustrate how to obtain the material constants in the constitutive equation. With the micropipette aspiration technique, we measured tether pulling forces at both positive and negative tether velocities. We also determined the threshold force of 55 pN experimentally for the first time. This new constitutive equation unites two established ones and provides us a unified platform to better understand not only the physiological role of tether extraction during leukocyte rolling and intercellular or intracellular transport, but also the physics of membrane tether growth or retraction.

  3. Coupled Translational and Rotational Fluctuations of Tethered Beads

    NASA Astrophysics Data System (ADS)

    Spakowitz, Andrew; Mehraeen, Shafigh

    2008-03-01

    Single-molecule manipulation plays an important role in determining the physical mechanisms responsible for biological function. Establishing a robust method of predicting the fluctuating behavior of a tethered bead provides insight into how to maximize the signal-to-noise ratio to improve experimental resolution. We theoretically address the behavior of single-molecule experimental apparatuses. Our theory is amenable to addressing a variety of different bead-tether systems, thus providing a basis for comparing and contrasting these different experimental setups and for adapting the theory to the specific experimental system of interest. Fluctuations in both the location and orientation of the bead are incorporated in the theory; we explore their coupled effect on the observed behavior in single-molecule systems. The physical behavior of the tether molecule is described using the wormlike chain model. Making use of our exact solutions for wormlike chain model statistics, our current treatment achieves exact precision for the polymer behavior, apart from the approximations that are inherent to the wormlike chain model. We find that the impact of rotational fluctuations on the bead motion is largest when the radius of the bead is comparable to the length of the chain tether. We explore the impact that chain length and bead radius have on the resolution of single-molecule experiments and how to maximize the signal-to-noise ratio.

  4. Dynamic analysis and trajectory tracking of a tethered space robot

    NASA Astrophysics Data System (ADS)

    Soltani, Mehrzad; Keshmiri, Mehdi; Misra, Arun K.

    2016-11-01

    Dynamic analysis and trajectory tracking of a Tethered Space Robot (TSR) is investigated in this paper. A hybrid controller is used to perform the control task. It consists of two components, the first one deals with librational motion of the tether, while the second one takes care of the manipulator motion. A Nonlinear Model Predictive Control (NMPC) approach is used to control the tether libration; for this purpose, the libration is described by a single degree of freedom and the tether length rate is employed as the input to suppress the librational motion. A modified Computed Torque Method (CTM) is used to control the manipulator motion. The dynamic interaction between the manipulator motion and the librational motion is considered both in the system dynamics and control of the system. Using numerical simulations, performance of the proposed control system is evaluated for end-effector positioning as well as for trajectory tracking for two cases: a Low Earth Orbit (LEO) and the Geostationary Earth Orbit (GEO).

  5. Analysis of ProSEDS Test of Bare-Tether Collection

    NASA Technical Reports Server (NTRS)

    Sanmartin, J. R.; Lorenzini, E. C.; Estes, R. D.; Charro, M.; Cosmo, M. L.

    2003-01-01

    NASA's tether experiment ProSEDS will be placed in orbit on board a Delta-II rocket to test bare-tether electron collection, deorbiting of the rocket second stage, and the system dynamic stability. ProSEDS performance will vary because ambient conditions change along the orbit and tether-circuit bulk elements at the cathodic end follow the step-by-step sequence for the current cycles of operating modes (open-circuit, shunt and resistor modes for primary cycles; shunt and battery modes for secondary cycles). In this work we discuss expected ProSEDS values of the ratio L,/L*, which jointly with cathodic bulk elements determines bias and current tether profiles; L, is tether length, and L* (changing with tether temperature and ionospheric plasma density and magnetic field) is a characteristic length gauging ohmic versus baretether collection impedances. We discuss how to test bare-tether electron collection during primary cycles, using probe measurements of plasma density, measurements of cathodic current in resistor and shunt modes, and an estimate of tether temperature based on ProSEDS orbital position at the particular cycle concerned. We discuss how a temperature misestimate might occasionally affect the test of bare-tether collection, and how introducing the battery mode in some primary cycles, for an additional current measurement, could obviate the need of a temperature estimate. We also show how to test bare-tether collection by estimating orbit-decay rate from measurements of cathodic current for the shunt and battery modes of secondary cycles.

  6. Power Generation for a JUNO-type Mission using Electrodynamic Tethers

    NASA Astrophysics Data System (ADS)

    Bombardelli, C.; Lorenzini, E. C.; Sanmartin, J. R.

    2008-09-01

    Electrodynamic tethers are known to exhibit high performance in the Jupiter environment , both as propellantless propulsion devices and as power generating systems. In spite of the considerable amount of research work of electrodynamic tethers in the Jupiter environment the case involving high inclination orbit has never been addressed so far. We present a power generation scheme for rotating electrodynamic tethers which can be applied to a generic Jupiter science missions employing polar orbits. We show that when the orbit inclination reaches 90 degrees and the tether rotates in the orbital plane the effect of the tether electrodynamic force does not impact orbital energy but orbit inclination. Thanks to favorable environmental conditions at Jupiter (i.e. strong magnetic field and fast rotating plasmasphere) relatively high power levels can be obtained with tethers of modest length when the tether transits the low altitude regions around the planet. In addition the impact on orbit inclination is minimal thanks to the high specific angular momentum of jovian orbits. As a numerical example we consider an electrodynamic tether subsystem consisting of two 3- km-long 5-cm wide and 0.05-mm-thick tape tether arms deployed radially from a main central spacecraft whose orbit has the characteristic of the current baseline JUNO orbit. The tether subsystem, whose total mass is less than 50 kg, can provide kW level average power along a 120 degrees orbital arc around the equatorial plane crossing. The inclination variation induced by the Lorentz force in this case is below 1/1000 of a degree per orbit. Applications of the concept to future Jupiter exploration missions are discussed.

  7. Tether de-orbiting of satellites at end of mission

    NASA Astrophysics Data System (ADS)

    Sanmartin, Juan R.; Sánchez-Torres, Antonio

    2012-07-01

    The accumulation of space debris around the Earth has become critical for Space security. The BETs project, financed by the European Commission through its FP7-Space program, is focusing on preventing generation of new debris by de-orbiting satellites at end of mission. The de-orbiting system considered, involving an electrodynamic bare tape-tether, uses no propellant and no power supply, while generating power for on-board use during de-orbiting. As an example, preliminary results are here presented on a specific orbit/satellite case: 1300 km altitude and 65 degrees inclination, and 500 kg mass. Design tether dimensions are 8 km length, 1.5 cm width, and 0.05 mm thickness; subsystem masses are limited to twice tether mass. Simple calculations, using orbit-averaging, solar mid-cycle phase, and ionospheric and geomagnetic field models, yield 2.6 months time for de-orbiting down to 200 km, with a probability of about 1 percent of debris cutting the tape. References: Sanmartin, J.R., Lorenzini, E.C., and Martinez-Sanchez, M., Electrodynamic Tether Applications and Constraints, J. Space. Rockets 47, 442-456, 2010. Sanmartin, J.R. et al., A universal system to de-orbit satellites at end of life, Journal of Space Technology and Science, to appear.

  8. Analytical solution for extensible tethers

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1974-01-01

    The mathematical model considers a large particle (m sub 1), such as a space station, and a smaller particle (m sub 2), connected by an ideal, massless tether, i.e., one incapable of sustaining other than tensile loads. The problem situation described offers a practical solution which should be quite useful in certain space flight operations, especially for the transfer of cargo and personnel and for retrieval and rescue operations. The idea is simple in its application and does not appear to require sophisticated hardware. An appealing advantage is that it is infinitely reusable, i.e., it could be rewound and used over and over again.

  9. T-Rex: A Japanese Space Tether Experiment

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    serves both to drive the current and then to act on the current to decelerate the system. One of the most important features of tether thrusters is that they use renewable energy sources to drive the electrical current flow in either the orbit-raising or orbit-lowering modes. Sources inherent to Earth orbit are used. To raise the orbit, sunlight can be converted to the electrical energy required to drive the tether current. To lower the orbit, the orbital energy itself (supplied by the Earth-to-orbit launcher when it raises the system into orbit) is the energy source of the tether current via the action of the Lorentz Force. Electrodynamic tethers can be directly applied to a wide spectrum of uses in space. As a propulsion system, they include satellite de-orbit, transfer of a satellite from one orbit to another, altitude maintenance for large spacecraft such as the International Space Station, and since it works wherever there is a magnetic field and an ionosphere planetary exploration missions. An electrodynamic tether upper stage could be used as an Orbit Transfer Vehicle (OTV) to move payloads within low earth orbit. The OTV would rendezvous with the payload and launch vehicle, grapple the payload and maneuver it to a new orbital altitude or inclination without the use of boost propellant. The tug could then lower its orbit to rendezvous with the next payload and repeat the process. Conceivably, such a system could perform several orbital maneuvering assignments without resupply, making it relatively inexpensive to operate.

  10. Shuttle Orbiter tethered subsatellite for exploring and tapping space plasmas

    NASA Technical Reports Server (NTRS)

    Banks, P. M.; Williamson, P. R.; Oyama, K. I.

    1981-01-01

    Consideration is given to the possibilities for studies in space plasma physics offered by a subsatellite mechanically tethered above the Space Shuttle Orbiter by a long conducting wire. The proposed experiment, designated the Shuttle Electrodynamic Tether Systems (SETS) is based on the concept of collecting electrons at the subsatellite and ejecting them from the Orbiter, made possible by the emf generated by the motion of the tether across geomagnetic field lines. The power generated in this manner can be used both for practical purposes within the Orbiter and for the creation of large-amplitude plasma and electromagnetic waves within the surrounding plasma. For a conducting spherical subsatellite 30 m in diameter with a 10-km tether drawing 1 A, calculations show that emfs on the order of 1000-2000 V and energy dissipation of as much as 10,000 W can be obtained, accompanied by the generation of two regions of net electric charge in the ionosphere. Scientific studies considered for SETS include the measurement of MHD waves artificially generated in the ionosphere, the investigation of current-driven plasma instabilities, VLF wave generation and the simulation of electrodynamics associated with the motion of celestial bodies through plasma.

  11. Sliding mode control of electromagnetic tethered satellite formation

    NASA Astrophysics Data System (ADS)

    Hallaj, Mohammad Amin Alandi; Assadian, Nima

    2016-08-01

    This paper investigates the control of tethered satellite formation actuated by electromagnetic dipoles and reaction wheels using the robust sliding mode control technique. Generating electromagnetic forces and moments by electric current coils provides an attractive control actuation alternative for tethered satellite system due to the advantages of no propellant consumption and no obligatory rotational motion. Based on a dumbbell model of tethered satellite in which the flexibility and mass of the tether is neglected, the equations of motion in Cartesian coordinate are derived. In this model, the J2 perturbation is taken into account. The far-field and mid-field models of electromagnetic forces and moments of two satellites on each other and the effect of the Earth's magnetic field are presented. A robust sliding mode controller is designed for precise trajectory tracking purposes and to deal with the electromagnetic force and moment uncertainties and external disturbances due to the Earth's gravitational and magnetic fields inaccuracy. Numerical simulation results are presented to validate the effectiveness of the developed controller and its superiority over the linear controller.

  12. Scattering Efficiency of High-Voltage Tethers in Space

    NASA Technical Reports Server (NTRS)

    Krivorutsky, E. N.; Khazanov, G. V.; Gamayunov, K. V.; Avanov, L. A.

    2005-01-01

    Several concepts have been proposed to remediate the effect of artificial Radiation Belts (RB) in Space Plasma. Among them is the high-voltage electrostatic tether remediation technique. Preliminary analysis that has been carried out later by several groups showed, that this technique could be very efficient and is able to control relativistic electron energies of artificial RB population. The relativistic electron population is the one of the most important topic of US Space Weather studies and very dangerous to many civilian and military space assets, it is also important to study some fundamentals of scattering efficiency of high-voltage tethers in space plasma. There are several fundamental issues that should be examined in order to validate high-voltage tether artificial RB remediation concept. The most critical among them are: power consumption, the size and stability of the plasma sheath around the tether, and scattering efficiency of this high-voltage system that is ultimately related with the plasma sheath size. This study would be focused on the scattering process itself and artificial RB remediation assuming that power consumption and the size of the plasma sheath are known.

  13. Three dimensional dynamics of a flexible Motorised Momentum Exchange Tether

    NASA Astrophysics Data System (ADS)

    Ismail, N. A.; Cartmell, M. P.

    2016-03-01

    This paper presents a new flexural model for the three dimensional dynamics of the Motorised Momentum Exchange Tether (MMET) concept. This study has uncovered the relationships between planar and nonplanar motions, and the effect of the coupling between these two parameters on pragmatic circular and elliptical orbits. The tether sub-spans are modelled as stiffened strings governed by partial differential equations of motion, with specific boundary conditions. The tether sub-spans are flexible and elastic, thereby allowing three dimensional displacements. The boundary conditions lead to a specific frequency equation and the eigenvalues from this provide the natural frequencies of the orbiting flexible motorised tether when static, accelerating in monotonic spin, and at terminal angular velocity. A rotation transformation matrix has been utilised to get the position vectors of the system's components in an assumed inertial frame. Spatio-temporal coordinates are transformed to modal coordinates before applying Lagrange's equations, and pre-selected linear modes are included to generate the equations of motion. The equations of motion contain inertial nonlinearities which are essentially of cubic order, and these show the potential for intricate intermodal coupling effects. A simulation of planar and non-planar motions has been undertaken and the differences in the modal responses, for both motions, and between the rigid body and flexible models are highlighted and discussed.

  14. Where are We Going in Tethers

    NASA Technical Reports Server (NTRS)

    Colombo, G.

    1985-01-01

    The state of the art of the tether in space science and in space operations is discussed. It is emphasized that space technology is not the continuation of aerodynamics, but rather is something fundamentally distinct. The tether is foreseen as a basic structural element for aerospace engineering in the future.

  15. 2006 Status of the Momentum eXchange Electrodynamic Re-Boost (MXER) Tether Development

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph A.; Sorensen, Kirk F.; Dankanich, John W.; Frame, Kyle L.

    2006-01-01

    The MXER Tether technology development is a high-payoff/high-risk investment area within the NASA In-Space Propulsion Technology (ISPT) Program. The ISPT program is managed by the NASA Headquarters Science Mission Directorate and implemented by the Marshall Space Flight Center in Huntsville, Alabama. The MXER concept was identified and competitively ranked within NASA's comprehensive Integrated In-Space Transportation Plan (IISTP); an agency-wide technology assessment activity. The objective of the MXER tether project within ISPT is to advance the technological maturation level for the MXER system, and its subsystems, as well as other space and terrestrial tether applications. Recent hardware efforts have focused on the manufacturability of space-survivable high-strength tether material and coatings, high-current electrodynamic tether, lightweight catch mechanism, high-accuracy propagator/predictor code, and efficient electron collection/current generation. Significant technical progress has been achieved with modest ISPT funding to the extent that MXER has evolved to a well-characterized system with greater capability as the design has been matured. Synergistic efforts in high-current electrodynamic tethers and efficient electron collection/current generation have been made possible through SBIR and STTR support. The entire development endeavor was orchestrated as a collaborative team effort across multiple individual contracts and has established a solid technology resource base, which permits a wide variety of future space cable/tether applications to be realized.

  16. Optimal Electrodynamic Tether Phasing Maneuvers

    NASA Technical Reports Server (NTRS)

    Bitzer, Matthew S.; Hall, Christopher D.

    2007-01-01

    We study the minimum-time orbit phasing maneuver problem for a constant-current electrodynamic tether (EDT). The EDT is assumed to be a point mass and the electromagnetic forces acting on the tether are always perpendicular to the local magnetic field. After deriving and non-dimensionalizing the equations of motion, the only input parameters become current and the phase angle. Solution examples, including initial Lagrange costates, time of flight, thrust plots, and thrust angle profiles, are given for a wide range of current magnitudes and phase angles. The two-dimensional cases presented use a non-tilted magnetic dipole model, and the solutions are compared to existing literature. We are able to compare similar trajectories for a constant thrust phasing maneuver and we find that the time of flight is longer for the constant thrust case with similar initial thrust values and phase angles. Full three-dimensional solutions, which use a titled magnetic dipole model, are also analyzed for orbits with small inclinations.

  17. Eukaryotic membrane tethers revisited using magnetic tweezers

    NASA Astrophysics Data System (ADS)

    Hosu, Basarab G.; Sun, Mingzhai; Marga, Françoise; Grandbois, Michel; Forgacs, Gabor

    2007-06-01

    Membrane nanotubes, under physiological conditions, typically form en masse. We employed magnetic tweezers (MTW) to extract tethers from human brain tumor cells and compared their biophysical properties with tethers extracted after disruption of the cytoskeleton and from a strongly differing cell type, Chinese hamster ovary cells. In this method, the constant force produced with the MTW is transduced to cells through super-paramagnetic beads attached to the cell membrane. Multiple sudden jumps in bead velocity were manifest in the recorded bead displacement-time profiles. These discrete events were interpreted as successive ruptures of individual tethers. Observation with scanning electron microscopy supported the simultaneous existence of multiple tethers. The physical characteristics, in particular, the number and viscoelastic properties of the extracted tethers were determined from the analytic fit to bead trajectories, provided by a standard model of viscoelasticity. Comparison of tethers formed with MTW and atomic force microscopy (AFM), a technique where the cantilever-force transducer is moved at constant velocity, revealed significant differences in the two methods of tether formation. Our findings imply that extreme care must be used to interpret the outcome of tether pulling experiments performed with single molecular techniques (MTW, AFM, optical tweezers, etc). First, the different methods may be testing distinct membrane structures with distinct properties. Second, as soon as a true cell membrane (as opposed to that of a vesicle) can attach to a substrate, upon pulling on it, multiple nonspecific membrane tethers may be generated. Therefore, under physiological conditions, distinguishing between tethers formed through specific and nonspecific interactions is highly nontrivial if at all possible.

  18. Eukaryotic membrane tethers revisited using magnetic tweezers.

    PubMed

    Hosu, Basarab G; Sun, Mingzhai; Marga, Françoise; Grandbois, Michel; Forgacs, Gabor

    2007-04-19

    Membrane nanotubes, under physiological conditions, typically form en masse. We employed magnetic tweezers (MTW) to extract tethers from human brain tumor cells and compared their biophysical properties with tethers extracted after disruption of the cytoskeleton and from a strongly differing cell type, Chinese hamster ovary cells. In this method, the constant force produced with the MTW is transduced to cells through super-paramagnetic beads attached to the cell membrane. Multiple sudden jumps in bead velocity were manifest in the recorded bead displacement-time profiles. These discrete events were interpreted as successive ruptures of individual tethers. Observation with scanning electron microscopy supported the simultaneous existence of multiple tethers. The physical characteristics, in particular, the number and viscoelastic properties of the extracted tethers were determined from the analytic fit to bead trajectories, provided by a standard model of viscoelasticity. Comparison of tethers formed with MTW and atomic force microscopy (AFM), a technique where the cantilever-force transducer is moved at constant velocity, revealed significant differences in the two methods of tether formation. Our findings imply that extreme care must be used to interpret the outcome of tether pulling experiments performed with single molecular techniques (MTW, AFM, optical tweezers, etc). First, the different methods may be testing distinct membrane structures with distinct properties. Second, as soon as a true cell membrane (as opposed to that of a vesicle) can attach to a substrate, upon pulling on it, multiple nonspecific membrane tethers may be generated. Therefore, under physiological conditions, distinguishing between tethers formed through specific and nonspecific interactions is highly nontrivial if at all possible.

  19. Transportation using spinning tethers with emphasis on phasing and plane change

    NASA Technical Reports Server (NTRS)

    Henderson, David G.

    1989-01-01

    This paper studies the potential uses of spinning tethers as components in a transportation system. Additional degrees of freedom in the selection of transfer orbits as well as phasing control are introduced by allowing both the spin rate of the tethers to be controllable and by allowing the ejection and capture points to be anywhere along the tether length. Equations are derived for the phasing of the planar transfer problem. A construction algorithm for nonplanar transfers is developed and nonplanar phasing conditions are examined.

  20. Tethers in space: Birth and growth of a new avenue to space utilization

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G.

    1984-01-01

    The evolution of the ideas of tether applications in space are traced from its origin in the last century past a dormant period of sixty-five years to the mid-seventies. At that time as a consequence of major revival efforts, NASA entered into serious investigations of the theoretical and practical feasibility of a large number of tethered concepts in space. These efforts culminated in the establishment of the Tethered Satellite System Project now at NASA in the advanced development phase. Extensive planning efforts are described, first, through a Tether Applications in Space Workshop which generated additional concepts and provided overall assessments and recommendations to NASA, and then through a NASA inter-center Tether Applications in Space Task Group which generated a four year program plan in the areas of further studies, technology, work and science and applications of tethers in space. An outlook into the future of tether applications that approaches some of the goals of the early visionaries is offered.

  1. Autonomous Vision-Based Tethered-Assisted Rover Docking

    NASA Technical Reports Server (NTRS)

    Tsai, Dorian; Nesnas, Issa A.D.; Zarzhitsky, Dimitri

    2013-01-01

    Many intriguing science discoveries on planetary surfaces, such as the seasonal flows on crater walls and skylight entrances to lava tubes, are at sites that are currently inaccessible to state-of-the-art rovers. The in situ exploration of such sites is likely to require a tethered platform both for mechanical support and for providing power and communication. Mother/daughter architectures have been investigated where a mother deploys a tethered daughter into extreme terrains. Deploying and retracting a tethered daughter requires undocking and re-docking of the daughter to the mother, with the latter being the challenging part. In this paper, we describe a vision-based tether-assisted algorithm for the autonomous re-docking of a daughter to its mother following an extreme terrain excursion. The algorithm uses fiducials mounted on the mother to improve the reliability and accuracy of estimating the pose of the mother relative to the daughter. The tether that is anchored by the mother helps the docking process and increases the system's tolerance to pose uncertainties by mechanically aligning the mating parts in the final docking phase. A preliminary version of the algorithm was developed and field-tested on the Axel rover in the JPL Mars Yard. The algorithm achieved an 80% success rate in 40 experiments in both firm and loose soils and starting from up to 6 m away at up to 40 deg radial angle and 20 deg relative heading. The algorithm does not rely on an initial estimate of the relative pose. The preliminary results are promising and help retire the risk associated with the autonomous docking process enabling consideration in future martian and lunar missions.

  2. Three-dimensional multi-tethered satellite formation with the elements moving along Lissajous curves

    NASA Astrophysics Data System (ADS)

    Yarotsky, D.; Sidorenko, V.; Pritykin, D.

    2016-07-01

    This note presents a novel approach to maintain three-dimensional multi-tethered satellite formation in space. For a formation consisting of a main body connected by tethers with several deputy satellites (the so-called "hub-and-spoke" configuration) we demonstrate that under proper choice of the system's parameters the deputy satellites can move along Lissajous curves in the plane normal to the local vertical with all tethers stretched; the total force due to the tension forces acting on the main satellite is balanced in a way allowing it to be in relative equilibrium strictly below or strictly above the system's center of mass. We analyze relations between the system's essential parameters and obtain conditions under which the proposed motion does take place. We also study analytically the motion stability for different configurations and whether the deputy satellites can collide or the tethers can entangle. Our theoretical findings are corroborated and validated by numerical experiments.

  3. Electrodynamic Tether Operations beyond the Ionosphere in the Low-Density Magnetosphere

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.

    2007-01-01

    In the classical concept for the operation of electrodynamic tethers in space, a voltage is generated across the tether, either by the tether's orbital motion through the earth's planetary magnetic field or by a power supply; electrons are then collected from the ionospheric plasma at the positive pole; actively emitted back into space at the negative pole; and the circuit is closed by currents driven through the ambient conducting ionosphere. This concept has been proven to work in space by the Tethered Satellite System TSS-1 and TSS-1R Space Shuttle missions; and the Plasma Motor-Generator (PMG) tether flight experiment. However, it limits electrodynamic tether operations to the F-region of the ionosphere where the plasma density is sufficient to conduct the required currents--in other words, between altitudes of approximately 200 to 1000 km in sunlight. In the earth's shadow, the ionospheric density drops precipitously and tether operations, using the above approach, are not effective--even within this altitude range. There are numerous missions that require in-space propulsion in the Earth's shadow and/or outside of the above altitude range. This paper will, therefore, present the fundamentals of a concept that would allow electrodynamic tethers to operate almost anywhere within the magnetosphere, the region of space containing the earth's planetary magnetic field. In other words, because operations would be virtually independent of any ambient plasma, the range of electrodynamic operations would be extended into the earth's shadow and out to synchronous orbit--forty times the present operational range. The key to this concept is the active generation of plasma at each pole of the tether so that current generation ,does not depend on the conductivity of the ambient ionosphere. Arguments will be presented, based on ,existing flight data, which shed light on the behavior of charge emissions in space and show the plausibility of the concept.

  4. Grid Sphere Electrodes used for Current Collection at the Positive Pole of Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Stone, N. H.; Moore, J. D.

    2004-01-01

    The generation of either electrical power or propulsive thrust with an electrodynamic tether system necessarily depends on driving a return current through the system's ambient space plasma environment. An electrical connection is, therefore, required between the plasma and each end of the tether. The voltage required to drive current through the system is derived either from the orbital motion of the conducting tether through the magnetic field of the Earth, or from a high-voltage power supply that taps into an external energy source (e.g., the sun). In either case, one end of the tether will receive a positive bias. This positive bias, between the tether and the ambient plasma, allows electrons to be collected effectively with a simple, passive electrode. Passive electrode contactors offer several important advantages, including simplification of the upper end-body design and operations, minimization of system mass, and an increase of system reliability and robustness. A preliminary analysis of an inflatable Grid-Sphere end-body concept is presented that is interesting because of the potential for collecting arbitrarily large currents independent of tether length, while the device has the physical characteristics of a high area-to-mass ratio, a low drag coefficient, and simplicity. In particular, we will discuss the physics of current collection by a biased Grid-Sphere and the present state-of-the-art of materials, attainable area-to-mass ratios, and deployment techniques.

  5. Tethered Capturing Scenarios in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Keramati Nigjeh, Behzad; Trivailo, Pavel; Blanksby, Chris

    To-date, a few actuation methods have been presented which enable zero differential velocity rendezvous for the tip of a space tether and a payload. Some researchers in the field have also investigated the futuristic, ambitious, tethered capturing scenarios for interplanetary transfers. This paper investigates some new and beneficial tethered space capturing scenarios, which can be implemented for near-term space mass/momentum transfer missions in Low Earth Orbit (LEO), by using currently available technology and resources. Zero differential velocity capture could be achieved by initiating a swinging motion in the tether before rendezvous. The lack of significant damping forces in space, means the swinging motion continues after capture, which is extremely undesirable for the retrieval phase and poses a serious danger for the platform as the payload approaches to it. Although exploiting space propulsion on the capturing device at the tip of the tether could stop the swinging motion of the tether directly after the capture, another alternative presented in this paper is to use the space propulsion to boost the payload to the same orbit as the platform. This has the benefit of dramatically reducing fuel consumption and accomplishment of the retrieval phase with low risk of impact to the platform. The numerical methods utilized in the dynamic simulation have been used to evaluate the efficiency of the tethered capturing scenarios mentioned above in comparison to the direct space capture and ideal Hohmann orbit transfer. The payload mass addition to the tip of the elastic tether at capture causes a longitudinal vibration mode (Bobbing mode) in the tether. Since the structural damping in the tether is negligible, a precise length rate/tension control could be used to dampen this mode in the first semi-period, demolishing any subsequent tension peak. This is a new mathematical non-linear control scheme, which is described for tension mitigation and damping of Bobbing

  6. Tethered Ozonesonde Measurements During FRAPPE July-August 2014

    NASA Astrophysics Data System (ADS)

    Oltmans, S. J.; Johnson, B.; Sterling, C. W.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Wendell, J.; Schnell, R. C.; McClure-Begley, A.; Thompson, A. M.

    2015-12-01

    O3 and temperature profiles were measured from tethered ozonesondes from surface to 400 m above ground level on 9 days during the summer of 2014 Colorado Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The portable tethered ozonesonde system was set up at one of 3 sites located next to a Colorado Department of Public Health and Environment surface monitoring station. The day and site chosen were based on the previous day O3 and weather forecast. Measurements typically began at 8:30 AM and ended at 4:30 PM, averaging 40 profiles in one day. The ozonesonde when sampling at the surface consistently read within 0-3 ppbv of the surface monitor at each of the sites with a typical daytime range of 20-90 ppbv. The hourly values were averaged at 50 meter intervals showing O3 production rates were consistently around 8 ppbv per hour from 50 to 300 meters above ground level. On sunny, light wind days the O3 mixing ratio reached a maximum of 80-90 ppbv between 14:00 and 15:00 local time. The generally constant mixing ratio with height and highest mixing ratios above the surface indicate that photochemical O3 production was taking place throughout the profile. Continuous O3 profiles from a tall tower (5 and 300 m) and daily ozonesondes tracked O3 variability through the experiment. High O3 at each site was associated with different local wind directions. At Ft. Collins winds were generally out of the southeast, at Chatfield from the northeast, and at City Park Golf Course more variable. The tether system was developed at NOAA/ESRL to provide a cost effective method to measure O3 profiles on a continuous basis. The tether system consisted of a deep sea fishing pole, electric motor driving the reel with light-weight fishing line attached to the balloon ozonesonde, a tether control box, and laptop. The in house software package monitored data and controlled the tether speed and turn-around point based on real time GPS altitude from the transmitting radiosonde.

  7. Tethers as Debris: Hydrocode Simulation of Impacts of Tether Fragments on Planar Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    Tethers promise to find use in a variety of space applications. Despite being narrow objects, their great lengths result in them having large total areas, and so tethers are quite susceptible to being severed by orbital debris. Extensive work has been done designing tethers that resist severs by small debris objects, and hence have longer working lives. It is from this perspective that most recent work has considered the tether - debris question. The potential of intact tethers, or severed tether fragments, as debris to pose a significant collision risk to other spacecraft has been less well studied. Understanding the consequences of such encounters is important in assessing the risks to other spacecraft posed by tethers. In this paper I discuss the damage that two types of tethers may produce on planar aerospace materials, as revealed by hyper- velocity impact simulations using the SPHC hydrodynamic code. Tether types considered include a single nylon line and a complex design including metal wires. Target materials considered include the aluminum plates typically used in debris shielding, and solar panels.

  8. Crowded, confined, and frustrated: dynamics of molecules tethered to nanoparticles.

    PubMed

    Agarwal, Praveen; Kim, Sung A; Archer, Lynden A

    2012-12-21

    Above a critical chemistry-dependent molecular weight, all polymer molecules entangle and, as a result, exhibit slow dynamics, enhanced viscosity, and elasticity. Herein we report on the dynamics of low molecular weight polymers tethered to nanoparticles and find that even conventionally unentangled chains manifest dynamical features similar to entangled, long-chain molecules. Our findings are shown to imply that crowding and confinement of polymers on particles produce topological constraints analogous to those in entangled systems.

  9. Tethered space recovery vehicle deployment/re-entry demonstration

    NASA Technical Reports Server (NTRS)

    Florence, D.

    1988-01-01

    The feasibility of utilizing existing Space Re-entry Vehicle (SRV) hardware for a Shuttle Orbiter-based tethered SRV deployment and re-entry demonstration using the Small Expendable Deployer System has been investigated. Options for mounting the SRV in the Orbiter, modifications and additions required to the existing SRV hardware have been defined. Flight demonstration scenarios from the Orbiter have been investigated, and re-entry motion and targeting uncertainties have been determined.

  10. Plasma Motor Generator (PMG) electrodynamic tether experiment

    NASA Technical Reports Server (NTRS)

    Grossi, Mario D.

    1995-01-01

    The Plasma Motor Generator (PMG) flight of June 26, 1993 has been the most sophisticated and most successful mission that has been carried out thus far with an electrodynamic tether. Three papers from the Smithsonian Astrophysical Observatory, Washington, DC concerned with the PMG, submitted at the Fourth International Space Conference on Tethers in Space, in Washington, DC, in April 1995, are contained in this document. The three papers are (1) Electromagnetic interactions between the PMG tether and the magneto-ionic medium of the Ionosphere; (2) Tether-current-voltage characteristics, as determined by the Hollow Cathode Operation Modes; and (3) Hawaii-Hilo ground observations on the occasion for the PMG flight of June 23, 1993.

  11. Tethered Test of Morpheus -- Innovation Day

    NASA Video Gallery

    Another tethered test of the Morpheus vertical test bed. This flight was on Innovation Day at Johnson Space Center. We had around 300 onlookers during this test. This test looked better than yester...

  12. Benefits and risks of using electrodynamic tethers to de-orbit spacecraft

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen; Hanada, Toshiya; Krisko, Paula H.

    2009-03-01

    By using electrodynamic drag to greatly increase the orbital decay rate, an electrodynamic space tether can remove spent or dysfunctional spacecraft from low Earth orbit (LEO) rapidly and safely. Moreover, the low mass requirements of such tether devices make them highly advantageous compared to conventional rocket-based de-orbit systems. However, a tether system is much more vulnerable to space debris impacts than a typical spacecraft and its design must be proved to be safe up to a certain confidence level before being adopted for potential applications. To assess space debris related concerns, in March 2001 a new task (Action Item 19.1) on the "Potential Benefits and Risks of Using Electrodynamic Tethers for End-of-life De-orbit of LEO Spacecraft" was defined by the Inter-Agency Space Debris Coordination Committee (IADC). Two tests were proposed to compute the fatal impact rate of meteoroids and orbital debris on space tethers in circular orbits, at different altitudes and inclinations, as a function of the tether diameter to assess the survival probability of an electrodynamic tether system during typical de-orbiting missions. IADC members from three agencies, the Italian Space Agency (ASI), the Japan Aerospace Exploration Agency (JAXA) and the US National Aeronautics and Space Administration (NASA), participated in the study and different computational approaches were specifically developed within the framework of the IADC task. This paper summarizes the content of the IADC AI 19.1 Final Report. In particular, it introduces the potential benefits and risks of using tethers in space, it describes the assumptions made in the study plan, it compares and discusses the results obtained by ASI, JAXA and NASA for the two tests proposed. Some general conclusions and recommendations are finally extrapolated from this massive and intensive piece of research.

  13. Phase behavior and complex crystal structures of self-assembled tethered nanoparticle telechelics.

    PubMed

    Marson, Ryan L; Phillips, Carolyn L; Anderson, Joshua A; Glotzer, Sharon C

    2014-01-01

    Motivated by growing interest in the self-assembly of nanoparticles for applications such as photonics, organic photovoltaics, and DNA-assisted designer crystals, we explore the phase behavior of tethered spherical nanoparticles. Here, a polymer tether is used to geometrically constrain a pair of nanoparticles creating a tethered nanoparticle "telechelic". Using simulation, we examine how varying architectural features, such as the size ratio of the two end-group nanospheres and the length of the flexible tether, affects the self-assembled morphologies. We demonstrate not only that this hybrid building block maintains the same phase diversity as linear triblock copolymers, allowing for a variety of nanoparticle materials to replace polymer blocks, but also that new structures not previously reported are accessible. Our findings imply a robust underlying ordering mechanism is common among these systems, thus allowing flexibility in synthesis approaches to achieve a target morphology.

  14. Adaptive sliding mode control of tethered satellite deployment with input limitation

    NASA Astrophysics Data System (ADS)

    Ma, Zhiqiang; Sun, Guanghui

    2016-10-01

    This paper proposes a novel adaptive sliding mode tension control method for the deployment of tethered satellite, where the input tension limitation is taken into account. The underactuated governing equations of the tethered satellites system are firstly derived based on Lagrangian mechanics theory. Considering the fact that the tether can only resist axial stretching, the tension input is modelled as input limitation. New adaptive sliding mode laws are addressed to guarantee the stability of the tethered satellite deployment with input disturbance, meanwhile to eliminate the effect of the limitation features of the tension input. Compared with the classic control strategy, the newly proposed adaptive sliding mode control law can deploy the satellite with smaller overshoot of the in-plane angle and implement the tension control reasonably and effectively in engineering practice. The numerical results validate the effectiveness of the proposed methods.

  15. Tethers in space handbook, second edition

    NASA Technical Reports Server (NTRS)

    Penzo, Paul A. (Editor); Ammann, Paul W. (Editor)

    1989-01-01

    The Tethers in Space Handbook, Second Edition represents an update to the initial volume issued in September 1986. As originally intended, this handbook is designed to serve as a reference manual for policy makers, program managers, educators, engineers, and scientists alike. It contains information for the uninitiated, providing insight into the fundamental behavior of tethers in space. For those familiar with space tethers, it includes a summary of past and ongoing studies and programs, a complete bibliography of tether publications, and names, addresses, and phone numbers of workers in the field. Perhaps its most valuable asset is the brief description of nearly 50 tether applications which have been proposed and analyzed over the past 10 years. The great variety of these applications, from energy generation to boosting satellites to gravity wave detection is an indication that tethers will play a significant part in the future of space development. This edition of the handbook preserves the major characteristics of the original; however, some significant rearrangements and additions have been made. The first section on Tether Programs has been brought up to date, and now includes a description of TSS-2, the aerodynamic NASA/Italian Space Agency (ASI) mission. Tether Applications follows, and this section has been substantially rearranged. First, the index and cross-reference for the applications have been simplified. Also, the categories have changed slightly, with Technology and Test changed to Aerodynamics, and the Constellations category removed. In reality, tether constellations may be applicable to many of the other categories, since it is simply a different way of using tethers. Finally, to separate out those applications which are obviously in the future, a Concepts category has been added. A new section included here on Conference Summaries recognizes the fact that the tether community is growing internationally, and that meetings provide a means of

  16. Magnetic cleanliness verification approach on tethered satellite

    NASA Technical Reports Server (NTRS)

    Messidoro, Piero; Braghin, Massimo; Grande, Maurizio

    1990-01-01

    Magnetic cleanliness testing was performed on the Tethered Satellite as the last step of an articulated verification campaign aimed at demonstrating the capability of the satellite to support its TEMAG (TEthered MAgnetometer) experiment. Tests at unit level and analytical predictions/correlations using a dedicated mathematical model (GANEW program) are also part of the verification activities. Details of the tests are presented, and the results of the verification are described together with recommendations for later programs.

  17. Tethered Space Satellite-1 (TSS-1): Technical Roundabouts

    NASA Technical Reports Server (NTRS)

    O'Connor, Brian; Stevens, Jennifer

    2016-01-01

    In the early 1990's US and Italian scientists collaborated to study the electrodynamics of dragging a satellite on a tether through the electrically charged portion of Earth's atmosphere called the ionosphere. An electrical current induced in the long wire could be used for power and thrust generation for a satellite. Other tether uses include momentum exchange, artificial gravity, deployment of sensors or antennas, and gravity-gradient stabilization for satellites. Before the Tethered Space Satellite (TSS-1), no long tether had ever been flown, so many questions existed on how it would actually behave. The TSS consisted of a satellite with science experiments attached to a 12.5 mile long, very thin (0.10 inch diameter) copper wire assembly wound around a spool in the deployer reel mechanism. With the Space Shuttle at an altitude of 160 nautical miles above earth, the satellite was to be deployed by raising it from the Shuttle bay on a boom facing away from Earth. Once cleared of the bay, the deployer mechanism was to slowly feed out the 12-plus miles of tether. Scientific data would be collected throughout the operation, after which the satellite would be reeled back in. Pre-flight testing system level tests involved setting up a tether receiver to catch the 12.5 mile tether onto another reel as it was being unwound by the deployer reel mechanism. Testing only the reel mechanism is straightforward. This test becomes more complicated when the TSS is mounted on the flight pallet at Kennedy Space Center (KSC). The system level tests must be passed before the pallet can be installed into the Space Shuttle cargo bay. A few months before flight, the TSS payload had been integrated onto the Spacelab pallet and system level tests, including unreeling and reeling the tether, had been successfully completed. Some of this testing equipment was then shipped back to the contractor Martin Marietta. Systems-level load analyses, which cannot be run until all information about

  18. Space time neural networks for tether operations in space

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1993-01-01

    A space shuttle flight scheduled for 1992 will attempt to prove the feasibility of operating tethered payloads in earth orbit. due to the interaction between the Earth's magnetic field and current pulsing through the tether, the tethered system may exhibit a circular transverse oscillation referred to as the 'skiprope' phenomenon. Effective damping of skiprope motion depends on rapid and accurate detection of skiprope magnitude and phase. Because of non-linear dynamic coupling, the satellite attitude behavior has characteristic oscillations during the skiprope motion. Since the satellite attitude motion has many other perturbations, the relationship between the skiprope parameters and attitude time history is very involved and non-linear. We propose a Space-Time Neural Network implementation for filtering satellite rate gyro data to rapidly detect and predict skiprope magnitude and phase. Training and testing of the skiprope detection system will be performed using a validated Orbital Operations Simulator and Space-Time Neural Network software developed in the Software Technology Branch at NASA's Lyndon B. Johnson Space Center.

  19. Formations of Tethered Spacecraft as Stable Platforms for Far IR and Sub-mm Astronomy

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.; Hadaegh, Fred Y.; Shao, Michael; Lorenzini, Enrico C.

    2004-01-01

    In this paper we describe current research in tethered formations for interferometry, and a roadmap to demonstrating the required key technologies via on-ground and in-orbit testing. We propose an integrated kilometer-size tethered spacecraft formation flying concept which enables Far IR and Sub-mm astronomy observations from space. A rather general model is used to predict the dynamics, control, and estimation performance of formations of spacecraft connected by tethers in LEO and deep space. These models include the orbital and tethered formation dynamics, environmental models, and models of the formation estimator/controller/commander. Both centralized and decentralized control/sensing/estimation schemes are possible, and dynamic ranges of interest for sensing/control are described. Key component/subsystem technologies are described which need both ground-based and in-orbit demonstration prior to their utilization in precision space interferometry missions using tethered formations. Defining an orbiting formation as an ensemble of orbiting spacecraft performing a cooperative task, recent work has demonstrated the validity of the tethering the spacecraft to provide both the required formation rigidity and satisfy the formation reconfiguration needs such as interferometer baseline control. In our concept, several vehicles are connected and move along the tether, so that to reposition them the connecting tether links must vary in length. This feature enables variable and precise baseline control while the system spins around the boresight. The control architecture features an interferometer configuration composed of one central combiner spacecraft and two aligned collector spacecraft. The combiner spacecraft acts as the formation leader and is also where the centralized sensing and estimation functions reside. Some of the issues analyzed with the model are: dynamic modes of deformation of the distributed structure, architecture of the formation sensor, and sources

  20. Biomimicry enhances sequential reactions of tethered glycolytic enzymes, TPI and GAPDHS.

    PubMed

    Mukai, Chinatsu; Gao, Lizeng; Bergkvist, Magnus; Nelson, Jacquelyn L; Hinchman, Meleana M; Travis, Alexander J

    2013-01-01

    Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase). We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices.

  1. Study of selected tether applications in space, phase 3, volume 2

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The results of a Phase 3 study of two Selected Tether Applications in Space (STAIS); deorbit of a Shuttle and launch of an Orbital Transfer Vehicle (OTV), both from the space station using a tether were examined. The study objectives were to: perform a preliminary engineering design, define operational scenarios, develop a common cost model, perform cost benefits analyses, and develop a Work Breakdown Structure (WBS). Key features of the performance analysis were to identify the net increases in effective Shuttle cargo capability if tethers are used to assist in the deorbit of Shuttles and the launching of the OTVs from the space station and to define deployer system designs required to accomplish these tasks. Deployer concepts were designed and discussed. Operational scenarios, including timelines, for both tethered and nontethered Shuttle and OTV operations at the space station were evaluated. A summary discussion of the Selected Tether Applications Cost Model (STACOM) and the results of the cost benefits analysis are presented. Several critical technologies needed to implement tether assisted deployment of payloads are also discussed. Conclusions and recommendations are presented.

  2. The mechanics of motorised momentum exchange tethers when applied to active debris removal from LEO

    SciTech Connect

    Caldecott, Ralph; Kamarulzaman, Dayangku N. S.; Kirrane, James P.; Cartmell, Matthew P.; Ganilova, Olga A.

    2014-12-10

    The concept of momentum exchange when applied to space tethers for propulsion is well established, and a considerable body of literature now exists on the on-orbit modelling, the dynamics, and also the control of a large range of tether system applications. The authors consider here a new application for the Motorised Momentum Exchange Tether by highlighting three key stages of development leading to a conceptualisation that can subsequently be developed into a technology for Active Debris Removal. The paper starts with a study of the on-orbit mechanics of a full sized motorised tether in which it is shown that a laden and therefore highly massasymmetrical tether can still be forced to spin, and certainly to librate, thereby confirming its possible usefulness for active debris removal (ADR). The second part of the paper concentrates on the modelling of the centripetal deployment of a symmetrical MMET in order to get it initialized for debris removal operations, and the third and final part of the paper provides an entry into scale modelling for low cost mission design and testing. It is shown that the motorised momentum exchange tether offers a potential solution to the removal of large pieces of orbital debris, and that dynamic methodologies can be implemented to in order to optimise the emergent design.

  3. The mechanics of motorised momentum exchange tethers when applied to active debris removal from LEO

    NASA Astrophysics Data System (ADS)

    Caldecott, Ralph; Kamarulzaman, Dayangku N. S.; Kirrane, James P.; Cartmell, Matthew P.; Ganilova, Olga A.

    2014-12-01

    The concept of momentum exchange when applied to space tethers for propulsion is well established, and a considerable body of literature now exists on the on-orbit modelling, the dynamics, and also the control of a large range of tether system applications. The authors consider here a new application for the Motorised Momentum Exchange Tether by highlighting three key stages of development leading to a conceptualisation that can subsequently be developed into a technology for Active Debris Removal. The paper starts with a study of the on-orbit mechanics of a full sized motorised tether in which it is shown that a laden and therefore highly massasymmetrical tether can still be forced to spin, and certainly to librate, thereby confirming its possible usefulness for active debris removal (ADR). The second part of the paper concentrates on the modelling of the centripetal deployment of a symmetrical MMET in order to get it initialized for debris removal operations, and the third and final part of the paper provides an entry into scale modelling for low cost mission design and testing. It is shown that the motorised momentum exchange tether offers a potential solution to the removal of large pieces of orbital debris, and that dynamic methodologies can be implemented to in order to optimise the emergent design.

  4. The Secret Life of Tethers: The Role of Tethering Factors in SNARE Complex Regulation.

    PubMed

    Dubuke, Michelle L; Munson, Mary

    2016-01-01

    Trafficking in eukaryotic cells is a tightly regulated process to ensure correct cargo delivery to the proper destination organelle or plasma membrane. In this review, we focus on how the vesicle fusion machinery, the SNARE complex, is regulated by the interplay of the multisubunit tethering complexes (MTC) with the SNAREs and Sec1/Munc18 (SM) proteins. Although these factors are used in different stages of membrane trafficking, e.g., Golgi to plasma membrane transport vs. vacuolar fusion, and in a variety of diverse eukaryotic cell types, many commonalities between their functions are being revealed. We explore the various protein-protein interactions and findings from functional reconstitution studies in order to highlight both their common features and the differences in their modes of regulation. These studies serve as a starting point for mechanistic explorations in other systems. PMID:27243006

  5. The Secret Life of Tethers: The Role of Tethering Factors in SNARE Complex Regulation

    PubMed Central

    Dubuke, Michelle L.; Munson, Mary

    2016-01-01

    Trafficking in eukaryotic cells is a tightly regulated process to ensure correct cargo delivery to the proper destination organelle or plasma membrane. In this review, we focus on how the vesicle fusion machinery, the SNARE complex, is regulated by the interplay of the multisubunit tethering complexes (MTC) with the SNAREs and Sec1/Munc18 (SM) proteins. Although these factors are used in different stages of membrane trafficking, e.g., Golgi to plasma membrane transport vs. vacuolar fusion, and in a variety of diverse eukaryotic cell types, many commonalities between their functions are being revealed. We explore the various protein-protein interactions and findings from functional reconstitution studies in order to highlight both their common features and the differences in their modes of regulation. These studies serve as a starting point for mechanistic explorations in other systems. PMID:27243006

  6. Currents between tethered electrodes in a magnetized laboratory plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Urrutia, J. M.

    1989-01-01

    Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.

  7. Using orbital tethers to remediate geomagnetic radiation belts

    NASA Astrophysics Data System (ADS)

    Hudoba de Badyn, Mathias; Marchand, Richard; Sydora, Richard D.

    2016-02-01

    The Van Allen radiation belts pose a hazard to spacecraft and astronauts, and similar radiation belts around other planets pose a hazard to interplanetary probes. We discuss a method of remediating these radiation belts first proposed by Danilov and Vasilyev, and recently improved by Hoyt, Minor, and Cash, where a long, charged tether is placed in orbit inside a radiation belt. In this approach, an electric field of the tether scatters the belt particles into a pitch angle loss cone leading to absorption of the particles in the atmosphere. A test particle calculation is presented which computes the scattered pitch angle of belt particles as a function of initial pitch angle and gyrophase for different particle energies. The moments of the resulting distribution of scattered angle versus initial pitch angle are used to compute the number density of the belt as a function of time using a Fokker-Planck diffusion approximation. Finally, we use the characteristic timescales of scattering for particles of different energies to discuss the feasibility of using such a system of tethers as a long and short-term remediation solution.

  8. Controlled Tethering Molecules via Crystal Surface Engineering

    NASA Astrophysics Data System (ADS)

    Cheng, Stephen Z. D.; Zheng, Joseph X.; Chen, William Y.

    2004-03-01

    So far, almost all experiments in tethering chain molecules onto substrates are via "grafting to" or "grafting from" polymerizations in addition to physical absorption. Issues concerning the uniformity of the tethered chain density and the molecular weight distribution of the chains tethered by polymerization always undermine the properties experimentally observed. We proposed a novel design to precisely control the tethering density of polystyrene (PS) brushes on a poly(ethylene oxide) (PEO) or a poly(L-lactic acid) (PLLA) lamellar crystal basal surface using PEO-b-PS or PLLA-b-PS diblock copolymers. As the crystallization temperature (Tc) increased in either a PEO-b-PS/mixed solution (chrolobenzene/octane) or a PLLA-b-PS/amyl acetate solution, the PEO or PLLA lamellar thickness (d) increased, and correspondingly, the number of folds per PEO or PLLA block was reduced. The reduced tethered density (Σ*) of the PS brushes thus increased. At an onset where the PS brushes are overcrowded within the solution, a drastic slope change in the relationship between (d)-1 and Tc occurs in both cases at a Σ* between 3 - 4. This illustrates that the weak to intermediate interaction changes of the PS brushes with their neighbors may be universally represented.

  9. Plasma Interactions With a Negative Biased Electrodynamic Tether

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Curtis, Leslie; Welzyn, Ken J.

    2004-01-01

    The ProSEDS conductive tether design incorporates two distinct types of tethers from a plasma interaction viewpoint. The 200 m closest to the Delta II spacecraft is insulated from the plasma, and the remaining 4800 m is semi-bare. This latter portion is considered semi-bare because a conductive coating, which is designed to collect electrons from the plasma, was applied to the wires to regulate the overall tether temperature. Because the tether has both insulating and conductive tether sections, a transition point exists between the two that forms a triple point with the space plasma. Also, insulated tethers can arc to the space plasma if the insulation is weakened or breached by pinholes caused by either improper handling or small meteoroid and orbital debris strikes. Because electrodynamic tethers are typically long, they have a high probability of these impacts. The particles, which strike the tether, may not have sufficient size to severe the tether, but they can easily penetrate the tether insulation producing a plasma discharge to the ambient plasma. Samples of both the ProSEDS tether transition region and the insulated tether section with various size of pinholes were placed into the MSFC plasma chamber and biased to typical ProSEDS open circuit tether potentials (-500 V to -1600 V). The results of the testing showed that the transition region of the tether (i.e. the triple point) arced to the ambient plasma at -900 V, and the tethers damaged by a pinhole or simulated debris strike arced to the plasma between -700 V and -900 V. Specific design steps were taken to eliminate the triple point issue in the ProSEDS tether design and make it ready for flight. To reduce the pinhole arcing risk, ProSEDS mission operations were changed to eliminate the high negative potential on the insulated tether. The results of the testing campaign and the design changes implemented to ensure a successful flight are described.

  10. Plasma Interactions with a Negative Biased Electrodynamic Tether

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Welzyn, Ken J.; Curtis, Leslie

    2003-01-01

    The ProSEDS conductive tether design incorporates two distinct types of tethers from a plasma interaction viewpoint. The 200 m closest to the Delta 11 spacecraft is insulated from the plasma, and the remaining 5000 m is semi-bare. This latter portion is semi-bare because it has a conductive coating applied to the wires to permit electron collection while also regulating the overall tether temperature. Because the tether possesses these two distinct types of tethers, a transition point exists between the two types that form a triple point with the space plasma. Insulated tethers can suffer from a second plasma interaction if the insulation is weakened or breached, such as by pinholes caused by small particle debris strikes. Because electrodynamic tethers are typically long, they have a high probability of such impacts. These impacting particles may not be of sufficient size to severe the tether, but they can easily be of sufficient size to damage the tether insulation. Samples of both the ProSEDS tether transition region and the insulated tether section (with various degrees of pinhole damage) were placed into the MSFC plasma chamber and biased to typical ProSEDS open circuit tether potentials (-500 V to -1600 V). The results of the testing showed that the transition region of the tether (i.e. the triple point) arced and burned the tether in two at -900 V, and the damaged insulated sections arced and burned in two between -1000 V and -1600, depending on the pinhole damage geometry. tether design and make the tether ready for flight. To reduce the pinhole arcing risk, ProSEDS mission operations were changed to eliminate the negative potential on the tether. The results of the testing campaign and the design changes implemented to ensure a successful flight will be described.

  11. A Model for Dynamic Simulation and Analysis of Tether Momentum Exchange

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen; Johnson, David; Sorensen, Kirk; Welzyn, Ken; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Momentum-exchange/electrodynamic reboost (MXER) tether systems may enable high-energy missions to the Moon, Mars, and beyond by serving as an 'upper stage in space'. Existing rockets that use an MXER tether station could double their capability to launch communications satellites and help improve US competitiveness. A MXER tether station would boost spacecraft from low Earth orbit to a high-energy orbit quickly, like a high-thrust rocket. Then, using the same principles that make an electric motor work, it would slowly rebuild its orbital momentum by pushing against the Earth's magnetic field-without using any propellant. One of the significant challenges in developing a momentum-exchange/electrodynamic reboost tether systems is in the analysis and design of the capture mechanism and its effects on the overall dynamics of the system. This paper will present a model for a momentum-exchange tether system that can simulate and evaluate the performance and requirements of such a system.

  12. Application of the NASCAP Spacecraft Simulation Tool to Investigate Electrodynamic Tether Current Collection in LEO

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi; HabashKrause, Linda

    2012-01-01

    Recent interest in using electrodynamic tethers (EDTs) for orbital maneuvering in Low Earth Orbit (LEO) has prompted the development of the Marshall ElectroDynamic Tether Orbit Propagator (MEDTOP) model. The model is comprised of several modules which address various aspects of EDT propulsion, including calculation of state vectors using a standard orbit propagator (e.g., J2), an atmospheric drag model, realistic ionospheric and magnetic field models, space weather effects, and tether librations. The natural electromotive force (EMF) attained during a radially-aligned conductive tether results in electrons flowing down the tether and accumulating on the lower-altitude spacecraft. The energy that drives this EMF is sourced from the orbital energy of the system; thus, EDTs are often proposed as de-orbiting systems. However, when the current is reversed using satellite charged particle sources, then propulsion is possible. One of the most difficult challenges of the modeling effort is to ascertain the equivalent circuit between the spacecraft and the ionospheric plasma. The present study investigates the use of the NASA Charging Analyzer Program (NASCAP) to calculate currents to and from the tethered satellites and the ionospheric plasma. NASCAP is a sophisticated set of computational tools to model the surface charging of three-dimensional (3D) spacecraft surfaces in a time-varying space environment. The model's surface is tessellated into a collection of facets, and NASCAP calculates currents and potentials for each one. Additionally, NASCAP provides for the construction of one or more nested grids to calculate space potential and time-varying electric fields. This provides for the capability to track individual particles orbits, to model charged particle wakes, and to incorporate external charged particle sources. With this study, we have developed a model of calculating currents incident onto an electrodynamic tethered satellite system, and first results are shown

  13. Space Station tethered refueling facility operations

    NASA Technical Reports Server (NTRS)

    Kiefel, E. R.; Rudolph, L. K.; Fester, D. A.

    1986-01-01

    The space-based orbital transfer vehicle will require a large cryogenic fuel storage facility at the Space Station. An alternative to fuel storage onboard the Space Station, is on a tethered orbital refueling facility (TORF) which is separated from the Space Station by a sufficient distance to induce a gravity gradient to settle the propellants. Facility operations are a major concern associated with a tethered LO2/LH2 storage depot. A study was carried out to analyze these operations so as to identify the preferred TORF deployment direction (up or down) and whether the TORF should be permanently or intermittently deployed. The analyses considered safety, contamination, rendezvous, servicing, transportation rate, communication, and viewing. An upwardly, intermittently deployed facility is the preferred configuration for a tethered cryogenic fuel storage.

  14. Analytical investigation of the dynamics of tethered constellations in Earth orbit (phase 2)

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.

    1987-01-01

    Simulation of two short distance crawling maneuvers of the elevator both with and without environmental perturbations acting upon the system is discussed. These simulation runs were performed in order to provide results useful for the interpretation of the data from the tests, on the ground, of a scaled down engineering model of the elevator. In these simulation runs the elevator crawls along the tether in accordance to the developed mirror image motion control law (MIMCL). Results from the simulation of the 4 km long maneuver run were compared to those obtained by adopting the modified hyperbolic tangent control law (MHTCL). A preprocessor was developed for setting up the initial conditions of a tethered system with L platforms, M longitudinal dampers, and N lumped masses (platforms plus tether beads). A short test run of the 4-platform system with 3 longitudinal dampers and 10 lumper mass without any perturbation acting upon the system is illustrated. In support of the Tether Applications Working Group, SAO is preparing a catalog of tether simulations, has prepared a set of simulator test cases, obtained results from SKYHOOK, and solicited results from simulators at other institutions, and prepared a paper on a specific analytic solution.

  15. Space tethers for science in the space station era; Proceedings of the Second International Conference, Venice, Italy, Oct. 4-8, 1987

    NASA Technical Reports Server (NTRS)

    Guerriero, Luciano (Editor); Bekey, Ivan (Editor)

    1988-01-01

    Various papers on space tethers are presented. The general topics addressed include: the space program context for tethers, early experimental validation of tethers, tether dynamics simulations, electrodynamics aspects of tethers, and tethers for science and innovative uses. Also considered are: tethers in space, tether dynamics, tethers on stations and platforms, and tether technology.

  16. Mesoscale modeling and computer simulation of tethered nanoparticle "Shape-amphiphile" assemblies

    NASA Astrophysics Data System (ADS)

    Iacovella, Christopher R.

    In this dissertation, we explore the use of polymer-tethered nanoparticles as a means to self-assemble highly ordered arrays of nanoparticles and nanometer-sized domains. We perform Brownian dynamics simulations to study the self-assembly of polymer functionalized spherical and rod-like nanoparticles. Immiscibility between tethers and nanoparticles facilitates assembly into highly ordered structures reminiscent of phases formed by surfactants and block copolymers, but with greater complexity. We explore the influence of key factors such as the nanoparticle size and shape, tether architecture, solvent selectivity, and bulk volume fraction on the resulting structures. In this thesis we perform several studies. First, we explore the phase behavior of mono-tethered nanospheres. Under solvent conditions that are poor for the tethers, we find phase behavior that is similar to surfactants with structures including lamellae, perforated lamellae, hexagonally packed cylinders, and spherical micelles. We report quasicrystalline-like ordering between the spherical micelles and propose an entropic model to explain this behavior. We also explore the phase behavior of a mono-tethered nanosphere system where nanospheres are in poor solvent. We find phases similar to surfactants including lamellae, perforated lamellae, double gyroid, and hexagonally packed cylinders. We see a predominance of icosahedral arrangements of nanospheres in phases with 2D confinement and crystalline packing of nanospheres in structures with 1D confinement. We also compare and contrast the formation of the double gyroid structure for tethered nanospheres and tethered nanorods. We show that the ability of the nanoparticles to locally order into icosahedra (nanospheres) and hexagonally splayed bundles (nanorods) reduces packing frustration making these structures more stable than their block copolymer counterparts. We also explore the phase behavior of di-tethered nanospheres. We find a complex phase

  17. CATCHR, HOPS and CORVET tethering complexes share a similar architecture.

    PubMed

    Chou, Hui-Ting; Dukovski, Danijela; Chambers, Melissa G; Reinisch, Karin M; Walz, Thomas

    2016-08-01

    We show here that the Saccharomyces cerevisiae GARP complex and the Cog1-4 subcomplex of the COG complex, both members of the complexes associated with tethering containing helical rods (CATCHR) family of multisubunit tethering complexes, share the same subunit organization. We also show that HOPS, a tethering complex acting in the endolysosomal pathway, shares a similar architecture, thus suggesting that multisubunit tethering complexes use related structural frameworks. PMID:27428774

  18. Protein synthesis by ribosomes with tethered subunits.

    PubMed

    Orelle, Cédric; Carlson, Erik D; Szal, Teresa; Florin, Tanja; Jewett, Michael C; Mankin, Alexander S

    2015-08-01

    The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.

  19. Tethered acoustic doppler current profiler platforms for measuring streamflow

    USGS Publications Warehouse

    Rehmel, Michael S.; Stewart, James A.; Morlock, Scott E.

    2003-01-01

    A tethered-platform design with a trimaran hull and 900-megahertz radio modems is now commercially available. Continued field use has resulted in U.S. Geological Survey procedures for making tethered-platform discharge measurements, including methods for tethered-boat deployment, moving-bed tests, and measurement of edge distances.

  20. Centralized Dynamics and Control of Novel Orbiting Formations of Tethered Spacecraft

    NASA Astrophysics Data System (ADS)

    Quadrelli, Marco B.; Hadaegh, Fred Y.

    acting as leader of the tethered formation. An application of this problem arises when a distributed sensor array formed by a chain of tethered data-gathering vehicles is being commanded to reconfigure from a remote location by the formation leader. Another application is in radar mapping where multiple free-flying vehicles synthesize multiple apertures with the main tethered vehicle for increased coverage. In this way, a centralized control architecture distributes the information flow among the members of the sensor array. Defining an orbiting formation as an ensemble of orbiting spacecraft performing a cooperative task, we point out that, until now, only spacecraft modeled as rigid bodies have been analyzed in the literature of orbiting formations and constellations. After the formation is in place, one may identify what is known as the virtual truss, i.e. the connection between the elements of the formation, which provides structural rigidity on account of the information flow between them. Our problem is different than conventional formation dynamics problems in that the presence of a tethered spacecraft within the formation demands an investigation of the dynamics coupling between spacecraft caused by tether viscoelasticity. The dynamics model takes into account the orbital and spacecraft dynamics of each vehicle. The control architecture features a separated spacecraft, which has visibility to the entire group of tethered vehicles. This vehicle is the leader of the formation, and ensures that the spacecraft on the tether remain connected and move according to a pre-specified program. The control system design consists of a proportional-derivative feedback plus acceleration feedforward. This ensures that modeling errors are compensated appropriately, and that the commanded slew is tracked accurately. The leader is also where the centralized estimator is located. This estimator continuously updates the state of the formation and estimates inter

  1. Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael; Stone, Nobie

    2014-01-01

    The PROPEL ("Propulsion using Electrodynamics") flight demonstration mission concept will demonstrate the use of an electrodynamic tether (EDT) for generating thrust, which will allow the propulsion system to overcome the limitations of the rocket equation. The mission concept has been developed by a team of government, industry, and academia partners led by NASA Marshall Space Flight Center (MSFC). PROPEL is being designed for versatility of the EDT system with multiple end users in mind and to be flexible with respect to platform. Previously, we reported on a comprehensive mission design for PROPEL with a mission duration of six months or longer with multiple mission goals including demonstration of significant boost, deboost, inclination change, and drag make-up activities. To explore a range of possible configurations, primarily driven by cost considerations, other mission concept designs have been pursued. In partnership with the NASA's Office of Chief Technologist (OCT) Game Changing Program, NASA MSFC Leadership, and the MSFC Advanced Concepts Office, a mission concept design was developed for a near-term EDT propulsion flight validation mission. The Electrodynamic Tether Propulsion Study (ETPS) defined an EDT propulsion system capable of very large delta-V for use on future missions developed by NASA, DoD, and commercial customers. To demonstrate the feasibility of an ETPS, the study focused on a space demonstration mission concept design with configuration of a pair of tethered satellite busses, one of which is the Japanese H-II Transfer Vehicle (HTV). The HTV would fly its standard ISS resupply mission. When resupply mission is complete, the ISS reconfigures and releases the HTV to perform the EDT experiment at safe orbital altitudes below the ISS. Though the focus of this particular mission concept design addresses a scenario involving the HTV or a similar vehicle, the propulsion system's capability is relevant to a number of applications, as noted above

  2. Yielding elastic tethers stabilize robust cell adhesion.

    PubMed

    Whitfield, Matt J; Luo, Jonathon P; Thomas, Wendy E

    2014-12-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds.

  3. Conjunctions and Collision Avoidance with Electrodynamic Tethers

    NASA Astrophysics Data System (ADS)

    Levin, E.

    2013-09-01

    Electrodynamic propulsion technology is currently in development by NASA, ESA, and JAXA for the purpose of affordable removal of large debris objects from LEO. At the same time, the Naval Research Laboratory is preparing a 3U CubeSat with a 1-km electrodynamic tether for a flight demonstration of electrodynamic propulsion. This type of propulsion does not require fuel. The electrodynamic thrust is the Lorentz force acting on the electric current in a long conductor (tether) in the geomagnetic field. Electrons are collected from the ambient plasma on one end and emitted back into the plasma from the other end. The electric current loop is closed through the ionosphere, as demonstrated in two previous flights. The vehicle is solar powered. To support safe navigation of electrodynamic tethers, proper conjunction analysis and collision avoidance strategies are needed. The typical lengths of electrodynamic tethers for near-term applications are measured in kilometers, and the conjunction geometry is very different from the geometry of conjunctions between compact objects. It is commonly thought that the collision cross-section in a conjunction between a tether and a compact object is represented by the product of the tether length and the size of the object. However, rigorous analysis shows that this is not the case, and that the above assumption leads to grossly overestimated collision probabilities. The paper will present the results of a detailed mathematical analysis of the conjunction geometry and collision probabilities in close approaches between electrodynamic tethers and compact objects, such as satellites, rocket bodies, and debris fragments. Electrodynamic spacecraft will not require fuel, and therefore, can thrust constantly. Their orbit transfers can take many days, but can result in major orbit changes, including large rotations of the orbital plane, both in the inclination and the node. During these orbit transfers, the electrodynamic spacecraft will

  4. Tethered Space Satellite-1 (TSS-1): Wound About a Bolt

    NASA Technical Reports Server (NTRS)

    O'Connor, Brian; Stevens, Jennifer

    2016-01-01

    In the early 1990's US and Italian scientists collaborated to study the electrodynamics on a long tether between two satellites as it moved through the electrically charged portion of Earth's atmosphere called the ionosphere. Potential uses for the electrical current induced in the long wire include power and thrust generation for a satellite, momentum exchange, artificial gravity, deployment of sensors or antennas, and gravity-gradient stabilization. The Tethered Space Satellite (TSS) was a first-of-its-kind experiment with long tethers in space. It consisted of a satellite with science experiments attached to a 12.5 mile long, very thin (0.10 inch diameter) copper wire assembly wound around a spool in the deployer reel mechanism. The whole mechanism sits on a pallet that is installed into the Shuttle bay. At an altitude of 160 nautical miles above earth, the satellite would be deplodeployed from the Shuttle bay by raising it on a boom facing away from Earth. Once cleared of the bay, the deployer mechanism would slowly feed out the 12-plus miles of tether. Scientific data would be collected throughout the operation, after which the satellite would be reeled back in. A receiver spool to catch the 12.5 mile tether as it was being unwound by the deployer reel mechanism was set up to do the system-level test of deployer real mechanism prior to installing the loaded pallet into the Shuttle bay. The system level tests were required before the pallet could be installed into the Space Shuttle cargo bay. A few months before flight, the system level tests, including unreeling and reeling the tether, were completed at Kennedy Space Center (KSC) and the TSS payload was installed onto the Spacelab pallet. Some of this testing equipment was then shipped back to the contractor, Martin Marietta. Integration with the Shuttle began. Systems-level load analyses, which cannot be run until all information about each payload is finalized, was run in parallel with the physical

  5. Ice-Tethered Profiler Contributions to the Arctic Observing Network

    NASA Astrophysics Data System (ADS)

    Toole, J.; Krishfield, R.; Proshutinsky, A.; Timmermans, M.

    2008-12-01

    One of the hoped-for legacies of the International Polar Year is a sustained observational program such as the Arctic Observing Network to document and build understanding of future climate and ecosystem change. In the spirit of the now-operational international Argo float program, investigators from North America, Europe and Japan are collaborating to deploy drifting, ice-based observatory instrument systems on and below floes in the Arctic to sample the polar atmosphere-ice-ocean system and to make the resulting data available to researchers world-wide in real time. One element of these observatories is the WHOI Ice-Tethered Profiler, first deployed in August 2004. The ITP consists of a surface float and electronics package that sits atop an ice floe, a weighted, plastic-jacketed wire-rope tether extending from the surface float through the ice and down to 750-800 m depth, and a profiling vehicle with sensor package that moves up and down the tether. To date, 30 ITP systems (funded by research programs in 5 countries) have been deployed in the Arctic that together have returned more than 10,000 high-vertical-resolution temperature and salinity profiles spanning approximately 7 to 760 m depth over all seasons. Examples of the science being conducted with these data will be presented, along with performance statistics for the ITP instruments and engineering improvements/enhancements that are being implemented. Plans for sustaining the ITP contribution to the Arctic Observing Network will also be reviewed and future international collaborations invited.

  6. Microcinematographic analysis of tethered Leptospira illini.

    PubMed Central

    Charon, N W; Daughtry, G R; McCuskey, R S; Franz, G N

    1984-01-01

    A model of Leptospira motility was recently proposed. One element of the model states that in translating cells the anterior spiral-shaped end gyrates counterclockwise and the posterior hook-shaped end gyrates clockwise. We tested these predictions by analyzing cells tethered to a glass surface. Leptospira illini was incubated with antibody-coated latex beads (Ab-beads). These beads adhered to the cells, and subsequently some cells became attached to either the slide or the cover glass via the Ab-beads. As previously reported, these cells rapidly moved back and forth across the surface of the beads. In addition, a general trend was observed: cells tethered to the cover glass rotated clockwise around the Ab-bead; cells tethered to the slide rotated counterclockwise around the Ab-bead. A computer-aided microcinematographic analysis of tethered cells indicated that the direction of rotation of cells around the Ab-bead was a function of both the surface of attachment and the shape of the cell ends. The results can best be explained by assuming that the gyrating ends interact with the glass surface to cause rotation around the Ab-beads. The analysis obtained indicates that the hook- and spiral-shaped ends rotate in the directions predicted by the model. In addition, the tethered cell assay permitted detection of rapid, coordinated reversals of the cell ends, e.g., cells rapidly switched from a hook-spiral configuration to a spiral-hook configuration. These results suggest the existance of a mechanism which coordinates the shape of the cell ends of L. illini. Images PMID:6501226

  7. Tangling of Tethered Swimmers: Interactions between Two Nematodes

    NASA Astrophysics Data System (ADS)

    Backholm, Matilda; Schulman, Rafael D.; Ryu, William S.; Dalnoki-Veress, Kari

    2014-09-01

    The tangling of two tethered microswimming worms serving as the ends of "active strings" is investigated experimentally and modeled analytically. C. elegans nematodes of similar size are caught by their tails using micropipettes and left to swim and interact at different separations over long times. The worms are found to tangle in a reproducible and statistically predictable manner, which is modeled based on the relative motion of the worm heads. Our results provide insight into the intricate tangling interactions present in active biological systems.

  8. Technology update: Tethered aerostat structural design and material developments

    NASA Technical Reports Server (NTRS)

    Witherow, R. G.

    1975-01-01

    Requirements exist for an extremely stable, high performance, all-weather tethered aerostat system. This requirement has been satisfied by a 250,000 cubic foot captive buoyant vehicle as demonstrated by over a year of successful field operations. This achievement required significant advancements in several technology areas including composite materials design, aerostatics and aerodynamics, structural design, electro-mechanical design, vehicle fabrication and mooring operations. This paper specifically addresses the materials and structural design aspects of pressurized buoyant vehicles as related to the general class of Lighter Than Air vehicles.

  9. Phase 3 study of selected tether applications in space. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engineering designs were developed relative to a tethered launch assist from the Shuttle for payloads up to 10,000 kg mass and the tethering of a 15,000 kg science platform from the space station. These designs are used for a cost benefit analysis which assesses the feasibility of using such systems as a practical alternative to what would otherwise be accomplished by conventional means. The term conventional as related to both these applications is intended to apply to the use of some form(s) of chemical propulsion system.

  10. Tether-Based Investigation of the Ionosphere and Lower Thermosphere Concept Definition Study Report

    NASA Technical Reports Server (NTRS)

    Johnson, L. (Editor); Herrmann, M. (Editor)

    1997-01-01

    Understanding the plasma and atmosphere around the Earth in the lower altitude regions of the mesosphere, lower thermosphere, and ionosphere is important in the global electric system. An upper atmosphere tether has been proposed to NASA that would collect much-needed data to further our knowledge of the regions. The mission is proposed as a shuttle experiment that would lower a tethered probe into certain regions of Earth's atmosphere, collecting data over a 6-day period. This report is a summary of the results of a concept definition study to design engineering system that will achieve the scientific objectives of this mission.

  11. Study of certain launching techniques using long orbiting tethers

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Arnold, D. A.

    1981-01-01

    A study of the basic equations governing orbital transfers using long orbiting tethers is presented. A very simple approximation to the general transfer equation is derived for the case of short tethers and low eccentricity orbits. Numerical examples are calculated for the case of injection into a circular orbit from a platform in eccentric orbit and injection into eccentric orbit from a platform in circular orbit. For the case of long tethers, a method is derived for reducing tether mass and increasing payload mass by tapering the tether to maintain constant stress per unit of tether cross section. Formulas are presented for calculating the equilibrium orbital parameters taking into account the mass of the platform, tether, and payload.

  12. Interference of the surface of the solid on the performance of tethered molecular catalysts.

    PubMed

    Hong, Junghyun; Zaera, Francisco

    2012-08-01

    The catalytic performance of cinchonidine in the promotion of thiol additions to conjugated ketones was used as a probe to assess the tethering of molecular functionality onto solid surfaces using well-known "click" chemistry involving easy-to-react linkers. It has been assumed in many applications that the tethered molecules retain their chemical properties and dominate the chemistry of the resulting solid systems, but it is shown here that this is not always the case. Indeed, a loss of enantioselectivity was observed upon tethering, which could be accounted for by a combination of at least three effects: (1) the nonselective catalytic activity of the surface of the solid itself; (2) the activity of the OH species generated by hydrolysis of some of the Si-alkoxy groups in the trialkoxy moieties used to bind many linkers to oxide surfaces; and (3) the bonding of the molecule to be tethered directly to the surface. Several ideas were also tested to minimize these problems, including the silylation of the active OH groups within the surface of the oxide support, the selection of solvents to optimize silane polymerization and minimize their breaking up via hydrolysis or alcoholysis reactions, and the linking at defined positions in the molecule to be tethered in order to minimize its ability to interact with the surface.

  13. Computer program for the load and trajectory analysis of two DOF bodies connected by an elastic tether: Users manual

    NASA Technical Reports Server (NTRS)

    Doyle, G. R., Jr.; Burbick, J. W.

    1973-01-01

    The derivation of the differential equations of motion of a 3 Degrees of Freedom body joined to a 3 Degrees of Freedom body by an elastic tether. The tether is represented by a spring and dashpot in parallel. A computer program which integrates the equations of motion is also described. Although the derivation of the equations of motions are for a general system, the computer program is written for defining loads in large boosters recovered by parachutes.

  14. Drop Tower tests in preparation of a Tethered Electromagnetic Docking space demonstration

    NASA Astrophysics Data System (ADS)

    Olivieri, Lorenzo; Francesconi, Alessandro; Antonello, Andrea; Bettiol, Laura; Branz, Francesco; Duzzi, Matteo; Mantellato, Riccardo; Sansone, Francesco; Savioli, Livia

    2016-07-01

    A group of students of the University of Padova is recently developing some technologies to implement a Tethered Electromagnetic Docking (TED) experiment, a novel system for close rendezvous and mating manoeuvres between two spacecraft, consisting in a small tethered probe ejected by the chaser and magnetically guided by a receiving electromagnet mounted on the target. Because of the generated magnetic field, automatic self-alignment and mating are possible; then, as the tether is rewinded, the chaser is able to dock with the target. This concept allows to simplify standard docking procedures, thanks to the reduction of proximity navigation and guidance requirements, as well as consequent fuel reduction. Other interesting applications are expected, from active debris removal to space tugging; in particular, the utilization of the tethered connection for detumbling operations is considered. The realization of a space demonstrator requires a preliminary verification of the critical technologies employed in TED, in particular the magnetic guidance and the probe deploy and retrieve; in the framework of ESA "Drop your Thesis!" 2014 and 2016 campaigns the experiments FELDs (Flexible Electromagnetic Leash Docking system) and STAR (System for Tether Automatic Retrieval) have been focused on the test of such critical elements in the relevant microgravity environment of ZARM Drop Tower in Bremen. In particular, FELDs consisted in a simplified model of TED with a magnetic target interface, a passive tethered probe and its launch system: the experiment allowed to assess the passive self-alignment of the probe with respect to the target and to study the effect of friction between the tether and the release system. Similarly, STAR is investigating the tether actively controlled deployment and retrieval, with the experiment campaign planned on November 2016. In addition, another microgravity experiment is in preparation for the investigation of active magnetic navigation: PACMAN

  15. Stability analysis and trend study of a balloon tethered in a wind, with experimental comparisons

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bland, S. R.; Bennett, R. M.

    1973-01-01

    A stability analysis and trend study for a balloon tethered in a steady wind are presented. The linearized, stability-derivative type analysis includes balloon aerodynamics, buoyancy, mass (including apparent mass), and static forces resulting from the tether cable. The analysis has been applied to a balloon 7.64 m in length, and the results are compared with those from tow tests of this balloon. This comparison shows that the analysis gives reasonable predictions for the damping, frequencies, modes of motion, and stability boundaries exhibited by the balloon. A trend study for the 7.64-m balloon was made to illustrate how the stability boundaries are affected by changes in individual stability parameters. The trends indicated in this study may also be applicable to many other tethered-balloon systems.

  16. Construction and structural analysis of tethered lipid bilayer containing photosynthetic antenna proteins for functional analysis.

    PubMed

    Sumino, Ayumi; Dewa, Takehisa; Takeuchi, Toshikazu; Sugiura, Ryuta; Sasaki, Nobuaki; Misawa, Nobuo; Tero, Ryugo; Urisu, Tsuneo; Gardiner, Alastair T; Cogdell, Richard J; Hashimoto, Hideki; Nango, Mamoru

    2011-07-11

    The construction and structural analysis of a tethered planar lipid bilayer containing bacterial photosynthetic membrane proteins, light-harvesting complex 2 (LH2), and light-harvesting core complex (LH1-RC) is described and establishes this system as an experimental platform for their functional analysis. The planar lipid bilayer containing LH2 and/or LH1-RC complexes was successfully formed on an avidin-immobilized coverglass via an avidin-biotin linkage. Atomic force microscopy (AFM) showed that a smooth continuous membrane was formed there. Lateral diffusion of these membrane proteins, observed by a fluorescence recovery after photobleaching (FRAP), is discussed in terms of the membrane architecture. Energy transfer from LH2 to LH1-RC within the tethered membrane was observed by steady-state fluorescence spectroscopy, indicating that the tethered membrane can mimic the natural situation.

  17. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    PubMed Central

    Andersson, Jakob; Köper, Ingo

    2016-01-01

    Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties. PMID:27249006

  18. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function.

    PubMed

    Andersson, Jakob; Köper, Ingo

    2016-01-01

    Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties. PMID:27249006

  19. The Study of the Tether Motion with Time-Varying Length Using the Absolute Nodal Coordinate Formulation with Multiple Nonlinear Time Scales

    NASA Astrophysics Data System (ADS)

    Kawaguti, Keisuke; Terumichi, Yoshiaki; Takehara, Shoichiro; Kaczmarczyk, Stefan; Sogabe, Kiyoshi

    In this study, the modeling and formulation for tether motion with time-varying length, large rotation, large displacement and large deformation are proposed. A tether or cable is an important element in lift systems, construction machines for transportation and often is used with a time-varying length. In some cases, these systems are large and the tether has a long length, large deformation and large displacement. The dynamic behavior of a tether in extension and retraction using the proposed method is discussed in this paper. In the passage through resonance, significant tether motions with large rotation and large deformation result. In the analysis of this phenomenon, the transient fluctuations of the motion amplitudes are examined and compared with the corresponding steady state motions. The accuracy and the cost of the calculations are also verified by comparison with the experimental results.

  20. Precision tethered satellite attitude control. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert J.

    1990-01-01

    Tethered spacecraft possess unique dynamic characteristics which make them advantageous for certain classes of experiments. One use for which tethers are particularly well suited is to provide an isolated platform for spaceborne observatories. The advantages of tethering a pointing platform 1 or 2 km from a space shuttle or space station are that, compared to placing the observatory on the parent spacecraft, vibrational disturbances are attenuated and contamination is eliminated. In practice, all satellites have some requirement on the attitude control of the spacecraft, and tethered satellites are no exception. It has previously been shown that conventional means of performing attitude control for tethered satellites are insufficient for any mission with pointing requirements more stringent than about 1 deg. This is due mainly to the relatively large force applied by the tether to the spacecraft. A particularly effective method of implementing attitude control for tethered satellites is to use this tether tension force to generate control torques by moving the tether attach point relative to the subsatellite center of mass. A demonstration of this attitude control technique on an astrophysical pointing platform has been proposed for a space shuttle flight test project and is referred to as the Kinetic Isolation Tether Experiment (KITE).

  1. Cholesterol-based tethers and markers for model membranes investigation.

    PubMed

    Eicher-Lorka, O; Charkova, T; Matijoška, A; Kuodis, Z; Urbelis, G; Penkauskas, T; Mickevičius, M; Bulovas, A; Valinčius, G

    2016-02-01

    A series of new bifunctional cholesterol compounds for tethered bilayer membrane (tBLM) systems were synthesized and tested. The compounds containing cyclic disulfide group may be used as molecular anchors for phospholipid bilayers. Anchoring occurs through the insertion of the cholesterol moiety into the hydrophobic slab of the phospholipid layer, while the surface density of anchor molecules may be adjusted using disulfides terminated spacers. Five ethylene oxide segments between the disulfide group and the cholesteryl provide hydration of the layer separating solid support and model membrane. Another group of cholesterol derivatives described in this work contains either fluorescence probe or electroactive functional groups. We demonstrated the practical utility of these compounds for visualization of cholesterol extraction from and loading to tBLMs. We demonstrated that electroactive group containing cholesterol derivatives can be reconstituted either into vesicles or tBLMs. In both cases an electrochemical signal can be generated on electrodes from these probes. In general, the newly synthesized compound may be utilized in a variety of applications involving tethered bilayer systems and vesicles.

  2. Dynamics and Power Generation Potential from a Tethered Kite Moving in a Horizontal Flightpath

    NASA Astrophysics Data System (ADS)

    Gavi, Glenn Romo

    Tethered-wing power systems are a viable possibility for collecting energy from stronger, more consistent winds found in the upper regions of the atmosphere where conventional wind turbines are incapable of reaching. To date, all of the tethered-wing systems fly with the tether oriented down-wind of the ground attachment point. Examined here are the dynamics and performance of a novel system where the tether is oriented both upwind and downwind of the ground attachment point during normal operation of the device. Certain prototypes built by Makani and Ampyx Power are considered to have motions analogous to the motions of the blade tips on conventional horizontal-axis wind turbines. If true, this system has motions that are analogous to conventional vertical-axis wind turbines. The system has a ground-based generator which is mechanical coupled to the aircraft and energy is generated on the reel-out phase of each cycle while a smaller amount of energy is consumed during the reel-in phase of each cycle. A simple model was developed which captures the dominant dynamics of this system and shows, via simulation, that the proposed system is viable and capable of stable and unstable periodic motions with a simulated closed-loop tether tension controller or a simple open loop reel-rate controller. In addition, it is capable of motions which produce net positive power. The small system examined, where parameter optimization was not performed, predicts an average cycle power of more than 500 watts in a 10 m/s wind.

  3. Coat/Tether Interactions-Exception or Rule?

    PubMed

    Schroeter, Saskia; Beckmann, Sabrina; Schmitt, Hans Dieter

    2016-01-01

    Coat complexes are important for cargo selection and vesicle formation. Recent evidence suggests that they may also be involved in vesicle targeting. Tethering factors, which form an initial bridge between vesicles and the target membrane, may bind to coat complexes. In this review, we ask whether these coat/tether interactions share some common mechanisms, or whether they are special adaptations to the needs of very specific transport steps. We compare recent findings in two multisubunit tethering complexes, the Dsl1 complex and the HOPS complex, and put them into context with the TRAPP I complex as a prominent example for coat/tether interactions. We explore where coat/tether interactions are found, compare their function and structure, and comment on a possible evolution from a common ancestor of coats and tethers. PMID:27243008

  4. Coat/Tether Interactions—Exception or Rule?

    PubMed Central

    Schröter, Saskia; Beckmann, Sabrina; Schmitt, Hans Dieter

    2016-01-01

    Coat complexes are important for cargo selection and vesicle formation. Recent evidence suggests that they may also be involved in vesicle targeting. Tethering factors, which form an initial bridge between vesicles and the target membrane, may bind to coat complexes. In this review, we ask whether these coat/tether interactions share some common mechanisms, or whether they are special adaptations to the needs of very specific transport steps. We compare recent findings in two multisubunit tethering complexes, the Dsl1 complex and the HOPS complex, and put them into context with the TRAPP I complex as a prominent example for coat/tether interactions. We explore where coat/tether interactions are found, compare their function and structure, and comment on a possible evolution from a common ancestor of coats and tethers. PMID:27243008

  5. Rigorous approaches to tether dynamics in deployment and retrieval

    NASA Technical Reports Server (NTRS)

    Antona, Ettore

    1987-01-01

    Dynamics of tethers in a linearized analysis can be considered as the superposition of propagating waves. This approach permits a new way for the analysis of tether behavior during deployment and retrieval, where a tether is composed by a part at rest and a part subjected to propagation phenomena, with the separating section depending on time. The dependence on time of the separating section requires the analysis of the reflection of the waves travelling toward the part at rest. Such a reflection generates a reflected wave, whose characteristics are determined. The propagation phenomena of major interest in a tether are transverse waves and longitudinal waves, all mathematically modelled by the vibrating chord equations, if the tension is considered constant along the tether. An interesting problem also considered is concerned with the dependence of the tether tension from the longitudinal position, due to microgravity, and the influence of this dependence on the propagation waves.

  6. Isothermal pumping analysis for high-altitude tethered balloons.

    PubMed

    Kuo, Kirsty A; Hunt, Hugh E M

    2015-06-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe. PMID:26543573

  7. Behavior and dynamics of the tethered bacterium Thiovulum majus

    NASA Astrophysics Data System (ADS)

    Petroff, Alexander; Libchaber, Albert

    2014-03-01

    The organization of microorganisms into communities plays a vital role in determining how nutrients flow through an ecosystem. Here we use a combination of experimental observations and mathematical analysis to investigate a simple example of community formation and dynamics. In their natural environment, Thiovulum majus cells attach to surfaces using a tether. As a tethered cell beats its flagella, it creates a flow that pulls nutrients to the cell. As cells form a dense community, fluctuations in cell density drive large-scale convective flows that pull nutrients through the water. We show how the behavior of cells responding to the flow of nutrients through the community gives rise to soliton-like collective modes that efficiently stir the environment. Additionally, we present new techniques for visualizing the flow of nutrients through these communities and the resulting collective phenomena. Because these dynamics arise from hydrodynamic coupling between cells and their environment, this system can be understood using classical techniques from fluid mechanics. In this way, T. majus communities provide a tractable example of the general behavior of community formation in response to nutrient flow.

  8. Isothermal pumping analysis for high-altitude tethered balloons

    PubMed Central

    Kuo, Kirsty A.; Hunt, Hugh E. M.

    2015-01-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe. PMID:26543573

  9. Cardiorespiratory adjustments to tethered-swimming in the horse.

    PubMed

    Thomas, D P; Fregin, G F; Gerber, N H; Ailes, N B

    1980-05-01

    The cardiorespiratory and metabolic responses to various levels of tethered-swimming were evaluated in 5 sedentary horses. Cardiac output (Q) and heart rate (HR) correlated highly (r = 0.89 and 0.94 respectively) with work effort (WE) expressed as kg pulled . kg body wt-1 . 10-2. While swimming, stroke volume (SV) was reduced at the lowest workloads, but increased with increasing WE so that at the highest workloads it had returned to the on-land standing SV. Pressures in the pulmonic as well as on both sides of the systemic circulation were considerably elevated by this form of exercise, although only mean carotid artery pressure (CAP) correlated highly (r = 0.83) with WE. During tethered-swimming plasma lactic acid (LA) rose exponentially from 1 to 10 mmol . 1-1 with increasing HR over the range 150-200 beats . min-1. Oxygen uptake (VO2) increased linearly (r = 0.95) from 25-112 ml . kg-1. min-1 over the We range of 3.0-7.8 kg pulled . kg body wt-1. 10-2. The aerobic capacity of the equine species would appear to be twice that of man. The greater increase in VO2 in the exercising horse cannot be explained solely on the basis of increases in Q. Therefore alterations in hematocrit, hemoglobin and oxygen extraction appear to play a more important role in the horse during exercise than they do in man.

  10. Tethers as Debris: Simulating Impacts of Tether Fragments on Shuttle Tiles

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.

    2004-01-01

    The SPHC hydrodynamic code was used to simulate impacts of Kevlar and aluminum projectiles on a model of the LI-900 type insulating tiles used on Space Shuffle Orbiters The intent was to examine likely damage that such tiles might experience if impacted by orbital debris consisting of tether fragments. Projectile speeds ranged from 300 meters per second to 10 kilometers per second. Damage is characterized by penetration depth, tile surface-hole diameter, tile body-cavity diameter, coating fracture diameter, tether and cavity wall material phases, and deformation of the aluminum backwall.

  11. The stochastic dynamics of tethered microcantilevers in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Robbins, Brian A.; Radiom, Milad; Ducker, William A.; Walz, John Y.; Paul, Mark R.

    2014-10-01

    We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether which shows excellent agreement. Using numerical simulations, we quantify the correlated dynamics of the cantilever pair over a range of tether stiffness. Our results quantify the sensitivity of the auto- and cross-correlations of equilibrium fluctuations in cantilever displacement to the stiffness of the tether. We show that the tether affects the magnitude of the correlations which can be used in a measurement to probe the properties of an attached tethering substance. For the configurations of current interest using micron scale cantilevers in water, we show that the magnitude of the fluid coupling between the cantilevers is sufficiently small such that the influence of the tether can be significant. Our results show that the cross-correlation is more sensitive to tether stiffness than the auto-correlation indicating that a two-cantilever measurement has improved sensitivity when compared with a measurement using a single cantilever.

  12. Membrane tether formation from outer hair cells with optical tweezers.

    PubMed Central

    Li, Zhiwei; Anvari, Bahman; Takashima, Masayoshi; Brecht, Peter; Torres, Jorge H; Brownell, William E

    2002-01-01

    Optical tweezers were used to characterize the mechanical properties of the outer hair cell (OHC) plasma membrane by pulling tethers with 4.5-microm polystyrene beads. Tether formation force and tether force were measured in static and dynamic conditions. A greater force was required for tether formations from OHC lateral wall (499 +/- 152 pN) than from OHC basal end (142 +/- 49 pN). The difference in the force required to pull tethers is consistent with an extensive cytoskeletal framework associated with the lateral wall known as the cortical lattice. The apparent plasma membrane stiffness, estimated under the static conditions by measuring tether force at different tether length, was 3.71 pN/microm for OHC lateral wall and 4.57 pN/microm for OHC basal end. The effective membrane viscosity was measured by pulling tethers at different rates while continuously recording the tether force, and estimated in the range of 2.39 to 5.25 pN x s/microm. The viscous force most likely results from the viscous interactions between plasma membrane lipids and the OHC cortical lattice and/or integral membrane proteins. The information these studies provide on the mechanical properties of the OHC lateral wall is important for understanding the mechanism of OHC electromotility. PMID:11867454

  13. The stochastic dynamics of tethered microcantilevers in a viscous fluid

    SciTech Connect

    Robbins, Brian A.; Paul, Mark R.; Radiom, Milad; Ducker, William A.; Walz, John Y.

    2014-10-28

    We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether which shows excellent agreement. Using numerical simulations, we quantify the correlated dynamics of the cantilever pair over a range of tether stiffness. Our results quantify the sensitivity of the auto- and cross-correlations of equilibrium fluctuations in cantilever displacement to the stiffness of the tether. We show that the tether affects the magnitude of the correlations which can be used in a measurement to probe the properties of an attached tethering substance. For the configurations of current interest using micron scale cantilevers in water, we show that the magnitude of the fluid coupling between the cantilevers is sufficiently small such that the influence of the tether can be significant. Our results show that the cross-correlation is more sensitive to tether stiffness than the auto-correlation indicating that a two-cantilever measurement has improved sensitivity when compared with a measurement using a single cantilever.

  14. A new tether system for captive raptors

    USGS Publications Warehouse

    Ellis, D.H.

    1995-01-01

    Several types of jesses are used to restrain captive raptors. The Hollywood jess described here has been tested on six species during two decades. Like the Aylmeri jess now in common use in North America, the Hollywood jess consists of a removable rolled button jess and an anklet. Unlike the Aylmeri anklet, however, the Hollywood anklet can be removed and reattached without restraining the bird. This anklet makes the Hollywood jess the safest of all jesses. It can also be used repeatedly on different individuals and allows for the bird to be released in its pen or to the wild without encumbrances.

  15. Open-Loop Thrust Profile Development for Tethered Towing of Large Space Objects

    NASA Astrophysics Data System (ADS)

    Jasper, Lee E. Z.

    Towing objects in space has become an increasingly researched mission concept. Active debris removal, satellite servicing, and asteroid retrieval concepts in many cases rely on a thrusting vehicle to redirect and steer a passive object. Focus is often placed on the method of attachment, considering techniques such as grappling or netting the passive object. However, the actual process of towing, once capture has occurred, has not yet received much attention. This research considers the process of towing in space with the tug and passive object attached by a tether. Tethers are not only an effective way of transmitting forces, but they are utilized on many of the towing concepts considered, especially in orbital debris removal. Because the two end bodies are tethered, there is a potential for collision after any maneuver. To avoid collisions, the maneuver, and therefore thrust profile, must be designed in such a way as to limit separation distance reduction between the end bodies. Open-loop input shaping techniques are developed and employed in order to control the flexible system in both deep space and on-orbit environments. To study the behavior, an active debris removal system is proposed as a case study. This system, called the tethered-tug, considers using the reserve fuel from a recently launched upper stage rocket to rendezvous with, capture, and tow a near-by debris object. The system's performance is considered for five distinct open-loop thrust control profiles including on-off/step, frequency notched, discretized notch, Posicast, and bang-off-bang. Tether property variations are also considered along with off-axis towing, slack tethers, and debris with initial rotation rates. Input shaping is not only necessary but, it can be robust to unknown system properties while nearly zeroing relative motion between the end bodies. When considering on-orbit behavior specifically, the system settles into a tumbling or gravity gradient oscillation formation. This is

  16. Analysis and design of a friction brake for momentum exchange propulsion tethers

    NASA Astrophysics Data System (ADS)

    Lennert, Simone; Cartmell, Matthew P.

    2003-11-01

    The purpose of this paper is to present an engineering assessment of a proposal for a deployment brake for a momentum exchange tether. Tethers have attracted considerable interest amongst the propulsion community for many years for orbit raising, energy conversion, de-orbiting, and injection into interplanetary transfers, and the motivation for the work described in the paper is directly mission-oriented. The YES2 SpaceMail mission has been planned as a low-cost international effort to provide a facility for the return of small samples from the ISS back to Earth, based on an inflatable re-entry capsule and a mechanical tether system. The system will be lofted into orbit as part of a payload on a Foton/Bion rocket launcher. The brake design concept is based on the use of friction between the deploying tether and a short pole onto which several turns are wound, and the paper summarises the modelling work that has been done, and then discusses an experiment in which the premise was tested in the laboratory. The paper concludes with certain practical proposals for implementation.

  17. Analysis and design of a friction brake for momentum exchange propulsion tethers

    NASA Astrophysics Data System (ADS)

    Lennert, Simone; Cartmell, Matthew P.

    2006-10-01

    The purpose of this paper is to present an engineering assessment of a proposal for a deployment brake for a momentum exchange tether. Tethers have attracted considerable interest amongst the propulsion community for many years for orbit raising, energy conversion, de-orbiting, and injection into interplanetary transfers, and the motivation for the work described in the paper is directly mission-oriented. The YES2 SpaceMail mission has been planned as a low-cost international effort to provide a facility for the return of small samples from the ISS back to Earth, based on an inflatable re-entry capsule and a mechanical tether system. The system will be lofted into orbit as part of a payload on a Foton/Bion rocket launcher. The brake design concept is based on the use of friction between the deploying tether and a short pole onto which several turns are wound, and the paper summarises the modelling work that has been done, and then discusses an experiment in which the premise was tested in the laboratory. The paper concludes with certain practical proposals for implementation.

  18. Aerobic and anaerobic performances in tethered swimming.

    PubMed

    Papoti, M; da Silva, A S R; Araujo, G G; Santiago, V; Martins, L E B; Cunha, S A; Gobatto, C A

    2013-08-01

    The purpose of this study was to investigate whether the critical force (CritF) and anaerobic impulse capacity (AIC) - estimated by tethered swimming - reflect the aerobic and anaerobic performance of swimmers. 12 swimmers performed incremental test in tethered swimming to determine lactate anaerobic threshold (AnTLAC), maximal oxygen uptake ( ˙VO2MAX) and force associated with the ˙VO2MAX (i ˙VO2MAX). The swimmers performed 4 exhaustive (tlim) exercise bouts (100, 110, 120 and 130% i ˙VO2MAX) to compute the CritF and AIC (F vs. 1/tlim model); a 30-s all-out tethered swimming bout to determine their anaerobic fitness (ANF); 100, 200, and 400-m time-trials to determine the swimming performance. CritF (57.09±11.77 N) did not differ from AnTLAC (53.96±11.52 N, (P>0.05) but was significantly lower than i ˙VO2MAX (71.02±8.36 N). In addition, CritF presented significant correlation with AnTLAC (r=0.76; P<0.05) and i ˙VO2MAX (r=0.74; P<0.05). On the other hand, AIC (286.19±54.91 N.s) and ANF (116.10±13.66 N) were significantly correlated (r=0.81, p<0.05). In addition, CritF and AIC presented significant correlations with all time-trials. In summary, this study demonstrates that CritF and AIC can be used to evaluate AnTLAC and ANF and to predict 100, 200, and 400-m free swimming.

  19. Molecular Crowding Effects on Microgel-Tethered Oligonucleotide Probes.

    PubMed

    Ma, Youlong; Libera, Matthew

    2016-06-28

    Microgel tethering is a nontraditional method with which to bind oligonucleotide hybridization probes to a solid surface. Microgel-tethering physically positions the probes away from the underlying hard substrate and maintains them in a highly waterlike environment. This paper addresses the question of whether molecular crowding affects the performance of microgel-tethered molecular beacon probes. The density of probe-tethering sites is controlled experimentally using thin-film blends of biotin-terminated [PEG-B] and hydroxyl-terminated [PEG-OH] poly(ethylene glycol) from which microgels are synthesized and patterned by electron beam lithography. Fluorescence measurements indicate that the number of streptavidins, linear DNA probes, hairpin probes, and molecular beacon probes bound to the microgels increases linearly with increasing PEG-B/PEG-OH ratio. For a given tethering-site concentration, more linear probes can bind than structured probes. Crowding effects emerge during the hybridization of microgel-tethered molecular beacons but not during the hybridization of linear probes, as the tethering density increases. Crowding during hybridization is associated with conformational constraints imposed by the close proximity of closed and hybridized structured probes. The signal-to-background ratio (SBR) of hybridized beacons is highest and roughly constant for low tethering densities and decreases at the highest tethering densities. Despite differences between microgel tethering and traditional oligonucleotide surface-immobilization approaches, these results show that crowding defines an optimum tethering density for molecular beacon probes that is less than the maximum possible, which is consistent with previous studies involving various linear and structured oligonucleotide probes. PMID:27253904

  20. Molecular Crowding Effects on Microgel-Tethered Oligonucleotide Probes.

    PubMed

    Ma, Youlong; Libera, Matthew

    2016-06-28

    Microgel tethering is a nontraditional method with which to bind oligonucleotide hybridization probes to a solid surface. Microgel-tethering physically positions the probes away from the underlying hard substrate and maintains them in a highly waterlike environment. This paper addresses the question of whether molecular crowding affects the performance of microgel-tethered molecular beacon probes. The density of probe-tethering sites is controlled experimentally using thin-film blends of biotin-terminated [PEG-B] and hydroxyl-terminated [PEG-OH] poly(ethylene glycol) from which microgels are synthesized and patterned by electron beam lithography. Fluorescence measurements indicate that the number of streptavidins, linear DNA probes, hairpin probes, and molecular beacon probes bound to the microgels increases linearly with increasing PEG-B/PEG-OH ratio. For a given tethering-site concentration, more linear probes can bind than structured probes. Crowding effects emerge during the hybridization of microgel-tethered molecular beacons but not during the hybridization of linear probes, as the tethering density increases. Crowding during hybridization is associated with conformational constraints imposed by the close proximity of closed and hybridized structured probes. The signal-to-background ratio (SBR) of hybridized beacons is highest and roughly constant for low tethering densities and decreases at the highest tethering densities. Despite differences between microgel tethering and traditional oligonucleotide surface-immobilization approaches, these results show that crowding defines an optimum tethering density for molecular beacon probes that is less than the maximum possible, which is consistent with previous studies involving various linear and structured oligonucleotide probes.

  1. Guidebook for analysis of tether applications

    NASA Technical Reports Server (NTRS)

    Carroll, J. A.

    1985-01-01

    This guidebook is intended as a tool to facilitate initial analyses of proposed tether applications in space. The guiding philosophy is that a brief analysis of all the common problem areas is far more useful than a detailed study in any one area. Such analyses can minimize the waste of resources on elegant but fatally flawed concepts, and can identify the areas where more effort is needed on concepts which do survive the initial analyses. The simplified formulas, approximations, and analytical tools included should be used only for preliminary analyses. For detailed analyses, the references with each topic and in the bibliography may be useful.

  2. Design Rules and Analysis of a Capture Mechanism for Rendezvous between a Space Tether and Payload

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk F.; Canfield, Stephen L.; Norris, Marshall A.

    2006-01-01

    Momentum-exchange/electrodynamic reboost (MXER) tether systems have been proposed to serve as an "upper stage in space". A MXER tether station would boost spacecraft from low Earth orbit to a high-energy orbit quickly, like a high-thrust rocket. Then, it would slowly rebuild its orbital momentum through electrodynamic thrust, minimizing the use of propellant. One of the primary challenges in developing a momentum-exchange/electrodynamic reboost tether system as identified by the 2003 MXER Technology Assessment Group is in the development of a mechanism that will enable the processes of capture, carry and release of a payload by the rotating tether as required by the MXER tether approach. This paper will present a concept that will achieve the desired goals of the capture system. This solution is presented as a multi-DOF (degree-of-freedom) capture mechanism with nearly passive operation that features matching of the capture space and expected window of capture error, efficient use of mass and nearly passive actuation during the capture process. This paper will describe the proposed capture mechanism concept and provide an evaluation of the concept through a dynamic model and experimental tests performed on a prototype article of the mechanism in a dynamically similar environment. This paper will also develop a set of rules to guide the design of such a capture mechanism based on analytical and experimental analyses. The primary contributions of this paper will be a description of the proposed capture mechanism concept, a collection of rules to guide its design, and empirical and model information that can be used to evaluate the capability of the concept

  3. Periplasmic superoxide dismutase SodCI of Salmonella binds peptidoglycan to remain tethered within the periplasm

    PubMed Central

    Kim, Byoungkwan; Slauch, James M.

    2015-01-01

    Summary Salmonellae survive and propagate in macrophages to cause serious systemic disease. Periplasmic superoxide dismutase plays a critical role in this survival by combating phagocytic superoxide. Salmonella Typhimurium strain 14028 produces two periplasmic superoxide dismutases, SodCI and SodCII. Although both proteins are produced during infection, only SodCI is functional in the macrophage phagosome. We have previously shown that SodCI, relative to SodCII, is both protease resistant and tethered within the periplasm, and that either of these properties is sufficient to allow a SodC to protect against phagocytic superoxide. Tethering is defined as remaining cell-associated after osmotic shock or treatment with cationic antimicrobial peptides. Here we show that SodCI non-covalently binds peptidoglycan. SodCI binds to Salmonella and Bacillus peptidoglycan, but not peptidoglycan from Staphylococcus. Moreover, binding can be inhibited by a diaminopimelic acid containing tripeptide, but not a lysine containing tripeptide, showing that the protein recognizes the peptide portion of the peptidoglycan. Replacing nine amino acids in SodCII with the corresponding residues from SodCI confers tethering, partially delineating an apparently novel peptidoglycan binding domain. These changes in sequence increase the affinity of SodCII for peptidoglycan fragments to match that of SodCI, and allow the now tethered SodCII to function during infection. PMID:25998832

  4. Bare-tether cathodic contact through thermionic emission by low-work-function materials

    SciTech Connect

    Chen Xin; Sanmartin, J. R.

    2012-07-15

    A new material, C12A7:e{sup -} electride, which might present a work function as low as 0.6 eV and moderately high temperature stability, was recently proposed as coating for floating bare tethers. Arising from heating under space operation, current is emitted by thermionic emission along a thus coated cathodic segment. A preliminary study on the space-charge-limited (SCL) double layer in front of the cathodic segment is presented using Langmuir's SCL electron current between cylindrical electrodes and orbital-motion-limited ion-collection sheath. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects and the transition from SCL to full Richardson-Dushman emission included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission leads to a short cathodic section and may eliminate the need for an active cathodic device and its corresponding gas feed requirements and power subsystem, which results in a truly 'propellant-less' tether system for such basic applications as de-orbiting low earth orbit satellites.

  5. Electrodynamic aspects of the first tethered satellite mission

    SciTech Connect

    Dobrowolny, M.; Melchioni, E.

    1993-08-01

    They authors provide a brief review of the physics basis for the tethered satellite program whose development began in 1984. They describe the electrodynamic effects which can be seen or induced by means of a conducting tether orbiting through the ionosphere. They also describe the first mission, in terms of the equipment, mission objective, and the actual experiment launched in July 1992.

  6. Motor activity of pregnant tethered sows.

    PubMed

    Cariolet, R; Dantzer, R

    1984-01-01

    Continuous recording of body postures (standing or lying) using photocells connected to an event recorder was carried out on 125 pregnant sows tethered either by a thoracic girth or by a neck harness in six different farms, at different times of the year. Standing activity occupied an average of 250 min per day. This position occurred mainly during daytime, with amount of standing during the night (10 p.m. to 6 p.m.) averaging less than 2% of the total time. This mean value was found in 4 farms out of 6. However, on one farm, standing postures lasted 390 min and this hyperactivity was associated with stereotypes. In another farm, time spent standing did not exceed 180 min. In all cases, multiparous sows spent about 60% more time standing than first or second litter sows. Time spent standing was dependent on other animal characteristics such as physical condition and foot condition, and also on environmental factors. Activity rhythms were synchronized by food distribution. These results are discussed together with the potential of using motor activity to characterize adaptability of sows to tethering.

  7. Lipid Gymnastics: Tethers and Fingers in membrane

    NASA Astrophysics Data System (ADS)

    Tayebi, Lobat; Miller, Gregory; Parikh, Atul

    2009-03-01

    A significant body of evidence now links local mesoscopic structure (e.g., shape and composition) of the cell membrane with its function; the mechanisms by which cellular membranes adopt the specific shapes remain poorly understood. Among all the different structures adopted by cellular membranes, the tubular shape is one of the most surprising one. While their formation is typically attributed to the reorganization of membrane cytoskeleton, many exceptions exist. We report the instantaneous formation of tubular membrane mesophases following the hydration under specific thermal conditions. The shapes emerge in a bimodal way where we have two distinct diameter ranges for tubes, ˜20μm and ˜1μm, namely fat fingers and narrow tethers. We study the roughening of hydrated drops of 3 lipids in 3 different spontaneous curvatures at various temp. and ionic strength to figure out the dominant effect in selection of tethers and fingers. Dynamics of the tubes are of particular interest where we observe four distinct steps of birth, coiling, uncoiling and retraction with different lifetime on different thermal condition. These dynamics appear to reflect interplay between membrane elasticity, surface adhesion, and thermal or hydrodynamic gradient.

  8. The conical pendulum: the tethered aeroplane

    NASA Astrophysics Data System (ADS)

    Mazza, Anthony P.; Metcalf, William E.; Cinson, Anthony D.; Lynch, John J.

    2007-01-01

    The introductory physics lab curriculum usually has one experiment on uniform circular motion (UCM). Physics departments typically have several variable-speed rotators in storage that, if they work, no longer work well. Replacing these rotators with new ones is costly, especially when they are only used once a year. This article describes how an inexpensive (ap10) tethered aeroplane, powered by a small electric motor, can be used to study UCM. The aeroplane is easy to see and entertaining to watch. For a given string length and air speed, a tethered aeroplane quickly finds a stable, horizontal, circular orbit. Using a digital video (DV) camcorder, VideoPoint Capture, QuickTime player, metre sticks and a stopwatch, data on the aeroplane's motion were obtained. The length of the string was varied from 120 to 340 cm while the air speed ranged from 200 to 480 cm s-1. For each string length and air speed, the period of the orbit and the diameter of the path were carefully measured. Theoretical values of path radii were then calculated using Newton's second law. The agreement between experiment and theory was usually better than 2%.

  9. DOE Geothermal Data Repository - Tethering Data to Information: Preprint

    SciTech Connect

    Weers, J.; Anderson, A.

    2014-02-01

    Data are not inherently information. Without context, data are just numbers, figures, names, or points on a line. By assigning context to data, we can validate ideas, form opinions, and generate knowledge. This is an important distinction to information scientists, as we recognize that the context in which we keep our data plays a big part in generating its value. The mechanisms used to assign this context often include their own data, supplemental to the data being described and defining semantic relationships, commonly referred to as metadata. This paper provides the status of the DOE Geothermal Data Repository (DOE GDR), including recent efforts to tether data submissions to information, discusses the important distinction between data and information, outlines a path to generate useful knowledge from raw data, and details the steps taken in order to become a node on the National Geothermal Data System (NGDS).

  10. An electronic interface for a fiber optic tethered unmanned underwater vehicle

    NASA Astrophysics Data System (ADS)

    Sheakoski, J. R.

    1994-04-01

    As the sophistication of acoustic sensor and communication systems related to unmanned underwater vehicles (UUV) has increased, the requirement for greater volume and higher speed data transfers has emerged. Fiber optic technology provides an effective means for high bandwidth communications with a UUV while minimizing weight and space criteria aboard the UUV. Increase in data transmission speed has permitted real time processing of data on the launch platform when using large high powered computing systems. Maximum system reliability at advanced performance levels can also be realized. By designing and developing a full scale system comprised of the UUV, remote control and command platform, and data handling and routing electronics, fiber optic tethered UUV technology was demonstrated in lab field tests. This three year venture culminated in a series of successful in-water tests that proved the feasibility of fiber optic tethered UUV's and warranted the continuation of research on remotely operated UUV's.

  11. Study of selected tether applications in space, phase 3, volume 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A dual keel space station configuration was used. The Mobility System, created for moving components over one face of the Space Station, makes it possible to use a single tether deployer system for both Orbit Transfer Vehicles (OTV) and Shuttle launches. Deployer concepts ranging from a minimum capability system that can deorbit the Shuttle from a maximum altitude of 370 km to a full capability system that can deploy the OTN with 9,072 kg of payload and using 150 km of tether were designed and discussed. Results of the cost benefits analyses are discussed. Conclusions and recommendations for implementing a specific design configuration and for future development and study activities are presented.

  12. Formation and finite element analysis of tethered bilayer lipid structures.

    PubMed

    Kwak, Kwang Joo; Valincius, Gintaras; Liao, Wei-Ching; Hu, Xin; Wen, Xuejin; Lee, Andrew; Yu, Bo; Vanderah, David J; Lu, Wu; Lee, L James

    2010-12-01

    Rapid solvent exchange of an ethanolic solution of diphytanoyl phosphatidylcholine (DPhyPC) in the presence of a mixed self-assembled monolayer (SAM) [thiolipid/β-mercaptoethanol (βME) (3/7 mol/mol) on Au] shows a transition from densely packed tethered bilayer lipid membranes [(dp)tBLMs], to loosely packed tethered bilayer lipid membranes [(lp)tBLMs], and tethered bilayer liposome nanoparticles (tBLNs) with decreasing DPhyPC concentration. The tethered lipidic constructs in the aqueous medium were analyzed by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). Finite element analysis (FEA) was applied to interpret spectral EIS features without referring to equivalent circuit modeling. Using structural data obtained earlier from neutron reflectometry and dielectric constants of lipid bilayers, we reproduced experimentally observed features of the electrochemical impedance (EI) spectra of complex surface constructs involving small pinhole defects, large membrane-free patches, and bound liposomes. We demonstrated by FEA that highly insulating (dp)tBLMs with low-defect density exhibit EI spectra in the shape of a perfect semicircle with or without low-frequency upward "tails" in the Cole-Cole representation. Such EI spectra were observed at DPhyPC concentrations of >5 × 10(-3) mol L(-1). While AFM was not able to visualize very small lateral defects in such films, EI spectra unambiguously signaled their presence by increased low frequency "tails". Using FEA we demonstrate that films with large diameter visible defects (>25 nm by AFM) produce EI spectral features consisting of two semicircles of comparable size. Such films were typically obtained at DPhyPC concentrations of <5 × 10(-3) mol L(-1). At DPhyPC concentrations of <1.0 × 10(-3) mol L(-1) the planar bilayer structures were replaced by ellipsoidal liposomes with diameters ranging from 50 to 500 nm as observed in AFM images. Despite the distinct surface morphology change, the EI

  13. Formation and finite element analysis of tethered bilayer lipid structures.

    PubMed

    Kwak, Kwang Joo; Valincius, Gintaras; Liao, Wei-Ching; Hu, Xin; Wen, Xuejin; Lee, Andrew; Yu, Bo; Vanderah, David J; Lu, Wu; Lee, L James

    2010-12-01

    Rapid solvent exchange of an ethanolic solution of diphytanoyl phosphatidylcholine (DPhyPC) in the presence of a mixed self-assembled monolayer (SAM) [thiolipid/β-mercaptoethanol (βME) (3/7 mol/mol) on Au] shows a transition from densely packed tethered bilayer lipid membranes [(dp)tBLMs], to loosely packed tethered bilayer lipid membranes [(lp)tBLMs], and tethered bilayer liposome nanoparticles (tBLNs) with decreasing DPhyPC concentration. The tethered lipidic constructs in the aqueous medium were analyzed by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). Finite element analysis (FEA) was applied to interpret spectral EIS features without referring to equivalent circuit modeling. Using structural data obtained earlier from neutron reflectometry and dielectric constants of lipid bilayers, we reproduced experimentally observed features of the electrochemical impedance (EI) spectra of complex surface constructs involving small pinhole defects, large membrane-free patches, and bound liposomes. We demonstrated by FEA that highly insulating (dp)tBLMs with low-defect density exhibit EI spectra in the shape of a perfect semicircle with or without low-frequency upward "tails" in the Cole-Cole representation. Such EI spectra were observed at DPhyPC concentrations of >5 × 10(-3) mol L(-1). While AFM was not able to visualize very small lateral defects in such films, EI spectra unambiguously signaled their presence by increased low frequency "tails". Using FEA we demonstrate that films with large diameter visible defects (>25 nm by AFM) produce EI spectral features consisting of two semicircles of comparable size. Such films were typically obtained at DPhyPC concentrations of <5 × 10(-3) mol L(-1). At DPhyPC concentrations of <1.0 × 10(-3) mol L(-1) the planar bilayer structures were replaced by ellipsoidal liposomes with diameters ranging from 50 to 500 nm as observed in AFM images. Despite the distinct surface morphology change, the EI

  14. Formation of Tethers from Spreading Cellular Aggregates.

    PubMed

    Beaune, Grégory; Winnik, Françoise M; Brochard-Wyart, Françoise

    2015-12-01

    Membrane tubes are commonly extruded from cells and vesicles when a point-like force is applied on the membrane. We report here the unexpected formation of membrane tubes from lymph node cancer prostate (LNCaP) cell aggregates in the absence of external applied forces. The spreading of LNCaP aggregates deposited on adhesive glass substrates coated with fibronectin is very limited because cell-cell adhesion is stronger than cell-substrate adhesion. Some cells on the aggregate periphery are very motile and try to escape from the aggregate, leading to the formation of membrane tubes. Tethered networks and exchange of cargos between cells were observed as well. Growth of the tubes is followed by either tube retraction or tube rupture. Hence, even very cohesive cells are successful in escaping aggregates, which may lead to epithelial mesenchymal transition and tumor metastasis. We interpret the dynamics of formation and retraction of tubes in the framework of membrane mechanics. PMID:26509898

  15. Force fluctuations in stretching a tethered polymer

    NASA Astrophysics Data System (ADS)

    Varghese, Anoop; Vemparala, Satyavani; Rajesh, R.

    2013-08-01

    The recently proposed fluctuation relation in unfolding forces [Phys. Rev. E1539-375510.1103/PhysRevE.84.060101 84, 060101(R) (2011)] is reexamined taking into account the explicit time dependence of the force distribution. The stretching of a tethered Rouse polymer is exactly solved and the ratio of the probabilities of positive to negative forces is shown to be an exponential in force. Extensive steered molecular dynamics simulations of unfolding of deca alanine peptide confirm the form of fluctuation relation proposed earlier, but with explicit correct time dependence of unfolding forces taken into account. From exact calculations and simulations, a linear dependence of the constant in the exponential of the fluctuation relation on average unfolding forces and inverse temperature is proposed.

  16. Magnetic Tethering of Microswimmers in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Chawan, Aschvin; Jana, Saikat; Ghosh, Suvojit; Jung, Sunghwan; Puri, Ishwar

    2013-03-01

    Exercising control over animal locomotion is well known in the macro world. In the micro-scale world, such methods require more sophistication. We magnetize Paramecium multimicronucleatum by internalization of magnetite nanoparticles coated with bovine serum albumin (BSA). This enables control of their motion in a microfluidic device using a magnetic field. Miniature permanent magnets embedded within the device are used to tether the magnetized organisms to specific locations along a micro-channel. Ciliary beatings of the microswimmer generate shear flows nearby. We apply this setup to enhance cross-stream mixing in a microfluidic device by supplementing molecular diffusion. The device is similar to an active micromixer but requires no external power sources or artificial actuators. We optically characterize the effectiveness of the mechanism in a variety of flow situations.

  17. Tethered actuator for vibration control of space structures

    NASA Astrophysics Data System (ADS)

    Fujii, H. A.; Sugimoto, Y.; Watanabe, T.; Kusagaya, T.

    2015-12-01

    Effectiveness of a micro-tension actuator for vibration control of such flexible space structures as the tethered space solar power satellites is experimentally studied on the ground. A flexible leverage is employed as the micro-tension actuator in order to control the microtension of tether. The flexible leverage is connected through a tether to the flexible beam as an experimental model of the flexible solar panel with the low first modal frequency of order 1 Hz. The nonlinearity of the flexible tether is taken into account for the vibration control since the tether becomes ineffective when it slacks, i.e., when it is tension-free. The feedback controller is designed by means of the Mission Function control algorithm. Flexural rigidity of the flexible leverage plays an important role in the vibration suppression and is studied experimentally to shed light on the effectiveness of the leverages with five different kinds of rigidity. The experimental results show not only the effect of the flexural rigidity of the flexible leverage on the control performance of the vibration suppression but also the importance of selection of the rigidity to control the vibration of tethered flexible space structures through the microtension of tethers in space.

  18. DNA-tethered Membranes Formed by Giant Vesicle Rupture

    PubMed Central

    Chung, Minsub; Lowe, Randall; Chan, Yee-Hung M.; Ganesan, Prasad V.; Boxer, Steven G.

    2009-01-01

    We have developed a strategy for preparing tethered lipid bilayer membrane patches on solid surfaces by DNA hybridization. In this way, the tethered membrane patch is held at a controllable distance from the surface by varying the length of the DNA used. Two basic strategies are described. In the first, single-stranded DNA strands are immobilized by click chemistry to a silica surface, whose remaining surface is passivated to prevent direct assembly of a solid supported bilayer. Then giant unilamellar vesicles (GUVs) displaying the antisense strand, using a DNA-lipid conjugate developed in earlier work (Chan, Lengerich et al. 2008), are allowed to tether, spread and rupture to form tethered bilayer patches. In the second, a supported lipid bilayer displaying DNA using the DNA-lipid conjugate is first assembled on the surface. Then GUVs displaying the antisense strand are allowed to tether, spread and rupture to form tethered bilayer patches. The essential difference between these methods is that the tethering hybrid DNA is immobile in the first, while it is mobile in the second. Both strategies are successful; however, with mobile DNA hybrids as tethers, the patches are unstable, while in the first strategy stable patches can be formed. In the case of mobile tethers, if different length DNA hybrids are present, lateral segregation by length occurs and can be visualized by fluorescence interference contrast microscopy making this an interesting model for interactions that occur in cell junctions. In both cases, lipid mobility is high and there is a negligible immobile fraction. Thus, these architectures offer a flexible platform for the assembly of lipid bilayers at a well-defined distance from a solid support. PMID:19560541

  19. Proceedings of a Workshop on Applications of Tethers in Space, Executive Summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The objectives were to identify potential applications for tethers in space; develop a first order assessment of the feasibility and benefits of tether applications; recommend future actions necessary to enable tether applications, including required technology advancements; and stimulate industry and government planners to consider the unique properties of tethers in designs for future missions.

  20. Overall and internal dynamics of DNA as monitored by five-atom-tethered spin labels.

    PubMed Central

    Keyes, R S; Bobst, E V; Cao, Y Y; Bobst, A M

    1997-01-01

    Electron paramagnetic resonance (EPR) spectra of the two-atom-tethered six-membered ring thymidylate spin label (DUMTA) incorporated into duplexes of different sizes were found to display a helix length dependence and a local-order parameter S = 0.32 +/- 0.01 for B-DNA based on the dynamic cylinder model (Keyes, R. S., and A. M. Bobst. 1995. Detection of internal and overall dynamics of a two-atom-tethered spin-labeled DNA. Biochemistry. 34:9265-9276). This sensitivity to size, which reflects global tumbling, is now reported for the more flexible five-atom-tethered five-membered ring thymidylate spin label (DUAP) that can be readily incorporated enzymatically and sequence specifically into nucleic acids of different sizes. The DUAPs containing B-DNA systems were simulated with the same dynamic cylinder model, giving S = 0.20 +/- 0.01 for the more flexibly tethered spin label. This shows that S is dependent on tether length but not on global motion. An analysis with the same motional model of the B-Z transition in a (dG-dC)n polymer containing the five-atom-tethered six-membered ring cytidylate spin label (DCAT) (Strobel, O. K., R. S. Keyes, and A. M. Bobst. 1990b. Base dynamics of local Z-DNA conformations as detected by electron paramagnetic resonance with spin-labeled deoxycytidine analogues. Biochemistry. 29:8522-8528) revealed an increase in S from 0.15 +/- 0.01 to 0.26 +/- 0.01 in response to the B- to Z-DNA transition. This indicates that S is not only sensitive to tether length, but also to conformational changes in DNA. Both the DUAP- and the DCAT-labeled systems were also simulated with a base disk model. From the DUAP spectral series, the perpendicular component of the correlation time tau perpendicular describing the spin-labeled base diffusion was found to be sensitive to global tumbling, confirming earlier results obtained with DUMTA. The DCAT polymer results demonstrated that tau perpendicular monitors a conformational change from B- to Z

  1. Tethers as Debris: Simulating Impacts of Kevlar Tethers on Shuttle Tiles

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.

    2004-01-01

    In a previous paper I examined the effects of impacts of polymer tethers on aluminum plates using the SPHC hydrodynamic code. In this paper I apply tether models to a new target - models of Space Shuttle tiles developed during the STS 107 accident investigation. In this three-dimensional simulation, a short tether fragment strikes a single tile supported on an aluminum backing plate. A tile of the LI-900 material is modeled. Penetration and damage to the tile and the backwall are characterized for three normal impact velocities. The tether is modeled as a bundle of eight 1-mm strands, with the bundle having dimensions 2-mm x 4-mm x 20-cm. The bulk material properties used are those of Kevlar(TradeMark) 49, for which a Mie-Gruneisen multiphase equation of state (eos) is used. In addition, the strength model is applied in a linear sense, such that tensile loads along the strand length are supported, but there is no strength in the lateral directions. Tile models include the various layers making up the tile structure. The outermost layer is a relatively dense borosilicate glass, known as RCG, 0.5-mm thick. The RCG layer is present on the top and four sides of the tile. Below this coating is the bulk of the tile, 1.8- in thick, made of LI-900, a product consisting of rigidized fiberous silica with a density of 9 lWft3. Below the main insulating layer is a bottom layer of the same material that has been treated to increase its density by approximately 69% to improve its strength. This densified layer is bonded to a Strain Isolation Pad (SIP), modeled as a refractory felt fabric. The SIP is bonded to an aluminum 2024 wall 0.1-in thick. The tile and backwall materials use a Me-Gruneisen multiphase eos, with the exception of the SIP felt, which uses a fabric equation of state. Fabrics must be crushed to the full bulk material density before bulk material properties and a Mie-Gruneisen eos are applied. Tether fragment impact speeds of 3,7, and 10 km/s are simulated, with

  2. Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: array-based comparative genomic hybridization analysis

    PubMed Central

    Zhao, Qiu-jiong; Bai, Shao-cong; Cheng, Cheng; Tao, Ben-zhang; Wang, Le-kai; Liang, Shuang; Yin, Ling; Hang, Xing-yi; Shang, Ai-jia

    2016-01-01

    Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.

  3. Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: array-based comparative genomic hybridization analysis

    PubMed Central

    Zhao, Qiu-jiong; Bai, Shao-cong; Cheng, Cheng; Tao, Ben-zhang; Wang, Le-kai; Liang, Shuang; Yin, Ling; Hang, Xing-yi; Shang, Ai-jia

    2016-01-01

    Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease. PMID:27651783

  4. Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: array-based comparative genomic hybridization analysis.

    PubMed

    Zhao, Qiu-Jiong; Bai, Shao-Cong; Cheng, Cheng; Tao, Ben-Zhang; Wang, Le-Kai; Liang, Shuang; Yin, Ling; Hang, Xing-Yi; Shang, Ai-Jia

    2016-08-01

    Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease. PMID:27651783

  5. Applications of tethers in space: A review of workshop recommendations

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. (Editor)

    1986-01-01

    Well-organized and structured efforts of considerable magnitude involving NASA, industry, and academia have explored and defined the engineering and technological requirements of the use of tethers in space and have discovered their broad range of operational and economic benefits. The results of these efforts have produced a family of extremely promising candidate applications. The extensive efforts now in progress are gaining momentum and a series of flight demonstrations are being planned and can be expected to take place in a few years. This report provides an analysis and a review of NASA's second major workshop on Applications of Tethers in Space held in October 15 to 17, 1985, in Venice, Italy. It provides a summary of an up-to-date assessment and recommendations by the NASA Tether Applications in Space Program Planning Group, consisting of representatives of seven NASA Centers and responsible for tether applications program planning implementation as recommended by the workshop panels.

  6. Investigation of electrodynamic stabilization and control of long orbiting tethers

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Grossi, M. D.; Dobrowolny, M.; Arnold, D. A.

    1980-01-01

    The possibility of using electrodynamic forces to control pendular oscillations during the retrieval of a subsatellite is investigated. The use of the tether for transferring payloads between orbits is studied.

  7. Precession and circularization of elliptical space-tether motion

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.; Grosserode, Patrick

    1993-01-01

    In this paper, we present a simplified analytic model for predicting motion of long space tethers. The perturbation model developed here addresses skip rope motion, where each end of the tether is held in place and the middle of the tether swings with a motion similar to that of a child's skip rope. If the motion of the tether midpoint is elliptical rather than circular, precession of the ellipse complicates the procedures required to damp this motion. The simplified analytic model developed in this paper parametrically predicts the precession of elliptical skip rope motion. Furthermore, the model shows that elliptic skip rope motion will circularize when damping is present in the longitudinal direction. Compared with high-fidelity simulation results, this simplified model provides excellent predictions of these phenomena.

  8. The loose tether forms a faint diagonal line in this scene recorded on a later fly-by.

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The loose tether forms a faint diagonal line in this scene recorded on a later fly-by. On February 25, 1996, the crew deployed the Tethered Satellite System (TSS), which later broke free. The seven member crew was launched aboard the Space Shuttle Columbia on February 22, 1996 and landed on March 9, 1996. Crew members were Andrew M. Allen, mission commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and Maurizio Cheli, European Space Agency (ESA); Jeffrey A. Hoffman and Claude Nicollier, ESA, all mission specialists; along with payload specialist Umberto Guidioni of the Italian Space Agency (ASI).

  9. 75 FR 47316 - Centennial Challenges 2010 Strong Tether Challenge

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ...This notice is issued in accordance with 42 U.S.C. 2451 (314)(d). The 2010 Strong Tether Challenge is scheduled and teams that wish to compete may register. Centennial Challenges is a program of prize competitions to stimulate innovation in technologies of interest and value to NASA and the nation. The 2010 Strong Tether Challenge is a prize competition designed to encourage development of......

  10. From the Rocket Equation to Maxwell's Equations: Electrodynamic Tether Propulsion Nears Space Test

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Estes, Robert

    1999-01-01

    The US space program is facing a growing challenge to its decades-long, global leadership position, as current launch costs consume valuable resources and limit achievements in science, exploration, and commercial development. More than 40% of projected launches over the next 10 years have payloads with intended destinations beyond low-Earth orbit. Therefore, more cost-effective upper stages and on-board propulsion systems are critical elements in reducing total space transportation costs. A new type of space propulsion, using electrodynamic tethers, may be capable of performing multiple sequential missions without resupply and have a potential usable lifetime of several years. They may provide an in-space infrastructure that has a very low life cycle cost and greatly enhanced mission flexibility, thus supporting the goal of reducing the cost of access to space. Electrodynamic tether thrusters work by virtue of the force the Earth's magnetic field exerts on a wire carrying an electrical current. The effect is the basis for electric motors and generators. The Propulsive Small Expendable Deployer System (ProSEDS) experiment, planned for launch in the summer of 2000, will demonstrate the use electrodynamic tether thrust by lowering the altitude of a Delta-H rocket's upper stage on which it will be flying. Applications of the technology include a passive deorbit system for spacecraft at their end-of-life, reusable Orbit Transfer Vehicles, propellantless reboost of the International Space Station, and propulsion and power generation for future missions to Jupiter.

  11. Space Test of Bare-Wire Anode Tethers

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Fujii, H. A.; Sanmartin, J. R.

    2007-01-01

    An international team, lead by Tokyo Metropolitan University, is developing a mission concept for a suborbital test of orbital-motion-limited (OML) bare-wire anode current collection for application to electrodynamic tether propulsion. The tether is a tape with a 50-mm width, 0.05-mm thickness, and 1-km length. This will be the first space test of the OML theory. In addition, by being an engineering demonstration (of space tethers), the mission will demonstrate electric beam generation for "sounding" determination of the neutral density profile in the ionospheric "E-layer." If selected by the Institute of Space and Astronautical Science/Japanese Aerospace Exploration Agency (JAXA), the mission will launch in early 2009 using an $520 Sounding Rocket. During ascent, and above =100 km in attitude, the 1-km tape tether will be deployed at a rate of 8 m/s. Once deployed, the tape tether will serve as an anode, collecting ionospheric electrons. The electrons will be expelled into space by a hollow cathode device, thereby completing the circuit and allowing current to flow.This paper will describe the objectives of the proposed mission, the technologies to be employed, and the application of the results to future space missions using electrodynamic tethers for propulsion or power generation.

  12. Dynamics of single-stranded DNA tethered to a solid

    NASA Astrophysics Data System (ADS)

    Radiom, Milad; Paul, Mark R.; Ducker, William A.

    2016-06-01

    Tethering is used to deliver specific biological and industrial functions. For example, single-stranded DNA (ssDNA) is tethered to polymerases and long sequences of double-stranded DNA (dsDNA) during replication, and to solids in DNA microarrays. However, tethering ssDNA to a large object limits not only the available ssDNA conformations, but also the range of time-scales over which the mechanical responses of ssDNA are important. In this work we examine the effect of tethering by measurement of the mechanical response of ssDNA that is tethered at each end to two separate atomic force microscope cantilevers in aqueous solution. Thermal motion of the cantilevers drives the ends of the ssDNA chain at frequencies near 2 kHz. The presence of a tethered molecule makes a large difference to the asymmetric cross-correlation of two cantilevers, which enables resolution of the mechanical properties in our experiments. By analysis of the correlated motion of the cantilevers we extract the friction and stiffness of the ssDNA. We find that the measured friction is much larger than the friction that is usually associated with the unencumbered motion of ssDNA. We also find that the measured relaxation time, ∼30 μs, is much greater than prior measurements of the free-molecule relaxation time. We attribute the difference to the loss of conformational possibilities as a result of constraining the ends of the ssDNA.

  13. Anchoring a Leviathan: How the Nuclear Membrane Tethers the Genome.

    PubMed

    Czapiewski, Rafal; Robson, Michael I; Schirmer, Eric C

    2016-01-01

    It is well established that the nuclear envelope has many distinct direct connections to chromatin that contribute to genome organization. The functional consequences of genome organization on gene regulation are less clear. Even less understood is how interactions of lamins and nuclear envelope transmembrane proteins (NETs) with chromatin can produce anchoring tethers that can withstand the physical forces of and on the genome. Chromosomes are the largest molecules in the cell, making megadalton protein structures like the nuclear pore complexes and ribosomes seem small by comparison. Thus to withstand strong forces from chromosome dynamics an anchoring tether is likely to be much more complex than a single protein-protein or protein-DNA interaction. Here we will briefly review known NE-genome interactions that likely contribute to spatial genome organization, postulate in the context of experimental data how these anchoring tethers contribute to gene regulation, and posit several hypotheses for the physical nature of these tethers that need to be investigated experimentally. Significantly, disruption of these anchoring tethers and the subsequent consequences for gene regulation could explain how mutations in nuclear envelope proteins cause diseases ranging from muscular dystrophy to lipodystrophy to premature aging progeroid syndromes. The two favored hypotheses for nuclear envelope protein involvement in disease are (1) weakening nuclear and cellular mechanical stability, and (2) disrupting genome organization and gene regulation. Considerable experimental support has been obtained for both. The integration of both mechanical and gene expression defects in the disruption of anchoring tethers could provide a unifying hypothesis consistent with both.

  14. The Golgin Family of Coiled-Coil Tethering Proteins

    PubMed Central

    Witkos, Tomasz M.; Lowe, Martin

    2016-01-01

    The golgins are a family of predominantly coiled-coil proteins that are localized to the Golgi apparatus. Golgins are present in all eukaryotes, suggesting an evolutionary conserved function. Golgins are anchored to the Golgi membrane by their carboxy terminus and are predicted to adopt an extended conformation that projects into the surrounding cytoplasm. This arrangement is ideal for the capture or tethering of nearby membranes or cytoskeletal elements. Golgin-mediated tethering is thought to be important for vesicular traffic at the Golgi apparatus, the maintenance of Golgi architecture, as well as the positioning of the Golgi apparatus within cells. In addition to acting as tethers, some golgins can also sequester various factors at the Golgi membrane, allowing for the spatiotemporal regulation of downstream cellular functions. Although it is now established that golgins are membrane and cytoskeleton tethers, the mechanisms underlying tethering remain poorly defined. Moreover, the importance of golgin-mediated tethering in a physiological context remains to be fully explored. This review will describe our current understanding of golgin function, highlighting recent progress that has been made, and goes on to discuss outstanding questions and potential avenues for future research with regard to this family of conserved Golgi-associated proteins. PMID:26793708

  15. A Quantitative Study of Tethered Chains in Various Solution Conditions Using Langmuir Diblock Copolymer Monolayers

    SciTech Connect

    Kent, Michael S.

    1999-08-13

    This article summarizes our investigations of tethered chain systems using Langmuir monolayer of polydimethysiloxane-poly styrene (PDMS-PS) diblock copolymers on organic liquids. In this system, the PDMS block adsorbs to the air surface while the PS block dangles into the subphase liquid. The air surface can be made either repulsive or attractive for the tethered PS chain segments by choosing a subphase liquid which has a surface tension lower or greater than that of PS, respectively. The segment profile of the PS block is determined by neutron reflection as a function of the surface density, the molecular weights of the PS and PDMS blocks, and the solution conditions. We cover the range of reduced surface density (SIGMA) characteristic of the large body of data in the literature for systems of chains tethered onto solid surfaces from dilute solution in good or theta solvent conditions (SIGMA < 12). We emphasize quantitative comparisons with analytical profile forms and scaling predictions. We find that the strong-stretching limit invoked in analytical SCF and scaling theories is not valid over this Z range. On the other hand, over a large portion of this range (SIGMA < 5) tethered layers are well described by a renormalization group theory addressing weakly interacting or noninteracting chains. Simultaneous with the study of the profile form, the free energy of the chains is examined through the surface tension. A strong increase in the surface pressure is observed with increasing surface density which determines the maximum surface density which can be achieved. This apparently nonequilibrium effect is attributed to steric interactions and limited lateral interpenetration. This effect may explain several outstanding discrepancies regarding the adsorption of end-functionalized chains and diblock copolymers onto solid surfaces.

  16. p12 Tethers the Murine Leukemia Virus Pre-integration Complex to Mitotic Chromosomes

    PubMed Central

    Elis, Efrat; Ehrlich, Marcelo; Prizan-Ravid, Adi; Laham-Karam, Nihay; Bacharach, Eran

    2012-01-01

    The p12 protein of the murine leukemia virus (MLV) is a constituent of the pre-integration complex (PIC) but its function in this complex remains unknown. We developed an imaging system to monitor MLV PIC trafficking in live cells. This allowed the visualization of PIC docking to mitotic chromosomes and its release upon exit from mitosis. Docking occurred concomitantly with nuclear envelope breakdown and was impaired for PICs of viruses with lethal p12 mutations. Insertion of a heterologous chromatin binding module into p12 of one of these mutants restored PICs attachment to the chromosomes and partially rescued virus replication. Capsid dissociated from wild type PICs in mitotic cells but remained associated with PICs harboring tethering-negative p12 mutants. Altogether, these results explain, in part, MLV restriction to dividing cells and reveal a role for p12 as a factor that tethers MLV PIC to mitotic chromosomes. PMID:23300449

  17. The use of tethers for payload orbital transfer. Continuation of investigation of electrodynamic stabilization and control of long orbiting tethers, volume 2

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Martinez-Sanchez, M.; Arnold, D.

    1982-01-01

    The SKYHOOK program was used to do simulations of two cases of the use of the tether for payload orbital transfer. The transport of a payload along the tether from a heavy lower platform to an upper launching platform is considered. A numerical example of the Shuttle launching a payload using an orbital tether facility is described.

  18. Adult idiopathic scoliosis: the tethered spine.

    PubMed

    Whyte Ferguson, Lucy

    2014-01-01

    This article reports on an observational and treatment study using three case histories to describe common patterns of muscle and fascial asymmetry in adults with idiopathic scoliosis (IS) who have significant scoliotic curvatures that were not surgically corrected and who have chronic pain. Rather than being located in the paraspinal muscles, the myofascial trigger points (TrPs) apparently responsible for the pain were located at some distance from the spine, yet referred pain to locations throughout the thoracolumbar spine. Asymmetries in these muscles appear to tether the spine in such a way that they contribute to scoliotic curvatures. Evaluation also showed that each of these individuals had major ligamentous laxity and this may also have contributed to development of scoliotic curvatures. Treatment focused on release of TrPs found to refer pain into the spine, release of related fascia, and correction of related joint dysfunction. Treatment resulted in substantial relief of longstanding chronic pain. Treatment thus validated the diagnostic hypothesis that myofascial and fascial asymmetries were to some extent responsible for pain in adults with significant scoliotic curvatures. Treatment of these patterns of TrPs and muscle and fascial asymmetries and related joint dysfunction was also effective in relieving pain in each of these individuals after they were injured in auto accidents. Treatment of myofascial TrPs and asymmetrical fascial tension along with treatment of accompanying joint dysfunction is proposed as an effective approach to treating both chronic and acute pain in adults with scoliosis that has not been surgically corrected.

  19. Tether-Induced Airglow: Collisionless Effects

    NASA Technical Reports Server (NTRS)

    Mishin, E. V.; Khazanov, G. V.

    2006-01-01

    Martinez-Sanchez and Sanmartin [1997] showed that a bare conducting tether can be used as a source of an energetic electron beam. Interacting with the E region atmosphere, the beam should produce airglow thus making possible to deduce the neutral density on a continuous basis. Fujii et al. [2005] suggested that this idea be tested in a specially-designed sounding rocket experiment. We show that collisionless beam-plasma interactions (BPI) complement direct impact, leading to appreciable green-line (557.7 nm) emissions in the F region. In the E region, BPI develops near the entry in the valley, resulting in a narrow layer of strongly-elevated and airglow. Besides, neutralizing electric currents carried by ionospheric electrons in the valley can become unstable or even insufficient to compensate the beam current. Developing plasma waves inhibit neutralizing currents. In the extreme case, the beam might be locked in the valley (the 'virtual cathode'). In addition to optical observations, these effects can also be observed by radiophysical means.

  20. Power transmission studies for tethered SP-100

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1988-01-01

    The tether and/or transmission line connecting the SP-100 to space station presents some unorthodox challenges in high voltage engineering, power transmission, and distribution. The line, which doubles as a structural element of this unusual spacecraft, will convey HVDC from SP-100 to the platform in low Earth orbit, and environment where the local plasma is sufficient to cause breakdown of exposed conductors at potentials of only a few hundred volts. Its anticipated several years operation, and continuously accumulating exposure to meteoroids and debris, raises an increasing likelihood that mechanical damage, including perforation, will be sustained in service. The present concept employs an array of gas insulated solid wall aluminum coaxial tubes; a conceptual design which showed basic feasibility of the SP-100 powered space station. Practical considerations of launch, deployment and assembly have lead to investigation of reel deployable, dielectric insulated coaxial cables. To be competitive, the dielectric would have to operate reliably in a radiation environment under electrical stresses exceeding 50 kV/cm. The SP-100 transmission line high voltage interfaces are also considered.

  1. Power transmission studies for tethered SP-100

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1988-01-01

    The tether and/or transmission line connecting the SP-100 to Space Station presents some unorthodox challenges in high voltage engineering, power transmission, and distribution. The line, which doubles as a structural element of this unusual spacecraft, will convey HVDC from SP-100 to the platform in low Earth orbit, and environment where the local plasma is sufficient to cause breakdown of exposed conductors at potentials of only a few hundred volts. Its anticipated several years operation, and continuously accumulating exposure to meteoroids and debris, raises an increasing likelihood that mechanical damage, including perforation, will be sustained in service. The present concept employs an array of gas insulated solid wall aluminum coaxial tubes; a conceptual design which showed basic feasibility of the SP-100 powered Space Station. Practical considerations of launch, deployment and assembly have led to investigation of reel deployable, dielectric insulated coaxial cables. To be competitive, the dielectric would have to operate reliably in a radiation environment under electrical stresses exceeding 50 kV/cm. The SP-100 transmission line high voltage interfaces are also considered.

  2. Micropatterned Surfaces with Controlled Ligand Tethering

    PubMed Central

    Petrie, Timothy A.; Stanley, Brandon T.; García, Andrés J.

    2008-01-01

    Microcontact printing (μ-CP) is a facile, cost-effective, and versatile soft-lithography technique to create 2-dimensional patterns of domains with distinct functionalities that provides a robust platform to generate micropatterned biotechnological arrays and cell culture substrates. Current μ-CP approaches rely on non-specific immobilization of biological ligands, either by direct printing or adsorption from solution, onto micropatterned domains surrounded by a non-fouling background. This technique is limited by insufficient control over ligand density. We present a modified μ-CP protocol involving stamping mixed ratios of carboxyl- and tri(ethylene glycol)-terminated alkanethiols that provides for precise covalent tethering of single or multiple ligands to prescribed micropatterns via standard peptide chemistry. Processing parameters were optimized to identify conditions that control relevant endpoint pattern characteristics. This technique provides a facile method to generate micropatterned arrays with tailorable and controlled presentation of biological ligands for biotechnological applications and analyses of cell-material interactions. PMID:18570314

  3. High resolution remote sensing missions of a tethered satellite

    NASA Technical Reports Server (NTRS)

    Vetrella, S.; Moccia, A.

    1986-01-01

    The application of the Tethered Satellite (TS) as an operational remote sensing platform is studied. It represents a new platform capable of covering the altitudes between airplanes and free flying satellites, offering an adequate lifetime, high geometric and radiometric resolution and improved cartographic accuracy. Two operational remote sensing missions are proposed: one using two linear array systems for along track stereoscopic observation and one using a synthetic aperture radar combined with an interferometric technique. These missions are able to improve significantly the accuracy of future real time cartographic systems from space, also allowing, in the case of active microwave systems, the Earth's observation both in adverse weather and at any time, day or night. Furthermore, a simulation program is described in which, in order to examine carefully the potentiality of the TS as a new remote sensing platform, the orbital and attitude dynamics description of the TSS is integrated with the sensor viewing geometry, the Earth's ellipsoid, the atmospheric effects, the Sun illumination and the digital elevation model. A preliminary experiment has been proposed which consist of a metric camera to be deployed downwards during the second Shuttle demonstration flight.

  4. Two-Stage Winch for Kites and Tethered Balloons or Blimps

    NASA Technical Reports Server (NTRS)

    Miles, Ted; Bland, Geoff

    2011-01-01

    A winch system provides a method for launch and recovery capabilities for kites and tethered blimps or balloons. Low power consumption is a key objective, as well as low weight for portability. This is accomplished by decoupling the tether-line storage and wind ing/ unwinding functions, and providing tailored and efficient mechanisms for each. The components of this system include rotational power input devices such as electric motors or other apparatus, line winding/unwinding reel(s), line storage reel(s), and independent drive trains. Power is applied to the wind/unwind reels to transport the tether line. Power is also applied to a line storage reel, from either the wind/unwind power source, the wind/unwind reel itself, or separate power source. The speeds of the two reels are synchronized, but not dependent on each other. This is accomplished via clutch mechanisms, variable transmissions, or independent motor controls. The speed of the storage reel is modulated as the effective diameter of the reel changes with line accumulation.

  5. An Engineered Membrane to Measure Electroporation: Effect of Tethers and Bioelectronic Interface

    PubMed Central

    Hoiles, William; Krishnamurthy, Vikram; Cranfield, Charles G.; Cornell, Bruce

    2014-01-01

    This article reports on the construction and predictive models for a platform comprised of an engineered tethered membrane. The platform provides a controllable and physiologically relevant environment for the study of the electroporation process. The mixed self-assembled membrane is formed via a rapid solvent exchange technique. The membrane is tethered to the gold electrode and includes an ionic reservoir separating the membrane and gold surface. Above the membrane, there is an electrolyte solution, and a gold counterelectrode. A voltage is applied between the gold electrodes and the current measured. The current is dependent on the energy required to form aqueous pores and the conductance of each pore. A two-level predictive model, consisting of a macroscopic and a continuum model, is developed to relate the pore dynamics to the measured current. The macroscopic model consists of an equivalent circuit model of the tethered membrane, and asymptotic approximations to the Smoluchowski-Einstein equation of electroporation that is dependent on the pore conductance and the energy required to form aqueous pores. The continuum model is a generalized Poisson-Nernst-Planck (GPNP) system where an activity coefficient to account for steric effects of ions is added to the standard PNP system. The GPNP is used to evaluate the conductance of aqueous pores, and the electrical energy required to form the pores. As an outcome of the setup of the device and the two-level model, biologically important variables can be estimated from experimental measurements. To validate the accuracy of the two-level model, the predicted current is compared with experimentally measured current for different tethering densities. PMID:25229142

  6. Gravity-gradient measurements down to approximately 100-km height by means of long-tethered satellites

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Gaposchkin, E. M.; Grossi, M. D.; Weiffenbach, G. C.

    1976-01-01

    Long-tethered satellite systems for Shuttle flights would make measurements of the earth's gravitational field possible to a spatial resolution approaching 100 km. For instance, a subsatellite carrying a gravity gradiometer could be made to orbit at a height of 110 km by means of a 110-km tether tied to the Shuttle in a 220-km orbit. Even with an overall instrument sensitivity as poor as 1 Eotvos unit (e.u.), it would be possible to measure spatial wavelengths of approximately 600 to 700 km (i.e., harmonics of 80th to 70th degree). Also, a system of two satellites (one of which could be the Shuttle orbiter or one of its payloads) connected by a tether a few tens of kilometers long could provide a simple and sensitive means of detecting gravity anomalies characterized by wavelengths of a few hundred kilometers. In this system, the observable would be the mechanical tension on the tether, and a sensitivity up to 0.01 e.u. could be attained, provided the two satellites are tracked from the ground with sufficient accuracy.

  7. Out-of-Plane Translational PZT Bimorph Actuator with Archimedes’ Spiral Actuating Tethers

    NASA Astrophysics Data System (ADS)

    Yang, Chenye; Liu, Sanwei; Livermore, Carol

    2015-12-01

    The design, finite element analysis (FEA), and experimental characterization of a MEMS out-of-plane (vertical) translational lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Two types of bimorph actuators with different electrode patterns (with spiral tethers half actuated or fully actuated) are designed and fabricated. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Finite element analysis (FEA) was used to analyze and predict the displacements of both types of actuators. The deflections of both fully- actuated and half-actuated devices were measured experimentally to validate the design. At an applied voltage of 110V, the out-of-plane deflections of the actuators with half-actuated and fully-actuated tethers were measured at about 17 μm and 29 μm respectively, in good agreement with FEA predictions of 17.1 μm and 25.8 μm. The corresponding blocking forces are predicted as 10 mN and 17 mN by FEA.

  8. Tethered Function Assays as Tools to Elucidate the Molecular Roles of RNA-Binding Proteins.

    PubMed

    Bos, Tomas J; Nussbacher, Julia K; Aigner, Stefan; Yeo, Gene W

    2016-01-01

    Dynamic regulation of RNA molecules is critical to the survival and development of cells. Messenger RNAs are transcribed in the nucleus as intron-containing pre-mRNAs and bound by RNA-binding proteins, which control their fate by regulating RNA stability, splicing, polyadenylation, translation, and cellular localization. Most RBPs have distinct mRNA-binding and functional domains; thus, the function of an RBP can be studied independently of RNA-binding by artificially recruiting the RBP to a reporter RNA and then measuring the effect of RBP recruitment on reporter splicing, stability, translational efficiency, or intracellular trafficking. These tethered function assays therefore do not require prior knowledge of the RBP's endogenous RNA targets or its binding sites within these RNAs. Here, we provide an overview of the experimental strategy and the strengths and limitations of common tethering systems. We illustrate specific examples of the application of the assay in elucidating the function of various classes of RBPs. We also discuss how classic tethering assay approaches and insights gained from them have been empowered by more recent technological advances, including efficient genome editing and high-throughput RNA-sequencing. PMID:27256382

  9. Tethered Function Assays as Tools to Elucidate the Molecular Roles of RNA-Binding Proteins.

    PubMed

    Bos, Tomas J; Nussbacher, Julia K; Aigner, Stefan; Yeo, Gene W

    2016-01-01

    Dynamic regulation of RNA molecules is critical to the survival and development of cells. Messenger RNAs are transcribed in the nucleus as intron-containing pre-mRNAs and bound by RNA-binding proteins, which control their fate by regulating RNA stability, splicing, polyadenylation, translation, and cellular localization. Most RBPs have distinct mRNA-binding and functional domains; thus, the function of an RBP can be studied independently of RNA-binding by artificially recruiting the RBP to a reporter RNA and then measuring the effect of RBP recruitment on reporter splicing, stability, translational efficiency, or intracellular trafficking. These tethered function assays therefore do not require prior knowledge of the RBP's endogenous RNA targets or its binding sites within these RNAs. Here, we provide an overview of the experimental strategy and the strengths and limitations of common tethering systems. We illustrate specific examples of the application of the assay in elucidating the function of various classes of RBPs. We also discuss how classic tethering assay approaches and insights gained from them have been empowered by more recent technological advances, including efficient genome editing and high-throughput RNA-sequencing.

  10. Otolith tethering in the zebrafish otic vesicle requires Otogelin and α-Tectorin

    PubMed Central

    Stooke-Vaughan, Georgina A.; Obholzer, Nikolaus D.; Baxendale, Sarah; Megason, Sean G.; Whitfield, Tanya T.

    2015-01-01

    Otoliths are biomineralised structures important for balance and hearing in fish. Their counterparts in the mammalian inner ear, otoconia, have a primarily vestibular function. Otoliths and otoconia form over sensory maculae and are attached to the otolithic membrane, a gelatinous extracellular matrix that provides a physical coupling between the otolith and the underlying sensory epithelium. In this study, we have identified two proteins required for otolith tethering in the zebrafish ear, and propose that there are at least two stages to this process: seeding and maintenance. The initial seeding step, in which otolith precursor particles tether directly to the tips of hair cell kinocilia, fails to occur in the einstein (eis) mutant. The gene disrupted in eis is otogelin (otog); mutations in the human OTOG gene have recently been identified as causative for deafness and vestibular dysfunction (DFNB18B). At later larval stages, maintenance of otolith tethering to the saccular macula is dependent on tectorin alpha (tecta) function, which is disrupted in the rolling stones (rst) mutant. α-Tectorin (Tecta) is a major constituent of the tectorial membrane in the mammalian cochlea. Mutations in the human TECTA gene can cause either dominant (DFNA8/12) or recessive (DFNB21) forms of deafness. Our findings indicate that the composition of extracellular otic membranes is highly conserved between mammals and fish, reinforcing the view that the zebrafish is an excellent model system for the study of deafness and vestibular disease. PMID:25758224

  11. Microgel Tethering For Microarray-Based Nucleic Acid Diagnostics

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoguang

    Molecular diagnostics (MDx) have radically changed the process of clinical microbial identification based on identifying genetic information, MDx approaches are both specific and fast. They can identify microbes to the species and strain level over a time scale that can be as short as one hour. With such information clinicians can administer the most effective and appropriate antimicrobial treatment at an early time point with substantial implications both for patient well-being and for easing the burden on the health-care system. Among the different MDx approaches, such as fluorescence in-situ hybridization, microarrays, next-generation sequencing, and mass spectrometry, point-of-care MDx platforms are drawing particular interest due to their low cost, robustness, and wide application. This dissertation develops a novel MDx technology platform capable of high target amplification and detection performance. For nucleic acid target detection, we fabricate an array of electron-beam-patterned microgels on a standard glass microscope slide. The microgels can be as small as a few hundred nanometers. The unique way of energy deposition during electron-beam lithography provides the microgels with a very diffuse water -gel interface that enables them to not only serve as substrates to immobilize DNA probes but do so while preserving them in a highly hydrated environment that optimizes their performance. Benefiting from the high spatial resolution provided by such techniques as position-sensitive microspotting and dip-pen nanolithography, multiple oligonucleotide probes known as molecular beacons (MBs) can be patterned on microgels. Furthermore, nucleic acid target amplification can be conducted in direct contact with the microgel-tethered detection array. Specifically, we use an isothermal RNA amplification reaction - nucleic acid sequence-based amplification (NASBA). ssRNA amplicons of from the NASBA reaction can directly hybridize with microgel-tethered MBs, and the

  12. Automated Ice-Tethered Profilers Provide Properties Under Pack Ice

    NASA Astrophysics Data System (ADS)

    Krishfield, R.; Gascard, J. C.; Meldrum, D.; Morison, J.; Pisarev, S.; Proshutinsky, A.; Schauer, B. Rabe, U.; Sokolov, V. T.; Toole, M.-L. Timmermanns, J.; Zimmermann, S.

    2009-04-01

    Thirty Ice-Tethered Profiler (ITP) instruments were deployed from 2004 through 2008 throughout the Arctic by an international team of scientists to monitor variability of upper ocean seawater properties. Altogether, these systems have returned over 16,000 high-vertical-resolution temperature and salinity profiles spanning approximately 7 to 760 m depth over all seasons. The ITP surface float sits atop an ice floe and suspends a weighted, plastic-jacketed 800 m long wire-rope tether for an instrumented underwater unit that profiles up and down the wire at a programmed sampling interval (typically 2-3 times per day) using a traction drive. The profiler is typically outfitted with the same Sea-Bird conductivity-temperature-depth (CTD) package that is used on Argo floats, but with full 1 Hz temporal resolution to obtain measurements vertically every 0.25 m; several also include dissolved oxygen sensors. After each profile, the underwater unit transfers files holding the oceanographic and engineering data to the surface unit using an inductive modem, and from the surface instrument to a shore-based data server using an Iridium telephone. The surface instrument also accumulates technical data, and locations from a GPS receiver at a specified interval (usually every hour) and transmits those data daily. All of the oceanographic and engineering data from all ITPs are processed, displayed and made available within hours at http://www.whoi.edu/itp. The acquired CTD profile data document interesting spatial variations in the major water masses throughout the Arctic, show the double-diffusive thermohaline staircase in the Canada Basin that lies above the warm, salty Atlantic Layer, measure seasonal surface mixed-layer deepening and fresh water variations, and document several mesoscale eddies. In addition to describing the ITP technology, field deployment considerations, data processing methods, and sample results, performance statistics for the ITP instruments will be

  13. Theoretical investigation of EM wave generation and radiation in the ULF, ELF, and VLF bands by the electrodynamic orbiting tether

    NASA Technical Reports Server (NTRS)

    Estes, Robert D.; Grossi, Mario D.

    1989-01-01

    The problem of electromagnetic wave generation by an electrodynamic tethered satellite system is important both for the ordinary operation of such systems and for their possible application as orbiting transmitters. The tether's ionospheric circuit closure problem is closely linked with the propagation of charge-carrying electromagnetic wave packets away from the tethered system. Work is reported which represents a step towards a solution to the problem that takes into account the effects of boundaries and of vertical variations in plasma density, collision frequencies, and ion species. The theory of Alfen wave packet generation by an electrodynamic tethered system in an infinite plasma medium is reviewed, and brief summary of previous work on the problem is given. The consequences of the presence of the boundaries and the vertical nonuniformity are then examined. One of the most significant new features to emerge when ion-neutral collisions are taken into account is the coupling of the Alfven waves to the fast magnetosonic wave. This latter wave is important, as it may be confined by vertical variations in the Alfven speed to a sort of leaky ionospheric wave guide, the resonances of which could be of great importance to the signal received on the Earth's surface. The infinite medium solution for this case where the (uniform) geomagnetic field makes an arbitrary angle with the vertical is taken as the incident wave-packet. Even without a full solution, a number of conclusions can be drawn, the most important of which may be that the electromagnetic field associated with the operation of a steady-current tethered system will probably be too weak to detect on the Earth's surface, even for large tethered currents. This is due to the total reflection of the incident wave at the atmospheric boundary and the inability of a steady-current tethered system to excite the ionospheric wave-guide. An outline of the approach to the numerical problem is given. The use of

  14. Variation in Outcome in Tethered Cord Syndrome

    PubMed Central

    Iqbal, Noorulain; Qadeer, Mohsin

    2016-01-01

    Study Design Fifty patients surgically treated for tethered cord syndrome (TCS) were retrospectively studied at Liaquat National Hospital, Karachi from 2010 until 2014. Purpose To assess the common presentations of TCS in our part of the world and the surgical outcome of the different presentations. Overview of Literature TCS is a stretch-induced functional disorder of the spinal cord with its caudal part anchored by an inelastic structure, which results in characteristic symptoms and signs. Due to the variety of lesions and clinical presentations and the absence of high-quality clinical outcome data, the decision regarding treatment is difficult. Methods Fifty consecutive patients with TCS were reviewed retrospectively with a follow-up period of 12–48 months. The majority of the patients were 0-15 years of age with the mean age of 4 years. The presenting complaints and the associated pathologies were documented, and the patients were assessed using the new Karachi TCS severity scale for clinical assessment. Results Eighty five percent of the patients with thickened filum terminale improved. Sixty six percent of the patients with diastematomyelia, 60% with lipoma and only 46% with myelomeningocele showed clinical improvement postoperatively. Sixty two percent of the patients who presented with paraperesis improved following surgery while 37% remained stable and only one patient deteriorated. Back and leg pain improved in 93% of patients and 50% of patients with urinary impairment improved. Conclusions Outcome of patients with TCS varies according to pathology and severity of symptoms. Diastematomyelia and thickened filum had the best outcome. The Karachi TCS severity scale is a valid tool for future studies. PMID:27559452

  15. Adult idiopathic scoliosis: the tethered spine.

    PubMed

    Whyte Ferguson, Lucy

    2014-01-01

    This article reports on an observational and treatment study using three case histories to describe common patterns of muscle and fascial asymmetry in adults with idiopathic scoliosis (IS) who have significant scoliotic curvatures that were not surgically corrected and who have chronic pain. Rather than being located in the paraspinal muscles, the myofascial trigger points (TrPs) apparently responsible for the pain were located at some distance from the spine, yet referred pain to locations throughout the thoracolumbar spine. Asymmetries in these muscles appear to tether the spine in such a way that they contribute to scoliotic curvatures. Evaluation also showed that each of these individuals had major ligamentous laxity and this may also have contributed to development of scoliotic curvatures. Treatment focused on release of TrPs found to refer pain into the spine, release of related fascia, and correction of related joint dysfunction. Treatment resulted in substantial relief of longstanding chronic pain. Treatment thus validated the diagnostic hypothesis that myofascial and fascial asymmetries were to some extent responsible for pain in adults with significant scoliotic curvatures. Treatment of these patterns of TrPs and muscle and fascial asymmetries and related joint dysfunction was also effective in relieving pain in each of these individuals after they were injured in auto accidents. Treatment of myofascial TrPs and asymmetrical fascial tension along with treatment of accompanying joint dysfunction is proposed as an effective approach to treating both chronic and acute pain in adults with scoliosis that has not been surgically corrected. PMID:24411157

  16. Response of a tethered aerostat to simulated turbulence

    NASA Astrophysics Data System (ADS)

    Stanney, Keith A.; Rahn, Christopher D.

    2006-09-01

    Aerostats are lighter-than-air vehicles tethered to the ground by a cable and used for broadcasting, communications, surveillance, and drug interdiction. The dynamic response of tethered aerostats subject to extreme atmospheric turbulence often dictates survivability. This paper develops a theoretical model that predicts the planar response of a tethered aerostat subject to atmospheric turbulence and simulates the response to 1000 simulated hurricane scale turbulent time histories. The aerostat dynamic model assumes the aerostat hull to be a rigid body with non-linear fluid loading, instantaneous weathervaning for planar response, and a continuous tether. Galerkin's method discretizes the coupled aerostat and tether partial differential equations to produce a non-linear initial value problem that is integrated numerically given initial conditions and wind inputs. The proper orthogonal decomposition theorem generates, based on Hurricane Georges wind data, turbulent time histories that possess the sequential behavior of actual turbulence, are spectrally accurate, and have non-Gaussian density functions. The generated turbulent time histories are simulated to predict the aerostat response to severe turbulence. The resulting probability distributions for the aerostat position, pitch angle, and confluence point tension predict the aerostat behavior in high gust environments. The dynamic results can be up to twice as large as a static analysis indicating the importance of dynamics in aerostat modeling. The results uncover a worst case wind input consisting of a two-pulse vertical gust.

  17. Application of tethered balloon and kite measurements using chilled mirror hygrometers during the ARM WVIOP in the fall of 1996 in Oklahoma

    SciTech Connect

    Porch, W.; Balsley, B.; Jensen, M.; Cole, H.; Lesht, B.; Liljegren, J.; Richardson, S.; Revercomb, H.

    1997-12-01

    Water vapor is the most important greenhouse gas, and its measurement is currently so imprecise that long term trends are difficult to document. This problem was the focus of a Water Vapor Intensive Operations Period (WVIOP) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site near Billings, OK in September 1996. The part of this comparison involved tethered-balloon and kite profiling of meteorological parameters and dew-point measurements using a light-weight chilled-mirror system. The tethered balloon system was used when the winds were less than about 12 m/s. The kite system was used when winds were in the 12--15 m/s range. In this abstract, the authors will focus on comparisons on boundary-layer profiles using the tethered systems and conventional rawinsonde measurements at ARM SGP. The tethered systems were limited to profiles up to 1 km above ground level. Of particular interest, is the representativity of the rapid-ascent measurements associated with rawinsonde launches and the longer-term profiling associated with the tethered system in the boundary layer. Comparisons show that profiles differed significantly in both temperature (1 to 2 C) and water vapor (5 to 10%). Both calibration and representativity contribute to these differences.

  18. Application of tethered balloon and kite measurements using chilled mirror hygrometers during the ARM WVIOP in the fall of 1996 in Oklahoma.

    SciTech Connect

    Porch, W.; Balsley, B.; Cole, H.; Jensen, M.; Lesht, B.; Lijegren, J.; Richardson, S.; Revercomb, H.; Environmental Research; LANL; Univ. of Colorado; National Center for Atmospheric Research; PNL; Univ. of Oklahaoma; Univ. of Wisconsin

    1998-01-01

    Water vapor is the most important greenhouse gas, and its measurement is currently so imprecise that long term trends are difficult to document. This problem was the focus of a Water Vapor Intensive Operations Period (WVIOP) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site near Billings, OK in September 1996. The part of this comparison involved tethered-balloon and kite profiling of meteorological parameters and dew-point measurements using a light-weight chilled-mirror system. The tethered balloon system was used when the winds were less than about 12 m/s. The kite system was used when winds were in the 12--15 m/s range. In this abstract, the authors will focus on comparisons on boundary-layer profiles using the tethered systems and conventional rawinsonde measurements at ARM SGP. The tethered systems were limited to profiles up to 1 km above ground level. Of particular interest, is the representativity of the rapid-ascent measurements associated with radiosonde launches and the longer-term profiling associated with the tethered system in the boundary layer. Comparisons show that profiles differed significantly in both temperature (1 to 2 C) and water vapor (5 to 10%). Both calibration and representativity contribute to these differences.

  19. Computational analysis of the tether-pulling experiment to probe plasma membrane-cytoskeleton interaction in cells

    NASA Astrophysics Data System (ADS)

    Schumacher, Kristopher R.; Popel, Aleksander S.; Anvari, Bahman; Brownell, William E.; Spector, Alexander A.

    2009-10-01

    Tethers are thin membrane tubes that can be formed when relatively small and localized forces are applied to cellular membranes and lipid bilayers. Tether pulling experiments have been used to better understand the fine membrane properties. These include the interaction between the plasma membrane and the underlying cytoskeleton, which is an important factor affecting membrane mechanics. We use a computational method aimed at the interpretation and design of tether pulling experiments in cells with a strong membrane-cytoskeleton attachment. In our model, we take into account the detailed information in the topology of bonds connecting the plasma membrane and the cytoskeleton. We compute the force-dependent piecewise membrane deflection and bending as well as modes of stored energy in three major regions of the system: body of the tether, membrane-cytoskeleton attachment zone, and the transition zone between the two. We apply our method to three cells: cochlear outer hair cells (OHCs), human embryonic kidney (HEK) cells, and Chinese hamster ovary (CHO) cells. OHCs have a special system of pillars connecting the membrane and the cytoskeleton, and HEK and CHO cells have the membrane-cytoskeleton adhesion arrangement via bonds (e.g., PIP2), which is common to many other cells. We also present a validation of our model by using experimental data on CHO and HEK cells. The proposed method can be an effective tool in the analyses of experiments to probe the properties of cellular membranes.

  20. Low Earth Orbit Environmental Effects on Space Tether Materials

    NASA Technical Reports Server (NTRS)

    Finckernor, Miria M.; Gitlemeier, Keith A.; Hawk, Clark W.; Watts, Ed

    2005-01-01

    Atomic oxygen (AO) and ultraviolet (UV) radiation erode and embrittle most polymeric materials. This research was designed to test several different materials and coatings under consideration for their application to space tethers, for resistance to these effects. The samples were vacuum dehydrated, weighed and then exposed to various levels of AO or UV radiation at the NASA Marshall Space Flight Center. They were then re-weighed to determine mass loss due to atomic oxygen erosion, inspected for damage and tensile tested to determine strength loss. The experiments determined that the Photosil coating process, while affording some protection, damaged the tether materials worse than the AO exposure. TOR-LM also failed to fully protect the materials, especially from UV radiation. The POSS and nickel coatings did provide some protection to the tethers, which survived the entire test regime. M5 was tested, uncoated, and survived AO exposure, though its brittleness prevented any tensile testing.

  1. DNA bending by hexamethylene-tethered ammonium ions.

    PubMed Central

    Strauss, J K; Roberts, C; Nelson, M G; Switzer, C; Maher, L J

    1996-01-01

    DNA is bent when complexed with certain proteins. We are exploring the hypothesis that asymmetric neutralization of phosphate charges will cause the DNA double helix to collapse toward the neutralized face. We have previously shown that DNA spontaneously bends toward one face of the double helix when it is partially substituted with neutral methylphosphonate linkages. We have now synthesized DNA duplexes in which cations are tethered by hexamethylene chains near specific phosphates. Electrophoretic phasing experiments demonstrate that tethering six ammonium ions on one helical face causes DNA to bend by approximately 5 degrees toward that face, in qualitative agreement with predictions. Ion pairing between tethered cations and DNA phosphates provides a new model for simulating the electrostatic consequences of phosphate neutralization by proteins. Images Fig. 4 Fig. 7 PMID:8790362

  2. ROAR: A 3-D tethered rocket simulation code

    SciTech Connect

    York, A.R. II; Ludwigsen, J.S.

    1992-04-01

    A high-velocity impact testing technique, utilizing a tethered rocket, is being developed at Sandia National Laboratories. The technique involves tethering a rocket assembly to a pivot location and flying it in a semicircular trajectory to deliver the rocket and payload to an impact target location. Integral to developing this testing technique is the parallel development of accurate simulation models. An operational computer code, called ROAR (Rocket-on-a-Rope), has been developed to simulate the three-dimensional transient dynamic behavior of the tether and motor/payload assembly. This report presents a discussion of the parameters modeled, the governing set of equations, the through-time integration scheme, and the input required to set up a model. Also included is a sample problem and a comparison with experimental results.

  3. The definition of the Shuttle Tethered Aerothermodynamic Research Facility

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Wood, G. M., Jr.; Wolf, H.; Flanagan, P. F.; Henry, M. W.

    1985-01-01

    Studies have been conducted to define the feasibility and practical limitations of the Shuttle Orbiter Tethered 'wind-tunnel' concept. This concept, referred to as the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC), is proposed to provide researchers access to altitudes above 90 km to accomplish aerothermodynamic research in the rarefied upper atmosphere. Determining the feasibility and limitations of the concept has required the enhancement and/or development of mission simulation analytical techniques and control laws; the accomplishment of candidate mission simulations; the definition of instrumentation requirements, both for science and engineering; and the establishment of tether and satellite design requirements to meet STARFAC objectives. The results of the study, to date, indicate that such a concept is both feasible and practical. Representative results are presented, as are recommendations for continued studies which would result in program implementation.

  4. Surfactant mediated morphological tethering of Cu2O nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, Poonam

    2015-01-01

    This communication describes a very simple and reproducible methodology to study the self-assembly of nanoparticles functionalized with a non-ionic tethering agent attached to the surface of the nanoparticle seeds. The synthesis starts with the [Cu(OH)4]2- species acting as a template, with varying concentration of the tethering agent Triton X-100 (TX100). The morphological alteration is systematically investigated. The effect of surfactant micelles, growth reaction time, and solution temperature has a tremendous impact on the morphology of the nanocrystals that govern the controlled synthesis of different shapes of nanostructures. The initial morphology of the nanocrystals is polyhedron in the absence of a tethering additive. The addition of TX100 suppresses the polymorph phase morphology and enhances the non-uniform spherical morphology of the nanocrystals. The surface modification effect enhances the morphological alteration, which potentially makes it applicable to various industrial uses such as water cleaning, hydrogen production, and third-generation solar cells.

  5. Anchoring a Leviathan: How the Nuclear Membrane Tethers the Genome

    PubMed Central

    Czapiewski, Rafal; Robson, Michael I.; Schirmer, Eric C.

    2016-01-01

    It is well established that the nuclear envelope has many distinct direct connections to chromatin that contribute to genome organization. The functional consequences of genome organization on gene regulation are less clear. Even less understood is how interactions of lamins and nuclear envelope transmembrane proteins (NETs) with chromatin can produce anchoring tethers that can withstand the physical forces of and on the genome. Chromosomes are the largest molecules in the cell, making megadalton protein structures like the nuclear pore complexes and ribosomes seem small by comparison. Thus to withstand strong forces from chromosome dynamics an anchoring tether is likely to be much more complex than a single protein-protein or protein-DNA interaction. Here we will briefly review known NE-genome interactions that likely contribute to spatial genome organization, postulate in the context of experimental data how these anchoring tethers contribute to gene regulation, and posit several hypotheses for the physical nature of these tethers that need to be investigated experimentally. Significantly, disruption of these anchoring tethers and the subsequent consequences for gene regulation could explain how mutations in nuclear envelope proteins cause diseases ranging from muscular dystrophy to lipodystrophy to premature aging progeroid syndromes. The two favored hypotheses for nuclear envelope protein involvement in disease are (1) weakening nuclear and cellular mechanical stability, and (2) disrupting genome organization and gene regulation. Considerable experimental support has been obtained for both. The integration of both mechanical and gene expression defects in the disruption of anchoring tethers could provide a unifying hypothesis consistent with both. PMID:27200088

  6. The Momentum-eXchange/Electrodynamic Reboost (MXER) Tether Concept

    NASA Astrophysics Data System (ADS)

    Sorenson, K. F.

    2004-12-01

    Within NASA's In-Space Propulsion Technology Projects Office exists Emerging Propulsion Technologies (EPT) Investment Area that is advancing emerging propulsion concepts that have potential to lower the cost of space transportation, enable new missions, and/or increase the payload capability. The current, primary investment of EPT is the Momentum-eXchange/Electrodynamic Reboost (MXER) tether concept. The MXER tether is a long, rotating cable in an elliptical Earth orbit whose rapid rotation allows it to catch a payload in a low Earth orbit and throw it to a high-energy orbit. The orbital energy transferred by the MXER tether to the payload is restored to the tether via electrodynamic tether propulsion. This technique uses solar power to drive electrical current collected from the ionosphere through the tether, resulting in a magnetic interaction with the terrestrial field. Since the Earth itself serves as the reaction mass, the thrust force is generated without propellant, and allows the MXER facility to be repeatedly reused without resupply. Essentially, the MXER facility is a `propellantless' upper stage that could assist nearly every mission going beyond low Earth orbit. Payloads to interplanetary destinations would especially benefit from the boost provided by the MXER facility, resulting in launch vehicle cost reductions, increased payload fractions, and more frequent mission opportunities. Some of the benefits to space exploration include: (1) Multi-use, in-space, `propellantless' infrastructure, (2) Useable by essentially all missions beyond LEO, (3) Lowers overall mission costs and/or enables larger payloads, (4) ``Panama Canal" of space transportation, (5) A spiral development for future generations, (6) Readily scales up or down, (7) Future transportation to and from Lunar surface.

  7. Tethered Lunar Subsatellites for Multipoint and Low Altitude Measurements

    NASA Technical Reports Server (NTRS)

    Collier, Michael; Vondrak, Richard R.; Hoyt, Robert P.; Mesarch, Michael A.; Farrell, William M.; Keller, John W.; Clark, Pamela E.; Petro, Noah E.; Hwang, Kyoung-Joo

    2016-01-01

    The difficulty in making global measurements in orbit close to planetary bodies (and in particular the Moon) seriously constrains our ability to collect crucial, high-resolution data. We describe a unique and groundbreaking approach using tethered subsatellites to make measurements arbitrarily close to planetary surfaces, particularly those with no atmosphere, and to determine altitude profiles of geophysical parameters. The approach is feasible with current technology, and the subsatellite could be as small as a CubeSat. The initial results of a feasibility study and mission design for a tethered lunar CubeSat indicate that it is achievable.

  8. Tethered lunar subsatellites for multipoint and low altitude measurements

    NASA Astrophysics Data System (ADS)

    Collier, Michael R.; Vondrak, Richard R.; Hoyt, Robert P.; Mesarch, Michael A.; Farrell, William M.; Keller, John W.; Clark, Pamela E.; Petro, Noah E.; Hwang, Kyoung-Joo

    2016-11-01

    The difficulty in making global measurements in orbit close to planetary bodies (and in particular the Moon) seriously constrains our ability to collect crucial, high-resolution data. We describe a unique and groundbreaking approach using tethered subsatellites to make measurements arbitrarily close to planetary surfaces, particularly those with no atmosphere, and to determine altitude profiles of geophysical parameters. The approach is feasible with current technology, and the subsatellite could be as small as a CubeSat. The initial results of a feasibility study and mission design for a tethered lunar CubeSat indicate that it is achievable.

  9. Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon

    NASA Astrophysics Data System (ADS)

    Canut, Guylaine; Couvreux, Fleur; Lothon, Marie; Legain, Dominique; Piguet, Bruno; Lampert, Astrid; Maurel, William; Moulin, Eric

    2016-09-01

    This study presents the first deployment in field campaigns of a balloon-borne turbulence probe, developed with a sonic anemometer and an inertial motion sensor suspended below a tethered balloon. This system measures temperature and horizontal and vertical wind at high frequency and allows the estimation of heat and momentum fluxes as well as turbulent kinetic energy in the lower part of the boundary layer. The system was validated during three field experiments with different convective boundary-layer conditions, based on turbulent measurements from instrumented towers and aircraft.

  10. Case report: pseudotail with dermal sinus tract and tethered cord.

    PubMed

    Clark, Paul; Davidson, Laurence

    2016-09-01

    A pseudotail is a very rare, dermal appendage arising from the lumbosacral region with an association with spinal dysraphism. We report a case of a pseudotail in a healthy newborn female with sonographic imaging of a tethered cord and dermal sinus tract with MRI and surgical correlation. PMID:27635168

  11. Tethered Nanoparticle -Polymer Composites: Phase behavior and rheology

    NASA Astrophysics Data System (ADS)

    Mangal, Rahul; Archer, Lynden A.

    2014-03-01

    Polymer nanocomposites with particle radius (a) approaching the radius of gyration (Rg) of entangled host polymer have been reported to exhibit an unusual negative reinforcement effect, which leads to an anomalous reduction in relative an anomalous reduction in relative viscosity at low particle loadings (φ) . This so-called Non-Einsteinian flow behavior is understood to be sensitive to the dispersion state of particles in host polymer. We studied suspensions of SiO2 nanoparticles tethered with polethylene glycol (PEG) in polymethylmethacralate (PMMA) with molecular weights (Mw) from 17 KDa to 280 KDa. Due to strong enthalpic interactions between PEG and PMMA (χ = -0.65), nanoparticles are expected to be well-dispersed, independent of Mw of PMMA. Using small angle x-ray scattering measurements we show that the phase stability of suspensions depends on Mw of the tethered PEG, host PMMA, and φ. Particles functionalized with low molecular weight PEG aggregate at low φ, but disperse at high φ. In contrast, nanoparticles functionalized with higher molecular weight PEG are well dispersed for host chain lengths (P) to tethered chain length (N), (P/N), is as high as 160. The stability boundary of these suspensions extends well beyond expectations for nanocomposites based on tethered PEG chains suspended in PEG. Through in-depth analysis of rheology and x-ray photon correlation spectra we explore the fundamental origins of non-Einsteinian flow behavior. King Abdullah University of Science and Technology (KAUST), Advanced Photon Source (APS).

  12. Astronauts Conrad and Gordon demonstrate tethering procedures for news media

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Charles Conrad (left), command pilot, and Richard F. Gordon (right), pilot, demonstrate tether procedure between their Gemini 11 spacecraft and the Agena Target Docking Vehicle at the post flight press conference. They use models of their spacecraft and its Agena to illustrate maneuvers.

  13. Astronauts Conrad and Gordon demonstrate tethering procedures for news media

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Charles Conrad (center), command pilot, and Richard F. Gordon (right), pilot, demonstrate tether procedure between their Gemini 11 spacecraft and the Agena Target Docking Vehicle at the post flight press conference. They use models of their spacecraft and its Agena to illustrate maneuvers. At left is George Low, Deputy Director, Manned Spacecraft Center, Houston.

  14. Applications of Tethers in Space: Workshop Proceedings, Volume 1

    NASA Technical Reports Server (NTRS)

    Baracat, W. A. (Compiler)

    1986-01-01

    The complete documentation of the workshop including all addresses, panel reports, charts, and summaries are presented. This volume presents all the reports on the fundamentals of applications of tethers in space. These applications include electrodynamic interactions, transportation, gravity utilization, constellations, technology and test, and science applications.

  15. Mitochondria tether protein trash to rejuvenate cellular environments.

    PubMed

    Mogk, Axel; Bukau, Bernd

    2014-10-23

    Protein damage segregates asymmetrically in dividing yeast cells, rejuvenating daughters at the expense of mother cells. Zhou et al. now show that newly synthesized proteins are particularly prone to aggregation and describe a mechanism that tethers aggregated proteins to mitochondria. This association constrains aggregate mobility, effectively retaining and sorting toxic aggregates away from younger cells. PMID:25417098

  16. Mitochondria tether protein trash to rejuvenate cellular environments.

    PubMed

    Mogk, Axel; Bukau, Bernd

    2014-10-23

    Protein damage segregates asymmetrically in dividing yeast cells, rejuvenating daughters at the expense of mother cells. Zhou et al. now show that newly synthesized proteins are particularly prone to aggregation and describe a mechanism that tethers aggregated proteins to mitochondria. This association constrains aggregate mobility, effectively retaining and sorting toxic aggregates away from younger cells.

  17. Fortissimo: A Japanese Space Test Of Bare Wire Anode Tethers

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Fujii, H. A.; Sanmartin, J. R.

    2008-01-01

    A Japanese led international team is developing a suborbital test of orbital-motion-limited (OML) bare wire anode current collection for application to electrodynamic tether (EDT) propulsion. The tether is a tape with a width of 25 mm, thickness of 0.05 mm, and is 300 m in length. This will be the first space test of OML theory. The mission will launch in the summer of 2009 using an S520 Sounding Rocket. During ascent, and above approx. 100 km in attitude, the tape tether will be deployed at a rate of approx. 8 m/s. Once deployed, the tape tether will serve as an anode, collecting ionospheric electrons. The electrons will be expelled into space by a hollow cathode device, thereby completing the circuit and allowing current to flow. The total amount of current collected will be used to assess the validity of OML theory. This paper will describe the objectives of the proposed mission, the technologies to be employed, and the application of the results to future space missions using EDTs for propulsion or power generation.

  18. 76 FR 41526 - Centennial Challenges 2011 Strong Tether Challenge

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... Space Administration (NASA). ACTION: Notice. SUMMARY: This notice is issued in accordance with 42 U.S.C... register. Centennial Challenges is a program of prize competitions to stimulate innovation in technologies of interest and value to NASA and the nation. The 2011 Strong Tether Challenge is a prize...

  19. Stabilized platform for tethered balloon soundings of broadband long- and short-wave radiation

    SciTech Connect

    Alzheimer, J.M.; Anderson, G.A.; Whiteman, C.D.

    1993-01-01

    Changes in the composition of trace gases in the earth's atmosphere have been reported by many observers, and a general concern has been expressed regarding possible changes to the earth's climate that may be caused by radiatively active gases introduced into the earth's atmosphere by man's activities. Radiatively active trace gases produce temperature changes in the earth's atmosphere through changes in radiative flux divergence. Our knowledge of and means of measuring radiative flux divergence is very limited. A few observations of vertical radiative flux divergences have been reported from aircraft from radiometersondes from towers and from large tethered balloons. These measurement techniques suffers from one or more drawbacks, including shallow sounding depths (towers), high cost (aircraft), complicated logistics (large tethered balloons), and limitation to nighttime hours (radiometersondes). Changes in radiative flux divergence caused by anthropogenic trace gases are expected to be quite small, and will be difficult to measure with existing broadband radiative flux instruments. The emphasis of present research in global climate change is thus being focused on improving radiative transfer algorithms in global climate models. The radiative parameterizations in these models are at an early stage of development and information is needed regarding their performance, especially in cloudy conditions. The impetus for the research reported in this paper is the need for a device that can supplement existing means of measuring vertical profiles of long- and short-wave irradiance and radiative flux divergence. We have designed a small tethered-balloon-based system that can make radiometric soundings through the atmospheric boundary layer. This paper discusses the concept, the design considerations, and the design and construction of this sounding system. The performance of the system will be tested in a series of balloon flights scheduled for the fall and winter of 1992.

  20. Stabilized platform for tethered balloon soundings of broadband long- and short-wave radiation

    SciTech Connect

    Alzheimer, J.M.; Anderson, G.A.; Whiteman, C.D.

    1993-01-01

    Changes in the composition of trace gases in the earth`s atmosphere have been reported by many observers, and a general concern has been expressed regarding possible changes to the earth`s climate that may be caused by radiatively active gases introduced into the earth`s atmosphere by man`s activities. Radiatively active trace gases produce temperature changes in the earth`s atmosphere through changes in radiative flux divergence. Our knowledge of and means of measuring radiative flux divergence is very limited. A few observations of vertical radiative flux divergences have been reported from aircraft from radiometersondes from towers and from large tethered balloons. These measurement techniques suffers from one or more drawbacks, including shallow sounding depths (towers), high cost (aircraft), complicated logistics (large tethered balloons), and limitation to nighttime hours (radiometersondes). Changes in radiative flux divergence caused by anthropogenic trace gases are expected to be quite small, and will be difficult to measure with existing broadband radiative flux instruments. The emphasis of present research in global climate change is thus being focused on improving radiative transfer algorithms in global climate models. The radiative parameterizations in these models are at an early stage of development and information is needed regarding their performance, especially in cloudy conditions. The impetus for the research reported in this paper is the need for a device that can supplement existing means of measuring vertical profiles of long- and short-wave irradiance and radiative flux divergence. We have designed a small tethered-balloon-based system that can make radiometric soundings through the atmospheric boundary layer. This paper discusses the concept, the design considerations, and the design and construction of this sounding system. The performance of the system will be tested in a series of balloon flights scheduled for the fall and winter of 1992.

  1. The International Tethered Cord Partnership: Beginnings, process, and status

    PubMed Central

    Mulholland, Celene B.; Aranda, Guzmán; Arredondo, Luis Angel; Calgua, Erwin; Contreras, Fernando; Espinoza, Dulce Maria; Gonzalez, Juan Bosco; Hoil, Jose A.; Komolafe, Edward; Lazareff, Jorge A.; Liu, Yunhui; Soto-Mancilla, Juan Luis; Mannucci, Graciela; Nan, Bao; Portillo, Santiago; Zhao, Hongyu

    2011-01-01

    Background: Spina bifida presents a significant cause of childhood morbidity in lower- and middle-income nations. Unfortunately, there is a paucity of literature examining outcomes among children with spina bifida in these countries. The goal of the International Tethered Cord Parternship is twofold: (1) to establish an international surveillance database to examine the correlation between time of repair and clinical outcomes in children with spina bifida and tethered cord; and (2) to foster collaboration among international institutions around pediatric neurosurgical concerns. Methods: Twelve institutions in 7 countries committed to participating in the International Tethered Cord Partnership. A neurosurgeon at each institution will evaluate all children presenting with spina bifida and/or tethered cord using the survey instrument after appropriate consent is obtained. The instrument was developed collaboratively and based on previous measures of motor and sensory function, ambulation, and continence. All institutions who have begun collecting data received appropriate Institutional Review Board approval. All data will be entered into a Health Insurance Portability and Accountability Act (HIPAA) compliant database. In addition, a participant restricted internet forum was created to foster communication and includes non–project-specific communications, such as case and journal article discussion. Results: From October 2010 to December 2010, 82 patients were entered from the various study sites. Conclusion: To our knowledge this is the first international pediatric neurosurgical database focused on clinical outcomes and predictors of disease progression. The collaborative nature of the project will not only increase knowledge of spina bifida and tethered cord, but also foster discussion and further collaboration between neurosurgeons internationally. PMID:21541204

  2. Estimate of avoidance maneuver rate for HASTOL tether boost facility

    NASA Astrophysics Data System (ADS)

    Forward, Robert L.

    2002-01-01

    The Hypersonic Airplane Space Tether Orbital Launch (HASTOL) Architecture uses a hypersonic airplane (or reusable launch vehicle) to carry a payload from the surface of the Earth to 150 km altitude and a speed of Mach 17. The hypersonic airplane makes a rendezvous with the grapple at the tip of a long, rotating, orbiting space tether boost facility, which picks up the payload from the airplane. Release of the payload at the proper point in the tether rotation boosts the payload into a higher orbit, typically into a Geosynchronous Transfer Orbit (GTO), with lower orbits and Earth escape other options. The HASTOL Tether Boost Facility will have a length of 636 km. Its center of mass will be in a 604 km by 890 km equatorial orbit. It is estimated that by the time of the start of operations of the HASTOL Tether Boost facility in the year 2020, there will be 500 operational spacecraft using the same volume of space as the HASTOL facility. These operational spacecraft would likely be made inoperative by an impact with one of the lines in the multiline HASTOL Hoytether™ and should be avoided. There will also be non-operational spacecraft and large pieces of orbital debris with effective size greater than five meters in diameter that could cut a number of lines in the HASTOL Hoytether™, and should also be avoided. It is estimated, using two different methods and combining them, that the HASTOL facility will need to make avoidance maneuvers about once every four days if the 500 operational spacecraft and large pieces of orbital debris greater than 5 m in diameter, were each protected by a 2 km diameter miss distance protection sphere. If by 2020, the ability to know the positions of operational spacecraft and large pieces of orbital debris improved to allow a 600 m diameter miss distance protection sphere around each object, then the number of HASTOL facility maneuvers needed drops to one every two weeks. .

  3. Interactions, Structure, and Dynamics of Polymer-Tethered Nanoparticle Blends.

    PubMed

    Agrawal, Akanksha; Wenning, Brandon M; Choudhury, Snehashis; Archer, Lynden A

    2016-08-30

    We report on the structure, jamming, and dynamics of blends of self-suspended hairy silica nanoparticles grafted with poly(ethylene glycol) (PEG) and poly(methyl methacrylate) (PMMA). We find that favorable enthalpic attraction between tethered PEG and PMMA chains augment previously reported entropic attractions between tethered polymer chains in self-suspended suspensions to enhance particle-particle correlations, increase jamming, and slow down chain dynamics. As with their single-component counterparts, the hairy SiO2-PEG/SiO2-PMMA nanoparticle blends exhibit soft glassy rheological behavior and both the energy dissipated at yielding and the plateau elastic modulus display strong maxima in the symmetric case. A comparison of the small angle X-ray scattering (SAXS) measurements with theoretical analysis from density functional theory (DFT) reveals that the addition of SiO2-PMMA to a self-suspended SiO2-PEG suspension initially leads to a higher degree of stretching of the corona chains, which produces stronger interdigitation of the tethered chains, enhanced jamming, and slower polymer relaxation than observed in the single-component materials. By means of an analysis of the heat of mixing released upon blending tethered and untethered PEG and PMMA chains, we find that the strong enthalpic attraction between the grafted polymer chains enhances entropic attractive forces produced by the space-filling constraint on tethered ligands in self-suspended suspensions to produce entangled-polymer-like physical properties in polymers with molecular weights below the thresholds normally associated with the transition to an entangled state. PMID:27479587

  4. One kilometer (1 km) electric solar wind sail tether produced automatically.

    PubMed

    Seppänen, Henri; Rauhala, Timo; Kiprich, Sergiy; Ukkonen, Jukka; Simonsson, Martin; Kurppa, Risto; Janhunen, Pekka; Hæggström, Edward

    2013-09-01

    We produced a 1 km continuous piece of multifilament electric solar wind sail tether of μm-diameter aluminum wires using a custom made automatic tether factory. The tether comprising 90,704 bonds between 25 and 50 μm diameter wires is reeled onto a metal reel. The total mass of 1 km tether is 10 g. We reached a production rate of 70 m/24 h and a quality level of 1‰ loose bonds and 2‰ rebonded ones. We thus demonstrated that production of long electric solar wind sail tethers is possible and practical.

  5. Learning characteristics of a space-time neural network as a tether skiprope observer

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1993-01-01

    The Software Technology Laboratory at the Johnson Space Center is testing a Space Time Neural Network (STNN) for observing tether oscillations present during retrieval of a tethered satellite. Proper identification of tether oscillations, known as 'skiprope' motion, is vital to safe retrieval of the tethered satellite. Our studies indicate that STNN has certain learning characteristics that must be understood properly to utilize this type of neural network for the tethered satellite problem. We present our findings on the learning characteristics including a learning rate versus momentum performance table.

  6. Learning characteristics of a space-time neural network as a tether skiprope observer

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1992-01-01

    The Software Technology Laboratory at JSC is testing a Space Time Neural Network (STNN) for observing tether oscillations present during retrieval of a tethered satellite. Proper identification of tether oscillations, known as 'skiprope' motion, is vital to safe retrieval of the tethered satellite. Our studies indicate that STNN has certain learning characteristics that must be understood properly to utilize this type of neural network for the tethered satellite problem. We present our findings on the learning characteristics including a learning rate versus momentum performance table.

  7. Synthesis, Characterization, and Modeling of Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Herzog, M. N.; Odegard, G. M.; Gates, T. S.; Fay, C. C.

    2004-01-01

    Synthesis, mechanical testing, and modeling have been performed for carbon nanotube based materials. Tests using nanoindentation indicated a six-fold enhancement in the storage modulus when comparing the base material (no nanotubes) to the composite that contained 5.3 wt% of nanotubes. To understand how crosslinking the nanotubes may further alter the stiffness, a model of the system was constructed using nanotubes crosslinked with a variable stiffness tether (VST). The model predicted that for a composite with 5 wt% nanotubes at random orientations, crosslinked with the VST, the bulk Young's modulus was reduced by 30% compared to the noncrosslinked equivalent.

  8. Development of a Tether Based Space Walking Robot to Be Tested on ISS/KIBO

    NASA Astrophysics Data System (ADS)

    Oda, Mitsushige; Yoshii, Masahiro; Kato, Hiroki; Suzuki, Satoshi; Hagiwara, Yusuke; Ueno, Taihei

    A unique space robot is proposed to support astronauts in space. The robot moves around the surface of a space facility, e.g. a space station using its handrails and tethers that the robot has. This unique mechanism of the proposed robot makes it possible to realize the robot in a small volume while the robot can move around the wide area. In order to demonstrate usefulness of this unique robot, an onboard experiment on the exposed facility of the International Space Station Japanese Experiment Module, “KIBO” will be conducted in the year 2012. Development of the experiment system is progressing now.

  9. Photoinduced acceleration of the effluent rate of developing solvents in azobenzene-tethered silica gel.

    PubMed

    Fujiwara, Masahiro; Akiyama, Minako; Hata, Momoko; Shiokawa, Kumi; Nomura, Ryoki

    2008-08-01

    The switching of a molecular length of azobenzene between its trans and cis forms by photoirradiation originates various photoresponsive systems in the molecular level and/or nanolevel. Recently, we and another group separately reported that some azobenzene-modified mesoporous silicas remarkably promote the release of molecules from the inside of the mesopore to the outside, when the lights, both UV and visible lights, were irradiated simultaneously. In these cases, the release rates of molecules were enhanced by the impeller-like effect of molecular motion of azobenzene moiety attributed to the continuous photoisomerization between the trans and cis isomers. This paper presents that azobenzene-substituent-tethered amorphous silica gel could promote the development of solvents in chromatography systems by photoirradiation. In column chromatography system where azobenzene-tethered silica gel was packed, the irradiation of both UV and visible lights increased the effluent rate of the developing solvents. The single irradiation of UV light scarcely enhanced the rate, while the visible light irradiation longer than 400 nm in wavelength also accelerated the development of the solvent moderately. The same kinds of phenomena were observed when this photopromoted chromatography system was applied to thin layer chromatography (TLC). Hydrocarbon developing solvents in the regions, where UV and visible lights were irradiated, moved up the TLC plate higher than those without photoirradiation. When the pyrene solution in the developing solvent was utilized in the chromatography systems, the similar photoacceleration of pyrene development was observed at the same level as the developing solvents.

  10. Effect of ionic strength on electrically evoked membrane tether force: an optical tweezers study

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Brownell, William E.; Anvari, Bahman

    2004-10-01

    We have investigated the effect of ionic strength on electrically evoked membrane tether force using optical tweezers. Membrane tethers from cochlear outer hair cells (OHCs) and human embryonic kidney (HEK) cells exhibited mechanical response to applied voltage stimuli over a wide frequency range. The electrically evoked variations in the tether force were probed by an optically-trapped microsphere, the image of which was projected on a quadrant photodiode for dynamic measurement of its displacements. Compared to normal saline (140mM NaCl), low ionic-strength solution (10mM NaCl) blocked the electrically evoked tether force for both OHCs and HEK cells. As the Debye length for membrane bilayer was estimated to increase from approximately 0.75nm to 1.88nm, the internal repulsive pressure of the membrane tethers rose consequently, resulting in the enlargement in the equilibrium tether diameter and the decrease in the tether force.

  11. Self-consistent field theory of tethered polymers: One dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions

    SciTech Connect

    Suo, Tongchuan Whitmore, Mark D.

    2014-11-28

    We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a “mushroom” regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ{sup 1/3} scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ{sup 1/3}. In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ{sup 1/3}. We also compare the results for two different solvents with each other, and with earlier Θ solvent results.

  12. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim.

    PubMed

    Lee, Casey Jane; Sanders, Ross H; Payton, Carl J

    2014-01-01

    This study examined changes in the propulsive force and stroke parameters of arm-amputee and able-bodied swimmers during tethered swimming. Eighteen well-trained female swimmers (nine unilateral arm amputees and nine able-bodied) were videotaped performing maximal-effort 30 s front-crawl swims, while attached to a load cell mounted on a pool wall. Tether force, stroke rate, stroke phase durations and inter-arm angle were quantified. The able-bodied group produced significantly higher mean and maximum tether forces than the amputee group. The mean of the intra-cyclic force peaks was very similar for both groups. Mean and maximum tether force had significant negative associations with 100 m swim time, for both groups. Both groups exhibited a similar fatigue index (relative decrease in tether force) during the test, but the amputees had a significantly greater stroke rate decline. A significant positive association between stroke rate decline and fatigue index was obtained for the able-bodied group only. Inter-arm angle and relative phase durations did not change significantly during the test for either group, except the recovery phase duration of the arm amputees, which decreased significantly. This study's results can contribute to the development of a more evidence-based classification system for swimmers with a disability.

  13. Investigation of EM Emissions by the Electrodynamic Tether, Inclusive of an Observational Program (EMET)

    NASA Technical Reports Server (NTRS)

    Estes, Robert D.

    1998-01-01

    Our TSS-1/R investigation, which we shall refer to as EMET in this report, was an integral part of the effort by the TSS-1/R Investigators' Working Group (IWG) to come to an understanding of the complex interaction between the tethered satellite system and the ionosphere. All of the space-borne experiments were designed to collect data relevant to the local interaction. Only the ground- based experiments, EMET and its Italian counterpart Observations on the Earth's Surface of Electromagnetic Emissions (OESEE), held out any hope of characterizing the long range effects of the interaction. This was to be done by detecting electromagnetic waves generated by the system in the ionosphere, assuming the signal reached the Earth's surface with sufficient amplitude. As the type of plasma waves excited to carry charge away from the charge-exchange regions of the system at each end of the tether is one of the theoretical points about which there is greatest disagreement, a definitive identification of tether-generated waves could mark significant progress in the so-called current closure problem of electrodynamic tethers. Dr. Mario Grossi of the Smithsonian Astrophysical Observatory (SAO) initiated the investigation, and his experience in the field of ULF-ELF waves and their detection was invaluable throughout its course. Rice University had the responsibility of setting up the EMET ULF-VLF ground stations under a subcontract from SAO. Principal Investigator (PI) for the Rice effort was Prof. William E. Gordon, who was primary observer at the Arecibo Observatory during TSS-LR. Dr. Steve Noble handled major day-to-day operations, training, and planning for the ground-based measurements. Dr. James McCoy of NASA JSC, a member of the Mona/Arecibo team, was pilot for the numerous flights ferrying personnel and equipment between Puerto Rico and Mona Island. Final responsibility for the measurements rested with SAO, and the activities of field personnel and SAO investigators were

  14. Tether-mission design for multiple flybys of moon Europa

    NASA Astrophysics Data System (ADS)

    Sanmartin, J. R. S.; Charro, M. C.; Sanchez-Arriaga, G. S. A.; Sanchez-Torres, A. S. T.

    2015-10-01

    A tether mission to carry out multiple flybys of Jovian moon Europa is here presented. There is general agreement on elliptic-orbit flybys of Europa resulting in cost to attain given scientific goals lower than if actually orbiting the moon, tethers being naturally fit to fly-by rather than orbit moons1. The present mission is similar in this respect to the Clipper mission considered by NASA, the basic difference lying in location of periapsis, due to different emphasis on mission-challenge metrics. Clipper minimizes damaging radiation-dose by avoiding the Jupiter neighborhood and its very harsh environment; periapsis would be at Europa, apoapsis as far as moon Callisto. As in all past outer-planet missions, Clipper faces, however, critical power and propulsion needs. On the other hand, tethers can provide both propulsion and power, but must reach near the planet to find high plasma density and magnetic field values, leading to high induced tether current, and Lorentz drag and power. The bottom line is a strong radiation dose under the very intense Radiation Belts of Jupiter. Mission design focuses on limiting dose. Perijove would be near Jupiter, at about 1.2-1.3 Jovian radius, apojove about moon Ganymede, corresponding to 1:1 resonance with Europa, so as to keep dose down: setting apojove at Europa, for convenient parallel flybys, would require two perijove passes per flyby (the Ganymede apojove, resulting in high eccentricity, about 0.86, is also less requiring on tether operations). Mission is designed to attain reductions in eccentricity per perijove pass as high as Δe ≈ - 0.04. Due the low gravity-gradient, tether spinning is necessary to keep it straight, plasma contactors placed at both ends taking active turns at being cathodic. Efficiency of capture of the incoming S/C by the tether is gauged by the ratio of S/C mass to tether mass; efficiency is higher for higher tape-tether length and lower thickness and perijove. Low tether bowing due to the Lorentz

  15. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building, and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 34 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers, and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  16. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.

    2004-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 3 - 4 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  17. Tethered Balloon Operations at ARM AMF3 Site at Oliktok Point, AK

    NASA Astrophysics Data System (ADS)

    Dexheimer, D.; Lucero, D. A.; Helsel, F.; Hardesty, J.; Ivey, M.

    2015-12-01

    Oliktok Point has been the home of the Atmospheric Radiation Measurement Program's (ARM) third ARM Mobile Facility, or AMF3, since October 2013. The AMF3 is operated through Sandia National Laboratories and hosts instrumentation collecting continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. The Arctic region is warming more quickly than any other region due to climate change and Arctic sea ice is declining to record lows. Sparsity of atmospheric data from the Arctic leads to uncertainty in process comprehension, and atmospheric general circulation models (AGCM) are understood to underestimate low cloud presence in the Arctic. Increased vertical resolution of meteorological properties and cloud measurements will improve process understanding and help AGCMs better characterize Arctic clouds. SNL is developing a tethered balloon system capable of regular operation at AMF3 in order to provide increased vertical resolution atmospheric data. The tethered balloon can be operated within clouds at altitudes up to 7,000' AGL within DOE's R-2204 restricted area. Pressure, relative humidity, temperature, wind speed, and wind direction are recorded at multiple altitudes along the tether. These data were validated against stationary met tower data in Albuquerque, NM. The altitudes of the sensors were determined by GPS and calculated using a line counter and clinometer and compared. Wireless wetness sensors and supercooled liquid water content sensors have also been deployed and their data has been compared with other sensors. This presentation will provide an overview of the balloons, sensors, and test flights flown, and will provide a preliminary look at data from sensor validation campaigns and test flights.

  18. Tethered capsule OCT endomicroscopy: from bench to bedside at the primary care office (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gora, Michalina J.; Simmons, Leigh H.; Tiernan, Aubrey R.; Grant, Catriona N.; Soomro, Amna R.; Walker Corkery, Elizabeth S.; Rosenberg, Mireille; Metlay, Joshua P.; Tearney, Guillermo J.

    2016-03-01

    We have developed a swallowable tethered capsule OCT endomicroscopy (TCE) device that acquires microscopic images of the entire esophagus in unsedated subjects in a quick and comfortable procedure. To test its capabilities of TCE to become a population-based screening device, we conducted a clinical feasibility study in the primary care office. The swept-source OCT imaging system (1310nm central wavelength, 40kHz A-line rate, 10um axial resolution) together with the tethered capsule catheter (11x25mm capsule attached to a flexible tether) were transferred to the PCP office where unsedated patients scheduled for non-urgent PCP visits swallowed the capsule and microscopic OCT images of the entire esophagus were collected. After the whole length of the esophagus was imaged, the catheter was disinfected for reuse. Twenty subjects were enrolled in the study, including nine female and eleven male. All TCE procedures were performed by a nurse and lasted in average 5:42 ± 1:54 min. High-resolution images of the esophagus were obtained in all seventeen subjects that swallowed the capsule. Our clinical experience in this cohort, subject feedback, image quality, and technological adaptations for efficient utilization in this setting will be presented. The ease and simplicity of the procedure combined with high quality of the images demonstrate the potential for this technology to become a population-based screening device. Technology limitations and future development guided by findings from this initial experience will be discussed with the goal of effectively translating TCE to the outpatient primary care setting.

  19. Tether pointing platform and space elevator mechanisms analysis of the key concepts for SATP and scaled SATP

    NASA Technical Reports Server (NTRS)

    Turci, E.

    1986-01-01

    The key concepts for a scaled and full model Science and Applications Tethered Platform (SATP) are analysized. This includes a tether pointing platform and a space elevator. The mechanism concepts and technological solutions are given. The idea of the tether pointing platform mechanism is to control and stabilize the attitude of a platform by means of a movable tether. The idea of the space elevator mechanism for a scaled SATP is to drag the tether gripping it between two rotating wheels.

  20. Determination of Force Coresponding to Maximal Lactate Steady State in Tethered Swimming

    PubMed Central

    PAPOTI, MARCELO; VITÓRIO, RICARDO; ARAÚJO, GUSTAVO G.; DA SILVA, ADELINO S. R.; SANTHIAGO, VANESSA; MARTINS, LUIZ E. B.; CUNHA, SÉRGIO A.; GOBATTO, CLAUDIO A.

    2009-01-01

    The main aim of the present investigation was to verify if the aerobic capacity (AC) measured in tethered swimming corresponds to the maximal lactate steady state (MLSS) and its correlation with 30 min and 400m free style swimming. Twenty-five swimmers were submitted to an incremental tethered swimming test (ITS) with an initial load of 20N and increments of 10N each 3min. After each stage of 3min, the athletes had 30s of interval to blood sample collections that were used to measure blood lactate concentrations ([La−]). The ACBI was determined by the abrupt increase in [La−] versus force (F). The points obtained between [La−] versus force (N) were adjusted by an exponential curve model to determine AC corresponding to 3.5mmol.l−1 (AC3.5) and 4.0mmol.l−1 (AC4.0). After these procedures, the swimmers performed maximal efforts of 30min and 400m in free style swimming. We used the distance performed in 30min and the time performed in 400m to calculate the median velocities (i.e. V30 and V400) of these protocols. After one week, in order to measure the MLSS, nine athletes performed three 30-min tethered swimming efforts with intensities of 90, 100, and 110% of ACBI. The ANOVA one-way was used to compare the ACBI, AC3.5 and AC4.0. Correlations between ACs, and between ACs and V30 and V400 (p<0.05) were determined using the Pearson’s correlation coefficient. The intensity corresponding to 100% of ACBI was similar to the MLSS. It was observed significant correlations of the aerobic capacities (i.e. ACBI, AC3.5 and AC4.0) with V30 (r>0.91) and V400 (r>0.63). According to our results, it is possible to conclude that the ACBI corresponds to the MLSS, and both the AC - individually determined - and the AC - determined using fixed blood lactate concentrations of 3.5 and 4.0mmol.l−1 - can be used to predict the mean velocity of 30min and 400m in free style swimming. In addition to that, the tethered swimming system can be used for aerobic development in places

  1. Long distance cell communication using spherical tether balloons

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Rajagopalan, Vasudevan; Vasudevan, Rajagopalan; Mehrotra, R. K.; Sreenivasan, S.; Pawaskar, M.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar; Kulkarni, P. M.

    A proof-of-concept experiment was conducted for long-range cell communication for rural tele-phony and internet. We designed and fabricated a spherical tether balloon to carry the con-ventional micro base transceiver station (BTS) along with three slotted antenna to cover 2-pi radius. AC power and optical fiber were anchored along with the tether line. A special fre-quency license was obtained from Wireless Planning Commission (WPC) wing of Department of Telecommunication (DoT), India for the period of experiment so as not to affect the opera-tional networks. The experiments were carried out for different BTS heights up to 500 meter. Signal measurement both in data mode and voice quality were done in different quadrant using mobile vans. This paper describes the methodology (under patenting) and utility of technique for operational application.

  2. Acyclic Tethers Mimicking Subunits of Polysaccharide Ligands: Selectin Antagonists

    PubMed Central

    2014-01-01

    We report on the design and synthesis of molecules having E- and P-selectins blocking activity both in vitro and in vivo. The GlcNAc component of the selectin ligand sialyl LewisX was replaced by an acyclic tether that links two saccharide units. The minimization of intramolecular dipole–dipole interactions and the gauche effect would be at the origin of the conformational bias imposed by this acyclic tether. The stereoselective synthesis of these molecules, their biochemical and biological evaluations using surface plasmon resonance spectroscopy (SPR), and in vivo assays are described. Because the structure of our analogues differs from the most potent E-selectin antagonists reported, our acyclic analogues offer new opportunities for chemical diversity. PMID:25221666

  3. Forces and Motion: Dynamics of the Tethered Satellite

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In this 'Lift off to Learning' series, Loren Shriver, commander of STS 46, and the other members of the mission (Claude Nicollier, Marsha Ivins, Andrew Allen, Jeffrey Hoffman, Franklin Chiang-Diaz, and Franco Maerba) use computer graphics, and physical experiments to explain how the tethered satellite to be deployed during their mission will be raised, how it works, the influence of the Shuttle on the satellite and the satellite's influence on the Shuttle's orbit, the gravitational effects, and other effects concerning the Theoretical Physics used to plan this mission (gravity gradient force, center of mass, angular momentum, centrifugal force, and coriolis effect). This video ends with a discussion of the technology transfer and utilization of this tethered satellite concept and design.

  4. Tethered naphthalene diimide intercalators enhance DNA triplex stability.

    PubMed

    Gianolio, D A; McLaughlin, L W

    2001-09-01

    Naphthalene diimides function as effective intercalators and when tethered to the 5'-terminus of a pyrimidine-rich oligonucleotide can contribute significantly to the overall stabilization of DNA triplexes. This stabilization can be further enhanced by alterations to the linker tethering the DNA sequence and the intercalator. Less flexible linkers, and particularly one with a phenyl ring present, appear to permit the stabilization afforded by the bound intercalator to be transferred more effectively to the three-stranded complex. The conjugate containing the phenyl linker exhibits a T(M) value that is increased by 28 degrees C relative to the unconjugated triplex. That the linker itself contributes to the observed stabilization is clear since introduction of the phenyl linker increases the observed T(M) by 11 degrees C relative to a simple flexible linker.

  5. Downward-deployed tethered platforms for high enthalpy aerothermodynamic research

    NASA Technical Reports Server (NTRS)

    Wood, George M.; Siemers, Paul M.; Squires, R. Kenneth; Wolf, Henry; Carlomagno, Giovanni M.

    1988-01-01

    The data on aerothermodynamic and aerodynamic interactions at altitudes above 50 km is extremely limited because of the relative inaccessibility of the region to research vehicles of any sort. This paper addresses the practicability of using downward deployed satellites tethered to an orbiting host vehicle in order to obtain steady-state data in the upper reaches of the region above 80 or 90 km.

  6. Applying Parallel Processing Techniques to Tether Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl

    1996-01-01

    The focus of this research has been to determine the effectiveness of applying parallel processing techniques to a sizable real-world problem, the simulation of the dynamics associated with a tether which connects two objects in low earth orbit, and to explore the degree to which the parallelization process can be automated through the creation of new software tools. The goal has been to utilize this specific application problem as a base to develop more generally applicable techniques.

  7. Shuttle Tethered Aerothermodynamics Research Facilty (STARFAC) instrumentation requirements

    NASA Technical Reports Server (NTRS)

    Wood, G. M.; Siemers, P. M.; Carlomagno, G. M.; Hoffman, J.

    1986-01-01

    The instrumentation requirements for the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) are presented. The typical physical properties of the terrestrial atmosphere are given along with representative atmospheric daytime ion concentrations and the equilibrium and nonequilibrium gas property comparison from a point away from a wall. STARFAC science and engineering measurements are given as are the TSS free stream gas analysis. The potential nonintrusive measurement techniques for hypersonic boundary layer research are outlined along with the quantitative physical measurement methods for aerothermodynamic studies.

  8. Tethering Factors Required for Cytokinesis in Arabidopsis1[W

    PubMed Central

    Thellmann, Martha; Rybak, Katarzyna; Thiele, Knut; Wanner, Gerhard; Assaad, Farhah F.

    2010-01-01

    At the end of the cell cycle, the nascent cross wall is laid down within a transient membrane compartment referred to as the cell plate. Tethering factors, which act by capturing vesicles and holding them in the vicinity of their target membranes, are likely to play an important role in the first stages of cell plate assembly. Factors required for cell plate biogenesis, however, remain to be identified. In this study, we used a reverse genetic screen to isolate tethering factors required for cytokinesis in Arabidopsis (Arabidopsis thaliana). We focused on the TRAPPI and TRAPPII (for transport protein particle) tethering complexes, which are thought to be required for the flow of traffic through the Golgi and for trans-Golgi network function, as well as on the GARP complex, thought to be required for the tethering of endocytotic vesicles to the trans-Golgi network. We found weak cytokinesis defects in some TRAPPI mutants and strong cytokinesis defects in all the TRAPPII lines we surveyed. Indeed, four insertion lines at the TRAPPII locus AtTRS120 had canonical cytokinesis-defective seedling-lethal phenotypes, including cell wall stubs and incomplete cross walls. Confocal and electron microscopy showed that in trs120 mutants, vesicles accumulated at the equator of dividing cells yet failed to assemble into a cell plate. This shows that AtTRS120 is required for cell plate biogenesis. In contrast to the TRAPP complexes, we found no conclusive evidence for cytokinesis defects in seven GARP insertion lines. We discuss the implications of these findings for the origin and identity of cell plate membranes. PMID:20713617

  9. Initiation of Coronal Mass Ejections by Tether-Cutting Reconnection

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present and interpret examples of the eruptive motion and flare brightening observed in the onset of magnetic explosions that produce coronal mass ejections. The observations are photospheric magnetograms and sequences of coronal and/or chromospheric images. In our examples, the explosion is apparently driven by the ejective eruption of a sigmoidal sheared-field flux rope from the core of an initially closed bipole. This eruption is initiated (triggered and unleashed) by reconnection located either (1) internally, low in the sheared core field, or (2) externally, at a magnetic null above the closed bipole. The internal reconnection is commonly called 'tether-cutting" reconnection, and the external reconnection is commonly called "break-out' reconnection. We point out that break-out reconnection amounts to external tether cutting. In one example, the eruptive motion of the sheared core field starts several minutes prior to any detectable brightening in the coronal images. We suggest that in this case the eruption is triggered by internal tether-cutting reconnection that at first is too slow and/or too localized to produce detectable heating in the coronal images. This work is supported by NASA's Office of Space Science through its Solar & Heliospheric Physics Supporting Research & Technology program and its Sun-Earth Connection Guest Investigator program.

  10. Relationship between tethered forces and the four swimming techniques performance.

    PubMed

    Morouço, Pedro; Keskinen, Kari L; Vilas-Boas, Joao Paulo; Fernandes, Ricardo Jorge

    2011-05-01

    The purpose of the current study was to identify the relationships between competitive performance and tether forces according to distance swam, in the four strokes, and to analyze if relative values of force production are better determinants of swimming performance than absolute values. The subjects (n = 32) performed a 30 s tethered swimming all-out effort. The competitive swimming velocities were obtained in the distances 50, 100 and 200 m using official chronometric values of competitions within 25 days after testing protocol. Mean force and velocity (50 m event) show significant correlations for front crawl (r = .92, p < .01), backstroke (r = .81, p < .05), breaststroke (r = .94, p < .01) and butterfly (r = .92, p < .01). The data suggests that absolute values of force production are more associated to competitive performance than relative values (normalized to body mass). Tethered swimming test seems to be a reliable protocol to evaluate the swimmer stroking force production and a helpful estimator of competitive performance in short distance competitive events. PMID:21576725

  11. Hollow cathode-based plasma contactor experiments for electrodynamic tether

    NASA Astrophysics Data System (ADS)

    Patterson, Michael J.

    1987-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors are reviewed. This research includes the definition of preliminary plasma contactor designs, and the characterization of their operation as electron collectors from a simulated space plasma. The discovery of an 'ignited mode' regime of high contactor efficiency and low impedance is discussed, as well as is the application of recent models of the plasma coupling process to contactor operation. Results indicate that ampere-level electron currents can be exchanged between hollow cathode-based plasma contactors and a dilute plasma in this regime. A discussion of design considerations for plasma contactors is given which includes expressions defining the total mass flow rate and power requirements of plasma contactors operating in both the cathodic and anodic regimes, and correlation of this to the tether current. Finally, future ground and spaceflight experiments are proposed to resolve critical issues of plasma contactor operation.

  12. A Tether-Based Variable-Gravity Research Facility Concept

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk

    2006-01-01

    The recent announcement of a return to the Moon and a mission to Mars has made the question of human response to lower levels of gravity more important. Recent advances in tether technology spurred by NASA s research in MXER tethers has led to a re-examination of the concept of a variable-gravity research facility (xGRF) for human research in low Earth orbit. Breakthroughs in simplified inertial tracking have made it possible to consider eliminating the despun section of previous designs. This, in turn, improves the prospect of a facility based entirely around a tether, with the human module on one end and a countermass on the other. With such a configuration, propellantless spinup and spindown is also possible based on the conservation of angular momentum from a gravity-gradient configuration to a spinning configuration. This not only saves large amounts of propellant but vastly simplifies crew and consumable resupply operations, since these can now be done in a microgravity configuration. The importance of the science to be obtained and the performance improvements in this new design argue strongly for further investigation.

  13. Non-coding Y RNAs as tethers and gates

    PubMed Central

    Wolin, Sandra L; Belair, Cedric; Boccitto, Marco; Chen, Xinguo; Sim, Soyeong; Taylor, David W; Wang, Hong-Wei

    2013-01-01

    Non-coding RNAs (ncRNAs) called Y RNAs are abundant components of both animal cells and a variety of bacteria. In all species examined, these ~100 nt RNAs are bound to the Ro 60 kDa (Ro60) autoantigen, a ring-shaped protein that also binds misfolded ncRNAs in some vertebrate nuclei. Although the function of Ro60 RNPs has been mysterious, we recently reported that a bacterial Y RNA tethers Ro60 to the 3′ to 5′ exoribonuclease polynucleotide phosphorylase (PNPase) to form RYPER (Ro60/Y RNA/PNPase Exoribonuclease RNP), a new RNA degradation machine. PNPase is a homotrimeric ring that degrades single-stranded RNA, and Y RNA-mediated tethering of Ro60 increases the effectiveness of PNPase in degrading structured RNAs. Single particle electron microscopy of RYPER suggests that RNA threads through the Ro60 ring into the PNPase cavity. Further studies indicate that Y RNAs may also act as gates to regulate entry of RNA substrates into the Ro60 channel. These findings reveal novel functions for Y RNAs and raise questions about how the bacterial findings relate to the roles of these ncRNAs in animal cells. Here we review the literature on Y RNAs, highlighting their close relationship with Ro60 proteins and the hypothesis that these ncRNAs function generally to tether Ro60 rings to diverse RNA-binding proteins. PMID:24036917

  14. Bis-corannulene Receptors for Fullerenes Based on Klärner's Tethers: Reaching the Affinity Limits.

    PubMed

    Abeyratne Kuragama, Peumie L; Fronczek, Frank R; Sygula, Andrzej

    2015-11-01

    Bis-corannulene receptors 4 and 5 with Klärner's tethers prepared by the Diels-Alder cycloaddition form inclusion complexes with C60 and C70, as evidenced by (1)H NMR titration. While 4 exhibits affinity toward fullerenes comparable to the previously reported corannulene-based receptors, 5 exceeds the performance of the former systems by ca. 2 orders of magnitude and, in addition, shows an enhanced preference for C70 over C60. The X-ray crystal structure of C60@5 and DFT calculations indicate that the tether in 5 not only preorganizes the pincers into a proper topology of the host but also contributes to the dispersion-based binding with the fullerene guests.

  15. A tether tension control law for tethered subsatellites deployed along local vertical. [space shuttle orbiters - satellite control/towed bodies

    NASA Technical Reports Server (NTRS)

    Rupp, C. C.

    1975-01-01

    A tethered subsatellite deployed along the local vertical is in stable equilibrium. This applies equally to subsatellites deployed in the direction towards the earth from the main spacecraft or away from the earth. Momentary perturbations from this stable equilibrium will result in a swinging motion, which decays very slowly if passive means are relied upon to provide damping. A control law is described which actively damps the swinging motion by employing a reel, or other mechanism, to apply appropriate tension as a function of tetherline length, rate of change of length, and desired length. The same control law is shown to be useful for deployment and retrieval of tethered subsatellites in addition to damping to steady state.

  16. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    SciTech Connect

    Zhang, Bo; Edwards, Brian J.

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  17. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    PubMed

    Zhang, Bo; Edwards, Brian J

    2015-06-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  18. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Edwards, Brian J.

    2015-06-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  19. Simultaneous, dual-point, in situ measurements of ionospheric structures using space tethers: TSS-1R observations

    NASA Astrophysics Data System (ADS)

    Indiresan, R. S.; Gilchrist, B. E.; Basu, S.; Lebreton, J.-P.; Szuszczewicz, E. P.

    First ever simultaneous, dual-point, in situ measurements of natural ionospheric structures using widely spaced tethered sensors, flying in formation, were made during the reflight of the Tethered Satellite System (TSS-1R) mission. A “target-of-opportunity” observation provided a direct comparison of structured ionospheric irregularity features at two altitudes near the South American geomagnetic equator at approximately 2000 hours local time and at an altitude of ≈300 km. With the TSS-1R satellite and space shuttle separated by a vertical distance of 10 km, correlated plasma signatures detected by plasma instruments at each end indicated a strong eastward displacement in the irregularity features and possible growth of steepened features at the higher altitude. Observations made by a SUNDIAL ground station ionosonde located north of the flight path also indicated considerable spread-F activity at the time. A SUNDIAL corrected ionospheric model indicated that the shuttle was flying near the F-peak. Therefore, the strongly correlated in situ observations were most likely associated with irregularities in their early development or modulations near the F-peak due to equatorial spread-F (ESF). While the TSS-1R system was not optimized for dual-point in situ ionospheric measurements, and the tether break eliminated additional equatorial zone observations planned for later in the mission, the results reported here nevertheless indicate that vertically correlated plasma features can exist and can also have strong structural variations as a function of altitude. Such variations need closer examination in order to understand their effects on radiowave scintillation. These observations also demonstrated the feasibility of tethered sensors in the study of ionospheric irregularities using controlled vertical sampling.

  20. Membrane tether formation from voltage-clamped outer hair cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Ermilov, Sergey A.; Murdock, David R.; Brownell, William E.; Anvari, Bahman

    2004-06-01

    Outer hair cells contribute an active mechanical feedback to the vibrations of the cochlear structures resulting in the high sensitivity and frequency selectivity of normal hearing. We have designed and implemented a novel experimental setup that combines optical tweezers with patch-clamp apparatus to investigate the electromechanical properties of cellular plasma membranes. A micron-size bead trapped by the optical tweezers is brought in contact with the membrane of a voltage-clamped cell, and subsequently moved away to form a plasma membrane tether. Bead displacement during tether elongation is monitored by a quadrant photodetector to obtain time-resolved measurements of the tethering force. Salient information associated with the mechanical properties of the membrane tether can thus be obtained. Tethers can be pulled from the cell membrane at different holding potentials, and the tether force response can be measured while changing transmembrane potential. Experimental results from outer hair cells and human embryonic kidney cells are presented.

  1. Modeling of induced currents from electrodynamic tethers in a laboratory plasma

    NASA Technical Reports Server (NTRS)

    Urrutia, J. M.; Stenzel, R. L.

    1990-01-01

    The presently accepted picture of the current path for electrodynamic tethers envisions a quasi-dc current flow in a 'phantom loop' consisting of the tether, two field-aligned current channels into the ionosphere and a cross-field closing current in the E-layer. Predictions are made on the establishment and maintenance of a current loop in space based on observations of time-dependent currents between tethered electrodes in a large laboratory magnetoplasma. In addition to radiation from the contactors ('whistler wings'), the insulated tether is observed to emit waves (a 'whistler wedge'). The 'wedge' provides closure during loop formation by carrying cross-field polarization currents. Whistler spread within the ray cone leads to overlapping of the current wings not far from the tether hence minimizing the role of the ionospheric closure. Maintenance of the loop requires the continuous emission of whistler waves by the entire tether thereby providing severe radiation losses.

  2. Hydrogen shuttling: synthesis and reactivity of a 14-electron iridium complex featuring a bis(alkyl) tethered N-heterocyclic carbene ligand.

    PubMed

    Tang, Christina Y; Phillips, Nicholas; Kelly, Michael J; Aldridge, Simon

    2012-12-21

    Solvent dependent double C-H activation in an Ir(NHC)(2) system generates an agostically stabilized 14-electron complex featuring a face-capping bis(alkyl) tethered NHC ligand [NHC = N-heterocyclic carbene]. These activation processes are reversible, and the resulting ligand-derived hydrogen shuttle can be applied to the dehydrogenation of BN-containing substrates. PMID:23128505

  3. Analysis of tethered balloon data from San Nicolas Island on 8 July 1987

    NASA Technical Reports Server (NTRS)

    Cox, Stephen K.; Duda, David P.; Guinn, Thomas A.; Johnson-Pasqua, Christopher M.; Schubert, Wayne H.; Snider, Jack B.

    1990-01-01

    Analysis of the 8 July 1987 (Julian Day 189) tethered balloon flight from San Nicolas Island is summarized. The flight commenced at about 14:30 UTC (7:30 Pacific Daylight Time) and lasted six and one-half hours. The position of the Colorado State University (CSU) instrument package as a function of time is shown. For the purpose of presentation of results, researchers divided the flight into 13 legs. These legs consist of 20 minute constant level runs, with the exception of leg 1, which is a sounding from the surface to just above 930 mb. The laser ceilometer record of cloud base is also shown. The cloud base averaged around 970 mb during much of the flight but was more variable near the end. Before the tethered balloon flight commenced, a Communications Link Analysis and Simulation System (CLASS) sounding was released at 12:11 UTC (5:11 PDT). Temperature and moisture data below 927 mb for this sounding is shown. The sounding indicates a cloud top around 955 mb at this time.

  4. Tethered Chains in Poor Solvent Conditions: An Experimental Study Involving Langmuir Diblock Copolymer Monolayers

    SciTech Connect

    Kent, M.S.; Lee, L.T.; Majewski, J.; Satija, S.; Smith, G.S.

    1998-10-13

    We have employed Langmuir monolayer of highly asymmetric polydimethylsiloxane- polystyrene (PDMS-PS) diblock copolymers on dioctyl phthalate (DOP) at temperatures ranging from 22 "C to -35 `C as a model system for tethered chains in poor solvent conditions. The thicknesses of the tethered PS layers extending into the DOP subphase, measured by neutron reflection, decrease with decreasing temperature (T) over this entire r~ge. However, the v~iation with T becomes weak below -20 "C. At the ]owest T, the layer thicknesses are contracted 55 % -75 `% of their values at the theta condition (T8 = 22 "C), but are still quite swollen compared to the fully collapsed, nonsolvent limit. The contraction of the layer with decreasing T is determined as a function of surface density and molecular weight. These data are compared to universal scaling forms. The PS segments are depleted from the air surface over the entire T range, the thickness of the depletion layer increasing slightly with decreasing T. The free energy of the surface layer is probed by surface tension measurements. Negative surface pressures are observed at low coverages for both PDMS-PS and PDMS monolayer, indicating metastability toward lateral phase separation. Evidence for a trruisition from a dispersed phase to a condensed phase with decreasing T was observed in the reflectivity at very low PDMS-PS coverage.

  5. A tethered-balloon PTRMS sampling approach for surverying of landscape-scale biogenic VOC fluxes

    SciTech Connect

    Greenberg, Jim; Penuelas, J.; Guenther, Alex B.; Seco, R.; Turnipseed, A.; Jiang, X.; Filella, I.; Estiraste, M.; Sardans, J.; Ogaya, R.; Llusia, J.; Rapparini, F.

    2014-01-01

    To survey landscape-scale fluxes of biogenic gases, a100-meterTeflon tube was attached to a tethered balloon as a sampling inlet for a fast response Proton Transfer Reaction Mass Spectrometer (PTRMS). Along with meteorological instruments deployed on the tethered balloon and at 3-mand outputs from a regional weather model, these observations were used to estimate landscape scale biogenic volatile organic compound fluxes with two micrometeorological techniques: mixed layer variance and surface layer gradients. This highly mobile sampling system was deployed at four field sites near Barcelona to estimate landscape-scale BVOC emission factors in a relatively short period (3 weeks). The two micrometeorological techniques agreed within the uncertainty of the flux measurements at all four sites even though the locations had considerable heterogeneity in species distribution and complex terrain. The observed fluxes were significantly different than emissions predicted with an emission model using site-specific emission factors and land-cover characteristics. Considering the wide range in reported BVOC emission factors of VOCs for individual vegetation species (more than an order of magnitude), this flux estimation technique is useful for constraining BVOC emission factors used as model inputs.

  6. Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion

    PubMed Central

    Johnson, Stephanie; van de Meent, Jan-Willem; Phillips, Rob; Wiggins, Chris H.; Lindén, Martin

    2014-01-01

    The bacterial transcription factor LacI loops DNA by binding to two separate locations on the DNA simultaneously. Despite being one of the best-studied model systems for transcriptional regulation, the number and conformations of loop structures accessible to LacI remain unclear, though the importance of multiple coexisting loops has been implicated in interactions between LacI and other cellular regulators of gene expression. To probe this issue, we have developed a new analysis method for tethered particle motion, a versatile and commonly used in vitro single-molecule technique. Our method, vbTPM, performs variational Bayesian inference in hidden Markov models. It learns the number of distinct states (i.e. DNA–protein conformations) directly from tethered particle motion data with better resolution than existing methods, while easily correcting for common experimental artifacts. Studying short (roughly 100 bp) LacI-mediated loops, we provide evidence for three distinct loop structures, more than previously reported in single-molecule studies. Moreover, our results confirm that changes in LacI conformation and DNA-binding topology both contribute to the repertoire of LacI-mediated loops formed in vitro, and provide qualitatively new input for models of looping and transcriptional regulation. We expect vbTPM to be broadly useful for probing complex protein–nucleic acid interactions. PMID:25120267

  7. A single-molecule view of conformational switching of DNA tethered to a gold electrode.

    PubMed

    Josephs, Eric A; Ye, Tao

    2012-06-20

    Surfaces that can actively regulate binding affinities or catalytic properties in response to external stimuli are a powerful means to probe and control the dynamic interactions between the cell and its microenvironment. Active surfaces also enable novel functionalities in biosensors and biomolecular separation technologies. Although electrical stimuli are often appealing due to their speed and localization, the operation of these electrically activated surfaces has mostly been characterized with techniques averaging over many molecules. Without a molecular-scale understanding of how biomolecules respond to electric fields, achieving the ultimate detection sensitivity or localized biological perturbation with the ultimate resolution would be difficult. Using electrochemical atomic force microscopy, we are able to follow the conformational changes of individual, short DNA molecules tethered to a gold electrode in response to an applied potential. Our study reveals conformations and dynamics that are difficult to infer from ensemble measurements: defects in the self-assembled monolayer (SAM) significantly perturb conformations and adsorption/desorption kinetics of surface-tethered DNA; on the other hand, the SAM may be actively molded by the DNA at different potentials. These results underscore the importance of characterizing the systems at the relevant length scale in the development of electrically switchable biofunctional surfaces. PMID:22625181

  8. Three-dimensional characterization of tethered microspheres by total internal reflection fluorescence microscopy

    NASA Technical Reports Server (NTRS)

    Blumberg, Seth; Gajraj, Arivalagan; Pennington, Matthew W.; Meiners, Jens-Christian

    2005-01-01

    Tethered particle microscopy is a powerful tool to study the dynamics of DNA molecules and DNA-protein complexes in single-molecule experiments. We demonstrate that stroboscopic total internal reflection microscopy can be used to characterize the three-dimensional spatiotemporal motion of DNA-tethered particles. By calculating characteristic measures such as symmetry and time constants of the motion, well-formed tethers can be distinguished from defective ones for which the motion is dominated by aberrant surface effects. This improves the reliability of measurements on tether dynamics. For instance, in observations of protein-mediated DNA looping, loop formation is distinguished from adsorption and other nonspecific events.

  9. Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite

    NASA Technical Reports Server (NTRS)

    Gullahorn, G. E.

    1985-01-01

    Work performed as part of an investigation of noise affecting instrumentation in a tethered subsatellite, was studied. The following specific topics were addressed during the reporting period: a method for stabilizing the subsatellite against the rotational effects of atmospheric perturbation was developed; a variety of analytic studies of tether dynamics aimed at elucidating dynamic noise processes were performed; a novel mechanism for coupling longitudinal and latitudinal oscillations of the tether was discovered, and random vibration analysis for modeling the tethered subsatellite under atmospheric perturbation were studied.

  10. Phase 3 study of selected tether applications in space. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A tethered launch assist from the Shuttle for payloads with up to 10,000 kg mass for the mission model and the tethering of a 15,000 kg science platform for the space station were addressed. Also encompassed was the design and cost analysis for a variable g device that could be placed on the tether and allow ultralow g or other types of experiments to be conducted. Numerous tether applications were examined and their theoretical feasibility and technology requirements were assessed.

  11. Microfluidics-based side view flow chamber reveals tether-to-sling transition in rolling neutrophils

    PubMed Central

    Marki, Alex; Gutierrez, Edgar; Mikulski, Zbigniew; Groisman, Alex; Ley, Klaus

    2016-01-01

    Neutrophils rolling at high shear stress (above 6 dyn/cm2) form tethers in the rear and slings in the front. Here, we developed a novel photo-lithographically fabricated, silicone(PDMS)-based side-view flow chamber to dynamically visualize tether and sling formation. Fluorescently membrane-labeled mouse neutrophils rolled on P-selectin substrate at 10 dyn/cm2. Most rolling cells formed 5 tethers that were 2–30 μm long. Breaking of a single tether caused a reproducible forward microjump of the cell, showing that the tether was load-bearing. About 15% of all tether-breaking events resulted in slings. The tether-to-sling transition was fast (<100 ms) with no visible material extending above the rolling cell, suggesting a very low bending modulus of the tether. The sling downstream of the rolling cell aligned according to the streamlines before landing on the flow chamber. These new observations explain how slings form from tethers and provide insight into their biomechanical properties. PMID:27357741

  12. Tether-mission design for multiple flybys of moon Europa

    NASA Astrophysics Data System (ADS)

    Sanmartin, J. R. S.; Charro, M. C.; Sanchez-Arriaga, G. S. A.; Sanchez-Torres, A. S. T.

    2015-10-01

    A tether mission to carry out multiple flybys of Jovian moon Europa is here presented. There is general agreement on elliptic-orbit flybys of Europa resulting in cost to attain given scientific goals lower than if actually orbiting the moon, tethers being naturally fit to fly-by rather than orbit moons1. The present mission is similar in this respect to the Clipper mission considered by NASA, the basic difference lying in location of periapsis, due to different emphasis on mission-challenge metrics. Clipper minimizes damaging radiation-dose by avoiding the Jupiter neighborhood and its very harsh environment; periapsis would be at Europa, apoapsis as far as moon Callisto. As in all past outer-planet missions, Clipper faces, however, critical power and propulsion needs. On the other hand, tethers can provide both propulsion and power, but must reach near the planet to find high plasma density and magnetic field values, leading to high induced tether current, and Lorentz drag and power. The bottom line is a strong radiation dose under the very intense Radiation Belts of Jupiter. Mission design focuses on limiting dose. Perijove would be near Jupiter, at about 1.2-1.3 Jovian radius, apojove about moon Ganymede, corresponding to 1:1 resonance with Europa, so as to keep dose down: setting apojove at Europa, for convenient parallel flybys, would require two perijove passes per flyby (the Ganymede apojove, resulting in high eccentricity, about 0.86, is also less requiring on tether operations). Mission is designed to attain reductions in eccentricity per perijove pass as high as Δe ≈ - 0.04. Due the low gravity-gradient, tether spinning is necessary to keep it straight, plasma contactors placed at both ends taking active turns at being cathodic. Efficiency of capture of the incoming S/C by the tether is gauged by the ratio of S/C mass to tether mass; efficiency is higher for higher tape-tether length and lower thickness and perijove. Low tether bowing due to the Lorentz

  13. Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite

    NASA Technical Reports Server (NTRS)

    Gullahorn, G. E.

    1985-01-01

    Measurement of the gradient of the gravitational acceleration from a satellite platform is likely to provide the next improvement in knowledge of the Earth's gravity field after the upcoming Geopotential Research Mission. Observations from the subsatellite of a tethered satellite system (TSS) would increase sensitivity and resolution due to the low altitude possible. However, the TSS is a dynamically noisy system and would be perturbed by atmospheric drag fluctuations. The dynamic noise is being modeled in order to evaluate the feasibility of TSS gradiometry and to design methods of abating the error caused by this noise. The demonstration flights of the TSS are to provide an opportunity to directly observe the dynamical environment and refine modeling techniques. Random vibration analysis as a technique for modeling the TSS under atmospheric perturbation was studied.

  14. Fullerenic structures and such structures tethered to carbon materials

    DOEpatents

    Goel, Anish; Howard, Jack B.; Vander Sande, John B.

    2012-10-09

    The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.

  15. Fullerenic structures and such structures tethered to carbon materials

    DOEpatents

    Goel, Anish; Howard, Jack B.; Vander Sande, John B.

    2010-01-05

    The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.

  16. A Tethered Formation Flying Concept for the SPECS Mission

    NASA Technical Reports Server (NTRS)

    Quinn, David A.; Folta, David C.

    2000-01-01

    The Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS) is a bold new mission concept designed to address fundamental questions about the Universe, including how the first stars formed from primordial material, and the first galaxies from pre-galactic structures, how the galaxies evolve over time, and what the cosmic history of energy release, heavy element synthesis, and dust formation is. Half of the luminosity and 98% of the post Big-Bang photons exit in the sub-millimeter range. The spectrum of our own Milky Way Galaxy shows this, and many galaxies have even more pronounced long-wavelength emissions. There can be no doubt that revolutionary science will be enabled when we have tools to study the sub-millimeter sky with Hubble- Space-Telescope-class resolution and sensitivity. Ideally, a very large telescope with an effective aperture approaching one kilometer in diameter would be needed to obtain such high quality angular resolution at these long wavelengths. However, a single aperture one kilometer in diameter would not only be very difficult to build and maintain at the cryogenic temperatures required for good seeing, but could actually turn out to be serious overkill. Because cosmic sub-millimeter photons are plentiful and the new detectors will be sensitive, the observations needed to address the questions posed above can be made with an interferometer using well established aperture synthesis techniques. Possibly as few as three 3-4 meter diameter mirrors flying in precision formation could be used to collect the light. To mitigate the need for a great deal of propellant, tethers may be needed as well. A spin-stabilized, tethered formation is a possible configuration requiring a more advanced form of formation flying controller, where dynamics are coupled due to the existence of the tethers between nodes in the formation network. The paper presents one such concept, a proposed configuration for a mission concept which combines the best

  17. Adeninealkylresorcinol, the first alkylresorcinol tethered with nucleobase from Lasiodiplodia sp.

    PubMed

    Gao, Yu-Meng; Sun, Tian-Yu; Ma, Min; Chen, Guo-Dong; Zhou, Zheng-Qun; Wang, Chuan-Xi; Hu, Dan; Chen, Li-Guo; Yao, Xin-Sheng; Gao, Hao

    2016-07-01

    Adeninealkylresorcinol (1), an unusual alkylresorcinol with adenine-alkylresorcinol conjoined skeleton, was isolated from an endophytic fungus Lasiodiplodia sp. obtained from a traditional Chinese medicine Houttuynia cordata Thunb., together with three new biogenetically related compounds (2-4). Their structures were elucidated by comprehensive spectroscopic analysis, and the absolute configuration of 4 was determined by the modified Mosher's method and quantum chemical calculation. Among them, adeninealkylresorcinol (1) is the first alkylresorcinol tethered with nucleobase. In addition, the antioxidant, cytotoxic, and antimicrobial activities of 1-3 were evaluated. PMID:27343368

  18. Investigation of the current collected by a positively biased satellite with application to electrodynamic tethers

    NASA Astrophysics Data System (ADS)

    Janeski, John A.; Scales, Wayne A.; Hall, Christopher D.

    2014-09-01

    The interaction between a positively biased body traveling through an ionospheric space plasma has direct application to electrodynamic tether (EDT) systems. A 2-D3v particle-in-cell model has been developed to study the plasma dynamics near a positively charged EDT system end-body and their impact on the current collected. The results show that the azimuthal current structures observed during the reflight of the tethered satellite system (TSS-1R) mission develop in the simulations and are found to enhance the current collected by the satellite by 67% when the magnetic field is ˜15° off of perpendicular to the orbital velocity. As the component of the magnetic field in the simulation's plane increases, the electrons are not able to easily cross the field lines causing plasma lobes to form in the +y and -y regions around the satellite. The lobes limit the current arriving at the satellite and also cause an enhanced wake to develop. A high satellite bias causes a stable bow shock structure to form in the ram region of the satellite, which limits the number of electrons entering the sheath region and thus limits the current collected. Electron-neutral collisions are found to destabilize the bow shock structure, and its current limiting effects were negated. Analytical curve fits based on the simulations are presented in order to characterize the dependence of the current collected on the magnetic field's orientation, space plasma magnetization, and satellite potential. The variations in the collected current induced by space plasma environmental changes may introduce new instabilities in an EDT system's dynamics.

  19. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. Appendix 7. [Transform Domain Skiprope Observer for tethered satellites

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1993-01-01

    Because of the interesting science which can be performed using a satellite attached by a very long tether to a mother vehicle in orbit, such as the Space Shuttle, NASA will deploy TSS-1 (Tethered Satellite System) in 1992. A very long tether (20 km in this case) has the possibility of undergoing oscillations of several different types, or modes, and higher harmonics of these modes. The purpose of this document is to describe a method for detecting the amplitude, frequency, and phase (and predicting future motion in the steady state) of these modes, in particular, the skiprope mode, using tethered satellite dynamics measurements. Specifically the rotation rate data about two orthogonal axes, calculated from output from satellite gyroscopes, are used. The data of interest are the satellite pitch and roll rate measurements. NASA has determined to use two methods to diagnose skiprope properties and predict future values. One of these, a Fourier transform domain approach, is the subject of this notebook. The main program and all subroutines are described along with the test plan for evaluating the Frequency Domain Skiprope Observer.

  20. The integrin VLA-4 supports tethering and rolling in flow on VCAM-1

    PubMed Central

    1995-01-01

    Selectins have previously been shown to tether a flowing leukocyte to a vessel wall and mediate rolling. Here, we report that an intergrin, VLA- 4, can also support tethering and rolling. Blood T lymphocytes and alpha 4 integrin-transfected cells can tether in shear flow, and then roll, through binding of the intergrin VLA-4 to purified VCAM-1 on the wall of a flow chamber. VLA-4 transfectants showed similar tethering and rolling on TNF-stimulated endothelium. Tethering efficiency, rolling velocity, and resistance to detachment are related to VCAM-1 density. Tethering and rolling did not occur on ICAM-1, fibronectin, or fibronectin fragments, and tethering did not require integrin activation or the presence of an alpha 4 cytoplasmic domain. Arrest of rolling cells on VCAM-1 occurred spontaneously, and/or was triggered by integrin activating agents Mn2+, phorbol ester, and mAb TS2/16. These agents, and the alpha 4 cytoplasmic domain, promoted increased resistance to detachment. Together the results show that VLA-4 is a versatile integrin that can mediate tethering, rolling, and firm arrest on VCAM-1. PMID:7534768

  1. EARP is a multisubunit tethering complex involved in endocytic recycling.

    PubMed

    Schindler, Christina; Chen, Yu; Pu, Jing; Guo, Xiaoli; Bonifacino, Juan S

    2015-05-01

    Recycling of endocytic receptors to the cell surface involves passage through a series of membrane-bound compartments by mechanisms that are poorly understood. In particular, it is unknown if endocytic recycling requires the function of multisubunit tethering complexes, as is the case for other intracellular trafficking pathways. Herein we describe a tethering complex named endosome-associated recycling protein (EARP) that is structurally related to the previously described Golgi-associated retrograde protein (GARP) complex. The two complexes share the Ang2, Vps52 and Vps53 subunits, but EARP contains an uncharacterized protein, syndetin, in place of the Vps54 subunit of GARP. This change determines differential localization of EARP to recycling endosomes and GARP to the Golgi complex. EARP interacts with the target SNARE syntaxin 6 and various cognate SNAREs. Depletion of syndetin or syntaxin 6 delays recycling of internalized transferrin to the cell surface. These findings implicate EARP in canonical membrane-fusion events in the process of endocytic recycling. PMID:25799061

  2. Protein flexibility is required for vesicle tethering at the Golgi

    PubMed Central

    Cheung, Pak-yan Patricia; Limouse, Charles; Mabuchi, Hideo; Pfeffer, Suzanne R

    2015-01-01

    The Golgi is decorated with coiled-coil proteins that may extend long distances to help vesicles find their targets. GCC185 is a trans Golgi-associated protein that captures vesicles inbound from late endosomes. Although predicted to be relatively rigid and highly extended, we show that flexibility in a central region is required for GCC185’s ability to function in a vesicle tethering cycle. Proximity ligation experiments show that that GCC185’s N-and C-termini are within <40 nm of each other on the Golgi. In physiological buffers without fixatives, atomic force microscopy reveals that GCC185 is shorter than predicted, and its flexibility is due to a central bubble that represents local unwinding of specific sequences. Moreover, 85% of the N-termini are splayed, and the splayed N-terminus can capture transport vesicles in vitro. These unexpected features support a model in which GCC185 collapses onto the Golgi surface, perhaps by binding to Rab GTPases, to mediate vesicle tethering. DOI: http://dx.doi.org/10.7554/eLife.12790.001 PMID:26653856

  3. Protein flexibility is required for vesicle tethering at the Golgi.

    PubMed

    Cheung, Pak-yan Patricia; Limouse, Charles; Mabuchi, Hideo; Pfeffer, Suzanne R

    2015-12-14

    The Golgi is decorated with coiled-coil proteins that may extend long distances to help vesicles find their targets. GCC185 is a trans Golgi-associated protein that captures vesicles inbound from late endosomes. Although predicted to be relatively rigid and highly extended, we show that flexibility in a central region is required for GCC185’s ability to function in a vesicle tethering cycle. Proximity ligation experiments show that that GCC185’s N-and C-termini are within <40 nm of each other on the Golgi. In physiological buffers without fixatives, atomic force microscopy reveals that GCC185 is shorter than predicted, and its flexibility is due to a central bubble that represents local unwinding of specific sequences. Moreover, 85% of the N-termini are splayed, and the splayed N-terminus can capture transport vesicles in vitro. These unexpected features support a model in which GCC185 collapses onto the Golgi surface, perhaps by binding to Rab GTPases, to mediate vesicle tethering.

  4. EARP is a multisubunit tethering complex involved in endocytic recycling.

    PubMed

    Schindler, Christina; Chen, Yu; Pu, Jing; Guo, Xiaoli; Bonifacino, Juan S

    2015-05-01

    Recycling of endocytic receptors to the cell surface involves passage through a series of membrane-bound compartments by mechanisms that are poorly understood. In particular, it is unknown if endocytic recycling requires the function of multisubunit tethering complexes, as is the case for other intracellular trafficking pathways. Herein we describe a tethering complex named endosome-associated recycling protein (EARP) that is structurally related to the previously described Golgi-associated retrograde protein (GARP) complex. The two complexes share the Ang2, Vps52 and Vps53 subunits, but EARP contains an uncharacterized protein, syndetin, in place of the Vps54 subunit of GARP. This change determines differential localization of EARP to recycling endosomes and GARP to the Golgi complex. EARP interacts with the target SNARE syntaxin 6 and various cognate SNAREs. Depletion of syndetin or syntaxin 6 delays recycling of internalized transferrin to the cell surface. These findings implicate EARP in canonical membrane-fusion events in the process of endocytic recycling.

  5. A proposed ringing analysis model for higher order tether response

    SciTech Connect

    Natvig, B.J.

    1994-12-31

    The problem of high-frequency transient responses of Tension Leg Platforms, TLPs, under certain severe sea situations has been known for some time. Until recently, it was not known that this type of loading and response mechanism could produce tether loads of critical importance to the structural integrity of such structures. Presently, there is considerable ongoing discussion as to what causes tether ringing. NPD (1992) assembled a document where the views of the Norwegian Shelf operators and one Norwegian engineering company were summarized. At present there seems to be consensus that ringing, at least to a large extent, is caused by nonlinearities in the free surface variable wetting region of the TLP. Ringing is not predicted by linearized frequency domain analysis methods. There are a number of variable wetting contributions. Some of these are fairly obvious while others are less straight forward. A number of the contributions, of purely theoretical or engineering nature, identified to date are discussed in this paper. Based on this an intuitive method for ringing analysis is presented.

  6. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action.

    PubMed

    Cheung, Pak-Yan P; Pfeffer, Suzanne R

    2016-01-01

    The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed.

  7. Interplay of matrix stiffness and protein tethering in stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Wen, Jessica H.; Vincent, Ludovic G.; Fuhrmann, Alexander; Choi, Yu Suk; Hribar, Kolin C.; Taylor-Weiner, Hermes; Chen, Shaochen; Engler, Adam J.

    2014-10-01

    Stem cells regulate their fate by binding to, and contracting against, the extracellular matrix. Recently, it has been proposed that in addition to matrix stiffness and ligand type, the degree of coupling of fibrous protein to the surface of the underlying substrate, that is, tethering and matrix porosity, also regulates stem cell differentiation. By modulating substrate porosity without altering stiffness in polyacrylamide gels, we show that varying substrate porosity did not significantly change protein tethering, substrate deformations, or the osteogenic and adipogenic differentiation of human adipose-derived stromal cells and marrow-derived mesenchymal stromal cells. Varying protein-substrate linker density up to 50-fold changed tethering, but did not affect osteogenesis, adipogenesis, surface-protein unfolding or underlying substrate deformations. Differentiation was also unaffected by the absence of protein tethering. Our findings imply that the stiffness of planar matrices regulates stem cell differentiation independently of protein tethering and porosity.

  8. Interplay of matrix stiffness and protein tethering in stem cell differentiation.

    PubMed

    Wen, Jessica H; Vincent, Ludovic G; Fuhrmann, Alexander; Choi, Yu Suk; Hribar, Kolin C; Taylor-Weiner, Hermes; Chen, Shaochen; Engler, Adam J

    2014-10-01

    Stem cells regulate their fate by binding to, and contracting against, the extracellular matrix. Recently, it has been proposed that in addition to matrix stiffness and ligand type, the degree of coupling of fibrous protein to the surface of the underlying substrate, that is, tethering and matrix porosity, also regulates stem cell differentiation. By modulating substrate porosity without altering stiffness in polyacrylamide gels, we show that varying substrate porosity did not significantly change protein tethering, substrate deformations, or the osteogenic and adipogenic differentiation of human adipose-derived stromal cells and marrow-derived mesenchymal stromal cells. Varying protein-substrate linker density up to 50-fold changed tethering, but did not affect osteogenesis, adipogenesis, surface-protein unfolding or underlying substrate deformations. Differentiation was also unaffected by the absence of protein tethering. Our findings imply that the stiffness of planar matrices regulates stem cell differentiation independently of protein tethering and porosity.

  9. Shortest Path Planning for a Tethered Robot or an Anchored Cable

    SciTech Connect

    Xavier, P.G.

    1999-02-22

    We consider the problem of planning shortest paths for a tethered robot with a finite length tether in a 2D environment with polygonal obstacles. We present an algorithm that runs in time O((k{sub 1} + 1){sup 2}n{sup 4}) and finds the shortest path or correctly determines that none exists that obeys the constraints; here n is the number obstacle vertices, and k{sub 1} is the number loops in the initial configuration of the tether. The robot may cross its tether but nothing can cross obstacles, which cause the tether to bend. The algorithm applies as well for planning a shortest path for the free end of an anchored cable.

  10. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma.

    PubMed

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G; Watts, Colin; Welland, Mark

    2014-09-21

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.

  11. Advances in the development of catalytic tethering directing groups for C-H functionalization reactions.

    PubMed

    Sun, Huan; Guimond, Nicolas; Huang, Yong

    2016-09-28

    Transition metal-catalyzed C-H bond insertion is one of the most straightforward strategies to introduce functionalities within a hydrocarbon microenvironment. For the past two decades, selective activation and functionalization of certain inert C-H bonds have been made possible with the help of directing groups (DGs). Despite the enormous advances in the field, an overwhelming majority of systems require two extra steps from their simple precursors: installation and removal of the DGs. Recently, traceless and multitasking groups were invented as a partial solution to DG release. However, installation remains largely unsolved. Ideally, a transient, catalytic DG would circumvent this problem and increase the step- and atom-economy of C-H functionalization processes. In this review, we summarize the recent development of the transient tethering strategy for C-H activation reactions. PMID:27506568

  12. Assessment of the specificity of cardiopulmonary response during tethered swimming using a new snorkel device.

    PubMed

    Pinna, Marco; Milia, Raffaele; Roberto, Silvana; Marongiu, Elisabetta; Olla, Sergio; Loi, Andrea; Ortu, Matteo; Migliaccio, Gian Mario; Tocco, Filippo; Concu, Alberto; Crisafulli, Antonio

    2013-01-01

    This study aimed at comparing maximal oxygen uptake (VO(2max)), maximal heart rate (HR(max)), and anaerobic threshold (AT) obtained from tethered swimming (SW) and three other testing procedures: cycling (CY), running (RU), and arm cranking (AC). Variables were assessed in 12 trained male swimmers by a portable gas analyzer connected to a modified snorkel system to allow expired gases collection during swimming. Athletes exhibited a higher VO(2max) during the SW test as compared to the CY and the AC tests. There was no significant difference in VO(2max) between the SW and the RU test, but the Bland and Altman plot highlighted a poor agreement between results. Moreover, AT occurred at higher workloads during SW in comparison to the other tests. These results do not support the use of any unspecific testing procedures to estimate VO(2max), HR(max), and AT for swimming.

  13. Subunit Organisation of In Vitro Reconstituted HOPS and CORVET Multisubunit Membrane Tethering Complexes

    PubMed Central

    Guo, Zhong; Johnston, Wayne; Kovtun, Oleksiy; Mureev, Sergey; Bröcker, Cornelia; Ungermann, Christian; Alexandrov, Kirill

    2013-01-01

    Biochemical and structural analysis of macromolecular protein assemblies remains challenging due to technical difficulties in recombinant expression, engineering and reconstitution of multisubunit complexes. Here we use a recently developed cell-free protein expression system based on the protozoan Leishmania tarentolae to produce in vitro all six subunits of the 600 kDa HOPS and CORVET membrane tethering complexes. We demonstrate that both subcomplexes and the entire HOPS complex can be reconstituted in vitro resulting in a comprehensive subunit interaction map. To our knowledge this is the largest eukaryotic protein complex in vitro reconstituted to date. Using the truncation and interaction analysis, we demonstrate that the complex is assembled through short hydrophobic sequences located in the C-terminus of the individual Vps subunits. Based on this data we propose a model of the HOPS and CORVET complex assembly that reconciles the available biochemical and structural data. PMID:24312556

  14. The tethering of chromatin to the nuclear envelope supports nuclear mechanics

    PubMed Central

    Schreiner, Sarah M.; Koo, Peter K.; Zhao, Yao; Mochrie, Simon G. J.; King, Megan C.

    2015-01-01

    The nuclear lamina is thought to be the primary mechanical defence of the nucleus. However, the lamina is integrated within a network of lipids, proteins and chromatin; the interdependence of this network poses a challenge to defining the individual mechanical contributions of these components. Here, we isolate the role of chromatin in nuclear mechanics by using a system lacking lamins. Using novel imaging analyses, we observe that untethering chromatin from the inner nuclear membrane results in highly deformable nuclei in vivo, particularly in response to cytoskeletal forces. Using optical tweezers, we find that isolated nuclei lacking inner nuclear membrane tethers are less stiff than wild-type nuclei and exhibit increased chromatin flow, particularly in frequency ranges that recapitulate the kinetics of cytoskeletal dynamics. We suggest that modulating chromatin flow can define both transient and long-lived changes in nuclear shape that are biologically important and may be altered in disease. PMID:26074052

  15. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma

    NASA Astrophysics Data System (ADS)

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G.; Watts, Colin; Welland, Mark

    2014-08-01

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c

  16. Theory of plasma contractors for electrodynamic tethered satellite systems

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1986-01-01

    Recent data from ground and space experiments indicate that plasma releases from an object dramatically reduce the sheath impedance between the object and the ambient plasma surrounding it. Available data is in qualitative accord with the theory developed to quantify the flow of current in the sheath. Electron transport in the theory is based on a fluid model of a collisionless plasma with an effective collision frequency comparable to frequencies of plasma oscillations. The theory leads to low effective impedances varying inversely with the square root of the injected plasma density. To support such a low impedance mode of operation using an argon plasma source for example requires that only one argon ion be injected for each thirty electrons extracted from the ambient plasma. The required plasma flow rates are quite low; to extract one ampere of electron current requires a mass flow rate of about one gram of argon per day.

  17. Spatial and Functional Aspects of ER-Golgi Rabs and Tethers

    PubMed Central

    Saraste, Jaakko

    2016-01-01

    Two conserved Rab GTPases, Rab1 and Rab2, play important roles in biosynthetic-secretory trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus in mammalian cells. Both are expressed as two isoforms that regulate anterograde transport via the intermediate compartment (IC) to the Golgi, but are also required for transport in the retrograde direction. Moreover, Rab1 has been implicated in the formation of autophagosomes. Rab1 and Rab2 have numerous effectors or partners that function in membrane tethering, but also have other roles. These include the coiled-coil proteins p115, GM130, giantin, golgin-84, and GMAP-210, as well as the multisubunit COG (conserved oligomeric Golgi) and TRAPP (transport protein particle) tethering complexes. TRAPP also acts as the GTP exchange factor (GEF) in the activation of Rab1. According to the traditional view of the IC elements as motile, transient structures, the functions of the Rabs could take place at the two ends of the ER-Golgi itinerary, i.e., at ER exit sites (ERES) and/or cis-Golgi. However, there is considerable evidence for their specific association with the IC, including its recently identified pericentrosomal domain (pcIC), where many of the effectors turn out to be present, thus being able to exert their functions at the pre-Golgi level. The IC localization of these proteins is of particular interest based on the imaging of Rab1 dynamics, indicating that the IC is a stable organelle that bidirectionally communicates with the ER and Golgi, and is functionally linked to the endosomal system via the pcIC. PMID:27148530

  18. Tethered Fluorophore Motion: Studying Large DNA Conformational Changes by Single-fluorophore Imaging

    PubMed Central

    May, Peter F.J.; Pinkney, Justin N.M.; Zawadzki, Pawel; Evans, Geraint W.; Sherratt, David J.; Kapanidis, Achillefs N.

    2014-01-01

    We have previously introduced tethered fluorophore motion (TFM), a single-molecule fluorescence technique that monitors the effective length of a biopolymer such as DNA. TFM uses the same principles as tethered particle motion (TPM) but employs a single fluorophore in place of the bead, allowing TFM to be combined with existing fluorescence techniques on a standard fluorescence microscope. TFM has been previously been used to reveal the mechanism of two site-specific recombinase systems, Cre-loxP and XerCD-dif. In this work, we characterize TFM, focusing on the theoretical basis and potential applications of the technique. Since TFM is limited in observation time and photon count by photobleaching, we present a description of the sources of noise in TFM. Comparing this with Monte Carlo simulations and experimental data, we show that length changes of 100 bp of double-stranded DNA are readily distinguishable using TFM, making it comparable with TPM. We also show that the commonly recommended pixel size for single-molecule fluorescence approximately optimizes signal to noise for TFM experiments, thus enabling facile combination of TFM with other fluorescence techniques, such as Förster resonance energy transfer (FRET). Finally, we apply TFM to determine the polymerization rate of the Klenow fragment of DNA polymerase I, and we demonstrate its combination with FRET to observe synapsis formation by Cre using excitation by a single laser. We hope that TFM will be a useful addition to the single-molecule toolkit, providing excellent insight into protein-nucleic acid interactions. PMID:25185556

  19. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering

    SciTech Connect

    Beech, Brenda M.; Xiong, Yijia; Boschek, Curt B.; Baird, Cheryl L.; Bigelow, Diana J.; Mcateer, Kathleen; Squier, Thomas C.

    2014-09-05

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications to take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a polyethylene glycol (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with [13C] and [15N], permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. Upon initial formation of hydrogels protein dynamics are suppressed, with concomitant increases in protein stability. Relaxation of the hydrogel matrix following transient heating results in the activation of protein dynamics and restoration of substrate-induced large-amplitude domain motions necessary for substrate binding.

  20. Kv7 Channels Can Function without Constitutive Calmodulin Tethering

    PubMed Central

    Alberdi, Araitz; Alaimo, Alessandro; Etxeberría, Ainhoa; Fernández-Orth, Juncal; Zamalloa, Teresa; Roura-Ferrer, Meritxell; Villace, Patricia; Areso, Pilar; Casis, Oscar; Villarroel, Alvaro

    2011-01-01

    M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC), a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function. PMID:21980481